1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/block_dev.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *  Copyright (C) 2001  Andrea Arcangeli <andrea@suse.de> SuSE
7  */
8 
9 #include <linux/init.h>
10 #include <linux/mm.h>
11 #include <linux/fcntl.h>
12 #include <linux/slab.h>
13 #include <linux/kmod.h>
14 #include <linux/major.h>
15 #include <linux/device_cgroup.h>
16 #include <linux/highmem.h>
17 #include <linux/blkdev.h>
18 #include <linux/backing-dev.h>
19 #include <linux/module.h>
20 #include <linux/blkpg.h>
21 #include <linux/magic.h>
22 #include <linux/buffer_head.h>
23 #include <linux/swap.h>
24 #include <linux/pagevec.h>
25 #include <linux/writeback.h>
26 #include <linux/mpage.h>
27 #include <linux/mount.h>
28 #include <linux/pseudo_fs.h>
29 #include <linux/uio.h>
30 #include <linux/namei.h>
31 #include <linux/log2.h>
32 #include <linux/cleancache.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/falloc.h>
35 #include <linux/uaccess.h>
36 #include <linux/suspend.h>
37 #include "internal.h"
38 
39 struct bdev_inode {
40 	struct block_device bdev;
41 	struct inode vfs_inode;
42 };
43 
44 static const struct address_space_operations def_blk_aops;
45 
BDEV_I(struct inode * inode)46 static inline struct bdev_inode *BDEV_I(struct inode *inode)
47 {
48 	return container_of(inode, struct bdev_inode, vfs_inode);
49 }
50 
I_BDEV(struct inode * inode)51 struct block_device *I_BDEV(struct inode *inode)
52 {
53 	return &BDEV_I(inode)->bdev;
54 }
55 EXPORT_SYMBOL(I_BDEV);
56 
bdev_write_inode(struct block_device * bdev)57 static void bdev_write_inode(struct block_device *bdev)
58 {
59 	struct inode *inode = bdev->bd_inode;
60 	int ret;
61 
62 	spin_lock(&inode->i_lock);
63 	while (inode->i_state & I_DIRTY) {
64 		spin_unlock(&inode->i_lock);
65 		ret = write_inode_now(inode, true);
66 		if (ret) {
67 			char name[BDEVNAME_SIZE];
68 			pr_warn_ratelimited("VFS: Dirty inode writeback failed "
69 					    "for block device %s (err=%d).\n",
70 					    bdevname(bdev, name), ret);
71 		}
72 		spin_lock(&inode->i_lock);
73 	}
74 	spin_unlock(&inode->i_lock);
75 }
76 
77 /* Kill _all_ buffers and pagecache , dirty or not.. */
kill_bdev(struct block_device * bdev)78 static void kill_bdev(struct block_device *bdev)
79 {
80 	struct address_space *mapping = bdev->bd_inode->i_mapping;
81 
82 	if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
83 		return;
84 
85 	invalidate_bh_lrus();
86 	truncate_inode_pages(mapping, 0);
87 }
88 
89 /* Invalidate clean unused buffers and pagecache. */
invalidate_bdev(struct block_device * bdev)90 void invalidate_bdev(struct block_device *bdev)
91 {
92 	struct address_space *mapping = bdev->bd_inode->i_mapping;
93 
94 	if (mapping->nrpages) {
95 		invalidate_bh_lrus();
96 		lru_add_drain_all();	/* make sure all lru add caches are flushed */
97 		invalidate_mapping_pages(mapping, 0, -1);
98 	}
99 	/* 99% of the time, we don't need to flush the cleancache on the bdev.
100 	 * But, for the strange corners, lets be cautious
101 	 */
102 	cleancache_invalidate_inode(mapping);
103 }
104 EXPORT_SYMBOL(invalidate_bdev);
105 
106 /*
107  * Drop all buffers & page cache for given bdev range. This function bails
108  * with error if bdev has other exclusive owner (such as filesystem).
109  */
truncate_bdev_range(struct block_device * bdev,fmode_t mode,loff_t lstart,loff_t lend)110 int truncate_bdev_range(struct block_device *bdev, fmode_t mode,
111 			loff_t lstart, loff_t lend)
112 {
113 	struct block_device *claimed_bdev = NULL;
114 	int err;
115 
116 	/*
117 	 * If we don't hold exclusive handle for the device, upgrade to it
118 	 * while we discard the buffer cache to avoid discarding buffers
119 	 * under live filesystem.
120 	 */
121 	if (!(mode & FMODE_EXCL)) {
122 		claimed_bdev = bdev->bd_contains;
123 		err = bd_prepare_to_claim(bdev, claimed_bdev,
124 					  truncate_bdev_range);
125 		if (err)
126 			return err;
127 	}
128 	truncate_inode_pages_range(bdev->bd_inode->i_mapping, lstart, lend);
129 	if (claimed_bdev)
130 		bd_abort_claiming(bdev, claimed_bdev, truncate_bdev_range);
131 	return 0;
132 }
133 EXPORT_SYMBOL(truncate_bdev_range);
134 
set_init_blocksize(struct block_device * bdev)135 static void set_init_blocksize(struct block_device *bdev)
136 {
137 	bdev->bd_inode->i_blkbits = blksize_bits(bdev_logical_block_size(bdev));
138 }
139 
set_blocksize(struct block_device * bdev,int size)140 int set_blocksize(struct block_device *bdev, int size)
141 {
142 	/* Size must be a power of two, and between 512 and PAGE_SIZE */
143 	if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
144 		return -EINVAL;
145 
146 	/* Size cannot be smaller than the size supported by the device */
147 	if (size < bdev_logical_block_size(bdev))
148 		return -EINVAL;
149 
150 	/* Don't change the size if it is same as current */
151 	if (bdev->bd_inode->i_blkbits != blksize_bits(size)) {
152 		sync_blockdev(bdev);
153 		bdev->bd_inode->i_blkbits = blksize_bits(size);
154 		kill_bdev(bdev);
155 	}
156 	return 0;
157 }
158 
159 EXPORT_SYMBOL(set_blocksize);
160 
sb_set_blocksize(struct super_block * sb,int size)161 int sb_set_blocksize(struct super_block *sb, int size)
162 {
163 	if (set_blocksize(sb->s_bdev, size))
164 		return 0;
165 	/* If we get here, we know size is power of two
166 	 * and it's value is between 512 and PAGE_SIZE */
167 	sb->s_blocksize = size;
168 	sb->s_blocksize_bits = blksize_bits(size);
169 	return sb->s_blocksize;
170 }
171 
172 EXPORT_SYMBOL(sb_set_blocksize);
173 
sb_min_blocksize(struct super_block * sb,int size)174 int sb_min_blocksize(struct super_block *sb, int size)
175 {
176 	int minsize = bdev_logical_block_size(sb->s_bdev);
177 	if (size < minsize)
178 		size = minsize;
179 	return sb_set_blocksize(sb, size);
180 }
181 
182 EXPORT_SYMBOL(sb_min_blocksize);
183 
184 static int
blkdev_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)185 blkdev_get_block(struct inode *inode, sector_t iblock,
186 		struct buffer_head *bh, int create)
187 {
188 	bh->b_bdev = I_BDEV(inode);
189 	bh->b_blocknr = iblock;
190 	set_buffer_mapped(bh);
191 	return 0;
192 }
193 
bdev_file_inode(struct file * file)194 static struct inode *bdev_file_inode(struct file *file)
195 {
196 	return file->f_mapping->host;
197 }
198 
dio_bio_write_op(struct kiocb * iocb)199 static unsigned int dio_bio_write_op(struct kiocb *iocb)
200 {
201 	unsigned int op = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
202 
203 	/* avoid the need for a I/O completion work item */
204 	if (iocb->ki_flags & IOCB_DSYNC)
205 		op |= REQ_FUA;
206 	return op;
207 }
208 
209 #define DIO_INLINE_BIO_VECS 4
210 
blkdev_bio_end_io_simple(struct bio * bio)211 static void blkdev_bio_end_io_simple(struct bio *bio)
212 {
213 	struct task_struct *waiter = bio->bi_private;
214 
215 	WRITE_ONCE(bio->bi_private, NULL);
216 	blk_wake_io_task(waiter);
217 }
218 
219 static ssize_t
__blkdev_direct_IO_simple(struct kiocb * iocb,struct iov_iter * iter,int nr_pages)220 __blkdev_direct_IO_simple(struct kiocb *iocb, struct iov_iter *iter,
221 		int nr_pages)
222 {
223 	struct file *file = iocb->ki_filp;
224 	struct block_device *bdev = I_BDEV(bdev_file_inode(file));
225 	struct bio_vec inline_vecs[DIO_INLINE_BIO_VECS], *vecs;
226 	loff_t pos = iocb->ki_pos;
227 	bool should_dirty = false;
228 	struct bio bio;
229 	ssize_t ret;
230 	blk_qc_t qc;
231 
232 	if ((pos | iov_iter_alignment(iter)) &
233 	    (bdev_logical_block_size(bdev) - 1))
234 		return -EINVAL;
235 
236 	if (nr_pages <= DIO_INLINE_BIO_VECS)
237 		vecs = inline_vecs;
238 	else {
239 		vecs = kmalloc_array(nr_pages, sizeof(struct bio_vec),
240 				     GFP_KERNEL);
241 		if (!vecs)
242 			return -ENOMEM;
243 	}
244 
245 	bio_init(&bio, vecs, nr_pages);
246 	bio_set_dev(&bio, bdev);
247 	bio.bi_iter.bi_sector = pos >> 9;
248 	bio.bi_write_hint = iocb->ki_hint;
249 	bio.bi_private = current;
250 	bio.bi_end_io = blkdev_bio_end_io_simple;
251 	bio.bi_ioprio = iocb->ki_ioprio;
252 
253 	ret = bio_iov_iter_get_pages(&bio, iter);
254 	if (unlikely(ret))
255 		goto out;
256 	ret = bio.bi_iter.bi_size;
257 
258 	if (iov_iter_rw(iter) == READ) {
259 		bio.bi_opf = REQ_OP_READ;
260 		if (iter_is_iovec(iter))
261 			should_dirty = true;
262 	} else {
263 		bio.bi_opf = dio_bio_write_op(iocb);
264 		task_io_account_write(ret);
265 	}
266 	if (iocb->ki_flags & IOCB_HIPRI)
267 		bio_set_polled(&bio, iocb);
268 
269 	qc = submit_bio(&bio);
270 	for (;;) {
271 		set_current_state(TASK_UNINTERRUPTIBLE);
272 		if (!READ_ONCE(bio.bi_private))
273 			break;
274 		if (!(iocb->ki_flags & IOCB_HIPRI) ||
275 		    !blk_poll(bdev_get_queue(bdev), qc, true))
276 			blk_io_schedule();
277 	}
278 	__set_current_state(TASK_RUNNING);
279 
280 	bio_release_pages(&bio, should_dirty);
281 	if (unlikely(bio.bi_status))
282 		ret = blk_status_to_errno(bio.bi_status);
283 
284 out:
285 	if (vecs != inline_vecs)
286 		kfree(vecs);
287 
288 	bio_uninit(&bio);
289 
290 	return ret;
291 }
292 
293 struct blkdev_dio {
294 	union {
295 		struct kiocb		*iocb;
296 		struct task_struct	*waiter;
297 	};
298 	size_t			size;
299 	atomic_t		ref;
300 	bool			multi_bio : 1;
301 	bool			should_dirty : 1;
302 	bool			is_sync : 1;
303 	struct bio		bio;
304 };
305 
306 static struct bio_set blkdev_dio_pool;
307 
blkdev_iopoll(struct kiocb * kiocb,bool wait)308 static int blkdev_iopoll(struct kiocb *kiocb, bool wait)
309 {
310 	struct block_device *bdev = I_BDEV(kiocb->ki_filp->f_mapping->host);
311 	struct request_queue *q = bdev_get_queue(bdev);
312 
313 	return blk_poll(q, READ_ONCE(kiocb->ki_cookie), wait);
314 }
315 
blkdev_bio_end_io(struct bio * bio)316 static void blkdev_bio_end_io(struct bio *bio)
317 {
318 	struct blkdev_dio *dio = bio->bi_private;
319 	bool should_dirty = dio->should_dirty;
320 
321 	if (bio->bi_status && !dio->bio.bi_status)
322 		dio->bio.bi_status = bio->bi_status;
323 
324 	if (!dio->multi_bio || atomic_dec_and_test(&dio->ref)) {
325 		if (!dio->is_sync) {
326 			struct kiocb *iocb = dio->iocb;
327 			ssize_t ret;
328 
329 			if (likely(!dio->bio.bi_status)) {
330 				ret = dio->size;
331 				iocb->ki_pos += ret;
332 			} else {
333 				ret = blk_status_to_errno(dio->bio.bi_status);
334 			}
335 
336 			dio->iocb->ki_complete(iocb, ret, 0);
337 			if (dio->multi_bio)
338 				bio_put(&dio->bio);
339 		} else {
340 			struct task_struct *waiter = dio->waiter;
341 
342 			WRITE_ONCE(dio->waiter, NULL);
343 			blk_wake_io_task(waiter);
344 		}
345 	}
346 
347 	if (should_dirty) {
348 		bio_check_pages_dirty(bio);
349 	} else {
350 		bio_release_pages(bio, false);
351 		bio_put(bio);
352 	}
353 }
354 
355 static ssize_t
__blkdev_direct_IO(struct kiocb * iocb,struct iov_iter * iter,int nr_pages)356 __blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, int nr_pages)
357 {
358 	struct file *file = iocb->ki_filp;
359 	struct inode *inode = bdev_file_inode(file);
360 	struct block_device *bdev = I_BDEV(inode);
361 	struct blk_plug plug;
362 	struct blkdev_dio *dio;
363 	struct bio *bio;
364 	bool is_poll = (iocb->ki_flags & IOCB_HIPRI) != 0;
365 	bool is_read = (iov_iter_rw(iter) == READ), is_sync;
366 	loff_t pos = iocb->ki_pos;
367 	blk_qc_t qc = BLK_QC_T_NONE;
368 	int ret = 0;
369 
370 	if ((pos | iov_iter_alignment(iter)) &
371 	    (bdev_logical_block_size(bdev) - 1))
372 		return -EINVAL;
373 
374 	bio = bio_alloc_bioset(GFP_KERNEL, nr_pages, &blkdev_dio_pool);
375 
376 	dio = container_of(bio, struct blkdev_dio, bio);
377 	dio->is_sync = is_sync = is_sync_kiocb(iocb);
378 	if (dio->is_sync) {
379 		dio->waiter = current;
380 		bio_get(bio);
381 	} else {
382 		dio->iocb = iocb;
383 	}
384 
385 	dio->size = 0;
386 	dio->multi_bio = false;
387 	dio->should_dirty = is_read && iter_is_iovec(iter);
388 
389 	/*
390 	 * Don't plug for HIPRI/polled IO, as those should go straight
391 	 * to issue
392 	 */
393 	if (!is_poll)
394 		blk_start_plug(&plug);
395 
396 	for (;;) {
397 		bio_set_dev(bio, bdev);
398 		bio->bi_iter.bi_sector = pos >> 9;
399 		bio->bi_write_hint = iocb->ki_hint;
400 		bio->bi_private = dio;
401 		bio->bi_end_io = blkdev_bio_end_io;
402 		bio->bi_ioprio = iocb->ki_ioprio;
403 
404 		ret = bio_iov_iter_get_pages(bio, iter);
405 		if (unlikely(ret)) {
406 			bio->bi_status = BLK_STS_IOERR;
407 			bio_endio(bio);
408 			break;
409 		}
410 
411 		if (is_read) {
412 			bio->bi_opf = REQ_OP_READ;
413 			if (dio->should_dirty)
414 				bio_set_pages_dirty(bio);
415 		} else {
416 			bio->bi_opf = dio_bio_write_op(iocb);
417 			task_io_account_write(bio->bi_iter.bi_size);
418 		}
419 
420 		dio->size += bio->bi_iter.bi_size;
421 		pos += bio->bi_iter.bi_size;
422 
423 		nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES);
424 		if (!nr_pages) {
425 			bool polled = false;
426 
427 			if (iocb->ki_flags & IOCB_HIPRI) {
428 				bio_set_polled(bio, iocb);
429 				polled = true;
430 			}
431 
432 			qc = submit_bio(bio);
433 
434 			if (polled)
435 				WRITE_ONCE(iocb->ki_cookie, qc);
436 			break;
437 		}
438 
439 		if (!dio->multi_bio) {
440 			/*
441 			 * AIO needs an extra reference to ensure the dio
442 			 * structure which is embedded into the first bio
443 			 * stays around.
444 			 */
445 			if (!is_sync)
446 				bio_get(bio);
447 			dio->multi_bio = true;
448 			atomic_set(&dio->ref, 2);
449 		} else {
450 			atomic_inc(&dio->ref);
451 		}
452 
453 		submit_bio(bio);
454 		bio = bio_alloc(GFP_KERNEL, nr_pages);
455 	}
456 
457 	if (!is_poll)
458 		blk_finish_plug(&plug);
459 
460 	if (!is_sync)
461 		return -EIOCBQUEUED;
462 
463 	for (;;) {
464 		set_current_state(TASK_UNINTERRUPTIBLE);
465 		if (!READ_ONCE(dio->waiter))
466 			break;
467 
468 		if (!(iocb->ki_flags & IOCB_HIPRI) ||
469 		    !blk_poll(bdev_get_queue(bdev), qc, true))
470 			blk_io_schedule();
471 	}
472 	__set_current_state(TASK_RUNNING);
473 
474 	if (!ret)
475 		ret = blk_status_to_errno(dio->bio.bi_status);
476 	if (likely(!ret))
477 		ret = dio->size;
478 
479 	bio_put(&dio->bio);
480 	return ret;
481 }
482 
483 static ssize_t
blkdev_direct_IO(struct kiocb * iocb,struct iov_iter * iter)484 blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
485 {
486 	int nr_pages;
487 
488 	nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES + 1);
489 	if (!nr_pages)
490 		return 0;
491 	if (is_sync_kiocb(iocb) && nr_pages <= BIO_MAX_PAGES)
492 		return __blkdev_direct_IO_simple(iocb, iter, nr_pages);
493 
494 	return __blkdev_direct_IO(iocb, iter, min(nr_pages, BIO_MAX_PAGES));
495 }
496 
blkdev_init(void)497 static __init int blkdev_init(void)
498 {
499 	return bioset_init(&blkdev_dio_pool, 4, offsetof(struct blkdev_dio, bio), BIOSET_NEED_BVECS);
500 }
501 module_init(blkdev_init);
502 
__sync_blockdev(struct block_device * bdev,int wait)503 int __sync_blockdev(struct block_device *bdev, int wait)
504 {
505 	if (!bdev)
506 		return 0;
507 	if (!wait)
508 		return filemap_flush(bdev->bd_inode->i_mapping);
509 	return filemap_write_and_wait(bdev->bd_inode->i_mapping);
510 }
511 
512 /*
513  * Write out and wait upon all the dirty data associated with a block
514  * device via its mapping.  Does not take the superblock lock.
515  */
sync_blockdev(struct block_device * bdev)516 int sync_blockdev(struct block_device *bdev)
517 {
518 	return __sync_blockdev(bdev, 1);
519 }
520 EXPORT_SYMBOL(sync_blockdev);
521 
522 /*
523  * Write out and wait upon all dirty data associated with this
524  * device.   Filesystem data as well as the underlying block
525  * device.  Takes the superblock lock.
526  */
fsync_bdev(struct block_device * bdev)527 int fsync_bdev(struct block_device *bdev)
528 {
529 	struct super_block *sb = get_super(bdev);
530 	if (sb) {
531 		int res = sync_filesystem(sb);
532 		drop_super(sb);
533 		return res;
534 	}
535 	return sync_blockdev(bdev);
536 }
537 EXPORT_SYMBOL(fsync_bdev);
538 
539 /**
540  * freeze_bdev  --  lock a filesystem and force it into a consistent state
541  * @bdev:	blockdevice to lock
542  *
543  * If a superblock is found on this device, we take the s_umount semaphore
544  * on it to make sure nobody unmounts until the snapshot creation is done.
545  * The reference counter (bd_fsfreeze_count) guarantees that only the last
546  * unfreeze process can unfreeze the frozen filesystem actually when multiple
547  * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
548  * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
549  * actually.
550  */
freeze_bdev(struct block_device * bdev)551 struct super_block *freeze_bdev(struct block_device *bdev)
552 {
553 	struct super_block *sb;
554 	int error = 0;
555 
556 	mutex_lock(&bdev->bd_fsfreeze_mutex);
557 	if (++bdev->bd_fsfreeze_count > 1) {
558 		/*
559 		 * We don't even need to grab a reference - the first call
560 		 * to freeze_bdev grab an active reference and only the last
561 		 * thaw_bdev drops it.
562 		 */
563 		sb = get_super(bdev);
564 		if (sb)
565 			drop_super(sb);
566 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
567 		return sb;
568 	}
569 
570 	sb = get_active_super(bdev);
571 	if (!sb)
572 		goto out;
573 	if (sb->s_op->freeze_super)
574 		error = sb->s_op->freeze_super(sb);
575 	else
576 		error = freeze_super(sb);
577 	if (error) {
578 		deactivate_super(sb);
579 		bdev->bd_fsfreeze_count--;
580 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
581 		return ERR_PTR(error);
582 	}
583 	deactivate_super(sb);
584  out:
585 	sync_blockdev(bdev);
586 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
587 	return sb;	/* thaw_bdev releases s->s_umount */
588 }
589 EXPORT_SYMBOL(freeze_bdev);
590 
591 /**
592  * thaw_bdev  -- unlock filesystem
593  * @bdev:	blockdevice to unlock
594  * @sb:		associated superblock
595  *
596  * Unlocks the filesystem and marks it writeable again after freeze_bdev().
597  */
thaw_bdev(struct block_device * bdev,struct super_block * sb)598 int thaw_bdev(struct block_device *bdev, struct super_block *sb)
599 {
600 	int error = -EINVAL;
601 
602 	mutex_lock(&bdev->bd_fsfreeze_mutex);
603 	if (!bdev->bd_fsfreeze_count)
604 		goto out;
605 
606 	error = 0;
607 	if (--bdev->bd_fsfreeze_count > 0)
608 		goto out;
609 
610 	if (!sb)
611 		goto out;
612 
613 	if (sb->s_op->thaw_super)
614 		error = sb->s_op->thaw_super(sb);
615 	else
616 		error = thaw_super(sb);
617 	if (error)
618 		bdev->bd_fsfreeze_count++;
619 out:
620 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
621 	return error;
622 }
623 EXPORT_SYMBOL(thaw_bdev);
624 
blkdev_writepage(struct page * page,struct writeback_control * wbc)625 static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
626 {
627 	return block_write_full_page(page, blkdev_get_block, wbc);
628 }
629 
blkdev_readpage(struct file * file,struct page * page)630 static int blkdev_readpage(struct file * file, struct page * page)
631 {
632 	return block_read_full_page(page, blkdev_get_block);
633 }
634 
blkdev_readahead(struct readahead_control * rac)635 static void blkdev_readahead(struct readahead_control *rac)
636 {
637 	mpage_readahead(rac, blkdev_get_block);
638 }
639 
blkdev_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)640 static int blkdev_write_begin(struct file *file, struct address_space *mapping,
641 			loff_t pos, unsigned len, unsigned flags,
642 			struct page **pagep, void **fsdata)
643 {
644 	return block_write_begin(mapping, pos, len, flags, pagep,
645 				 blkdev_get_block);
646 }
647 
blkdev_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)648 static int blkdev_write_end(struct file *file, struct address_space *mapping,
649 			loff_t pos, unsigned len, unsigned copied,
650 			struct page *page, void *fsdata)
651 {
652 	int ret;
653 	ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
654 
655 	unlock_page(page);
656 	put_page(page);
657 
658 	return ret;
659 }
660 
661 /*
662  * private llseek:
663  * for a block special file file_inode(file)->i_size is zero
664  * so we compute the size by hand (just as in block_read/write above)
665  */
block_llseek(struct file * file,loff_t offset,int whence)666 static loff_t block_llseek(struct file *file, loff_t offset, int whence)
667 {
668 	struct inode *bd_inode = bdev_file_inode(file);
669 	loff_t retval;
670 
671 	inode_lock(bd_inode);
672 	retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode));
673 	inode_unlock(bd_inode);
674 	return retval;
675 }
676 
blkdev_fsync(struct file * filp,loff_t start,loff_t end,int datasync)677 int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
678 {
679 	struct inode *bd_inode = bdev_file_inode(filp);
680 	struct block_device *bdev = I_BDEV(bd_inode);
681 	int error;
682 
683 	error = file_write_and_wait_range(filp, start, end);
684 	if (error)
685 		return error;
686 
687 	/*
688 	 * There is no need to serialise calls to blkdev_issue_flush with
689 	 * i_mutex and doing so causes performance issues with concurrent
690 	 * O_SYNC writers to a block device.
691 	 */
692 	error = blkdev_issue_flush(bdev, GFP_KERNEL);
693 	if (error == -EOPNOTSUPP)
694 		error = 0;
695 
696 	return error;
697 }
698 EXPORT_SYMBOL(blkdev_fsync);
699 
700 /**
701  * bdev_read_page() - Start reading a page from a block device
702  * @bdev: The device to read the page from
703  * @sector: The offset on the device to read the page to (need not be aligned)
704  * @page: The page to read
705  *
706  * On entry, the page should be locked.  It will be unlocked when the page
707  * has been read.  If the block driver implements rw_page synchronously,
708  * that will be true on exit from this function, but it need not be.
709  *
710  * Errors returned by this function are usually "soft", eg out of memory, or
711  * queue full; callers should try a different route to read this page rather
712  * than propagate an error back up the stack.
713  *
714  * Return: negative errno if an error occurs, 0 if submission was successful.
715  */
bdev_read_page(struct block_device * bdev,sector_t sector,struct page * page)716 int bdev_read_page(struct block_device *bdev, sector_t sector,
717 			struct page *page)
718 {
719 	const struct block_device_operations *ops = bdev->bd_disk->fops;
720 	int result = -EOPNOTSUPP;
721 
722 	if (!ops->rw_page || bdev_get_integrity(bdev))
723 		return result;
724 
725 	result = blk_queue_enter(bdev->bd_disk->queue, 0);
726 	if (result)
727 		return result;
728 	result = ops->rw_page(bdev, sector + get_start_sect(bdev), page,
729 			      REQ_OP_READ);
730 	blk_queue_exit(bdev->bd_disk->queue);
731 	return result;
732 }
733 
734 /**
735  * bdev_write_page() - Start writing a page to a block device
736  * @bdev: The device to write the page to
737  * @sector: The offset on the device to write the page to (need not be aligned)
738  * @page: The page to write
739  * @wbc: The writeback_control for the write
740  *
741  * On entry, the page should be locked and not currently under writeback.
742  * On exit, if the write started successfully, the page will be unlocked and
743  * under writeback.  If the write failed already (eg the driver failed to
744  * queue the page to the device), the page will still be locked.  If the
745  * caller is a ->writepage implementation, it will need to unlock the page.
746  *
747  * Errors returned by this function are usually "soft", eg out of memory, or
748  * queue full; callers should try a different route to write this page rather
749  * than propagate an error back up the stack.
750  *
751  * Return: negative errno if an error occurs, 0 if submission was successful.
752  */
bdev_write_page(struct block_device * bdev,sector_t sector,struct page * page,struct writeback_control * wbc)753 int bdev_write_page(struct block_device *bdev, sector_t sector,
754 			struct page *page, struct writeback_control *wbc)
755 {
756 	int result;
757 	const struct block_device_operations *ops = bdev->bd_disk->fops;
758 
759 	if (!ops->rw_page || bdev_get_integrity(bdev))
760 		return -EOPNOTSUPP;
761 	result = blk_queue_enter(bdev->bd_disk->queue, 0);
762 	if (result)
763 		return result;
764 
765 	set_page_writeback(page);
766 	result = ops->rw_page(bdev, sector + get_start_sect(bdev), page,
767 			      REQ_OP_WRITE);
768 	if (result) {
769 		end_page_writeback(page);
770 	} else {
771 		clean_page_buffers(page);
772 		unlock_page(page);
773 	}
774 	blk_queue_exit(bdev->bd_disk->queue);
775 	return result;
776 }
777 
778 /*
779  * pseudo-fs
780  */
781 
782 static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
783 static struct kmem_cache * bdev_cachep __read_mostly;
784 
bdev_alloc_inode(struct super_block * sb)785 static struct inode *bdev_alloc_inode(struct super_block *sb)
786 {
787 	struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
788 	if (!ei)
789 		return NULL;
790 	return &ei->vfs_inode;
791 }
792 
bdev_free_inode(struct inode * inode)793 static void bdev_free_inode(struct inode *inode)
794 {
795 	kmem_cache_free(bdev_cachep, BDEV_I(inode));
796 }
797 
init_once(void * foo)798 static void init_once(void *foo)
799 {
800 	struct bdev_inode *ei = (struct bdev_inode *) foo;
801 	struct block_device *bdev = &ei->bdev;
802 
803 	memset(bdev, 0, sizeof(*bdev));
804 	mutex_init(&bdev->bd_mutex);
805 #ifdef CONFIG_SYSFS
806 	INIT_LIST_HEAD(&bdev->bd_holder_disks);
807 #endif
808 	bdev->bd_bdi = &noop_backing_dev_info;
809 	inode_init_once(&ei->vfs_inode);
810 	/* Initialize mutex for freeze. */
811 	mutex_init(&bdev->bd_fsfreeze_mutex);
812 }
813 
bdev_evict_inode(struct inode * inode)814 static void bdev_evict_inode(struct inode *inode)
815 {
816 	struct block_device *bdev = &BDEV_I(inode)->bdev;
817 	truncate_inode_pages_final(&inode->i_data);
818 	invalidate_inode_buffers(inode); /* is it needed here? */
819 	clear_inode(inode);
820 	/* Detach inode from wb early as bdi_put() may free bdi->wb */
821 	inode_detach_wb(inode);
822 	if (bdev->bd_bdi != &noop_backing_dev_info) {
823 		bdi_put(bdev->bd_bdi);
824 		bdev->bd_bdi = &noop_backing_dev_info;
825 	}
826 }
827 
828 static const struct super_operations bdev_sops = {
829 	.statfs = simple_statfs,
830 	.alloc_inode = bdev_alloc_inode,
831 	.free_inode = bdev_free_inode,
832 	.drop_inode = generic_delete_inode,
833 	.evict_inode = bdev_evict_inode,
834 };
835 
bd_init_fs_context(struct fs_context * fc)836 static int bd_init_fs_context(struct fs_context *fc)
837 {
838 	struct pseudo_fs_context *ctx = init_pseudo(fc, BDEVFS_MAGIC);
839 	if (!ctx)
840 		return -ENOMEM;
841 	fc->s_iflags |= SB_I_CGROUPWB;
842 	ctx->ops = &bdev_sops;
843 	return 0;
844 }
845 
846 static struct file_system_type bd_type = {
847 	.name		= "bdev",
848 	.init_fs_context = bd_init_fs_context,
849 	.kill_sb	= kill_anon_super,
850 };
851 
852 struct super_block *blockdev_superblock __read_mostly;
853 EXPORT_SYMBOL_GPL(blockdev_superblock);
854 
bdev_cache_init(void)855 void __init bdev_cache_init(void)
856 {
857 	int err;
858 	static struct vfsmount *bd_mnt;
859 
860 	bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
861 			0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
862 				SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC),
863 			init_once);
864 	err = register_filesystem(&bd_type);
865 	if (err)
866 		panic("Cannot register bdev pseudo-fs");
867 	bd_mnt = kern_mount(&bd_type);
868 	if (IS_ERR(bd_mnt))
869 		panic("Cannot create bdev pseudo-fs");
870 	blockdev_superblock = bd_mnt->mnt_sb;   /* For writeback */
871 }
872 
873 /*
874  * Most likely _very_ bad one - but then it's hardly critical for small
875  * /dev and can be fixed when somebody will need really large one.
876  * Keep in mind that it will be fed through icache hash function too.
877  */
hash(dev_t dev)878 static inline unsigned long hash(dev_t dev)
879 {
880 	return MAJOR(dev)+MINOR(dev);
881 }
882 
bdev_test(struct inode * inode,void * data)883 static int bdev_test(struct inode *inode, void *data)
884 {
885 	return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
886 }
887 
bdev_set(struct inode * inode,void * data)888 static int bdev_set(struct inode *inode, void *data)
889 {
890 	BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
891 	return 0;
892 }
893 
bdget(dev_t dev)894 static struct block_device *bdget(dev_t dev)
895 {
896 	struct block_device *bdev;
897 	struct inode *inode;
898 
899 	inode = iget5_locked(blockdev_superblock, hash(dev),
900 			bdev_test, bdev_set, &dev);
901 
902 	if (!inode)
903 		return NULL;
904 
905 	bdev = &BDEV_I(inode)->bdev;
906 
907 	if (inode->i_state & I_NEW) {
908 		spin_lock_init(&bdev->bd_size_lock);
909 		bdev->bd_contains = NULL;
910 		bdev->bd_super = NULL;
911 		bdev->bd_inode = inode;
912 		bdev->bd_part_count = 0;
913 		inode->i_mode = S_IFBLK;
914 		inode->i_rdev = dev;
915 		inode->i_bdev = bdev;
916 		inode->i_data.a_ops = &def_blk_aops;
917 		mapping_set_gfp_mask(&inode->i_data, GFP_USER);
918 		unlock_new_inode(inode);
919 	}
920 	return bdev;
921 }
922 
923 /**
924  * bdgrab -- Grab a reference to an already referenced block device
925  * @bdev:	Block device to grab a reference to.
926  */
bdgrab(struct block_device * bdev)927 struct block_device *bdgrab(struct block_device *bdev)
928 {
929 	ihold(bdev->bd_inode);
930 	return bdev;
931 }
932 EXPORT_SYMBOL(bdgrab);
933 
bdget_part(struct hd_struct * part)934 struct block_device *bdget_part(struct hd_struct *part)
935 {
936 	return bdget(part_devt(part));
937 }
938 
nr_blockdev_pages(void)939 long nr_blockdev_pages(void)
940 {
941 	struct inode *inode;
942 	long ret = 0;
943 
944 	spin_lock(&blockdev_superblock->s_inode_list_lock);
945 	list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list)
946 		ret += inode->i_mapping->nrpages;
947 	spin_unlock(&blockdev_superblock->s_inode_list_lock);
948 
949 	return ret;
950 }
951 
bdput(struct block_device * bdev)952 void bdput(struct block_device *bdev)
953 {
954 	iput(bdev->bd_inode);
955 }
956 
957 EXPORT_SYMBOL(bdput);
958 
bd_acquire(struct inode * inode)959 static struct block_device *bd_acquire(struct inode *inode)
960 {
961 	struct block_device *bdev;
962 
963 	spin_lock(&bdev_lock);
964 	bdev = inode->i_bdev;
965 	if (bdev && !inode_unhashed(bdev->bd_inode)) {
966 		bdgrab(bdev);
967 		spin_unlock(&bdev_lock);
968 		return bdev;
969 	}
970 	spin_unlock(&bdev_lock);
971 
972 	/*
973 	 * i_bdev references block device inode that was already shut down
974 	 * (corresponding device got removed).  Remove the reference and look
975 	 * up block device inode again just in case new device got
976 	 * reestablished under the same device number.
977 	 */
978 	if (bdev)
979 		bd_forget(inode);
980 
981 	bdev = bdget(inode->i_rdev);
982 	if (bdev) {
983 		spin_lock(&bdev_lock);
984 		if (!inode->i_bdev) {
985 			/*
986 			 * We take an additional reference to bd_inode,
987 			 * and it's released in clear_inode() of inode.
988 			 * So, we can access it via ->i_mapping always
989 			 * without igrab().
990 			 */
991 			bdgrab(bdev);
992 			inode->i_bdev = bdev;
993 			inode->i_mapping = bdev->bd_inode->i_mapping;
994 		}
995 		spin_unlock(&bdev_lock);
996 	}
997 	return bdev;
998 }
999 
1000 /* Call when you free inode */
1001 
bd_forget(struct inode * inode)1002 void bd_forget(struct inode *inode)
1003 {
1004 	struct block_device *bdev = NULL;
1005 
1006 	spin_lock(&bdev_lock);
1007 	if (!sb_is_blkdev_sb(inode->i_sb))
1008 		bdev = inode->i_bdev;
1009 	inode->i_bdev = NULL;
1010 	inode->i_mapping = &inode->i_data;
1011 	spin_unlock(&bdev_lock);
1012 
1013 	if (bdev)
1014 		bdput(bdev);
1015 }
1016 
1017 /**
1018  * bd_may_claim - test whether a block device can be claimed
1019  * @bdev: block device of interest
1020  * @whole: whole block device containing @bdev, may equal @bdev
1021  * @holder: holder trying to claim @bdev
1022  *
1023  * Test whether @bdev can be claimed by @holder.
1024  *
1025  * CONTEXT:
1026  * spin_lock(&bdev_lock).
1027  *
1028  * RETURNS:
1029  * %true if @bdev can be claimed, %false otherwise.
1030  */
bd_may_claim(struct block_device * bdev,struct block_device * whole,void * holder)1031 static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
1032 			 void *holder)
1033 {
1034 	if (bdev->bd_holder == holder)
1035 		return true;	 /* already a holder */
1036 	else if (bdev->bd_holder != NULL)
1037 		return false; 	 /* held by someone else */
1038 	else if (whole == bdev)
1039 		return true;  	 /* is a whole device which isn't held */
1040 
1041 	else if (whole->bd_holder == bd_may_claim)
1042 		return true; 	 /* is a partition of a device that is being partitioned */
1043 	else if (whole->bd_holder != NULL)
1044 		return false;	 /* is a partition of a held device */
1045 	else
1046 		return true;	 /* is a partition of an un-held device */
1047 }
1048 
1049 /**
1050  * bd_prepare_to_claim - claim a block device
1051  * @bdev: block device of interest
1052  * @whole: the whole device containing @bdev, may equal @bdev
1053  * @holder: holder trying to claim @bdev
1054  *
1055  * Claim @bdev.  This function fails if @bdev is already claimed by another
1056  * holder and waits if another claiming is in progress. return, the caller
1057  * has ownership of bd_claiming and bd_holder[s].
1058  *
1059  * RETURNS:
1060  * 0 if @bdev can be claimed, -EBUSY otherwise.
1061  */
bd_prepare_to_claim(struct block_device * bdev,struct block_device * whole,void * holder)1062 int bd_prepare_to_claim(struct block_device *bdev, struct block_device *whole,
1063 		void *holder)
1064 {
1065 retry:
1066 	spin_lock(&bdev_lock);
1067 	/* if someone else claimed, fail */
1068 	if (!bd_may_claim(bdev, whole, holder)) {
1069 		spin_unlock(&bdev_lock);
1070 		return -EBUSY;
1071 	}
1072 
1073 	/* if claiming is already in progress, wait for it to finish */
1074 	if (whole->bd_claiming) {
1075 		wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
1076 		DEFINE_WAIT(wait);
1077 
1078 		prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
1079 		spin_unlock(&bdev_lock);
1080 		schedule();
1081 		finish_wait(wq, &wait);
1082 		goto retry;
1083 	}
1084 
1085 	/* yay, all mine */
1086 	whole->bd_claiming = holder;
1087 	spin_unlock(&bdev_lock);
1088 	return 0;
1089 }
1090 EXPORT_SYMBOL_GPL(bd_prepare_to_claim); /* only for the loop driver */
1091 
bdev_get_gendisk(struct block_device * bdev,int * partno)1092 static struct gendisk *bdev_get_gendisk(struct block_device *bdev, int *partno)
1093 {
1094 	struct gendisk *disk = get_gendisk(bdev->bd_dev, partno);
1095 
1096 	if (!disk)
1097 		return NULL;
1098 	/*
1099 	 * Now that we hold gendisk reference we make sure bdev we looked up is
1100 	 * not stale. If it is, it means device got removed and created before
1101 	 * we looked up gendisk and we fail open in such case. Associating
1102 	 * unhashed bdev with newly created gendisk could lead to two bdevs
1103 	 * (and thus two independent caches) being associated with one device
1104 	 * which is bad.
1105 	 */
1106 	if (inode_unhashed(bdev->bd_inode)) {
1107 		put_disk_and_module(disk);
1108 		return NULL;
1109 	}
1110 	return disk;
1111 }
1112 
bd_clear_claiming(struct block_device * whole,void * holder)1113 static void bd_clear_claiming(struct block_device *whole, void *holder)
1114 {
1115 	lockdep_assert_held(&bdev_lock);
1116 	/* tell others that we're done */
1117 	BUG_ON(whole->bd_claiming != holder);
1118 	whole->bd_claiming = NULL;
1119 	wake_up_bit(&whole->bd_claiming, 0);
1120 }
1121 
1122 /**
1123  * bd_finish_claiming - finish claiming of a block device
1124  * @bdev: block device of interest
1125  * @whole: whole block device
1126  * @holder: holder that has claimed @bdev
1127  *
1128  * Finish exclusive open of a block device. Mark the device as exlusively
1129  * open by the holder and wake up all waiters for exclusive open to finish.
1130  */
bd_finish_claiming(struct block_device * bdev,struct block_device * whole,void * holder)1131 static void bd_finish_claiming(struct block_device *bdev,
1132 		struct block_device *whole, void *holder)
1133 {
1134 	spin_lock(&bdev_lock);
1135 	BUG_ON(!bd_may_claim(bdev, whole, holder));
1136 	/*
1137 	 * Note that for a whole device bd_holders will be incremented twice,
1138 	 * and bd_holder will be set to bd_may_claim before being set to holder
1139 	 */
1140 	whole->bd_holders++;
1141 	whole->bd_holder = bd_may_claim;
1142 	bdev->bd_holders++;
1143 	bdev->bd_holder = holder;
1144 	bd_clear_claiming(whole, holder);
1145 	spin_unlock(&bdev_lock);
1146 }
1147 
1148 /**
1149  * bd_abort_claiming - abort claiming of a block device
1150  * @bdev: block device of interest
1151  * @whole: whole block device
1152  * @holder: holder that has claimed @bdev
1153  *
1154  * Abort claiming of a block device when the exclusive open failed. This can be
1155  * also used when exclusive open is not actually desired and we just needed
1156  * to block other exclusive openers for a while.
1157  */
bd_abort_claiming(struct block_device * bdev,struct block_device * whole,void * holder)1158 void bd_abort_claiming(struct block_device *bdev, struct block_device *whole,
1159 		       void *holder)
1160 {
1161 	spin_lock(&bdev_lock);
1162 	bd_clear_claiming(whole, holder);
1163 	spin_unlock(&bdev_lock);
1164 }
1165 EXPORT_SYMBOL(bd_abort_claiming);
1166 
1167 #ifdef CONFIG_SYSFS
1168 struct bd_holder_disk {
1169 	struct list_head	list;
1170 	struct gendisk		*disk;
1171 	int			refcnt;
1172 };
1173 
bd_find_holder_disk(struct block_device * bdev,struct gendisk * disk)1174 static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
1175 						  struct gendisk *disk)
1176 {
1177 	struct bd_holder_disk *holder;
1178 
1179 	list_for_each_entry(holder, &bdev->bd_holder_disks, list)
1180 		if (holder->disk == disk)
1181 			return holder;
1182 	return NULL;
1183 }
1184 
add_symlink(struct kobject * from,struct kobject * to)1185 static int add_symlink(struct kobject *from, struct kobject *to)
1186 {
1187 	return sysfs_create_link(from, to, kobject_name(to));
1188 }
1189 
del_symlink(struct kobject * from,struct kobject * to)1190 static void del_symlink(struct kobject *from, struct kobject *to)
1191 {
1192 	sysfs_remove_link(from, kobject_name(to));
1193 }
1194 
1195 /**
1196  * bd_link_disk_holder - create symlinks between holding disk and slave bdev
1197  * @bdev: the claimed slave bdev
1198  * @disk: the holding disk
1199  *
1200  * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1201  *
1202  * This functions creates the following sysfs symlinks.
1203  *
1204  * - from "slaves" directory of the holder @disk to the claimed @bdev
1205  * - from "holders" directory of the @bdev to the holder @disk
1206  *
1207  * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
1208  * passed to bd_link_disk_holder(), then:
1209  *
1210  *   /sys/block/dm-0/slaves/sda --> /sys/block/sda
1211  *   /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
1212  *
1213  * The caller must have claimed @bdev before calling this function and
1214  * ensure that both @bdev and @disk are valid during the creation and
1215  * lifetime of these symlinks.
1216  *
1217  * CONTEXT:
1218  * Might sleep.
1219  *
1220  * RETURNS:
1221  * 0 on success, -errno on failure.
1222  */
bd_link_disk_holder(struct block_device * bdev,struct gendisk * disk)1223 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
1224 {
1225 	struct bd_holder_disk *holder;
1226 	int ret = 0;
1227 
1228 	mutex_lock(&bdev->bd_mutex);
1229 
1230 	WARN_ON_ONCE(!bdev->bd_holder);
1231 
1232 	/* FIXME: remove the following once add_disk() handles errors */
1233 	if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
1234 		goto out_unlock;
1235 
1236 	holder = bd_find_holder_disk(bdev, disk);
1237 	if (holder) {
1238 		holder->refcnt++;
1239 		goto out_unlock;
1240 	}
1241 
1242 	holder = kzalloc(sizeof(*holder), GFP_KERNEL);
1243 	if (!holder) {
1244 		ret = -ENOMEM;
1245 		goto out_unlock;
1246 	}
1247 
1248 	INIT_LIST_HEAD(&holder->list);
1249 	holder->disk = disk;
1250 	holder->refcnt = 1;
1251 
1252 	ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1253 	if (ret)
1254 		goto out_free;
1255 
1256 	ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
1257 	if (ret)
1258 		goto out_del;
1259 	/*
1260 	 * bdev could be deleted beneath us which would implicitly destroy
1261 	 * the holder directory.  Hold on to it.
1262 	 */
1263 	kobject_get(bdev->bd_part->holder_dir);
1264 
1265 	list_add(&holder->list, &bdev->bd_holder_disks);
1266 	goto out_unlock;
1267 
1268 out_del:
1269 	del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1270 out_free:
1271 	kfree(holder);
1272 out_unlock:
1273 	mutex_unlock(&bdev->bd_mutex);
1274 	return ret;
1275 }
1276 EXPORT_SYMBOL_GPL(bd_link_disk_holder);
1277 
1278 /**
1279  * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
1280  * @bdev: the calimed slave bdev
1281  * @disk: the holding disk
1282  *
1283  * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1284  *
1285  * CONTEXT:
1286  * Might sleep.
1287  */
bd_unlink_disk_holder(struct block_device * bdev,struct gendisk * disk)1288 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
1289 {
1290 	struct bd_holder_disk *holder;
1291 
1292 	mutex_lock(&bdev->bd_mutex);
1293 
1294 	holder = bd_find_holder_disk(bdev, disk);
1295 
1296 	if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
1297 		del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1298 		del_symlink(bdev->bd_part->holder_dir,
1299 			    &disk_to_dev(disk)->kobj);
1300 		kobject_put(bdev->bd_part->holder_dir);
1301 		list_del_init(&holder->list);
1302 		kfree(holder);
1303 	}
1304 
1305 	mutex_unlock(&bdev->bd_mutex);
1306 }
1307 EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
1308 #endif
1309 
1310 /**
1311  * check_disk_size_change - checks for disk size change and adjusts bdev size.
1312  * @disk: struct gendisk to check
1313  * @bdev: struct bdev to adjust.
1314  * @verbose: if %true log a message about a size change if there is any
1315  *
1316  * This routine checks to see if the bdev size does not match the disk size
1317  * and adjusts it if it differs. When shrinking the bdev size, its all caches
1318  * are freed.
1319  */
check_disk_size_change(struct gendisk * disk,struct block_device * bdev,bool verbose)1320 static void check_disk_size_change(struct gendisk *disk,
1321 		struct block_device *bdev, bool verbose)
1322 {
1323 	loff_t disk_size, bdev_size;
1324 
1325 	spin_lock(&bdev->bd_size_lock);
1326 	disk_size = (loff_t)get_capacity(disk) << 9;
1327 	bdev_size = i_size_read(bdev->bd_inode);
1328 	if (disk_size != bdev_size) {
1329 		if (verbose) {
1330 			printk(KERN_INFO
1331 			       "%s: detected capacity change from %lld to %lld\n",
1332 			       disk->disk_name, bdev_size, disk_size);
1333 		}
1334 		i_size_write(bdev->bd_inode, disk_size);
1335 	}
1336 	spin_unlock(&bdev->bd_size_lock);
1337 
1338 	if (bdev_size > disk_size) {
1339 		if (__invalidate_device(bdev, false))
1340 			pr_warn("VFS: busy inodes on resized disk %s\n",
1341 				disk->disk_name);
1342 	}
1343 }
1344 
1345 /**
1346  * revalidate_disk_size - checks for disk size change and adjusts bdev size.
1347  * @disk: struct gendisk to check
1348  * @verbose: if %true log a message about a size change if there is any
1349  *
1350  * This routine checks to see if the bdev size does not match the disk size
1351  * and adjusts it if it differs. When shrinking the bdev size, its all caches
1352  * are freed.
1353  */
revalidate_disk_size(struct gendisk * disk,bool verbose)1354 void revalidate_disk_size(struct gendisk *disk, bool verbose)
1355 {
1356 	struct block_device *bdev;
1357 
1358 	/*
1359 	 * Hidden disks don't have associated bdev so there's no point in
1360 	 * revalidating them.
1361 	 */
1362 	if (disk->flags & GENHD_FL_HIDDEN)
1363 		return;
1364 
1365 	bdev = bdget_disk(disk, 0);
1366 	if (bdev) {
1367 		check_disk_size_change(disk, bdev, verbose);
1368 		bdput(bdev);
1369 	}
1370 }
1371 EXPORT_SYMBOL(revalidate_disk_size);
1372 
bd_set_nr_sectors(struct block_device * bdev,sector_t sectors)1373 void bd_set_nr_sectors(struct block_device *bdev, sector_t sectors)
1374 {
1375 	spin_lock(&bdev->bd_size_lock);
1376 	i_size_write(bdev->bd_inode, (loff_t)sectors << SECTOR_SHIFT);
1377 	spin_unlock(&bdev->bd_size_lock);
1378 }
1379 EXPORT_SYMBOL(bd_set_nr_sectors);
1380 
1381 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1382 
bdev_disk_changed(struct block_device * bdev,bool invalidate)1383 int bdev_disk_changed(struct block_device *bdev, bool invalidate)
1384 {
1385 	struct gendisk *disk = bdev->bd_disk;
1386 	int ret;
1387 
1388 	lockdep_assert_held(&bdev->bd_mutex);
1389 
1390 	clear_bit(GD_NEED_PART_SCAN, &bdev->bd_disk->state);
1391 
1392 rescan:
1393 	ret = blk_drop_partitions(bdev);
1394 	if (ret)
1395 		return ret;
1396 
1397 	/*
1398 	 * Historically we only set the capacity to zero for devices that
1399 	 * support partitions (independ of actually having partitions created).
1400 	 * Doing that is rather inconsistent, but changing it broke legacy
1401 	 * udisks polling for legacy ide-cdrom devices.  Use the crude check
1402 	 * below to get the sane behavior for most device while not breaking
1403 	 * userspace for this particular setup.
1404 	 */
1405 	if (invalidate) {
1406 		if (disk_part_scan_enabled(disk) ||
1407 		    !(disk->flags & GENHD_FL_REMOVABLE))
1408 			set_capacity(disk, 0);
1409 	} else {
1410 		if (disk->fops->revalidate_disk)
1411 			disk->fops->revalidate_disk(disk);
1412 	}
1413 
1414 	check_disk_size_change(disk, bdev, !invalidate);
1415 
1416 	if (get_capacity(disk)) {
1417 		ret = blk_add_partitions(disk, bdev);
1418 		if (ret == -EAGAIN)
1419 			goto rescan;
1420 	} else if (invalidate) {
1421 		/*
1422 		 * Tell userspace that the media / partition table may have
1423 		 * changed.
1424 		 */
1425 		kobject_uevent(&disk_to_dev(disk)->kobj, KOBJ_CHANGE);
1426 	}
1427 
1428 	return ret;
1429 }
1430 /*
1431  * Only exported for for loop and dasd for historic reasons.  Don't use in new
1432  * code!
1433  */
1434 EXPORT_SYMBOL_GPL(bdev_disk_changed);
1435 
1436 /*
1437  * bd_mutex locking:
1438  *
1439  *  mutex_lock(part->bd_mutex)
1440  *    mutex_lock_nested(whole->bd_mutex, 1)
1441  */
1442 
__blkdev_get(struct block_device * bdev,fmode_t mode,void * holder,int for_part)1443 static int __blkdev_get(struct block_device *bdev, fmode_t mode, void *holder,
1444 		int for_part)
1445 {
1446 	struct block_device *whole = NULL, *claiming = NULL;
1447 	struct gendisk *disk;
1448 	int ret;
1449 	int partno;
1450 	bool first_open = false, unblock_events = true, need_restart;
1451 
1452  restart:
1453 	need_restart = false;
1454 	ret = -ENXIO;
1455 	disk = bdev_get_gendisk(bdev, &partno);
1456 	if (!disk)
1457 		goto out;
1458 
1459 	if (partno) {
1460 		whole = bdget_disk(disk, 0);
1461 		if (!whole) {
1462 			ret = -ENOMEM;
1463 			goto out_put_disk;
1464 		}
1465 	}
1466 
1467 	if (!for_part && (mode & FMODE_EXCL)) {
1468 		WARN_ON_ONCE(!holder);
1469 		if (whole)
1470 			claiming = whole;
1471 		else
1472 			claiming = bdev;
1473 		ret = bd_prepare_to_claim(bdev, claiming, holder);
1474 		if (ret)
1475 			goto out_put_whole;
1476 	}
1477 
1478 	disk_block_events(disk);
1479 	mutex_lock_nested(&bdev->bd_mutex, for_part);
1480 	if (!bdev->bd_openers) {
1481 		first_open = true;
1482 		bdev->bd_disk = disk;
1483 		bdev->bd_contains = bdev;
1484 		bdev->bd_partno = partno;
1485 
1486 		if (!partno) {
1487 			ret = -ENXIO;
1488 			bdev->bd_part = disk_get_part(disk, partno);
1489 			if (!bdev->bd_part)
1490 				goto out_clear;
1491 
1492 			ret = 0;
1493 			if (disk->fops->open) {
1494 				ret = disk->fops->open(bdev, mode);
1495 				/*
1496 				 * If we lost a race with 'disk' being deleted,
1497 				 * try again.  See md.c
1498 				 */
1499 				if (ret == -ERESTARTSYS)
1500 					need_restart = true;
1501 			}
1502 
1503 			if (!ret) {
1504 				bd_set_nr_sectors(bdev, get_capacity(disk));
1505 				set_init_blocksize(bdev);
1506 			}
1507 
1508 			/*
1509 			 * If the device is invalidated, rescan partition
1510 			 * if open succeeded or failed with -ENOMEDIUM.
1511 			 * The latter is necessary to prevent ghost
1512 			 * partitions on a removed medium.
1513 			 */
1514 			if (test_bit(GD_NEED_PART_SCAN, &disk->state) &&
1515 			    (!ret || ret == -ENOMEDIUM))
1516 				bdev_disk_changed(bdev, ret == -ENOMEDIUM);
1517 
1518 			if (ret)
1519 				goto out_clear;
1520 		} else {
1521 			BUG_ON(for_part);
1522 			ret = __blkdev_get(whole, mode, NULL, 1);
1523 			if (ret)
1524 				goto out_clear;
1525 			bdev->bd_contains = bdgrab(whole);
1526 			bdev->bd_part = disk_get_part(disk, partno);
1527 			if (!(disk->flags & GENHD_FL_UP) ||
1528 			    !bdev->bd_part || !bdev->bd_part->nr_sects) {
1529 				ret = -ENXIO;
1530 				goto out_clear;
1531 			}
1532 			bd_set_nr_sectors(bdev, bdev->bd_part->nr_sects);
1533 			set_init_blocksize(bdev);
1534 		}
1535 
1536 		if (bdev->bd_bdi == &noop_backing_dev_info)
1537 			bdev->bd_bdi = bdi_get(disk->queue->backing_dev_info);
1538 	} else {
1539 		if (bdev->bd_contains == bdev) {
1540 			ret = 0;
1541 			if (bdev->bd_disk->fops->open)
1542 				ret = bdev->bd_disk->fops->open(bdev, mode);
1543 			/* the same as first opener case, read comment there */
1544 			if (test_bit(GD_NEED_PART_SCAN, &disk->state) &&
1545 			    (!ret || ret == -ENOMEDIUM))
1546 				bdev_disk_changed(bdev, ret == -ENOMEDIUM);
1547 			if (ret)
1548 				goto out_unlock_bdev;
1549 		}
1550 	}
1551 	bdev->bd_openers++;
1552 	if (for_part)
1553 		bdev->bd_part_count++;
1554 	if (claiming)
1555 		bd_finish_claiming(bdev, claiming, holder);
1556 
1557 	/*
1558 	 * Block event polling for write claims if requested.  Any write holder
1559 	 * makes the write_holder state stick until all are released.  This is
1560 	 * good enough and tracking individual writeable reference is too
1561 	 * fragile given the way @mode is used in blkdev_get/put().
1562 	 */
1563 	if (claiming && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1564 	    (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1565 		bdev->bd_write_holder = true;
1566 		unblock_events = false;
1567 	}
1568 	mutex_unlock(&bdev->bd_mutex);
1569 
1570 	if (unblock_events)
1571 		disk_unblock_events(disk);
1572 
1573 	/* only one opener holds refs to the module and disk */
1574 	if (!first_open)
1575 		put_disk_and_module(disk);
1576 	if (whole)
1577 		bdput(whole);
1578 	return 0;
1579 
1580  out_clear:
1581 	disk_put_part(bdev->bd_part);
1582 	bdev->bd_disk = NULL;
1583 	bdev->bd_part = NULL;
1584 	if (bdev != bdev->bd_contains)
1585 		__blkdev_put(bdev->bd_contains, mode, 1);
1586 	bdev->bd_contains = NULL;
1587  out_unlock_bdev:
1588 	if (claiming)
1589 		bd_abort_claiming(bdev, claiming, holder);
1590 	mutex_unlock(&bdev->bd_mutex);
1591 	disk_unblock_events(disk);
1592  out_put_whole:
1593  	if (whole)
1594 		bdput(whole);
1595  out_put_disk:
1596 	put_disk_and_module(disk);
1597 	if (need_restart)
1598 		goto restart;
1599  out:
1600 	return ret;
1601 }
1602 
1603 /**
1604  * blkdev_get - open a block device
1605  * @bdev: block_device to open
1606  * @mode: FMODE_* mask
1607  * @holder: exclusive holder identifier
1608  *
1609  * Open @bdev with @mode.  If @mode includes %FMODE_EXCL, @bdev is
1610  * open with exclusive access.  Specifying %FMODE_EXCL with %NULL
1611  * @holder is invalid.  Exclusive opens may nest for the same @holder.
1612  *
1613  * On success, the reference count of @bdev is unchanged.  On failure,
1614  * @bdev is put.
1615  *
1616  * CONTEXT:
1617  * Might sleep.
1618  *
1619  * RETURNS:
1620  * 0 on success, -errno on failure.
1621  */
blkdev_get(struct block_device * bdev,fmode_t mode,void * holder)1622 static int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1623 {
1624 	int ret, perm = 0;
1625 
1626 	if (mode & FMODE_READ)
1627 		perm |= MAY_READ;
1628 	if (mode & FMODE_WRITE)
1629 		perm |= MAY_WRITE;
1630 	ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1631 	if (ret)
1632 		goto bdput;
1633 
1634 	ret =__blkdev_get(bdev, mode, holder, 0);
1635 	if (ret)
1636 		goto bdput;
1637 	return 0;
1638 
1639 bdput:
1640 	bdput(bdev);
1641 	return ret;
1642 }
1643 
1644 /**
1645  * blkdev_get_by_path - open a block device by name
1646  * @path: path to the block device to open
1647  * @mode: FMODE_* mask
1648  * @holder: exclusive holder identifier
1649  *
1650  * Open the blockdevice described by the device file at @path.  @mode
1651  * and @holder are identical to blkdev_get().
1652  *
1653  * On success, the returned block_device has reference count of one.
1654  *
1655  * CONTEXT:
1656  * Might sleep.
1657  *
1658  * RETURNS:
1659  * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1660  */
blkdev_get_by_path(const char * path,fmode_t mode,void * holder)1661 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1662 					void *holder)
1663 {
1664 	struct block_device *bdev;
1665 	int err;
1666 
1667 	bdev = lookup_bdev(path);
1668 	if (IS_ERR(bdev))
1669 		return bdev;
1670 
1671 	err = blkdev_get(bdev, mode, holder);
1672 	if (err)
1673 		return ERR_PTR(err);
1674 
1675 	if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1676 		blkdev_put(bdev, mode);
1677 		return ERR_PTR(-EACCES);
1678 	}
1679 
1680 	return bdev;
1681 }
1682 EXPORT_SYMBOL(blkdev_get_by_path);
1683 
1684 /**
1685  * blkdev_get_by_dev - open a block device by device number
1686  * @dev: device number of block device to open
1687  * @mode: FMODE_* mask
1688  * @holder: exclusive holder identifier
1689  *
1690  * Open the blockdevice described by device number @dev.  @mode and
1691  * @holder are identical to blkdev_get().
1692  *
1693  * Use it ONLY if you really do not have anything better - i.e. when
1694  * you are behind a truly sucky interface and all you are given is a
1695  * device number.  _Never_ to be used for internal purposes.  If you
1696  * ever need it - reconsider your API.
1697  *
1698  * On success, the returned block_device has reference count of one.
1699  *
1700  * CONTEXT:
1701  * Might sleep.
1702  *
1703  * RETURNS:
1704  * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1705  */
blkdev_get_by_dev(dev_t dev,fmode_t mode,void * holder)1706 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1707 {
1708 	struct block_device *bdev;
1709 	int err;
1710 
1711 	bdev = bdget(dev);
1712 	if (!bdev)
1713 		return ERR_PTR(-ENOMEM);
1714 
1715 	err = blkdev_get(bdev, mode, holder);
1716 	if (err)
1717 		return ERR_PTR(err);
1718 
1719 	return bdev;
1720 }
1721 EXPORT_SYMBOL(blkdev_get_by_dev);
1722 
blkdev_open(struct inode * inode,struct file * filp)1723 static int blkdev_open(struct inode * inode, struct file * filp)
1724 {
1725 	struct block_device *bdev;
1726 
1727 	/*
1728 	 * Preserve backwards compatibility and allow large file access
1729 	 * even if userspace doesn't ask for it explicitly. Some mkfs
1730 	 * binary needs it. We might want to drop this workaround
1731 	 * during an unstable branch.
1732 	 */
1733 	filp->f_flags |= O_LARGEFILE;
1734 
1735 	filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
1736 
1737 	if (filp->f_flags & O_NDELAY)
1738 		filp->f_mode |= FMODE_NDELAY;
1739 	if (filp->f_flags & O_EXCL)
1740 		filp->f_mode |= FMODE_EXCL;
1741 	if ((filp->f_flags & O_ACCMODE) == 3)
1742 		filp->f_mode |= FMODE_WRITE_IOCTL;
1743 
1744 	bdev = bd_acquire(inode);
1745 	if (bdev == NULL)
1746 		return -ENOMEM;
1747 
1748 	filp->f_mapping = bdev->bd_inode->i_mapping;
1749 	filp->f_wb_err = filemap_sample_wb_err(filp->f_mapping);
1750 
1751 	return blkdev_get(bdev, filp->f_mode, filp);
1752 }
1753 
__blkdev_put(struct block_device * bdev,fmode_t mode,int for_part)1754 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1755 {
1756 	struct gendisk *disk = bdev->bd_disk;
1757 	struct block_device *victim = NULL;
1758 
1759 	/*
1760 	 * Sync early if it looks like we're the last one.  If someone else
1761 	 * opens the block device between now and the decrement of bd_openers
1762 	 * then we did a sync that we didn't need to, but that's not the end
1763 	 * of the world and we want to avoid long (could be several minute)
1764 	 * syncs while holding the mutex.
1765 	 */
1766 	if (bdev->bd_openers == 1)
1767 		sync_blockdev(bdev);
1768 
1769 	mutex_lock_nested(&bdev->bd_mutex, for_part);
1770 	if (for_part)
1771 		bdev->bd_part_count--;
1772 
1773 	if (!--bdev->bd_openers) {
1774 		WARN_ON_ONCE(bdev->bd_holders);
1775 		sync_blockdev(bdev);
1776 		kill_bdev(bdev);
1777 
1778 		bdev_write_inode(bdev);
1779 	}
1780 	if (bdev->bd_contains == bdev) {
1781 		if (disk->fops->release)
1782 			disk->fops->release(disk, mode);
1783 	}
1784 	if (!bdev->bd_openers) {
1785 		disk_put_part(bdev->bd_part);
1786 		bdev->bd_part = NULL;
1787 		bdev->bd_disk = NULL;
1788 		if (bdev != bdev->bd_contains)
1789 			victim = bdev->bd_contains;
1790 		bdev->bd_contains = NULL;
1791 
1792 		put_disk_and_module(disk);
1793 	}
1794 	mutex_unlock(&bdev->bd_mutex);
1795 	bdput(bdev);
1796 	if (victim)
1797 		__blkdev_put(victim, mode, 1);
1798 }
1799 
blkdev_put(struct block_device * bdev,fmode_t mode)1800 void blkdev_put(struct block_device *bdev, fmode_t mode)
1801 {
1802 	mutex_lock(&bdev->bd_mutex);
1803 
1804 	if (mode & FMODE_EXCL) {
1805 		bool bdev_free;
1806 
1807 		/*
1808 		 * Release a claim on the device.  The holder fields
1809 		 * are protected with bdev_lock.  bd_mutex is to
1810 		 * synchronize disk_holder unlinking.
1811 		 */
1812 		spin_lock(&bdev_lock);
1813 
1814 		WARN_ON_ONCE(--bdev->bd_holders < 0);
1815 		WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1816 
1817 		/* bd_contains might point to self, check in a separate step */
1818 		if ((bdev_free = !bdev->bd_holders))
1819 			bdev->bd_holder = NULL;
1820 		if (!bdev->bd_contains->bd_holders)
1821 			bdev->bd_contains->bd_holder = NULL;
1822 
1823 		spin_unlock(&bdev_lock);
1824 
1825 		/*
1826 		 * If this was the last claim, remove holder link and
1827 		 * unblock evpoll if it was a write holder.
1828 		 */
1829 		if (bdev_free && bdev->bd_write_holder) {
1830 			disk_unblock_events(bdev->bd_disk);
1831 			bdev->bd_write_holder = false;
1832 		}
1833 	}
1834 
1835 	/*
1836 	 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1837 	 * event.  This is to ensure detection of media removal commanded
1838 	 * from userland - e.g. eject(1).
1839 	 */
1840 	disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1841 
1842 	mutex_unlock(&bdev->bd_mutex);
1843 
1844 	__blkdev_put(bdev, mode, 0);
1845 }
1846 EXPORT_SYMBOL(blkdev_put);
1847 
blkdev_close(struct inode * inode,struct file * filp)1848 static int blkdev_close(struct inode * inode, struct file * filp)
1849 {
1850 	struct block_device *bdev = I_BDEV(bdev_file_inode(filp));
1851 	blkdev_put(bdev, filp->f_mode);
1852 	return 0;
1853 }
1854 
block_ioctl(struct file * file,unsigned cmd,unsigned long arg)1855 static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1856 {
1857 	struct block_device *bdev = I_BDEV(bdev_file_inode(file));
1858 	fmode_t mode = file->f_mode;
1859 
1860 	/*
1861 	 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1862 	 * to updated it before every ioctl.
1863 	 */
1864 	if (file->f_flags & O_NDELAY)
1865 		mode |= FMODE_NDELAY;
1866 	else
1867 		mode &= ~FMODE_NDELAY;
1868 
1869 	return blkdev_ioctl(bdev, mode, cmd, arg);
1870 }
1871 
1872 /*
1873  * Write data to the block device.  Only intended for the block device itself
1874  * and the raw driver which basically is a fake block device.
1875  *
1876  * Does not take i_mutex for the write and thus is not for general purpose
1877  * use.
1878  */
blkdev_write_iter(struct kiocb * iocb,struct iov_iter * from)1879 ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from)
1880 {
1881 	struct file *file = iocb->ki_filp;
1882 	struct inode *bd_inode = bdev_file_inode(file);
1883 	loff_t size = i_size_read(bd_inode);
1884 	struct blk_plug plug;
1885 	ssize_t ret;
1886 
1887 	if (bdev_read_only(I_BDEV(bd_inode)))
1888 		return -EPERM;
1889 
1890 	if (IS_SWAPFILE(bd_inode) && !is_hibernate_resume_dev(bd_inode->i_rdev))
1891 		return -ETXTBSY;
1892 
1893 	if (!iov_iter_count(from))
1894 		return 0;
1895 
1896 	if (iocb->ki_pos >= size)
1897 		return -ENOSPC;
1898 
1899 	if ((iocb->ki_flags & (IOCB_NOWAIT | IOCB_DIRECT)) == IOCB_NOWAIT)
1900 		return -EOPNOTSUPP;
1901 
1902 	iov_iter_truncate(from, size - iocb->ki_pos);
1903 
1904 	blk_start_plug(&plug);
1905 	ret = __generic_file_write_iter(iocb, from);
1906 	if (ret > 0)
1907 		ret = generic_write_sync(iocb, ret);
1908 	blk_finish_plug(&plug);
1909 	return ret;
1910 }
1911 EXPORT_SYMBOL_GPL(blkdev_write_iter);
1912 
blkdev_read_iter(struct kiocb * iocb,struct iov_iter * to)1913 ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to)
1914 {
1915 	struct file *file = iocb->ki_filp;
1916 	struct inode *bd_inode = bdev_file_inode(file);
1917 	loff_t size = i_size_read(bd_inode);
1918 	loff_t pos = iocb->ki_pos;
1919 
1920 	if (pos >= size)
1921 		return 0;
1922 
1923 	size -= pos;
1924 	iov_iter_truncate(to, size);
1925 	return generic_file_read_iter(iocb, to);
1926 }
1927 EXPORT_SYMBOL_GPL(blkdev_read_iter);
1928 
1929 /*
1930  * Try to release a page associated with block device when the system
1931  * is under memory pressure.
1932  */
blkdev_releasepage(struct page * page,gfp_t wait)1933 static int blkdev_releasepage(struct page *page, gfp_t wait)
1934 {
1935 	struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
1936 
1937 	if (super && super->s_op->bdev_try_to_free_page)
1938 		return super->s_op->bdev_try_to_free_page(super, page, wait);
1939 
1940 	return try_to_free_buffers(page);
1941 }
1942 
blkdev_writepages(struct address_space * mapping,struct writeback_control * wbc)1943 static int blkdev_writepages(struct address_space *mapping,
1944 			     struct writeback_control *wbc)
1945 {
1946 	return generic_writepages(mapping, wbc);
1947 }
1948 
1949 static const struct address_space_operations def_blk_aops = {
1950 	.readpage	= blkdev_readpage,
1951 	.readahead	= blkdev_readahead,
1952 	.writepage	= blkdev_writepage,
1953 	.write_begin	= blkdev_write_begin,
1954 	.write_end	= blkdev_write_end,
1955 	.writepages	= blkdev_writepages,
1956 	.releasepage	= blkdev_releasepage,
1957 	.direct_IO	= blkdev_direct_IO,
1958 	.migratepage	= buffer_migrate_page_norefs,
1959 	.is_dirty_writeback = buffer_check_dirty_writeback,
1960 };
1961 
1962 #define	BLKDEV_FALLOC_FL_SUPPORTED					\
1963 		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
1964 		 FALLOC_FL_ZERO_RANGE | FALLOC_FL_NO_HIDE_STALE)
1965 
blkdev_fallocate(struct file * file,int mode,loff_t start,loff_t len)1966 static long blkdev_fallocate(struct file *file, int mode, loff_t start,
1967 			     loff_t len)
1968 {
1969 	struct block_device *bdev = I_BDEV(bdev_file_inode(file));
1970 	loff_t end = start + len - 1;
1971 	loff_t isize;
1972 	int error;
1973 
1974 	/* Fail if we don't recognize the flags. */
1975 	if (mode & ~BLKDEV_FALLOC_FL_SUPPORTED)
1976 		return -EOPNOTSUPP;
1977 
1978 	/* Don't go off the end of the device. */
1979 	isize = i_size_read(bdev->bd_inode);
1980 	if (start >= isize)
1981 		return -EINVAL;
1982 	if (end >= isize) {
1983 		if (mode & FALLOC_FL_KEEP_SIZE) {
1984 			len = isize - start;
1985 			end = start + len - 1;
1986 		} else
1987 			return -EINVAL;
1988 	}
1989 
1990 	/*
1991 	 * Don't allow IO that isn't aligned to logical block size.
1992 	 */
1993 	if ((start | len) & (bdev_logical_block_size(bdev) - 1))
1994 		return -EINVAL;
1995 
1996 	/* Invalidate the page cache, including dirty pages. */
1997 	error = truncate_bdev_range(bdev, file->f_mode, start, end);
1998 	if (error)
1999 		return error;
2000 
2001 	switch (mode) {
2002 	case FALLOC_FL_ZERO_RANGE:
2003 	case FALLOC_FL_ZERO_RANGE | FALLOC_FL_KEEP_SIZE:
2004 		error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
2005 					    GFP_KERNEL, BLKDEV_ZERO_NOUNMAP);
2006 		break;
2007 	case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE:
2008 		error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
2009 					     GFP_KERNEL, BLKDEV_ZERO_NOFALLBACK);
2010 		break;
2011 	case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE | FALLOC_FL_NO_HIDE_STALE:
2012 		error = blkdev_issue_discard(bdev, start >> 9, len >> 9,
2013 					     GFP_KERNEL, 0);
2014 		break;
2015 	default:
2016 		return -EOPNOTSUPP;
2017 	}
2018 	if (error)
2019 		return error;
2020 
2021 	/*
2022 	 * Invalidate again; if someone wandered in and dirtied a page,
2023 	 * the caller will be given -EBUSY.  The third argument is
2024 	 * inclusive, so the rounding here is safe.
2025 	 */
2026 	return invalidate_inode_pages2_range(bdev->bd_inode->i_mapping,
2027 					     start >> PAGE_SHIFT,
2028 					     end >> PAGE_SHIFT);
2029 }
2030 
2031 const struct file_operations def_blk_fops = {
2032 	.open		= blkdev_open,
2033 	.release	= blkdev_close,
2034 	.llseek		= block_llseek,
2035 	.read_iter	= blkdev_read_iter,
2036 	.write_iter	= blkdev_write_iter,
2037 	.iopoll		= blkdev_iopoll,
2038 	.mmap		= generic_file_mmap,
2039 	.fsync		= blkdev_fsync,
2040 	.unlocked_ioctl	= block_ioctl,
2041 #ifdef CONFIG_COMPAT
2042 	.compat_ioctl	= compat_blkdev_ioctl,
2043 #endif
2044 	.splice_read	= generic_file_splice_read,
2045 	.splice_write	= iter_file_splice_write,
2046 	.fallocate	= blkdev_fallocate,
2047 };
2048 
2049 /**
2050  * lookup_bdev  - lookup a struct block_device by name
2051  * @pathname:	special file representing the block device
2052  *
2053  * Get a reference to the blockdevice at @pathname in the current
2054  * namespace if possible and return it.  Return ERR_PTR(error)
2055  * otherwise.
2056  */
lookup_bdev(const char * pathname)2057 struct block_device *lookup_bdev(const char *pathname)
2058 {
2059 	struct block_device *bdev;
2060 	struct inode *inode;
2061 	struct path path;
2062 	int error;
2063 
2064 	if (!pathname || !*pathname)
2065 		return ERR_PTR(-EINVAL);
2066 
2067 	error = kern_path(pathname, LOOKUP_FOLLOW, &path);
2068 	if (error)
2069 		return ERR_PTR(error);
2070 
2071 	inode = d_backing_inode(path.dentry);
2072 	error = -ENOTBLK;
2073 	if (!S_ISBLK(inode->i_mode))
2074 		goto fail;
2075 	error = -EACCES;
2076 	if (!may_open_dev(&path))
2077 		goto fail;
2078 	error = -ENOMEM;
2079 	bdev = bd_acquire(inode);
2080 	if (!bdev)
2081 		goto fail;
2082 out:
2083 	path_put(&path);
2084 	return bdev;
2085 fail:
2086 	bdev = ERR_PTR(error);
2087 	goto out;
2088 }
2089 EXPORT_SYMBOL(lookup_bdev);
2090 
__invalidate_device(struct block_device * bdev,bool kill_dirty)2091 int __invalidate_device(struct block_device *bdev, bool kill_dirty)
2092 {
2093 	struct super_block *sb = get_super(bdev);
2094 	int res = 0;
2095 
2096 	if (sb) {
2097 		/*
2098 		 * no need to lock the super, get_super holds the
2099 		 * read mutex so the filesystem cannot go away
2100 		 * under us (->put_super runs with the write lock
2101 		 * hold).
2102 		 */
2103 		shrink_dcache_sb(sb);
2104 		res = invalidate_inodes(sb, kill_dirty);
2105 		drop_super(sb);
2106 	}
2107 	invalidate_bdev(bdev);
2108 	return res;
2109 }
2110 EXPORT_SYMBOL(__invalidate_device);
2111 
iterate_bdevs(void (* func)(struct block_device *,void *),void * arg)2112 void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg)
2113 {
2114 	struct inode *inode, *old_inode = NULL;
2115 
2116 	spin_lock(&blockdev_superblock->s_inode_list_lock);
2117 	list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
2118 		struct address_space *mapping = inode->i_mapping;
2119 		struct block_device *bdev;
2120 
2121 		spin_lock(&inode->i_lock);
2122 		if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
2123 		    mapping->nrpages == 0) {
2124 			spin_unlock(&inode->i_lock);
2125 			continue;
2126 		}
2127 		__iget(inode);
2128 		spin_unlock(&inode->i_lock);
2129 		spin_unlock(&blockdev_superblock->s_inode_list_lock);
2130 		/*
2131 		 * We hold a reference to 'inode' so it couldn't have been
2132 		 * removed from s_inodes list while we dropped the
2133 		 * s_inode_list_lock  We cannot iput the inode now as we can
2134 		 * be holding the last reference and we cannot iput it under
2135 		 * s_inode_list_lock. So we keep the reference and iput it
2136 		 * later.
2137 		 */
2138 		iput(old_inode);
2139 		old_inode = inode;
2140 		bdev = I_BDEV(inode);
2141 
2142 		mutex_lock(&bdev->bd_mutex);
2143 		if (bdev->bd_openers)
2144 			func(bdev, arg);
2145 		mutex_unlock(&bdev->bd_mutex);
2146 
2147 		spin_lock(&blockdev_superblock->s_inode_list_lock);
2148 	}
2149 	spin_unlock(&blockdev_superblock->s_inode_list_lock);
2150 	iput(old_inode);
2151 }
2152