1 /*
2 * Serial Attached SCSI (SAS) Expander discovery and configuration
3 *
4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
6 *
7 * This file is licensed under GPLv2.
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License as
11 * published by the Free Software Foundation; either version 2 of the
12 * License, or (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
22 *
23 */
24
25 #include <linux/scatterlist.h>
26 #include <linux/blkdev.h>
27 #include <linux/slab.h>
28
29 #include "sas_internal.h"
30
31 #include <scsi/sas_ata.h>
32 #include <scsi/scsi_transport.h>
33 #include <scsi/scsi_transport_sas.h>
34 #include "../scsi_sas_internal.h"
35
36 static int sas_discover_expander(struct domain_device *dev);
37 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
38 static int sas_configure_phy(struct domain_device *dev, int phy_id,
39 u8 *sas_addr, int include);
40 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr);
41
42 /* ---------- SMP task management ---------- */
43
smp_task_timedout(struct timer_list * t)44 static void smp_task_timedout(struct timer_list *t)
45 {
46 struct sas_task_slow *slow = from_timer(slow, t, timer);
47 struct sas_task *task = slow->task;
48 unsigned long flags;
49
50 spin_lock_irqsave(&task->task_state_lock, flags);
51 if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
52 task->task_state_flags |= SAS_TASK_STATE_ABORTED;
53 spin_unlock_irqrestore(&task->task_state_lock, flags);
54
55 complete(&task->slow_task->completion);
56 }
57
smp_task_done(struct sas_task * task)58 static void smp_task_done(struct sas_task *task)
59 {
60 if (!del_timer(&task->slow_task->timer))
61 return;
62 complete(&task->slow_task->completion);
63 }
64
65 /* Give it some long enough timeout. In seconds. */
66 #define SMP_TIMEOUT 10
67
smp_execute_task_sg(struct domain_device * dev,struct scatterlist * req,struct scatterlist * resp)68 static int smp_execute_task_sg(struct domain_device *dev,
69 struct scatterlist *req, struct scatterlist *resp)
70 {
71 int res, retry;
72 struct sas_task *task = NULL;
73 struct sas_internal *i =
74 to_sas_internal(dev->port->ha->core.shost->transportt);
75
76 mutex_lock(&dev->ex_dev.cmd_mutex);
77 for (retry = 0; retry < 3; retry++) {
78 if (test_bit(SAS_DEV_GONE, &dev->state)) {
79 res = -ECOMM;
80 break;
81 }
82
83 task = sas_alloc_slow_task(GFP_KERNEL);
84 if (!task) {
85 res = -ENOMEM;
86 break;
87 }
88 task->dev = dev;
89 task->task_proto = dev->tproto;
90 task->smp_task.smp_req = *req;
91 task->smp_task.smp_resp = *resp;
92
93 task->task_done = smp_task_done;
94
95 task->slow_task->timer.function = smp_task_timedout;
96 task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
97 add_timer(&task->slow_task->timer);
98
99 res = i->dft->lldd_execute_task(task, GFP_KERNEL);
100
101 if (res) {
102 del_timer(&task->slow_task->timer);
103 SAS_DPRINTK("executing SMP task failed:%d\n", res);
104 break;
105 }
106
107 wait_for_completion(&task->slow_task->completion);
108 res = -ECOMM;
109 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
110 SAS_DPRINTK("smp task timed out or aborted\n");
111 i->dft->lldd_abort_task(task);
112 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
113 SAS_DPRINTK("SMP task aborted and not done\n");
114 break;
115 }
116 }
117 if (task->task_status.resp == SAS_TASK_COMPLETE &&
118 task->task_status.stat == SAM_STAT_GOOD) {
119 res = 0;
120 break;
121 }
122 if (task->task_status.resp == SAS_TASK_COMPLETE &&
123 task->task_status.stat == SAS_DATA_UNDERRUN) {
124 /* no error, but return the number of bytes of
125 * underrun */
126 res = task->task_status.residual;
127 break;
128 }
129 if (task->task_status.resp == SAS_TASK_COMPLETE &&
130 task->task_status.stat == SAS_DATA_OVERRUN) {
131 res = -EMSGSIZE;
132 break;
133 }
134 if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
135 task->task_status.stat == SAS_DEVICE_UNKNOWN)
136 break;
137 else {
138 SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
139 "status 0x%x\n", __func__,
140 SAS_ADDR(dev->sas_addr),
141 task->task_status.resp,
142 task->task_status.stat);
143 sas_free_task(task);
144 task = NULL;
145 }
146 }
147 mutex_unlock(&dev->ex_dev.cmd_mutex);
148
149 BUG_ON(retry == 3 && task != NULL);
150 sas_free_task(task);
151 return res;
152 }
153
smp_execute_task(struct domain_device * dev,void * req,int req_size,void * resp,int resp_size)154 static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
155 void *resp, int resp_size)
156 {
157 struct scatterlist req_sg;
158 struct scatterlist resp_sg;
159
160 sg_init_one(&req_sg, req, req_size);
161 sg_init_one(&resp_sg, resp, resp_size);
162 return smp_execute_task_sg(dev, &req_sg, &resp_sg);
163 }
164
165 /* ---------- Allocations ---------- */
166
alloc_smp_req(int size)167 static inline void *alloc_smp_req(int size)
168 {
169 u8 *p = kzalloc(size, GFP_KERNEL);
170 if (p)
171 p[0] = SMP_REQUEST;
172 return p;
173 }
174
alloc_smp_resp(int size)175 static inline void *alloc_smp_resp(int size)
176 {
177 return kzalloc(size, GFP_KERNEL);
178 }
179
sas_route_char(struct domain_device * dev,struct ex_phy * phy)180 static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
181 {
182 switch (phy->routing_attr) {
183 case TABLE_ROUTING:
184 if (dev->ex_dev.t2t_supp)
185 return 'U';
186 else
187 return 'T';
188 case DIRECT_ROUTING:
189 return 'D';
190 case SUBTRACTIVE_ROUTING:
191 return 'S';
192 default:
193 return '?';
194 }
195 }
196
to_dev_type(struct discover_resp * dr)197 static enum sas_device_type to_dev_type(struct discover_resp *dr)
198 {
199 /* This is detecting a failure to transmit initial dev to host
200 * FIS as described in section J.5 of sas-2 r16
201 */
202 if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev &&
203 dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
204 return SAS_SATA_PENDING;
205 else
206 return dr->attached_dev_type;
207 }
208
sas_set_ex_phy(struct domain_device * dev,int phy_id,void * rsp)209 static void sas_set_ex_phy(struct domain_device *dev, int phy_id, void *rsp)
210 {
211 enum sas_device_type dev_type;
212 enum sas_linkrate linkrate;
213 u8 sas_addr[SAS_ADDR_SIZE];
214 struct smp_resp *resp = rsp;
215 struct discover_resp *dr = &resp->disc;
216 struct sas_ha_struct *ha = dev->port->ha;
217 struct expander_device *ex = &dev->ex_dev;
218 struct ex_phy *phy = &ex->ex_phy[phy_id];
219 struct sas_rphy *rphy = dev->rphy;
220 bool new_phy = !phy->phy;
221 char *type;
222
223 if (new_phy) {
224 if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
225 return;
226 phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
227
228 /* FIXME: error_handling */
229 BUG_ON(!phy->phy);
230 }
231
232 switch (resp->result) {
233 case SMP_RESP_PHY_VACANT:
234 phy->phy_state = PHY_VACANT;
235 break;
236 default:
237 phy->phy_state = PHY_NOT_PRESENT;
238 break;
239 case SMP_RESP_FUNC_ACC:
240 phy->phy_state = PHY_EMPTY; /* do not know yet */
241 break;
242 }
243
244 /* check if anything important changed to squelch debug */
245 dev_type = phy->attached_dev_type;
246 linkrate = phy->linkrate;
247 memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
248
249 /* Handle vacant phy - rest of dr data is not valid so skip it */
250 if (phy->phy_state == PHY_VACANT) {
251 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
252 phy->attached_dev_type = SAS_PHY_UNUSED;
253 if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) {
254 phy->phy_id = phy_id;
255 goto skip;
256 } else
257 goto out;
258 }
259
260 phy->attached_dev_type = to_dev_type(dr);
261 if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
262 goto out;
263 phy->phy_id = phy_id;
264 phy->linkrate = dr->linkrate;
265 phy->attached_sata_host = dr->attached_sata_host;
266 phy->attached_sata_dev = dr->attached_sata_dev;
267 phy->attached_sata_ps = dr->attached_sata_ps;
268 phy->attached_iproto = dr->iproto << 1;
269 phy->attached_tproto = dr->tproto << 1;
270 /* help some expanders that fail to zero sas_address in the 'no
271 * device' case
272 */
273 if (phy->attached_dev_type == SAS_PHY_UNUSED ||
274 phy->linkrate < SAS_LINK_RATE_1_5_GBPS)
275 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
276 else
277 memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
278 phy->attached_phy_id = dr->attached_phy_id;
279 phy->phy_change_count = dr->change_count;
280 phy->routing_attr = dr->routing_attr;
281 phy->virtual = dr->virtual;
282 phy->last_da_index = -1;
283
284 phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
285 phy->phy->identify.device_type = dr->attached_dev_type;
286 phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
287 phy->phy->identify.target_port_protocols = phy->attached_tproto;
288 if (!phy->attached_tproto && dr->attached_sata_dev)
289 phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
290 phy->phy->identify.phy_identifier = phy_id;
291 phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
292 phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
293 phy->phy->minimum_linkrate = dr->pmin_linkrate;
294 phy->phy->maximum_linkrate = dr->pmax_linkrate;
295 phy->phy->negotiated_linkrate = phy->linkrate;
296 phy->phy->enabled = (phy->linkrate != SAS_PHY_DISABLED);
297
298 skip:
299 if (new_phy)
300 if (sas_phy_add(phy->phy)) {
301 sas_phy_free(phy->phy);
302 return;
303 }
304
305 out:
306 switch (phy->attached_dev_type) {
307 case SAS_SATA_PENDING:
308 type = "stp pending";
309 break;
310 case SAS_PHY_UNUSED:
311 type = "no device";
312 break;
313 case SAS_END_DEVICE:
314 if (phy->attached_iproto) {
315 if (phy->attached_tproto)
316 type = "host+target";
317 else
318 type = "host";
319 } else {
320 if (dr->attached_sata_dev)
321 type = "stp";
322 else
323 type = "ssp";
324 }
325 break;
326 case SAS_EDGE_EXPANDER_DEVICE:
327 case SAS_FANOUT_EXPANDER_DEVICE:
328 type = "smp";
329 break;
330 default:
331 type = "unknown";
332 }
333
334 /* this routine is polled by libata error recovery so filter
335 * unimportant messages
336 */
337 if (new_phy || phy->attached_dev_type != dev_type ||
338 phy->linkrate != linkrate ||
339 SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
340 /* pass */;
341 else
342 return;
343
344 /* if the attached device type changed and ata_eh is active,
345 * make sure we run revalidation when eh completes (see:
346 * sas_enable_revalidation)
347 */
348 if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
349 set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
350
351 SAS_DPRINTK("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
352 test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
353 SAS_ADDR(dev->sas_addr), phy->phy_id,
354 sas_route_char(dev, phy), phy->linkrate,
355 SAS_ADDR(phy->attached_sas_addr), type);
356 }
357
358 /* check if we have an existing attached ata device on this expander phy */
sas_ex_to_ata(struct domain_device * ex_dev,int phy_id)359 struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
360 {
361 struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
362 struct domain_device *dev;
363 struct sas_rphy *rphy;
364
365 if (!ex_phy->port)
366 return NULL;
367
368 rphy = ex_phy->port->rphy;
369 if (!rphy)
370 return NULL;
371
372 dev = sas_find_dev_by_rphy(rphy);
373
374 if (dev && dev_is_sata(dev))
375 return dev;
376
377 return NULL;
378 }
379
380 #define DISCOVER_REQ_SIZE 16
381 #define DISCOVER_RESP_SIZE 56
382
sas_ex_phy_discover_helper(struct domain_device * dev,u8 * disc_req,u8 * disc_resp,int single)383 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
384 u8 *disc_resp, int single)
385 {
386 struct discover_resp *dr;
387 int res;
388
389 disc_req[9] = single;
390
391 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
392 disc_resp, DISCOVER_RESP_SIZE);
393 if (res)
394 return res;
395 dr = &((struct smp_resp *)disc_resp)->disc;
396 if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
397 sas_printk("Found loopback topology, just ignore it!\n");
398 return 0;
399 }
400 sas_set_ex_phy(dev, single, disc_resp);
401 return 0;
402 }
403
sas_ex_phy_discover(struct domain_device * dev,int single)404 int sas_ex_phy_discover(struct domain_device *dev, int single)
405 {
406 struct expander_device *ex = &dev->ex_dev;
407 int res = 0;
408 u8 *disc_req;
409 u8 *disc_resp;
410
411 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
412 if (!disc_req)
413 return -ENOMEM;
414
415 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
416 if (!disc_resp) {
417 kfree(disc_req);
418 return -ENOMEM;
419 }
420
421 disc_req[1] = SMP_DISCOVER;
422
423 if (0 <= single && single < ex->num_phys) {
424 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
425 } else {
426 int i;
427
428 for (i = 0; i < ex->num_phys; i++) {
429 res = sas_ex_phy_discover_helper(dev, disc_req,
430 disc_resp, i);
431 if (res)
432 goto out_err;
433 }
434 }
435 out_err:
436 kfree(disc_resp);
437 kfree(disc_req);
438 return res;
439 }
440
sas_expander_discover(struct domain_device * dev)441 static int sas_expander_discover(struct domain_device *dev)
442 {
443 struct expander_device *ex = &dev->ex_dev;
444 int res = -ENOMEM;
445
446 ex->ex_phy = kcalloc(ex->num_phys, sizeof(*ex->ex_phy), GFP_KERNEL);
447 if (!ex->ex_phy)
448 return -ENOMEM;
449
450 res = sas_ex_phy_discover(dev, -1);
451 if (res)
452 goto out_err;
453
454 return 0;
455 out_err:
456 kfree(ex->ex_phy);
457 ex->ex_phy = NULL;
458 return res;
459 }
460
461 #define MAX_EXPANDER_PHYS 128
462
ex_assign_report_general(struct domain_device * dev,struct smp_resp * resp)463 static void ex_assign_report_general(struct domain_device *dev,
464 struct smp_resp *resp)
465 {
466 struct report_general_resp *rg = &resp->rg;
467
468 dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
469 dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
470 dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
471 dev->ex_dev.t2t_supp = rg->t2t_supp;
472 dev->ex_dev.conf_route_table = rg->conf_route_table;
473 dev->ex_dev.configuring = rg->configuring;
474 memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
475 }
476
477 #define RG_REQ_SIZE 8
478 #define RG_RESP_SIZE 32
479
sas_ex_general(struct domain_device * dev)480 static int sas_ex_general(struct domain_device *dev)
481 {
482 u8 *rg_req;
483 struct smp_resp *rg_resp;
484 int res;
485 int i;
486
487 rg_req = alloc_smp_req(RG_REQ_SIZE);
488 if (!rg_req)
489 return -ENOMEM;
490
491 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
492 if (!rg_resp) {
493 kfree(rg_req);
494 return -ENOMEM;
495 }
496
497 rg_req[1] = SMP_REPORT_GENERAL;
498
499 for (i = 0; i < 5; i++) {
500 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
501 RG_RESP_SIZE);
502
503 if (res) {
504 SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
505 SAS_ADDR(dev->sas_addr), res);
506 goto out;
507 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
508 SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
509 SAS_ADDR(dev->sas_addr), rg_resp->result);
510 res = rg_resp->result;
511 goto out;
512 }
513
514 ex_assign_report_general(dev, rg_resp);
515
516 if (dev->ex_dev.configuring) {
517 SAS_DPRINTK("RG: ex %llx self-configuring...\n",
518 SAS_ADDR(dev->sas_addr));
519 schedule_timeout_interruptible(5*HZ);
520 } else
521 break;
522 }
523 out:
524 kfree(rg_req);
525 kfree(rg_resp);
526 return res;
527 }
528
ex_assign_manuf_info(struct domain_device * dev,void * _mi_resp)529 static void ex_assign_manuf_info(struct domain_device *dev, void
530 *_mi_resp)
531 {
532 u8 *mi_resp = _mi_resp;
533 struct sas_rphy *rphy = dev->rphy;
534 struct sas_expander_device *edev = rphy_to_expander_device(rphy);
535
536 memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
537 memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
538 memcpy(edev->product_rev, mi_resp + 36,
539 SAS_EXPANDER_PRODUCT_REV_LEN);
540
541 if (mi_resp[8] & 1) {
542 memcpy(edev->component_vendor_id, mi_resp + 40,
543 SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
544 edev->component_id = mi_resp[48] << 8 | mi_resp[49];
545 edev->component_revision_id = mi_resp[50];
546 }
547 }
548
549 #define MI_REQ_SIZE 8
550 #define MI_RESP_SIZE 64
551
sas_ex_manuf_info(struct domain_device * dev)552 static int sas_ex_manuf_info(struct domain_device *dev)
553 {
554 u8 *mi_req;
555 u8 *mi_resp;
556 int res;
557
558 mi_req = alloc_smp_req(MI_REQ_SIZE);
559 if (!mi_req)
560 return -ENOMEM;
561
562 mi_resp = alloc_smp_resp(MI_RESP_SIZE);
563 if (!mi_resp) {
564 kfree(mi_req);
565 return -ENOMEM;
566 }
567
568 mi_req[1] = SMP_REPORT_MANUF_INFO;
569
570 res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
571 if (res) {
572 SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
573 SAS_ADDR(dev->sas_addr), res);
574 goto out;
575 } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
576 SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
577 SAS_ADDR(dev->sas_addr), mi_resp[2]);
578 goto out;
579 }
580
581 ex_assign_manuf_info(dev, mi_resp);
582 out:
583 kfree(mi_req);
584 kfree(mi_resp);
585 return res;
586 }
587
588 #define PC_REQ_SIZE 44
589 #define PC_RESP_SIZE 8
590
sas_smp_phy_control(struct domain_device * dev,int phy_id,enum phy_func phy_func,struct sas_phy_linkrates * rates)591 int sas_smp_phy_control(struct domain_device *dev, int phy_id,
592 enum phy_func phy_func,
593 struct sas_phy_linkrates *rates)
594 {
595 u8 *pc_req;
596 u8 *pc_resp;
597 int res;
598
599 pc_req = alloc_smp_req(PC_REQ_SIZE);
600 if (!pc_req)
601 return -ENOMEM;
602
603 pc_resp = alloc_smp_resp(PC_RESP_SIZE);
604 if (!pc_resp) {
605 kfree(pc_req);
606 return -ENOMEM;
607 }
608
609 pc_req[1] = SMP_PHY_CONTROL;
610 pc_req[9] = phy_id;
611 pc_req[10]= phy_func;
612 if (rates) {
613 pc_req[32] = rates->minimum_linkrate << 4;
614 pc_req[33] = rates->maximum_linkrate << 4;
615 }
616
617 res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
618
619 kfree(pc_resp);
620 kfree(pc_req);
621 return res;
622 }
623
sas_ex_disable_phy(struct domain_device * dev,int phy_id)624 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
625 {
626 struct expander_device *ex = &dev->ex_dev;
627 struct ex_phy *phy = &ex->ex_phy[phy_id];
628
629 sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
630 phy->linkrate = SAS_PHY_DISABLED;
631 }
632
sas_ex_disable_port(struct domain_device * dev,u8 * sas_addr)633 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
634 {
635 struct expander_device *ex = &dev->ex_dev;
636 int i;
637
638 for (i = 0; i < ex->num_phys; i++) {
639 struct ex_phy *phy = &ex->ex_phy[i];
640
641 if (phy->phy_state == PHY_VACANT ||
642 phy->phy_state == PHY_NOT_PRESENT)
643 continue;
644
645 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
646 sas_ex_disable_phy(dev, i);
647 }
648 }
649
sas_dev_present_in_domain(struct asd_sas_port * port,u8 * sas_addr)650 static int sas_dev_present_in_domain(struct asd_sas_port *port,
651 u8 *sas_addr)
652 {
653 struct domain_device *dev;
654
655 if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
656 return 1;
657 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
658 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
659 return 1;
660 }
661 return 0;
662 }
663
664 #define RPEL_REQ_SIZE 16
665 #define RPEL_RESP_SIZE 32
sas_smp_get_phy_events(struct sas_phy * phy)666 int sas_smp_get_phy_events(struct sas_phy *phy)
667 {
668 int res;
669 u8 *req;
670 u8 *resp;
671 struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
672 struct domain_device *dev = sas_find_dev_by_rphy(rphy);
673
674 req = alloc_smp_req(RPEL_REQ_SIZE);
675 if (!req)
676 return -ENOMEM;
677
678 resp = alloc_smp_resp(RPEL_RESP_SIZE);
679 if (!resp) {
680 kfree(req);
681 return -ENOMEM;
682 }
683
684 req[1] = SMP_REPORT_PHY_ERR_LOG;
685 req[9] = phy->number;
686
687 res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
688 resp, RPEL_RESP_SIZE);
689
690 if (res)
691 goto out;
692
693 phy->invalid_dword_count = scsi_to_u32(&resp[12]);
694 phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
695 phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
696 phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
697
698 out:
699 kfree(req);
700 kfree(resp);
701 return res;
702
703 }
704
705 #ifdef CONFIG_SCSI_SAS_ATA
706
707 #define RPS_REQ_SIZE 16
708 #define RPS_RESP_SIZE 60
709
sas_get_report_phy_sata(struct domain_device * dev,int phy_id,struct smp_resp * rps_resp)710 int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
711 struct smp_resp *rps_resp)
712 {
713 int res;
714 u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
715 u8 *resp = (u8 *)rps_resp;
716
717 if (!rps_req)
718 return -ENOMEM;
719
720 rps_req[1] = SMP_REPORT_PHY_SATA;
721 rps_req[9] = phy_id;
722
723 res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
724 rps_resp, RPS_RESP_SIZE);
725
726 /* 0x34 is the FIS type for the D2H fis. There's a potential
727 * standards cockup here. sas-2 explicitly specifies the FIS
728 * should be encoded so that FIS type is in resp[24].
729 * However, some expanders endian reverse this. Undo the
730 * reversal here */
731 if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
732 int i;
733
734 for (i = 0; i < 5; i++) {
735 int j = 24 + (i*4);
736 u8 a, b;
737 a = resp[j + 0];
738 b = resp[j + 1];
739 resp[j + 0] = resp[j + 3];
740 resp[j + 1] = resp[j + 2];
741 resp[j + 2] = b;
742 resp[j + 3] = a;
743 }
744 }
745
746 kfree(rps_req);
747 return res;
748 }
749 #endif
750
sas_ex_get_linkrate(struct domain_device * parent,struct domain_device * child,struct ex_phy * parent_phy)751 static void sas_ex_get_linkrate(struct domain_device *parent,
752 struct domain_device *child,
753 struct ex_phy *parent_phy)
754 {
755 struct expander_device *parent_ex = &parent->ex_dev;
756 struct sas_port *port;
757 int i;
758
759 child->pathways = 0;
760
761 port = parent_phy->port;
762
763 for (i = 0; i < parent_ex->num_phys; i++) {
764 struct ex_phy *phy = &parent_ex->ex_phy[i];
765
766 if (phy->phy_state == PHY_VACANT ||
767 phy->phy_state == PHY_NOT_PRESENT)
768 continue;
769
770 if (SAS_ADDR(phy->attached_sas_addr) ==
771 SAS_ADDR(child->sas_addr)) {
772
773 child->min_linkrate = min(parent->min_linkrate,
774 phy->linkrate);
775 child->max_linkrate = max(parent->max_linkrate,
776 phy->linkrate);
777 child->pathways++;
778 sas_port_add_phy(port, phy->phy);
779 }
780 }
781 child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
782 child->pathways = min(child->pathways, parent->pathways);
783 }
784
sas_ex_discover_end_dev(struct domain_device * parent,int phy_id)785 static struct domain_device *sas_ex_discover_end_dev(
786 struct domain_device *parent, int phy_id)
787 {
788 struct expander_device *parent_ex = &parent->ex_dev;
789 struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
790 struct domain_device *child = NULL;
791 struct sas_rphy *rphy;
792 int res;
793
794 if (phy->attached_sata_host || phy->attached_sata_ps)
795 return NULL;
796
797 child = sas_alloc_device();
798 if (!child)
799 return NULL;
800
801 kref_get(&parent->kref);
802 child->parent = parent;
803 child->port = parent->port;
804 child->iproto = phy->attached_iproto;
805 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
806 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
807 if (!phy->port) {
808 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
809 if (unlikely(!phy->port))
810 goto out_err;
811 if (unlikely(sas_port_add(phy->port) != 0)) {
812 sas_port_free(phy->port);
813 goto out_err;
814 }
815 }
816 sas_ex_get_linkrate(parent, child, phy);
817 sas_device_set_phy(child, phy->port);
818
819 #ifdef CONFIG_SCSI_SAS_ATA
820 if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
821 res = sas_get_ata_info(child, phy);
822 if (res)
823 goto out_free;
824
825 sas_init_dev(child);
826 res = sas_ata_init(child);
827 if (res)
828 goto out_free;
829 rphy = sas_end_device_alloc(phy->port);
830 if (!rphy)
831 goto out_free;
832
833 child->rphy = rphy;
834 get_device(&rphy->dev);
835
836 list_add_tail(&child->disco_list_node, &parent->port->disco_list);
837
838 res = sas_discover_sata(child);
839 if (res) {
840 SAS_DPRINTK("sas_discover_sata() for device %16llx at "
841 "%016llx:0x%x returned 0x%x\n",
842 SAS_ADDR(child->sas_addr),
843 SAS_ADDR(parent->sas_addr), phy_id, res);
844 goto out_list_del;
845 }
846 } else
847 #endif
848 if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
849 child->dev_type = SAS_END_DEVICE;
850 rphy = sas_end_device_alloc(phy->port);
851 /* FIXME: error handling */
852 if (unlikely(!rphy))
853 goto out_free;
854 child->tproto = phy->attached_tproto;
855 sas_init_dev(child);
856
857 child->rphy = rphy;
858 get_device(&rphy->dev);
859 sas_fill_in_rphy(child, rphy);
860
861 list_add_tail(&child->disco_list_node, &parent->port->disco_list);
862
863 res = sas_discover_end_dev(child);
864 if (res) {
865 SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
866 "at %016llx:0x%x returned 0x%x\n",
867 SAS_ADDR(child->sas_addr),
868 SAS_ADDR(parent->sas_addr), phy_id, res);
869 goto out_list_del;
870 }
871 } else {
872 SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
873 phy->attached_tproto, SAS_ADDR(parent->sas_addr),
874 phy_id);
875 goto out_free;
876 }
877
878 list_add_tail(&child->siblings, &parent_ex->children);
879 return child;
880
881 out_list_del:
882 sas_rphy_free(child->rphy);
883 list_del(&child->disco_list_node);
884 spin_lock_irq(&parent->port->dev_list_lock);
885 list_del(&child->dev_list_node);
886 spin_unlock_irq(&parent->port->dev_list_lock);
887 out_free:
888 sas_port_delete(phy->port);
889 out_err:
890 phy->port = NULL;
891 sas_put_device(child);
892 return NULL;
893 }
894
895 /* See if this phy is part of a wide port */
sas_ex_join_wide_port(struct domain_device * parent,int phy_id)896 static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
897 {
898 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
899 int i;
900
901 for (i = 0; i < parent->ex_dev.num_phys; i++) {
902 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
903
904 if (ephy == phy)
905 continue;
906
907 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
908 SAS_ADDR_SIZE) && ephy->port) {
909 sas_port_add_phy(ephy->port, phy->phy);
910 phy->port = ephy->port;
911 phy->phy_state = PHY_DEVICE_DISCOVERED;
912 return true;
913 }
914 }
915
916 return false;
917 }
918
sas_ex_discover_expander(struct domain_device * parent,int phy_id)919 static struct domain_device *sas_ex_discover_expander(
920 struct domain_device *parent, int phy_id)
921 {
922 struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
923 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
924 struct domain_device *child = NULL;
925 struct sas_rphy *rphy;
926 struct sas_expander_device *edev;
927 struct asd_sas_port *port;
928 int res;
929
930 if (phy->routing_attr == DIRECT_ROUTING) {
931 SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
932 "allowed\n",
933 SAS_ADDR(parent->sas_addr), phy_id,
934 SAS_ADDR(phy->attached_sas_addr),
935 phy->attached_phy_id);
936 return NULL;
937 }
938 child = sas_alloc_device();
939 if (!child)
940 return NULL;
941
942 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
943 /* FIXME: better error handling */
944 BUG_ON(sas_port_add(phy->port) != 0);
945
946
947 switch (phy->attached_dev_type) {
948 case SAS_EDGE_EXPANDER_DEVICE:
949 rphy = sas_expander_alloc(phy->port,
950 SAS_EDGE_EXPANDER_DEVICE);
951 break;
952 case SAS_FANOUT_EXPANDER_DEVICE:
953 rphy = sas_expander_alloc(phy->port,
954 SAS_FANOUT_EXPANDER_DEVICE);
955 break;
956 default:
957 rphy = NULL; /* shut gcc up */
958 BUG();
959 }
960 port = parent->port;
961 child->rphy = rphy;
962 get_device(&rphy->dev);
963 edev = rphy_to_expander_device(rphy);
964 child->dev_type = phy->attached_dev_type;
965 kref_get(&parent->kref);
966 child->parent = parent;
967 child->port = port;
968 child->iproto = phy->attached_iproto;
969 child->tproto = phy->attached_tproto;
970 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
971 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
972 sas_ex_get_linkrate(parent, child, phy);
973 edev->level = parent_ex->level + 1;
974 parent->port->disc.max_level = max(parent->port->disc.max_level,
975 edev->level);
976 sas_init_dev(child);
977 sas_fill_in_rphy(child, rphy);
978 sas_rphy_add(rphy);
979
980 spin_lock_irq(&parent->port->dev_list_lock);
981 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
982 spin_unlock_irq(&parent->port->dev_list_lock);
983
984 res = sas_discover_expander(child);
985 if (res) {
986 sas_rphy_delete(rphy);
987 spin_lock_irq(&parent->port->dev_list_lock);
988 list_del(&child->dev_list_node);
989 spin_unlock_irq(&parent->port->dev_list_lock);
990 sas_put_device(child);
991 return NULL;
992 }
993 list_add_tail(&child->siblings, &parent->ex_dev.children);
994 return child;
995 }
996
sas_ex_discover_dev(struct domain_device * dev,int phy_id)997 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
998 {
999 struct expander_device *ex = &dev->ex_dev;
1000 struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
1001 struct domain_device *child = NULL;
1002 int res = 0;
1003
1004 /* Phy state */
1005 if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
1006 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
1007 res = sas_ex_phy_discover(dev, phy_id);
1008 if (res)
1009 return res;
1010 }
1011
1012 /* Parent and domain coherency */
1013 if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1014 SAS_ADDR(dev->port->sas_addr))) {
1015 sas_add_parent_port(dev, phy_id);
1016 return 0;
1017 }
1018 if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1019 SAS_ADDR(dev->parent->sas_addr))) {
1020 sas_add_parent_port(dev, phy_id);
1021 if (ex_phy->routing_attr == TABLE_ROUTING)
1022 sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
1023 return 0;
1024 }
1025
1026 if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
1027 sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
1028
1029 if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) {
1030 if (ex_phy->routing_attr == DIRECT_ROUTING) {
1031 memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1032 sas_configure_routing(dev, ex_phy->attached_sas_addr);
1033 }
1034 return 0;
1035 } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
1036 return 0;
1037
1038 if (ex_phy->attached_dev_type != SAS_END_DEVICE &&
1039 ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE &&
1040 ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1041 ex_phy->attached_dev_type != SAS_SATA_PENDING) {
1042 SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
1043 "phy 0x%x\n", ex_phy->attached_dev_type,
1044 SAS_ADDR(dev->sas_addr),
1045 phy_id);
1046 return 0;
1047 }
1048
1049 res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
1050 if (res) {
1051 SAS_DPRINTK("configure routing for dev %016llx "
1052 "reported 0x%x. Forgotten\n",
1053 SAS_ADDR(ex_phy->attached_sas_addr), res);
1054 sas_disable_routing(dev, ex_phy->attached_sas_addr);
1055 return res;
1056 }
1057
1058 if (sas_ex_join_wide_port(dev, phy_id)) {
1059 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1060 phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
1061 return res;
1062 }
1063
1064 switch (ex_phy->attached_dev_type) {
1065 case SAS_END_DEVICE:
1066 case SAS_SATA_PENDING:
1067 child = sas_ex_discover_end_dev(dev, phy_id);
1068 break;
1069 case SAS_FANOUT_EXPANDER_DEVICE:
1070 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1071 SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
1072 "attached to ex %016llx phy 0x%x\n",
1073 SAS_ADDR(ex_phy->attached_sas_addr),
1074 ex_phy->attached_phy_id,
1075 SAS_ADDR(dev->sas_addr),
1076 phy_id);
1077 sas_ex_disable_phy(dev, phy_id);
1078 break;
1079 } else
1080 memcpy(dev->port->disc.fanout_sas_addr,
1081 ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1082 /* fallthrough */
1083 case SAS_EDGE_EXPANDER_DEVICE:
1084 child = sas_ex_discover_expander(dev, phy_id);
1085 break;
1086 default:
1087 break;
1088 }
1089
1090 if (child) {
1091 int i;
1092
1093 for (i = 0; i < ex->num_phys; i++) {
1094 if (ex->ex_phy[i].phy_state == PHY_VACANT ||
1095 ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
1096 continue;
1097 /*
1098 * Due to races, the phy might not get added to the
1099 * wide port, so we add the phy to the wide port here.
1100 */
1101 if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
1102 SAS_ADDR(child->sas_addr)) {
1103 ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
1104 if (sas_ex_join_wide_port(dev, i))
1105 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1106 i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr));
1107
1108 }
1109 }
1110 }
1111
1112 return res;
1113 }
1114
sas_find_sub_addr(struct domain_device * dev,u8 * sub_addr)1115 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1116 {
1117 struct expander_device *ex = &dev->ex_dev;
1118 int i;
1119
1120 for (i = 0; i < ex->num_phys; i++) {
1121 struct ex_phy *phy = &ex->ex_phy[i];
1122
1123 if (phy->phy_state == PHY_VACANT ||
1124 phy->phy_state == PHY_NOT_PRESENT)
1125 continue;
1126
1127 if ((phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1128 phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE) &&
1129 phy->routing_attr == SUBTRACTIVE_ROUTING) {
1130
1131 memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
1132
1133 return 1;
1134 }
1135 }
1136 return 0;
1137 }
1138
sas_check_level_subtractive_boundary(struct domain_device * dev)1139 static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1140 {
1141 struct expander_device *ex = &dev->ex_dev;
1142 struct domain_device *child;
1143 u8 sub_addr[8] = {0, };
1144
1145 list_for_each_entry(child, &ex->children, siblings) {
1146 if (child->dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1147 child->dev_type != SAS_FANOUT_EXPANDER_DEVICE)
1148 continue;
1149 if (sub_addr[0] == 0) {
1150 sas_find_sub_addr(child, sub_addr);
1151 continue;
1152 } else {
1153 u8 s2[8];
1154
1155 if (sas_find_sub_addr(child, s2) &&
1156 (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1157
1158 SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
1159 "diverges from subtractive "
1160 "boundary %016llx\n",
1161 SAS_ADDR(dev->sas_addr),
1162 SAS_ADDR(child->sas_addr),
1163 SAS_ADDR(s2),
1164 SAS_ADDR(sub_addr));
1165
1166 sas_ex_disable_port(child, s2);
1167 }
1168 }
1169 }
1170 return 0;
1171 }
1172 /**
1173 * sas_ex_discover_devices - discover devices attached to this expander
1174 * @dev: pointer to the expander domain device
1175 * @single: if you want to do a single phy, else set to -1;
1176 *
1177 * Configure this expander for use with its devices and register the
1178 * devices of this expander.
1179 */
sas_ex_discover_devices(struct domain_device * dev,int single)1180 static int sas_ex_discover_devices(struct domain_device *dev, int single)
1181 {
1182 struct expander_device *ex = &dev->ex_dev;
1183 int i = 0, end = ex->num_phys;
1184 int res = 0;
1185
1186 if (0 <= single && single < end) {
1187 i = single;
1188 end = i+1;
1189 }
1190
1191 for ( ; i < end; i++) {
1192 struct ex_phy *ex_phy = &ex->ex_phy[i];
1193
1194 if (ex_phy->phy_state == PHY_VACANT ||
1195 ex_phy->phy_state == PHY_NOT_PRESENT ||
1196 ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1197 continue;
1198
1199 switch (ex_phy->linkrate) {
1200 case SAS_PHY_DISABLED:
1201 case SAS_PHY_RESET_PROBLEM:
1202 case SAS_SATA_PORT_SELECTOR:
1203 continue;
1204 default:
1205 res = sas_ex_discover_dev(dev, i);
1206 if (res)
1207 break;
1208 continue;
1209 }
1210 }
1211
1212 if (!res)
1213 sas_check_level_subtractive_boundary(dev);
1214
1215 return res;
1216 }
1217
sas_check_ex_subtractive_boundary(struct domain_device * dev)1218 static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1219 {
1220 struct expander_device *ex = &dev->ex_dev;
1221 int i;
1222 u8 *sub_sas_addr = NULL;
1223
1224 if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE)
1225 return 0;
1226
1227 for (i = 0; i < ex->num_phys; i++) {
1228 struct ex_phy *phy = &ex->ex_phy[i];
1229
1230 if (phy->phy_state == PHY_VACANT ||
1231 phy->phy_state == PHY_NOT_PRESENT)
1232 continue;
1233
1234 if ((phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE ||
1235 phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE) &&
1236 phy->routing_attr == SUBTRACTIVE_ROUTING) {
1237
1238 if (!sub_sas_addr)
1239 sub_sas_addr = &phy->attached_sas_addr[0];
1240 else if (SAS_ADDR(sub_sas_addr) !=
1241 SAS_ADDR(phy->attached_sas_addr)) {
1242
1243 SAS_DPRINTK("ex %016llx phy 0x%x "
1244 "diverges(%016llx) on subtractive "
1245 "boundary(%016llx). Disabled\n",
1246 SAS_ADDR(dev->sas_addr), i,
1247 SAS_ADDR(phy->attached_sas_addr),
1248 SAS_ADDR(sub_sas_addr));
1249 sas_ex_disable_phy(dev, i);
1250 }
1251 }
1252 }
1253 return 0;
1254 }
1255
sas_print_parent_topology_bug(struct domain_device * child,struct ex_phy * parent_phy,struct ex_phy * child_phy)1256 static void sas_print_parent_topology_bug(struct domain_device *child,
1257 struct ex_phy *parent_phy,
1258 struct ex_phy *child_phy)
1259 {
1260 static const char *ex_type[] = {
1261 [SAS_EDGE_EXPANDER_DEVICE] = "edge",
1262 [SAS_FANOUT_EXPANDER_DEVICE] = "fanout",
1263 };
1264 struct domain_device *parent = child->parent;
1265
1266 sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx "
1267 "phy 0x%x has %c:%c routing link!\n",
1268
1269 ex_type[parent->dev_type],
1270 SAS_ADDR(parent->sas_addr),
1271 parent_phy->phy_id,
1272
1273 ex_type[child->dev_type],
1274 SAS_ADDR(child->sas_addr),
1275 child_phy->phy_id,
1276
1277 sas_route_char(parent, parent_phy),
1278 sas_route_char(child, child_phy));
1279 }
1280
sas_check_eeds(struct domain_device * child,struct ex_phy * parent_phy,struct ex_phy * child_phy)1281 static int sas_check_eeds(struct domain_device *child,
1282 struct ex_phy *parent_phy,
1283 struct ex_phy *child_phy)
1284 {
1285 int res = 0;
1286 struct domain_device *parent = child->parent;
1287
1288 if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1289 res = -ENODEV;
1290 SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1291 "phy S:0x%x, while there is a fanout ex %016llx\n",
1292 SAS_ADDR(parent->sas_addr),
1293 parent_phy->phy_id,
1294 SAS_ADDR(child->sas_addr),
1295 child_phy->phy_id,
1296 SAS_ADDR(parent->port->disc.fanout_sas_addr));
1297 } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1298 memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1299 SAS_ADDR_SIZE);
1300 memcpy(parent->port->disc.eeds_b, child->sas_addr,
1301 SAS_ADDR_SIZE);
1302 } else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1303 SAS_ADDR(parent->sas_addr)) ||
1304 (SAS_ADDR(parent->port->disc.eeds_a) ==
1305 SAS_ADDR(child->sas_addr)))
1306 &&
1307 ((SAS_ADDR(parent->port->disc.eeds_b) ==
1308 SAS_ADDR(parent->sas_addr)) ||
1309 (SAS_ADDR(parent->port->disc.eeds_b) ==
1310 SAS_ADDR(child->sas_addr))))
1311 ;
1312 else {
1313 res = -ENODEV;
1314 SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1315 "phy 0x%x link forms a third EEDS!\n",
1316 SAS_ADDR(parent->sas_addr),
1317 parent_phy->phy_id,
1318 SAS_ADDR(child->sas_addr),
1319 child_phy->phy_id);
1320 }
1321
1322 return res;
1323 }
1324
1325 /* Here we spill over 80 columns. It is intentional.
1326 */
sas_check_parent_topology(struct domain_device * child)1327 static int sas_check_parent_topology(struct domain_device *child)
1328 {
1329 struct expander_device *child_ex = &child->ex_dev;
1330 struct expander_device *parent_ex;
1331 int i;
1332 int res = 0;
1333
1334 if (!child->parent)
1335 return 0;
1336
1337 if (child->parent->dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1338 child->parent->dev_type != SAS_FANOUT_EXPANDER_DEVICE)
1339 return 0;
1340
1341 parent_ex = &child->parent->ex_dev;
1342
1343 for (i = 0; i < parent_ex->num_phys; i++) {
1344 struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1345 struct ex_phy *child_phy;
1346
1347 if (parent_phy->phy_state == PHY_VACANT ||
1348 parent_phy->phy_state == PHY_NOT_PRESENT)
1349 continue;
1350
1351 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1352 continue;
1353
1354 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1355
1356 switch (child->parent->dev_type) {
1357 case SAS_EDGE_EXPANDER_DEVICE:
1358 if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1359 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1360 child_phy->routing_attr != TABLE_ROUTING) {
1361 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1362 res = -ENODEV;
1363 }
1364 } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1365 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1366 res = sas_check_eeds(child, parent_phy, child_phy);
1367 } else if (child_phy->routing_attr != TABLE_ROUTING) {
1368 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1369 res = -ENODEV;
1370 }
1371 } else if (parent_phy->routing_attr == TABLE_ROUTING) {
1372 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING ||
1373 (child_phy->routing_attr == TABLE_ROUTING &&
1374 child_ex->t2t_supp && parent_ex->t2t_supp)) {
1375 /* All good */;
1376 } else {
1377 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1378 res = -ENODEV;
1379 }
1380 }
1381 break;
1382 case SAS_FANOUT_EXPANDER_DEVICE:
1383 if (parent_phy->routing_attr != TABLE_ROUTING ||
1384 child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1385 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1386 res = -ENODEV;
1387 }
1388 break;
1389 default:
1390 break;
1391 }
1392 }
1393
1394 return res;
1395 }
1396
1397 #define RRI_REQ_SIZE 16
1398 #define RRI_RESP_SIZE 44
1399
sas_configure_present(struct domain_device * dev,int phy_id,u8 * sas_addr,int * index,int * present)1400 static int sas_configure_present(struct domain_device *dev, int phy_id,
1401 u8 *sas_addr, int *index, int *present)
1402 {
1403 int i, res = 0;
1404 struct expander_device *ex = &dev->ex_dev;
1405 struct ex_phy *phy = &ex->ex_phy[phy_id];
1406 u8 *rri_req;
1407 u8 *rri_resp;
1408
1409 *present = 0;
1410 *index = 0;
1411
1412 rri_req = alloc_smp_req(RRI_REQ_SIZE);
1413 if (!rri_req)
1414 return -ENOMEM;
1415
1416 rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1417 if (!rri_resp) {
1418 kfree(rri_req);
1419 return -ENOMEM;
1420 }
1421
1422 rri_req[1] = SMP_REPORT_ROUTE_INFO;
1423 rri_req[9] = phy_id;
1424
1425 for (i = 0; i < ex->max_route_indexes ; i++) {
1426 *(__be16 *)(rri_req+6) = cpu_to_be16(i);
1427 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1428 RRI_RESP_SIZE);
1429 if (res)
1430 goto out;
1431 res = rri_resp[2];
1432 if (res == SMP_RESP_NO_INDEX) {
1433 SAS_DPRINTK("overflow of indexes: dev %016llx "
1434 "phy 0x%x index 0x%x\n",
1435 SAS_ADDR(dev->sas_addr), phy_id, i);
1436 goto out;
1437 } else if (res != SMP_RESP_FUNC_ACC) {
1438 SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1439 "result 0x%x\n", __func__,
1440 SAS_ADDR(dev->sas_addr), phy_id, i, res);
1441 goto out;
1442 }
1443 if (SAS_ADDR(sas_addr) != 0) {
1444 if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1445 *index = i;
1446 if ((rri_resp[12] & 0x80) == 0x80)
1447 *present = 0;
1448 else
1449 *present = 1;
1450 goto out;
1451 } else if (SAS_ADDR(rri_resp+16) == 0) {
1452 *index = i;
1453 *present = 0;
1454 goto out;
1455 }
1456 } else if (SAS_ADDR(rri_resp+16) == 0 &&
1457 phy->last_da_index < i) {
1458 phy->last_da_index = i;
1459 *index = i;
1460 *present = 0;
1461 goto out;
1462 }
1463 }
1464 res = -1;
1465 out:
1466 kfree(rri_req);
1467 kfree(rri_resp);
1468 return res;
1469 }
1470
1471 #define CRI_REQ_SIZE 44
1472 #define CRI_RESP_SIZE 8
1473
sas_configure_set(struct domain_device * dev,int phy_id,u8 * sas_addr,int index,int include)1474 static int sas_configure_set(struct domain_device *dev, int phy_id,
1475 u8 *sas_addr, int index, int include)
1476 {
1477 int res;
1478 u8 *cri_req;
1479 u8 *cri_resp;
1480
1481 cri_req = alloc_smp_req(CRI_REQ_SIZE);
1482 if (!cri_req)
1483 return -ENOMEM;
1484
1485 cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1486 if (!cri_resp) {
1487 kfree(cri_req);
1488 return -ENOMEM;
1489 }
1490
1491 cri_req[1] = SMP_CONF_ROUTE_INFO;
1492 *(__be16 *)(cri_req+6) = cpu_to_be16(index);
1493 cri_req[9] = phy_id;
1494 if (SAS_ADDR(sas_addr) == 0 || !include)
1495 cri_req[12] |= 0x80;
1496 memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1497
1498 res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1499 CRI_RESP_SIZE);
1500 if (res)
1501 goto out;
1502 res = cri_resp[2];
1503 if (res == SMP_RESP_NO_INDEX) {
1504 SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1505 "index 0x%x\n",
1506 SAS_ADDR(dev->sas_addr), phy_id, index);
1507 }
1508 out:
1509 kfree(cri_req);
1510 kfree(cri_resp);
1511 return res;
1512 }
1513
sas_configure_phy(struct domain_device * dev,int phy_id,u8 * sas_addr,int include)1514 static int sas_configure_phy(struct domain_device *dev, int phy_id,
1515 u8 *sas_addr, int include)
1516 {
1517 int index;
1518 int present;
1519 int res;
1520
1521 res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1522 if (res)
1523 return res;
1524 if (include ^ present)
1525 return sas_configure_set(dev, phy_id, sas_addr, index,include);
1526
1527 return res;
1528 }
1529
1530 /**
1531 * sas_configure_parent - configure routing table of parent
1532 * @parent: parent expander
1533 * @child: child expander
1534 * @sas_addr: SAS port identifier of device directly attached to child
1535 * @include: whether or not to include @child in the expander routing table
1536 */
sas_configure_parent(struct domain_device * parent,struct domain_device * child,u8 * sas_addr,int include)1537 static int sas_configure_parent(struct domain_device *parent,
1538 struct domain_device *child,
1539 u8 *sas_addr, int include)
1540 {
1541 struct expander_device *ex_parent = &parent->ex_dev;
1542 int res = 0;
1543 int i;
1544
1545 if (parent->parent) {
1546 res = sas_configure_parent(parent->parent, parent, sas_addr,
1547 include);
1548 if (res)
1549 return res;
1550 }
1551
1552 if (ex_parent->conf_route_table == 0) {
1553 SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1554 SAS_ADDR(parent->sas_addr));
1555 return 0;
1556 }
1557
1558 for (i = 0; i < ex_parent->num_phys; i++) {
1559 struct ex_phy *phy = &ex_parent->ex_phy[i];
1560
1561 if ((phy->routing_attr == TABLE_ROUTING) &&
1562 (SAS_ADDR(phy->attached_sas_addr) ==
1563 SAS_ADDR(child->sas_addr))) {
1564 res = sas_configure_phy(parent, i, sas_addr, include);
1565 if (res)
1566 return res;
1567 }
1568 }
1569
1570 return res;
1571 }
1572
1573 /**
1574 * sas_configure_routing - configure routing
1575 * @dev: expander device
1576 * @sas_addr: port identifier of device directly attached to the expander device
1577 */
sas_configure_routing(struct domain_device * dev,u8 * sas_addr)1578 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1579 {
1580 if (dev->parent)
1581 return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1582 return 0;
1583 }
1584
sas_disable_routing(struct domain_device * dev,u8 * sas_addr)1585 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr)
1586 {
1587 if (dev->parent)
1588 return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1589 return 0;
1590 }
1591
1592 /**
1593 * sas_discover_expander - expander discovery
1594 * @dev: pointer to expander domain device
1595 *
1596 * See comment in sas_discover_sata().
1597 */
sas_discover_expander(struct domain_device * dev)1598 static int sas_discover_expander(struct domain_device *dev)
1599 {
1600 int res;
1601
1602 res = sas_notify_lldd_dev_found(dev);
1603 if (res)
1604 return res;
1605
1606 res = sas_ex_general(dev);
1607 if (res)
1608 goto out_err;
1609 res = sas_ex_manuf_info(dev);
1610 if (res)
1611 goto out_err;
1612
1613 res = sas_expander_discover(dev);
1614 if (res) {
1615 SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1616 SAS_ADDR(dev->sas_addr), res);
1617 goto out_err;
1618 }
1619
1620 sas_check_ex_subtractive_boundary(dev);
1621 res = sas_check_parent_topology(dev);
1622 if (res)
1623 goto out_err;
1624 return 0;
1625 out_err:
1626 sas_notify_lldd_dev_gone(dev);
1627 return res;
1628 }
1629
sas_ex_level_discovery(struct asd_sas_port * port,const int level)1630 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1631 {
1632 int res = 0;
1633 struct domain_device *dev;
1634
1635 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1636 if (dev->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1637 dev->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1638 struct sas_expander_device *ex =
1639 rphy_to_expander_device(dev->rphy);
1640
1641 if (level == ex->level)
1642 res = sas_ex_discover_devices(dev, -1);
1643 else if (level > 0)
1644 res = sas_ex_discover_devices(port->port_dev, -1);
1645
1646 }
1647 }
1648
1649 return res;
1650 }
1651
sas_ex_bfs_disc(struct asd_sas_port * port)1652 static int sas_ex_bfs_disc(struct asd_sas_port *port)
1653 {
1654 int res;
1655 int level;
1656
1657 do {
1658 level = port->disc.max_level;
1659 res = sas_ex_level_discovery(port, level);
1660 mb();
1661 } while (level < port->disc.max_level);
1662
1663 return res;
1664 }
1665
sas_discover_root_expander(struct domain_device * dev)1666 int sas_discover_root_expander(struct domain_device *dev)
1667 {
1668 int res;
1669 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1670
1671 res = sas_rphy_add(dev->rphy);
1672 if (res)
1673 goto out_err;
1674
1675 ex->level = dev->port->disc.max_level; /* 0 */
1676 res = sas_discover_expander(dev);
1677 if (res)
1678 goto out_err2;
1679
1680 sas_ex_bfs_disc(dev->port);
1681
1682 return res;
1683
1684 out_err2:
1685 sas_rphy_remove(dev->rphy);
1686 out_err:
1687 return res;
1688 }
1689
1690 /* ---------- Domain revalidation ---------- */
1691
sas_get_phy_discover(struct domain_device * dev,int phy_id,struct smp_resp * disc_resp)1692 static int sas_get_phy_discover(struct domain_device *dev,
1693 int phy_id, struct smp_resp *disc_resp)
1694 {
1695 int res;
1696 u8 *disc_req;
1697
1698 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1699 if (!disc_req)
1700 return -ENOMEM;
1701
1702 disc_req[1] = SMP_DISCOVER;
1703 disc_req[9] = phy_id;
1704
1705 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1706 disc_resp, DISCOVER_RESP_SIZE);
1707 if (res)
1708 goto out;
1709 else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1710 res = disc_resp->result;
1711 goto out;
1712 }
1713 out:
1714 kfree(disc_req);
1715 return res;
1716 }
1717
sas_get_phy_change_count(struct domain_device * dev,int phy_id,int * pcc)1718 static int sas_get_phy_change_count(struct domain_device *dev,
1719 int phy_id, int *pcc)
1720 {
1721 int res;
1722 struct smp_resp *disc_resp;
1723
1724 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1725 if (!disc_resp)
1726 return -ENOMEM;
1727
1728 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1729 if (!res)
1730 *pcc = disc_resp->disc.change_count;
1731
1732 kfree(disc_resp);
1733 return res;
1734 }
1735
sas_get_phy_attached_dev(struct domain_device * dev,int phy_id,u8 * sas_addr,enum sas_device_type * type)1736 static int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1737 u8 *sas_addr, enum sas_device_type *type)
1738 {
1739 int res;
1740 struct smp_resp *disc_resp;
1741 struct discover_resp *dr;
1742
1743 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1744 if (!disc_resp)
1745 return -ENOMEM;
1746 dr = &disc_resp->disc;
1747
1748 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1749 if (res == 0) {
1750 memcpy(sas_addr, disc_resp->disc.attached_sas_addr, 8);
1751 *type = to_dev_type(dr);
1752 if (*type == 0)
1753 memset(sas_addr, 0, 8);
1754 }
1755 kfree(disc_resp);
1756 return res;
1757 }
1758
sas_find_bcast_phy(struct domain_device * dev,int * phy_id,int from_phy,bool update)1759 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1760 int from_phy, bool update)
1761 {
1762 struct expander_device *ex = &dev->ex_dev;
1763 int res = 0;
1764 int i;
1765
1766 for (i = from_phy; i < ex->num_phys; i++) {
1767 int phy_change_count = 0;
1768
1769 res = sas_get_phy_change_count(dev, i, &phy_change_count);
1770 switch (res) {
1771 case SMP_RESP_PHY_VACANT:
1772 case SMP_RESP_NO_PHY:
1773 continue;
1774 case SMP_RESP_FUNC_ACC:
1775 break;
1776 default:
1777 return res;
1778 }
1779
1780 if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1781 if (update)
1782 ex->ex_phy[i].phy_change_count =
1783 phy_change_count;
1784 *phy_id = i;
1785 return 0;
1786 }
1787 }
1788 return 0;
1789 }
1790
sas_get_ex_change_count(struct domain_device * dev,int * ecc)1791 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1792 {
1793 int res;
1794 u8 *rg_req;
1795 struct smp_resp *rg_resp;
1796
1797 rg_req = alloc_smp_req(RG_REQ_SIZE);
1798 if (!rg_req)
1799 return -ENOMEM;
1800
1801 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1802 if (!rg_resp) {
1803 kfree(rg_req);
1804 return -ENOMEM;
1805 }
1806
1807 rg_req[1] = SMP_REPORT_GENERAL;
1808
1809 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1810 RG_RESP_SIZE);
1811 if (res)
1812 goto out;
1813 if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1814 res = rg_resp->result;
1815 goto out;
1816 }
1817
1818 *ecc = be16_to_cpu(rg_resp->rg.change_count);
1819 out:
1820 kfree(rg_resp);
1821 kfree(rg_req);
1822 return res;
1823 }
1824 /**
1825 * sas_find_bcast_dev - find the device issue BROADCAST(CHANGE).
1826 * @dev:domain device to be detect.
1827 * @src_dev: the device which originated BROADCAST(CHANGE).
1828 *
1829 * Add self-configuration expander support. Suppose two expander cascading,
1830 * when the first level expander is self-configuring, hotplug the disks in
1831 * second level expander, BROADCAST(CHANGE) will not only be originated
1832 * in the second level expander, but also be originated in the first level
1833 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1834 * expander changed count in two level expanders will all increment at least
1835 * once, but the phy which chang count has changed is the source device which
1836 * we concerned.
1837 */
1838
sas_find_bcast_dev(struct domain_device * dev,struct domain_device ** src_dev)1839 static int sas_find_bcast_dev(struct domain_device *dev,
1840 struct domain_device **src_dev)
1841 {
1842 struct expander_device *ex = &dev->ex_dev;
1843 int ex_change_count = -1;
1844 int phy_id = -1;
1845 int res;
1846 struct domain_device *ch;
1847
1848 res = sas_get_ex_change_count(dev, &ex_change_count);
1849 if (res)
1850 goto out;
1851 if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1852 /* Just detect if this expander phys phy change count changed,
1853 * in order to determine if this expander originate BROADCAST,
1854 * and do not update phy change count field in our structure.
1855 */
1856 res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1857 if (phy_id != -1) {
1858 *src_dev = dev;
1859 ex->ex_change_count = ex_change_count;
1860 SAS_DPRINTK("Expander phy change count has changed\n");
1861 return res;
1862 } else
1863 SAS_DPRINTK("Expander phys DID NOT change\n");
1864 }
1865 list_for_each_entry(ch, &ex->children, siblings) {
1866 if (ch->dev_type == SAS_EDGE_EXPANDER_DEVICE || ch->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1867 res = sas_find_bcast_dev(ch, src_dev);
1868 if (*src_dev)
1869 return res;
1870 }
1871 }
1872 out:
1873 return res;
1874 }
1875
sas_unregister_ex_tree(struct asd_sas_port * port,struct domain_device * dev)1876 static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1877 {
1878 struct expander_device *ex = &dev->ex_dev;
1879 struct domain_device *child, *n;
1880
1881 list_for_each_entry_safe(child, n, &ex->children, siblings) {
1882 set_bit(SAS_DEV_GONE, &child->state);
1883 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1884 child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1885 sas_unregister_ex_tree(port, child);
1886 else
1887 sas_unregister_dev(port, child);
1888 }
1889 sas_unregister_dev(port, dev);
1890 }
1891
sas_unregister_devs_sas_addr(struct domain_device * parent,int phy_id,bool last)1892 static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1893 int phy_id, bool last)
1894 {
1895 struct expander_device *ex_dev = &parent->ex_dev;
1896 struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1897 struct domain_device *child, *n, *found = NULL;
1898 if (last) {
1899 list_for_each_entry_safe(child, n,
1900 &ex_dev->children, siblings) {
1901 if (SAS_ADDR(child->sas_addr) ==
1902 SAS_ADDR(phy->attached_sas_addr)) {
1903 set_bit(SAS_DEV_GONE, &child->state);
1904 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1905 child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1906 sas_unregister_ex_tree(parent->port, child);
1907 else
1908 sas_unregister_dev(parent->port, child);
1909 found = child;
1910 break;
1911 }
1912 }
1913 sas_disable_routing(parent, phy->attached_sas_addr);
1914 }
1915 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1916 if (phy->port) {
1917 sas_port_delete_phy(phy->port, phy->phy);
1918 sas_device_set_phy(found, phy->port);
1919 if (phy->port->num_phys == 0)
1920 list_add_tail(&phy->port->del_list,
1921 &parent->port->sas_port_del_list);
1922 phy->port = NULL;
1923 }
1924 }
1925
sas_discover_bfs_by_root_level(struct domain_device * root,const int level)1926 static int sas_discover_bfs_by_root_level(struct domain_device *root,
1927 const int level)
1928 {
1929 struct expander_device *ex_root = &root->ex_dev;
1930 struct domain_device *child;
1931 int res = 0;
1932
1933 list_for_each_entry(child, &ex_root->children, siblings) {
1934 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1935 child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1936 struct sas_expander_device *ex =
1937 rphy_to_expander_device(child->rphy);
1938
1939 if (level > ex->level)
1940 res = sas_discover_bfs_by_root_level(child,
1941 level);
1942 else if (level == ex->level)
1943 res = sas_ex_discover_devices(child, -1);
1944 }
1945 }
1946 return res;
1947 }
1948
sas_discover_bfs_by_root(struct domain_device * dev)1949 static int sas_discover_bfs_by_root(struct domain_device *dev)
1950 {
1951 int res;
1952 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1953 int level = ex->level+1;
1954
1955 res = sas_ex_discover_devices(dev, -1);
1956 if (res)
1957 goto out;
1958 do {
1959 res = sas_discover_bfs_by_root_level(dev, level);
1960 mb();
1961 level += 1;
1962 } while (level <= dev->port->disc.max_level);
1963 out:
1964 return res;
1965 }
1966
sas_discover_new(struct domain_device * dev,int phy_id)1967 static int sas_discover_new(struct domain_device *dev, int phy_id)
1968 {
1969 struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1970 struct domain_device *child;
1971 int res;
1972
1973 SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1974 SAS_ADDR(dev->sas_addr), phy_id);
1975 res = sas_ex_phy_discover(dev, phy_id);
1976 if (res)
1977 return res;
1978
1979 if (sas_ex_join_wide_port(dev, phy_id))
1980 return 0;
1981
1982 res = sas_ex_discover_devices(dev, phy_id);
1983 if (res)
1984 return res;
1985 list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1986 if (SAS_ADDR(child->sas_addr) ==
1987 SAS_ADDR(ex_phy->attached_sas_addr)) {
1988 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1989 child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1990 res = sas_discover_bfs_by_root(child);
1991 break;
1992 }
1993 }
1994 return res;
1995 }
1996
dev_type_flutter(enum sas_device_type new,enum sas_device_type old)1997 static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old)
1998 {
1999 if (old == new)
2000 return true;
2001
2002 /* treat device directed resets as flutter, if we went
2003 * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery
2004 */
2005 if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) ||
2006 (old == SAS_END_DEVICE && new == SAS_SATA_PENDING))
2007 return true;
2008
2009 return false;
2010 }
2011
sas_rediscover_dev(struct domain_device * dev,int phy_id,bool last)2012 static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last)
2013 {
2014 struct expander_device *ex = &dev->ex_dev;
2015 struct ex_phy *phy = &ex->ex_phy[phy_id];
2016 enum sas_device_type type = SAS_PHY_UNUSED;
2017 u8 sas_addr[8];
2018 int res;
2019
2020 memset(sas_addr, 0, 8);
2021 res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type);
2022 switch (res) {
2023 case SMP_RESP_NO_PHY:
2024 phy->phy_state = PHY_NOT_PRESENT;
2025 sas_unregister_devs_sas_addr(dev, phy_id, last);
2026 return res;
2027 case SMP_RESP_PHY_VACANT:
2028 phy->phy_state = PHY_VACANT;
2029 sas_unregister_devs_sas_addr(dev, phy_id, last);
2030 return res;
2031 case SMP_RESP_FUNC_ACC:
2032 break;
2033 case -ECOMM:
2034 break;
2035 default:
2036 return res;
2037 }
2038
2039 if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) {
2040 phy->phy_state = PHY_EMPTY;
2041 sas_unregister_devs_sas_addr(dev, phy_id, last);
2042 return res;
2043 } else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
2044 dev_type_flutter(type, phy->attached_dev_type)) {
2045 struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
2046 char *action = "";
2047
2048 sas_ex_phy_discover(dev, phy_id);
2049
2050 if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING)
2051 action = ", needs recovery";
2052 SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter%s\n",
2053 SAS_ADDR(dev->sas_addr), phy_id, action);
2054 return res;
2055 }
2056
2057 /* delete the old link */
2058 if (SAS_ADDR(phy->attached_sas_addr) &&
2059 SAS_ADDR(sas_addr) != SAS_ADDR(phy->attached_sas_addr)) {
2060 SAS_DPRINTK("ex %016llx phy 0x%x replace %016llx\n",
2061 SAS_ADDR(dev->sas_addr), phy_id,
2062 SAS_ADDR(phy->attached_sas_addr));
2063 sas_unregister_devs_sas_addr(dev, phy_id, last);
2064 }
2065
2066 return sas_discover_new(dev, phy_id);
2067 }
2068
2069 /**
2070 * sas_rediscover - revalidate the domain.
2071 * @dev:domain device to be detect.
2072 * @phy_id: the phy id will be detected.
2073 *
2074 * NOTE: this process _must_ quit (return) as soon as any connection
2075 * errors are encountered. Connection recovery is done elsewhere.
2076 * Discover process only interrogates devices in order to discover the
2077 * domain.For plugging out, we un-register the device only when it is
2078 * the last phy in the port, for other phys in this port, we just delete it
2079 * from the port.For inserting, we do discovery when it is the
2080 * first phy,for other phys in this port, we add it to the port to
2081 * forming the wide-port.
2082 */
sas_rediscover(struct domain_device * dev,const int phy_id)2083 static int sas_rediscover(struct domain_device *dev, const int phy_id)
2084 {
2085 struct expander_device *ex = &dev->ex_dev;
2086 struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2087 int res = 0;
2088 int i;
2089 bool last = true; /* is this the last phy of the port */
2090
2091 SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
2092 SAS_ADDR(dev->sas_addr), phy_id);
2093
2094 if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2095 for (i = 0; i < ex->num_phys; i++) {
2096 struct ex_phy *phy = &ex->ex_phy[i];
2097
2098 if (i == phy_id)
2099 continue;
2100 if (SAS_ADDR(phy->attached_sas_addr) ==
2101 SAS_ADDR(changed_phy->attached_sas_addr)) {
2102 SAS_DPRINTK("phy%d part of wide port with "
2103 "phy%d\n", phy_id, i);
2104 last = false;
2105 break;
2106 }
2107 }
2108 res = sas_rediscover_dev(dev, phy_id, last);
2109 } else
2110 res = sas_discover_new(dev, phy_id);
2111 return res;
2112 }
2113
2114 /**
2115 * sas_ex_revalidate_domain - revalidate the domain
2116 * @port_dev: port domain device.
2117 *
2118 * NOTE: this process _must_ quit (return) as soon as any connection
2119 * errors are encountered. Connection recovery is done elsewhere.
2120 * Discover process only interrogates devices in order to discover the
2121 * domain.
2122 */
sas_ex_revalidate_domain(struct domain_device * port_dev)2123 int sas_ex_revalidate_domain(struct domain_device *port_dev)
2124 {
2125 int res;
2126 struct domain_device *dev = NULL;
2127
2128 res = sas_find_bcast_dev(port_dev, &dev);
2129 if (res == 0 && dev) {
2130 struct expander_device *ex = &dev->ex_dev;
2131 int i = 0, phy_id;
2132
2133 do {
2134 phy_id = -1;
2135 res = sas_find_bcast_phy(dev, &phy_id, i, true);
2136 if (phy_id == -1)
2137 break;
2138 res = sas_rediscover(dev, phy_id);
2139 i = phy_id + 1;
2140 } while (i < ex->num_phys);
2141 }
2142 return res;
2143 }
2144
sas_smp_handler(struct bsg_job * job,struct Scsi_Host * shost,struct sas_rphy * rphy)2145 void sas_smp_handler(struct bsg_job *job, struct Scsi_Host *shost,
2146 struct sas_rphy *rphy)
2147 {
2148 struct domain_device *dev;
2149 unsigned int rcvlen = 0;
2150 int ret = -EINVAL;
2151
2152 /* no rphy means no smp target support (ie aic94xx host) */
2153 if (!rphy)
2154 return sas_smp_host_handler(job, shost);
2155
2156 switch (rphy->identify.device_type) {
2157 case SAS_EDGE_EXPANDER_DEVICE:
2158 case SAS_FANOUT_EXPANDER_DEVICE:
2159 break;
2160 default:
2161 printk("%s: can we send a smp request to a device?\n",
2162 __func__);
2163 goto out;
2164 }
2165
2166 dev = sas_find_dev_by_rphy(rphy);
2167 if (!dev) {
2168 printk("%s: fail to find a domain_device?\n", __func__);
2169 goto out;
2170 }
2171
2172 /* do we need to support multiple segments? */
2173 if (job->request_payload.sg_cnt > 1 ||
2174 job->reply_payload.sg_cnt > 1) {
2175 printk("%s: multiple segments req %u, rsp %u\n",
2176 __func__, job->request_payload.payload_len,
2177 job->reply_payload.payload_len);
2178 goto out;
2179 }
2180
2181 ret = smp_execute_task_sg(dev, job->request_payload.sg_list,
2182 job->reply_payload.sg_list);
2183 if (ret >= 0) {
2184 /* bsg_job_done() requires the length received */
2185 rcvlen = job->reply_payload.payload_len - ret;
2186 ret = 0;
2187 }
2188
2189 out:
2190 bsg_job_done(job, ret, rcvlen);
2191 }
2192