1 // SPDX-License-Identifier: GPL-2.0
2 // Copyright (c) 2017-2018, The Linux Foundation. All rights reserved.
3
4 #include <linux/acpi.h>
5 #include <linux/clk.h>
6 #include <linux/slab.h>
7 #include <linux/dma-mapping.h>
8 #include <linux/io.h>
9 #include <linux/module.h>
10 #include <linux/of.h>
11 #include <linux/of_platform.h>
12 #include <linux/pinctrl/consumer.h>
13 #include <linux/platform_device.h>
14 #include <linux/qcom-geni-se.h>
15
16 /**
17 * DOC: Overview
18 *
19 * Generic Interface (GENI) Serial Engine (SE) Wrapper driver is introduced
20 * to manage GENI firmware based Qualcomm Universal Peripheral (QUP) Wrapper
21 * controller. QUP Wrapper is designed to support various serial bus protocols
22 * like UART, SPI, I2C, I3C, etc.
23 */
24
25 /**
26 * DOC: Hardware description
27 *
28 * GENI based QUP is a highly-flexible and programmable module for supporting
29 * a wide range of serial interfaces like UART, SPI, I2C, I3C, etc. A single
30 * QUP module can provide upto 8 serial interfaces, using its internal
31 * serial engines. The actual configuration is determined by the target
32 * platform configuration. The protocol supported by each interface is
33 * determined by the firmware loaded to the serial engine. Each SE consists
34 * of a DMA Engine and GENI sub modules which enable serial engines to
35 * support FIFO and DMA modes of operation.
36 *
37 *
38 * +-----------------------------------------+
39 * |QUP Wrapper |
40 * | +----------------------------+ |
41 * --QUP & SE Clocks--> | Serial Engine N | +-IO------>
42 * | | ... | | Interface
43 * <---Clock Perf.----+ +----+-----------------------+ | |
44 * State Interface | | Serial Engine 1 | | |
45 * | | | | |
46 * | | | | |
47 * <--------AHB-------> | | | |
48 * | | +----+ |
49 * | | | |
50 * | | | |
51 * <------SE IRQ------+ +----------------------------+ |
52 * | |
53 * +-----------------------------------------+
54 *
55 * Figure 1: GENI based QUP Wrapper
56 *
57 * The GENI submodules include primary and secondary sequencers which are
58 * used to drive TX & RX operations. On serial interfaces that operate using
59 * master-slave model, primary sequencer drives both TX & RX operations. On
60 * serial interfaces that operate using peer-to-peer model, primary sequencer
61 * drives TX operation and secondary sequencer drives RX operation.
62 */
63
64 /**
65 * DOC: Software description
66 *
67 * GENI SE Wrapper driver is structured into 2 parts:
68 *
69 * geni_wrapper represents QUP Wrapper controller. This part of the driver
70 * manages QUP Wrapper information such as hardware version, clock
71 * performance table that is common to all the internal serial engines.
72 *
73 * geni_se represents serial engine. This part of the driver manages serial
74 * engine information such as clocks, containing QUP Wrapper, etc. This part
75 * of driver also supports operations (eg. initialize the concerned serial
76 * engine, select between FIFO and DMA mode of operation etc.) that are
77 * common to all the serial engines and are independent of serial interfaces.
78 */
79
80 #define MAX_CLK_PERF_LEVEL 32
81 #define NUM_AHB_CLKS 2
82
83 /**
84 * struct geni_wrapper - Data structure to represent the QUP Wrapper Core
85 * @dev: Device pointer of the QUP wrapper core
86 * @base: Base address of this instance of QUP wrapper core
87 * @ahb_clks: Handle to the primary & secondary AHB clocks
88 * @to_core: Core ICC path
89 */
90 struct geni_wrapper {
91 struct device *dev;
92 void __iomem *base;
93 struct clk_bulk_data ahb_clks[NUM_AHB_CLKS];
94 };
95
96 static const char * const icc_path_names[] = {"qup-core", "qup-config",
97 "qup-memory"};
98
99 #define QUP_HW_VER_REG 0x4
100
101 /* Common SE registers */
102 #define GENI_INIT_CFG_REVISION 0x0
103 #define GENI_S_INIT_CFG_REVISION 0x4
104 #define GENI_OUTPUT_CTRL 0x24
105 #define GENI_CGC_CTRL 0x28
106 #define GENI_CLK_CTRL_RO 0x60
107 #define GENI_FW_S_REVISION_RO 0x6c
108 #define SE_GENI_BYTE_GRAN 0x254
109 #define SE_GENI_TX_PACKING_CFG0 0x260
110 #define SE_GENI_TX_PACKING_CFG1 0x264
111 #define SE_GENI_RX_PACKING_CFG0 0x284
112 #define SE_GENI_RX_PACKING_CFG1 0x288
113 #define SE_GENI_M_GP_LENGTH 0x910
114 #define SE_GENI_S_GP_LENGTH 0x914
115 #define SE_DMA_TX_PTR_L 0xc30
116 #define SE_DMA_TX_PTR_H 0xc34
117 #define SE_DMA_TX_ATTR 0xc38
118 #define SE_DMA_TX_LEN 0xc3c
119 #define SE_DMA_TX_IRQ_EN 0xc48
120 #define SE_DMA_TX_IRQ_EN_SET 0xc4c
121 #define SE_DMA_TX_IRQ_EN_CLR 0xc50
122 #define SE_DMA_TX_LEN_IN 0xc54
123 #define SE_DMA_TX_MAX_BURST 0xc5c
124 #define SE_DMA_RX_PTR_L 0xd30
125 #define SE_DMA_RX_PTR_H 0xd34
126 #define SE_DMA_RX_ATTR 0xd38
127 #define SE_DMA_RX_LEN 0xd3c
128 #define SE_DMA_RX_IRQ_EN 0xd48
129 #define SE_DMA_RX_IRQ_EN_SET 0xd4c
130 #define SE_DMA_RX_IRQ_EN_CLR 0xd50
131 #define SE_DMA_RX_LEN_IN 0xd54
132 #define SE_DMA_RX_MAX_BURST 0xd5c
133 #define SE_DMA_RX_FLUSH 0xd60
134 #define SE_GSI_EVENT_EN 0xe18
135 #define SE_IRQ_EN 0xe1c
136 #define SE_DMA_GENERAL_CFG 0xe30
137
138 /* GENI_OUTPUT_CTRL fields */
139 #define DEFAULT_IO_OUTPUT_CTRL_MSK GENMASK(6, 0)
140
141 /* GENI_CGC_CTRL fields */
142 #define CFG_AHB_CLK_CGC_ON BIT(0)
143 #define CFG_AHB_WR_ACLK_CGC_ON BIT(1)
144 #define DATA_AHB_CLK_CGC_ON BIT(2)
145 #define SCLK_CGC_ON BIT(3)
146 #define TX_CLK_CGC_ON BIT(4)
147 #define RX_CLK_CGC_ON BIT(5)
148 #define EXT_CLK_CGC_ON BIT(6)
149 #define PROG_RAM_HCLK_OFF BIT(8)
150 #define PROG_RAM_SCLK_OFF BIT(9)
151 #define DEFAULT_CGC_EN GENMASK(6, 0)
152
153 /* SE_GSI_EVENT_EN fields */
154 #define DMA_RX_EVENT_EN BIT(0)
155 #define DMA_TX_EVENT_EN BIT(1)
156 #define GENI_M_EVENT_EN BIT(2)
157 #define GENI_S_EVENT_EN BIT(3)
158
159 /* SE_IRQ_EN fields */
160 #define DMA_RX_IRQ_EN BIT(0)
161 #define DMA_TX_IRQ_EN BIT(1)
162 #define GENI_M_IRQ_EN BIT(2)
163 #define GENI_S_IRQ_EN BIT(3)
164
165 /* SE_DMA_GENERAL_CFG */
166 #define DMA_RX_CLK_CGC_ON BIT(0)
167 #define DMA_TX_CLK_CGC_ON BIT(1)
168 #define DMA_AHB_SLV_CFG_ON BIT(2)
169 #define AHB_SEC_SLV_CLK_CGC_ON BIT(3)
170 #define DUMMY_RX_NON_BUFFERABLE BIT(4)
171 #define RX_DMA_ZERO_PADDING_EN BIT(5)
172 #define RX_DMA_IRQ_DELAY_MSK GENMASK(8, 6)
173 #define RX_DMA_IRQ_DELAY_SHFT 6
174
175 /**
176 * geni_se_get_qup_hw_version() - Read the QUP wrapper Hardware version
177 * @se: Pointer to the corresponding serial engine.
178 *
179 * Return: Hardware Version of the wrapper.
180 */
geni_se_get_qup_hw_version(struct geni_se * se)181 u32 geni_se_get_qup_hw_version(struct geni_se *se)
182 {
183 struct geni_wrapper *wrapper = se->wrapper;
184
185 return readl_relaxed(wrapper->base + QUP_HW_VER_REG);
186 }
187 EXPORT_SYMBOL(geni_se_get_qup_hw_version);
188
geni_se_io_set_mode(void __iomem * base)189 static void geni_se_io_set_mode(void __iomem *base)
190 {
191 u32 val;
192
193 val = readl_relaxed(base + SE_IRQ_EN);
194 val |= GENI_M_IRQ_EN | GENI_S_IRQ_EN;
195 val |= DMA_TX_IRQ_EN | DMA_RX_IRQ_EN;
196 writel_relaxed(val, base + SE_IRQ_EN);
197
198 val = readl_relaxed(base + SE_GENI_DMA_MODE_EN);
199 val &= ~GENI_DMA_MODE_EN;
200 writel_relaxed(val, base + SE_GENI_DMA_MODE_EN);
201
202 writel_relaxed(0, base + SE_GSI_EVENT_EN);
203 }
204
geni_se_io_init(void __iomem * base)205 static void geni_se_io_init(void __iomem *base)
206 {
207 u32 val;
208
209 val = readl_relaxed(base + GENI_CGC_CTRL);
210 val |= DEFAULT_CGC_EN;
211 writel_relaxed(val, base + GENI_CGC_CTRL);
212
213 val = readl_relaxed(base + SE_DMA_GENERAL_CFG);
214 val |= AHB_SEC_SLV_CLK_CGC_ON | DMA_AHB_SLV_CFG_ON;
215 val |= DMA_TX_CLK_CGC_ON | DMA_RX_CLK_CGC_ON;
216 writel_relaxed(val, base + SE_DMA_GENERAL_CFG);
217
218 writel_relaxed(DEFAULT_IO_OUTPUT_CTRL_MSK, base + GENI_OUTPUT_CTRL);
219 writel_relaxed(FORCE_DEFAULT, base + GENI_FORCE_DEFAULT_REG);
220 }
221
geni_se_irq_clear(struct geni_se * se)222 static void geni_se_irq_clear(struct geni_se *se)
223 {
224 writel_relaxed(0, se->base + SE_GSI_EVENT_EN);
225 writel_relaxed(0xffffffff, se->base + SE_GENI_M_IRQ_CLEAR);
226 writel_relaxed(0xffffffff, se->base + SE_GENI_S_IRQ_CLEAR);
227 writel_relaxed(0xffffffff, se->base + SE_DMA_TX_IRQ_CLR);
228 writel_relaxed(0xffffffff, se->base + SE_DMA_RX_IRQ_CLR);
229 writel_relaxed(0xffffffff, se->base + SE_IRQ_EN);
230 }
231
232 /**
233 * geni_se_init() - Initialize the GENI serial engine
234 * @se: Pointer to the concerned serial engine.
235 * @rx_wm: Receive watermark, in units of FIFO words.
236 * @rx_rfr: Ready-for-receive watermark, in units of FIFO words.
237 *
238 * This function is used to initialize the GENI serial engine, configure
239 * receive watermark and ready-for-receive watermarks.
240 */
geni_se_init(struct geni_se * se,u32 rx_wm,u32 rx_rfr)241 void geni_se_init(struct geni_se *se, u32 rx_wm, u32 rx_rfr)
242 {
243 u32 val;
244
245 geni_se_irq_clear(se);
246 geni_se_io_init(se->base);
247 geni_se_io_set_mode(se->base);
248
249 writel_relaxed(rx_wm, se->base + SE_GENI_RX_WATERMARK_REG);
250 writel_relaxed(rx_rfr, se->base + SE_GENI_RX_RFR_WATERMARK_REG);
251
252 val = readl_relaxed(se->base + SE_GENI_M_IRQ_EN);
253 val |= M_COMMON_GENI_M_IRQ_EN;
254 writel_relaxed(val, se->base + SE_GENI_M_IRQ_EN);
255
256 val = readl_relaxed(se->base + SE_GENI_S_IRQ_EN);
257 val |= S_COMMON_GENI_S_IRQ_EN;
258 writel_relaxed(val, se->base + SE_GENI_S_IRQ_EN);
259 }
260 EXPORT_SYMBOL(geni_se_init);
261
geni_se_select_fifo_mode(struct geni_se * se)262 static void geni_se_select_fifo_mode(struct geni_se *se)
263 {
264 u32 proto = geni_se_read_proto(se);
265 u32 val, val_old;
266
267 geni_se_irq_clear(se);
268
269 /*
270 * The RX path for the UART is asynchronous and so needs more
271 * complex logic for enabling / disabling its interrupts.
272 *
273 * Specific notes:
274 * - The done and TX-related interrupts are managed manually.
275 * - We don't RX from the main sequencer (we use the secondary) so
276 * we don't need the RX-related interrupts enabled in the main
277 * sequencer for UART.
278 */
279 if (proto != GENI_SE_UART) {
280 val_old = val = readl_relaxed(se->base + SE_GENI_M_IRQ_EN);
281 val |= M_CMD_DONE_EN | M_TX_FIFO_WATERMARK_EN;
282 val |= M_RX_FIFO_WATERMARK_EN | M_RX_FIFO_LAST_EN;
283 if (val != val_old)
284 writel_relaxed(val, se->base + SE_GENI_M_IRQ_EN);
285
286 val_old = val = readl_relaxed(se->base + SE_GENI_S_IRQ_EN);
287 val |= S_CMD_DONE_EN;
288 if (val != val_old)
289 writel_relaxed(val, se->base + SE_GENI_S_IRQ_EN);
290 }
291
292 val_old = val = readl_relaxed(se->base + SE_GENI_DMA_MODE_EN);
293 val &= ~GENI_DMA_MODE_EN;
294 if (val != val_old)
295 writel_relaxed(val, se->base + SE_GENI_DMA_MODE_EN);
296 }
297
geni_se_select_dma_mode(struct geni_se * se)298 static void geni_se_select_dma_mode(struct geni_se *se)
299 {
300 u32 proto = geni_se_read_proto(se);
301 u32 val, val_old;
302
303 geni_se_irq_clear(se);
304
305 if (proto != GENI_SE_UART) {
306 val_old = val = readl_relaxed(se->base + SE_GENI_M_IRQ_EN);
307 val &= ~(M_CMD_DONE_EN | M_TX_FIFO_WATERMARK_EN);
308 val &= ~(M_RX_FIFO_WATERMARK_EN | M_RX_FIFO_LAST_EN);
309 if (val != val_old)
310 writel_relaxed(val, se->base + SE_GENI_M_IRQ_EN);
311
312 val_old = val = readl_relaxed(se->base + SE_GENI_S_IRQ_EN);
313 val &= ~S_CMD_DONE_EN;
314 if (val != val_old)
315 writel_relaxed(val, se->base + SE_GENI_S_IRQ_EN);
316 }
317
318 val_old = val = readl_relaxed(se->base + SE_GENI_DMA_MODE_EN);
319 val |= GENI_DMA_MODE_EN;
320 if (val != val_old)
321 writel_relaxed(val, se->base + SE_GENI_DMA_MODE_EN);
322 }
323
geni_se_select_gpi_mode(struct geni_se * se)324 static void geni_se_select_gpi_mode(struct geni_se *se)
325 {
326 u32 val;
327
328 geni_se_irq_clear(se);
329
330 writel(0, se->base + SE_IRQ_EN);
331
332 val = readl(se->base + SE_GENI_S_IRQ_EN);
333 val &= ~S_CMD_DONE_EN;
334 writel(val, se->base + SE_GENI_S_IRQ_EN);
335
336 val = readl(se->base + SE_GENI_M_IRQ_EN);
337 val &= ~(M_CMD_DONE_EN | M_TX_FIFO_WATERMARK_EN |
338 M_RX_FIFO_WATERMARK_EN | M_RX_FIFO_LAST_EN);
339 writel(val, se->base + SE_GENI_M_IRQ_EN);
340
341 writel(GENI_DMA_MODE_EN, se->base + SE_GENI_DMA_MODE_EN);
342
343 val = readl(se->base + SE_GSI_EVENT_EN);
344 val |= (DMA_RX_EVENT_EN | DMA_TX_EVENT_EN | GENI_M_EVENT_EN | GENI_S_EVENT_EN);
345 writel(val, se->base + SE_GSI_EVENT_EN);
346 }
347
348 /**
349 * geni_se_select_mode() - Select the serial engine transfer mode
350 * @se: Pointer to the concerned serial engine.
351 * @mode: Transfer mode to be selected.
352 */
geni_se_select_mode(struct geni_se * se,enum geni_se_xfer_mode mode)353 void geni_se_select_mode(struct geni_se *se, enum geni_se_xfer_mode mode)
354 {
355 WARN_ON(mode != GENI_SE_FIFO && mode != GENI_SE_DMA && mode != GENI_GPI_DMA);
356
357 switch (mode) {
358 case GENI_SE_FIFO:
359 geni_se_select_fifo_mode(se);
360 break;
361 case GENI_SE_DMA:
362 geni_se_select_dma_mode(se);
363 break;
364 case GENI_GPI_DMA:
365 geni_se_select_gpi_mode(se);
366 break;
367 case GENI_SE_INVALID:
368 default:
369 break;
370 }
371 }
372 EXPORT_SYMBOL(geni_se_select_mode);
373
374 /**
375 * DOC: Overview
376 *
377 * GENI FIFO packing is highly configurable. TX/RX packing/unpacking consist
378 * of up to 4 operations, each operation represented by 4 configuration vectors
379 * of 10 bits programmed in GENI_TX_PACKING_CFG0 and GENI_TX_PACKING_CFG1 for
380 * TX FIFO and in GENI_RX_PACKING_CFG0 and GENI_RX_PACKING_CFG1 for RX FIFO.
381 * Refer to below examples for detailed bit-field description.
382 *
383 * Example 1: word_size = 7, packing_mode = 4 x 8, msb_to_lsb = 1
384 *
385 * +-----------+-------+-------+-------+-------+
386 * | | vec_0 | vec_1 | vec_2 | vec_3 |
387 * +-----------+-------+-------+-------+-------+
388 * | start | 0x6 | 0xe | 0x16 | 0x1e |
389 * | direction | 1 | 1 | 1 | 1 |
390 * | length | 6 | 6 | 6 | 6 |
391 * | stop | 0 | 0 | 0 | 1 |
392 * +-----------+-------+-------+-------+-------+
393 *
394 * Example 2: word_size = 15, packing_mode = 2 x 16, msb_to_lsb = 0
395 *
396 * +-----------+-------+-------+-------+-------+
397 * | | vec_0 | vec_1 | vec_2 | vec_3 |
398 * +-----------+-------+-------+-------+-------+
399 * | start | 0x0 | 0x8 | 0x10 | 0x18 |
400 * | direction | 0 | 0 | 0 | 0 |
401 * | length | 7 | 6 | 7 | 6 |
402 * | stop | 0 | 0 | 0 | 1 |
403 * +-----------+-------+-------+-------+-------+
404 *
405 * Example 3: word_size = 23, packing_mode = 1 x 32, msb_to_lsb = 1
406 *
407 * +-----------+-------+-------+-------+-------+
408 * | | vec_0 | vec_1 | vec_2 | vec_3 |
409 * +-----------+-------+-------+-------+-------+
410 * | start | 0x16 | 0xe | 0x6 | 0x0 |
411 * | direction | 1 | 1 | 1 | 1 |
412 * | length | 7 | 7 | 6 | 0 |
413 * | stop | 0 | 0 | 1 | 0 |
414 * +-----------+-------+-------+-------+-------+
415 *
416 */
417
418 #define NUM_PACKING_VECTORS 4
419 #define PACKING_START_SHIFT 5
420 #define PACKING_DIR_SHIFT 4
421 #define PACKING_LEN_SHIFT 1
422 #define PACKING_STOP_BIT BIT(0)
423 #define PACKING_VECTOR_SHIFT 10
424 /**
425 * geni_se_config_packing() - Packing configuration of the serial engine
426 * @se: Pointer to the concerned serial engine
427 * @bpw: Bits of data per transfer word.
428 * @pack_words: Number of words per fifo element.
429 * @msb_to_lsb: Transfer from MSB to LSB or vice-versa.
430 * @tx_cfg: Flag to configure the TX Packing.
431 * @rx_cfg: Flag to configure the RX Packing.
432 *
433 * This function is used to configure the packing rules for the current
434 * transfer.
435 */
geni_se_config_packing(struct geni_se * se,int bpw,int pack_words,bool msb_to_lsb,bool tx_cfg,bool rx_cfg)436 void geni_se_config_packing(struct geni_se *se, int bpw, int pack_words,
437 bool msb_to_lsb, bool tx_cfg, bool rx_cfg)
438 {
439 u32 cfg0, cfg1, cfg[NUM_PACKING_VECTORS] = {0};
440 int len;
441 int temp_bpw = bpw;
442 int idx_start = msb_to_lsb ? bpw - 1 : 0;
443 int idx = idx_start;
444 int idx_delta = msb_to_lsb ? -BITS_PER_BYTE : BITS_PER_BYTE;
445 int ceil_bpw = ALIGN(bpw, BITS_PER_BYTE);
446 int iter = (ceil_bpw * pack_words) / BITS_PER_BYTE;
447 int i;
448
449 if (iter <= 0 || iter > NUM_PACKING_VECTORS)
450 return;
451
452 for (i = 0; i < iter; i++) {
453 len = min_t(int, temp_bpw, BITS_PER_BYTE) - 1;
454 cfg[i] = idx << PACKING_START_SHIFT;
455 cfg[i] |= msb_to_lsb << PACKING_DIR_SHIFT;
456 cfg[i] |= len << PACKING_LEN_SHIFT;
457
458 if (temp_bpw <= BITS_PER_BYTE) {
459 idx = ((i + 1) * BITS_PER_BYTE) + idx_start;
460 temp_bpw = bpw;
461 } else {
462 idx = idx + idx_delta;
463 temp_bpw = temp_bpw - BITS_PER_BYTE;
464 }
465 }
466 cfg[iter - 1] |= PACKING_STOP_BIT;
467 cfg0 = cfg[0] | (cfg[1] << PACKING_VECTOR_SHIFT);
468 cfg1 = cfg[2] | (cfg[3] << PACKING_VECTOR_SHIFT);
469
470 if (tx_cfg) {
471 writel_relaxed(cfg0, se->base + SE_GENI_TX_PACKING_CFG0);
472 writel_relaxed(cfg1, se->base + SE_GENI_TX_PACKING_CFG1);
473 }
474 if (rx_cfg) {
475 writel_relaxed(cfg0, se->base + SE_GENI_RX_PACKING_CFG0);
476 writel_relaxed(cfg1, se->base + SE_GENI_RX_PACKING_CFG1);
477 }
478
479 /*
480 * Number of protocol words in each FIFO entry
481 * 0 - 4x8, four words in each entry, max word size of 8 bits
482 * 1 - 2x16, two words in each entry, max word size of 16 bits
483 * 2 - 1x32, one word in each entry, max word size of 32 bits
484 * 3 - undefined
485 */
486 if (pack_words || bpw == 32)
487 writel_relaxed(bpw / 16, se->base + SE_GENI_BYTE_GRAN);
488 }
489 EXPORT_SYMBOL(geni_se_config_packing);
490
geni_se_clks_off(struct geni_se * se)491 static void geni_se_clks_off(struct geni_se *se)
492 {
493 struct geni_wrapper *wrapper = se->wrapper;
494
495 clk_disable_unprepare(se->clk);
496 clk_bulk_disable_unprepare(ARRAY_SIZE(wrapper->ahb_clks),
497 wrapper->ahb_clks);
498 }
499
500 /**
501 * geni_se_resources_off() - Turn off resources associated with the serial
502 * engine
503 * @se: Pointer to the concerned serial engine.
504 *
505 * Return: 0 on success, standard Linux error codes on failure/error.
506 */
geni_se_resources_off(struct geni_se * se)507 int geni_se_resources_off(struct geni_se *se)
508 {
509 int ret;
510
511 if (has_acpi_companion(se->dev))
512 return 0;
513
514 ret = pinctrl_pm_select_sleep_state(se->dev);
515 if (ret)
516 return ret;
517
518 geni_se_clks_off(se);
519 return 0;
520 }
521 EXPORT_SYMBOL(geni_se_resources_off);
522
geni_se_clks_on(struct geni_se * se)523 static int geni_se_clks_on(struct geni_se *se)
524 {
525 int ret;
526 struct geni_wrapper *wrapper = se->wrapper;
527
528 ret = clk_bulk_prepare_enable(ARRAY_SIZE(wrapper->ahb_clks),
529 wrapper->ahb_clks);
530 if (ret)
531 return ret;
532
533 ret = clk_prepare_enable(se->clk);
534 if (ret)
535 clk_bulk_disable_unprepare(ARRAY_SIZE(wrapper->ahb_clks),
536 wrapper->ahb_clks);
537 return ret;
538 }
539
540 /**
541 * geni_se_resources_on() - Turn on resources associated with the serial
542 * engine
543 * @se: Pointer to the concerned serial engine.
544 *
545 * Return: 0 on success, standard Linux error codes on failure/error.
546 */
geni_se_resources_on(struct geni_se * se)547 int geni_se_resources_on(struct geni_se *se)
548 {
549 int ret;
550
551 if (has_acpi_companion(se->dev))
552 return 0;
553
554 ret = geni_se_clks_on(se);
555 if (ret)
556 return ret;
557
558 ret = pinctrl_pm_select_default_state(se->dev);
559 if (ret)
560 geni_se_clks_off(se);
561
562 return ret;
563 }
564 EXPORT_SYMBOL(geni_se_resources_on);
565
566 /**
567 * geni_se_clk_tbl_get() - Get the clock table to program DFS
568 * @se: Pointer to the concerned serial engine.
569 * @tbl: Table in which the output is returned.
570 *
571 * This function is called by the protocol drivers to determine the different
572 * clock frequencies supported by serial engine core clock. The protocol
573 * drivers use the output to determine the clock frequency index to be
574 * programmed into DFS.
575 *
576 * Return: number of valid performance levels in the table on success,
577 * standard Linux error codes on failure.
578 */
geni_se_clk_tbl_get(struct geni_se * se,unsigned long ** tbl)579 int geni_se_clk_tbl_get(struct geni_se *se, unsigned long **tbl)
580 {
581 long freq = 0;
582 int i;
583
584 if (se->clk_perf_tbl) {
585 *tbl = se->clk_perf_tbl;
586 return se->num_clk_levels;
587 }
588
589 se->clk_perf_tbl = devm_kcalloc(se->dev, MAX_CLK_PERF_LEVEL,
590 sizeof(*se->clk_perf_tbl),
591 GFP_KERNEL);
592 if (!se->clk_perf_tbl)
593 return -ENOMEM;
594
595 for (i = 0; i < MAX_CLK_PERF_LEVEL; i++) {
596 freq = clk_round_rate(se->clk, freq + 1);
597 if (freq <= 0 || freq == se->clk_perf_tbl[i - 1])
598 break;
599 se->clk_perf_tbl[i] = freq;
600 }
601 se->num_clk_levels = i;
602 *tbl = se->clk_perf_tbl;
603 return se->num_clk_levels;
604 }
605 EXPORT_SYMBOL(geni_se_clk_tbl_get);
606
607 /**
608 * geni_se_clk_freq_match() - Get the matching or closest SE clock frequency
609 * @se: Pointer to the concerned serial engine.
610 * @req_freq: Requested clock frequency.
611 * @index: Index of the resultant frequency in the table.
612 * @res_freq: Resultant frequency of the source clock.
613 * @exact: Flag to indicate exact multiple requirement of the requested
614 * frequency.
615 *
616 * This function is called by the protocol drivers to determine the best match
617 * of the requested frequency as provided by the serial engine clock in order
618 * to meet the performance requirements.
619 *
620 * If we return success:
621 * - if @exact is true then @res_freq / <an_integer> == @req_freq
622 * - if @exact is false then @res_freq / <an_integer> <= @req_freq
623 *
624 * Return: 0 on success, standard Linux error codes on failure.
625 */
geni_se_clk_freq_match(struct geni_se * se,unsigned long req_freq,unsigned int * index,unsigned long * res_freq,bool exact)626 int geni_se_clk_freq_match(struct geni_se *se, unsigned long req_freq,
627 unsigned int *index, unsigned long *res_freq,
628 bool exact)
629 {
630 unsigned long *tbl;
631 int num_clk_levels;
632 int i;
633 unsigned long best_delta;
634 unsigned long new_delta;
635 unsigned int divider;
636
637 num_clk_levels = geni_se_clk_tbl_get(se, &tbl);
638 if (num_clk_levels < 0)
639 return num_clk_levels;
640
641 if (num_clk_levels == 0)
642 return -EINVAL;
643
644 best_delta = ULONG_MAX;
645 for (i = 0; i < num_clk_levels; i++) {
646 divider = DIV_ROUND_UP(tbl[i], req_freq);
647 new_delta = req_freq - tbl[i] / divider;
648 if (new_delta < best_delta) {
649 /* We have a new best! */
650 *index = i;
651 *res_freq = tbl[i];
652
653 /* If the new best is exact then we're done */
654 if (new_delta == 0)
655 return 0;
656
657 /* Record how close we got */
658 best_delta = new_delta;
659 }
660 }
661
662 if (exact)
663 return -EINVAL;
664
665 return 0;
666 }
667 EXPORT_SYMBOL(geni_se_clk_freq_match);
668
669 #define GENI_SE_DMA_DONE_EN BIT(0)
670 #define GENI_SE_DMA_EOT_EN BIT(1)
671 #define GENI_SE_DMA_AHB_ERR_EN BIT(2)
672 #define GENI_SE_DMA_EOT_BUF BIT(0)
673 /**
674 * geni_se_tx_dma_prep() - Prepare the serial engine for TX DMA transfer
675 * @se: Pointer to the concerned serial engine.
676 * @buf: Pointer to the TX buffer.
677 * @len: Length of the TX buffer.
678 * @iova: Pointer to store the mapped DMA address.
679 *
680 * This function is used to prepare the buffers for DMA TX.
681 *
682 * Return: 0 on success, standard Linux error codes on failure.
683 */
geni_se_tx_dma_prep(struct geni_se * se,void * buf,size_t len,dma_addr_t * iova)684 int geni_se_tx_dma_prep(struct geni_se *se, void *buf, size_t len,
685 dma_addr_t *iova)
686 {
687 struct geni_wrapper *wrapper = se->wrapper;
688 u32 val;
689
690 if (!wrapper)
691 return -EINVAL;
692
693 *iova = dma_map_single(wrapper->dev, buf, len, DMA_TO_DEVICE);
694 if (dma_mapping_error(wrapper->dev, *iova))
695 return -EIO;
696
697 val = GENI_SE_DMA_DONE_EN;
698 val |= GENI_SE_DMA_EOT_EN;
699 val |= GENI_SE_DMA_AHB_ERR_EN;
700 writel_relaxed(val, se->base + SE_DMA_TX_IRQ_EN_SET);
701 writel_relaxed(lower_32_bits(*iova), se->base + SE_DMA_TX_PTR_L);
702 writel_relaxed(upper_32_bits(*iova), se->base + SE_DMA_TX_PTR_H);
703 writel_relaxed(GENI_SE_DMA_EOT_BUF, se->base + SE_DMA_TX_ATTR);
704 writel(len, se->base + SE_DMA_TX_LEN);
705 return 0;
706 }
707 EXPORT_SYMBOL(geni_se_tx_dma_prep);
708
709 /**
710 * geni_se_rx_dma_prep() - Prepare the serial engine for RX DMA transfer
711 * @se: Pointer to the concerned serial engine.
712 * @buf: Pointer to the RX buffer.
713 * @len: Length of the RX buffer.
714 * @iova: Pointer to store the mapped DMA address.
715 *
716 * This function is used to prepare the buffers for DMA RX.
717 *
718 * Return: 0 on success, standard Linux error codes on failure.
719 */
geni_se_rx_dma_prep(struct geni_se * se,void * buf,size_t len,dma_addr_t * iova)720 int geni_se_rx_dma_prep(struct geni_se *se, void *buf, size_t len,
721 dma_addr_t *iova)
722 {
723 struct geni_wrapper *wrapper = se->wrapper;
724 u32 val;
725
726 if (!wrapper)
727 return -EINVAL;
728
729 *iova = dma_map_single(wrapper->dev, buf, len, DMA_FROM_DEVICE);
730 if (dma_mapping_error(wrapper->dev, *iova))
731 return -EIO;
732
733 val = GENI_SE_DMA_DONE_EN;
734 val |= GENI_SE_DMA_EOT_EN;
735 val |= GENI_SE_DMA_AHB_ERR_EN;
736 writel_relaxed(val, se->base + SE_DMA_RX_IRQ_EN_SET);
737 writel_relaxed(lower_32_bits(*iova), se->base + SE_DMA_RX_PTR_L);
738 writel_relaxed(upper_32_bits(*iova), se->base + SE_DMA_RX_PTR_H);
739 /* RX does not have EOT buffer type bit. So just reset RX_ATTR */
740 writel_relaxed(0, se->base + SE_DMA_RX_ATTR);
741 writel(len, se->base + SE_DMA_RX_LEN);
742 return 0;
743 }
744 EXPORT_SYMBOL(geni_se_rx_dma_prep);
745
746 /**
747 * geni_se_tx_dma_unprep() - Unprepare the serial engine after TX DMA transfer
748 * @se: Pointer to the concerned serial engine.
749 * @iova: DMA address of the TX buffer.
750 * @len: Length of the TX buffer.
751 *
752 * This function is used to unprepare the DMA buffers after DMA TX.
753 */
geni_se_tx_dma_unprep(struct geni_se * se,dma_addr_t iova,size_t len)754 void geni_se_tx_dma_unprep(struct geni_se *se, dma_addr_t iova, size_t len)
755 {
756 struct geni_wrapper *wrapper = se->wrapper;
757
758 if (!dma_mapping_error(wrapper->dev, iova))
759 dma_unmap_single(wrapper->dev, iova, len, DMA_TO_DEVICE);
760 }
761 EXPORT_SYMBOL(geni_se_tx_dma_unprep);
762
763 /**
764 * geni_se_rx_dma_unprep() - Unprepare the serial engine after RX DMA transfer
765 * @se: Pointer to the concerned serial engine.
766 * @iova: DMA address of the RX buffer.
767 * @len: Length of the RX buffer.
768 *
769 * This function is used to unprepare the DMA buffers after DMA RX.
770 */
geni_se_rx_dma_unprep(struct geni_se * se,dma_addr_t iova,size_t len)771 void geni_se_rx_dma_unprep(struct geni_se *se, dma_addr_t iova, size_t len)
772 {
773 struct geni_wrapper *wrapper = se->wrapper;
774
775 if (!dma_mapping_error(wrapper->dev, iova))
776 dma_unmap_single(wrapper->dev, iova, len, DMA_FROM_DEVICE);
777 }
778 EXPORT_SYMBOL(geni_se_rx_dma_unprep);
779
geni_icc_get(struct geni_se * se,const char * icc_ddr)780 int geni_icc_get(struct geni_se *se, const char *icc_ddr)
781 {
782 int i, err;
783 const char *icc_names[] = {"qup-core", "qup-config", icc_ddr};
784
785 if (has_acpi_companion(se->dev))
786 return 0;
787
788 for (i = 0; i < ARRAY_SIZE(se->icc_paths); i++) {
789 if (!icc_names[i])
790 continue;
791
792 se->icc_paths[i].path = devm_of_icc_get(se->dev, icc_names[i]);
793 if (IS_ERR(se->icc_paths[i].path))
794 goto err;
795 }
796
797 return 0;
798
799 err:
800 err = PTR_ERR(se->icc_paths[i].path);
801 if (err != -EPROBE_DEFER)
802 dev_err_ratelimited(se->dev, "Failed to get ICC path '%s': %d\n",
803 icc_names[i], err);
804 return err;
805
806 }
807 EXPORT_SYMBOL(geni_icc_get);
808
geni_icc_set_bw(struct geni_se * se)809 int geni_icc_set_bw(struct geni_se *se)
810 {
811 int i, ret;
812
813 for (i = 0; i < ARRAY_SIZE(se->icc_paths); i++) {
814 ret = icc_set_bw(se->icc_paths[i].path,
815 se->icc_paths[i].avg_bw, se->icc_paths[i].avg_bw);
816 if (ret) {
817 dev_err_ratelimited(se->dev, "ICC BW voting failed on path '%s': %d\n",
818 icc_path_names[i], ret);
819 return ret;
820 }
821 }
822
823 return 0;
824 }
825 EXPORT_SYMBOL(geni_icc_set_bw);
826
geni_icc_set_tag(struct geni_se * se,u32 tag)827 void geni_icc_set_tag(struct geni_se *se, u32 tag)
828 {
829 int i;
830
831 for (i = 0; i < ARRAY_SIZE(se->icc_paths); i++)
832 icc_set_tag(se->icc_paths[i].path, tag);
833 }
834 EXPORT_SYMBOL(geni_icc_set_tag);
835
836 /* To do: Replace this by icc_bulk_enable once it's implemented in ICC core */
geni_icc_enable(struct geni_se * se)837 int geni_icc_enable(struct geni_se *se)
838 {
839 int i, ret;
840
841 for (i = 0; i < ARRAY_SIZE(se->icc_paths); i++) {
842 ret = icc_enable(se->icc_paths[i].path);
843 if (ret) {
844 dev_err_ratelimited(se->dev, "ICC enable failed on path '%s': %d\n",
845 icc_path_names[i], ret);
846 return ret;
847 }
848 }
849
850 return 0;
851 }
852 EXPORT_SYMBOL(geni_icc_enable);
853
geni_icc_disable(struct geni_se * se)854 int geni_icc_disable(struct geni_se *se)
855 {
856 int i, ret;
857
858 for (i = 0; i < ARRAY_SIZE(se->icc_paths); i++) {
859 ret = icc_disable(se->icc_paths[i].path);
860 if (ret) {
861 dev_err_ratelimited(se->dev, "ICC disable failed on path '%s': %d\n",
862 icc_path_names[i], ret);
863 return ret;
864 }
865 }
866
867 return 0;
868 }
869 EXPORT_SYMBOL(geni_icc_disable);
870
geni_se_probe(struct platform_device * pdev)871 static int geni_se_probe(struct platform_device *pdev)
872 {
873 struct device *dev = &pdev->dev;
874 struct resource *res;
875 struct geni_wrapper *wrapper;
876 int ret;
877
878 wrapper = devm_kzalloc(dev, sizeof(*wrapper), GFP_KERNEL);
879 if (!wrapper)
880 return -ENOMEM;
881
882 wrapper->dev = dev;
883 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
884 wrapper->base = devm_ioremap_resource(dev, res);
885 if (IS_ERR(wrapper->base))
886 return PTR_ERR(wrapper->base);
887
888 if (!has_acpi_companion(&pdev->dev)) {
889 wrapper->ahb_clks[0].id = "m-ahb";
890 wrapper->ahb_clks[1].id = "s-ahb";
891 ret = devm_clk_bulk_get(dev, NUM_AHB_CLKS, wrapper->ahb_clks);
892 if (ret) {
893 dev_err(dev, "Err getting AHB clks %d\n", ret);
894 return ret;
895 }
896 }
897
898 dev_set_drvdata(dev, wrapper);
899 dev_dbg(dev, "GENI SE Driver probed\n");
900 return devm_of_platform_populate(dev);
901 }
902
903 static const struct of_device_id geni_se_dt_match[] = {
904 { .compatible = "qcom,geni-se-qup", },
905 {}
906 };
907 MODULE_DEVICE_TABLE(of, geni_se_dt_match);
908
909 static struct platform_driver geni_se_driver = {
910 .driver = {
911 .name = "geni_se_qup",
912 .of_match_table = geni_se_dt_match,
913 },
914 .probe = geni_se_probe,
915 };
916 module_platform_driver(geni_se_driver);
917
918 MODULE_DESCRIPTION("GENI Serial Engine Driver");
919 MODULE_LICENSE("GPL v2");
920