1 /*
2  * Serial Attached SCSI (SAS) Expander discovery and configuration
3  *
4  * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
5  * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
6  *
7  * This file is licensed under GPLv2.
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License as
11  * published by the Free Software Foundation; either version 2 of the
12  * License, or (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
22  *
23  */
24 
25 #include <linux/scatterlist.h>
26 #include <linux/blkdev.h>
27 #include <linux/slab.h>
28 
29 #include "sas_internal.h"
30 
31 #include <scsi/sas_ata.h>
32 #include <scsi/scsi_transport.h>
33 #include <scsi/scsi_transport_sas.h>
34 #include "../scsi_sas_internal.h"
35 
36 static int sas_discover_expander(struct domain_device *dev);
37 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
38 static int sas_configure_phy(struct domain_device *dev, int phy_id,
39 			     u8 *sas_addr, int include);
40 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
41 
42 /* ---------- SMP task management ---------- */
43 
smp_task_timedout(struct timer_list * t)44 static void smp_task_timedout(struct timer_list *t)
45 {
46 	struct sas_task_slow *slow = from_timer(slow, t, timer);
47 	struct sas_task *task = slow->task;
48 	unsigned long flags;
49 
50 	spin_lock_irqsave(&task->task_state_lock, flags);
51 	if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
52 		task->task_state_flags |= SAS_TASK_STATE_ABORTED;
53 	spin_unlock_irqrestore(&task->task_state_lock, flags);
54 
55 	complete(&task->slow_task->completion);
56 }
57 
smp_task_done(struct sas_task * task)58 static void smp_task_done(struct sas_task *task)
59 {
60 	if (!del_timer(&task->slow_task->timer))
61 		return;
62 	complete(&task->slow_task->completion);
63 }
64 
65 /* Give it some long enough timeout. In seconds. */
66 #define SMP_TIMEOUT 10
67 
smp_execute_task_sg(struct domain_device * dev,struct scatterlist * req,struct scatterlist * resp)68 static int smp_execute_task_sg(struct domain_device *dev,
69 		struct scatterlist *req, struct scatterlist *resp)
70 {
71 	int res, retry;
72 	struct sas_task *task = NULL;
73 	struct sas_internal *i =
74 		to_sas_internal(dev->port->ha->core.shost->transportt);
75 
76 	mutex_lock(&dev->ex_dev.cmd_mutex);
77 	for (retry = 0; retry < 3; retry++) {
78 		if (test_bit(SAS_DEV_GONE, &dev->state)) {
79 			res = -ECOMM;
80 			break;
81 		}
82 
83 		task = sas_alloc_slow_task(GFP_KERNEL);
84 		if (!task) {
85 			res = -ENOMEM;
86 			break;
87 		}
88 		task->dev = dev;
89 		task->task_proto = dev->tproto;
90 		task->smp_task.smp_req = *req;
91 		task->smp_task.smp_resp = *resp;
92 
93 		task->task_done = smp_task_done;
94 
95 		task->slow_task->timer.function = smp_task_timedout;
96 		task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
97 		add_timer(&task->slow_task->timer);
98 
99 		res = i->dft->lldd_execute_task(task, GFP_KERNEL);
100 
101 		if (res) {
102 			del_timer(&task->slow_task->timer);
103 			SAS_DPRINTK("executing SMP task failed:%d\n", res);
104 			break;
105 		}
106 
107 		wait_for_completion(&task->slow_task->completion);
108 		res = -ECOMM;
109 		if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
110 			SAS_DPRINTK("smp task timed out or aborted\n");
111 			i->dft->lldd_abort_task(task);
112 			if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
113 				SAS_DPRINTK("SMP task aborted and not done\n");
114 				break;
115 			}
116 		}
117 		if (task->task_status.resp == SAS_TASK_COMPLETE &&
118 		    task->task_status.stat == SAM_STAT_GOOD) {
119 			res = 0;
120 			break;
121 		}
122 		if (task->task_status.resp == SAS_TASK_COMPLETE &&
123 		    task->task_status.stat == SAS_DATA_UNDERRUN) {
124 			/* no error, but return the number of bytes of
125 			 * underrun */
126 			res = task->task_status.residual;
127 			break;
128 		}
129 		if (task->task_status.resp == SAS_TASK_COMPLETE &&
130 		    task->task_status.stat == SAS_DATA_OVERRUN) {
131 			res = -EMSGSIZE;
132 			break;
133 		}
134 		if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
135 		    task->task_status.stat == SAS_DEVICE_UNKNOWN)
136 			break;
137 		else {
138 			SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
139 				    "status 0x%x\n", __func__,
140 				    SAS_ADDR(dev->sas_addr),
141 				    task->task_status.resp,
142 				    task->task_status.stat);
143 			sas_free_task(task);
144 			task = NULL;
145 		}
146 	}
147 	mutex_unlock(&dev->ex_dev.cmd_mutex);
148 
149 	BUG_ON(retry == 3 && task != NULL);
150 	sas_free_task(task);
151 	return res;
152 }
153 
smp_execute_task(struct domain_device * dev,void * req,int req_size,void * resp,int resp_size)154 static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
155 			    void *resp, int resp_size)
156 {
157 	struct scatterlist req_sg;
158 	struct scatterlist resp_sg;
159 
160 	sg_init_one(&req_sg, req, req_size);
161 	sg_init_one(&resp_sg, resp, resp_size);
162 	return smp_execute_task_sg(dev, &req_sg, &resp_sg);
163 }
164 
165 /* ---------- Allocations ---------- */
166 
alloc_smp_req(int size)167 static inline void *alloc_smp_req(int size)
168 {
169 	u8 *p = kzalloc(size, GFP_KERNEL);
170 	if (p)
171 		p[0] = SMP_REQUEST;
172 	return p;
173 }
174 
alloc_smp_resp(int size)175 static inline void *alloc_smp_resp(int size)
176 {
177 	return kzalloc(size, GFP_KERNEL);
178 }
179 
sas_route_char(struct domain_device * dev,struct ex_phy * phy)180 static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
181 {
182 	switch (phy->routing_attr) {
183 	case TABLE_ROUTING:
184 		if (dev->ex_dev.t2t_supp)
185 			return 'U';
186 		else
187 			return 'T';
188 	case DIRECT_ROUTING:
189 		return 'D';
190 	case SUBTRACTIVE_ROUTING:
191 		return 'S';
192 	default:
193 		return '?';
194 	}
195 }
196 
to_dev_type(struct discover_resp * dr)197 static enum sas_device_type to_dev_type(struct discover_resp *dr)
198 {
199 	/* This is detecting a failure to transmit initial dev to host
200 	 * FIS as described in section J.5 of sas-2 r16
201 	 */
202 	if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev &&
203 	    dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
204 		return SAS_SATA_PENDING;
205 	else
206 		return dr->attached_dev_type;
207 }
208 
sas_set_ex_phy(struct domain_device * dev,int phy_id,void * rsp)209 static void sas_set_ex_phy(struct domain_device *dev, int phy_id, void *rsp)
210 {
211 	enum sas_device_type dev_type;
212 	enum sas_linkrate linkrate;
213 	u8 sas_addr[SAS_ADDR_SIZE];
214 	struct smp_resp *resp = rsp;
215 	struct discover_resp *dr = &resp->disc;
216 	struct sas_ha_struct *ha = dev->port->ha;
217 	struct expander_device *ex = &dev->ex_dev;
218 	struct ex_phy *phy = &ex->ex_phy[phy_id];
219 	struct sas_rphy *rphy = dev->rphy;
220 	bool new_phy = !phy->phy;
221 	char *type;
222 
223 	if (new_phy) {
224 		if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
225 			return;
226 		phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
227 
228 		/* FIXME: error_handling */
229 		BUG_ON(!phy->phy);
230 	}
231 
232 	switch (resp->result) {
233 	case SMP_RESP_PHY_VACANT:
234 		phy->phy_state = PHY_VACANT;
235 		break;
236 	default:
237 		phy->phy_state = PHY_NOT_PRESENT;
238 		break;
239 	case SMP_RESP_FUNC_ACC:
240 		phy->phy_state = PHY_EMPTY; /* do not know yet */
241 		break;
242 	}
243 
244 	/* check if anything important changed to squelch debug */
245 	dev_type = phy->attached_dev_type;
246 	linkrate  = phy->linkrate;
247 	memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
248 
249 	/* Handle vacant phy - rest of dr data is not valid so skip it */
250 	if (phy->phy_state == PHY_VACANT) {
251 		memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
252 		phy->attached_dev_type = SAS_PHY_UNUSED;
253 		if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) {
254 			phy->phy_id = phy_id;
255 			goto skip;
256 		} else
257 			goto out;
258 	}
259 
260 	phy->attached_dev_type = to_dev_type(dr);
261 	if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
262 		goto out;
263 	phy->phy_id = phy_id;
264 	phy->linkrate = dr->linkrate;
265 	phy->attached_sata_host = dr->attached_sata_host;
266 	phy->attached_sata_dev  = dr->attached_sata_dev;
267 	phy->attached_sata_ps   = dr->attached_sata_ps;
268 	phy->attached_iproto = dr->iproto << 1;
269 	phy->attached_tproto = dr->tproto << 1;
270 	/* help some expanders that fail to zero sas_address in the 'no
271 	 * device' case
272 	 */
273 	if (phy->attached_dev_type == SAS_PHY_UNUSED ||
274 	    phy->linkrate < SAS_LINK_RATE_1_5_GBPS)
275 		memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
276 	else
277 		memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
278 	phy->attached_phy_id = dr->attached_phy_id;
279 	phy->phy_change_count = dr->change_count;
280 	phy->routing_attr = dr->routing_attr;
281 	phy->virtual = dr->virtual;
282 	phy->last_da_index = -1;
283 
284 	phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
285 	phy->phy->identify.device_type = dr->attached_dev_type;
286 	phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
287 	phy->phy->identify.target_port_protocols = phy->attached_tproto;
288 	if (!phy->attached_tproto && dr->attached_sata_dev)
289 		phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
290 	phy->phy->identify.phy_identifier = phy_id;
291 	phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
292 	phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
293 	phy->phy->minimum_linkrate = dr->pmin_linkrate;
294 	phy->phy->maximum_linkrate = dr->pmax_linkrate;
295 	phy->phy->negotiated_linkrate = phy->linkrate;
296 	phy->phy->enabled = (phy->linkrate != SAS_PHY_DISABLED);
297 
298  skip:
299 	if (new_phy)
300 		if (sas_phy_add(phy->phy)) {
301 			sas_phy_free(phy->phy);
302 			return;
303 		}
304 
305  out:
306 	switch (phy->attached_dev_type) {
307 	case SAS_SATA_PENDING:
308 		type = "stp pending";
309 		break;
310 	case SAS_PHY_UNUSED:
311 		type = "no device";
312 		break;
313 	case SAS_END_DEVICE:
314 		if (phy->attached_iproto) {
315 			if (phy->attached_tproto)
316 				type = "host+target";
317 			else
318 				type = "host";
319 		} else {
320 			if (dr->attached_sata_dev)
321 				type = "stp";
322 			else
323 				type = "ssp";
324 		}
325 		break;
326 	case SAS_EDGE_EXPANDER_DEVICE:
327 	case SAS_FANOUT_EXPANDER_DEVICE:
328 		type = "smp";
329 		break;
330 	default:
331 		type = "unknown";
332 	}
333 
334 	/* this routine is polled by libata error recovery so filter
335 	 * unimportant messages
336 	 */
337 	if (new_phy || phy->attached_dev_type != dev_type ||
338 	    phy->linkrate != linkrate ||
339 	    SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
340 		/* pass */;
341 	else
342 		return;
343 
344 	/* if the attached device type changed and ata_eh is active,
345 	 * make sure we run revalidation when eh completes (see:
346 	 * sas_enable_revalidation)
347 	 */
348 	if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
349 		set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
350 
351 	SAS_DPRINTK("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
352 		    test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
353 		    SAS_ADDR(dev->sas_addr), phy->phy_id,
354 		    sas_route_char(dev, phy), phy->linkrate,
355 		    SAS_ADDR(phy->attached_sas_addr), type);
356 }
357 
358 /* check if we have an existing attached ata device on this expander phy */
sas_ex_to_ata(struct domain_device * ex_dev,int phy_id)359 struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
360 {
361 	struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
362 	struct domain_device *dev;
363 	struct sas_rphy *rphy;
364 
365 	if (!ex_phy->port)
366 		return NULL;
367 
368 	rphy = ex_phy->port->rphy;
369 	if (!rphy)
370 		return NULL;
371 
372 	dev = sas_find_dev_by_rphy(rphy);
373 
374 	if (dev && dev_is_sata(dev))
375 		return dev;
376 
377 	return NULL;
378 }
379 
380 #define DISCOVER_REQ_SIZE  16
381 #define DISCOVER_RESP_SIZE 56
382 
sas_ex_phy_discover_helper(struct domain_device * dev,u8 * disc_req,u8 * disc_resp,int single)383 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
384 				      u8 *disc_resp, int single)
385 {
386 	struct discover_resp *dr;
387 	int res;
388 
389 	disc_req[9] = single;
390 
391 	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
392 			       disc_resp, DISCOVER_RESP_SIZE);
393 	if (res)
394 		return res;
395 	dr = &((struct smp_resp *)disc_resp)->disc;
396 	if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
397 		sas_printk("Found loopback topology, just ignore it!\n");
398 		return 0;
399 	}
400 	sas_set_ex_phy(dev, single, disc_resp);
401 	return 0;
402 }
403 
sas_ex_phy_discover(struct domain_device * dev,int single)404 int sas_ex_phy_discover(struct domain_device *dev, int single)
405 {
406 	struct expander_device *ex = &dev->ex_dev;
407 	int  res = 0;
408 	u8   *disc_req;
409 	u8   *disc_resp;
410 
411 	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
412 	if (!disc_req)
413 		return -ENOMEM;
414 
415 	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
416 	if (!disc_resp) {
417 		kfree(disc_req);
418 		return -ENOMEM;
419 	}
420 
421 	disc_req[1] = SMP_DISCOVER;
422 
423 	if (0 <= single && single < ex->num_phys) {
424 		res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
425 	} else {
426 		int i;
427 
428 		for (i = 0; i < ex->num_phys; i++) {
429 			res = sas_ex_phy_discover_helper(dev, disc_req,
430 							 disc_resp, i);
431 			if (res)
432 				goto out_err;
433 		}
434 	}
435 out_err:
436 	kfree(disc_resp);
437 	kfree(disc_req);
438 	return res;
439 }
440 
sas_expander_discover(struct domain_device * dev)441 static int sas_expander_discover(struct domain_device *dev)
442 {
443 	struct expander_device *ex = &dev->ex_dev;
444 	int res = -ENOMEM;
445 
446 	ex->ex_phy = kcalloc(ex->num_phys, sizeof(*ex->ex_phy), GFP_KERNEL);
447 	if (!ex->ex_phy)
448 		return -ENOMEM;
449 
450 	res = sas_ex_phy_discover(dev, -1);
451 	if (res)
452 		goto out_err;
453 
454 	return 0;
455  out_err:
456 	kfree(ex->ex_phy);
457 	ex->ex_phy = NULL;
458 	return res;
459 }
460 
461 #define MAX_EXPANDER_PHYS 128
462 
ex_assign_report_general(struct domain_device * dev,struct smp_resp * resp)463 static void ex_assign_report_general(struct domain_device *dev,
464 					    struct smp_resp *resp)
465 {
466 	struct report_general_resp *rg = &resp->rg;
467 
468 	dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
469 	dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
470 	dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
471 	dev->ex_dev.t2t_supp = rg->t2t_supp;
472 	dev->ex_dev.conf_route_table = rg->conf_route_table;
473 	dev->ex_dev.configuring = rg->configuring;
474 	memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
475 }
476 
477 #define RG_REQ_SIZE   8
478 #define RG_RESP_SIZE 32
479 
sas_ex_general(struct domain_device * dev)480 static int sas_ex_general(struct domain_device *dev)
481 {
482 	u8 *rg_req;
483 	struct smp_resp *rg_resp;
484 	int res;
485 	int i;
486 
487 	rg_req = alloc_smp_req(RG_REQ_SIZE);
488 	if (!rg_req)
489 		return -ENOMEM;
490 
491 	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
492 	if (!rg_resp) {
493 		kfree(rg_req);
494 		return -ENOMEM;
495 	}
496 
497 	rg_req[1] = SMP_REPORT_GENERAL;
498 
499 	for (i = 0; i < 5; i++) {
500 		res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
501 				       RG_RESP_SIZE);
502 
503 		if (res) {
504 			SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
505 				    SAS_ADDR(dev->sas_addr), res);
506 			goto out;
507 		} else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
508 			SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
509 				    SAS_ADDR(dev->sas_addr), rg_resp->result);
510 			res = rg_resp->result;
511 			goto out;
512 		}
513 
514 		ex_assign_report_general(dev, rg_resp);
515 
516 		if (dev->ex_dev.configuring) {
517 			SAS_DPRINTK("RG: ex %llx self-configuring...\n",
518 				    SAS_ADDR(dev->sas_addr));
519 			schedule_timeout_interruptible(5*HZ);
520 		} else
521 			break;
522 	}
523 out:
524 	kfree(rg_req);
525 	kfree(rg_resp);
526 	return res;
527 }
528 
ex_assign_manuf_info(struct domain_device * dev,void * _mi_resp)529 static void ex_assign_manuf_info(struct domain_device *dev, void
530 					*_mi_resp)
531 {
532 	u8 *mi_resp = _mi_resp;
533 	struct sas_rphy *rphy = dev->rphy;
534 	struct sas_expander_device *edev = rphy_to_expander_device(rphy);
535 
536 	memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
537 	memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
538 	memcpy(edev->product_rev, mi_resp + 36,
539 	       SAS_EXPANDER_PRODUCT_REV_LEN);
540 
541 	if (mi_resp[8] & 1) {
542 		memcpy(edev->component_vendor_id, mi_resp + 40,
543 		       SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
544 		edev->component_id = mi_resp[48] << 8 | mi_resp[49];
545 		edev->component_revision_id = mi_resp[50];
546 	}
547 }
548 
549 #define MI_REQ_SIZE   8
550 #define MI_RESP_SIZE 64
551 
sas_ex_manuf_info(struct domain_device * dev)552 static int sas_ex_manuf_info(struct domain_device *dev)
553 {
554 	u8 *mi_req;
555 	u8 *mi_resp;
556 	int res;
557 
558 	mi_req = alloc_smp_req(MI_REQ_SIZE);
559 	if (!mi_req)
560 		return -ENOMEM;
561 
562 	mi_resp = alloc_smp_resp(MI_RESP_SIZE);
563 	if (!mi_resp) {
564 		kfree(mi_req);
565 		return -ENOMEM;
566 	}
567 
568 	mi_req[1] = SMP_REPORT_MANUF_INFO;
569 
570 	res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
571 	if (res) {
572 		SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
573 			    SAS_ADDR(dev->sas_addr), res);
574 		goto out;
575 	} else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
576 		SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
577 			    SAS_ADDR(dev->sas_addr), mi_resp[2]);
578 		goto out;
579 	}
580 
581 	ex_assign_manuf_info(dev, mi_resp);
582 out:
583 	kfree(mi_req);
584 	kfree(mi_resp);
585 	return res;
586 }
587 
588 #define PC_REQ_SIZE  44
589 #define PC_RESP_SIZE 8
590 
sas_smp_phy_control(struct domain_device * dev,int phy_id,enum phy_func phy_func,struct sas_phy_linkrates * rates)591 int sas_smp_phy_control(struct domain_device *dev, int phy_id,
592 			enum phy_func phy_func,
593 			struct sas_phy_linkrates *rates)
594 {
595 	u8 *pc_req;
596 	u8 *pc_resp;
597 	int res;
598 
599 	pc_req = alloc_smp_req(PC_REQ_SIZE);
600 	if (!pc_req)
601 		return -ENOMEM;
602 
603 	pc_resp = alloc_smp_resp(PC_RESP_SIZE);
604 	if (!pc_resp) {
605 		kfree(pc_req);
606 		return -ENOMEM;
607 	}
608 
609 	pc_req[1] = SMP_PHY_CONTROL;
610 	pc_req[9] = phy_id;
611 	pc_req[10]= phy_func;
612 	if (rates) {
613 		pc_req[32] = rates->minimum_linkrate << 4;
614 		pc_req[33] = rates->maximum_linkrate << 4;
615 	}
616 
617 	res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
618 
619 	kfree(pc_resp);
620 	kfree(pc_req);
621 	return res;
622 }
623 
sas_ex_disable_phy(struct domain_device * dev,int phy_id)624 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
625 {
626 	struct expander_device *ex = &dev->ex_dev;
627 	struct ex_phy *phy = &ex->ex_phy[phy_id];
628 
629 	sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
630 	phy->linkrate = SAS_PHY_DISABLED;
631 }
632 
sas_ex_disable_port(struct domain_device * dev,u8 * sas_addr)633 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
634 {
635 	struct expander_device *ex = &dev->ex_dev;
636 	int i;
637 
638 	for (i = 0; i < ex->num_phys; i++) {
639 		struct ex_phy *phy = &ex->ex_phy[i];
640 
641 		if (phy->phy_state == PHY_VACANT ||
642 		    phy->phy_state == PHY_NOT_PRESENT)
643 			continue;
644 
645 		if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
646 			sas_ex_disable_phy(dev, i);
647 	}
648 }
649 
sas_dev_present_in_domain(struct asd_sas_port * port,u8 * sas_addr)650 static int sas_dev_present_in_domain(struct asd_sas_port *port,
651 					    u8 *sas_addr)
652 {
653 	struct domain_device *dev;
654 
655 	if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
656 		return 1;
657 	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
658 		if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
659 			return 1;
660 	}
661 	return 0;
662 }
663 
664 #define RPEL_REQ_SIZE	16
665 #define RPEL_RESP_SIZE	32
sas_smp_get_phy_events(struct sas_phy * phy)666 int sas_smp_get_phy_events(struct sas_phy *phy)
667 {
668 	int res;
669 	u8 *req;
670 	u8 *resp;
671 	struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
672 	struct domain_device *dev = sas_find_dev_by_rphy(rphy);
673 
674 	req = alloc_smp_req(RPEL_REQ_SIZE);
675 	if (!req)
676 		return -ENOMEM;
677 
678 	resp = alloc_smp_resp(RPEL_RESP_SIZE);
679 	if (!resp) {
680 		kfree(req);
681 		return -ENOMEM;
682 	}
683 
684 	req[1] = SMP_REPORT_PHY_ERR_LOG;
685 	req[9] = phy->number;
686 
687 	res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
688 			            resp, RPEL_RESP_SIZE);
689 
690 	if (res)
691 		goto out;
692 
693 	phy->invalid_dword_count = scsi_to_u32(&resp[12]);
694 	phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
695 	phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
696 	phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
697 
698  out:
699 	kfree(req);
700 	kfree(resp);
701 	return res;
702 
703 }
704 
705 #ifdef CONFIG_SCSI_SAS_ATA
706 
707 #define RPS_REQ_SIZE  16
708 #define RPS_RESP_SIZE 60
709 
sas_get_report_phy_sata(struct domain_device * dev,int phy_id,struct smp_resp * rps_resp)710 int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
711 			    struct smp_resp *rps_resp)
712 {
713 	int res;
714 	u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
715 	u8 *resp = (u8 *)rps_resp;
716 
717 	if (!rps_req)
718 		return -ENOMEM;
719 
720 	rps_req[1] = SMP_REPORT_PHY_SATA;
721 	rps_req[9] = phy_id;
722 
723 	res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
724 			            rps_resp, RPS_RESP_SIZE);
725 
726 	/* 0x34 is the FIS type for the D2H fis.  There's a potential
727 	 * standards cockup here.  sas-2 explicitly specifies the FIS
728 	 * should be encoded so that FIS type is in resp[24].
729 	 * However, some expanders endian reverse this.  Undo the
730 	 * reversal here */
731 	if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
732 		int i;
733 
734 		for (i = 0; i < 5; i++) {
735 			int j = 24 + (i*4);
736 			u8 a, b;
737 			a = resp[j + 0];
738 			b = resp[j + 1];
739 			resp[j + 0] = resp[j + 3];
740 			resp[j + 1] = resp[j + 2];
741 			resp[j + 2] = b;
742 			resp[j + 3] = a;
743 		}
744 	}
745 
746 	kfree(rps_req);
747 	return res;
748 }
749 #endif
750 
sas_ex_get_linkrate(struct domain_device * parent,struct domain_device * child,struct ex_phy * parent_phy)751 static void sas_ex_get_linkrate(struct domain_device *parent,
752 				       struct domain_device *child,
753 				       struct ex_phy *parent_phy)
754 {
755 	struct expander_device *parent_ex = &parent->ex_dev;
756 	struct sas_port *port;
757 	int i;
758 
759 	child->pathways = 0;
760 
761 	port = parent_phy->port;
762 
763 	for (i = 0; i < parent_ex->num_phys; i++) {
764 		struct ex_phy *phy = &parent_ex->ex_phy[i];
765 
766 		if (phy->phy_state == PHY_VACANT ||
767 		    phy->phy_state == PHY_NOT_PRESENT)
768 			continue;
769 
770 		if (SAS_ADDR(phy->attached_sas_addr) ==
771 		    SAS_ADDR(child->sas_addr)) {
772 
773 			child->min_linkrate = min(parent->min_linkrate,
774 						  phy->linkrate);
775 			child->max_linkrate = max(parent->max_linkrate,
776 						  phy->linkrate);
777 			child->pathways++;
778 			sas_port_add_phy(port, phy->phy);
779 		}
780 	}
781 	child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
782 	child->pathways = min(child->pathways, parent->pathways);
783 }
784 
sas_ex_discover_end_dev(struct domain_device * parent,int phy_id)785 static struct domain_device *sas_ex_discover_end_dev(
786 	struct domain_device *parent, int phy_id)
787 {
788 	struct expander_device *parent_ex = &parent->ex_dev;
789 	struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
790 	struct domain_device *child = NULL;
791 	struct sas_rphy *rphy;
792 	int res;
793 
794 	if (phy->attached_sata_host || phy->attached_sata_ps)
795 		return NULL;
796 
797 	child = sas_alloc_device();
798 	if (!child)
799 		return NULL;
800 
801 	kref_get(&parent->kref);
802 	child->parent = parent;
803 	child->port   = parent->port;
804 	child->iproto = phy->attached_iproto;
805 	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
806 	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
807 	if (!phy->port) {
808 		phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
809 		if (unlikely(!phy->port))
810 			goto out_err;
811 		if (unlikely(sas_port_add(phy->port) != 0)) {
812 			sas_port_free(phy->port);
813 			goto out_err;
814 		}
815 	}
816 	sas_ex_get_linkrate(parent, child, phy);
817 	sas_device_set_phy(child, phy->port);
818 
819 #ifdef CONFIG_SCSI_SAS_ATA
820 	if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
821 		res = sas_get_ata_info(child, phy);
822 		if (res)
823 			goto out_free;
824 
825 		sas_init_dev(child);
826 		res = sas_ata_init(child);
827 		if (res)
828 			goto out_free;
829 		rphy = sas_end_device_alloc(phy->port);
830 		if (!rphy)
831 			goto out_free;
832 
833 		child->rphy = rphy;
834 		get_device(&rphy->dev);
835 
836 		list_add_tail(&child->disco_list_node, &parent->port->disco_list);
837 
838 		res = sas_discover_sata(child);
839 		if (res) {
840 			SAS_DPRINTK("sas_discover_sata() for device %16llx at "
841 				    "%016llx:0x%x returned 0x%x\n",
842 				    SAS_ADDR(child->sas_addr),
843 				    SAS_ADDR(parent->sas_addr), phy_id, res);
844 			goto out_list_del;
845 		}
846 	} else
847 #endif
848 	  if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
849 		child->dev_type = SAS_END_DEVICE;
850 		rphy = sas_end_device_alloc(phy->port);
851 		/* FIXME: error handling */
852 		if (unlikely(!rphy))
853 			goto out_free;
854 		child->tproto = phy->attached_tproto;
855 		sas_init_dev(child);
856 
857 		child->rphy = rphy;
858 		get_device(&rphy->dev);
859 		sas_fill_in_rphy(child, rphy);
860 
861 		list_add_tail(&child->disco_list_node, &parent->port->disco_list);
862 
863 		res = sas_discover_end_dev(child);
864 		if (res) {
865 			SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
866 				    "at %016llx:0x%x returned 0x%x\n",
867 				    SAS_ADDR(child->sas_addr),
868 				    SAS_ADDR(parent->sas_addr), phy_id, res);
869 			goto out_list_del;
870 		}
871 	} else {
872 		SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
873 			    phy->attached_tproto, SAS_ADDR(parent->sas_addr),
874 			    phy_id);
875 		goto out_free;
876 	}
877 
878 	list_add_tail(&child->siblings, &parent_ex->children);
879 	return child;
880 
881  out_list_del:
882 	sas_rphy_free(child->rphy);
883 	list_del(&child->disco_list_node);
884 	spin_lock_irq(&parent->port->dev_list_lock);
885 	list_del(&child->dev_list_node);
886 	spin_unlock_irq(&parent->port->dev_list_lock);
887  out_free:
888 	sas_port_delete(phy->port);
889  out_err:
890 	phy->port = NULL;
891 	sas_put_device(child);
892 	return NULL;
893 }
894 
895 /* See if this phy is part of a wide port */
sas_ex_join_wide_port(struct domain_device * parent,int phy_id)896 static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
897 {
898 	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
899 	int i;
900 
901 	for (i = 0; i < parent->ex_dev.num_phys; i++) {
902 		struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
903 
904 		if (ephy == phy)
905 			continue;
906 
907 		if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
908 			    SAS_ADDR_SIZE) && ephy->port) {
909 			sas_port_add_phy(ephy->port, phy->phy);
910 			phy->port = ephy->port;
911 			phy->phy_state = PHY_DEVICE_DISCOVERED;
912 			return true;
913 		}
914 	}
915 
916 	return false;
917 }
918 
sas_ex_discover_expander(struct domain_device * parent,int phy_id)919 static struct domain_device *sas_ex_discover_expander(
920 	struct domain_device *parent, int phy_id)
921 {
922 	struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
923 	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
924 	struct domain_device *child = NULL;
925 	struct sas_rphy *rphy;
926 	struct sas_expander_device *edev;
927 	struct asd_sas_port *port;
928 	int res;
929 
930 	if (phy->routing_attr == DIRECT_ROUTING) {
931 		SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
932 			    "allowed\n",
933 			    SAS_ADDR(parent->sas_addr), phy_id,
934 			    SAS_ADDR(phy->attached_sas_addr),
935 			    phy->attached_phy_id);
936 		return NULL;
937 	}
938 	child = sas_alloc_device();
939 	if (!child)
940 		return NULL;
941 
942 	phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
943 	/* FIXME: better error handling */
944 	BUG_ON(sas_port_add(phy->port) != 0);
945 
946 
947 	switch (phy->attached_dev_type) {
948 	case SAS_EDGE_EXPANDER_DEVICE:
949 		rphy = sas_expander_alloc(phy->port,
950 					  SAS_EDGE_EXPANDER_DEVICE);
951 		break;
952 	case SAS_FANOUT_EXPANDER_DEVICE:
953 		rphy = sas_expander_alloc(phy->port,
954 					  SAS_FANOUT_EXPANDER_DEVICE);
955 		break;
956 	default:
957 		rphy = NULL;	/* shut gcc up */
958 		BUG();
959 	}
960 	port = parent->port;
961 	child->rphy = rphy;
962 	get_device(&rphy->dev);
963 	edev = rphy_to_expander_device(rphy);
964 	child->dev_type = phy->attached_dev_type;
965 	kref_get(&parent->kref);
966 	child->parent = parent;
967 	child->port = port;
968 	child->iproto = phy->attached_iproto;
969 	child->tproto = phy->attached_tproto;
970 	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
971 	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
972 	sas_ex_get_linkrate(parent, child, phy);
973 	edev->level = parent_ex->level + 1;
974 	parent->port->disc.max_level = max(parent->port->disc.max_level,
975 					   edev->level);
976 	sas_init_dev(child);
977 	sas_fill_in_rphy(child, rphy);
978 	sas_rphy_add(rphy);
979 
980 	spin_lock_irq(&parent->port->dev_list_lock);
981 	list_add_tail(&child->dev_list_node, &parent->port->dev_list);
982 	spin_unlock_irq(&parent->port->dev_list_lock);
983 
984 	res = sas_discover_expander(child);
985 	if (res) {
986 		sas_rphy_delete(rphy);
987 		spin_lock_irq(&parent->port->dev_list_lock);
988 		list_del(&child->dev_list_node);
989 		spin_unlock_irq(&parent->port->dev_list_lock);
990 		sas_put_device(child);
991 		return NULL;
992 	}
993 	list_add_tail(&child->siblings, &parent->ex_dev.children);
994 	return child;
995 }
996 
sas_ex_discover_dev(struct domain_device * dev,int phy_id)997 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
998 {
999 	struct expander_device *ex = &dev->ex_dev;
1000 	struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
1001 	struct domain_device *child = NULL;
1002 	int res = 0;
1003 
1004 	/* Phy state */
1005 	if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
1006 		if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
1007 			res = sas_ex_phy_discover(dev, phy_id);
1008 		if (res)
1009 			return res;
1010 	}
1011 
1012 	/* Parent and domain coherency */
1013 	if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1014 			     SAS_ADDR(dev->port->sas_addr))) {
1015 		sas_add_parent_port(dev, phy_id);
1016 		return 0;
1017 	}
1018 	if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1019 			    SAS_ADDR(dev->parent->sas_addr))) {
1020 		sas_add_parent_port(dev, phy_id);
1021 		if (ex_phy->routing_attr == TABLE_ROUTING)
1022 			sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
1023 		return 0;
1024 	}
1025 
1026 	if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
1027 		sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
1028 
1029 	if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) {
1030 		if (ex_phy->routing_attr == DIRECT_ROUTING) {
1031 			memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1032 			sas_configure_routing(dev, ex_phy->attached_sas_addr);
1033 		}
1034 		return 0;
1035 	} else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
1036 		return 0;
1037 
1038 	if (ex_phy->attached_dev_type != SAS_END_DEVICE &&
1039 	    ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE &&
1040 	    ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1041 	    ex_phy->attached_dev_type != SAS_SATA_PENDING) {
1042 		SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
1043 			    "phy 0x%x\n", ex_phy->attached_dev_type,
1044 			    SAS_ADDR(dev->sas_addr),
1045 			    phy_id);
1046 		return 0;
1047 	}
1048 
1049 	res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
1050 	if (res) {
1051 		SAS_DPRINTK("configure routing for dev %016llx "
1052 			    "reported 0x%x. Forgotten\n",
1053 			    SAS_ADDR(ex_phy->attached_sas_addr), res);
1054 		sas_disable_routing(dev, ex_phy->attached_sas_addr);
1055 		return res;
1056 	}
1057 
1058 	if (sas_ex_join_wide_port(dev, phy_id)) {
1059 		SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1060 			    phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
1061 		return res;
1062 	}
1063 
1064 	switch (ex_phy->attached_dev_type) {
1065 	case SAS_END_DEVICE:
1066 	case SAS_SATA_PENDING:
1067 		child = sas_ex_discover_end_dev(dev, phy_id);
1068 		break;
1069 	case SAS_FANOUT_EXPANDER_DEVICE:
1070 		if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1071 			SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
1072 				    "attached to ex %016llx phy 0x%x\n",
1073 				    SAS_ADDR(ex_phy->attached_sas_addr),
1074 				    ex_phy->attached_phy_id,
1075 				    SAS_ADDR(dev->sas_addr),
1076 				    phy_id);
1077 			sas_ex_disable_phy(dev, phy_id);
1078 			break;
1079 		} else
1080 			memcpy(dev->port->disc.fanout_sas_addr,
1081 			       ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1082 		/* fallthrough */
1083 	case SAS_EDGE_EXPANDER_DEVICE:
1084 		child = sas_ex_discover_expander(dev, phy_id);
1085 		break;
1086 	default:
1087 		break;
1088 	}
1089 
1090 	if (child) {
1091 		int i;
1092 
1093 		for (i = 0; i < ex->num_phys; i++) {
1094 			if (ex->ex_phy[i].phy_state == PHY_VACANT ||
1095 			    ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
1096 				continue;
1097 			/*
1098 			 * Due to races, the phy might not get added to the
1099 			 * wide port, so we add the phy to the wide port here.
1100 			 */
1101 			if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
1102 			    SAS_ADDR(child->sas_addr)) {
1103 				ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
1104 				if (sas_ex_join_wide_port(dev, i))
1105 					SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1106 						    i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr));
1107 
1108 			}
1109 		}
1110 	}
1111 
1112 	return res;
1113 }
1114 
sas_find_sub_addr(struct domain_device * dev,u8 * sub_addr)1115 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1116 {
1117 	struct expander_device *ex = &dev->ex_dev;
1118 	int i;
1119 
1120 	for (i = 0; i < ex->num_phys; i++) {
1121 		struct ex_phy *phy = &ex->ex_phy[i];
1122 
1123 		if (phy->phy_state == PHY_VACANT ||
1124 		    phy->phy_state == PHY_NOT_PRESENT)
1125 			continue;
1126 
1127 		if ((phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1128 		     phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE) &&
1129 		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1130 
1131 			memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
1132 
1133 			return 1;
1134 		}
1135 	}
1136 	return 0;
1137 }
1138 
sas_check_level_subtractive_boundary(struct domain_device * dev)1139 static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1140 {
1141 	struct expander_device *ex = &dev->ex_dev;
1142 	struct domain_device *child;
1143 	u8 sub_addr[8] = {0, };
1144 
1145 	list_for_each_entry(child, &ex->children, siblings) {
1146 		if (child->dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1147 		    child->dev_type != SAS_FANOUT_EXPANDER_DEVICE)
1148 			continue;
1149 		if (sub_addr[0] == 0) {
1150 			sas_find_sub_addr(child, sub_addr);
1151 			continue;
1152 		} else {
1153 			u8 s2[8];
1154 
1155 			if (sas_find_sub_addr(child, s2) &&
1156 			    (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1157 
1158 				SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
1159 					    "diverges from subtractive "
1160 					    "boundary %016llx\n",
1161 					    SAS_ADDR(dev->sas_addr),
1162 					    SAS_ADDR(child->sas_addr),
1163 					    SAS_ADDR(s2),
1164 					    SAS_ADDR(sub_addr));
1165 
1166 				sas_ex_disable_port(child, s2);
1167 			}
1168 		}
1169 	}
1170 	return 0;
1171 }
1172 /**
1173  * sas_ex_discover_devices - discover devices attached to this expander
1174  * @dev: pointer to the expander domain device
1175  * @single: if you want to do a single phy, else set to -1;
1176  *
1177  * Configure this expander for use with its devices and register the
1178  * devices of this expander.
1179  */
sas_ex_discover_devices(struct domain_device * dev,int single)1180 static int sas_ex_discover_devices(struct domain_device *dev, int single)
1181 {
1182 	struct expander_device *ex = &dev->ex_dev;
1183 	int i = 0, end = ex->num_phys;
1184 	int res = 0;
1185 
1186 	if (0 <= single && single < end) {
1187 		i = single;
1188 		end = i+1;
1189 	}
1190 
1191 	for ( ; i < end; i++) {
1192 		struct ex_phy *ex_phy = &ex->ex_phy[i];
1193 
1194 		if (ex_phy->phy_state == PHY_VACANT ||
1195 		    ex_phy->phy_state == PHY_NOT_PRESENT ||
1196 		    ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1197 			continue;
1198 
1199 		switch (ex_phy->linkrate) {
1200 		case SAS_PHY_DISABLED:
1201 		case SAS_PHY_RESET_PROBLEM:
1202 		case SAS_SATA_PORT_SELECTOR:
1203 			continue;
1204 		default:
1205 			res = sas_ex_discover_dev(dev, i);
1206 			if (res)
1207 				break;
1208 			continue;
1209 		}
1210 	}
1211 
1212 	if (!res)
1213 		sas_check_level_subtractive_boundary(dev);
1214 
1215 	return res;
1216 }
1217 
sas_check_ex_subtractive_boundary(struct domain_device * dev)1218 static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1219 {
1220 	struct expander_device *ex = &dev->ex_dev;
1221 	int i;
1222 	u8  *sub_sas_addr = NULL;
1223 
1224 	if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE)
1225 		return 0;
1226 
1227 	for (i = 0; i < ex->num_phys; i++) {
1228 		struct ex_phy *phy = &ex->ex_phy[i];
1229 
1230 		if (phy->phy_state == PHY_VACANT ||
1231 		    phy->phy_state == PHY_NOT_PRESENT)
1232 			continue;
1233 
1234 		if ((phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE ||
1235 		     phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE) &&
1236 		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1237 
1238 			if (!sub_sas_addr)
1239 				sub_sas_addr = &phy->attached_sas_addr[0];
1240 			else if (SAS_ADDR(sub_sas_addr) !=
1241 				 SAS_ADDR(phy->attached_sas_addr)) {
1242 
1243 				SAS_DPRINTK("ex %016llx phy 0x%x "
1244 					    "diverges(%016llx) on subtractive "
1245 					    "boundary(%016llx). Disabled\n",
1246 					    SAS_ADDR(dev->sas_addr), i,
1247 					    SAS_ADDR(phy->attached_sas_addr),
1248 					    SAS_ADDR(sub_sas_addr));
1249 				sas_ex_disable_phy(dev, i);
1250 			}
1251 		}
1252 	}
1253 	return 0;
1254 }
1255 
sas_print_parent_topology_bug(struct domain_device * child,struct ex_phy * parent_phy,struct ex_phy * child_phy)1256 static void sas_print_parent_topology_bug(struct domain_device *child,
1257 						 struct ex_phy *parent_phy,
1258 						 struct ex_phy *child_phy)
1259 {
1260 	static const char *ex_type[] = {
1261 		[SAS_EDGE_EXPANDER_DEVICE] = "edge",
1262 		[SAS_FANOUT_EXPANDER_DEVICE] = "fanout",
1263 	};
1264 	struct domain_device *parent = child->parent;
1265 
1266 	sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx "
1267 		   "phy 0x%x has %c:%c routing link!\n",
1268 
1269 		   ex_type[parent->dev_type],
1270 		   SAS_ADDR(parent->sas_addr),
1271 		   parent_phy->phy_id,
1272 
1273 		   ex_type[child->dev_type],
1274 		   SAS_ADDR(child->sas_addr),
1275 		   child_phy->phy_id,
1276 
1277 		   sas_route_char(parent, parent_phy),
1278 		   sas_route_char(child, child_phy));
1279 }
1280 
sas_check_eeds(struct domain_device * child,struct ex_phy * parent_phy,struct ex_phy * child_phy)1281 static int sas_check_eeds(struct domain_device *child,
1282 				 struct ex_phy *parent_phy,
1283 				 struct ex_phy *child_phy)
1284 {
1285 	int res = 0;
1286 	struct domain_device *parent = child->parent;
1287 
1288 	if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1289 		res = -ENODEV;
1290 		SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1291 			    "phy S:0x%x, while there is a fanout ex %016llx\n",
1292 			    SAS_ADDR(parent->sas_addr),
1293 			    parent_phy->phy_id,
1294 			    SAS_ADDR(child->sas_addr),
1295 			    child_phy->phy_id,
1296 			    SAS_ADDR(parent->port->disc.fanout_sas_addr));
1297 	} else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1298 		memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1299 		       SAS_ADDR_SIZE);
1300 		memcpy(parent->port->disc.eeds_b, child->sas_addr,
1301 		       SAS_ADDR_SIZE);
1302 	} else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1303 		    SAS_ADDR(parent->sas_addr)) ||
1304 		   (SAS_ADDR(parent->port->disc.eeds_a) ==
1305 		    SAS_ADDR(child->sas_addr)))
1306 		   &&
1307 		   ((SAS_ADDR(parent->port->disc.eeds_b) ==
1308 		     SAS_ADDR(parent->sas_addr)) ||
1309 		    (SAS_ADDR(parent->port->disc.eeds_b) ==
1310 		     SAS_ADDR(child->sas_addr))))
1311 		;
1312 	else {
1313 		res = -ENODEV;
1314 		SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1315 			    "phy 0x%x link forms a third EEDS!\n",
1316 			    SAS_ADDR(parent->sas_addr),
1317 			    parent_phy->phy_id,
1318 			    SAS_ADDR(child->sas_addr),
1319 			    child_phy->phy_id);
1320 	}
1321 
1322 	return res;
1323 }
1324 
1325 /* Here we spill over 80 columns.  It is intentional.
1326  */
sas_check_parent_topology(struct domain_device * child)1327 static int sas_check_parent_topology(struct domain_device *child)
1328 {
1329 	struct expander_device *child_ex = &child->ex_dev;
1330 	struct expander_device *parent_ex;
1331 	int i;
1332 	int res = 0;
1333 
1334 	if (!child->parent)
1335 		return 0;
1336 
1337 	if (child->parent->dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1338 	    child->parent->dev_type != SAS_FANOUT_EXPANDER_DEVICE)
1339 		return 0;
1340 
1341 	parent_ex = &child->parent->ex_dev;
1342 
1343 	for (i = 0; i < parent_ex->num_phys; i++) {
1344 		struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1345 		struct ex_phy *child_phy;
1346 
1347 		if (parent_phy->phy_state == PHY_VACANT ||
1348 		    parent_phy->phy_state == PHY_NOT_PRESENT)
1349 			continue;
1350 
1351 		if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1352 			continue;
1353 
1354 		child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1355 
1356 		switch (child->parent->dev_type) {
1357 		case SAS_EDGE_EXPANDER_DEVICE:
1358 			if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1359 				if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1360 				    child_phy->routing_attr != TABLE_ROUTING) {
1361 					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1362 					res = -ENODEV;
1363 				}
1364 			} else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1365 				if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1366 					res = sas_check_eeds(child, parent_phy, child_phy);
1367 				} else if (child_phy->routing_attr != TABLE_ROUTING) {
1368 					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1369 					res = -ENODEV;
1370 				}
1371 			} else if (parent_phy->routing_attr == TABLE_ROUTING) {
1372 				if (child_phy->routing_attr == SUBTRACTIVE_ROUTING ||
1373 				    (child_phy->routing_attr == TABLE_ROUTING &&
1374 				     child_ex->t2t_supp && parent_ex->t2t_supp)) {
1375 					/* All good */;
1376 				} else {
1377 					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1378 					res = -ENODEV;
1379 				}
1380 			}
1381 			break;
1382 		case SAS_FANOUT_EXPANDER_DEVICE:
1383 			if (parent_phy->routing_attr != TABLE_ROUTING ||
1384 			    child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1385 				sas_print_parent_topology_bug(child, parent_phy, child_phy);
1386 				res = -ENODEV;
1387 			}
1388 			break;
1389 		default:
1390 			break;
1391 		}
1392 	}
1393 
1394 	return res;
1395 }
1396 
1397 #define RRI_REQ_SIZE  16
1398 #define RRI_RESP_SIZE 44
1399 
sas_configure_present(struct domain_device * dev,int phy_id,u8 * sas_addr,int * index,int * present)1400 static int sas_configure_present(struct domain_device *dev, int phy_id,
1401 				 u8 *sas_addr, int *index, int *present)
1402 {
1403 	int i, res = 0;
1404 	struct expander_device *ex = &dev->ex_dev;
1405 	struct ex_phy *phy = &ex->ex_phy[phy_id];
1406 	u8 *rri_req;
1407 	u8 *rri_resp;
1408 
1409 	*present = 0;
1410 	*index = 0;
1411 
1412 	rri_req = alloc_smp_req(RRI_REQ_SIZE);
1413 	if (!rri_req)
1414 		return -ENOMEM;
1415 
1416 	rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1417 	if (!rri_resp) {
1418 		kfree(rri_req);
1419 		return -ENOMEM;
1420 	}
1421 
1422 	rri_req[1] = SMP_REPORT_ROUTE_INFO;
1423 	rri_req[9] = phy_id;
1424 
1425 	for (i = 0; i < ex->max_route_indexes ; i++) {
1426 		*(__be16 *)(rri_req+6) = cpu_to_be16(i);
1427 		res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1428 				       RRI_RESP_SIZE);
1429 		if (res)
1430 			goto out;
1431 		res = rri_resp[2];
1432 		if (res == SMP_RESP_NO_INDEX) {
1433 			SAS_DPRINTK("overflow of indexes: dev %016llx "
1434 				    "phy 0x%x index 0x%x\n",
1435 				    SAS_ADDR(dev->sas_addr), phy_id, i);
1436 			goto out;
1437 		} else if (res != SMP_RESP_FUNC_ACC) {
1438 			SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1439 				    "result 0x%x\n", __func__,
1440 				    SAS_ADDR(dev->sas_addr), phy_id, i, res);
1441 			goto out;
1442 		}
1443 		if (SAS_ADDR(sas_addr) != 0) {
1444 			if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1445 				*index = i;
1446 				if ((rri_resp[12] & 0x80) == 0x80)
1447 					*present = 0;
1448 				else
1449 					*present = 1;
1450 				goto out;
1451 			} else if (SAS_ADDR(rri_resp+16) == 0) {
1452 				*index = i;
1453 				*present = 0;
1454 				goto out;
1455 			}
1456 		} else if (SAS_ADDR(rri_resp+16) == 0 &&
1457 			   phy->last_da_index < i) {
1458 			phy->last_da_index = i;
1459 			*index = i;
1460 			*present = 0;
1461 			goto out;
1462 		}
1463 	}
1464 	res = -1;
1465 out:
1466 	kfree(rri_req);
1467 	kfree(rri_resp);
1468 	return res;
1469 }
1470 
1471 #define CRI_REQ_SIZE  44
1472 #define CRI_RESP_SIZE  8
1473 
sas_configure_set(struct domain_device * dev,int phy_id,u8 * sas_addr,int index,int include)1474 static int sas_configure_set(struct domain_device *dev, int phy_id,
1475 			     u8 *sas_addr, int index, int include)
1476 {
1477 	int res;
1478 	u8 *cri_req;
1479 	u8 *cri_resp;
1480 
1481 	cri_req = alloc_smp_req(CRI_REQ_SIZE);
1482 	if (!cri_req)
1483 		return -ENOMEM;
1484 
1485 	cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1486 	if (!cri_resp) {
1487 		kfree(cri_req);
1488 		return -ENOMEM;
1489 	}
1490 
1491 	cri_req[1] = SMP_CONF_ROUTE_INFO;
1492 	*(__be16 *)(cri_req+6) = cpu_to_be16(index);
1493 	cri_req[9] = phy_id;
1494 	if (SAS_ADDR(sas_addr) == 0 || !include)
1495 		cri_req[12] |= 0x80;
1496 	memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1497 
1498 	res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1499 			       CRI_RESP_SIZE);
1500 	if (res)
1501 		goto out;
1502 	res = cri_resp[2];
1503 	if (res == SMP_RESP_NO_INDEX) {
1504 		SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1505 			    "index 0x%x\n",
1506 			    SAS_ADDR(dev->sas_addr), phy_id, index);
1507 	}
1508 out:
1509 	kfree(cri_req);
1510 	kfree(cri_resp);
1511 	return res;
1512 }
1513 
sas_configure_phy(struct domain_device * dev,int phy_id,u8 * sas_addr,int include)1514 static int sas_configure_phy(struct domain_device *dev, int phy_id,
1515 				    u8 *sas_addr, int include)
1516 {
1517 	int index;
1518 	int present;
1519 	int res;
1520 
1521 	res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1522 	if (res)
1523 		return res;
1524 	if (include ^ present)
1525 		return sas_configure_set(dev, phy_id, sas_addr, index,include);
1526 
1527 	return res;
1528 }
1529 
1530 /**
1531  * sas_configure_parent - configure routing table of parent
1532  * @parent: parent expander
1533  * @child: child expander
1534  * @sas_addr: SAS port identifier of device directly attached to child
1535  * @include: whether or not to include @child in the expander routing table
1536  */
sas_configure_parent(struct domain_device * parent,struct domain_device * child,u8 * sas_addr,int include)1537 static int sas_configure_parent(struct domain_device *parent,
1538 				struct domain_device *child,
1539 				u8 *sas_addr, int include)
1540 {
1541 	struct expander_device *ex_parent = &parent->ex_dev;
1542 	int res = 0;
1543 	int i;
1544 
1545 	if (parent->parent) {
1546 		res = sas_configure_parent(parent->parent, parent, sas_addr,
1547 					   include);
1548 		if (res)
1549 			return res;
1550 	}
1551 
1552 	if (ex_parent->conf_route_table == 0) {
1553 		SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1554 			    SAS_ADDR(parent->sas_addr));
1555 		return 0;
1556 	}
1557 
1558 	for (i = 0; i < ex_parent->num_phys; i++) {
1559 		struct ex_phy *phy = &ex_parent->ex_phy[i];
1560 
1561 		if ((phy->routing_attr == TABLE_ROUTING) &&
1562 		    (SAS_ADDR(phy->attached_sas_addr) ==
1563 		     SAS_ADDR(child->sas_addr))) {
1564 			res = sas_configure_phy(parent, i, sas_addr, include);
1565 			if (res)
1566 				return res;
1567 		}
1568 	}
1569 
1570 	return res;
1571 }
1572 
1573 /**
1574  * sas_configure_routing - configure routing
1575  * @dev: expander device
1576  * @sas_addr: port identifier of device directly attached to the expander device
1577  */
sas_configure_routing(struct domain_device * dev,u8 * sas_addr)1578 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1579 {
1580 	if (dev->parent)
1581 		return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1582 	return 0;
1583 }
1584 
sas_disable_routing(struct domain_device * dev,u8 * sas_addr)1585 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1586 {
1587 	if (dev->parent)
1588 		return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1589 	return 0;
1590 }
1591 
1592 /**
1593  * sas_discover_expander - expander discovery
1594  * @dev: pointer to expander domain device
1595  *
1596  * See comment in sas_discover_sata().
1597  */
sas_discover_expander(struct domain_device * dev)1598 static int sas_discover_expander(struct domain_device *dev)
1599 {
1600 	int res;
1601 
1602 	res = sas_notify_lldd_dev_found(dev);
1603 	if (res)
1604 		return res;
1605 
1606 	res = sas_ex_general(dev);
1607 	if (res)
1608 		goto out_err;
1609 	res = sas_ex_manuf_info(dev);
1610 	if (res)
1611 		goto out_err;
1612 
1613 	res = sas_expander_discover(dev);
1614 	if (res) {
1615 		SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1616 			    SAS_ADDR(dev->sas_addr), res);
1617 		goto out_err;
1618 	}
1619 
1620 	sas_check_ex_subtractive_boundary(dev);
1621 	res = sas_check_parent_topology(dev);
1622 	if (res)
1623 		goto out_err;
1624 	return 0;
1625 out_err:
1626 	sas_notify_lldd_dev_gone(dev);
1627 	return res;
1628 }
1629 
sas_ex_level_discovery(struct asd_sas_port * port,const int level)1630 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1631 {
1632 	int res = 0;
1633 	struct domain_device *dev;
1634 
1635 	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1636 		if (dev->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1637 		    dev->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1638 			struct sas_expander_device *ex =
1639 				rphy_to_expander_device(dev->rphy);
1640 
1641 			if (level == ex->level)
1642 				res = sas_ex_discover_devices(dev, -1);
1643 			else if (level > 0)
1644 				res = sas_ex_discover_devices(port->port_dev, -1);
1645 
1646 		}
1647 	}
1648 
1649 	return res;
1650 }
1651 
sas_ex_bfs_disc(struct asd_sas_port * port)1652 static int sas_ex_bfs_disc(struct asd_sas_port *port)
1653 {
1654 	int res;
1655 	int level;
1656 
1657 	do {
1658 		level = port->disc.max_level;
1659 		res = sas_ex_level_discovery(port, level);
1660 		mb();
1661 	} while (level < port->disc.max_level);
1662 
1663 	return res;
1664 }
1665 
sas_discover_root_expander(struct domain_device * dev)1666 int sas_discover_root_expander(struct domain_device *dev)
1667 {
1668 	int res;
1669 	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1670 
1671 	res = sas_rphy_add(dev->rphy);
1672 	if (res)
1673 		goto out_err;
1674 
1675 	ex->level = dev->port->disc.max_level; /* 0 */
1676 	res = sas_discover_expander(dev);
1677 	if (res)
1678 		goto out_err2;
1679 
1680 	sas_ex_bfs_disc(dev->port);
1681 
1682 	return res;
1683 
1684 out_err2:
1685 	sas_rphy_remove(dev->rphy);
1686 out_err:
1687 	return res;
1688 }
1689 
1690 /* ---------- Domain revalidation ---------- */
1691 
sas_get_phy_discover(struct domain_device * dev,int phy_id,struct smp_resp * disc_resp)1692 static int sas_get_phy_discover(struct domain_device *dev,
1693 				int phy_id, struct smp_resp *disc_resp)
1694 {
1695 	int res;
1696 	u8 *disc_req;
1697 
1698 	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1699 	if (!disc_req)
1700 		return -ENOMEM;
1701 
1702 	disc_req[1] = SMP_DISCOVER;
1703 	disc_req[9] = phy_id;
1704 
1705 	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1706 			       disc_resp, DISCOVER_RESP_SIZE);
1707 	if (res)
1708 		goto out;
1709 	else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1710 		res = disc_resp->result;
1711 		goto out;
1712 	}
1713 out:
1714 	kfree(disc_req);
1715 	return res;
1716 }
1717 
sas_get_phy_change_count(struct domain_device * dev,int phy_id,int * pcc)1718 static int sas_get_phy_change_count(struct domain_device *dev,
1719 				    int phy_id, int *pcc)
1720 {
1721 	int res;
1722 	struct smp_resp *disc_resp;
1723 
1724 	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1725 	if (!disc_resp)
1726 		return -ENOMEM;
1727 
1728 	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1729 	if (!res)
1730 		*pcc = disc_resp->disc.change_count;
1731 
1732 	kfree(disc_resp);
1733 	return res;
1734 }
1735 
sas_get_phy_attached_dev(struct domain_device * dev,int phy_id,u8 * sas_addr,enum sas_device_type * type)1736 static int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1737 				    u8 *sas_addr, enum sas_device_type *type)
1738 {
1739 	int res;
1740 	struct smp_resp *disc_resp;
1741 	struct discover_resp *dr;
1742 
1743 	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1744 	if (!disc_resp)
1745 		return -ENOMEM;
1746 	dr = &disc_resp->disc;
1747 
1748 	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1749 	if (res == 0) {
1750 		memcpy(sas_addr, disc_resp->disc.attached_sas_addr, 8);
1751 		*type = to_dev_type(dr);
1752 		if (*type == 0)
1753 			memset(sas_addr, 0, 8);
1754 	}
1755 	kfree(disc_resp);
1756 	return res;
1757 }
1758 
sas_find_bcast_phy(struct domain_device * dev,int * phy_id,int from_phy,bool update)1759 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1760 			      int from_phy, bool update)
1761 {
1762 	struct expander_device *ex = &dev->ex_dev;
1763 	int res = 0;
1764 	int i;
1765 
1766 	for (i = from_phy; i < ex->num_phys; i++) {
1767 		int phy_change_count = 0;
1768 
1769 		res = sas_get_phy_change_count(dev, i, &phy_change_count);
1770 		switch (res) {
1771 		case SMP_RESP_PHY_VACANT:
1772 		case SMP_RESP_NO_PHY:
1773 			continue;
1774 		case SMP_RESP_FUNC_ACC:
1775 			break;
1776 		default:
1777 			return res;
1778 		}
1779 
1780 		if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1781 			if (update)
1782 				ex->ex_phy[i].phy_change_count =
1783 					phy_change_count;
1784 			*phy_id = i;
1785 			return 0;
1786 		}
1787 	}
1788 	return 0;
1789 }
1790 
sas_get_ex_change_count(struct domain_device * dev,int * ecc)1791 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1792 {
1793 	int res;
1794 	u8  *rg_req;
1795 	struct smp_resp  *rg_resp;
1796 
1797 	rg_req = alloc_smp_req(RG_REQ_SIZE);
1798 	if (!rg_req)
1799 		return -ENOMEM;
1800 
1801 	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1802 	if (!rg_resp) {
1803 		kfree(rg_req);
1804 		return -ENOMEM;
1805 	}
1806 
1807 	rg_req[1] = SMP_REPORT_GENERAL;
1808 
1809 	res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1810 			       RG_RESP_SIZE);
1811 	if (res)
1812 		goto out;
1813 	if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1814 		res = rg_resp->result;
1815 		goto out;
1816 	}
1817 
1818 	*ecc = be16_to_cpu(rg_resp->rg.change_count);
1819 out:
1820 	kfree(rg_resp);
1821 	kfree(rg_req);
1822 	return res;
1823 }
1824 /**
1825  * sas_find_bcast_dev -  find the device issue BROADCAST(CHANGE).
1826  * @dev:domain device to be detect.
1827  * @src_dev: the device which originated BROADCAST(CHANGE).
1828  *
1829  * Add self-configuration expander support. Suppose two expander cascading,
1830  * when the first level expander is self-configuring, hotplug the disks in
1831  * second level expander, BROADCAST(CHANGE) will not only be originated
1832  * in the second level expander, but also be originated in the first level
1833  * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1834  * expander changed count in two level expanders will all increment at least
1835  * once, but the phy which chang count has changed is the source device which
1836  * we concerned.
1837  */
1838 
sas_find_bcast_dev(struct domain_device * dev,struct domain_device ** src_dev)1839 static int sas_find_bcast_dev(struct domain_device *dev,
1840 			      struct domain_device **src_dev)
1841 {
1842 	struct expander_device *ex = &dev->ex_dev;
1843 	int ex_change_count = -1;
1844 	int phy_id = -1;
1845 	int res;
1846 	struct domain_device *ch;
1847 
1848 	res = sas_get_ex_change_count(dev, &ex_change_count);
1849 	if (res)
1850 		goto out;
1851 	if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1852 		/* Just detect if this expander phys phy change count changed,
1853 		* in order to determine if this expander originate BROADCAST,
1854 		* and do not update phy change count field in our structure.
1855 		*/
1856 		res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1857 		if (phy_id != -1) {
1858 			*src_dev = dev;
1859 			ex->ex_change_count = ex_change_count;
1860 			SAS_DPRINTK("Expander phy change count has changed\n");
1861 			return res;
1862 		} else
1863 			SAS_DPRINTK("Expander phys DID NOT change\n");
1864 	}
1865 	list_for_each_entry(ch, &ex->children, siblings) {
1866 		if (ch->dev_type == SAS_EDGE_EXPANDER_DEVICE || ch->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1867 			res = sas_find_bcast_dev(ch, src_dev);
1868 			if (*src_dev)
1869 				return res;
1870 		}
1871 	}
1872 out:
1873 	return res;
1874 }
1875 
sas_unregister_ex_tree(struct asd_sas_port * port,struct domain_device * dev)1876 static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1877 {
1878 	struct expander_device *ex = &dev->ex_dev;
1879 	struct domain_device *child, *n;
1880 
1881 	list_for_each_entry_safe(child, n, &ex->children, siblings) {
1882 		set_bit(SAS_DEV_GONE, &child->state);
1883 		if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1884 		    child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1885 			sas_unregister_ex_tree(port, child);
1886 		else
1887 			sas_unregister_dev(port, child);
1888 	}
1889 	sas_unregister_dev(port, dev);
1890 }
1891 
sas_unregister_devs_sas_addr(struct domain_device * parent,int phy_id,bool last)1892 static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1893 					 int phy_id, bool last)
1894 {
1895 	struct expander_device *ex_dev = &parent->ex_dev;
1896 	struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1897 	struct domain_device *child, *n, *found = NULL;
1898 	if (last) {
1899 		list_for_each_entry_safe(child, n,
1900 			&ex_dev->children, siblings) {
1901 			if (SAS_ADDR(child->sas_addr) ==
1902 			    SAS_ADDR(phy->attached_sas_addr)) {
1903 				set_bit(SAS_DEV_GONE, &child->state);
1904 				if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1905 				    child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1906 					sas_unregister_ex_tree(parent->port, child);
1907 				else
1908 					sas_unregister_dev(parent->port, child);
1909 				found = child;
1910 				break;
1911 			}
1912 		}
1913 		sas_disable_routing(parent, phy->attached_sas_addr);
1914 	}
1915 	memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1916 	if (phy->port) {
1917 		sas_port_delete_phy(phy->port, phy->phy);
1918 		sas_device_set_phy(found, phy->port);
1919 		if (phy->port->num_phys == 0)
1920 			list_add_tail(&phy->port->del_list,
1921 				&parent->port->sas_port_del_list);
1922 		phy->port = NULL;
1923 	}
1924 }
1925 
sas_discover_bfs_by_root_level(struct domain_device * root,const int level)1926 static int sas_discover_bfs_by_root_level(struct domain_device *root,
1927 					  const int level)
1928 {
1929 	struct expander_device *ex_root = &root->ex_dev;
1930 	struct domain_device *child;
1931 	int res = 0;
1932 
1933 	list_for_each_entry(child, &ex_root->children, siblings) {
1934 		if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1935 		    child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1936 			struct sas_expander_device *ex =
1937 				rphy_to_expander_device(child->rphy);
1938 
1939 			if (level > ex->level)
1940 				res = sas_discover_bfs_by_root_level(child,
1941 								     level);
1942 			else if (level == ex->level)
1943 				res = sas_ex_discover_devices(child, -1);
1944 		}
1945 	}
1946 	return res;
1947 }
1948 
sas_discover_bfs_by_root(struct domain_device * dev)1949 static int sas_discover_bfs_by_root(struct domain_device *dev)
1950 {
1951 	int res;
1952 	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1953 	int level = ex->level+1;
1954 
1955 	res = sas_ex_discover_devices(dev, -1);
1956 	if (res)
1957 		goto out;
1958 	do {
1959 		res = sas_discover_bfs_by_root_level(dev, level);
1960 		mb();
1961 		level += 1;
1962 	} while (level <= dev->port->disc.max_level);
1963 out:
1964 	return res;
1965 }
1966 
sas_discover_new(struct domain_device * dev,int phy_id)1967 static int sas_discover_new(struct domain_device *dev, int phy_id)
1968 {
1969 	struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1970 	struct domain_device *child;
1971 	int res;
1972 
1973 	SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1974 		    SAS_ADDR(dev->sas_addr), phy_id);
1975 	res = sas_ex_phy_discover(dev, phy_id);
1976 	if (res)
1977 		return res;
1978 
1979 	if (sas_ex_join_wide_port(dev, phy_id))
1980 		return 0;
1981 
1982 	res = sas_ex_discover_devices(dev, phy_id);
1983 	if (res)
1984 		return res;
1985 	list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1986 		if (SAS_ADDR(child->sas_addr) ==
1987 		    SAS_ADDR(ex_phy->attached_sas_addr)) {
1988 			if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1989 			    child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1990 				res = sas_discover_bfs_by_root(child);
1991 			break;
1992 		}
1993 	}
1994 	return res;
1995 }
1996 
dev_type_flutter(enum sas_device_type new,enum sas_device_type old)1997 static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old)
1998 {
1999 	if (old == new)
2000 		return true;
2001 
2002 	/* treat device directed resets as flutter, if we went
2003 	 * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery
2004 	 */
2005 	if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) ||
2006 	    (old == SAS_END_DEVICE && new == SAS_SATA_PENDING))
2007 		return true;
2008 
2009 	return false;
2010 }
2011 
sas_rediscover_dev(struct domain_device * dev,int phy_id,bool last)2012 static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last)
2013 {
2014 	struct expander_device *ex = &dev->ex_dev;
2015 	struct ex_phy *phy = &ex->ex_phy[phy_id];
2016 	enum sas_device_type type = SAS_PHY_UNUSED;
2017 	u8 sas_addr[8];
2018 	int res;
2019 
2020 	memset(sas_addr, 0, 8);
2021 	res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type);
2022 	switch (res) {
2023 	case SMP_RESP_NO_PHY:
2024 		phy->phy_state = PHY_NOT_PRESENT;
2025 		sas_unregister_devs_sas_addr(dev, phy_id, last);
2026 		return res;
2027 	case SMP_RESP_PHY_VACANT:
2028 		phy->phy_state = PHY_VACANT;
2029 		sas_unregister_devs_sas_addr(dev, phy_id, last);
2030 		return res;
2031 	case SMP_RESP_FUNC_ACC:
2032 		break;
2033 	case -ECOMM:
2034 		break;
2035 	default:
2036 		return res;
2037 	}
2038 
2039 	if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) {
2040 		phy->phy_state = PHY_EMPTY;
2041 		sas_unregister_devs_sas_addr(dev, phy_id, last);
2042 		return res;
2043 	} else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
2044 		   dev_type_flutter(type, phy->attached_dev_type)) {
2045 		struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
2046 		char *action = "";
2047 
2048 		sas_ex_phy_discover(dev, phy_id);
2049 
2050 		if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING)
2051 			action = ", needs recovery";
2052 		SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter%s\n",
2053 			    SAS_ADDR(dev->sas_addr), phy_id, action);
2054 		return res;
2055 	}
2056 
2057 	/* delete the old link */
2058 	if (SAS_ADDR(phy->attached_sas_addr) &&
2059 	    SAS_ADDR(sas_addr) != SAS_ADDR(phy->attached_sas_addr)) {
2060 		SAS_DPRINTK("ex %016llx phy 0x%x replace %016llx\n",
2061 			    SAS_ADDR(dev->sas_addr), phy_id,
2062 			    SAS_ADDR(phy->attached_sas_addr));
2063 		sas_unregister_devs_sas_addr(dev, phy_id, last);
2064 	}
2065 
2066 	return sas_discover_new(dev, phy_id);
2067 }
2068 
2069 /**
2070  * sas_rediscover - revalidate the domain.
2071  * @dev:domain device to be detect.
2072  * @phy_id: the phy id will be detected.
2073  *
2074  * NOTE: this process _must_ quit (return) as soon as any connection
2075  * errors are encountered.  Connection recovery is done elsewhere.
2076  * Discover process only interrogates devices in order to discover the
2077  * domain.For plugging out, we un-register the device only when it is
2078  * the last phy in the port, for other phys in this port, we just delete it
2079  * from the port.For inserting, we do discovery when it is the
2080  * first phy,for other phys in this port, we add it to the port to
2081  * forming the wide-port.
2082  */
sas_rediscover(struct domain_device * dev,const int phy_id)2083 static int sas_rediscover(struct domain_device *dev, const int phy_id)
2084 {
2085 	struct expander_device *ex = &dev->ex_dev;
2086 	struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2087 	int res = 0;
2088 	int i;
2089 	bool last = true;	/* is this the last phy of the port */
2090 
2091 	SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
2092 		    SAS_ADDR(dev->sas_addr), phy_id);
2093 
2094 	if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2095 		for (i = 0; i < ex->num_phys; i++) {
2096 			struct ex_phy *phy = &ex->ex_phy[i];
2097 
2098 			if (i == phy_id)
2099 				continue;
2100 			if (SAS_ADDR(phy->attached_sas_addr) ==
2101 			    SAS_ADDR(changed_phy->attached_sas_addr)) {
2102 				SAS_DPRINTK("phy%d part of wide port with "
2103 					    "phy%d\n", phy_id, i);
2104 				last = false;
2105 				break;
2106 			}
2107 		}
2108 		res = sas_rediscover_dev(dev, phy_id, last);
2109 	} else
2110 		res = sas_discover_new(dev, phy_id);
2111 	return res;
2112 }
2113 
2114 /**
2115  * sas_ex_revalidate_domain - revalidate the domain
2116  * @port_dev: port domain device.
2117  *
2118  * NOTE: this process _must_ quit (return) as soon as any connection
2119  * errors are encountered.  Connection recovery is done elsewhere.
2120  * Discover process only interrogates devices in order to discover the
2121  * domain.
2122  */
sas_ex_revalidate_domain(struct domain_device * port_dev)2123 int sas_ex_revalidate_domain(struct domain_device *port_dev)
2124 {
2125 	int res;
2126 	struct domain_device *dev = NULL;
2127 
2128 	res = sas_find_bcast_dev(port_dev, &dev);
2129 	if (res == 0 && dev) {
2130 		struct expander_device *ex = &dev->ex_dev;
2131 		int i = 0, phy_id;
2132 
2133 		do {
2134 			phy_id = -1;
2135 			res = sas_find_bcast_phy(dev, &phy_id, i, true);
2136 			if (phy_id == -1)
2137 				break;
2138 			res = sas_rediscover(dev, phy_id);
2139 			i = phy_id + 1;
2140 		} while (i < ex->num_phys);
2141 	}
2142 	return res;
2143 }
2144 
sas_smp_handler(struct bsg_job * job,struct Scsi_Host * shost,struct sas_rphy * rphy)2145 void sas_smp_handler(struct bsg_job *job, struct Scsi_Host *shost,
2146 		struct sas_rphy *rphy)
2147 {
2148 	struct domain_device *dev;
2149 	unsigned int rcvlen = 0;
2150 	int ret = -EINVAL;
2151 
2152 	/* no rphy means no smp target support (ie aic94xx host) */
2153 	if (!rphy)
2154 		return sas_smp_host_handler(job, shost);
2155 
2156 	switch (rphy->identify.device_type) {
2157 	case SAS_EDGE_EXPANDER_DEVICE:
2158 	case SAS_FANOUT_EXPANDER_DEVICE:
2159 		break;
2160 	default:
2161 		printk("%s: can we send a smp request to a device?\n",
2162 		       __func__);
2163 		goto out;
2164 	}
2165 
2166 	dev = sas_find_dev_by_rphy(rphy);
2167 	if (!dev) {
2168 		printk("%s: fail to find a domain_device?\n", __func__);
2169 		goto out;
2170 	}
2171 
2172 	/* do we need to support multiple segments? */
2173 	if (job->request_payload.sg_cnt > 1 ||
2174 	    job->reply_payload.sg_cnt > 1) {
2175 		printk("%s: multiple segments req %u, rsp %u\n",
2176 		       __func__, job->request_payload.payload_len,
2177 		       job->reply_payload.payload_len);
2178 		goto out;
2179 	}
2180 
2181 	ret = smp_execute_task_sg(dev, job->request_payload.sg_list,
2182 			job->reply_payload.sg_list);
2183 	if (ret >= 0) {
2184 		/* bsg_job_done() requires the length received  */
2185 		rcvlen = job->reply_payload.payload_len - ret;
2186 		ret = 0;
2187 	}
2188 
2189 out:
2190 	bsg_job_done(job, ret, rcvlen);
2191 }
2192