1 // SPDX-License-Identifier: GPL-2.0
2 /* rwsem.c: R/W semaphores: contention handling functions
3  *
4  * Written by David Howells (dhowells@redhat.com).
5  * Derived from arch/i386/kernel/semaphore.c
6  *
7  * Writer lock-stealing by Alex Shi <alex.shi@intel.com>
8  * and Michel Lespinasse <walken@google.com>
9  *
10  * Optimistic spinning by Tim Chen <tim.c.chen@intel.com>
11  * and Davidlohr Bueso <davidlohr@hp.com>. Based on mutexes.
12  */
13 #include <linux/rwsem.h>
14 #include <linux/init.h>
15 #include <linux/export.h>
16 #include <linux/sched/signal.h>
17 #include <linux/sched/rt.h>
18 #include <linux/sched/wake_q.h>
19 #include <linux/sched/debug.h>
20 #include <linux/osq_lock.h>
21 
22 #include "rwsem.h"
23 
24 /*
25  * Guide to the rw_semaphore's count field for common values.
26  * (32-bit case illustrated, similar for 64-bit)
27  *
28  * 0x0000000X	(1) X readers active or attempting lock, no writer waiting
29  *		    X = #active_readers + #readers attempting to lock
30  *		    (X*ACTIVE_BIAS)
31  *
32  * 0x00000000	rwsem is unlocked, and no one is waiting for the lock or
33  *		attempting to read lock or write lock.
34  *
35  * 0xffff000X	(1) X readers active or attempting lock, with waiters for lock
36  *		    X = #active readers + # readers attempting lock
37  *		    (X*ACTIVE_BIAS + WAITING_BIAS)
38  *		(2) 1 writer attempting lock, no waiters for lock
39  *		    X-1 = #active readers + #readers attempting lock
40  *		    ((X-1)*ACTIVE_BIAS + ACTIVE_WRITE_BIAS)
41  *		(3) 1 writer active, no waiters for lock
42  *		    X-1 = #active readers + #readers attempting lock
43  *		    ((X-1)*ACTIVE_BIAS + ACTIVE_WRITE_BIAS)
44  *
45  * 0xffff0001	(1) 1 reader active or attempting lock, waiters for lock
46  *		    (WAITING_BIAS + ACTIVE_BIAS)
47  *		(2) 1 writer active or attempting lock, no waiters for lock
48  *		    (ACTIVE_WRITE_BIAS)
49  *
50  * 0xffff0000	(1) There are writers or readers queued but none active
51  *		    or in the process of attempting lock.
52  *		    (WAITING_BIAS)
53  *		Note: writer can attempt to steal lock for this count by adding
54  *		ACTIVE_WRITE_BIAS in cmpxchg and checking the old count
55  *
56  * 0xfffe0001	(1) 1 writer active, or attempting lock. Waiters on queue.
57  *		    (ACTIVE_WRITE_BIAS + WAITING_BIAS)
58  *
59  * Note: Readers attempt to lock by adding ACTIVE_BIAS in down_read and checking
60  *	 the count becomes more than 0 for successful lock acquisition,
61  *	 i.e. the case where there are only readers or nobody has lock.
62  *	 (1st and 2nd case above).
63  *
64  *	 Writers attempt to lock by adding ACTIVE_WRITE_BIAS in down_write and
65  *	 checking the count becomes ACTIVE_WRITE_BIAS for successful lock
66  *	 acquisition (i.e. nobody else has lock or attempts lock).  If
67  *	 unsuccessful, in rwsem_down_write_failed, we'll check to see if there
68  *	 are only waiters but none active (5th case above), and attempt to
69  *	 steal the lock.
70  *
71  */
72 
73 /*
74  * Initialize an rwsem:
75  */
__init_rwsem(struct rw_semaphore * sem,const char * name,struct lock_class_key * key)76 void __init_rwsem(struct rw_semaphore *sem, const char *name,
77 		  struct lock_class_key *key)
78 {
79 #ifdef CONFIG_DEBUG_LOCK_ALLOC
80 	/*
81 	 * Make sure we are not reinitializing a held semaphore:
82 	 */
83 	debug_check_no_locks_freed((void *)sem, sizeof(*sem));
84 	lockdep_init_map(&sem->dep_map, name, key, 0);
85 #endif
86 	atomic_long_set(&sem->count, RWSEM_UNLOCKED_VALUE);
87 	raw_spin_lock_init(&sem->wait_lock);
88 	INIT_LIST_HEAD(&sem->wait_list);
89 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER
90 	sem->owner = NULL;
91 	osq_lock_init(&sem->osq);
92 #endif
93 }
94 
95 EXPORT_SYMBOL(__init_rwsem);
96 
97 enum rwsem_waiter_type {
98 	RWSEM_WAITING_FOR_WRITE,
99 	RWSEM_WAITING_FOR_READ
100 };
101 
102 struct rwsem_waiter {
103 	struct list_head list;
104 	struct task_struct *task;
105 	enum rwsem_waiter_type type;
106 };
107 
108 enum rwsem_wake_type {
109 	RWSEM_WAKE_ANY,		/* Wake whatever's at head of wait list */
110 	RWSEM_WAKE_READERS,	/* Wake readers only */
111 	RWSEM_WAKE_READ_OWNED	/* Waker thread holds the read lock */
112 };
113 
114 /*
115  * handle the lock release when processes blocked on it that can now run
116  * - if we come here from up_xxxx(), then:
117  *   - the 'active part' of count (&0x0000ffff) reached 0 (but may have changed)
118  *   - the 'waiting part' of count (&0xffff0000) is -ve (and will still be so)
119  * - there must be someone on the queue
120  * - the wait_lock must be held by the caller
121  * - tasks are marked for wakeup, the caller must later invoke wake_up_q()
122  *   to actually wakeup the blocked task(s) and drop the reference count,
123  *   preferably when the wait_lock is released
124  * - woken process blocks are discarded from the list after having task zeroed
125  * - writers are only marked woken if downgrading is false
126  */
__rwsem_mark_wake(struct rw_semaphore * sem,enum rwsem_wake_type wake_type,struct wake_q_head * wake_q)127 static void __rwsem_mark_wake(struct rw_semaphore *sem,
128 			      enum rwsem_wake_type wake_type,
129 			      struct wake_q_head *wake_q)
130 {
131 	struct rwsem_waiter *waiter, *tmp;
132 	long oldcount, woken = 0, adjustment = 0;
133 
134 	/*
135 	 * Take a peek at the queue head waiter such that we can determine
136 	 * the wakeup(s) to perform.
137 	 */
138 	waiter = list_first_entry(&sem->wait_list, struct rwsem_waiter, list);
139 
140 	if (waiter->type == RWSEM_WAITING_FOR_WRITE) {
141 		if (wake_type == RWSEM_WAKE_ANY) {
142 			/*
143 			 * Mark writer at the front of the queue for wakeup.
144 			 * Until the task is actually later awoken later by
145 			 * the caller, other writers are able to steal it.
146 			 * Readers, on the other hand, will block as they
147 			 * will notice the queued writer.
148 			 */
149 			wake_q_add(wake_q, waiter->task);
150 		}
151 
152 		return;
153 	}
154 
155 	/*
156 	 * Writers might steal the lock before we grant it to the next reader.
157 	 * We prefer to do the first reader grant before counting readers
158 	 * so we can bail out early if a writer stole the lock.
159 	 */
160 	if (wake_type != RWSEM_WAKE_READ_OWNED) {
161 		adjustment = RWSEM_ACTIVE_READ_BIAS;
162  try_reader_grant:
163 		oldcount = atomic_long_fetch_add(adjustment, &sem->count);
164 		if (unlikely(oldcount < RWSEM_WAITING_BIAS)) {
165 			/*
166 			 * If the count is still less than RWSEM_WAITING_BIAS
167 			 * after removing the adjustment, it is assumed that
168 			 * a writer has stolen the lock. We have to undo our
169 			 * reader grant.
170 			 */
171 			if (atomic_long_add_return(-adjustment, &sem->count) <
172 			    RWSEM_WAITING_BIAS)
173 				return;
174 
175 			/* Last active locker left. Retry waking readers. */
176 			goto try_reader_grant;
177 		}
178 		/*
179 		 * It is not really necessary to set it to reader-owned here,
180 		 * but it gives the spinners an early indication that the
181 		 * readers now have the lock.
182 		 */
183 		rwsem_set_reader_owned(sem);
184 	}
185 
186 	/*
187 	 * Grant an infinite number of read locks to the readers at the front
188 	 * of the queue. We know that woken will be at least 1 as we accounted
189 	 * for above. Note we increment the 'active part' of the count by the
190 	 * number of readers before waking any processes up.
191 	 */
192 	list_for_each_entry_safe(waiter, tmp, &sem->wait_list, list) {
193 		struct task_struct *tsk;
194 
195 		if (waiter->type == RWSEM_WAITING_FOR_WRITE)
196 			break;
197 
198 		woken++;
199 		tsk = waiter->task;
200 
201 		wake_q_add(wake_q, tsk);
202 		list_del(&waiter->list);
203 		/*
204 		 * Ensure that the last operation is setting the reader
205 		 * waiter to nil such that rwsem_down_read_failed() cannot
206 		 * race with do_exit() by always holding a reference count
207 		 * to the task to wakeup.
208 		 */
209 		smp_store_release(&waiter->task, NULL);
210 	}
211 
212 	adjustment = woken * RWSEM_ACTIVE_READ_BIAS - adjustment;
213 	if (list_empty(&sem->wait_list)) {
214 		/* hit end of list above */
215 		adjustment -= RWSEM_WAITING_BIAS;
216 	}
217 
218 	if (adjustment)
219 		atomic_long_add(adjustment, &sem->count);
220 }
221 
222 /*
223  * Wait for the read lock to be granted
224  */
225 static inline struct rw_semaphore __sched *
__rwsem_down_read_failed_common(struct rw_semaphore * sem,int state)226 __rwsem_down_read_failed_common(struct rw_semaphore *sem, int state)
227 {
228 	long count, adjustment = -RWSEM_ACTIVE_READ_BIAS;
229 	struct rwsem_waiter waiter;
230 	DEFINE_WAKE_Q(wake_q);
231 
232 	waiter.task = current;
233 	waiter.type = RWSEM_WAITING_FOR_READ;
234 
235 	raw_spin_lock_irq(&sem->wait_lock);
236 	if (list_empty(&sem->wait_list))
237 		adjustment += RWSEM_WAITING_BIAS;
238 	list_add_tail(&waiter.list, &sem->wait_list);
239 
240 	/* we're now waiting on the lock, but no longer actively locking */
241 	count = atomic_long_add_return(adjustment, &sem->count);
242 
243 	/*
244 	 * If there are no active locks, wake the front queued process(es).
245 	 *
246 	 * If there are no writers and we are first in the queue,
247 	 * wake our own waiter to join the existing active readers !
248 	 */
249 	if (count == RWSEM_WAITING_BIAS ||
250 	    (count > RWSEM_WAITING_BIAS &&
251 	     adjustment != -RWSEM_ACTIVE_READ_BIAS))
252 		__rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q);
253 
254 	raw_spin_unlock_irq(&sem->wait_lock);
255 	wake_up_q(&wake_q);
256 
257 	/* wait to be given the lock */
258 	while (true) {
259 		set_current_state(state);
260 		if (!waiter.task)
261 			break;
262 		if (signal_pending_state(state, current)) {
263 			raw_spin_lock_irq(&sem->wait_lock);
264 			if (waiter.task)
265 				goto out_nolock;
266 			raw_spin_unlock_irq(&sem->wait_lock);
267 			break;
268 		}
269 		schedule();
270 	}
271 
272 	__set_current_state(TASK_RUNNING);
273 	return sem;
274 out_nolock:
275 	list_del(&waiter.list);
276 	if (list_empty(&sem->wait_list))
277 		atomic_long_add(-RWSEM_WAITING_BIAS, &sem->count);
278 	raw_spin_unlock_irq(&sem->wait_lock);
279 	__set_current_state(TASK_RUNNING);
280 	return ERR_PTR(-EINTR);
281 }
282 
283 __visible struct rw_semaphore * __sched
rwsem_down_read_failed(struct rw_semaphore * sem)284 rwsem_down_read_failed(struct rw_semaphore *sem)
285 {
286 	return __rwsem_down_read_failed_common(sem, TASK_UNINTERRUPTIBLE);
287 }
288 EXPORT_SYMBOL(rwsem_down_read_failed);
289 
290 __visible struct rw_semaphore * __sched
rwsem_down_read_failed_killable(struct rw_semaphore * sem)291 rwsem_down_read_failed_killable(struct rw_semaphore *sem)
292 {
293 	return __rwsem_down_read_failed_common(sem, TASK_KILLABLE);
294 }
295 EXPORT_SYMBOL(rwsem_down_read_failed_killable);
296 
297 /*
298  * This function must be called with the sem->wait_lock held to prevent
299  * race conditions between checking the rwsem wait list and setting the
300  * sem->count accordingly.
301  */
rwsem_try_write_lock(long count,struct rw_semaphore * sem)302 static inline bool rwsem_try_write_lock(long count, struct rw_semaphore *sem)
303 {
304 	/*
305 	 * Avoid trying to acquire write lock if count isn't RWSEM_WAITING_BIAS.
306 	 */
307 	if (count != RWSEM_WAITING_BIAS)
308 		return false;
309 
310 	/*
311 	 * Acquire the lock by trying to set it to ACTIVE_WRITE_BIAS. If there
312 	 * are other tasks on the wait list, we need to add on WAITING_BIAS.
313 	 */
314 	count = list_is_singular(&sem->wait_list) ?
315 			RWSEM_ACTIVE_WRITE_BIAS :
316 			RWSEM_ACTIVE_WRITE_BIAS + RWSEM_WAITING_BIAS;
317 
318 	if (atomic_long_cmpxchg_acquire(&sem->count, RWSEM_WAITING_BIAS, count)
319 							== RWSEM_WAITING_BIAS) {
320 		rwsem_set_owner(sem);
321 		return true;
322 	}
323 
324 	return false;
325 }
326 
327 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER
328 /*
329  * Try to acquire write lock before the writer has been put on wait queue.
330  */
rwsem_try_write_lock_unqueued(struct rw_semaphore * sem)331 static inline bool rwsem_try_write_lock_unqueued(struct rw_semaphore *sem)
332 {
333 	long old, count = atomic_long_read(&sem->count);
334 
335 	while (true) {
336 		if (!(count == 0 || count == RWSEM_WAITING_BIAS))
337 			return false;
338 
339 		old = atomic_long_cmpxchg_acquire(&sem->count, count,
340 				      count + RWSEM_ACTIVE_WRITE_BIAS);
341 		if (old == count) {
342 			rwsem_set_owner(sem);
343 			return true;
344 		}
345 
346 		count = old;
347 	}
348 }
349 
owner_on_cpu(struct task_struct * owner)350 static inline bool owner_on_cpu(struct task_struct *owner)
351 {
352 	/*
353 	 * As lock holder preemption issue, we both skip spinning if
354 	 * task is not on cpu or its cpu is preempted
355 	 */
356 	return owner->on_cpu && !vcpu_is_preempted(task_cpu(owner));
357 }
358 
rwsem_can_spin_on_owner(struct rw_semaphore * sem)359 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem)
360 {
361 	struct task_struct *owner;
362 	bool ret = true;
363 
364 	BUILD_BUG_ON(!rwsem_has_anonymous_owner(RWSEM_OWNER_UNKNOWN));
365 
366 	if (need_resched())
367 		return false;
368 
369 	rcu_read_lock();
370 	owner = READ_ONCE(sem->owner);
371 	if (owner) {
372 		ret = is_rwsem_owner_spinnable(owner) &&
373 		      owner_on_cpu(owner);
374 	}
375 	rcu_read_unlock();
376 	return ret;
377 }
378 
379 /*
380  * Return true only if we can still spin on the owner field of the rwsem.
381  */
rwsem_spin_on_owner(struct rw_semaphore * sem)382 static noinline bool rwsem_spin_on_owner(struct rw_semaphore *sem)
383 {
384 	struct task_struct *owner = READ_ONCE(sem->owner);
385 
386 	if (!is_rwsem_owner_spinnable(owner))
387 		return false;
388 
389 	rcu_read_lock();
390 	while (owner && (READ_ONCE(sem->owner) == owner)) {
391 		/*
392 		 * Ensure we emit the owner->on_cpu, dereference _after_
393 		 * checking sem->owner still matches owner, if that fails,
394 		 * owner might point to free()d memory, if it still matches,
395 		 * the rcu_read_lock() ensures the memory stays valid.
396 		 */
397 		barrier();
398 
399 		/*
400 		 * abort spinning when need_resched or owner is not running or
401 		 * owner's cpu is preempted.
402 		 */
403 		if (need_resched() || !owner_on_cpu(owner)) {
404 			rcu_read_unlock();
405 			return false;
406 		}
407 
408 		cpu_relax();
409 	}
410 	rcu_read_unlock();
411 
412 	/*
413 	 * If there is a new owner or the owner is not set, we continue
414 	 * spinning.
415 	 */
416 	return is_rwsem_owner_spinnable(READ_ONCE(sem->owner));
417 }
418 
rwsem_optimistic_spin(struct rw_semaphore * sem)419 static bool rwsem_optimistic_spin(struct rw_semaphore *sem)
420 {
421 	bool taken = false;
422 
423 	preempt_disable();
424 
425 	/* sem->wait_lock should not be held when doing optimistic spinning */
426 	if (!rwsem_can_spin_on_owner(sem))
427 		goto done;
428 
429 	if (!osq_lock(&sem->osq))
430 		goto done;
431 
432 	/*
433 	 * Optimistically spin on the owner field and attempt to acquire the
434 	 * lock whenever the owner changes. Spinning will be stopped when:
435 	 *  1) the owning writer isn't running; or
436 	 *  2) readers own the lock as we can't determine if they are
437 	 *     actively running or not.
438 	 */
439 	while (rwsem_spin_on_owner(sem)) {
440 		/*
441 		 * Try to acquire the lock
442 		 */
443 		if (rwsem_try_write_lock_unqueued(sem)) {
444 			taken = true;
445 			break;
446 		}
447 
448 		/*
449 		 * When there's no owner, we might have preempted between the
450 		 * owner acquiring the lock and setting the owner field. If
451 		 * we're an RT task that will live-lock because we won't let
452 		 * the owner complete.
453 		 */
454 		if (!sem->owner && (need_resched() || rt_task(current)))
455 			break;
456 
457 		/*
458 		 * The cpu_relax() call is a compiler barrier which forces
459 		 * everything in this loop to be re-loaded. We don't need
460 		 * memory barriers as we'll eventually observe the right
461 		 * values at the cost of a few extra spins.
462 		 */
463 		cpu_relax();
464 	}
465 	osq_unlock(&sem->osq);
466 done:
467 	preempt_enable();
468 	return taken;
469 }
470 
471 /*
472  * Return true if the rwsem has active spinner
473  */
rwsem_has_spinner(struct rw_semaphore * sem)474 static inline bool rwsem_has_spinner(struct rw_semaphore *sem)
475 {
476 	return osq_is_locked(&sem->osq);
477 }
478 
479 #else
rwsem_optimistic_spin(struct rw_semaphore * sem)480 static bool rwsem_optimistic_spin(struct rw_semaphore *sem)
481 {
482 	return false;
483 }
484 
rwsem_has_spinner(struct rw_semaphore * sem)485 static inline bool rwsem_has_spinner(struct rw_semaphore *sem)
486 {
487 	return false;
488 }
489 #endif
490 
491 /*
492  * Wait until we successfully acquire the write lock
493  */
494 static inline struct rw_semaphore *
__rwsem_down_write_failed_common(struct rw_semaphore * sem,int state)495 __rwsem_down_write_failed_common(struct rw_semaphore *sem, int state)
496 {
497 	long count;
498 	bool waiting = true; /* any queued threads before us */
499 	struct rwsem_waiter waiter;
500 	struct rw_semaphore *ret = sem;
501 	DEFINE_WAKE_Q(wake_q);
502 
503 	/* undo write bias from down_write operation, stop active locking */
504 	count = atomic_long_sub_return(RWSEM_ACTIVE_WRITE_BIAS, &sem->count);
505 
506 	/* do optimistic spinning and steal lock if possible */
507 	if (rwsem_optimistic_spin(sem))
508 		return sem;
509 
510 	/*
511 	 * Optimistic spinning failed, proceed to the slowpath
512 	 * and block until we can acquire the sem.
513 	 */
514 	waiter.task = current;
515 	waiter.type = RWSEM_WAITING_FOR_WRITE;
516 
517 	raw_spin_lock_irq(&sem->wait_lock);
518 
519 	/* account for this before adding a new element to the list */
520 	if (list_empty(&sem->wait_list))
521 		waiting = false;
522 
523 	list_add_tail(&waiter.list, &sem->wait_list);
524 
525 	/* we're now waiting on the lock, but no longer actively locking */
526 	if (waiting) {
527 		count = atomic_long_read(&sem->count);
528 
529 		/*
530 		 * If there were already threads queued before us and there are
531 		 * no active writers, the lock must be read owned; so we try to
532 		 * wake any read locks that were queued ahead of us.
533 		 */
534 		if (count > RWSEM_WAITING_BIAS) {
535 			__rwsem_mark_wake(sem, RWSEM_WAKE_READERS, &wake_q);
536 			/*
537 			 * The wakeup is normally called _after_ the wait_lock
538 			 * is released, but given that we are proactively waking
539 			 * readers we can deal with the wake_q overhead as it is
540 			 * similar to releasing and taking the wait_lock again
541 			 * for attempting rwsem_try_write_lock().
542 			 */
543 			wake_up_q(&wake_q);
544 
545 			/*
546 			 * Reinitialize wake_q after use.
547 			 */
548 			wake_q_init(&wake_q);
549 		}
550 
551 	} else
552 		count = atomic_long_add_return(RWSEM_WAITING_BIAS, &sem->count);
553 
554 	/* wait until we successfully acquire the lock */
555 	set_current_state(state);
556 	while (true) {
557 		if (rwsem_try_write_lock(count, sem))
558 			break;
559 		raw_spin_unlock_irq(&sem->wait_lock);
560 
561 		/* Block until there are no active lockers. */
562 		do {
563 			if (signal_pending_state(state, current))
564 				goto out_nolock;
565 
566 			schedule();
567 			set_current_state(state);
568 		} while ((count = atomic_long_read(&sem->count)) & RWSEM_ACTIVE_MASK);
569 
570 		raw_spin_lock_irq(&sem->wait_lock);
571 	}
572 	__set_current_state(TASK_RUNNING);
573 	list_del(&waiter.list);
574 	raw_spin_unlock_irq(&sem->wait_lock);
575 
576 	return ret;
577 
578 out_nolock:
579 	__set_current_state(TASK_RUNNING);
580 	raw_spin_lock_irq(&sem->wait_lock);
581 	list_del(&waiter.list);
582 	if (list_empty(&sem->wait_list))
583 		atomic_long_add(-RWSEM_WAITING_BIAS, &sem->count);
584 	else
585 		__rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q);
586 	raw_spin_unlock_irq(&sem->wait_lock);
587 	wake_up_q(&wake_q);
588 
589 	return ERR_PTR(-EINTR);
590 }
591 
592 __visible struct rw_semaphore * __sched
rwsem_down_write_failed(struct rw_semaphore * sem)593 rwsem_down_write_failed(struct rw_semaphore *sem)
594 {
595 	return __rwsem_down_write_failed_common(sem, TASK_UNINTERRUPTIBLE);
596 }
597 EXPORT_SYMBOL(rwsem_down_write_failed);
598 
599 __visible struct rw_semaphore * __sched
rwsem_down_write_failed_killable(struct rw_semaphore * sem)600 rwsem_down_write_failed_killable(struct rw_semaphore *sem)
601 {
602 	return __rwsem_down_write_failed_common(sem, TASK_KILLABLE);
603 }
604 EXPORT_SYMBOL(rwsem_down_write_failed_killable);
605 
606 /*
607  * handle waking up a waiter on the semaphore
608  * - up_read/up_write has decremented the active part of count if we come here
609  */
610 __visible
rwsem_wake(struct rw_semaphore * sem)611 struct rw_semaphore *rwsem_wake(struct rw_semaphore *sem)
612 {
613 	unsigned long flags;
614 	DEFINE_WAKE_Q(wake_q);
615 
616 	/*
617 	* __rwsem_down_write_failed_common(sem)
618 	*   rwsem_optimistic_spin(sem)
619 	*     osq_unlock(sem->osq)
620 	*   ...
621 	*   atomic_long_add_return(&sem->count)
622 	*
623 	*      - VS -
624 	*
625 	*              __up_write()
626 	*                if (atomic_long_sub_return_release(&sem->count) < 0)
627 	*                  rwsem_wake(sem)
628 	*                    osq_is_locked(&sem->osq)
629 	*
630 	* And __up_write() must observe !osq_is_locked() when it observes the
631 	* atomic_long_add_return() in order to not miss a wakeup.
632 	*
633 	* This boils down to:
634 	*
635 	* [S.rel] X = 1                [RmW] r0 = (Y += 0)
636 	*         MB                         RMB
637 	* [RmW]   Y += 1               [L]   r1 = X
638 	*
639 	* exists (r0=1 /\ r1=0)
640 	*/
641 	smp_rmb();
642 
643 	/*
644 	 * If a spinner is present, it is not necessary to do the wakeup.
645 	 * Try to do wakeup only if the trylock succeeds to minimize
646 	 * spinlock contention which may introduce too much delay in the
647 	 * unlock operation.
648 	 *
649 	 *    spinning writer		up_write/up_read caller
650 	 *    ---------------		-----------------------
651 	 * [S]   osq_unlock()		[L]   osq
652 	 *	 MB			      RMB
653 	 * [RmW] rwsem_try_write_lock() [RmW] spin_trylock(wait_lock)
654 	 *
655 	 * Here, it is important to make sure that there won't be a missed
656 	 * wakeup while the rwsem is free and the only spinning writer goes
657 	 * to sleep without taking the rwsem. Even when the spinning writer
658 	 * is just going to break out of the waiting loop, it will still do
659 	 * a trylock in rwsem_down_write_failed() before sleeping. IOW, if
660 	 * rwsem_has_spinner() is true, it will guarantee at least one
661 	 * trylock attempt on the rwsem later on.
662 	 */
663 	if (rwsem_has_spinner(sem)) {
664 		/*
665 		 * The smp_rmb() here is to make sure that the spinner
666 		 * state is consulted before reading the wait_lock.
667 		 */
668 		smp_rmb();
669 		if (!raw_spin_trylock_irqsave(&sem->wait_lock, flags))
670 			return sem;
671 		goto locked;
672 	}
673 	raw_spin_lock_irqsave(&sem->wait_lock, flags);
674 locked:
675 
676 	if (!list_empty(&sem->wait_list))
677 		__rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q);
678 
679 	raw_spin_unlock_irqrestore(&sem->wait_lock, flags);
680 	wake_up_q(&wake_q);
681 
682 	return sem;
683 }
684 EXPORT_SYMBOL(rwsem_wake);
685 
686 /*
687  * downgrade a write lock into a read lock
688  * - caller incremented waiting part of count and discovered it still negative
689  * - just wake up any readers at the front of the queue
690  */
691 __visible
rwsem_downgrade_wake(struct rw_semaphore * sem)692 struct rw_semaphore *rwsem_downgrade_wake(struct rw_semaphore *sem)
693 {
694 	unsigned long flags;
695 	DEFINE_WAKE_Q(wake_q);
696 
697 	raw_spin_lock_irqsave(&sem->wait_lock, flags);
698 
699 	if (!list_empty(&sem->wait_list))
700 		__rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED, &wake_q);
701 
702 	raw_spin_unlock_irqrestore(&sem->wait_lock, flags);
703 	wake_up_q(&wake_q);
704 
705 	return sem;
706 }
707 EXPORT_SYMBOL(rwsem_downgrade_wake);
708