1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
4 * policies)
5 */
6 #include "sched.h"
7
8 #include "pelt.h"
9
10 int sched_rr_timeslice = RR_TIMESLICE;
11 int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE;
12
13 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
14
15 struct rt_bandwidth def_rt_bandwidth;
16
sched_rt_period_timer(struct hrtimer * timer)17 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
18 {
19 struct rt_bandwidth *rt_b =
20 container_of(timer, struct rt_bandwidth, rt_period_timer);
21 int idle = 0;
22 int overrun;
23
24 raw_spin_lock(&rt_b->rt_runtime_lock);
25 for (;;) {
26 overrun = hrtimer_forward_now(timer, rt_b->rt_period);
27 if (!overrun)
28 break;
29
30 raw_spin_unlock(&rt_b->rt_runtime_lock);
31 idle = do_sched_rt_period_timer(rt_b, overrun);
32 raw_spin_lock(&rt_b->rt_runtime_lock);
33 }
34 if (idle)
35 rt_b->rt_period_active = 0;
36 raw_spin_unlock(&rt_b->rt_runtime_lock);
37
38 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
39 }
40
init_rt_bandwidth(struct rt_bandwidth * rt_b,u64 period,u64 runtime)41 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
42 {
43 rt_b->rt_period = ns_to_ktime(period);
44 rt_b->rt_runtime = runtime;
45
46 raw_spin_lock_init(&rt_b->rt_runtime_lock);
47
48 hrtimer_init(&rt_b->rt_period_timer,
49 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
50 rt_b->rt_period_timer.function = sched_rt_period_timer;
51 }
52
start_rt_bandwidth(struct rt_bandwidth * rt_b)53 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
54 {
55 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
56 return;
57
58 raw_spin_lock(&rt_b->rt_runtime_lock);
59 if (!rt_b->rt_period_active) {
60 rt_b->rt_period_active = 1;
61 /*
62 * SCHED_DEADLINE updates the bandwidth, as a run away
63 * RT task with a DL task could hog a CPU. But DL does
64 * not reset the period. If a deadline task was running
65 * without an RT task running, it can cause RT tasks to
66 * throttle when they start up. Kick the timer right away
67 * to update the period.
68 */
69 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
70 hrtimer_start_expires(&rt_b->rt_period_timer, HRTIMER_MODE_ABS_PINNED);
71 }
72 raw_spin_unlock(&rt_b->rt_runtime_lock);
73 }
74
init_rt_rq(struct rt_rq * rt_rq)75 void init_rt_rq(struct rt_rq *rt_rq)
76 {
77 struct rt_prio_array *array;
78 int i;
79
80 array = &rt_rq->active;
81 for (i = 0; i < MAX_RT_PRIO; i++) {
82 INIT_LIST_HEAD(array->queue + i);
83 __clear_bit(i, array->bitmap);
84 }
85 /* delimiter for bitsearch: */
86 __set_bit(MAX_RT_PRIO, array->bitmap);
87
88 #if defined CONFIG_SMP
89 rt_rq->highest_prio.curr = MAX_RT_PRIO;
90 rt_rq->highest_prio.next = MAX_RT_PRIO;
91 rt_rq->rt_nr_migratory = 0;
92 rt_rq->overloaded = 0;
93 plist_head_init(&rt_rq->pushable_tasks);
94 #endif /* CONFIG_SMP */
95 /* We start is dequeued state, because no RT tasks are queued */
96 rt_rq->rt_queued = 0;
97
98 rt_rq->rt_time = 0;
99 rt_rq->rt_throttled = 0;
100 rt_rq->rt_runtime = 0;
101 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
102 }
103
104 #ifdef CONFIG_RT_GROUP_SCHED
destroy_rt_bandwidth(struct rt_bandwidth * rt_b)105 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
106 {
107 hrtimer_cancel(&rt_b->rt_period_timer);
108 }
109
110 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
111
rt_task_of(struct sched_rt_entity * rt_se)112 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
113 {
114 #ifdef CONFIG_SCHED_DEBUG
115 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
116 #endif
117 return container_of(rt_se, struct task_struct, rt);
118 }
119
rq_of_rt_rq(struct rt_rq * rt_rq)120 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
121 {
122 return rt_rq->rq;
123 }
124
rt_rq_of_se(struct sched_rt_entity * rt_se)125 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
126 {
127 return rt_se->rt_rq;
128 }
129
rq_of_rt_se(struct sched_rt_entity * rt_se)130 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
131 {
132 struct rt_rq *rt_rq = rt_se->rt_rq;
133
134 return rt_rq->rq;
135 }
136
free_rt_sched_group(struct task_group * tg)137 void free_rt_sched_group(struct task_group *tg)
138 {
139 int i;
140
141 if (tg->rt_se)
142 destroy_rt_bandwidth(&tg->rt_bandwidth);
143
144 for_each_possible_cpu(i) {
145 if (tg->rt_rq)
146 kfree(tg->rt_rq[i]);
147 if (tg->rt_se)
148 kfree(tg->rt_se[i]);
149 }
150
151 kfree(tg->rt_rq);
152 kfree(tg->rt_se);
153 }
154
init_tg_rt_entry(struct task_group * tg,struct rt_rq * rt_rq,struct sched_rt_entity * rt_se,int cpu,struct sched_rt_entity * parent)155 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
156 struct sched_rt_entity *rt_se, int cpu,
157 struct sched_rt_entity *parent)
158 {
159 struct rq *rq = cpu_rq(cpu);
160
161 rt_rq->highest_prio.curr = MAX_RT_PRIO;
162 rt_rq->rt_nr_boosted = 0;
163 rt_rq->rq = rq;
164 rt_rq->tg = tg;
165
166 tg->rt_rq[cpu] = rt_rq;
167 tg->rt_se[cpu] = rt_se;
168
169 if (!rt_se)
170 return;
171
172 if (!parent)
173 rt_se->rt_rq = &rq->rt;
174 else
175 rt_se->rt_rq = parent->my_q;
176
177 rt_se->my_q = rt_rq;
178 rt_se->parent = parent;
179 INIT_LIST_HEAD(&rt_se->run_list);
180 }
181
alloc_rt_sched_group(struct task_group * tg,struct task_group * parent)182 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
183 {
184 struct rt_rq *rt_rq;
185 struct sched_rt_entity *rt_se;
186 int i;
187
188 tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
189 if (!tg->rt_rq)
190 goto err;
191 tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL);
192 if (!tg->rt_se)
193 goto err;
194
195 init_rt_bandwidth(&tg->rt_bandwidth,
196 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
197
198 for_each_possible_cpu(i) {
199 rt_rq = kzalloc_node(sizeof(struct rt_rq),
200 GFP_KERNEL, cpu_to_node(i));
201 if (!rt_rq)
202 goto err;
203
204 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
205 GFP_KERNEL, cpu_to_node(i));
206 if (!rt_se)
207 goto err_free_rq;
208
209 init_rt_rq(rt_rq);
210 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
211 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
212 }
213
214 return 1;
215
216 err_free_rq:
217 kfree(rt_rq);
218 err:
219 return 0;
220 }
221
222 #else /* CONFIG_RT_GROUP_SCHED */
223
224 #define rt_entity_is_task(rt_se) (1)
225
rt_task_of(struct sched_rt_entity * rt_se)226 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
227 {
228 return container_of(rt_se, struct task_struct, rt);
229 }
230
rq_of_rt_rq(struct rt_rq * rt_rq)231 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
232 {
233 return container_of(rt_rq, struct rq, rt);
234 }
235
rq_of_rt_se(struct sched_rt_entity * rt_se)236 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
237 {
238 struct task_struct *p = rt_task_of(rt_se);
239
240 return task_rq(p);
241 }
242
rt_rq_of_se(struct sched_rt_entity * rt_se)243 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
244 {
245 struct rq *rq = rq_of_rt_se(rt_se);
246
247 return &rq->rt;
248 }
249
free_rt_sched_group(struct task_group * tg)250 void free_rt_sched_group(struct task_group *tg) { }
251
alloc_rt_sched_group(struct task_group * tg,struct task_group * parent)252 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
253 {
254 return 1;
255 }
256 #endif /* CONFIG_RT_GROUP_SCHED */
257
258 #ifdef CONFIG_SMP
259
260 static void pull_rt_task(struct rq *this_rq);
261
need_pull_rt_task(struct rq * rq,struct task_struct * prev)262 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
263 {
264 /* Try to pull RT tasks here if we lower this rq's prio */
265 return rq->rt.highest_prio.curr > prev->prio;
266 }
267
rt_overloaded(struct rq * rq)268 static inline int rt_overloaded(struct rq *rq)
269 {
270 return atomic_read(&rq->rd->rto_count);
271 }
272
rt_set_overload(struct rq * rq)273 static inline void rt_set_overload(struct rq *rq)
274 {
275 if (!rq->online)
276 return;
277
278 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
279 /*
280 * Make sure the mask is visible before we set
281 * the overload count. That is checked to determine
282 * if we should look at the mask. It would be a shame
283 * if we looked at the mask, but the mask was not
284 * updated yet.
285 *
286 * Matched by the barrier in pull_rt_task().
287 */
288 smp_wmb();
289 atomic_inc(&rq->rd->rto_count);
290 }
291
rt_clear_overload(struct rq * rq)292 static inline void rt_clear_overload(struct rq *rq)
293 {
294 if (!rq->online)
295 return;
296
297 /* the order here really doesn't matter */
298 atomic_dec(&rq->rd->rto_count);
299 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
300 }
301
update_rt_migration(struct rt_rq * rt_rq)302 static void update_rt_migration(struct rt_rq *rt_rq)
303 {
304 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
305 if (!rt_rq->overloaded) {
306 rt_set_overload(rq_of_rt_rq(rt_rq));
307 rt_rq->overloaded = 1;
308 }
309 } else if (rt_rq->overloaded) {
310 rt_clear_overload(rq_of_rt_rq(rt_rq));
311 rt_rq->overloaded = 0;
312 }
313 }
314
inc_rt_migration(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)315 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
316 {
317 struct task_struct *p;
318
319 if (!rt_entity_is_task(rt_se))
320 return;
321
322 p = rt_task_of(rt_se);
323 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
324
325 rt_rq->rt_nr_total++;
326 if (p->nr_cpus_allowed > 1)
327 rt_rq->rt_nr_migratory++;
328
329 update_rt_migration(rt_rq);
330 }
331
dec_rt_migration(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)332 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
333 {
334 struct task_struct *p;
335
336 if (!rt_entity_is_task(rt_se))
337 return;
338
339 p = rt_task_of(rt_se);
340 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
341
342 rt_rq->rt_nr_total--;
343 if (p->nr_cpus_allowed > 1)
344 rt_rq->rt_nr_migratory--;
345
346 update_rt_migration(rt_rq);
347 }
348
has_pushable_tasks(struct rq * rq)349 static inline int has_pushable_tasks(struct rq *rq)
350 {
351 return !plist_head_empty(&rq->rt.pushable_tasks);
352 }
353
354 static DEFINE_PER_CPU(struct callback_head, rt_push_head);
355 static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
356
357 static void push_rt_tasks(struct rq *);
358 static void pull_rt_task(struct rq *);
359
rt_queue_push_tasks(struct rq * rq)360 static inline void rt_queue_push_tasks(struct rq *rq)
361 {
362 if (!has_pushable_tasks(rq))
363 return;
364
365 queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
366 }
367
rt_queue_pull_task(struct rq * rq)368 static inline void rt_queue_pull_task(struct rq *rq)
369 {
370 queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
371 }
372
enqueue_pushable_task(struct rq * rq,struct task_struct * p)373 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
374 {
375 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
376 plist_node_init(&p->pushable_tasks, p->prio);
377 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
378
379 /* Update the highest prio pushable task */
380 if (p->prio < rq->rt.highest_prio.next)
381 rq->rt.highest_prio.next = p->prio;
382 }
383
dequeue_pushable_task(struct rq * rq,struct task_struct * p)384 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
385 {
386 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
387
388 /* Update the new highest prio pushable task */
389 if (has_pushable_tasks(rq)) {
390 p = plist_first_entry(&rq->rt.pushable_tasks,
391 struct task_struct, pushable_tasks);
392 rq->rt.highest_prio.next = p->prio;
393 } else
394 rq->rt.highest_prio.next = MAX_RT_PRIO;
395 }
396
397 #else
398
enqueue_pushable_task(struct rq * rq,struct task_struct * p)399 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
400 {
401 }
402
dequeue_pushable_task(struct rq * rq,struct task_struct * p)403 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
404 {
405 }
406
407 static inline
inc_rt_migration(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)408 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
409 {
410 }
411
412 static inline
dec_rt_migration(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)413 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
414 {
415 }
416
need_pull_rt_task(struct rq * rq,struct task_struct * prev)417 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
418 {
419 return false;
420 }
421
pull_rt_task(struct rq * this_rq)422 static inline void pull_rt_task(struct rq *this_rq)
423 {
424 }
425
rt_queue_push_tasks(struct rq * rq)426 static inline void rt_queue_push_tasks(struct rq *rq)
427 {
428 }
429 #endif /* CONFIG_SMP */
430
431 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
432 static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
433
on_rt_rq(struct sched_rt_entity * rt_se)434 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
435 {
436 return rt_se->on_rq;
437 }
438
439 #ifdef CONFIG_RT_GROUP_SCHED
440
sched_rt_runtime(struct rt_rq * rt_rq)441 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
442 {
443 if (!rt_rq->tg)
444 return RUNTIME_INF;
445
446 return rt_rq->rt_runtime;
447 }
448
sched_rt_period(struct rt_rq * rt_rq)449 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
450 {
451 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
452 }
453
454 typedef struct task_group *rt_rq_iter_t;
455
next_task_group(struct task_group * tg)456 static inline struct task_group *next_task_group(struct task_group *tg)
457 {
458 do {
459 tg = list_entry_rcu(tg->list.next,
460 typeof(struct task_group), list);
461 } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
462
463 if (&tg->list == &task_groups)
464 tg = NULL;
465
466 return tg;
467 }
468
469 #define for_each_rt_rq(rt_rq, iter, rq) \
470 for (iter = container_of(&task_groups, typeof(*iter), list); \
471 (iter = next_task_group(iter)) && \
472 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
473
474 #define for_each_sched_rt_entity(rt_se) \
475 for (; rt_se; rt_se = rt_se->parent)
476
group_rt_rq(struct sched_rt_entity * rt_se)477 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
478 {
479 return rt_se->my_q;
480 }
481
482 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
483 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
484
sched_rt_rq_enqueue(struct rt_rq * rt_rq)485 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
486 {
487 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
488 struct rq *rq = rq_of_rt_rq(rt_rq);
489 struct sched_rt_entity *rt_se;
490
491 int cpu = cpu_of(rq);
492
493 rt_se = rt_rq->tg->rt_se[cpu];
494
495 if (rt_rq->rt_nr_running) {
496 if (!rt_se)
497 enqueue_top_rt_rq(rt_rq);
498 else if (!on_rt_rq(rt_se))
499 enqueue_rt_entity(rt_se, 0);
500
501 if (rt_rq->highest_prio.curr < curr->prio)
502 resched_curr(rq);
503 }
504 }
505
sched_rt_rq_dequeue(struct rt_rq * rt_rq)506 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
507 {
508 struct sched_rt_entity *rt_se;
509 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
510
511 rt_se = rt_rq->tg->rt_se[cpu];
512
513 if (!rt_se) {
514 dequeue_top_rt_rq(rt_rq);
515 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
516 cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
517 }
518 else if (on_rt_rq(rt_se))
519 dequeue_rt_entity(rt_se, 0);
520 }
521
rt_rq_throttled(struct rt_rq * rt_rq)522 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
523 {
524 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
525 }
526
rt_se_boosted(struct sched_rt_entity * rt_se)527 static int rt_se_boosted(struct sched_rt_entity *rt_se)
528 {
529 struct rt_rq *rt_rq = group_rt_rq(rt_se);
530 struct task_struct *p;
531
532 if (rt_rq)
533 return !!rt_rq->rt_nr_boosted;
534
535 p = rt_task_of(rt_se);
536 return p->prio != p->normal_prio;
537 }
538
539 #ifdef CONFIG_SMP
sched_rt_period_mask(void)540 static inline const struct cpumask *sched_rt_period_mask(void)
541 {
542 return this_rq()->rd->span;
543 }
544 #else
sched_rt_period_mask(void)545 static inline const struct cpumask *sched_rt_period_mask(void)
546 {
547 return cpu_online_mask;
548 }
549 #endif
550
551 static inline
sched_rt_period_rt_rq(struct rt_bandwidth * rt_b,int cpu)552 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
553 {
554 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
555 }
556
sched_rt_bandwidth(struct rt_rq * rt_rq)557 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
558 {
559 return &rt_rq->tg->rt_bandwidth;
560 }
561
562 #else /* !CONFIG_RT_GROUP_SCHED */
563
sched_rt_runtime(struct rt_rq * rt_rq)564 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
565 {
566 return rt_rq->rt_runtime;
567 }
568
sched_rt_period(struct rt_rq * rt_rq)569 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
570 {
571 return ktime_to_ns(def_rt_bandwidth.rt_period);
572 }
573
574 typedef struct rt_rq *rt_rq_iter_t;
575
576 #define for_each_rt_rq(rt_rq, iter, rq) \
577 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
578
579 #define for_each_sched_rt_entity(rt_se) \
580 for (; rt_se; rt_se = NULL)
581
group_rt_rq(struct sched_rt_entity * rt_se)582 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
583 {
584 return NULL;
585 }
586
sched_rt_rq_enqueue(struct rt_rq * rt_rq)587 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
588 {
589 struct rq *rq = rq_of_rt_rq(rt_rq);
590
591 if (!rt_rq->rt_nr_running)
592 return;
593
594 enqueue_top_rt_rq(rt_rq);
595 resched_curr(rq);
596 }
597
sched_rt_rq_dequeue(struct rt_rq * rt_rq)598 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
599 {
600 dequeue_top_rt_rq(rt_rq);
601 }
602
rt_rq_throttled(struct rt_rq * rt_rq)603 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
604 {
605 return rt_rq->rt_throttled;
606 }
607
sched_rt_period_mask(void)608 static inline const struct cpumask *sched_rt_period_mask(void)
609 {
610 return cpu_online_mask;
611 }
612
613 static inline
sched_rt_period_rt_rq(struct rt_bandwidth * rt_b,int cpu)614 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
615 {
616 return &cpu_rq(cpu)->rt;
617 }
618
sched_rt_bandwidth(struct rt_rq * rt_rq)619 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
620 {
621 return &def_rt_bandwidth;
622 }
623
624 #endif /* CONFIG_RT_GROUP_SCHED */
625
sched_rt_bandwidth_account(struct rt_rq * rt_rq)626 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
627 {
628 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
629
630 return (hrtimer_active(&rt_b->rt_period_timer) ||
631 rt_rq->rt_time < rt_b->rt_runtime);
632 }
633
634 #ifdef CONFIG_SMP
635 /*
636 * We ran out of runtime, see if we can borrow some from our neighbours.
637 */
do_balance_runtime(struct rt_rq * rt_rq)638 static void do_balance_runtime(struct rt_rq *rt_rq)
639 {
640 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
641 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
642 int i, weight;
643 u64 rt_period;
644
645 weight = cpumask_weight(rd->span);
646
647 raw_spin_lock(&rt_b->rt_runtime_lock);
648 rt_period = ktime_to_ns(rt_b->rt_period);
649 for_each_cpu(i, rd->span) {
650 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
651 s64 diff;
652
653 if (iter == rt_rq)
654 continue;
655
656 raw_spin_lock(&iter->rt_runtime_lock);
657 /*
658 * Either all rqs have inf runtime and there's nothing to steal
659 * or __disable_runtime() below sets a specific rq to inf to
660 * indicate its been disabled and disalow stealing.
661 */
662 if (iter->rt_runtime == RUNTIME_INF)
663 goto next;
664
665 /*
666 * From runqueues with spare time, take 1/n part of their
667 * spare time, but no more than our period.
668 */
669 diff = iter->rt_runtime - iter->rt_time;
670 if (diff > 0) {
671 diff = div_u64((u64)diff, weight);
672 if (rt_rq->rt_runtime + diff > rt_period)
673 diff = rt_period - rt_rq->rt_runtime;
674 iter->rt_runtime -= diff;
675 rt_rq->rt_runtime += diff;
676 if (rt_rq->rt_runtime == rt_period) {
677 raw_spin_unlock(&iter->rt_runtime_lock);
678 break;
679 }
680 }
681 next:
682 raw_spin_unlock(&iter->rt_runtime_lock);
683 }
684 raw_spin_unlock(&rt_b->rt_runtime_lock);
685 }
686
687 /*
688 * Ensure this RQ takes back all the runtime it lend to its neighbours.
689 */
__disable_runtime(struct rq * rq)690 static void __disable_runtime(struct rq *rq)
691 {
692 struct root_domain *rd = rq->rd;
693 rt_rq_iter_t iter;
694 struct rt_rq *rt_rq;
695
696 if (unlikely(!scheduler_running))
697 return;
698
699 for_each_rt_rq(rt_rq, iter, rq) {
700 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
701 s64 want;
702 int i;
703
704 raw_spin_lock(&rt_b->rt_runtime_lock);
705 raw_spin_lock(&rt_rq->rt_runtime_lock);
706 /*
707 * Either we're all inf and nobody needs to borrow, or we're
708 * already disabled and thus have nothing to do, or we have
709 * exactly the right amount of runtime to take out.
710 */
711 if (rt_rq->rt_runtime == RUNTIME_INF ||
712 rt_rq->rt_runtime == rt_b->rt_runtime)
713 goto balanced;
714 raw_spin_unlock(&rt_rq->rt_runtime_lock);
715
716 /*
717 * Calculate the difference between what we started out with
718 * and what we current have, that's the amount of runtime
719 * we lend and now have to reclaim.
720 */
721 want = rt_b->rt_runtime - rt_rq->rt_runtime;
722
723 /*
724 * Greedy reclaim, take back as much as we can.
725 */
726 for_each_cpu(i, rd->span) {
727 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
728 s64 diff;
729
730 /*
731 * Can't reclaim from ourselves or disabled runqueues.
732 */
733 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
734 continue;
735
736 raw_spin_lock(&iter->rt_runtime_lock);
737 if (want > 0) {
738 diff = min_t(s64, iter->rt_runtime, want);
739 iter->rt_runtime -= diff;
740 want -= diff;
741 } else {
742 iter->rt_runtime -= want;
743 want -= want;
744 }
745 raw_spin_unlock(&iter->rt_runtime_lock);
746
747 if (!want)
748 break;
749 }
750
751 raw_spin_lock(&rt_rq->rt_runtime_lock);
752 /*
753 * We cannot be left wanting - that would mean some runtime
754 * leaked out of the system.
755 */
756 BUG_ON(want);
757 balanced:
758 /*
759 * Disable all the borrow logic by pretending we have inf
760 * runtime - in which case borrowing doesn't make sense.
761 */
762 rt_rq->rt_runtime = RUNTIME_INF;
763 rt_rq->rt_throttled = 0;
764 raw_spin_unlock(&rt_rq->rt_runtime_lock);
765 raw_spin_unlock(&rt_b->rt_runtime_lock);
766
767 /* Make rt_rq available for pick_next_task() */
768 sched_rt_rq_enqueue(rt_rq);
769 }
770 }
771
__enable_runtime(struct rq * rq)772 static void __enable_runtime(struct rq *rq)
773 {
774 rt_rq_iter_t iter;
775 struct rt_rq *rt_rq;
776
777 if (unlikely(!scheduler_running))
778 return;
779
780 /*
781 * Reset each runqueue's bandwidth settings
782 */
783 for_each_rt_rq(rt_rq, iter, rq) {
784 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
785
786 raw_spin_lock(&rt_b->rt_runtime_lock);
787 raw_spin_lock(&rt_rq->rt_runtime_lock);
788 rt_rq->rt_runtime = rt_b->rt_runtime;
789 rt_rq->rt_time = 0;
790 rt_rq->rt_throttled = 0;
791 raw_spin_unlock(&rt_rq->rt_runtime_lock);
792 raw_spin_unlock(&rt_b->rt_runtime_lock);
793 }
794 }
795
balance_runtime(struct rt_rq * rt_rq)796 static void balance_runtime(struct rt_rq *rt_rq)
797 {
798 if (!sched_feat(RT_RUNTIME_SHARE))
799 return;
800
801 if (rt_rq->rt_time > rt_rq->rt_runtime) {
802 raw_spin_unlock(&rt_rq->rt_runtime_lock);
803 do_balance_runtime(rt_rq);
804 raw_spin_lock(&rt_rq->rt_runtime_lock);
805 }
806 }
807 #else /* !CONFIG_SMP */
balance_runtime(struct rt_rq * rt_rq)808 static inline void balance_runtime(struct rt_rq *rt_rq) {}
809 #endif /* CONFIG_SMP */
810
do_sched_rt_period_timer(struct rt_bandwidth * rt_b,int overrun)811 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
812 {
813 int i, idle = 1, throttled = 0;
814 const struct cpumask *span;
815
816 span = sched_rt_period_mask();
817 #ifdef CONFIG_RT_GROUP_SCHED
818 /*
819 * FIXME: isolated CPUs should really leave the root task group,
820 * whether they are isolcpus or were isolated via cpusets, lest
821 * the timer run on a CPU which does not service all runqueues,
822 * potentially leaving other CPUs indefinitely throttled. If
823 * isolation is really required, the user will turn the throttle
824 * off to kill the perturbations it causes anyway. Meanwhile,
825 * this maintains functionality for boot and/or troubleshooting.
826 */
827 if (rt_b == &root_task_group.rt_bandwidth)
828 span = cpu_online_mask;
829 #endif
830 for_each_cpu(i, span) {
831 int enqueue = 0;
832 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
833 struct rq *rq = rq_of_rt_rq(rt_rq);
834 int skip;
835
836 /*
837 * When span == cpu_online_mask, taking each rq->lock
838 * can be time-consuming. Try to avoid it when possible.
839 */
840 raw_spin_lock(&rt_rq->rt_runtime_lock);
841 if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
842 rt_rq->rt_runtime = rt_b->rt_runtime;
843 skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
844 raw_spin_unlock(&rt_rq->rt_runtime_lock);
845 if (skip)
846 continue;
847
848 raw_spin_lock(&rq->lock);
849 update_rq_clock(rq);
850
851 if (rt_rq->rt_time) {
852 u64 runtime;
853
854 raw_spin_lock(&rt_rq->rt_runtime_lock);
855 if (rt_rq->rt_throttled)
856 balance_runtime(rt_rq);
857 runtime = rt_rq->rt_runtime;
858 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
859 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
860 rt_rq->rt_throttled = 0;
861 enqueue = 1;
862
863 /*
864 * When we're idle and a woken (rt) task is
865 * throttled check_preempt_curr() will set
866 * skip_update and the time between the wakeup
867 * and this unthrottle will get accounted as
868 * 'runtime'.
869 */
870 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
871 rq_clock_cancel_skipupdate(rq);
872 }
873 if (rt_rq->rt_time || rt_rq->rt_nr_running)
874 idle = 0;
875 raw_spin_unlock(&rt_rq->rt_runtime_lock);
876 } else if (rt_rq->rt_nr_running) {
877 idle = 0;
878 if (!rt_rq_throttled(rt_rq))
879 enqueue = 1;
880 }
881 if (rt_rq->rt_throttled)
882 throttled = 1;
883
884 if (enqueue)
885 sched_rt_rq_enqueue(rt_rq);
886 raw_spin_unlock(&rq->lock);
887 }
888
889 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
890 return 1;
891
892 return idle;
893 }
894
rt_se_prio(struct sched_rt_entity * rt_se)895 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
896 {
897 #ifdef CONFIG_RT_GROUP_SCHED
898 struct rt_rq *rt_rq = group_rt_rq(rt_se);
899
900 if (rt_rq)
901 return rt_rq->highest_prio.curr;
902 #endif
903
904 return rt_task_of(rt_se)->prio;
905 }
906
sched_rt_runtime_exceeded(struct rt_rq * rt_rq)907 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
908 {
909 u64 runtime = sched_rt_runtime(rt_rq);
910
911 if (rt_rq->rt_throttled)
912 return rt_rq_throttled(rt_rq);
913
914 if (runtime >= sched_rt_period(rt_rq))
915 return 0;
916
917 balance_runtime(rt_rq);
918 runtime = sched_rt_runtime(rt_rq);
919 if (runtime == RUNTIME_INF)
920 return 0;
921
922 if (rt_rq->rt_time > runtime) {
923 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
924
925 /*
926 * Don't actually throttle groups that have no runtime assigned
927 * but accrue some time due to boosting.
928 */
929 if (likely(rt_b->rt_runtime)) {
930 rt_rq->rt_throttled = 1;
931 printk_deferred_once("sched: RT throttling activated\n");
932 } else {
933 /*
934 * In case we did anyway, make it go away,
935 * replenishment is a joke, since it will replenish us
936 * with exactly 0 ns.
937 */
938 rt_rq->rt_time = 0;
939 }
940
941 if (rt_rq_throttled(rt_rq)) {
942 sched_rt_rq_dequeue(rt_rq);
943 return 1;
944 }
945 }
946
947 return 0;
948 }
949
950 /*
951 * Update the current task's runtime statistics. Skip current tasks that
952 * are not in our scheduling class.
953 */
update_curr_rt(struct rq * rq)954 static void update_curr_rt(struct rq *rq)
955 {
956 struct task_struct *curr = rq->curr;
957 struct sched_rt_entity *rt_se = &curr->rt;
958 u64 delta_exec;
959 u64 now;
960
961 if (curr->sched_class != &rt_sched_class)
962 return;
963
964 now = rq_clock_task(rq);
965 delta_exec = now - curr->se.exec_start;
966 if (unlikely((s64)delta_exec <= 0))
967 return;
968
969 schedstat_set(curr->se.statistics.exec_max,
970 max(curr->se.statistics.exec_max, delta_exec));
971
972 curr->se.sum_exec_runtime += delta_exec;
973 account_group_exec_runtime(curr, delta_exec);
974
975 curr->se.exec_start = now;
976 cgroup_account_cputime(curr, delta_exec);
977
978 if (!rt_bandwidth_enabled())
979 return;
980
981 for_each_sched_rt_entity(rt_se) {
982 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
983
984 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
985 raw_spin_lock(&rt_rq->rt_runtime_lock);
986 rt_rq->rt_time += delta_exec;
987 if (sched_rt_runtime_exceeded(rt_rq))
988 resched_curr(rq);
989 raw_spin_unlock(&rt_rq->rt_runtime_lock);
990 }
991 }
992 }
993
994 static void
dequeue_top_rt_rq(struct rt_rq * rt_rq)995 dequeue_top_rt_rq(struct rt_rq *rt_rq)
996 {
997 struct rq *rq = rq_of_rt_rq(rt_rq);
998
999 BUG_ON(&rq->rt != rt_rq);
1000
1001 if (!rt_rq->rt_queued)
1002 return;
1003
1004 BUG_ON(!rq->nr_running);
1005
1006 sub_nr_running(rq, rt_rq->rt_nr_running);
1007 rt_rq->rt_queued = 0;
1008
1009 }
1010
1011 static void
enqueue_top_rt_rq(struct rt_rq * rt_rq)1012 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1013 {
1014 struct rq *rq = rq_of_rt_rq(rt_rq);
1015
1016 BUG_ON(&rq->rt != rt_rq);
1017
1018 if (rt_rq->rt_queued)
1019 return;
1020
1021 if (rt_rq_throttled(rt_rq))
1022 return;
1023
1024 if (rt_rq->rt_nr_running) {
1025 add_nr_running(rq, rt_rq->rt_nr_running);
1026 rt_rq->rt_queued = 1;
1027 }
1028
1029 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1030 cpufreq_update_util(rq, 0);
1031 }
1032
1033 #if defined CONFIG_SMP
1034
1035 static void
inc_rt_prio_smp(struct rt_rq * rt_rq,int prio,int prev_prio)1036 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1037 {
1038 struct rq *rq = rq_of_rt_rq(rt_rq);
1039
1040 #ifdef CONFIG_RT_GROUP_SCHED
1041 /*
1042 * Change rq's cpupri only if rt_rq is the top queue.
1043 */
1044 if (&rq->rt != rt_rq)
1045 return;
1046 #endif
1047 if (rq->online && prio < prev_prio)
1048 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1049 }
1050
1051 static void
dec_rt_prio_smp(struct rt_rq * rt_rq,int prio,int prev_prio)1052 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1053 {
1054 struct rq *rq = rq_of_rt_rq(rt_rq);
1055
1056 #ifdef CONFIG_RT_GROUP_SCHED
1057 /*
1058 * Change rq's cpupri only if rt_rq is the top queue.
1059 */
1060 if (&rq->rt != rt_rq)
1061 return;
1062 #endif
1063 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1064 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1065 }
1066
1067 #else /* CONFIG_SMP */
1068
1069 static inline
inc_rt_prio_smp(struct rt_rq * rt_rq,int prio,int prev_prio)1070 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1071 static inline
dec_rt_prio_smp(struct rt_rq * rt_rq,int prio,int prev_prio)1072 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1073
1074 #endif /* CONFIG_SMP */
1075
1076 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1077 static void
inc_rt_prio(struct rt_rq * rt_rq,int prio)1078 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1079 {
1080 int prev_prio = rt_rq->highest_prio.curr;
1081
1082 if (prio < prev_prio)
1083 rt_rq->highest_prio.curr = prio;
1084
1085 inc_rt_prio_smp(rt_rq, prio, prev_prio);
1086 }
1087
1088 static void
dec_rt_prio(struct rt_rq * rt_rq,int prio)1089 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1090 {
1091 int prev_prio = rt_rq->highest_prio.curr;
1092
1093 if (rt_rq->rt_nr_running) {
1094
1095 WARN_ON(prio < prev_prio);
1096
1097 /*
1098 * This may have been our highest task, and therefore
1099 * we may have some recomputation to do
1100 */
1101 if (prio == prev_prio) {
1102 struct rt_prio_array *array = &rt_rq->active;
1103
1104 rt_rq->highest_prio.curr =
1105 sched_find_first_bit(array->bitmap);
1106 }
1107
1108 } else
1109 rt_rq->highest_prio.curr = MAX_RT_PRIO;
1110
1111 dec_rt_prio_smp(rt_rq, prio, prev_prio);
1112 }
1113
1114 #else
1115
inc_rt_prio(struct rt_rq * rt_rq,int prio)1116 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
dec_rt_prio(struct rt_rq * rt_rq,int prio)1117 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1118
1119 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1120
1121 #ifdef CONFIG_RT_GROUP_SCHED
1122
1123 static void
inc_rt_group(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1124 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1125 {
1126 if (rt_se_boosted(rt_se))
1127 rt_rq->rt_nr_boosted++;
1128
1129 if (rt_rq->tg)
1130 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1131 }
1132
1133 static void
dec_rt_group(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1134 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1135 {
1136 if (rt_se_boosted(rt_se))
1137 rt_rq->rt_nr_boosted--;
1138
1139 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1140 }
1141
1142 #else /* CONFIG_RT_GROUP_SCHED */
1143
1144 static void
inc_rt_group(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1145 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1146 {
1147 start_rt_bandwidth(&def_rt_bandwidth);
1148 }
1149
1150 static inline
dec_rt_group(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1151 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1152
1153 #endif /* CONFIG_RT_GROUP_SCHED */
1154
1155 static inline
rt_se_nr_running(struct sched_rt_entity * rt_se)1156 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1157 {
1158 struct rt_rq *group_rq = group_rt_rq(rt_se);
1159
1160 if (group_rq)
1161 return group_rq->rt_nr_running;
1162 else
1163 return 1;
1164 }
1165
1166 static inline
rt_se_rr_nr_running(struct sched_rt_entity * rt_se)1167 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1168 {
1169 struct rt_rq *group_rq = group_rt_rq(rt_se);
1170 struct task_struct *tsk;
1171
1172 if (group_rq)
1173 return group_rq->rr_nr_running;
1174
1175 tsk = rt_task_of(rt_se);
1176
1177 return (tsk->policy == SCHED_RR) ? 1 : 0;
1178 }
1179
1180 static inline
inc_rt_tasks(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1181 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1182 {
1183 int prio = rt_se_prio(rt_se);
1184
1185 WARN_ON(!rt_prio(prio));
1186 rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1187 rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1188
1189 inc_rt_prio(rt_rq, prio);
1190 inc_rt_migration(rt_se, rt_rq);
1191 inc_rt_group(rt_se, rt_rq);
1192 }
1193
1194 static inline
dec_rt_tasks(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1195 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1196 {
1197 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1198 WARN_ON(!rt_rq->rt_nr_running);
1199 rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1200 rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1201
1202 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1203 dec_rt_migration(rt_se, rt_rq);
1204 dec_rt_group(rt_se, rt_rq);
1205 }
1206
1207 /*
1208 * Change rt_se->run_list location unless SAVE && !MOVE
1209 *
1210 * assumes ENQUEUE/DEQUEUE flags match
1211 */
move_entity(unsigned int flags)1212 static inline bool move_entity(unsigned int flags)
1213 {
1214 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1215 return false;
1216
1217 return true;
1218 }
1219
__delist_rt_entity(struct sched_rt_entity * rt_se,struct rt_prio_array * array)1220 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1221 {
1222 list_del_init(&rt_se->run_list);
1223
1224 if (list_empty(array->queue + rt_se_prio(rt_se)))
1225 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1226
1227 rt_se->on_list = 0;
1228 }
1229
__enqueue_rt_entity(struct sched_rt_entity * rt_se,unsigned int flags)1230 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1231 {
1232 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1233 struct rt_prio_array *array = &rt_rq->active;
1234 struct rt_rq *group_rq = group_rt_rq(rt_se);
1235 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1236
1237 /*
1238 * Don't enqueue the group if its throttled, or when empty.
1239 * The latter is a consequence of the former when a child group
1240 * get throttled and the current group doesn't have any other
1241 * active members.
1242 */
1243 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1244 if (rt_se->on_list)
1245 __delist_rt_entity(rt_se, array);
1246 return;
1247 }
1248
1249 if (move_entity(flags)) {
1250 WARN_ON_ONCE(rt_se->on_list);
1251 if (flags & ENQUEUE_HEAD)
1252 list_add(&rt_se->run_list, queue);
1253 else
1254 list_add_tail(&rt_se->run_list, queue);
1255
1256 __set_bit(rt_se_prio(rt_se), array->bitmap);
1257 rt_se->on_list = 1;
1258 }
1259 rt_se->on_rq = 1;
1260
1261 inc_rt_tasks(rt_se, rt_rq);
1262 }
1263
__dequeue_rt_entity(struct sched_rt_entity * rt_se,unsigned int flags)1264 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1265 {
1266 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1267 struct rt_prio_array *array = &rt_rq->active;
1268
1269 if (move_entity(flags)) {
1270 WARN_ON_ONCE(!rt_se->on_list);
1271 __delist_rt_entity(rt_se, array);
1272 }
1273 rt_se->on_rq = 0;
1274
1275 dec_rt_tasks(rt_se, rt_rq);
1276 }
1277
1278 /*
1279 * Because the prio of an upper entry depends on the lower
1280 * entries, we must remove entries top - down.
1281 */
dequeue_rt_stack(struct sched_rt_entity * rt_se,unsigned int flags)1282 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1283 {
1284 struct sched_rt_entity *back = NULL;
1285
1286 for_each_sched_rt_entity(rt_se) {
1287 rt_se->back = back;
1288 back = rt_se;
1289 }
1290
1291 dequeue_top_rt_rq(rt_rq_of_se(back));
1292
1293 for (rt_se = back; rt_se; rt_se = rt_se->back) {
1294 if (on_rt_rq(rt_se))
1295 __dequeue_rt_entity(rt_se, flags);
1296 }
1297 }
1298
enqueue_rt_entity(struct sched_rt_entity * rt_se,unsigned int flags)1299 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1300 {
1301 struct rq *rq = rq_of_rt_se(rt_se);
1302
1303 dequeue_rt_stack(rt_se, flags);
1304 for_each_sched_rt_entity(rt_se)
1305 __enqueue_rt_entity(rt_se, flags);
1306 enqueue_top_rt_rq(&rq->rt);
1307 }
1308
dequeue_rt_entity(struct sched_rt_entity * rt_se,unsigned int flags)1309 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1310 {
1311 struct rq *rq = rq_of_rt_se(rt_se);
1312
1313 dequeue_rt_stack(rt_se, flags);
1314
1315 for_each_sched_rt_entity(rt_se) {
1316 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1317
1318 if (rt_rq && rt_rq->rt_nr_running)
1319 __enqueue_rt_entity(rt_se, flags);
1320 }
1321 enqueue_top_rt_rq(&rq->rt);
1322 }
1323
1324 /*
1325 * Adding/removing a task to/from a priority array:
1326 */
1327 static void
enqueue_task_rt(struct rq * rq,struct task_struct * p,int flags)1328 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1329 {
1330 struct sched_rt_entity *rt_se = &p->rt;
1331
1332 if (flags & ENQUEUE_WAKEUP)
1333 rt_se->timeout = 0;
1334
1335 enqueue_rt_entity(rt_se, flags);
1336
1337 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1338 enqueue_pushable_task(rq, p);
1339 }
1340
dequeue_task_rt(struct rq * rq,struct task_struct * p,int flags)1341 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1342 {
1343 struct sched_rt_entity *rt_se = &p->rt;
1344
1345 update_curr_rt(rq);
1346 dequeue_rt_entity(rt_se, flags);
1347
1348 dequeue_pushable_task(rq, p);
1349 }
1350
1351 /*
1352 * Put task to the head or the end of the run list without the overhead of
1353 * dequeue followed by enqueue.
1354 */
1355 static void
requeue_rt_entity(struct rt_rq * rt_rq,struct sched_rt_entity * rt_se,int head)1356 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1357 {
1358 if (on_rt_rq(rt_se)) {
1359 struct rt_prio_array *array = &rt_rq->active;
1360 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1361
1362 if (head)
1363 list_move(&rt_se->run_list, queue);
1364 else
1365 list_move_tail(&rt_se->run_list, queue);
1366 }
1367 }
1368
requeue_task_rt(struct rq * rq,struct task_struct * p,int head)1369 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1370 {
1371 struct sched_rt_entity *rt_se = &p->rt;
1372 struct rt_rq *rt_rq;
1373
1374 for_each_sched_rt_entity(rt_se) {
1375 rt_rq = rt_rq_of_se(rt_se);
1376 requeue_rt_entity(rt_rq, rt_se, head);
1377 }
1378 }
1379
yield_task_rt(struct rq * rq)1380 static void yield_task_rt(struct rq *rq)
1381 {
1382 requeue_task_rt(rq, rq->curr, 0);
1383 }
1384
1385 #ifdef CONFIG_SMP
1386 static int find_lowest_rq(struct task_struct *task);
1387
1388 static int
select_task_rq_rt(struct task_struct * p,int cpu,int sd_flag,int flags)1389 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1390 {
1391 struct task_struct *curr;
1392 struct rq *rq;
1393
1394 /* For anything but wake ups, just return the task_cpu */
1395 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1396 goto out;
1397
1398 rq = cpu_rq(cpu);
1399
1400 rcu_read_lock();
1401 curr = READ_ONCE(rq->curr); /* unlocked access */
1402
1403 /*
1404 * If the current task on @p's runqueue is an RT task, then
1405 * try to see if we can wake this RT task up on another
1406 * runqueue. Otherwise simply start this RT task
1407 * on its current runqueue.
1408 *
1409 * We want to avoid overloading runqueues. If the woken
1410 * task is a higher priority, then it will stay on this CPU
1411 * and the lower prio task should be moved to another CPU.
1412 * Even though this will probably make the lower prio task
1413 * lose its cache, we do not want to bounce a higher task
1414 * around just because it gave up its CPU, perhaps for a
1415 * lock?
1416 *
1417 * For equal prio tasks, we just let the scheduler sort it out.
1418 *
1419 * Otherwise, just let it ride on the affined RQ and the
1420 * post-schedule router will push the preempted task away
1421 *
1422 * This test is optimistic, if we get it wrong the load-balancer
1423 * will have to sort it out.
1424 */
1425 if (curr && unlikely(rt_task(curr)) &&
1426 (curr->nr_cpus_allowed < 2 ||
1427 curr->prio <= p->prio)) {
1428 int target = find_lowest_rq(p);
1429
1430 /*
1431 * Don't bother moving it if the destination CPU is
1432 * not running a lower priority task.
1433 */
1434 if (target != -1 &&
1435 p->prio < cpu_rq(target)->rt.highest_prio.curr)
1436 cpu = target;
1437 }
1438 rcu_read_unlock();
1439
1440 out:
1441 return cpu;
1442 }
1443
check_preempt_equal_prio(struct rq * rq,struct task_struct * p)1444 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1445 {
1446 /*
1447 * Current can't be migrated, useless to reschedule,
1448 * let's hope p can move out.
1449 */
1450 if (rq->curr->nr_cpus_allowed == 1 ||
1451 !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1452 return;
1453
1454 /*
1455 * p is migratable, so let's not schedule it and
1456 * see if it is pushed or pulled somewhere else.
1457 */
1458 if (p->nr_cpus_allowed != 1
1459 && cpupri_find(&rq->rd->cpupri, p, NULL))
1460 return;
1461
1462 /*
1463 * There appear to be other CPUs that can accept
1464 * the current task but none can run 'p', so lets reschedule
1465 * to try and push the current task away:
1466 */
1467 requeue_task_rt(rq, p, 1);
1468 resched_curr(rq);
1469 }
1470
1471 #endif /* CONFIG_SMP */
1472
1473 /*
1474 * Preempt the current task with a newly woken task if needed:
1475 */
check_preempt_curr_rt(struct rq * rq,struct task_struct * p,int flags)1476 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1477 {
1478 if (p->prio < rq->curr->prio) {
1479 resched_curr(rq);
1480 return;
1481 }
1482
1483 #ifdef CONFIG_SMP
1484 /*
1485 * If:
1486 *
1487 * - the newly woken task is of equal priority to the current task
1488 * - the newly woken task is non-migratable while current is migratable
1489 * - current will be preempted on the next reschedule
1490 *
1491 * we should check to see if current can readily move to a different
1492 * cpu. If so, we will reschedule to allow the push logic to try
1493 * to move current somewhere else, making room for our non-migratable
1494 * task.
1495 */
1496 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1497 check_preempt_equal_prio(rq, p);
1498 #endif
1499 }
1500
pick_next_rt_entity(struct rq * rq,struct rt_rq * rt_rq)1501 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1502 struct rt_rq *rt_rq)
1503 {
1504 struct rt_prio_array *array = &rt_rq->active;
1505 struct sched_rt_entity *next = NULL;
1506 struct list_head *queue;
1507 int idx;
1508
1509 idx = sched_find_first_bit(array->bitmap);
1510 BUG_ON(idx >= MAX_RT_PRIO);
1511
1512 queue = array->queue + idx;
1513 next = list_entry(queue->next, struct sched_rt_entity, run_list);
1514
1515 return next;
1516 }
1517
_pick_next_task_rt(struct rq * rq)1518 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1519 {
1520 struct sched_rt_entity *rt_se;
1521 struct task_struct *p;
1522 struct rt_rq *rt_rq = &rq->rt;
1523
1524 do {
1525 rt_se = pick_next_rt_entity(rq, rt_rq);
1526 BUG_ON(!rt_se);
1527 rt_rq = group_rt_rq(rt_se);
1528 } while (rt_rq);
1529
1530 p = rt_task_of(rt_se);
1531 p->se.exec_start = rq_clock_task(rq);
1532
1533 return p;
1534 }
1535
1536 static struct task_struct *
pick_next_task_rt(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)1537 pick_next_task_rt(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
1538 {
1539 struct task_struct *p;
1540 struct rt_rq *rt_rq = &rq->rt;
1541
1542 if (need_pull_rt_task(rq, prev)) {
1543 /*
1544 * This is OK, because current is on_cpu, which avoids it being
1545 * picked for load-balance and preemption/IRQs are still
1546 * disabled avoiding further scheduler activity on it and we're
1547 * being very careful to re-start the picking loop.
1548 */
1549 rq_unpin_lock(rq, rf);
1550 pull_rt_task(rq);
1551 rq_repin_lock(rq, rf);
1552 /*
1553 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1554 * means a dl or stop task can slip in, in which case we need
1555 * to re-start task selection.
1556 */
1557 if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) ||
1558 rq->dl.dl_nr_running))
1559 return RETRY_TASK;
1560 }
1561
1562 /*
1563 * We may dequeue prev's rt_rq in put_prev_task().
1564 * So, we update time before rt_nr_running check.
1565 */
1566 if (prev->sched_class == &rt_sched_class)
1567 update_curr_rt(rq);
1568
1569 if (!rt_rq->rt_queued)
1570 return NULL;
1571
1572 put_prev_task(rq, prev);
1573
1574 p = _pick_next_task_rt(rq);
1575
1576 /* The running task is never eligible for pushing */
1577 dequeue_pushable_task(rq, p);
1578
1579 rt_queue_push_tasks(rq);
1580
1581 /*
1582 * If prev task was rt, put_prev_task() has already updated the
1583 * utilization. We only care of the case where we start to schedule a
1584 * rt task
1585 */
1586 if (rq->curr->sched_class != &rt_sched_class)
1587 update_rt_rq_load_avg(rq_clock_task(rq), rq, 0);
1588
1589 return p;
1590 }
1591
put_prev_task_rt(struct rq * rq,struct task_struct * p)1592 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1593 {
1594 update_curr_rt(rq);
1595
1596 update_rt_rq_load_avg(rq_clock_task(rq), rq, 1);
1597
1598 /*
1599 * The previous task needs to be made eligible for pushing
1600 * if it is still active
1601 */
1602 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1603 enqueue_pushable_task(rq, p);
1604 }
1605
1606 #ifdef CONFIG_SMP
1607
1608 /* Only try algorithms three times */
1609 #define RT_MAX_TRIES 3
1610
pick_rt_task(struct rq * rq,struct task_struct * p,int cpu)1611 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1612 {
1613 if (!task_running(rq, p) &&
1614 cpumask_test_cpu(cpu, &p->cpus_allowed))
1615 return 1;
1616
1617 return 0;
1618 }
1619
1620 /*
1621 * Return the highest pushable rq's task, which is suitable to be executed
1622 * on the CPU, NULL otherwise
1623 */
pick_highest_pushable_task(struct rq * rq,int cpu)1624 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1625 {
1626 struct plist_head *head = &rq->rt.pushable_tasks;
1627 struct task_struct *p;
1628
1629 if (!has_pushable_tasks(rq))
1630 return NULL;
1631
1632 plist_for_each_entry(p, head, pushable_tasks) {
1633 if (pick_rt_task(rq, p, cpu))
1634 return p;
1635 }
1636
1637 return NULL;
1638 }
1639
1640 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1641
find_lowest_rq(struct task_struct * task)1642 static int find_lowest_rq(struct task_struct *task)
1643 {
1644 struct sched_domain *sd;
1645 struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1646 int this_cpu = smp_processor_id();
1647 int cpu = task_cpu(task);
1648
1649 /* Make sure the mask is initialized first */
1650 if (unlikely(!lowest_mask))
1651 return -1;
1652
1653 if (task->nr_cpus_allowed == 1)
1654 return -1; /* No other targets possible */
1655
1656 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1657 return -1; /* No targets found */
1658
1659 /*
1660 * At this point we have built a mask of CPUs representing the
1661 * lowest priority tasks in the system. Now we want to elect
1662 * the best one based on our affinity and topology.
1663 *
1664 * We prioritize the last CPU that the task executed on since
1665 * it is most likely cache-hot in that location.
1666 */
1667 if (cpumask_test_cpu(cpu, lowest_mask))
1668 return cpu;
1669
1670 /*
1671 * Otherwise, we consult the sched_domains span maps to figure
1672 * out which CPU is logically closest to our hot cache data.
1673 */
1674 if (!cpumask_test_cpu(this_cpu, lowest_mask))
1675 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1676
1677 rcu_read_lock();
1678 for_each_domain(cpu, sd) {
1679 if (sd->flags & SD_WAKE_AFFINE) {
1680 int best_cpu;
1681
1682 /*
1683 * "this_cpu" is cheaper to preempt than a
1684 * remote processor.
1685 */
1686 if (this_cpu != -1 &&
1687 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1688 rcu_read_unlock();
1689 return this_cpu;
1690 }
1691
1692 best_cpu = cpumask_first_and(lowest_mask,
1693 sched_domain_span(sd));
1694 if (best_cpu < nr_cpu_ids) {
1695 rcu_read_unlock();
1696 return best_cpu;
1697 }
1698 }
1699 }
1700 rcu_read_unlock();
1701
1702 /*
1703 * And finally, if there were no matches within the domains
1704 * just give the caller *something* to work with from the compatible
1705 * locations.
1706 */
1707 if (this_cpu != -1)
1708 return this_cpu;
1709
1710 cpu = cpumask_any(lowest_mask);
1711 if (cpu < nr_cpu_ids)
1712 return cpu;
1713
1714 return -1;
1715 }
1716
1717 /* Will lock the rq it finds */
find_lock_lowest_rq(struct task_struct * task,struct rq * rq)1718 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1719 {
1720 struct rq *lowest_rq = NULL;
1721 int tries;
1722 int cpu;
1723
1724 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1725 cpu = find_lowest_rq(task);
1726
1727 if ((cpu == -1) || (cpu == rq->cpu))
1728 break;
1729
1730 lowest_rq = cpu_rq(cpu);
1731
1732 if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1733 /*
1734 * Target rq has tasks of equal or higher priority,
1735 * retrying does not release any lock and is unlikely
1736 * to yield a different result.
1737 */
1738 lowest_rq = NULL;
1739 break;
1740 }
1741
1742 /* if the prio of this runqueue changed, try again */
1743 if (double_lock_balance(rq, lowest_rq)) {
1744 /*
1745 * We had to unlock the run queue. In
1746 * the mean time, task could have
1747 * migrated already or had its affinity changed.
1748 * Also make sure that it wasn't scheduled on its rq.
1749 */
1750 if (unlikely(task_rq(task) != rq ||
1751 !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_allowed) ||
1752 task_running(rq, task) ||
1753 !rt_task(task) ||
1754 !task_on_rq_queued(task))) {
1755
1756 double_unlock_balance(rq, lowest_rq);
1757 lowest_rq = NULL;
1758 break;
1759 }
1760 }
1761
1762 /* If this rq is still suitable use it. */
1763 if (lowest_rq->rt.highest_prio.curr > task->prio)
1764 break;
1765
1766 /* try again */
1767 double_unlock_balance(rq, lowest_rq);
1768 lowest_rq = NULL;
1769 }
1770
1771 return lowest_rq;
1772 }
1773
pick_next_pushable_task(struct rq * rq)1774 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1775 {
1776 struct task_struct *p;
1777
1778 if (!has_pushable_tasks(rq))
1779 return NULL;
1780
1781 p = plist_first_entry(&rq->rt.pushable_tasks,
1782 struct task_struct, pushable_tasks);
1783
1784 BUG_ON(rq->cpu != task_cpu(p));
1785 BUG_ON(task_current(rq, p));
1786 BUG_ON(p->nr_cpus_allowed <= 1);
1787
1788 BUG_ON(!task_on_rq_queued(p));
1789 BUG_ON(!rt_task(p));
1790
1791 return p;
1792 }
1793
1794 /*
1795 * If the current CPU has more than one RT task, see if the non
1796 * running task can migrate over to a CPU that is running a task
1797 * of lesser priority.
1798 */
push_rt_task(struct rq * rq)1799 static int push_rt_task(struct rq *rq)
1800 {
1801 struct task_struct *next_task;
1802 struct rq *lowest_rq;
1803 int ret = 0;
1804
1805 if (!rq->rt.overloaded)
1806 return 0;
1807
1808 next_task = pick_next_pushable_task(rq);
1809 if (!next_task)
1810 return 0;
1811
1812 retry:
1813 if (unlikely(next_task == rq->curr)) {
1814 WARN_ON(1);
1815 return 0;
1816 }
1817
1818 /*
1819 * It's possible that the next_task slipped in of
1820 * higher priority than current. If that's the case
1821 * just reschedule current.
1822 */
1823 if (unlikely(next_task->prio < rq->curr->prio)) {
1824 resched_curr(rq);
1825 return 0;
1826 }
1827
1828 /* We might release rq lock */
1829 get_task_struct(next_task);
1830
1831 /* find_lock_lowest_rq locks the rq if found */
1832 lowest_rq = find_lock_lowest_rq(next_task, rq);
1833 if (!lowest_rq) {
1834 struct task_struct *task;
1835 /*
1836 * find_lock_lowest_rq releases rq->lock
1837 * so it is possible that next_task has migrated.
1838 *
1839 * We need to make sure that the task is still on the same
1840 * run-queue and is also still the next task eligible for
1841 * pushing.
1842 */
1843 task = pick_next_pushable_task(rq);
1844 if (task == next_task) {
1845 /*
1846 * The task hasn't migrated, and is still the next
1847 * eligible task, but we failed to find a run-queue
1848 * to push it to. Do not retry in this case, since
1849 * other CPUs will pull from us when ready.
1850 */
1851 goto out;
1852 }
1853
1854 if (!task)
1855 /* No more tasks, just exit */
1856 goto out;
1857
1858 /*
1859 * Something has shifted, try again.
1860 */
1861 put_task_struct(next_task);
1862 next_task = task;
1863 goto retry;
1864 }
1865
1866 deactivate_task(rq, next_task, 0);
1867 set_task_cpu(next_task, lowest_rq->cpu);
1868 activate_task(lowest_rq, next_task, 0);
1869 ret = 1;
1870
1871 resched_curr(lowest_rq);
1872
1873 double_unlock_balance(rq, lowest_rq);
1874
1875 out:
1876 put_task_struct(next_task);
1877
1878 return ret;
1879 }
1880
push_rt_tasks(struct rq * rq)1881 static void push_rt_tasks(struct rq *rq)
1882 {
1883 /* push_rt_task will return true if it moved an RT */
1884 while (push_rt_task(rq))
1885 ;
1886 }
1887
1888 #ifdef HAVE_RT_PUSH_IPI
1889
1890 /*
1891 * When a high priority task schedules out from a CPU and a lower priority
1892 * task is scheduled in, a check is made to see if there's any RT tasks
1893 * on other CPUs that are waiting to run because a higher priority RT task
1894 * is currently running on its CPU. In this case, the CPU with multiple RT
1895 * tasks queued on it (overloaded) needs to be notified that a CPU has opened
1896 * up that may be able to run one of its non-running queued RT tasks.
1897 *
1898 * All CPUs with overloaded RT tasks need to be notified as there is currently
1899 * no way to know which of these CPUs have the highest priority task waiting
1900 * to run. Instead of trying to take a spinlock on each of these CPUs,
1901 * which has shown to cause large latency when done on machines with many
1902 * CPUs, sending an IPI to the CPUs to have them push off the overloaded
1903 * RT tasks waiting to run.
1904 *
1905 * Just sending an IPI to each of the CPUs is also an issue, as on large
1906 * count CPU machines, this can cause an IPI storm on a CPU, especially
1907 * if its the only CPU with multiple RT tasks queued, and a large number
1908 * of CPUs scheduling a lower priority task at the same time.
1909 *
1910 * Each root domain has its own irq work function that can iterate over
1911 * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
1912 * tassk must be checked if there's one or many CPUs that are lowering
1913 * their priority, there's a single irq work iterator that will try to
1914 * push off RT tasks that are waiting to run.
1915 *
1916 * When a CPU schedules a lower priority task, it will kick off the
1917 * irq work iterator that will jump to each CPU with overloaded RT tasks.
1918 * As it only takes the first CPU that schedules a lower priority task
1919 * to start the process, the rto_start variable is incremented and if
1920 * the atomic result is one, then that CPU will try to take the rto_lock.
1921 * This prevents high contention on the lock as the process handles all
1922 * CPUs scheduling lower priority tasks.
1923 *
1924 * All CPUs that are scheduling a lower priority task will increment the
1925 * rt_loop_next variable. This will make sure that the irq work iterator
1926 * checks all RT overloaded CPUs whenever a CPU schedules a new lower
1927 * priority task, even if the iterator is in the middle of a scan. Incrementing
1928 * the rt_loop_next will cause the iterator to perform another scan.
1929 *
1930 */
rto_next_cpu(struct root_domain * rd)1931 static int rto_next_cpu(struct root_domain *rd)
1932 {
1933 int next;
1934 int cpu;
1935
1936 /*
1937 * When starting the IPI RT pushing, the rto_cpu is set to -1,
1938 * rt_next_cpu() will simply return the first CPU found in
1939 * the rto_mask.
1940 *
1941 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
1942 * will return the next CPU found in the rto_mask.
1943 *
1944 * If there are no more CPUs left in the rto_mask, then a check is made
1945 * against rto_loop and rto_loop_next. rto_loop is only updated with
1946 * the rto_lock held, but any CPU may increment the rto_loop_next
1947 * without any locking.
1948 */
1949 for (;;) {
1950
1951 /* When rto_cpu is -1 this acts like cpumask_first() */
1952 cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
1953
1954 rd->rto_cpu = cpu;
1955
1956 if (cpu < nr_cpu_ids)
1957 return cpu;
1958
1959 rd->rto_cpu = -1;
1960
1961 /*
1962 * ACQUIRE ensures we see the @rto_mask changes
1963 * made prior to the @next value observed.
1964 *
1965 * Matches WMB in rt_set_overload().
1966 */
1967 next = atomic_read_acquire(&rd->rto_loop_next);
1968
1969 if (rd->rto_loop == next)
1970 break;
1971
1972 rd->rto_loop = next;
1973 }
1974
1975 return -1;
1976 }
1977
rto_start_trylock(atomic_t * v)1978 static inline bool rto_start_trylock(atomic_t *v)
1979 {
1980 return !atomic_cmpxchg_acquire(v, 0, 1);
1981 }
1982
rto_start_unlock(atomic_t * v)1983 static inline void rto_start_unlock(atomic_t *v)
1984 {
1985 atomic_set_release(v, 0);
1986 }
1987
tell_cpu_to_push(struct rq * rq)1988 static void tell_cpu_to_push(struct rq *rq)
1989 {
1990 int cpu = -1;
1991
1992 /* Keep the loop going if the IPI is currently active */
1993 atomic_inc(&rq->rd->rto_loop_next);
1994
1995 /* Only one CPU can initiate a loop at a time */
1996 if (!rto_start_trylock(&rq->rd->rto_loop_start))
1997 return;
1998
1999 raw_spin_lock(&rq->rd->rto_lock);
2000
2001 /*
2002 * The rto_cpu is updated under the lock, if it has a valid CPU
2003 * then the IPI is still running and will continue due to the
2004 * update to loop_next, and nothing needs to be done here.
2005 * Otherwise it is finishing up and an ipi needs to be sent.
2006 */
2007 if (rq->rd->rto_cpu < 0)
2008 cpu = rto_next_cpu(rq->rd);
2009
2010 raw_spin_unlock(&rq->rd->rto_lock);
2011
2012 rto_start_unlock(&rq->rd->rto_loop_start);
2013
2014 if (cpu >= 0) {
2015 /* Make sure the rd does not get freed while pushing */
2016 sched_get_rd(rq->rd);
2017 irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2018 }
2019 }
2020
2021 /* Called from hardirq context */
rto_push_irq_work_func(struct irq_work * work)2022 void rto_push_irq_work_func(struct irq_work *work)
2023 {
2024 struct root_domain *rd =
2025 container_of(work, struct root_domain, rto_push_work);
2026 struct rq *rq;
2027 int cpu;
2028
2029 rq = this_rq();
2030
2031 /*
2032 * We do not need to grab the lock to check for has_pushable_tasks.
2033 * When it gets updated, a check is made if a push is possible.
2034 */
2035 if (has_pushable_tasks(rq)) {
2036 raw_spin_lock(&rq->lock);
2037 push_rt_tasks(rq);
2038 raw_spin_unlock(&rq->lock);
2039 }
2040
2041 raw_spin_lock(&rd->rto_lock);
2042
2043 /* Pass the IPI to the next rt overloaded queue */
2044 cpu = rto_next_cpu(rd);
2045
2046 raw_spin_unlock(&rd->rto_lock);
2047
2048 if (cpu < 0) {
2049 sched_put_rd(rd);
2050 return;
2051 }
2052
2053 /* Try the next RT overloaded CPU */
2054 irq_work_queue_on(&rd->rto_push_work, cpu);
2055 }
2056 #endif /* HAVE_RT_PUSH_IPI */
2057
pull_rt_task(struct rq * this_rq)2058 static void pull_rt_task(struct rq *this_rq)
2059 {
2060 int this_cpu = this_rq->cpu, cpu;
2061 bool resched = false;
2062 struct task_struct *p;
2063 struct rq *src_rq;
2064 int rt_overload_count = rt_overloaded(this_rq);
2065
2066 if (likely(!rt_overload_count))
2067 return;
2068
2069 /*
2070 * Match the barrier from rt_set_overloaded; this guarantees that if we
2071 * see overloaded we must also see the rto_mask bit.
2072 */
2073 smp_rmb();
2074
2075 /* If we are the only overloaded CPU do nothing */
2076 if (rt_overload_count == 1 &&
2077 cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2078 return;
2079
2080 #ifdef HAVE_RT_PUSH_IPI
2081 if (sched_feat(RT_PUSH_IPI)) {
2082 tell_cpu_to_push(this_rq);
2083 return;
2084 }
2085 #endif
2086
2087 for_each_cpu(cpu, this_rq->rd->rto_mask) {
2088 if (this_cpu == cpu)
2089 continue;
2090
2091 src_rq = cpu_rq(cpu);
2092
2093 /*
2094 * Don't bother taking the src_rq->lock if the next highest
2095 * task is known to be lower-priority than our current task.
2096 * This may look racy, but if this value is about to go
2097 * logically higher, the src_rq will push this task away.
2098 * And if its going logically lower, we do not care
2099 */
2100 if (src_rq->rt.highest_prio.next >=
2101 this_rq->rt.highest_prio.curr)
2102 continue;
2103
2104 /*
2105 * We can potentially drop this_rq's lock in
2106 * double_lock_balance, and another CPU could
2107 * alter this_rq
2108 */
2109 double_lock_balance(this_rq, src_rq);
2110
2111 /*
2112 * We can pull only a task, which is pushable
2113 * on its rq, and no others.
2114 */
2115 p = pick_highest_pushable_task(src_rq, this_cpu);
2116
2117 /*
2118 * Do we have an RT task that preempts
2119 * the to-be-scheduled task?
2120 */
2121 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2122 WARN_ON(p == src_rq->curr);
2123 WARN_ON(!task_on_rq_queued(p));
2124
2125 /*
2126 * There's a chance that p is higher in priority
2127 * than what's currently running on its CPU.
2128 * This is just that p is wakeing up and hasn't
2129 * had a chance to schedule. We only pull
2130 * p if it is lower in priority than the
2131 * current task on the run queue
2132 */
2133 if (p->prio < src_rq->curr->prio)
2134 goto skip;
2135
2136 resched = true;
2137
2138 deactivate_task(src_rq, p, 0);
2139 set_task_cpu(p, this_cpu);
2140 activate_task(this_rq, p, 0);
2141 /*
2142 * We continue with the search, just in
2143 * case there's an even higher prio task
2144 * in another runqueue. (low likelihood
2145 * but possible)
2146 */
2147 }
2148 skip:
2149 double_unlock_balance(this_rq, src_rq);
2150 }
2151
2152 if (resched)
2153 resched_curr(this_rq);
2154 }
2155
2156 /*
2157 * If we are not running and we are not going to reschedule soon, we should
2158 * try to push tasks away now
2159 */
task_woken_rt(struct rq * rq,struct task_struct * p)2160 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2161 {
2162 if (!task_running(rq, p) &&
2163 !test_tsk_need_resched(rq->curr) &&
2164 p->nr_cpus_allowed > 1 &&
2165 (dl_task(rq->curr) || rt_task(rq->curr)) &&
2166 (rq->curr->nr_cpus_allowed < 2 ||
2167 rq->curr->prio <= p->prio))
2168 push_rt_tasks(rq);
2169 }
2170
2171 /* Assumes rq->lock is held */
rq_online_rt(struct rq * rq)2172 static void rq_online_rt(struct rq *rq)
2173 {
2174 if (rq->rt.overloaded)
2175 rt_set_overload(rq);
2176
2177 __enable_runtime(rq);
2178
2179 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2180 }
2181
2182 /* Assumes rq->lock is held */
rq_offline_rt(struct rq * rq)2183 static void rq_offline_rt(struct rq *rq)
2184 {
2185 if (rq->rt.overloaded)
2186 rt_clear_overload(rq);
2187
2188 __disable_runtime(rq);
2189
2190 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2191 }
2192
2193 /*
2194 * When switch from the rt queue, we bring ourselves to a position
2195 * that we might want to pull RT tasks from other runqueues.
2196 */
switched_from_rt(struct rq * rq,struct task_struct * p)2197 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2198 {
2199 /*
2200 * If there are other RT tasks then we will reschedule
2201 * and the scheduling of the other RT tasks will handle
2202 * the balancing. But if we are the last RT task
2203 * we may need to handle the pulling of RT tasks
2204 * now.
2205 */
2206 if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2207 return;
2208
2209 rt_queue_pull_task(rq);
2210 }
2211
init_sched_rt_class(void)2212 void __init init_sched_rt_class(void)
2213 {
2214 unsigned int i;
2215
2216 for_each_possible_cpu(i) {
2217 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2218 GFP_KERNEL, cpu_to_node(i));
2219 }
2220 }
2221 #endif /* CONFIG_SMP */
2222
2223 /*
2224 * When switching a task to RT, we may overload the runqueue
2225 * with RT tasks. In this case we try to push them off to
2226 * other runqueues.
2227 */
switched_to_rt(struct rq * rq,struct task_struct * p)2228 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2229 {
2230 /*
2231 * If we are already running, then there's nothing
2232 * that needs to be done. But if we are not running
2233 * we may need to preempt the current running task.
2234 * If that current running task is also an RT task
2235 * then see if we can move to another run queue.
2236 */
2237 if (task_on_rq_queued(p) && rq->curr != p) {
2238 #ifdef CONFIG_SMP
2239 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2240 rt_queue_push_tasks(rq);
2241 #endif /* CONFIG_SMP */
2242 if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
2243 resched_curr(rq);
2244 }
2245 }
2246
2247 /*
2248 * Priority of the task has changed. This may cause
2249 * us to initiate a push or pull.
2250 */
2251 static void
prio_changed_rt(struct rq * rq,struct task_struct * p,int oldprio)2252 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2253 {
2254 if (!task_on_rq_queued(p))
2255 return;
2256
2257 if (rq->curr == p) {
2258 #ifdef CONFIG_SMP
2259 /*
2260 * If our priority decreases while running, we
2261 * may need to pull tasks to this runqueue.
2262 */
2263 if (oldprio < p->prio)
2264 rt_queue_pull_task(rq);
2265
2266 /*
2267 * If there's a higher priority task waiting to run
2268 * then reschedule.
2269 */
2270 if (p->prio > rq->rt.highest_prio.curr)
2271 resched_curr(rq);
2272 #else
2273 /* For UP simply resched on drop of prio */
2274 if (oldprio < p->prio)
2275 resched_curr(rq);
2276 #endif /* CONFIG_SMP */
2277 } else {
2278 /*
2279 * This task is not running, but if it is
2280 * greater than the current running task
2281 * then reschedule.
2282 */
2283 if (p->prio < rq->curr->prio)
2284 resched_curr(rq);
2285 }
2286 }
2287
2288 #ifdef CONFIG_POSIX_TIMERS
watchdog(struct rq * rq,struct task_struct * p)2289 static void watchdog(struct rq *rq, struct task_struct *p)
2290 {
2291 unsigned long soft, hard;
2292
2293 /* max may change after cur was read, this will be fixed next tick */
2294 soft = task_rlimit(p, RLIMIT_RTTIME);
2295 hard = task_rlimit_max(p, RLIMIT_RTTIME);
2296
2297 if (soft != RLIM_INFINITY) {
2298 unsigned long next;
2299
2300 if (p->rt.watchdog_stamp != jiffies) {
2301 p->rt.timeout++;
2302 p->rt.watchdog_stamp = jiffies;
2303 }
2304
2305 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2306 if (p->rt.timeout > next)
2307 p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
2308 }
2309 }
2310 #else
watchdog(struct rq * rq,struct task_struct * p)2311 static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2312 #endif
2313
2314 /*
2315 * scheduler tick hitting a task of our scheduling class.
2316 *
2317 * NOTE: This function can be called remotely by the tick offload that
2318 * goes along full dynticks. Therefore no local assumption can be made
2319 * and everything must be accessed through the @rq and @curr passed in
2320 * parameters.
2321 */
task_tick_rt(struct rq * rq,struct task_struct * p,int queued)2322 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2323 {
2324 struct sched_rt_entity *rt_se = &p->rt;
2325
2326 update_curr_rt(rq);
2327 update_rt_rq_load_avg(rq_clock_task(rq), rq, 1);
2328
2329 watchdog(rq, p);
2330
2331 /*
2332 * RR tasks need a special form of timeslice management.
2333 * FIFO tasks have no timeslices.
2334 */
2335 if (p->policy != SCHED_RR)
2336 return;
2337
2338 if (--p->rt.time_slice)
2339 return;
2340
2341 p->rt.time_slice = sched_rr_timeslice;
2342
2343 /*
2344 * Requeue to the end of queue if we (and all of our ancestors) are not
2345 * the only element on the queue
2346 */
2347 for_each_sched_rt_entity(rt_se) {
2348 if (rt_se->run_list.prev != rt_se->run_list.next) {
2349 requeue_task_rt(rq, p, 0);
2350 resched_curr(rq);
2351 return;
2352 }
2353 }
2354 }
2355
set_curr_task_rt(struct rq * rq)2356 static void set_curr_task_rt(struct rq *rq)
2357 {
2358 struct task_struct *p = rq->curr;
2359
2360 p->se.exec_start = rq_clock_task(rq);
2361
2362 /* The running task is never eligible for pushing */
2363 dequeue_pushable_task(rq, p);
2364 }
2365
get_rr_interval_rt(struct rq * rq,struct task_struct * task)2366 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2367 {
2368 /*
2369 * Time slice is 0 for SCHED_FIFO tasks
2370 */
2371 if (task->policy == SCHED_RR)
2372 return sched_rr_timeslice;
2373 else
2374 return 0;
2375 }
2376
2377 const struct sched_class rt_sched_class = {
2378 .next = &fair_sched_class,
2379 .enqueue_task = enqueue_task_rt,
2380 .dequeue_task = dequeue_task_rt,
2381 .yield_task = yield_task_rt,
2382
2383 .check_preempt_curr = check_preempt_curr_rt,
2384
2385 .pick_next_task = pick_next_task_rt,
2386 .put_prev_task = put_prev_task_rt,
2387
2388 #ifdef CONFIG_SMP
2389 .select_task_rq = select_task_rq_rt,
2390
2391 .set_cpus_allowed = set_cpus_allowed_common,
2392 .rq_online = rq_online_rt,
2393 .rq_offline = rq_offline_rt,
2394 .task_woken = task_woken_rt,
2395 .switched_from = switched_from_rt,
2396 #endif
2397
2398 .set_curr_task = set_curr_task_rt,
2399 .task_tick = task_tick_rt,
2400
2401 .get_rr_interval = get_rr_interval_rt,
2402
2403 .prio_changed = prio_changed_rt,
2404 .switched_to = switched_to_rt,
2405
2406 .update_curr = update_curr_rt,
2407 };
2408
2409 #ifdef CONFIG_RT_GROUP_SCHED
2410 /*
2411 * Ensure that the real time constraints are schedulable.
2412 */
2413 static DEFINE_MUTEX(rt_constraints_mutex);
2414
2415 /* Must be called with tasklist_lock held */
tg_has_rt_tasks(struct task_group * tg)2416 static inline int tg_has_rt_tasks(struct task_group *tg)
2417 {
2418 struct task_struct *g, *p;
2419
2420 /*
2421 * Autogroups do not have RT tasks; see autogroup_create().
2422 */
2423 if (task_group_is_autogroup(tg))
2424 return 0;
2425
2426 for_each_process_thread(g, p) {
2427 if (rt_task(p) && task_group(p) == tg)
2428 return 1;
2429 }
2430
2431 return 0;
2432 }
2433
2434 struct rt_schedulable_data {
2435 struct task_group *tg;
2436 u64 rt_period;
2437 u64 rt_runtime;
2438 };
2439
tg_rt_schedulable(struct task_group * tg,void * data)2440 static int tg_rt_schedulable(struct task_group *tg, void *data)
2441 {
2442 struct rt_schedulable_data *d = data;
2443 struct task_group *child;
2444 unsigned long total, sum = 0;
2445 u64 period, runtime;
2446
2447 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2448 runtime = tg->rt_bandwidth.rt_runtime;
2449
2450 if (tg == d->tg) {
2451 period = d->rt_period;
2452 runtime = d->rt_runtime;
2453 }
2454
2455 /*
2456 * Cannot have more runtime than the period.
2457 */
2458 if (runtime > period && runtime != RUNTIME_INF)
2459 return -EINVAL;
2460
2461 /*
2462 * Ensure we don't starve existing RT tasks.
2463 */
2464 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
2465 return -EBUSY;
2466
2467 total = to_ratio(period, runtime);
2468
2469 /*
2470 * Nobody can have more than the global setting allows.
2471 */
2472 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2473 return -EINVAL;
2474
2475 /*
2476 * The sum of our children's runtime should not exceed our own.
2477 */
2478 list_for_each_entry_rcu(child, &tg->children, siblings) {
2479 period = ktime_to_ns(child->rt_bandwidth.rt_period);
2480 runtime = child->rt_bandwidth.rt_runtime;
2481
2482 if (child == d->tg) {
2483 period = d->rt_period;
2484 runtime = d->rt_runtime;
2485 }
2486
2487 sum += to_ratio(period, runtime);
2488 }
2489
2490 if (sum > total)
2491 return -EINVAL;
2492
2493 return 0;
2494 }
2495
__rt_schedulable(struct task_group * tg,u64 period,u64 runtime)2496 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2497 {
2498 int ret;
2499
2500 struct rt_schedulable_data data = {
2501 .tg = tg,
2502 .rt_period = period,
2503 .rt_runtime = runtime,
2504 };
2505
2506 rcu_read_lock();
2507 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2508 rcu_read_unlock();
2509
2510 return ret;
2511 }
2512
tg_set_rt_bandwidth(struct task_group * tg,u64 rt_period,u64 rt_runtime)2513 static int tg_set_rt_bandwidth(struct task_group *tg,
2514 u64 rt_period, u64 rt_runtime)
2515 {
2516 int i, err = 0;
2517
2518 /*
2519 * Disallowing the root group RT runtime is BAD, it would disallow the
2520 * kernel creating (and or operating) RT threads.
2521 */
2522 if (tg == &root_task_group && rt_runtime == 0)
2523 return -EINVAL;
2524
2525 /* No period doesn't make any sense. */
2526 if (rt_period == 0)
2527 return -EINVAL;
2528
2529 mutex_lock(&rt_constraints_mutex);
2530 read_lock(&tasklist_lock);
2531 err = __rt_schedulable(tg, rt_period, rt_runtime);
2532 if (err)
2533 goto unlock;
2534
2535 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2536 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2537 tg->rt_bandwidth.rt_runtime = rt_runtime;
2538
2539 for_each_possible_cpu(i) {
2540 struct rt_rq *rt_rq = tg->rt_rq[i];
2541
2542 raw_spin_lock(&rt_rq->rt_runtime_lock);
2543 rt_rq->rt_runtime = rt_runtime;
2544 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2545 }
2546 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2547 unlock:
2548 read_unlock(&tasklist_lock);
2549 mutex_unlock(&rt_constraints_mutex);
2550
2551 return err;
2552 }
2553
sched_group_set_rt_runtime(struct task_group * tg,long rt_runtime_us)2554 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2555 {
2556 u64 rt_runtime, rt_period;
2557
2558 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2559 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2560 if (rt_runtime_us < 0)
2561 rt_runtime = RUNTIME_INF;
2562
2563 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2564 }
2565
sched_group_rt_runtime(struct task_group * tg)2566 long sched_group_rt_runtime(struct task_group *tg)
2567 {
2568 u64 rt_runtime_us;
2569
2570 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2571 return -1;
2572
2573 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2574 do_div(rt_runtime_us, NSEC_PER_USEC);
2575 return rt_runtime_us;
2576 }
2577
sched_group_set_rt_period(struct task_group * tg,u64 rt_period_us)2578 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2579 {
2580 u64 rt_runtime, rt_period;
2581
2582 rt_period = rt_period_us * NSEC_PER_USEC;
2583 rt_runtime = tg->rt_bandwidth.rt_runtime;
2584
2585 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2586 }
2587
sched_group_rt_period(struct task_group * tg)2588 long sched_group_rt_period(struct task_group *tg)
2589 {
2590 u64 rt_period_us;
2591
2592 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2593 do_div(rt_period_us, NSEC_PER_USEC);
2594 return rt_period_us;
2595 }
2596
sched_rt_global_constraints(void)2597 static int sched_rt_global_constraints(void)
2598 {
2599 int ret = 0;
2600
2601 mutex_lock(&rt_constraints_mutex);
2602 read_lock(&tasklist_lock);
2603 ret = __rt_schedulable(NULL, 0, 0);
2604 read_unlock(&tasklist_lock);
2605 mutex_unlock(&rt_constraints_mutex);
2606
2607 return ret;
2608 }
2609
sched_rt_can_attach(struct task_group * tg,struct task_struct * tsk)2610 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2611 {
2612 /* Don't accept realtime tasks when there is no way for them to run */
2613 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2614 return 0;
2615
2616 return 1;
2617 }
2618
2619 #else /* !CONFIG_RT_GROUP_SCHED */
sched_rt_global_constraints(void)2620 static int sched_rt_global_constraints(void)
2621 {
2622 unsigned long flags;
2623 int i;
2624
2625 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2626 for_each_possible_cpu(i) {
2627 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
2628
2629 raw_spin_lock(&rt_rq->rt_runtime_lock);
2630 rt_rq->rt_runtime = global_rt_runtime();
2631 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2632 }
2633 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2634
2635 return 0;
2636 }
2637 #endif /* CONFIG_RT_GROUP_SCHED */
2638
sched_rt_global_validate(void)2639 static int sched_rt_global_validate(void)
2640 {
2641 if (sysctl_sched_rt_period <= 0)
2642 return -EINVAL;
2643
2644 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2645 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
2646 return -EINVAL;
2647
2648 return 0;
2649 }
2650
sched_rt_do_global(void)2651 static void sched_rt_do_global(void)
2652 {
2653 def_rt_bandwidth.rt_runtime = global_rt_runtime();
2654 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
2655 }
2656
sched_rt_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)2657 int sched_rt_handler(struct ctl_table *table, int write,
2658 void __user *buffer, size_t *lenp,
2659 loff_t *ppos)
2660 {
2661 int old_period, old_runtime;
2662 static DEFINE_MUTEX(mutex);
2663 int ret;
2664
2665 mutex_lock(&mutex);
2666 old_period = sysctl_sched_rt_period;
2667 old_runtime = sysctl_sched_rt_runtime;
2668
2669 ret = proc_dointvec(table, write, buffer, lenp, ppos);
2670
2671 if (!ret && write) {
2672 ret = sched_rt_global_validate();
2673 if (ret)
2674 goto undo;
2675
2676 ret = sched_dl_global_validate();
2677 if (ret)
2678 goto undo;
2679
2680 ret = sched_rt_global_constraints();
2681 if (ret)
2682 goto undo;
2683
2684 sched_rt_do_global();
2685 sched_dl_do_global();
2686 }
2687 if (0) {
2688 undo:
2689 sysctl_sched_rt_period = old_period;
2690 sysctl_sched_rt_runtime = old_runtime;
2691 }
2692 mutex_unlock(&mutex);
2693
2694 return ret;
2695 }
2696
sched_rr_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)2697 int sched_rr_handler(struct ctl_table *table, int write,
2698 void __user *buffer, size_t *lenp,
2699 loff_t *ppos)
2700 {
2701 int ret;
2702 static DEFINE_MUTEX(mutex);
2703
2704 mutex_lock(&mutex);
2705 ret = proc_dointvec(table, write, buffer, lenp, ppos);
2706 /*
2707 * Make sure that internally we keep jiffies.
2708 * Also, writing zero resets the timeslice to default:
2709 */
2710 if (!ret && write) {
2711 sched_rr_timeslice =
2712 sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
2713 msecs_to_jiffies(sysctl_sched_rr_timeslice);
2714 }
2715 mutex_unlock(&mutex);
2716
2717 return ret;
2718 }
2719
2720 #ifdef CONFIG_SCHED_DEBUG
print_rt_stats(struct seq_file * m,int cpu)2721 void print_rt_stats(struct seq_file *m, int cpu)
2722 {
2723 rt_rq_iter_t iter;
2724 struct rt_rq *rt_rq;
2725
2726 rcu_read_lock();
2727 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2728 print_rt_rq(m, cpu, rt_rq);
2729 rcu_read_unlock();
2730 }
2731 #endif /* CONFIG_SCHED_DEBUG */
2732