1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Scheduler topology setup/handling methods
4 */
5 #include "sched.h"
6
7 DEFINE_MUTEX(sched_domains_mutex);
8
9 /* Protected by sched_domains_mutex: */
10 static cpumask_var_t sched_domains_tmpmask;
11 static cpumask_var_t sched_domains_tmpmask2;
12
13 #ifdef CONFIG_SCHED_DEBUG
14
sched_debug_setup(char * str)15 static int __init sched_debug_setup(char *str)
16 {
17 sched_debug_enabled = true;
18
19 return 0;
20 }
21 early_param("sched_debug", sched_debug_setup);
22
sched_debug(void)23 static inline bool sched_debug(void)
24 {
25 return sched_debug_enabled;
26 }
27
28 #define SD_FLAG(_name, mflags) [__##_name] = { .meta_flags = mflags, .name = #_name },
29 const struct sd_flag_debug sd_flag_debug[] = {
30 #include <linux/sched/sd_flags.h>
31 };
32 #undef SD_FLAG
33
sched_domain_debug_one(struct sched_domain * sd,int cpu,int level,struct cpumask * groupmask)34 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
35 struct cpumask *groupmask)
36 {
37 struct sched_group *group = sd->groups;
38 unsigned long flags = sd->flags;
39 unsigned int idx;
40
41 cpumask_clear(groupmask);
42
43 printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
44 printk(KERN_CONT "span=%*pbl level=%s\n",
45 cpumask_pr_args(sched_domain_span(sd)), sd->name);
46
47 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
48 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
49 }
50 if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) {
51 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
52 }
53
54 for_each_set_bit(idx, &flags, __SD_FLAG_CNT) {
55 unsigned int flag = BIT(idx);
56 unsigned int meta_flags = sd_flag_debug[idx].meta_flags;
57
58 if ((meta_flags & SDF_SHARED_CHILD) && sd->child &&
59 !(sd->child->flags & flag))
60 printk(KERN_ERR "ERROR: flag %s set here but not in child\n",
61 sd_flag_debug[idx].name);
62
63 if ((meta_flags & SDF_SHARED_PARENT) && sd->parent &&
64 !(sd->parent->flags & flag))
65 printk(KERN_ERR "ERROR: flag %s set here but not in parent\n",
66 sd_flag_debug[idx].name);
67 }
68
69 printk(KERN_DEBUG "%*s groups:", level + 1, "");
70 do {
71 if (!group) {
72 printk("\n");
73 printk(KERN_ERR "ERROR: group is NULL\n");
74 break;
75 }
76
77 if (!cpumask_weight(sched_group_span(group))) {
78 printk(KERN_CONT "\n");
79 printk(KERN_ERR "ERROR: empty group\n");
80 break;
81 }
82
83 if (!(sd->flags & SD_OVERLAP) &&
84 cpumask_intersects(groupmask, sched_group_span(group))) {
85 printk(KERN_CONT "\n");
86 printk(KERN_ERR "ERROR: repeated CPUs\n");
87 break;
88 }
89
90 cpumask_or(groupmask, groupmask, sched_group_span(group));
91
92 printk(KERN_CONT " %d:{ span=%*pbl",
93 group->sgc->id,
94 cpumask_pr_args(sched_group_span(group)));
95
96 if ((sd->flags & SD_OVERLAP) &&
97 !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
98 printk(KERN_CONT " mask=%*pbl",
99 cpumask_pr_args(group_balance_mask(group)));
100 }
101
102 if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
103 printk(KERN_CONT " cap=%lu", group->sgc->capacity);
104
105 if (group == sd->groups && sd->child &&
106 !cpumask_equal(sched_domain_span(sd->child),
107 sched_group_span(group))) {
108 printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
109 }
110
111 printk(KERN_CONT " }");
112
113 group = group->next;
114
115 if (group != sd->groups)
116 printk(KERN_CONT ",");
117
118 } while (group != sd->groups);
119 printk(KERN_CONT "\n");
120
121 if (!cpumask_equal(sched_domain_span(sd), groupmask))
122 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
123
124 if (sd->parent &&
125 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
126 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
127 return 0;
128 }
129
sched_domain_debug(struct sched_domain * sd,int cpu)130 static void sched_domain_debug(struct sched_domain *sd, int cpu)
131 {
132 int level = 0;
133
134 if (!sched_debug_enabled)
135 return;
136
137 if (!sd) {
138 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
139 return;
140 }
141
142 printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
143
144 for (;;) {
145 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
146 break;
147 level++;
148 sd = sd->parent;
149 if (!sd)
150 break;
151 }
152 }
153 #else /* !CONFIG_SCHED_DEBUG */
154
155 # define sched_debug_enabled 0
156 # define sched_domain_debug(sd, cpu) do { } while (0)
sched_debug(void)157 static inline bool sched_debug(void)
158 {
159 return false;
160 }
161 #endif /* CONFIG_SCHED_DEBUG */
162
163 /* Generate a mask of SD flags with the SDF_NEEDS_GROUPS metaflag */
164 #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_NEEDS_GROUPS)) |
165 static const unsigned int SD_DEGENERATE_GROUPS_MASK =
166 #include <linux/sched/sd_flags.h>
167 0;
168 #undef SD_FLAG
169
sd_degenerate(struct sched_domain * sd)170 static int sd_degenerate(struct sched_domain *sd)
171 {
172 if (cpumask_weight(sched_domain_span(sd)) == 1)
173 return 1;
174
175 /* Following flags need at least 2 groups */
176 if ((sd->flags & SD_DEGENERATE_GROUPS_MASK) &&
177 (sd->groups != sd->groups->next))
178 return 0;
179
180 /* Following flags don't use groups */
181 if (sd->flags & (SD_WAKE_AFFINE))
182 return 0;
183
184 return 1;
185 }
186
187 static int
sd_parent_degenerate(struct sched_domain * sd,struct sched_domain * parent)188 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
189 {
190 unsigned long cflags = sd->flags, pflags = parent->flags;
191
192 if (sd_degenerate(parent))
193 return 1;
194
195 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
196 return 0;
197
198 /* Flags needing groups don't count if only 1 group in parent */
199 if (parent->groups == parent->groups->next)
200 pflags &= ~SD_DEGENERATE_GROUPS_MASK;
201
202 if (~cflags & pflags)
203 return 0;
204
205 return 1;
206 }
207
208 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
209 DEFINE_STATIC_KEY_FALSE(sched_energy_present);
210 unsigned int sysctl_sched_energy_aware = 1;
211 DEFINE_MUTEX(sched_energy_mutex);
212 bool sched_energy_update;
213
214 #ifdef CONFIG_PROC_SYSCTL
sched_energy_aware_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)215 int sched_energy_aware_handler(struct ctl_table *table, int write,
216 void *buffer, size_t *lenp, loff_t *ppos)
217 {
218 int ret, state;
219
220 if (write && !capable(CAP_SYS_ADMIN))
221 return -EPERM;
222
223 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
224 if (!ret && write) {
225 state = static_branch_unlikely(&sched_energy_present);
226 if (state != sysctl_sched_energy_aware) {
227 mutex_lock(&sched_energy_mutex);
228 sched_energy_update = 1;
229 rebuild_sched_domains();
230 sched_energy_update = 0;
231 mutex_unlock(&sched_energy_mutex);
232 }
233 }
234
235 return ret;
236 }
237 #endif
238
free_pd(struct perf_domain * pd)239 static void free_pd(struct perf_domain *pd)
240 {
241 struct perf_domain *tmp;
242
243 while (pd) {
244 tmp = pd->next;
245 kfree(pd);
246 pd = tmp;
247 }
248 }
249
find_pd(struct perf_domain * pd,int cpu)250 static struct perf_domain *find_pd(struct perf_domain *pd, int cpu)
251 {
252 while (pd) {
253 if (cpumask_test_cpu(cpu, perf_domain_span(pd)))
254 return pd;
255 pd = pd->next;
256 }
257
258 return NULL;
259 }
260
pd_init(int cpu)261 static struct perf_domain *pd_init(int cpu)
262 {
263 struct em_perf_domain *obj = em_cpu_get(cpu);
264 struct perf_domain *pd;
265
266 if (!obj) {
267 if (sched_debug())
268 pr_info("%s: no EM found for CPU%d\n", __func__, cpu);
269 return NULL;
270 }
271
272 pd = kzalloc(sizeof(*pd), GFP_KERNEL);
273 if (!pd)
274 return NULL;
275 pd->em_pd = obj;
276
277 return pd;
278 }
279
perf_domain_debug(const struct cpumask * cpu_map,struct perf_domain * pd)280 static void perf_domain_debug(const struct cpumask *cpu_map,
281 struct perf_domain *pd)
282 {
283 if (!sched_debug() || !pd)
284 return;
285
286 printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map));
287
288 while (pd) {
289 printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_pstate=%d }",
290 cpumask_first(perf_domain_span(pd)),
291 cpumask_pr_args(perf_domain_span(pd)),
292 em_pd_nr_perf_states(pd->em_pd));
293 pd = pd->next;
294 }
295
296 printk(KERN_CONT "\n");
297 }
298
destroy_perf_domain_rcu(struct rcu_head * rp)299 static void destroy_perf_domain_rcu(struct rcu_head *rp)
300 {
301 struct perf_domain *pd;
302
303 pd = container_of(rp, struct perf_domain, rcu);
304 free_pd(pd);
305 }
306
sched_energy_set(bool has_eas)307 static void sched_energy_set(bool has_eas)
308 {
309 if (!has_eas && static_branch_unlikely(&sched_energy_present)) {
310 if (sched_debug())
311 pr_info("%s: stopping EAS\n", __func__);
312 static_branch_disable_cpuslocked(&sched_energy_present);
313 } else if (has_eas && !static_branch_unlikely(&sched_energy_present)) {
314 if (sched_debug())
315 pr_info("%s: starting EAS\n", __func__);
316 static_branch_enable_cpuslocked(&sched_energy_present);
317 }
318 }
319
320 /*
321 * EAS can be used on a root domain if it meets all the following conditions:
322 * 1. an Energy Model (EM) is available;
323 * 2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy.
324 * 3. no SMT is detected.
325 * 4. the EM complexity is low enough to keep scheduling overheads low;
326 * 5. schedutil is driving the frequency of all CPUs of the rd;
327 *
328 * The complexity of the Energy Model is defined as:
329 *
330 * C = nr_pd * (nr_cpus + nr_ps)
331 *
332 * with parameters defined as:
333 * - nr_pd: the number of performance domains
334 * - nr_cpus: the number of CPUs
335 * - nr_ps: the sum of the number of performance states of all performance
336 * domains (for example, on a system with 2 performance domains,
337 * with 10 performance states each, nr_ps = 2 * 10 = 20).
338 *
339 * It is generally not a good idea to use such a model in the wake-up path on
340 * very complex platforms because of the associated scheduling overheads. The
341 * arbitrary constraint below prevents that. It makes EAS usable up to 16 CPUs
342 * with per-CPU DVFS and less than 8 performance states each, for example.
343 */
344 #define EM_MAX_COMPLEXITY 2048
345
346 extern struct cpufreq_governor schedutil_gov;
build_perf_domains(const struct cpumask * cpu_map)347 static bool build_perf_domains(const struct cpumask *cpu_map)
348 {
349 int i, nr_pd = 0, nr_ps = 0, nr_cpus = cpumask_weight(cpu_map);
350 struct perf_domain *pd = NULL, *tmp;
351 int cpu = cpumask_first(cpu_map);
352 struct root_domain *rd = cpu_rq(cpu)->rd;
353 struct cpufreq_policy *policy;
354 struct cpufreq_governor *gov;
355
356 if (!sysctl_sched_energy_aware)
357 goto free;
358
359 /* EAS is enabled for asymmetric CPU capacity topologies. */
360 if (!per_cpu(sd_asym_cpucapacity, cpu)) {
361 if (sched_debug()) {
362 pr_info("rd %*pbl: CPUs do not have asymmetric capacities\n",
363 cpumask_pr_args(cpu_map));
364 }
365 goto free;
366 }
367
368 /* EAS definitely does *not* handle SMT */
369 if (sched_smt_active()) {
370 pr_warn("rd %*pbl: Disabling EAS, SMT is not supported\n",
371 cpumask_pr_args(cpu_map));
372 goto free;
373 }
374
375 for_each_cpu(i, cpu_map) {
376 /* Skip already covered CPUs. */
377 if (find_pd(pd, i))
378 continue;
379
380 /* Do not attempt EAS if schedutil is not being used. */
381 policy = cpufreq_cpu_get(i);
382 if (!policy)
383 goto free;
384 gov = policy->governor;
385 cpufreq_cpu_put(policy);
386 if (gov != &schedutil_gov) {
387 if (rd->pd)
388 pr_warn("rd %*pbl: Disabling EAS, schedutil is mandatory\n",
389 cpumask_pr_args(cpu_map));
390 goto free;
391 }
392
393 /* Create the new pd and add it to the local list. */
394 tmp = pd_init(i);
395 if (!tmp)
396 goto free;
397 tmp->next = pd;
398 pd = tmp;
399
400 /*
401 * Count performance domains and performance states for the
402 * complexity check.
403 */
404 nr_pd++;
405 nr_ps += em_pd_nr_perf_states(pd->em_pd);
406 }
407
408 /* Bail out if the Energy Model complexity is too high. */
409 if (nr_pd * (nr_ps + nr_cpus) > EM_MAX_COMPLEXITY) {
410 WARN(1, "rd %*pbl: Failed to start EAS, EM complexity is too high\n",
411 cpumask_pr_args(cpu_map));
412 goto free;
413 }
414
415 perf_domain_debug(cpu_map, pd);
416
417 /* Attach the new list of performance domains to the root domain. */
418 tmp = rd->pd;
419 rcu_assign_pointer(rd->pd, pd);
420 if (tmp)
421 call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
422
423 return !!pd;
424
425 free:
426 free_pd(pd);
427 tmp = rd->pd;
428 rcu_assign_pointer(rd->pd, NULL);
429 if (tmp)
430 call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
431
432 return false;
433 }
434 #else
free_pd(struct perf_domain * pd)435 static void free_pd(struct perf_domain *pd) { }
436 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/
437
free_rootdomain(struct rcu_head * rcu)438 static void free_rootdomain(struct rcu_head *rcu)
439 {
440 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
441
442 cpupri_cleanup(&rd->cpupri);
443 cpudl_cleanup(&rd->cpudl);
444 free_cpumask_var(rd->dlo_mask);
445 free_cpumask_var(rd->rto_mask);
446 free_cpumask_var(rd->online);
447 free_cpumask_var(rd->span);
448 free_pd(rd->pd);
449 kfree(rd);
450 }
451
rq_attach_root(struct rq * rq,struct root_domain * rd)452 void rq_attach_root(struct rq *rq, struct root_domain *rd)
453 {
454 struct root_domain *old_rd = NULL;
455 unsigned long flags;
456
457 raw_spin_lock_irqsave(&rq->lock, flags);
458
459 if (rq->rd) {
460 old_rd = rq->rd;
461
462 if (cpumask_test_cpu(rq->cpu, old_rd->online))
463 set_rq_offline(rq);
464
465 cpumask_clear_cpu(rq->cpu, old_rd->span);
466
467 /*
468 * If we dont want to free the old_rd yet then
469 * set old_rd to NULL to skip the freeing later
470 * in this function:
471 */
472 if (!atomic_dec_and_test(&old_rd->refcount))
473 old_rd = NULL;
474 }
475
476 atomic_inc(&rd->refcount);
477 rq->rd = rd;
478
479 cpumask_set_cpu(rq->cpu, rd->span);
480 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
481 set_rq_online(rq);
482
483 raw_spin_unlock_irqrestore(&rq->lock, flags);
484
485 if (old_rd)
486 call_rcu(&old_rd->rcu, free_rootdomain);
487 }
488
sched_get_rd(struct root_domain * rd)489 void sched_get_rd(struct root_domain *rd)
490 {
491 atomic_inc(&rd->refcount);
492 }
493
sched_put_rd(struct root_domain * rd)494 void sched_put_rd(struct root_domain *rd)
495 {
496 if (!atomic_dec_and_test(&rd->refcount))
497 return;
498
499 call_rcu(&rd->rcu, free_rootdomain);
500 }
501
init_rootdomain(struct root_domain * rd)502 static int init_rootdomain(struct root_domain *rd)
503 {
504 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
505 goto out;
506 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
507 goto free_span;
508 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
509 goto free_online;
510 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
511 goto free_dlo_mask;
512
513 #ifdef HAVE_RT_PUSH_IPI
514 rd->rto_cpu = -1;
515 raw_spin_lock_init(&rd->rto_lock);
516 init_irq_work(&rd->rto_push_work, rto_push_irq_work_func);
517 #endif
518
519 init_dl_bw(&rd->dl_bw);
520 if (cpudl_init(&rd->cpudl) != 0)
521 goto free_rto_mask;
522
523 if (cpupri_init(&rd->cpupri) != 0)
524 goto free_cpudl;
525 return 0;
526
527 free_cpudl:
528 cpudl_cleanup(&rd->cpudl);
529 free_rto_mask:
530 free_cpumask_var(rd->rto_mask);
531 free_dlo_mask:
532 free_cpumask_var(rd->dlo_mask);
533 free_online:
534 free_cpumask_var(rd->online);
535 free_span:
536 free_cpumask_var(rd->span);
537 out:
538 return -ENOMEM;
539 }
540
541 /*
542 * By default the system creates a single root-domain with all CPUs as
543 * members (mimicking the global state we have today).
544 */
545 struct root_domain def_root_domain;
546
init_defrootdomain(void)547 void init_defrootdomain(void)
548 {
549 init_rootdomain(&def_root_domain);
550
551 atomic_set(&def_root_domain.refcount, 1);
552 }
553
alloc_rootdomain(void)554 static struct root_domain *alloc_rootdomain(void)
555 {
556 struct root_domain *rd;
557
558 rd = kzalloc(sizeof(*rd), GFP_KERNEL);
559 if (!rd)
560 return NULL;
561
562 if (init_rootdomain(rd) != 0) {
563 kfree(rd);
564 return NULL;
565 }
566
567 return rd;
568 }
569
free_sched_groups(struct sched_group * sg,int free_sgc)570 static void free_sched_groups(struct sched_group *sg, int free_sgc)
571 {
572 struct sched_group *tmp, *first;
573
574 if (!sg)
575 return;
576
577 first = sg;
578 do {
579 tmp = sg->next;
580
581 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
582 kfree(sg->sgc);
583
584 if (atomic_dec_and_test(&sg->ref))
585 kfree(sg);
586 sg = tmp;
587 } while (sg != first);
588 }
589
destroy_sched_domain(struct sched_domain * sd)590 static void destroy_sched_domain(struct sched_domain *sd)
591 {
592 /*
593 * A normal sched domain may have multiple group references, an
594 * overlapping domain, having private groups, only one. Iterate,
595 * dropping group/capacity references, freeing where none remain.
596 */
597 free_sched_groups(sd->groups, 1);
598
599 if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
600 kfree(sd->shared);
601 kfree(sd);
602 }
603
destroy_sched_domains_rcu(struct rcu_head * rcu)604 static void destroy_sched_domains_rcu(struct rcu_head *rcu)
605 {
606 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
607
608 while (sd) {
609 struct sched_domain *parent = sd->parent;
610 destroy_sched_domain(sd);
611 sd = parent;
612 }
613 }
614
destroy_sched_domains(struct sched_domain * sd)615 static void destroy_sched_domains(struct sched_domain *sd)
616 {
617 if (sd)
618 call_rcu(&sd->rcu, destroy_sched_domains_rcu);
619 }
620
621 /*
622 * Keep a special pointer to the highest sched_domain that has
623 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
624 * allows us to avoid some pointer chasing select_idle_sibling().
625 *
626 * Also keep a unique ID per domain (we use the first CPU number in
627 * the cpumask of the domain), this allows us to quickly tell if
628 * two CPUs are in the same cache domain, see cpus_share_cache().
629 */
630 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_llc);
631 DEFINE_PER_CPU(int, sd_llc_size);
632 DEFINE_PER_CPU(int, sd_llc_id);
633 DEFINE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
634 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_numa);
635 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
636 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
637 DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity);
638
update_top_cache_domain(int cpu)639 static void update_top_cache_domain(int cpu)
640 {
641 struct sched_domain_shared *sds = NULL;
642 struct sched_domain *sd;
643 int id = cpu;
644 int size = 1;
645
646 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
647 if (sd) {
648 id = cpumask_first(sched_domain_span(sd));
649 size = cpumask_weight(sched_domain_span(sd));
650 sds = sd->shared;
651 }
652
653 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
654 per_cpu(sd_llc_size, cpu) = size;
655 per_cpu(sd_llc_id, cpu) = id;
656 rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
657
658 sd = lowest_flag_domain(cpu, SD_NUMA);
659 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
660
661 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
662 rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd);
663
664 sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY);
665 rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd);
666 }
667
668 /*
669 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
670 * hold the hotplug lock.
671 */
672 static void
cpu_attach_domain(struct sched_domain * sd,struct root_domain * rd,int cpu)673 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
674 {
675 struct rq *rq = cpu_rq(cpu);
676 struct sched_domain *tmp;
677
678 /* Remove the sched domains which do not contribute to scheduling. */
679 for (tmp = sd; tmp; ) {
680 struct sched_domain *parent = tmp->parent;
681 if (!parent)
682 break;
683
684 if (sd_parent_degenerate(tmp, parent)) {
685 tmp->parent = parent->parent;
686 if (parent->parent)
687 parent->parent->child = tmp;
688 /*
689 * Transfer SD_PREFER_SIBLING down in case of a
690 * degenerate parent; the spans match for this
691 * so the property transfers.
692 */
693 if (parent->flags & SD_PREFER_SIBLING)
694 tmp->flags |= SD_PREFER_SIBLING;
695 destroy_sched_domain(parent);
696 } else
697 tmp = tmp->parent;
698 }
699
700 if (sd && sd_degenerate(sd)) {
701 tmp = sd;
702 sd = sd->parent;
703 destroy_sched_domain(tmp);
704 if (sd)
705 sd->child = NULL;
706 }
707
708 sched_domain_debug(sd, cpu);
709
710 rq_attach_root(rq, rd);
711 tmp = rq->sd;
712 rcu_assign_pointer(rq->sd, sd);
713 dirty_sched_domain_sysctl(cpu);
714 destroy_sched_domains(tmp);
715
716 update_top_cache_domain(cpu);
717 }
718
719 struct s_data {
720 struct sched_domain * __percpu *sd;
721 struct root_domain *rd;
722 };
723
724 enum s_alloc {
725 sa_rootdomain,
726 sa_sd,
727 sa_sd_storage,
728 sa_none,
729 };
730
731 /*
732 * Return the canonical balance CPU for this group, this is the first CPU
733 * of this group that's also in the balance mask.
734 *
735 * The balance mask are all those CPUs that could actually end up at this
736 * group. See build_balance_mask().
737 *
738 * Also see should_we_balance().
739 */
group_balance_cpu(struct sched_group * sg)740 int group_balance_cpu(struct sched_group *sg)
741 {
742 return cpumask_first(group_balance_mask(sg));
743 }
744
745
746 /*
747 * NUMA topology (first read the regular topology blurb below)
748 *
749 * Given a node-distance table, for example:
750 *
751 * node 0 1 2 3
752 * 0: 10 20 30 20
753 * 1: 20 10 20 30
754 * 2: 30 20 10 20
755 * 3: 20 30 20 10
756 *
757 * which represents a 4 node ring topology like:
758 *
759 * 0 ----- 1
760 * | |
761 * | |
762 * | |
763 * 3 ----- 2
764 *
765 * We want to construct domains and groups to represent this. The way we go
766 * about doing this is to build the domains on 'hops'. For each NUMA level we
767 * construct the mask of all nodes reachable in @level hops.
768 *
769 * For the above NUMA topology that gives 3 levels:
770 *
771 * NUMA-2 0-3 0-3 0-3 0-3
772 * groups: {0-1,3},{1-3} {0-2},{0,2-3} {1-3},{0-1,3} {0,2-3},{0-2}
773 *
774 * NUMA-1 0-1,3 0-2 1-3 0,2-3
775 * groups: {0},{1},{3} {0},{1},{2} {1},{2},{3} {0},{2},{3}
776 *
777 * NUMA-0 0 1 2 3
778 *
779 *
780 * As can be seen; things don't nicely line up as with the regular topology.
781 * When we iterate a domain in child domain chunks some nodes can be
782 * represented multiple times -- hence the "overlap" naming for this part of
783 * the topology.
784 *
785 * In order to minimize this overlap, we only build enough groups to cover the
786 * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
787 *
788 * Because:
789 *
790 * - the first group of each domain is its child domain; this
791 * gets us the first 0-1,3
792 * - the only uncovered node is 2, who's child domain is 1-3.
793 *
794 * However, because of the overlap, computing a unique CPU for each group is
795 * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
796 * groups include the CPUs of Node-0, while those CPUs would not in fact ever
797 * end up at those groups (they would end up in group: 0-1,3).
798 *
799 * To correct this we have to introduce the group balance mask. This mask
800 * will contain those CPUs in the group that can reach this group given the
801 * (child) domain tree.
802 *
803 * With this we can once again compute balance_cpu and sched_group_capacity
804 * relations.
805 *
806 * XXX include words on how balance_cpu is unique and therefore can be
807 * used for sched_group_capacity links.
808 *
809 *
810 * Another 'interesting' topology is:
811 *
812 * node 0 1 2 3
813 * 0: 10 20 20 30
814 * 1: 20 10 20 20
815 * 2: 20 20 10 20
816 * 3: 30 20 20 10
817 *
818 * Which looks a little like:
819 *
820 * 0 ----- 1
821 * | / |
822 * | / |
823 * | / |
824 * 2 ----- 3
825 *
826 * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
827 * are not.
828 *
829 * This leads to a few particularly weird cases where the sched_domain's are
830 * not of the same number for each CPU. Consider:
831 *
832 * NUMA-2 0-3 0-3
833 * groups: {0-2},{1-3} {1-3},{0-2}
834 *
835 * NUMA-1 0-2 0-3 0-3 1-3
836 *
837 * NUMA-0 0 1 2 3
838 *
839 */
840
841
842 /*
843 * Build the balance mask; it contains only those CPUs that can arrive at this
844 * group and should be considered to continue balancing.
845 *
846 * We do this during the group creation pass, therefore the group information
847 * isn't complete yet, however since each group represents a (child) domain we
848 * can fully construct this using the sched_domain bits (which are already
849 * complete).
850 */
851 static void
build_balance_mask(struct sched_domain * sd,struct sched_group * sg,struct cpumask * mask)852 build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
853 {
854 const struct cpumask *sg_span = sched_group_span(sg);
855 struct sd_data *sdd = sd->private;
856 struct sched_domain *sibling;
857 int i;
858
859 cpumask_clear(mask);
860
861 for_each_cpu(i, sg_span) {
862 sibling = *per_cpu_ptr(sdd->sd, i);
863
864 /*
865 * Can happen in the asymmetric case, where these siblings are
866 * unused. The mask will not be empty because those CPUs that
867 * do have the top domain _should_ span the domain.
868 */
869 if (!sibling->child)
870 continue;
871
872 /* If we would not end up here, we can't continue from here */
873 if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
874 continue;
875
876 cpumask_set_cpu(i, mask);
877 }
878
879 /* We must not have empty masks here */
880 WARN_ON_ONCE(cpumask_empty(mask));
881 }
882
883 /*
884 * XXX: This creates per-node group entries; since the load-balancer will
885 * immediately access remote memory to construct this group's load-balance
886 * statistics having the groups node local is of dubious benefit.
887 */
888 static struct sched_group *
build_group_from_child_sched_domain(struct sched_domain * sd,int cpu)889 build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
890 {
891 struct sched_group *sg;
892 struct cpumask *sg_span;
893
894 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
895 GFP_KERNEL, cpu_to_node(cpu));
896
897 if (!sg)
898 return NULL;
899
900 sg_span = sched_group_span(sg);
901 if (sd->child)
902 cpumask_copy(sg_span, sched_domain_span(sd->child));
903 else
904 cpumask_copy(sg_span, sched_domain_span(sd));
905
906 atomic_inc(&sg->ref);
907 return sg;
908 }
909
init_overlap_sched_group(struct sched_domain * sd,struct sched_group * sg)910 static void init_overlap_sched_group(struct sched_domain *sd,
911 struct sched_group *sg)
912 {
913 struct cpumask *mask = sched_domains_tmpmask2;
914 struct sd_data *sdd = sd->private;
915 struct cpumask *sg_span;
916 int cpu;
917
918 build_balance_mask(sd, sg, mask);
919 cpu = cpumask_first_and(sched_group_span(sg), mask);
920
921 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
922 if (atomic_inc_return(&sg->sgc->ref) == 1)
923 cpumask_copy(group_balance_mask(sg), mask);
924 else
925 WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
926
927 /*
928 * Initialize sgc->capacity such that even if we mess up the
929 * domains and no possible iteration will get us here, we won't
930 * die on a /0 trap.
931 */
932 sg_span = sched_group_span(sg);
933 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
934 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
935 sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
936 }
937
938 static int
build_overlap_sched_groups(struct sched_domain * sd,int cpu)939 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
940 {
941 struct sched_group *first = NULL, *last = NULL, *sg;
942 const struct cpumask *span = sched_domain_span(sd);
943 struct cpumask *covered = sched_domains_tmpmask;
944 struct sd_data *sdd = sd->private;
945 struct sched_domain *sibling;
946 int i;
947
948 cpumask_clear(covered);
949
950 for_each_cpu_wrap(i, span, cpu) {
951 struct cpumask *sg_span;
952
953 if (cpumask_test_cpu(i, covered))
954 continue;
955
956 sibling = *per_cpu_ptr(sdd->sd, i);
957
958 /*
959 * Asymmetric node setups can result in situations where the
960 * domain tree is of unequal depth, make sure to skip domains
961 * that already cover the entire range.
962 *
963 * In that case build_sched_domains() will have terminated the
964 * iteration early and our sibling sd spans will be empty.
965 * Domains should always include the CPU they're built on, so
966 * check that.
967 */
968 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
969 continue;
970
971 sg = build_group_from_child_sched_domain(sibling, cpu);
972 if (!sg)
973 goto fail;
974
975 sg_span = sched_group_span(sg);
976 cpumask_or(covered, covered, sg_span);
977
978 init_overlap_sched_group(sd, sg);
979
980 if (!first)
981 first = sg;
982 if (last)
983 last->next = sg;
984 last = sg;
985 last->next = first;
986 }
987 sd->groups = first;
988
989 return 0;
990
991 fail:
992 free_sched_groups(first, 0);
993
994 return -ENOMEM;
995 }
996
997
998 /*
999 * Package topology (also see the load-balance blurb in fair.c)
1000 *
1001 * The scheduler builds a tree structure to represent a number of important
1002 * topology features. By default (default_topology[]) these include:
1003 *
1004 * - Simultaneous multithreading (SMT)
1005 * - Multi-Core Cache (MC)
1006 * - Package (DIE)
1007 *
1008 * Where the last one more or less denotes everything up to a NUMA node.
1009 *
1010 * The tree consists of 3 primary data structures:
1011 *
1012 * sched_domain -> sched_group -> sched_group_capacity
1013 * ^ ^ ^ ^
1014 * `-' `-'
1015 *
1016 * The sched_domains are per-CPU and have a two way link (parent & child) and
1017 * denote the ever growing mask of CPUs belonging to that level of topology.
1018 *
1019 * Each sched_domain has a circular (double) linked list of sched_group's, each
1020 * denoting the domains of the level below (or individual CPUs in case of the
1021 * first domain level). The sched_group linked by a sched_domain includes the
1022 * CPU of that sched_domain [*].
1023 *
1024 * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
1025 *
1026 * CPU 0 1 2 3 4 5 6 7
1027 *
1028 * DIE [ ]
1029 * MC [ ] [ ]
1030 * SMT [ ] [ ] [ ] [ ]
1031 *
1032 * - or -
1033 *
1034 * DIE 0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
1035 * MC 0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
1036 * SMT 0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
1037 *
1038 * CPU 0 1 2 3 4 5 6 7
1039 *
1040 * One way to think about it is: sched_domain moves you up and down among these
1041 * topology levels, while sched_group moves you sideways through it, at child
1042 * domain granularity.
1043 *
1044 * sched_group_capacity ensures each unique sched_group has shared storage.
1045 *
1046 * There are two related construction problems, both require a CPU that
1047 * uniquely identify each group (for a given domain):
1048 *
1049 * - The first is the balance_cpu (see should_we_balance() and the
1050 * load-balance blub in fair.c); for each group we only want 1 CPU to
1051 * continue balancing at a higher domain.
1052 *
1053 * - The second is the sched_group_capacity; we want all identical groups
1054 * to share a single sched_group_capacity.
1055 *
1056 * Since these topologies are exclusive by construction. That is, its
1057 * impossible for an SMT thread to belong to multiple cores, and cores to
1058 * be part of multiple caches. There is a very clear and unique location
1059 * for each CPU in the hierarchy.
1060 *
1061 * Therefore computing a unique CPU for each group is trivial (the iteration
1062 * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
1063 * group), we can simply pick the first CPU in each group.
1064 *
1065 *
1066 * [*] in other words, the first group of each domain is its child domain.
1067 */
1068
get_group(int cpu,struct sd_data * sdd)1069 static struct sched_group *get_group(int cpu, struct sd_data *sdd)
1070 {
1071 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1072 struct sched_domain *child = sd->child;
1073 struct sched_group *sg;
1074 bool already_visited;
1075
1076 if (child)
1077 cpu = cpumask_first(sched_domain_span(child));
1078
1079 sg = *per_cpu_ptr(sdd->sg, cpu);
1080 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
1081
1082 /* Increase refcounts for claim_allocations: */
1083 already_visited = atomic_inc_return(&sg->ref) > 1;
1084 /* sgc visits should follow a similar trend as sg */
1085 WARN_ON(already_visited != (atomic_inc_return(&sg->sgc->ref) > 1));
1086
1087 /* If we have already visited that group, it's already initialized. */
1088 if (already_visited)
1089 return sg;
1090
1091 if (child) {
1092 cpumask_copy(sched_group_span(sg), sched_domain_span(child));
1093 cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
1094 } else {
1095 cpumask_set_cpu(cpu, sched_group_span(sg));
1096 cpumask_set_cpu(cpu, group_balance_mask(sg));
1097 }
1098
1099 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
1100 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
1101 sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
1102
1103 return sg;
1104 }
1105
1106 /*
1107 * build_sched_groups will build a circular linked list of the groups
1108 * covered by the given span, will set each group's ->cpumask correctly,
1109 * and will initialize their ->sgc.
1110 *
1111 * Assumes the sched_domain tree is fully constructed
1112 */
1113 static int
build_sched_groups(struct sched_domain * sd,int cpu)1114 build_sched_groups(struct sched_domain *sd, int cpu)
1115 {
1116 struct sched_group *first = NULL, *last = NULL;
1117 struct sd_data *sdd = sd->private;
1118 const struct cpumask *span = sched_domain_span(sd);
1119 struct cpumask *covered;
1120 int i;
1121
1122 lockdep_assert_held(&sched_domains_mutex);
1123 covered = sched_domains_tmpmask;
1124
1125 cpumask_clear(covered);
1126
1127 for_each_cpu_wrap(i, span, cpu) {
1128 struct sched_group *sg;
1129
1130 if (cpumask_test_cpu(i, covered))
1131 continue;
1132
1133 sg = get_group(i, sdd);
1134
1135 cpumask_or(covered, covered, sched_group_span(sg));
1136
1137 if (!first)
1138 first = sg;
1139 if (last)
1140 last->next = sg;
1141 last = sg;
1142 }
1143 last->next = first;
1144 sd->groups = first;
1145
1146 return 0;
1147 }
1148
1149 /*
1150 * Initialize sched groups cpu_capacity.
1151 *
1152 * cpu_capacity indicates the capacity of sched group, which is used while
1153 * distributing the load between different sched groups in a sched domain.
1154 * Typically cpu_capacity for all the groups in a sched domain will be same
1155 * unless there are asymmetries in the topology. If there are asymmetries,
1156 * group having more cpu_capacity will pickup more load compared to the
1157 * group having less cpu_capacity.
1158 */
init_sched_groups_capacity(int cpu,struct sched_domain * sd)1159 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
1160 {
1161 struct sched_group *sg = sd->groups;
1162
1163 WARN_ON(!sg);
1164
1165 do {
1166 int cpu, max_cpu = -1;
1167
1168 sg->group_weight = cpumask_weight(sched_group_span(sg));
1169
1170 if (!(sd->flags & SD_ASYM_PACKING))
1171 goto next;
1172
1173 for_each_cpu(cpu, sched_group_span(sg)) {
1174 if (max_cpu < 0)
1175 max_cpu = cpu;
1176 else if (sched_asym_prefer(cpu, max_cpu))
1177 max_cpu = cpu;
1178 }
1179 sg->asym_prefer_cpu = max_cpu;
1180
1181 next:
1182 sg = sg->next;
1183 } while (sg != sd->groups);
1184
1185 if (cpu != group_balance_cpu(sg))
1186 return;
1187
1188 update_group_capacity(sd, cpu);
1189 }
1190
1191 /*
1192 * Initializers for schedule domains
1193 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
1194 */
1195
1196 static int default_relax_domain_level = -1;
1197 int sched_domain_level_max;
1198
setup_relax_domain_level(char * str)1199 static int __init setup_relax_domain_level(char *str)
1200 {
1201 if (kstrtoint(str, 0, &default_relax_domain_level))
1202 pr_warn("Unable to set relax_domain_level\n");
1203
1204 return 1;
1205 }
1206 __setup("relax_domain_level=", setup_relax_domain_level);
1207
set_domain_attribute(struct sched_domain * sd,struct sched_domain_attr * attr)1208 static void set_domain_attribute(struct sched_domain *sd,
1209 struct sched_domain_attr *attr)
1210 {
1211 int request;
1212
1213 if (!attr || attr->relax_domain_level < 0) {
1214 if (default_relax_domain_level < 0)
1215 return;
1216 request = default_relax_domain_level;
1217 } else
1218 request = attr->relax_domain_level;
1219
1220 if (sd->level > request) {
1221 /* Turn off idle balance on this domain: */
1222 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1223 }
1224 }
1225
1226 static void __sdt_free(const struct cpumask *cpu_map);
1227 static int __sdt_alloc(const struct cpumask *cpu_map);
1228
__free_domain_allocs(struct s_data * d,enum s_alloc what,const struct cpumask * cpu_map)1229 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
1230 const struct cpumask *cpu_map)
1231 {
1232 switch (what) {
1233 case sa_rootdomain:
1234 if (!atomic_read(&d->rd->refcount))
1235 free_rootdomain(&d->rd->rcu);
1236 fallthrough;
1237 case sa_sd:
1238 free_percpu(d->sd);
1239 fallthrough;
1240 case sa_sd_storage:
1241 __sdt_free(cpu_map);
1242 fallthrough;
1243 case sa_none:
1244 break;
1245 }
1246 }
1247
1248 static enum s_alloc
__visit_domain_allocation_hell(struct s_data * d,const struct cpumask * cpu_map)1249 __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
1250 {
1251 memset(d, 0, sizeof(*d));
1252
1253 if (__sdt_alloc(cpu_map))
1254 return sa_sd_storage;
1255 d->sd = alloc_percpu(struct sched_domain *);
1256 if (!d->sd)
1257 return sa_sd_storage;
1258 d->rd = alloc_rootdomain();
1259 if (!d->rd)
1260 return sa_sd;
1261
1262 return sa_rootdomain;
1263 }
1264
1265 /*
1266 * NULL the sd_data elements we've used to build the sched_domain and
1267 * sched_group structure so that the subsequent __free_domain_allocs()
1268 * will not free the data we're using.
1269 */
claim_allocations(int cpu,struct sched_domain * sd)1270 static void claim_allocations(int cpu, struct sched_domain *sd)
1271 {
1272 struct sd_data *sdd = sd->private;
1273
1274 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
1275 *per_cpu_ptr(sdd->sd, cpu) = NULL;
1276
1277 if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
1278 *per_cpu_ptr(sdd->sds, cpu) = NULL;
1279
1280 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
1281 *per_cpu_ptr(sdd->sg, cpu) = NULL;
1282
1283 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
1284 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
1285 }
1286
1287 #ifdef CONFIG_NUMA
1288 enum numa_topology_type sched_numa_topology_type;
1289
1290 static int sched_domains_numa_levels;
1291 static int sched_domains_curr_level;
1292
1293 int sched_max_numa_distance;
1294 static int *sched_domains_numa_distance;
1295 static struct cpumask ***sched_domains_numa_masks;
1296 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
1297 #endif
1298
1299 /*
1300 * SD_flags allowed in topology descriptions.
1301 *
1302 * These flags are purely descriptive of the topology and do not prescribe
1303 * behaviour. Behaviour is artificial and mapped in the below sd_init()
1304 * function:
1305 *
1306 * SD_SHARE_CPUCAPACITY - describes SMT topologies
1307 * SD_SHARE_PKG_RESOURCES - describes shared caches
1308 * SD_NUMA - describes NUMA topologies
1309 *
1310 * Odd one out, which beside describing the topology has a quirk also
1311 * prescribes the desired behaviour that goes along with it:
1312 *
1313 * SD_ASYM_PACKING - describes SMT quirks
1314 */
1315 #define TOPOLOGY_SD_FLAGS \
1316 (SD_SHARE_CPUCAPACITY | \
1317 SD_SHARE_PKG_RESOURCES | \
1318 SD_NUMA | \
1319 SD_ASYM_PACKING)
1320
1321 static struct sched_domain *
sd_init(struct sched_domain_topology_level * tl,const struct cpumask * cpu_map,struct sched_domain * child,int dflags,int cpu)1322 sd_init(struct sched_domain_topology_level *tl,
1323 const struct cpumask *cpu_map,
1324 struct sched_domain *child, int dflags, int cpu)
1325 {
1326 struct sd_data *sdd = &tl->data;
1327 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1328 int sd_id, sd_weight, sd_flags = 0;
1329
1330 #ifdef CONFIG_NUMA
1331 /*
1332 * Ugly hack to pass state to sd_numa_mask()...
1333 */
1334 sched_domains_curr_level = tl->numa_level;
1335 #endif
1336
1337 sd_weight = cpumask_weight(tl->mask(cpu));
1338
1339 if (tl->sd_flags)
1340 sd_flags = (*tl->sd_flags)();
1341 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
1342 "wrong sd_flags in topology description\n"))
1343 sd_flags &= TOPOLOGY_SD_FLAGS;
1344
1345 /* Apply detected topology flags */
1346 sd_flags |= dflags;
1347
1348 *sd = (struct sched_domain){
1349 .min_interval = sd_weight,
1350 .max_interval = 2*sd_weight,
1351 .busy_factor = 16,
1352 .imbalance_pct = 117,
1353
1354 .cache_nice_tries = 0,
1355
1356 .flags = 1*SD_BALANCE_NEWIDLE
1357 | 1*SD_BALANCE_EXEC
1358 | 1*SD_BALANCE_FORK
1359 | 0*SD_BALANCE_WAKE
1360 | 1*SD_WAKE_AFFINE
1361 | 0*SD_SHARE_CPUCAPACITY
1362 | 0*SD_SHARE_PKG_RESOURCES
1363 | 0*SD_SERIALIZE
1364 | 1*SD_PREFER_SIBLING
1365 | 0*SD_NUMA
1366 | sd_flags
1367 ,
1368
1369 .last_balance = jiffies,
1370 .balance_interval = sd_weight,
1371 .max_newidle_lb_cost = 0,
1372 .next_decay_max_lb_cost = jiffies,
1373 .child = child,
1374 #ifdef CONFIG_SCHED_DEBUG
1375 .name = tl->name,
1376 #endif
1377 };
1378
1379 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
1380 sd_id = cpumask_first(sched_domain_span(sd));
1381
1382 /*
1383 * Convert topological properties into behaviour.
1384 */
1385
1386 /* Don't attempt to spread across CPUs of different capacities. */
1387 if ((sd->flags & SD_ASYM_CPUCAPACITY) && sd->child)
1388 sd->child->flags &= ~SD_PREFER_SIBLING;
1389
1390 if (sd->flags & SD_SHARE_CPUCAPACITY) {
1391 sd->imbalance_pct = 110;
1392
1393 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1394 sd->imbalance_pct = 117;
1395 sd->cache_nice_tries = 1;
1396
1397 #ifdef CONFIG_NUMA
1398 } else if (sd->flags & SD_NUMA) {
1399 sd->cache_nice_tries = 2;
1400
1401 sd->flags &= ~SD_PREFER_SIBLING;
1402 sd->flags |= SD_SERIALIZE;
1403 if (sched_domains_numa_distance[tl->numa_level] > node_reclaim_distance) {
1404 sd->flags &= ~(SD_BALANCE_EXEC |
1405 SD_BALANCE_FORK |
1406 SD_WAKE_AFFINE);
1407 }
1408
1409 #endif
1410 } else {
1411 sd->cache_nice_tries = 1;
1412 }
1413
1414 /*
1415 * For all levels sharing cache; connect a sched_domain_shared
1416 * instance.
1417 */
1418 if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1419 sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
1420 atomic_inc(&sd->shared->ref);
1421 atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
1422 }
1423
1424 sd->private = sdd;
1425
1426 return sd;
1427 }
1428
1429 /*
1430 * Topology list, bottom-up.
1431 */
1432 static struct sched_domain_topology_level default_topology[] = {
1433 #ifdef CONFIG_SCHED_SMT
1434 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
1435 #endif
1436 #ifdef CONFIG_SCHED_MC
1437 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
1438 #endif
1439 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
1440 { NULL, },
1441 };
1442
1443 static struct sched_domain_topology_level *sched_domain_topology =
1444 default_topology;
1445
1446 #define for_each_sd_topology(tl) \
1447 for (tl = sched_domain_topology; tl->mask; tl++)
1448
set_sched_topology(struct sched_domain_topology_level * tl)1449 void set_sched_topology(struct sched_domain_topology_level *tl)
1450 {
1451 if (WARN_ON_ONCE(sched_smp_initialized))
1452 return;
1453
1454 sched_domain_topology = tl;
1455 }
1456
1457 #ifdef CONFIG_NUMA
1458
sd_numa_mask(int cpu)1459 static const struct cpumask *sd_numa_mask(int cpu)
1460 {
1461 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
1462 }
1463
sched_numa_warn(const char * str)1464 static void sched_numa_warn(const char *str)
1465 {
1466 static int done = false;
1467 int i,j;
1468
1469 if (done)
1470 return;
1471
1472 done = true;
1473
1474 printk(KERN_WARNING "ERROR: %s\n\n", str);
1475
1476 for (i = 0; i < nr_node_ids; i++) {
1477 printk(KERN_WARNING " ");
1478 for (j = 0; j < nr_node_ids; j++)
1479 printk(KERN_CONT "%02d ", node_distance(i,j));
1480 printk(KERN_CONT "\n");
1481 }
1482 printk(KERN_WARNING "\n");
1483 }
1484
find_numa_distance(int distance)1485 bool find_numa_distance(int distance)
1486 {
1487 int i;
1488
1489 if (distance == node_distance(0, 0))
1490 return true;
1491
1492 for (i = 0; i < sched_domains_numa_levels; i++) {
1493 if (sched_domains_numa_distance[i] == distance)
1494 return true;
1495 }
1496
1497 return false;
1498 }
1499
1500 /*
1501 * A system can have three types of NUMA topology:
1502 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1503 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1504 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1505 *
1506 * The difference between a glueless mesh topology and a backplane
1507 * topology lies in whether communication between not directly
1508 * connected nodes goes through intermediary nodes (where programs
1509 * could run), or through backplane controllers. This affects
1510 * placement of programs.
1511 *
1512 * The type of topology can be discerned with the following tests:
1513 * - If the maximum distance between any nodes is 1 hop, the system
1514 * is directly connected.
1515 * - If for two nodes A and B, located N > 1 hops away from each other,
1516 * there is an intermediary node C, which is < N hops away from both
1517 * nodes A and B, the system is a glueless mesh.
1518 */
init_numa_topology_type(void)1519 static void init_numa_topology_type(void)
1520 {
1521 int a, b, c, n;
1522
1523 n = sched_max_numa_distance;
1524
1525 if (sched_domains_numa_levels <= 2) {
1526 sched_numa_topology_type = NUMA_DIRECT;
1527 return;
1528 }
1529
1530 for_each_online_node(a) {
1531 for_each_online_node(b) {
1532 /* Find two nodes furthest removed from each other. */
1533 if (node_distance(a, b) < n)
1534 continue;
1535
1536 /* Is there an intermediary node between a and b? */
1537 for_each_online_node(c) {
1538 if (node_distance(a, c) < n &&
1539 node_distance(b, c) < n) {
1540 sched_numa_topology_type =
1541 NUMA_GLUELESS_MESH;
1542 return;
1543 }
1544 }
1545
1546 sched_numa_topology_type = NUMA_BACKPLANE;
1547 return;
1548 }
1549 }
1550 }
1551
sched_init_numa(void)1552 void sched_init_numa(void)
1553 {
1554 int next_distance, curr_distance = node_distance(0, 0);
1555 struct sched_domain_topology_level *tl;
1556 int level = 0;
1557 int i, j, k;
1558
1559 sched_domains_numa_distance = kzalloc(sizeof(int) * (nr_node_ids + 1), GFP_KERNEL);
1560 if (!sched_domains_numa_distance)
1561 return;
1562
1563 /* Includes NUMA identity node at level 0. */
1564 sched_domains_numa_distance[level++] = curr_distance;
1565 sched_domains_numa_levels = level;
1566
1567 /*
1568 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
1569 * unique distances in the node_distance() table.
1570 *
1571 * Assumes node_distance(0,j) includes all distances in
1572 * node_distance(i,j) in order to avoid cubic time.
1573 */
1574 next_distance = curr_distance;
1575 for (i = 0; i < nr_node_ids; i++) {
1576 for (j = 0; j < nr_node_ids; j++) {
1577 for (k = 0; k < nr_node_ids; k++) {
1578 int distance = node_distance(i, k);
1579
1580 if (distance > curr_distance &&
1581 (distance < next_distance ||
1582 next_distance == curr_distance))
1583 next_distance = distance;
1584
1585 /*
1586 * While not a strong assumption it would be nice to know
1587 * about cases where if node A is connected to B, B is not
1588 * equally connected to A.
1589 */
1590 if (sched_debug() && node_distance(k, i) != distance)
1591 sched_numa_warn("Node-distance not symmetric");
1592
1593 if (sched_debug() && i && !find_numa_distance(distance))
1594 sched_numa_warn("Node-0 not representative");
1595 }
1596 if (next_distance != curr_distance) {
1597 sched_domains_numa_distance[level++] = next_distance;
1598 sched_domains_numa_levels = level;
1599 curr_distance = next_distance;
1600 } else break;
1601 }
1602
1603 /*
1604 * In case of sched_debug() we verify the above assumption.
1605 */
1606 if (!sched_debug())
1607 break;
1608 }
1609
1610 /*
1611 * 'level' contains the number of unique distances
1612 *
1613 * The sched_domains_numa_distance[] array includes the actual distance
1614 * numbers.
1615 */
1616
1617 /*
1618 * Here, we should temporarily reset sched_domains_numa_levels to 0.
1619 * If it fails to allocate memory for array sched_domains_numa_masks[][],
1620 * the array will contain less then 'level' members. This could be
1621 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1622 * in other functions.
1623 *
1624 * We reset it to 'level' at the end of this function.
1625 */
1626 sched_domains_numa_levels = 0;
1627
1628 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
1629 if (!sched_domains_numa_masks)
1630 return;
1631
1632 /*
1633 * Now for each level, construct a mask per node which contains all
1634 * CPUs of nodes that are that many hops away from us.
1635 */
1636 for (i = 0; i < level; i++) {
1637 sched_domains_numa_masks[i] =
1638 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
1639 if (!sched_domains_numa_masks[i])
1640 return;
1641
1642 for (j = 0; j < nr_node_ids; j++) {
1643 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
1644 if (!mask)
1645 return;
1646
1647 sched_domains_numa_masks[i][j] = mask;
1648
1649 for_each_node(k) {
1650 if (node_distance(j, k) > sched_domains_numa_distance[i])
1651 continue;
1652
1653 cpumask_or(mask, mask, cpumask_of_node(k));
1654 }
1655 }
1656 }
1657
1658 /* Compute default topology size */
1659 for (i = 0; sched_domain_topology[i].mask; i++);
1660
1661 tl = kzalloc((i + level + 1) *
1662 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
1663 if (!tl)
1664 return;
1665
1666 /*
1667 * Copy the default topology bits..
1668 */
1669 for (i = 0; sched_domain_topology[i].mask; i++)
1670 tl[i] = sched_domain_topology[i];
1671
1672 /*
1673 * Add the NUMA identity distance, aka single NODE.
1674 */
1675 tl[i++] = (struct sched_domain_topology_level){
1676 .mask = sd_numa_mask,
1677 .numa_level = 0,
1678 SD_INIT_NAME(NODE)
1679 };
1680
1681 /*
1682 * .. and append 'j' levels of NUMA goodness.
1683 */
1684 for (j = 1; j < level; i++, j++) {
1685 tl[i] = (struct sched_domain_topology_level){
1686 .mask = sd_numa_mask,
1687 .sd_flags = cpu_numa_flags,
1688 .flags = SDTL_OVERLAP,
1689 .numa_level = j,
1690 SD_INIT_NAME(NUMA)
1691 };
1692 }
1693
1694 sched_domain_topology = tl;
1695
1696 sched_domains_numa_levels = level;
1697 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
1698
1699 init_numa_topology_type();
1700 }
1701
sched_domains_numa_masks_set(unsigned int cpu)1702 void sched_domains_numa_masks_set(unsigned int cpu)
1703 {
1704 int node = cpu_to_node(cpu);
1705 int i, j;
1706
1707 for (i = 0; i < sched_domains_numa_levels; i++) {
1708 for (j = 0; j < nr_node_ids; j++) {
1709 if (node_distance(j, node) <= sched_domains_numa_distance[i])
1710 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
1711 }
1712 }
1713 }
1714
sched_domains_numa_masks_clear(unsigned int cpu)1715 void sched_domains_numa_masks_clear(unsigned int cpu)
1716 {
1717 int i, j;
1718
1719 for (i = 0; i < sched_domains_numa_levels; i++) {
1720 for (j = 0; j < nr_node_ids; j++)
1721 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
1722 }
1723 }
1724
1725 /*
1726 * sched_numa_find_closest() - given the NUMA topology, find the cpu
1727 * closest to @cpu from @cpumask.
1728 * cpumask: cpumask to find a cpu from
1729 * cpu: cpu to be close to
1730 *
1731 * returns: cpu, or nr_cpu_ids when nothing found.
1732 */
sched_numa_find_closest(const struct cpumask * cpus,int cpu)1733 int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1734 {
1735 int i, j = cpu_to_node(cpu);
1736
1737 for (i = 0; i < sched_domains_numa_levels; i++) {
1738 cpu = cpumask_any_and(cpus, sched_domains_numa_masks[i][j]);
1739 if (cpu < nr_cpu_ids)
1740 return cpu;
1741 }
1742 return nr_cpu_ids;
1743 }
1744
1745 #endif /* CONFIG_NUMA */
1746
__sdt_alloc(const struct cpumask * cpu_map)1747 static int __sdt_alloc(const struct cpumask *cpu_map)
1748 {
1749 struct sched_domain_topology_level *tl;
1750 int j;
1751
1752 for_each_sd_topology(tl) {
1753 struct sd_data *sdd = &tl->data;
1754
1755 sdd->sd = alloc_percpu(struct sched_domain *);
1756 if (!sdd->sd)
1757 return -ENOMEM;
1758
1759 sdd->sds = alloc_percpu(struct sched_domain_shared *);
1760 if (!sdd->sds)
1761 return -ENOMEM;
1762
1763 sdd->sg = alloc_percpu(struct sched_group *);
1764 if (!sdd->sg)
1765 return -ENOMEM;
1766
1767 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
1768 if (!sdd->sgc)
1769 return -ENOMEM;
1770
1771 for_each_cpu(j, cpu_map) {
1772 struct sched_domain *sd;
1773 struct sched_domain_shared *sds;
1774 struct sched_group *sg;
1775 struct sched_group_capacity *sgc;
1776
1777 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
1778 GFP_KERNEL, cpu_to_node(j));
1779 if (!sd)
1780 return -ENOMEM;
1781
1782 *per_cpu_ptr(sdd->sd, j) = sd;
1783
1784 sds = kzalloc_node(sizeof(struct sched_domain_shared),
1785 GFP_KERNEL, cpu_to_node(j));
1786 if (!sds)
1787 return -ENOMEM;
1788
1789 *per_cpu_ptr(sdd->sds, j) = sds;
1790
1791 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
1792 GFP_KERNEL, cpu_to_node(j));
1793 if (!sg)
1794 return -ENOMEM;
1795
1796 sg->next = sg;
1797
1798 *per_cpu_ptr(sdd->sg, j) = sg;
1799
1800 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
1801 GFP_KERNEL, cpu_to_node(j));
1802 if (!sgc)
1803 return -ENOMEM;
1804
1805 #ifdef CONFIG_SCHED_DEBUG
1806 sgc->id = j;
1807 #endif
1808
1809 *per_cpu_ptr(sdd->sgc, j) = sgc;
1810 }
1811 }
1812
1813 return 0;
1814 }
1815
__sdt_free(const struct cpumask * cpu_map)1816 static void __sdt_free(const struct cpumask *cpu_map)
1817 {
1818 struct sched_domain_topology_level *tl;
1819 int j;
1820
1821 for_each_sd_topology(tl) {
1822 struct sd_data *sdd = &tl->data;
1823
1824 for_each_cpu(j, cpu_map) {
1825 struct sched_domain *sd;
1826
1827 if (sdd->sd) {
1828 sd = *per_cpu_ptr(sdd->sd, j);
1829 if (sd && (sd->flags & SD_OVERLAP))
1830 free_sched_groups(sd->groups, 0);
1831 kfree(*per_cpu_ptr(sdd->sd, j));
1832 }
1833
1834 if (sdd->sds)
1835 kfree(*per_cpu_ptr(sdd->sds, j));
1836 if (sdd->sg)
1837 kfree(*per_cpu_ptr(sdd->sg, j));
1838 if (sdd->sgc)
1839 kfree(*per_cpu_ptr(sdd->sgc, j));
1840 }
1841 free_percpu(sdd->sd);
1842 sdd->sd = NULL;
1843 free_percpu(sdd->sds);
1844 sdd->sds = NULL;
1845 free_percpu(sdd->sg);
1846 sdd->sg = NULL;
1847 free_percpu(sdd->sgc);
1848 sdd->sgc = NULL;
1849 }
1850 }
1851
build_sched_domain(struct sched_domain_topology_level * tl,const struct cpumask * cpu_map,struct sched_domain_attr * attr,struct sched_domain * child,int dflags,int cpu)1852 static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
1853 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
1854 struct sched_domain *child, int dflags, int cpu)
1855 {
1856 struct sched_domain *sd = sd_init(tl, cpu_map, child, dflags, cpu);
1857
1858 if (child) {
1859 sd->level = child->level + 1;
1860 sched_domain_level_max = max(sched_domain_level_max, sd->level);
1861 child->parent = sd;
1862
1863 if (!cpumask_subset(sched_domain_span(child),
1864 sched_domain_span(sd))) {
1865 pr_err("BUG: arch topology borken\n");
1866 #ifdef CONFIG_SCHED_DEBUG
1867 pr_err(" the %s domain not a subset of the %s domain\n",
1868 child->name, sd->name);
1869 #endif
1870 /* Fixup, ensure @sd has at least @child CPUs. */
1871 cpumask_or(sched_domain_span(sd),
1872 sched_domain_span(sd),
1873 sched_domain_span(child));
1874 }
1875
1876 }
1877 set_domain_attribute(sd, attr);
1878
1879 return sd;
1880 }
1881
1882 /*
1883 * Ensure topology masks are sane, i.e. there are no conflicts (overlaps) for
1884 * any two given CPUs at this (non-NUMA) topology level.
1885 */
topology_span_sane(struct sched_domain_topology_level * tl,const struct cpumask * cpu_map,int cpu)1886 static bool topology_span_sane(struct sched_domain_topology_level *tl,
1887 const struct cpumask *cpu_map, int cpu)
1888 {
1889 int i;
1890
1891 /* NUMA levels are allowed to overlap */
1892 if (tl->flags & SDTL_OVERLAP)
1893 return true;
1894
1895 /*
1896 * Non-NUMA levels cannot partially overlap - they must be either
1897 * completely equal or completely disjoint. Otherwise we can end up
1898 * breaking the sched_group lists - i.e. a later get_group() pass
1899 * breaks the linking done for an earlier span.
1900 */
1901 for_each_cpu(i, cpu_map) {
1902 if (i == cpu)
1903 continue;
1904 /*
1905 * We should 'and' all those masks with 'cpu_map' to exactly
1906 * match the topology we're about to build, but that can only
1907 * remove CPUs, which only lessens our ability to detect
1908 * overlaps
1909 */
1910 if (!cpumask_equal(tl->mask(cpu), tl->mask(i)) &&
1911 cpumask_intersects(tl->mask(cpu), tl->mask(i)))
1912 return false;
1913 }
1914
1915 return true;
1916 }
1917
1918 /*
1919 * Find the sched_domain_topology_level where all CPU capacities are visible
1920 * for all CPUs.
1921 */
1922 static struct sched_domain_topology_level
asym_cpu_capacity_level(const struct cpumask * cpu_map)1923 *asym_cpu_capacity_level(const struct cpumask *cpu_map)
1924 {
1925 int i, j, asym_level = 0;
1926 bool asym = false;
1927 struct sched_domain_topology_level *tl, *asym_tl = NULL;
1928 unsigned long cap;
1929
1930 /* Is there any asymmetry? */
1931 cap = arch_scale_cpu_capacity(cpumask_first(cpu_map));
1932
1933 for_each_cpu(i, cpu_map) {
1934 if (arch_scale_cpu_capacity(i) != cap) {
1935 asym = true;
1936 break;
1937 }
1938 }
1939
1940 if (!asym)
1941 return NULL;
1942
1943 /*
1944 * Examine topology from all CPU's point of views to detect the lowest
1945 * sched_domain_topology_level where a highest capacity CPU is visible
1946 * to everyone.
1947 */
1948 for_each_cpu(i, cpu_map) {
1949 unsigned long max_capacity = arch_scale_cpu_capacity(i);
1950 int tl_id = 0;
1951
1952 for_each_sd_topology(tl) {
1953 if (tl_id < asym_level)
1954 goto next_level;
1955
1956 for_each_cpu_and(j, tl->mask(i), cpu_map) {
1957 unsigned long capacity;
1958
1959 capacity = arch_scale_cpu_capacity(j);
1960
1961 if (capacity <= max_capacity)
1962 continue;
1963
1964 max_capacity = capacity;
1965 asym_level = tl_id;
1966 asym_tl = tl;
1967 }
1968 next_level:
1969 tl_id++;
1970 }
1971 }
1972
1973 return asym_tl;
1974 }
1975
1976
1977 /*
1978 * Build sched domains for a given set of CPUs and attach the sched domains
1979 * to the individual CPUs
1980 */
1981 static int
build_sched_domains(const struct cpumask * cpu_map,struct sched_domain_attr * attr)1982 build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
1983 {
1984 enum s_alloc alloc_state = sa_none;
1985 struct sched_domain *sd;
1986 struct s_data d;
1987 struct rq *rq = NULL;
1988 int i, ret = -ENOMEM;
1989 struct sched_domain_topology_level *tl_asym;
1990 bool has_asym = false;
1991
1992 if (WARN_ON(cpumask_empty(cpu_map)))
1993 goto error;
1994
1995 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
1996 if (alloc_state != sa_rootdomain)
1997 goto error;
1998
1999 tl_asym = asym_cpu_capacity_level(cpu_map);
2000
2001 /* Set up domains for CPUs specified by the cpu_map: */
2002 for_each_cpu(i, cpu_map) {
2003 struct sched_domain_topology_level *tl;
2004 int dflags = 0;
2005
2006 sd = NULL;
2007 for_each_sd_topology(tl) {
2008 if (tl == tl_asym) {
2009 dflags |= SD_ASYM_CPUCAPACITY;
2010 has_asym = true;
2011 }
2012
2013 if (WARN_ON(!topology_span_sane(tl, cpu_map, i)))
2014 goto error;
2015
2016 sd = build_sched_domain(tl, cpu_map, attr, sd, dflags, i);
2017
2018 if (tl == sched_domain_topology)
2019 *per_cpu_ptr(d.sd, i) = sd;
2020 if (tl->flags & SDTL_OVERLAP)
2021 sd->flags |= SD_OVERLAP;
2022 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
2023 break;
2024 }
2025 }
2026
2027 /* Build the groups for the domains */
2028 for_each_cpu(i, cpu_map) {
2029 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2030 sd->span_weight = cpumask_weight(sched_domain_span(sd));
2031 if (sd->flags & SD_OVERLAP) {
2032 if (build_overlap_sched_groups(sd, i))
2033 goto error;
2034 } else {
2035 if (build_sched_groups(sd, i))
2036 goto error;
2037 }
2038 }
2039 }
2040
2041 /* Calculate CPU capacity for physical packages and nodes */
2042 for (i = nr_cpumask_bits-1; i >= 0; i--) {
2043 if (!cpumask_test_cpu(i, cpu_map))
2044 continue;
2045
2046 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2047 claim_allocations(i, sd);
2048 init_sched_groups_capacity(i, sd);
2049 }
2050 }
2051
2052 /* Attach the domains */
2053 rcu_read_lock();
2054 for_each_cpu(i, cpu_map) {
2055 rq = cpu_rq(i);
2056 sd = *per_cpu_ptr(d.sd, i);
2057
2058 /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
2059 if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
2060 WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
2061
2062 cpu_attach_domain(sd, d.rd, i);
2063 }
2064 rcu_read_unlock();
2065
2066 if (has_asym)
2067 static_branch_inc_cpuslocked(&sched_asym_cpucapacity);
2068
2069 if (rq && sched_debug_enabled) {
2070 pr_info("root domain span: %*pbl (max cpu_capacity = %lu)\n",
2071 cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
2072 }
2073
2074 ret = 0;
2075 error:
2076 __free_domain_allocs(&d, alloc_state, cpu_map);
2077
2078 return ret;
2079 }
2080
2081 /* Current sched domains: */
2082 static cpumask_var_t *doms_cur;
2083
2084 /* Number of sched domains in 'doms_cur': */
2085 static int ndoms_cur;
2086
2087 /* Attribues of custom domains in 'doms_cur' */
2088 static struct sched_domain_attr *dattr_cur;
2089
2090 /*
2091 * Special case: If a kmalloc() of a doms_cur partition (array of
2092 * cpumask) fails, then fallback to a single sched domain,
2093 * as determined by the single cpumask fallback_doms.
2094 */
2095 static cpumask_var_t fallback_doms;
2096
2097 /*
2098 * arch_update_cpu_topology lets virtualized architectures update the
2099 * CPU core maps. It is supposed to return 1 if the topology changed
2100 * or 0 if it stayed the same.
2101 */
arch_update_cpu_topology(void)2102 int __weak arch_update_cpu_topology(void)
2103 {
2104 return 0;
2105 }
2106
alloc_sched_domains(unsigned int ndoms)2107 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
2108 {
2109 int i;
2110 cpumask_var_t *doms;
2111
2112 doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL);
2113 if (!doms)
2114 return NULL;
2115 for (i = 0; i < ndoms; i++) {
2116 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
2117 free_sched_domains(doms, i);
2118 return NULL;
2119 }
2120 }
2121 return doms;
2122 }
2123
free_sched_domains(cpumask_var_t doms[],unsigned int ndoms)2124 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
2125 {
2126 unsigned int i;
2127 for (i = 0; i < ndoms; i++)
2128 free_cpumask_var(doms[i]);
2129 kfree(doms);
2130 }
2131
2132 /*
2133 * Set up scheduler domains and groups. For now this just excludes isolated
2134 * CPUs, but could be used to exclude other special cases in the future.
2135 */
sched_init_domains(const struct cpumask * cpu_map)2136 int sched_init_domains(const struct cpumask *cpu_map)
2137 {
2138 int err;
2139
2140 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
2141 zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
2142 zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
2143
2144 arch_update_cpu_topology();
2145 ndoms_cur = 1;
2146 doms_cur = alloc_sched_domains(ndoms_cur);
2147 if (!doms_cur)
2148 doms_cur = &fallback_doms;
2149 cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_FLAG_DOMAIN));
2150 err = build_sched_domains(doms_cur[0], NULL);
2151 register_sched_domain_sysctl();
2152
2153 return err;
2154 }
2155
2156 /*
2157 * Detach sched domains from a group of CPUs specified in cpu_map
2158 * These CPUs will now be attached to the NULL domain
2159 */
detach_destroy_domains(const struct cpumask * cpu_map)2160 static void detach_destroy_domains(const struct cpumask *cpu_map)
2161 {
2162 unsigned int cpu = cpumask_any(cpu_map);
2163 int i;
2164
2165 if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, cpu)))
2166 static_branch_dec_cpuslocked(&sched_asym_cpucapacity);
2167
2168 rcu_read_lock();
2169 for_each_cpu(i, cpu_map)
2170 cpu_attach_domain(NULL, &def_root_domain, i);
2171 rcu_read_unlock();
2172 }
2173
2174 /* handle null as "default" */
dattrs_equal(struct sched_domain_attr * cur,int idx_cur,struct sched_domain_attr * new,int idx_new)2175 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
2176 struct sched_domain_attr *new, int idx_new)
2177 {
2178 struct sched_domain_attr tmp;
2179
2180 /* Fast path: */
2181 if (!new && !cur)
2182 return 1;
2183
2184 tmp = SD_ATTR_INIT;
2185
2186 return !memcmp(cur ? (cur + idx_cur) : &tmp,
2187 new ? (new + idx_new) : &tmp,
2188 sizeof(struct sched_domain_attr));
2189 }
2190
2191 /*
2192 * Partition sched domains as specified by the 'ndoms_new'
2193 * cpumasks in the array doms_new[] of cpumasks. This compares
2194 * doms_new[] to the current sched domain partitioning, doms_cur[].
2195 * It destroys each deleted domain and builds each new domain.
2196 *
2197 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
2198 * The masks don't intersect (don't overlap.) We should setup one
2199 * sched domain for each mask. CPUs not in any of the cpumasks will
2200 * not be load balanced. If the same cpumask appears both in the
2201 * current 'doms_cur' domains and in the new 'doms_new', we can leave
2202 * it as it is.
2203 *
2204 * The passed in 'doms_new' should be allocated using
2205 * alloc_sched_domains. This routine takes ownership of it and will
2206 * free_sched_domains it when done with it. If the caller failed the
2207 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
2208 * and partition_sched_domains() will fallback to the single partition
2209 * 'fallback_doms', it also forces the domains to be rebuilt.
2210 *
2211 * If doms_new == NULL it will be replaced with cpu_online_mask.
2212 * ndoms_new == 0 is a special case for destroying existing domains,
2213 * and it will not create the default domain.
2214 *
2215 * Call with hotplug lock and sched_domains_mutex held
2216 */
partition_sched_domains_locked(int ndoms_new,cpumask_var_t doms_new[],struct sched_domain_attr * dattr_new)2217 void partition_sched_domains_locked(int ndoms_new, cpumask_var_t doms_new[],
2218 struct sched_domain_attr *dattr_new)
2219 {
2220 bool __maybe_unused has_eas = false;
2221 int i, j, n;
2222 int new_topology;
2223
2224 lockdep_assert_held(&sched_domains_mutex);
2225
2226 /* Always unregister in case we don't destroy any domains: */
2227 unregister_sched_domain_sysctl();
2228
2229 /* Let the architecture update CPU core mappings: */
2230 new_topology = arch_update_cpu_topology();
2231
2232 if (!doms_new) {
2233 WARN_ON_ONCE(dattr_new);
2234 n = 0;
2235 doms_new = alloc_sched_domains(1);
2236 if (doms_new) {
2237 n = 1;
2238 cpumask_and(doms_new[0], cpu_active_mask,
2239 housekeeping_cpumask(HK_FLAG_DOMAIN));
2240 }
2241 } else {
2242 n = ndoms_new;
2243 }
2244
2245 /* Destroy deleted domains: */
2246 for (i = 0; i < ndoms_cur; i++) {
2247 for (j = 0; j < n && !new_topology; j++) {
2248 if (cpumask_equal(doms_cur[i], doms_new[j]) &&
2249 dattrs_equal(dattr_cur, i, dattr_new, j)) {
2250 struct root_domain *rd;
2251
2252 /*
2253 * This domain won't be destroyed and as such
2254 * its dl_bw->total_bw needs to be cleared. It
2255 * will be recomputed in function
2256 * update_tasks_root_domain().
2257 */
2258 rd = cpu_rq(cpumask_any(doms_cur[i]))->rd;
2259 dl_clear_root_domain(rd);
2260 goto match1;
2261 }
2262 }
2263 /* No match - a current sched domain not in new doms_new[] */
2264 detach_destroy_domains(doms_cur[i]);
2265 match1:
2266 ;
2267 }
2268
2269 n = ndoms_cur;
2270 if (!doms_new) {
2271 n = 0;
2272 doms_new = &fallback_doms;
2273 cpumask_and(doms_new[0], cpu_active_mask,
2274 housekeeping_cpumask(HK_FLAG_DOMAIN));
2275 }
2276
2277 /* Build new domains: */
2278 for (i = 0; i < ndoms_new; i++) {
2279 for (j = 0; j < n && !new_topology; j++) {
2280 if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2281 dattrs_equal(dattr_new, i, dattr_cur, j))
2282 goto match2;
2283 }
2284 /* No match - add a new doms_new */
2285 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
2286 match2:
2287 ;
2288 }
2289
2290 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2291 /* Build perf. domains: */
2292 for (i = 0; i < ndoms_new; i++) {
2293 for (j = 0; j < n && !sched_energy_update; j++) {
2294 if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2295 cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) {
2296 has_eas = true;
2297 goto match3;
2298 }
2299 }
2300 /* No match - add perf. domains for a new rd */
2301 has_eas |= build_perf_domains(doms_new[i]);
2302 match3:
2303 ;
2304 }
2305 sched_energy_set(has_eas);
2306 #endif
2307
2308 /* Remember the new sched domains: */
2309 if (doms_cur != &fallback_doms)
2310 free_sched_domains(doms_cur, ndoms_cur);
2311
2312 kfree(dattr_cur);
2313 doms_cur = doms_new;
2314 dattr_cur = dattr_new;
2315 ndoms_cur = ndoms_new;
2316
2317 register_sched_domain_sysctl();
2318 }
2319
2320 /*
2321 * Call with hotplug lock held
2322 */
partition_sched_domains(int ndoms_new,cpumask_var_t doms_new[],struct sched_domain_attr * dattr_new)2323 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
2324 struct sched_domain_attr *dattr_new)
2325 {
2326 mutex_lock(&sched_domains_mutex);
2327 partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
2328 mutex_unlock(&sched_domains_mutex);
2329 }
2330