1 /*
2 * Copyright(c) 2016 Intel Corporation.
3 *
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
6 *
7 * GPL LICENSE SUMMARY
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * BSD LICENSE
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 *
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45 *
46 */
47
48 #include <linux/slab.h>
49 #include <linux/vmalloc.h>
50 #include <rdma/ib_umem.h>
51 #include <rdma/rdma_vt.h>
52 #include "vt.h"
53 #include "mr.h"
54 #include "trace.h"
55
56 /**
57 * rvt_driver_mr_init - Init MR resources per driver
58 * @rdi: rvt dev struct
59 *
60 * Do any intilization needed when a driver registers with rdmavt.
61 *
62 * Return: 0 on success or errno on failure
63 */
rvt_driver_mr_init(struct rvt_dev_info * rdi)64 int rvt_driver_mr_init(struct rvt_dev_info *rdi)
65 {
66 unsigned int lkey_table_size = rdi->dparms.lkey_table_size;
67 unsigned lk_tab_size;
68 int i;
69
70 /*
71 * The top hfi1_lkey_table_size bits are used to index the
72 * table. The lower 8 bits can be owned by the user (copied from
73 * the LKEY). The remaining bits act as a generation number or tag.
74 */
75 if (!lkey_table_size)
76 return -EINVAL;
77
78 spin_lock_init(&rdi->lkey_table.lock);
79
80 /* ensure generation is at least 4 bits */
81 if (lkey_table_size > RVT_MAX_LKEY_TABLE_BITS) {
82 rvt_pr_warn(rdi, "lkey bits %u too large, reduced to %u\n",
83 lkey_table_size, RVT_MAX_LKEY_TABLE_BITS);
84 rdi->dparms.lkey_table_size = RVT_MAX_LKEY_TABLE_BITS;
85 lkey_table_size = rdi->dparms.lkey_table_size;
86 }
87 rdi->lkey_table.max = 1 << lkey_table_size;
88 rdi->lkey_table.shift = 32 - lkey_table_size;
89 lk_tab_size = rdi->lkey_table.max * sizeof(*rdi->lkey_table.table);
90 rdi->lkey_table.table = (struct rvt_mregion __rcu **)
91 vmalloc_node(lk_tab_size, rdi->dparms.node);
92 if (!rdi->lkey_table.table)
93 return -ENOMEM;
94
95 RCU_INIT_POINTER(rdi->dma_mr, NULL);
96 for (i = 0; i < rdi->lkey_table.max; i++)
97 RCU_INIT_POINTER(rdi->lkey_table.table[i], NULL);
98
99 rdi->dparms.props.max_mr = rdi->lkey_table.max;
100 rdi->dparms.props.max_fmr = rdi->lkey_table.max;
101 return 0;
102 }
103
104 /**
105 *rvt_mr_exit: clean up MR
106 *@rdi: rvt dev structure
107 *
108 * called when drivers have unregistered or perhaps failed to register with us
109 */
rvt_mr_exit(struct rvt_dev_info * rdi)110 void rvt_mr_exit(struct rvt_dev_info *rdi)
111 {
112 if (rdi->dma_mr)
113 rvt_pr_err(rdi, "DMA MR not null!\n");
114
115 vfree(rdi->lkey_table.table);
116 }
117
rvt_deinit_mregion(struct rvt_mregion * mr)118 static void rvt_deinit_mregion(struct rvt_mregion *mr)
119 {
120 int i = mr->mapsz;
121
122 mr->mapsz = 0;
123 while (i)
124 kfree(mr->map[--i]);
125 percpu_ref_exit(&mr->refcount);
126 }
127
__rvt_mregion_complete(struct percpu_ref * ref)128 static void __rvt_mregion_complete(struct percpu_ref *ref)
129 {
130 struct rvt_mregion *mr = container_of(ref, struct rvt_mregion,
131 refcount);
132
133 complete(&mr->comp);
134 }
135
rvt_init_mregion(struct rvt_mregion * mr,struct ib_pd * pd,int count,unsigned int percpu_flags)136 static int rvt_init_mregion(struct rvt_mregion *mr, struct ib_pd *pd,
137 int count, unsigned int percpu_flags)
138 {
139 int m, i = 0;
140 struct rvt_dev_info *dev = ib_to_rvt(pd->device);
141
142 mr->mapsz = 0;
143 m = (count + RVT_SEGSZ - 1) / RVT_SEGSZ;
144 for (; i < m; i++) {
145 mr->map[i] = kzalloc_node(sizeof(*mr->map[0]), GFP_KERNEL,
146 dev->dparms.node);
147 if (!mr->map[i])
148 goto bail;
149 mr->mapsz++;
150 }
151 init_completion(&mr->comp);
152 /* count returning the ptr to user */
153 if (percpu_ref_init(&mr->refcount, &__rvt_mregion_complete,
154 percpu_flags, GFP_KERNEL))
155 goto bail;
156
157 atomic_set(&mr->lkey_invalid, 0);
158 mr->pd = pd;
159 mr->max_segs = count;
160 return 0;
161 bail:
162 rvt_deinit_mregion(mr);
163 return -ENOMEM;
164 }
165
166 /**
167 * rvt_alloc_lkey - allocate an lkey
168 * @mr: memory region that this lkey protects
169 * @dma_region: 0->normal key, 1->restricted DMA key
170 *
171 * Returns 0 if successful, otherwise returns -errno.
172 *
173 * Increments mr reference count as required.
174 *
175 * Sets the lkey field mr for non-dma regions.
176 *
177 */
rvt_alloc_lkey(struct rvt_mregion * mr,int dma_region)178 static int rvt_alloc_lkey(struct rvt_mregion *mr, int dma_region)
179 {
180 unsigned long flags;
181 u32 r;
182 u32 n;
183 int ret = 0;
184 struct rvt_dev_info *dev = ib_to_rvt(mr->pd->device);
185 struct rvt_lkey_table *rkt = &dev->lkey_table;
186
187 rvt_get_mr(mr);
188 spin_lock_irqsave(&rkt->lock, flags);
189
190 /* special case for dma_mr lkey == 0 */
191 if (dma_region) {
192 struct rvt_mregion *tmr;
193
194 tmr = rcu_access_pointer(dev->dma_mr);
195 if (!tmr) {
196 mr->lkey_published = 1;
197 /* Insure published written first */
198 rcu_assign_pointer(dev->dma_mr, mr);
199 rvt_get_mr(mr);
200 }
201 goto success;
202 }
203
204 /* Find the next available LKEY */
205 r = rkt->next;
206 n = r;
207 for (;;) {
208 if (!rcu_access_pointer(rkt->table[r]))
209 break;
210 r = (r + 1) & (rkt->max - 1);
211 if (r == n)
212 goto bail;
213 }
214 rkt->next = (r + 1) & (rkt->max - 1);
215 /*
216 * Make sure lkey is never zero which is reserved to indicate an
217 * unrestricted LKEY.
218 */
219 rkt->gen++;
220 /*
221 * bits are capped to ensure enough bits for generation number
222 */
223 mr->lkey = (r << (32 - dev->dparms.lkey_table_size)) |
224 ((((1 << (24 - dev->dparms.lkey_table_size)) - 1) & rkt->gen)
225 << 8);
226 if (mr->lkey == 0) {
227 mr->lkey |= 1 << 8;
228 rkt->gen++;
229 }
230 mr->lkey_published = 1;
231 /* Insure published written first */
232 rcu_assign_pointer(rkt->table[r], mr);
233 success:
234 spin_unlock_irqrestore(&rkt->lock, flags);
235 out:
236 return ret;
237 bail:
238 rvt_put_mr(mr);
239 spin_unlock_irqrestore(&rkt->lock, flags);
240 ret = -ENOMEM;
241 goto out;
242 }
243
244 /**
245 * rvt_free_lkey - free an lkey
246 * @mr: mr to free from tables
247 */
rvt_free_lkey(struct rvt_mregion * mr)248 static void rvt_free_lkey(struct rvt_mregion *mr)
249 {
250 unsigned long flags;
251 u32 lkey = mr->lkey;
252 u32 r;
253 struct rvt_dev_info *dev = ib_to_rvt(mr->pd->device);
254 struct rvt_lkey_table *rkt = &dev->lkey_table;
255 int freed = 0;
256
257 spin_lock_irqsave(&rkt->lock, flags);
258 if (!lkey) {
259 if (mr->lkey_published) {
260 mr->lkey_published = 0;
261 /* insure published is written before pointer */
262 rcu_assign_pointer(dev->dma_mr, NULL);
263 rvt_put_mr(mr);
264 }
265 } else {
266 if (!mr->lkey_published)
267 goto out;
268 r = lkey >> (32 - dev->dparms.lkey_table_size);
269 mr->lkey_published = 0;
270 /* insure published is written before pointer */
271 rcu_assign_pointer(rkt->table[r], NULL);
272 }
273 freed++;
274 out:
275 spin_unlock_irqrestore(&rkt->lock, flags);
276 if (freed)
277 percpu_ref_kill(&mr->refcount);
278 }
279
__rvt_alloc_mr(int count,struct ib_pd * pd)280 static struct rvt_mr *__rvt_alloc_mr(int count, struct ib_pd *pd)
281 {
282 struct rvt_mr *mr;
283 int rval = -ENOMEM;
284 int m;
285
286 /* Allocate struct plus pointers to first level page tables. */
287 m = (count + RVT_SEGSZ - 1) / RVT_SEGSZ;
288 mr = kzalloc(struct_size(mr, mr.map, m), GFP_KERNEL);
289 if (!mr)
290 goto bail;
291
292 rval = rvt_init_mregion(&mr->mr, pd, count, 0);
293 if (rval)
294 goto bail;
295 /*
296 * ib_reg_phys_mr() will initialize mr->ibmr except for
297 * lkey and rkey.
298 */
299 rval = rvt_alloc_lkey(&mr->mr, 0);
300 if (rval)
301 goto bail_mregion;
302 mr->ibmr.lkey = mr->mr.lkey;
303 mr->ibmr.rkey = mr->mr.lkey;
304 done:
305 return mr;
306
307 bail_mregion:
308 rvt_deinit_mregion(&mr->mr);
309 bail:
310 kfree(mr);
311 mr = ERR_PTR(rval);
312 goto done;
313 }
314
__rvt_free_mr(struct rvt_mr * mr)315 static void __rvt_free_mr(struct rvt_mr *mr)
316 {
317 rvt_free_lkey(&mr->mr);
318 rvt_deinit_mregion(&mr->mr);
319 kfree(mr);
320 }
321
322 /**
323 * rvt_get_dma_mr - get a DMA memory region
324 * @pd: protection domain for this memory region
325 * @acc: access flags
326 *
327 * Return: the memory region on success, otherwise returns an errno.
328 * Note that all DMA addresses should be created via the functions in
329 * struct dma_virt_ops.
330 */
rvt_get_dma_mr(struct ib_pd * pd,int acc)331 struct ib_mr *rvt_get_dma_mr(struct ib_pd *pd, int acc)
332 {
333 struct rvt_mr *mr;
334 struct ib_mr *ret;
335 int rval;
336
337 if (ibpd_to_rvtpd(pd)->user)
338 return ERR_PTR(-EPERM);
339
340 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
341 if (!mr) {
342 ret = ERR_PTR(-ENOMEM);
343 goto bail;
344 }
345
346 rval = rvt_init_mregion(&mr->mr, pd, 0, 0);
347 if (rval) {
348 ret = ERR_PTR(rval);
349 goto bail;
350 }
351
352 rval = rvt_alloc_lkey(&mr->mr, 1);
353 if (rval) {
354 ret = ERR_PTR(rval);
355 goto bail_mregion;
356 }
357
358 mr->mr.access_flags = acc;
359 ret = &mr->ibmr;
360 done:
361 return ret;
362
363 bail_mregion:
364 rvt_deinit_mregion(&mr->mr);
365 bail:
366 kfree(mr);
367 goto done;
368 }
369
370 /**
371 * rvt_reg_user_mr - register a userspace memory region
372 * @pd: protection domain for this memory region
373 * @start: starting userspace address
374 * @length: length of region to register
375 * @mr_access_flags: access flags for this memory region
376 * @udata: unused by the driver
377 *
378 * Return: the memory region on success, otherwise returns an errno.
379 */
rvt_reg_user_mr(struct ib_pd * pd,u64 start,u64 length,u64 virt_addr,int mr_access_flags,struct ib_udata * udata)380 struct ib_mr *rvt_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
381 u64 virt_addr, int mr_access_flags,
382 struct ib_udata *udata)
383 {
384 struct rvt_mr *mr;
385 struct ib_umem *umem;
386 struct sg_page_iter sg_iter;
387 int n, m;
388 struct ib_mr *ret;
389
390 if (length == 0)
391 return ERR_PTR(-EINVAL);
392
393 umem = ib_umem_get(udata, start, length, mr_access_flags, 0);
394 if (IS_ERR(umem))
395 return (void *)umem;
396
397 n = ib_umem_num_pages(umem);
398
399 mr = __rvt_alloc_mr(n, pd);
400 if (IS_ERR(mr)) {
401 ret = (struct ib_mr *)mr;
402 goto bail_umem;
403 }
404
405 mr->mr.user_base = start;
406 mr->mr.iova = virt_addr;
407 mr->mr.length = length;
408 mr->mr.offset = ib_umem_offset(umem);
409 mr->mr.access_flags = mr_access_flags;
410 mr->umem = umem;
411
412 mr->mr.page_shift = PAGE_SHIFT;
413 m = 0;
414 n = 0;
415 for_each_sg_page (umem->sg_head.sgl, &sg_iter, umem->nmap, 0) {
416 void *vaddr;
417
418 vaddr = page_address(sg_page_iter_page(&sg_iter));
419 if (!vaddr) {
420 ret = ERR_PTR(-EINVAL);
421 goto bail_inval;
422 }
423 mr->mr.map[m]->segs[n].vaddr = vaddr;
424 mr->mr.map[m]->segs[n].length = PAGE_SIZE;
425 trace_rvt_mr_user_seg(&mr->mr, m, n, vaddr, PAGE_SIZE);
426 if (++n == RVT_SEGSZ) {
427 m++;
428 n = 0;
429 }
430 }
431 return &mr->ibmr;
432
433 bail_inval:
434 __rvt_free_mr(mr);
435
436 bail_umem:
437 ib_umem_release(umem);
438
439 return ret;
440 }
441
442 /**
443 * rvt_dereg_clean_qp_cb - callback from iterator
444 * @qp - the qp
445 * @v - the mregion (as u64)
446 *
447 * This routine fields the callback for all QPs and
448 * for QPs in the same PD as the MR will call the
449 * rvt_qp_mr_clean() to potentially cleanup references.
450 */
rvt_dereg_clean_qp_cb(struct rvt_qp * qp,u64 v)451 static void rvt_dereg_clean_qp_cb(struct rvt_qp *qp, u64 v)
452 {
453 struct rvt_mregion *mr = (struct rvt_mregion *)v;
454
455 /* skip PDs that are not ours */
456 if (mr->pd != qp->ibqp.pd)
457 return;
458 rvt_qp_mr_clean(qp, mr->lkey);
459 }
460
461 /**
462 * rvt_dereg_clean_qps - find QPs for reference cleanup
463 * @mr - the MR that is being deregistered
464 *
465 * This routine iterates RC QPs looking for references
466 * to the lkey noted in mr.
467 */
rvt_dereg_clean_qps(struct rvt_mregion * mr)468 static void rvt_dereg_clean_qps(struct rvt_mregion *mr)
469 {
470 struct rvt_dev_info *rdi = ib_to_rvt(mr->pd->device);
471
472 rvt_qp_iter(rdi, (u64)mr, rvt_dereg_clean_qp_cb);
473 }
474
475 /**
476 * rvt_check_refs - check references
477 * @mr - the megion
478 * @t - the caller identification
479 *
480 * This routine checks MRs holding a reference during
481 * when being de-registered.
482 *
483 * If the count is non-zero, the code calls a clean routine then
484 * waits for the timeout for the count to zero.
485 */
rvt_check_refs(struct rvt_mregion * mr,const char * t)486 static int rvt_check_refs(struct rvt_mregion *mr, const char *t)
487 {
488 unsigned long timeout;
489 struct rvt_dev_info *rdi = ib_to_rvt(mr->pd->device);
490
491 if (mr->lkey) {
492 /* avoid dma mr */
493 rvt_dereg_clean_qps(mr);
494 /* @mr was indexed on rcu protected @lkey_table */
495 synchronize_rcu();
496 }
497
498 timeout = wait_for_completion_timeout(&mr->comp, 5 * HZ);
499 if (!timeout) {
500 rvt_pr_err(rdi,
501 "%s timeout mr %p pd %p lkey %x refcount %ld\n",
502 t, mr, mr->pd, mr->lkey,
503 atomic_long_read(&mr->refcount.count));
504 rvt_get_mr(mr);
505 return -EBUSY;
506 }
507 return 0;
508 }
509
510 /**
511 * rvt_mr_has_lkey - is MR
512 * @mr - the mregion
513 * @lkey - the lkey
514 */
rvt_mr_has_lkey(struct rvt_mregion * mr,u32 lkey)515 bool rvt_mr_has_lkey(struct rvt_mregion *mr, u32 lkey)
516 {
517 return mr && lkey == mr->lkey;
518 }
519
520 /**
521 * rvt_ss_has_lkey - is mr in sge tests
522 * @ss - the sge state
523 * @lkey
524 *
525 * This code tests for an MR in the indicated
526 * sge state.
527 */
rvt_ss_has_lkey(struct rvt_sge_state * ss,u32 lkey)528 bool rvt_ss_has_lkey(struct rvt_sge_state *ss, u32 lkey)
529 {
530 int i;
531 bool rval = false;
532
533 if (!ss->num_sge)
534 return rval;
535 /* first one */
536 rval = rvt_mr_has_lkey(ss->sge.mr, lkey);
537 /* any others */
538 for (i = 0; !rval && i < ss->num_sge - 1; i++)
539 rval = rvt_mr_has_lkey(ss->sg_list[i].mr, lkey);
540 return rval;
541 }
542
543 /**
544 * rvt_dereg_mr - unregister and free a memory region
545 * @ibmr: the memory region to free
546 *
547 *
548 * Note that this is called to free MRs created by rvt_get_dma_mr()
549 * or rvt_reg_user_mr().
550 *
551 * Returns 0 on success.
552 */
rvt_dereg_mr(struct ib_mr * ibmr,struct ib_udata * udata)553 int rvt_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata)
554 {
555 struct rvt_mr *mr = to_imr(ibmr);
556 int ret;
557
558 rvt_free_lkey(&mr->mr);
559
560 rvt_put_mr(&mr->mr); /* will set completion if last */
561 ret = rvt_check_refs(&mr->mr, __func__);
562 if (ret)
563 goto out;
564 rvt_deinit_mregion(&mr->mr);
565 ib_umem_release(mr->umem);
566 kfree(mr);
567 out:
568 return ret;
569 }
570
571 /**
572 * rvt_alloc_mr - Allocate a memory region usable with the
573 * @pd: protection domain for this memory region
574 * @mr_type: mem region type
575 * @max_num_sg: Max number of segments allowed
576 *
577 * Return: the memory region on success, otherwise return an errno.
578 */
rvt_alloc_mr(struct ib_pd * pd,enum ib_mr_type mr_type,u32 max_num_sg,struct ib_udata * udata)579 struct ib_mr *rvt_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
580 u32 max_num_sg, struct ib_udata *udata)
581 {
582 struct rvt_mr *mr;
583
584 if (mr_type != IB_MR_TYPE_MEM_REG)
585 return ERR_PTR(-EINVAL);
586
587 mr = __rvt_alloc_mr(max_num_sg, pd);
588 if (IS_ERR(mr))
589 return (struct ib_mr *)mr;
590
591 return &mr->ibmr;
592 }
593
594 /**
595 * rvt_set_page - page assignment function called by ib_sg_to_pages
596 * @ibmr: memory region
597 * @addr: dma address of mapped page
598 *
599 * Return: 0 on success
600 */
rvt_set_page(struct ib_mr * ibmr,u64 addr)601 static int rvt_set_page(struct ib_mr *ibmr, u64 addr)
602 {
603 struct rvt_mr *mr = to_imr(ibmr);
604 u32 ps = 1 << mr->mr.page_shift;
605 u32 mapped_segs = mr->mr.length >> mr->mr.page_shift;
606 int m, n;
607
608 if (unlikely(mapped_segs == mr->mr.max_segs))
609 return -ENOMEM;
610
611 m = mapped_segs / RVT_SEGSZ;
612 n = mapped_segs % RVT_SEGSZ;
613 mr->mr.map[m]->segs[n].vaddr = (void *)addr;
614 mr->mr.map[m]->segs[n].length = ps;
615 mr->mr.length += ps;
616 trace_rvt_mr_page_seg(&mr->mr, m, n, (void *)addr, ps);
617
618 return 0;
619 }
620
621 /**
622 * rvt_map_mr_sg - map sg list and set it the memory region
623 * @ibmr: memory region
624 * @sg: dma mapped scatterlist
625 * @sg_nents: number of entries in sg
626 * @sg_offset: offset in bytes into sg
627 *
628 * Overwrite rvt_mr length with mr length calculated by ib_sg_to_pages.
629 *
630 * Return: number of sg elements mapped to the memory region
631 */
rvt_map_mr_sg(struct ib_mr * ibmr,struct scatterlist * sg,int sg_nents,unsigned int * sg_offset)632 int rvt_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg,
633 int sg_nents, unsigned int *sg_offset)
634 {
635 struct rvt_mr *mr = to_imr(ibmr);
636 int ret;
637
638 mr->mr.length = 0;
639 mr->mr.page_shift = PAGE_SHIFT;
640 ret = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, rvt_set_page);
641 mr->mr.user_base = ibmr->iova;
642 mr->mr.iova = ibmr->iova;
643 mr->mr.offset = ibmr->iova - (u64)mr->mr.map[0]->segs[0].vaddr;
644 mr->mr.length = (size_t)ibmr->length;
645 trace_rvt_map_mr_sg(ibmr, sg_nents, sg_offset);
646 return ret;
647 }
648
649 /**
650 * rvt_fast_reg_mr - fast register physical MR
651 * @qp: the queue pair where the work request comes from
652 * @ibmr: the memory region to be registered
653 * @key: updated key for this memory region
654 * @access: access flags for this memory region
655 *
656 * Returns 0 on success.
657 */
rvt_fast_reg_mr(struct rvt_qp * qp,struct ib_mr * ibmr,u32 key,int access)658 int rvt_fast_reg_mr(struct rvt_qp *qp, struct ib_mr *ibmr, u32 key,
659 int access)
660 {
661 struct rvt_mr *mr = to_imr(ibmr);
662
663 if (qp->ibqp.pd != mr->mr.pd)
664 return -EACCES;
665
666 /* not applicable to dma MR or user MR */
667 if (!mr->mr.lkey || mr->umem)
668 return -EINVAL;
669
670 if ((key & 0xFFFFFF00) != (mr->mr.lkey & 0xFFFFFF00))
671 return -EINVAL;
672
673 ibmr->lkey = key;
674 ibmr->rkey = key;
675 mr->mr.lkey = key;
676 mr->mr.access_flags = access;
677 mr->mr.iova = ibmr->iova;
678 atomic_set(&mr->mr.lkey_invalid, 0);
679
680 return 0;
681 }
682 EXPORT_SYMBOL(rvt_fast_reg_mr);
683
684 /**
685 * rvt_invalidate_rkey - invalidate an MR rkey
686 * @qp: queue pair associated with the invalidate op
687 * @rkey: rkey to invalidate
688 *
689 * Returns 0 on success.
690 */
rvt_invalidate_rkey(struct rvt_qp * qp,u32 rkey)691 int rvt_invalidate_rkey(struct rvt_qp *qp, u32 rkey)
692 {
693 struct rvt_dev_info *dev = ib_to_rvt(qp->ibqp.device);
694 struct rvt_lkey_table *rkt = &dev->lkey_table;
695 struct rvt_mregion *mr;
696
697 if (rkey == 0)
698 return -EINVAL;
699
700 rcu_read_lock();
701 mr = rcu_dereference(
702 rkt->table[(rkey >> (32 - dev->dparms.lkey_table_size))]);
703 if (unlikely(!mr || mr->lkey != rkey || qp->ibqp.pd != mr->pd))
704 goto bail;
705
706 atomic_set(&mr->lkey_invalid, 1);
707 rcu_read_unlock();
708 return 0;
709
710 bail:
711 rcu_read_unlock();
712 return -EINVAL;
713 }
714 EXPORT_SYMBOL(rvt_invalidate_rkey);
715
716 /**
717 * rvt_alloc_fmr - allocate a fast memory region
718 * @pd: the protection domain for this memory region
719 * @mr_access_flags: access flags for this memory region
720 * @fmr_attr: fast memory region attributes
721 *
722 * Return: the memory region on success, otherwise returns an errno.
723 */
rvt_alloc_fmr(struct ib_pd * pd,int mr_access_flags,struct ib_fmr_attr * fmr_attr)724 struct ib_fmr *rvt_alloc_fmr(struct ib_pd *pd, int mr_access_flags,
725 struct ib_fmr_attr *fmr_attr)
726 {
727 struct rvt_fmr *fmr;
728 int m;
729 struct ib_fmr *ret;
730 int rval = -ENOMEM;
731
732 /* Allocate struct plus pointers to first level page tables. */
733 m = (fmr_attr->max_pages + RVT_SEGSZ - 1) / RVT_SEGSZ;
734 fmr = kzalloc(struct_size(fmr, mr.map, m), GFP_KERNEL);
735 if (!fmr)
736 goto bail;
737
738 rval = rvt_init_mregion(&fmr->mr, pd, fmr_attr->max_pages,
739 PERCPU_REF_INIT_ATOMIC);
740 if (rval)
741 goto bail;
742
743 /*
744 * ib_alloc_fmr() will initialize fmr->ibfmr except for lkey &
745 * rkey.
746 */
747 rval = rvt_alloc_lkey(&fmr->mr, 0);
748 if (rval)
749 goto bail_mregion;
750 fmr->ibfmr.rkey = fmr->mr.lkey;
751 fmr->ibfmr.lkey = fmr->mr.lkey;
752 /*
753 * Resources are allocated but no valid mapping (RKEY can't be
754 * used).
755 */
756 fmr->mr.access_flags = mr_access_flags;
757 fmr->mr.max_segs = fmr_attr->max_pages;
758 fmr->mr.page_shift = fmr_attr->page_shift;
759
760 ret = &fmr->ibfmr;
761 done:
762 return ret;
763
764 bail_mregion:
765 rvt_deinit_mregion(&fmr->mr);
766 bail:
767 kfree(fmr);
768 ret = ERR_PTR(rval);
769 goto done;
770 }
771
772 /**
773 * rvt_map_phys_fmr - set up a fast memory region
774 * @ibfmr: the fast memory region to set up
775 * @page_list: the list of pages to associate with the fast memory region
776 * @list_len: the number of pages to associate with the fast memory region
777 * @iova: the virtual address of the start of the fast memory region
778 *
779 * This may be called from interrupt context.
780 *
781 * Return: 0 on success
782 */
783
rvt_map_phys_fmr(struct ib_fmr * ibfmr,u64 * page_list,int list_len,u64 iova)784 int rvt_map_phys_fmr(struct ib_fmr *ibfmr, u64 *page_list,
785 int list_len, u64 iova)
786 {
787 struct rvt_fmr *fmr = to_ifmr(ibfmr);
788 struct rvt_lkey_table *rkt;
789 unsigned long flags;
790 int m, n;
791 unsigned long i;
792 u32 ps;
793 struct rvt_dev_info *rdi = ib_to_rvt(ibfmr->device);
794
795 i = atomic_long_read(&fmr->mr.refcount.count);
796 if (i > 2)
797 return -EBUSY;
798
799 if (list_len > fmr->mr.max_segs)
800 return -EINVAL;
801
802 rkt = &rdi->lkey_table;
803 spin_lock_irqsave(&rkt->lock, flags);
804 fmr->mr.user_base = iova;
805 fmr->mr.iova = iova;
806 ps = 1 << fmr->mr.page_shift;
807 fmr->mr.length = list_len * ps;
808 m = 0;
809 n = 0;
810 for (i = 0; i < list_len; i++) {
811 fmr->mr.map[m]->segs[n].vaddr = (void *)page_list[i];
812 fmr->mr.map[m]->segs[n].length = ps;
813 trace_rvt_mr_fmr_seg(&fmr->mr, m, n, (void *)page_list[i], ps);
814 if (++n == RVT_SEGSZ) {
815 m++;
816 n = 0;
817 }
818 }
819 spin_unlock_irqrestore(&rkt->lock, flags);
820 return 0;
821 }
822
823 /**
824 * rvt_unmap_fmr - unmap fast memory regions
825 * @fmr_list: the list of fast memory regions to unmap
826 *
827 * Return: 0 on success.
828 */
rvt_unmap_fmr(struct list_head * fmr_list)829 int rvt_unmap_fmr(struct list_head *fmr_list)
830 {
831 struct rvt_fmr *fmr;
832 struct rvt_lkey_table *rkt;
833 unsigned long flags;
834 struct rvt_dev_info *rdi;
835
836 list_for_each_entry(fmr, fmr_list, ibfmr.list) {
837 rdi = ib_to_rvt(fmr->ibfmr.device);
838 rkt = &rdi->lkey_table;
839 spin_lock_irqsave(&rkt->lock, flags);
840 fmr->mr.user_base = 0;
841 fmr->mr.iova = 0;
842 fmr->mr.length = 0;
843 spin_unlock_irqrestore(&rkt->lock, flags);
844 }
845 return 0;
846 }
847
848 /**
849 * rvt_dealloc_fmr - deallocate a fast memory region
850 * @ibfmr: the fast memory region to deallocate
851 *
852 * Return: 0 on success.
853 */
rvt_dealloc_fmr(struct ib_fmr * ibfmr)854 int rvt_dealloc_fmr(struct ib_fmr *ibfmr)
855 {
856 struct rvt_fmr *fmr = to_ifmr(ibfmr);
857 int ret = 0;
858
859 rvt_free_lkey(&fmr->mr);
860 rvt_put_mr(&fmr->mr); /* will set completion if last */
861 ret = rvt_check_refs(&fmr->mr, __func__);
862 if (ret)
863 goto out;
864 rvt_deinit_mregion(&fmr->mr);
865 kfree(fmr);
866 out:
867 return ret;
868 }
869
870 /**
871 * rvt_sge_adjacent - is isge compressible
872 * @last_sge: last outgoing SGE written
873 * @sge: SGE to check
874 *
875 * If adjacent will update last_sge to add length.
876 *
877 * Return: true if isge is adjacent to last sge
878 */
rvt_sge_adjacent(struct rvt_sge * last_sge,struct ib_sge * sge)879 static inline bool rvt_sge_adjacent(struct rvt_sge *last_sge,
880 struct ib_sge *sge)
881 {
882 if (last_sge && sge->lkey == last_sge->mr->lkey &&
883 ((uint64_t)(last_sge->vaddr + last_sge->length) == sge->addr)) {
884 if (sge->lkey) {
885 if (unlikely((sge->addr - last_sge->mr->user_base +
886 sge->length > last_sge->mr->length)))
887 return false; /* overrun, caller will catch */
888 } else {
889 last_sge->length += sge->length;
890 }
891 last_sge->sge_length += sge->length;
892 trace_rvt_sge_adjacent(last_sge, sge);
893 return true;
894 }
895 return false;
896 }
897
898 /**
899 * rvt_lkey_ok - check IB SGE for validity and initialize
900 * @rkt: table containing lkey to check SGE against
901 * @pd: protection domain
902 * @isge: outgoing internal SGE
903 * @last_sge: last outgoing SGE written
904 * @sge: SGE to check
905 * @acc: access flags
906 *
907 * Check the IB SGE for validity and initialize our internal version
908 * of it.
909 *
910 * Increments the reference count when a new sge is stored.
911 *
912 * Return: 0 if compressed, 1 if added , otherwise returns -errno.
913 */
rvt_lkey_ok(struct rvt_lkey_table * rkt,struct rvt_pd * pd,struct rvt_sge * isge,struct rvt_sge * last_sge,struct ib_sge * sge,int acc)914 int rvt_lkey_ok(struct rvt_lkey_table *rkt, struct rvt_pd *pd,
915 struct rvt_sge *isge, struct rvt_sge *last_sge,
916 struct ib_sge *sge, int acc)
917 {
918 struct rvt_mregion *mr;
919 unsigned n, m;
920 size_t off;
921
922 /*
923 * We use LKEY == zero for kernel virtual addresses
924 * (see rvt_get_dma_mr() and dma_virt_ops).
925 */
926 if (sge->lkey == 0) {
927 struct rvt_dev_info *dev = ib_to_rvt(pd->ibpd.device);
928
929 if (pd->user)
930 return -EINVAL;
931 if (rvt_sge_adjacent(last_sge, sge))
932 return 0;
933 rcu_read_lock();
934 mr = rcu_dereference(dev->dma_mr);
935 if (!mr)
936 goto bail;
937 rvt_get_mr(mr);
938 rcu_read_unlock();
939
940 isge->mr = mr;
941 isge->vaddr = (void *)sge->addr;
942 isge->length = sge->length;
943 isge->sge_length = sge->length;
944 isge->m = 0;
945 isge->n = 0;
946 goto ok;
947 }
948 if (rvt_sge_adjacent(last_sge, sge))
949 return 0;
950 rcu_read_lock();
951 mr = rcu_dereference(rkt->table[sge->lkey >> rkt->shift]);
952 if (!mr)
953 goto bail;
954 rvt_get_mr(mr);
955 if (!READ_ONCE(mr->lkey_published))
956 goto bail_unref;
957
958 if (unlikely(atomic_read(&mr->lkey_invalid) ||
959 mr->lkey != sge->lkey || mr->pd != &pd->ibpd))
960 goto bail_unref;
961
962 off = sge->addr - mr->user_base;
963 if (unlikely(sge->addr < mr->user_base ||
964 off + sge->length > mr->length ||
965 (mr->access_flags & acc) != acc))
966 goto bail_unref;
967 rcu_read_unlock();
968
969 off += mr->offset;
970 if (mr->page_shift) {
971 /*
972 * page sizes are uniform power of 2 so no loop is necessary
973 * entries_spanned_by_off is the number of times the loop below
974 * would have executed.
975 */
976 size_t entries_spanned_by_off;
977
978 entries_spanned_by_off = off >> mr->page_shift;
979 off -= (entries_spanned_by_off << mr->page_shift);
980 m = entries_spanned_by_off / RVT_SEGSZ;
981 n = entries_spanned_by_off % RVT_SEGSZ;
982 } else {
983 m = 0;
984 n = 0;
985 while (off >= mr->map[m]->segs[n].length) {
986 off -= mr->map[m]->segs[n].length;
987 n++;
988 if (n >= RVT_SEGSZ) {
989 m++;
990 n = 0;
991 }
992 }
993 }
994 isge->mr = mr;
995 isge->vaddr = mr->map[m]->segs[n].vaddr + off;
996 isge->length = mr->map[m]->segs[n].length - off;
997 isge->sge_length = sge->length;
998 isge->m = m;
999 isge->n = n;
1000 ok:
1001 trace_rvt_sge_new(isge, sge);
1002 return 1;
1003 bail_unref:
1004 rvt_put_mr(mr);
1005 bail:
1006 rcu_read_unlock();
1007 return -EINVAL;
1008 }
1009 EXPORT_SYMBOL(rvt_lkey_ok);
1010
1011 /**
1012 * rvt_rkey_ok - check the IB virtual address, length, and RKEY
1013 * @qp: qp for validation
1014 * @sge: SGE state
1015 * @len: length of data
1016 * @vaddr: virtual address to place data
1017 * @rkey: rkey to check
1018 * @acc: access flags
1019 *
1020 * Return: 1 if successful, otherwise 0.
1021 *
1022 * increments the reference count upon success
1023 */
rvt_rkey_ok(struct rvt_qp * qp,struct rvt_sge * sge,u32 len,u64 vaddr,u32 rkey,int acc)1024 int rvt_rkey_ok(struct rvt_qp *qp, struct rvt_sge *sge,
1025 u32 len, u64 vaddr, u32 rkey, int acc)
1026 {
1027 struct rvt_dev_info *dev = ib_to_rvt(qp->ibqp.device);
1028 struct rvt_lkey_table *rkt = &dev->lkey_table;
1029 struct rvt_mregion *mr;
1030 unsigned n, m;
1031 size_t off;
1032
1033 /*
1034 * We use RKEY == zero for kernel virtual addresses
1035 * (see rvt_get_dma_mr() and dma_virt_ops).
1036 */
1037 rcu_read_lock();
1038 if (rkey == 0) {
1039 struct rvt_pd *pd = ibpd_to_rvtpd(qp->ibqp.pd);
1040 struct rvt_dev_info *rdi = ib_to_rvt(pd->ibpd.device);
1041
1042 if (pd->user)
1043 goto bail;
1044 mr = rcu_dereference(rdi->dma_mr);
1045 if (!mr)
1046 goto bail;
1047 rvt_get_mr(mr);
1048 rcu_read_unlock();
1049
1050 sge->mr = mr;
1051 sge->vaddr = (void *)vaddr;
1052 sge->length = len;
1053 sge->sge_length = len;
1054 sge->m = 0;
1055 sge->n = 0;
1056 goto ok;
1057 }
1058
1059 mr = rcu_dereference(rkt->table[rkey >> rkt->shift]);
1060 if (!mr)
1061 goto bail;
1062 rvt_get_mr(mr);
1063 /* insure mr read is before test */
1064 if (!READ_ONCE(mr->lkey_published))
1065 goto bail_unref;
1066 if (unlikely(atomic_read(&mr->lkey_invalid) ||
1067 mr->lkey != rkey || qp->ibqp.pd != mr->pd))
1068 goto bail_unref;
1069
1070 off = vaddr - mr->iova;
1071 if (unlikely(vaddr < mr->iova || off + len > mr->length ||
1072 (mr->access_flags & acc) == 0))
1073 goto bail_unref;
1074 rcu_read_unlock();
1075
1076 off += mr->offset;
1077 if (mr->page_shift) {
1078 /*
1079 * page sizes are uniform power of 2 so no loop is necessary
1080 * entries_spanned_by_off is the number of times the loop below
1081 * would have executed.
1082 */
1083 size_t entries_spanned_by_off;
1084
1085 entries_spanned_by_off = off >> mr->page_shift;
1086 off -= (entries_spanned_by_off << mr->page_shift);
1087 m = entries_spanned_by_off / RVT_SEGSZ;
1088 n = entries_spanned_by_off % RVT_SEGSZ;
1089 } else {
1090 m = 0;
1091 n = 0;
1092 while (off >= mr->map[m]->segs[n].length) {
1093 off -= mr->map[m]->segs[n].length;
1094 n++;
1095 if (n >= RVT_SEGSZ) {
1096 m++;
1097 n = 0;
1098 }
1099 }
1100 }
1101 sge->mr = mr;
1102 sge->vaddr = mr->map[m]->segs[n].vaddr + off;
1103 sge->length = mr->map[m]->segs[n].length - off;
1104 sge->sge_length = len;
1105 sge->m = m;
1106 sge->n = n;
1107 ok:
1108 return 1;
1109 bail_unref:
1110 rvt_put_mr(mr);
1111 bail:
1112 rcu_read_unlock();
1113 return 0;
1114 }
1115 EXPORT_SYMBOL(rvt_rkey_ok);
1116