1 /*
2 * Copyright(c) 2016 Intel Corporation.
3 *
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
6 *
7 * GPL LICENSE SUMMARY
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * BSD LICENSE
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 *
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45 *
46 */
47
48 #include <linux/slab.h>
49 #include <linux/vmalloc.h>
50 #include <rdma/ib_umem.h>
51 #include <rdma/rdma_vt.h>
52 #include "vt.h"
53 #include "mr.h"
54 #include "trace.h"
55
56 /**
57 * rvt_driver_mr_init - Init MR resources per driver
58 * @rdi: rvt dev struct
59 *
60 * Do any intilization needed when a driver registers with rdmavt.
61 *
62 * Return: 0 on success or errno on failure
63 */
rvt_driver_mr_init(struct rvt_dev_info * rdi)64 int rvt_driver_mr_init(struct rvt_dev_info *rdi)
65 {
66 unsigned int lkey_table_size = rdi->dparms.lkey_table_size;
67 unsigned lk_tab_size;
68 int i;
69
70 /*
71 * The top hfi1_lkey_table_size bits are used to index the
72 * table. The lower 8 bits can be owned by the user (copied from
73 * the LKEY). The remaining bits act as a generation number or tag.
74 */
75 if (!lkey_table_size)
76 return -EINVAL;
77
78 spin_lock_init(&rdi->lkey_table.lock);
79
80 /* ensure generation is at least 4 bits */
81 if (lkey_table_size > RVT_MAX_LKEY_TABLE_BITS) {
82 rvt_pr_warn(rdi, "lkey bits %u too large, reduced to %u\n",
83 lkey_table_size, RVT_MAX_LKEY_TABLE_BITS);
84 rdi->dparms.lkey_table_size = RVT_MAX_LKEY_TABLE_BITS;
85 lkey_table_size = rdi->dparms.lkey_table_size;
86 }
87 rdi->lkey_table.max = 1 << lkey_table_size;
88 rdi->lkey_table.shift = 32 - lkey_table_size;
89 lk_tab_size = rdi->lkey_table.max * sizeof(*rdi->lkey_table.table);
90 rdi->lkey_table.table = (struct rvt_mregion __rcu **)
91 vmalloc_node(lk_tab_size, rdi->dparms.node);
92 if (!rdi->lkey_table.table)
93 return -ENOMEM;
94
95 RCU_INIT_POINTER(rdi->dma_mr, NULL);
96 for (i = 0; i < rdi->lkey_table.max; i++)
97 RCU_INIT_POINTER(rdi->lkey_table.table[i], NULL);
98
99 return 0;
100 }
101
102 /**
103 *rvt_mr_exit: clean up MR
104 *@rdi: rvt dev structure
105 *
106 * called when drivers have unregistered or perhaps failed to register with us
107 */
rvt_mr_exit(struct rvt_dev_info * rdi)108 void rvt_mr_exit(struct rvt_dev_info *rdi)
109 {
110 if (rdi->dma_mr)
111 rvt_pr_err(rdi, "DMA MR not null!\n");
112
113 vfree(rdi->lkey_table.table);
114 }
115
rvt_deinit_mregion(struct rvt_mregion * mr)116 static void rvt_deinit_mregion(struct rvt_mregion *mr)
117 {
118 int i = mr->mapsz;
119
120 mr->mapsz = 0;
121 while (i)
122 kfree(mr->map[--i]);
123 percpu_ref_exit(&mr->refcount);
124 }
125
__rvt_mregion_complete(struct percpu_ref * ref)126 static void __rvt_mregion_complete(struct percpu_ref *ref)
127 {
128 struct rvt_mregion *mr = container_of(ref, struct rvt_mregion,
129 refcount);
130
131 complete(&mr->comp);
132 }
133
rvt_init_mregion(struct rvt_mregion * mr,struct ib_pd * pd,int count,unsigned int percpu_flags)134 static int rvt_init_mregion(struct rvt_mregion *mr, struct ib_pd *pd,
135 int count, unsigned int percpu_flags)
136 {
137 int m, i = 0;
138 struct rvt_dev_info *dev = ib_to_rvt(pd->device);
139
140 mr->mapsz = 0;
141 m = (count + RVT_SEGSZ - 1) / RVT_SEGSZ;
142 for (; i < m; i++) {
143 mr->map[i] = kzalloc_node(sizeof(*mr->map[0]), GFP_KERNEL,
144 dev->dparms.node);
145 if (!mr->map[i])
146 goto bail;
147 mr->mapsz++;
148 }
149 init_completion(&mr->comp);
150 /* count returning the ptr to user */
151 if (percpu_ref_init(&mr->refcount, &__rvt_mregion_complete,
152 percpu_flags, GFP_KERNEL))
153 goto bail;
154
155 atomic_set(&mr->lkey_invalid, 0);
156 mr->pd = pd;
157 mr->max_segs = count;
158 return 0;
159 bail:
160 rvt_deinit_mregion(mr);
161 return -ENOMEM;
162 }
163
164 /**
165 * rvt_alloc_lkey - allocate an lkey
166 * @mr: memory region that this lkey protects
167 * @dma_region: 0->normal key, 1->restricted DMA key
168 *
169 * Returns 0 if successful, otherwise returns -errno.
170 *
171 * Increments mr reference count as required.
172 *
173 * Sets the lkey field mr for non-dma regions.
174 *
175 */
rvt_alloc_lkey(struct rvt_mregion * mr,int dma_region)176 static int rvt_alloc_lkey(struct rvt_mregion *mr, int dma_region)
177 {
178 unsigned long flags;
179 u32 r;
180 u32 n;
181 int ret = 0;
182 struct rvt_dev_info *dev = ib_to_rvt(mr->pd->device);
183 struct rvt_lkey_table *rkt = &dev->lkey_table;
184
185 rvt_get_mr(mr);
186 spin_lock_irqsave(&rkt->lock, flags);
187
188 /* special case for dma_mr lkey == 0 */
189 if (dma_region) {
190 struct rvt_mregion *tmr;
191
192 tmr = rcu_access_pointer(dev->dma_mr);
193 if (!tmr) {
194 mr->lkey_published = 1;
195 /* Insure published written first */
196 rcu_assign_pointer(dev->dma_mr, mr);
197 rvt_get_mr(mr);
198 }
199 goto success;
200 }
201
202 /* Find the next available LKEY */
203 r = rkt->next;
204 n = r;
205 for (;;) {
206 if (!rcu_access_pointer(rkt->table[r]))
207 break;
208 r = (r + 1) & (rkt->max - 1);
209 if (r == n)
210 goto bail;
211 }
212 rkt->next = (r + 1) & (rkt->max - 1);
213 /*
214 * Make sure lkey is never zero which is reserved to indicate an
215 * unrestricted LKEY.
216 */
217 rkt->gen++;
218 /*
219 * bits are capped to ensure enough bits for generation number
220 */
221 mr->lkey = (r << (32 - dev->dparms.lkey_table_size)) |
222 ((((1 << (24 - dev->dparms.lkey_table_size)) - 1) & rkt->gen)
223 << 8);
224 if (mr->lkey == 0) {
225 mr->lkey |= 1 << 8;
226 rkt->gen++;
227 }
228 mr->lkey_published = 1;
229 /* Insure published written first */
230 rcu_assign_pointer(rkt->table[r], mr);
231 success:
232 spin_unlock_irqrestore(&rkt->lock, flags);
233 out:
234 return ret;
235 bail:
236 rvt_put_mr(mr);
237 spin_unlock_irqrestore(&rkt->lock, flags);
238 ret = -ENOMEM;
239 goto out;
240 }
241
242 /**
243 * rvt_free_lkey - free an lkey
244 * @mr: mr to free from tables
245 */
rvt_free_lkey(struct rvt_mregion * mr)246 static void rvt_free_lkey(struct rvt_mregion *mr)
247 {
248 unsigned long flags;
249 u32 lkey = mr->lkey;
250 u32 r;
251 struct rvt_dev_info *dev = ib_to_rvt(mr->pd->device);
252 struct rvt_lkey_table *rkt = &dev->lkey_table;
253 int freed = 0;
254
255 spin_lock_irqsave(&rkt->lock, flags);
256 if (!lkey) {
257 if (mr->lkey_published) {
258 mr->lkey_published = 0;
259 /* insure published is written before pointer */
260 rcu_assign_pointer(dev->dma_mr, NULL);
261 rvt_put_mr(mr);
262 }
263 } else {
264 if (!mr->lkey_published)
265 goto out;
266 r = lkey >> (32 - dev->dparms.lkey_table_size);
267 mr->lkey_published = 0;
268 /* insure published is written before pointer */
269 rcu_assign_pointer(rkt->table[r], NULL);
270 }
271 freed++;
272 out:
273 spin_unlock_irqrestore(&rkt->lock, flags);
274 if (freed)
275 percpu_ref_kill(&mr->refcount);
276 }
277
__rvt_alloc_mr(int count,struct ib_pd * pd)278 static struct rvt_mr *__rvt_alloc_mr(int count, struct ib_pd *pd)
279 {
280 struct rvt_mr *mr;
281 int rval = -ENOMEM;
282 int m;
283
284 /* Allocate struct plus pointers to first level page tables. */
285 m = (count + RVT_SEGSZ - 1) / RVT_SEGSZ;
286 mr = kzalloc(struct_size(mr, mr.map, m), GFP_KERNEL);
287 if (!mr)
288 goto bail;
289
290 rval = rvt_init_mregion(&mr->mr, pd, count, 0);
291 if (rval)
292 goto bail;
293 /*
294 * ib_reg_phys_mr() will initialize mr->ibmr except for
295 * lkey and rkey.
296 */
297 rval = rvt_alloc_lkey(&mr->mr, 0);
298 if (rval)
299 goto bail_mregion;
300 mr->ibmr.lkey = mr->mr.lkey;
301 mr->ibmr.rkey = mr->mr.lkey;
302 done:
303 return mr;
304
305 bail_mregion:
306 rvt_deinit_mregion(&mr->mr);
307 bail:
308 kfree(mr);
309 mr = ERR_PTR(rval);
310 goto done;
311 }
312
__rvt_free_mr(struct rvt_mr * mr)313 static void __rvt_free_mr(struct rvt_mr *mr)
314 {
315 rvt_free_lkey(&mr->mr);
316 rvt_deinit_mregion(&mr->mr);
317 kfree(mr);
318 }
319
320 /**
321 * rvt_get_dma_mr - get a DMA memory region
322 * @pd: protection domain for this memory region
323 * @acc: access flags
324 *
325 * Return: the memory region on success, otherwise returns an errno.
326 * Note that all DMA addresses should be created via the functions in
327 * struct dma_virt_ops.
328 */
rvt_get_dma_mr(struct ib_pd * pd,int acc)329 struct ib_mr *rvt_get_dma_mr(struct ib_pd *pd, int acc)
330 {
331 struct rvt_mr *mr;
332 struct ib_mr *ret;
333 int rval;
334
335 if (ibpd_to_rvtpd(pd)->user)
336 return ERR_PTR(-EPERM);
337
338 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
339 if (!mr) {
340 ret = ERR_PTR(-ENOMEM);
341 goto bail;
342 }
343
344 rval = rvt_init_mregion(&mr->mr, pd, 0, 0);
345 if (rval) {
346 ret = ERR_PTR(rval);
347 goto bail;
348 }
349
350 rval = rvt_alloc_lkey(&mr->mr, 1);
351 if (rval) {
352 ret = ERR_PTR(rval);
353 goto bail_mregion;
354 }
355
356 mr->mr.access_flags = acc;
357 ret = &mr->ibmr;
358 done:
359 return ret;
360
361 bail_mregion:
362 rvt_deinit_mregion(&mr->mr);
363 bail:
364 kfree(mr);
365 goto done;
366 }
367
368 /**
369 * rvt_reg_user_mr - register a userspace memory region
370 * @pd: protection domain for this memory region
371 * @start: starting userspace address
372 * @length: length of region to register
373 * @mr_access_flags: access flags for this memory region
374 * @udata: unused by the driver
375 *
376 * Return: the memory region on success, otherwise returns an errno.
377 */
rvt_reg_user_mr(struct ib_pd * pd,u64 start,u64 length,u64 virt_addr,int mr_access_flags,struct ib_udata * udata)378 struct ib_mr *rvt_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
379 u64 virt_addr, int mr_access_flags,
380 struct ib_udata *udata)
381 {
382 struct rvt_mr *mr;
383 struct ib_umem *umem;
384 struct scatterlist *sg;
385 int n, m, entry;
386 struct ib_mr *ret;
387
388 if (length == 0)
389 return ERR_PTR(-EINVAL);
390
391 umem = ib_umem_get(pd->uobject->context, start, length,
392 mr_access_flags, 0);
393 if (IS_ERR(umem))
394 return (void *)umem;
395
396 n = umem->nmap;
397
398 mr = __rvt_alloc_mr(n, pd);
399 if (IS_ERR(mr)) {
400 ret = (struct ib_mr *)mr;
401 goto bail_umem;
402 }
403
404 mr->mr.user_base = start;
405 mr->mr.iova = virt_addr;
406 mr->mr.length = length;
407 mr->mr.offset = ib_umem_offset(umem);
408 mr->mr.access_flags = mr_access_flags;
409 mr->umem = umem;
410
411 mr->mr.page_shift = umem->page_shift;
412 m = 0;
413 n = 0;
414 for_each_sg(umem->sg_head.sgl, sg, umem->nmap, entry) {
415 void *vaddr;
416
417 vaddr = page_address(sg_page(sg));
418 if (!vaddr) {
419 ret = ERR_PTR(-EINVAL);
420 goto bail_inval;
421 }
422 mr->mr.map[m]->segs[n].vaddr = vaddr;
423 mr->mr.map[m]->segs[n].length = BIT(umem->page_shift);
424 trace_rvt_mr_user_seg(&mr->mr, m, n, vaddr,
425 BIT(umem->page_shift));
426 n++;
427 if (n == RVT_SEGSZ) {
428 m++;
429 n = 0;
430 }
431 }
432 return &mr->ibmr;
433
434 bail_inval:
435 __rvt_free_mr(mr);
436
437 bail_umem:
438 ib_umem_release(umem);
439
440 return ret;
441 }
442
443 /**
444 * rvt_dereg_clean_qp_cb - callback from iterator
445 * @qp - the qp
446 * @v - the mregion (as u64)
447 *
448 * This routine fields the callback for all QPs and
449 * for QPs in the same PD as the MR will call the
450 * rvt_qp_mr_clean() to potentially cleanup references.
451 */
rvt_dereg_clean_qp_cb(struct rvt_qp * qp,u64 v)452 static void rvt_dereg_clean_qp_cb(struct rvt_qp *qp, u64 v)
453 {
454 struct rvt_mregion *mr = (struct rvt_mregion *)v;
455
456 /* skip PDs that are not ours */
457 if (mr->pd != qp->ibqp.pd)
458 return;
459 rvt_qp_mr_clean(qp, mr->lkey);
460 }
461
462 /**
463 * rvt_dereg_clean_qps - find QPs for reference cleanup
464 * @mr - the MR that is being deregistered
465 *
466 * This routine iterates RC QPs looking for references
467 * to the lkey noted in mr.
468 */
rvt_dereg_clean_qps(struct rvt_mregion * mr)469 static void rvt_dereg_clean_qps(struct rvt_mregion *mr)
470 {
471 struct rvt_dev_info *rdi = ib_to_rvt(mr->pd->device);
472
473 rvt_qp_iter(rdi, (u64)mr, rvt_dereg_clean_qp_cb);
474 }
475
476 /**
477 * rvt_check_refs - check references
478 * @mr - the megion
479 * @t - the caller identification
480 *
481 * This routine checks MRs holding a reference during
482 * when being de-registered.
483 *
484 * If the count is non-zero, the code calls a clean routine then
485 * waits for the timeout for the count to zero.
486 */
rvt_check_refs(struct rvt_mregion * mr,const char * t)487 static int rvt_check_refs(struct rvt_mregion *mr, const char *t)
488 {
489 unsigned long timeout;
490 struct rvt_dev_info *rdi = ib_to_rvt(mr->pd->device);
491
492 if (mr->lkey) {
493 /* avoid dma mr */
494 rvt_dereg_clean_qps(mr);
495 /* @mr was indexed on rcu protected @lkey_table */
496 synchronize_rcu();
497 }
498
499 timeout = wait_for_completion_timeout(&mr->comp, 5 * HZ);
500 if (!timeout) {
501 rvt_pr_err(rdi,
502 "%s timeout mr %p pd %p lkey %x refcount %ld\n",
503 t, mr, mr->pd, mr->lkey,
504 atomic_long_read(&mr->refcount.count));
505 rvt_get_mr(mr);
506 return -EBUSY;
507 }
508 return 0;
509 }
510
511 /**
512 * rvt_mr_has_lkey - is MR
513 * @mr - the mregion
514 * @lkey - the lkey
515 */
rvt_mr_has_lkey(struct rvt_mregion * mr,u32 lkey)516 bool rvt_mr_has_lkey(struct rvt_mregion *mr, u32 lkey)
517 {
518 return mr && lkey == mr->lkey;
519 }
520
521 /**
522 * rvt_ss_has_lkey - is mr in sge tests
523 * @ss - the sge state
524 * @lkey
525 *
526 * This code tests for an MR in the indicated
527 * sge state.
528 */
rvt_ss_has_lkey(struct rvt_sge_state * ss,u32 lkey)529 bool rvt_ss_has_lkey(struct rvt_sge_state *ss, u32 lkey)
530 {
531 int i;
532 bool rval = false;
533
534 if (!ss->num_sge)
535 return rval;
536 /* first one */
537 rval = rvt_mr_has_lkey(ss->sge.mr, lkey);
538 /* any others */
539 for (i = 0; !rval && i < ss->num_sge - 1; i++)
540 rval = rvt_mr_has_lkey(ss->sg_list[i].mr, lkey);
541 return rval;
542 }
543
544 /**
545 * rvt_dereg_mr - unregister and free a memory region
546 * @ibmr: the memory region to free
547 *
548 *
549 * Note that this is called to free MRs created by rvt_get_dma_mr()
550 * or rvt_reg_user_mr().
551 *
552 * Returns 0 on success.
553 */
rvt_dereg_mr(struct ib_mr * ibmr)554 int rvt_dereg_mr(struct ib_mr *ibmr)
555 {
556 struct rvt_mr *mr = to_imr(ibmr);
557 int ret;
558
559 rvt_free_lkey(&mr->mr);
560
561 rvt_put_mr(&mr->mr); /* will set completion if last */
562 ret = rvt_check_refs(&mr->mr, __func__);
563 if (ret)
564 goto out;
565 rvt_deinit_mregion(&mr->mr);
566 if (mr->umem)
567 ib_umem_release(mr->umem);
568 kfree(mr);
569 out:
570 return ret;
571 }
572
573 /**
574 * rvt_alloc_mr - Allocate a memory region usable with the
575 * @pd: protection domain for this memory region
576 * @mr_type: mem region type
577 * @max_num_sg: Max number of segments allowed
578 *
579 * Return: the memory region on success, otherwise return an errno.
580 */
rvt_alloc_mr(struct ib_pd * pd,enum ib_mr_type mr_type,u32 max_num_sg)581 struct ib_mr *rvt_alloc_mr(struct ib_pd *pd,
582 enum ib_mr_type mr_type,
583 u32 max_num_sg)
584 {
585 struct rvt_mr *mr;
586
587 if (mr_type != IB_MR_TYPE_MEM_REG)
588 return ERR_PTR(-EINVAL);
589
590 mr = __rvt_alloc_mr(max_num_sg, pd);
591 if (IS_ERR(mr))
592 return (struct ib_mr *)mr;
593
594 return &mr->ibmr;
595 }
596
597 /**
598 * rvt_set_page - page assignment function called by ib_sg_to_pages
599 * @ibmr: memory region
600 * @addr: dma address of mapped page
601 *
602 * Return: 0 on success
603 */
rvt_set_page(struct ib_mr * ibmr,u64 addr)604 static int rvt_set_page(struct ib_mr *ibmr, u64 addr)
605 {
606 struct rvt_mr *mr = to_imr(ibmr);
607 u32 ps = 1 << mr->mr.page_shift;
608 u32 mapped_segs = mr->mr.length >> mr->mr.page_shift;
609 int m, n;
610
611 if (unlikely(mapped_segs == mr->mr.max_segs))
612 return -ENOMEM;
613
614 if (mr->mr.length == 0) {
615 mr->mr.user_base = addr;
616 mr->mr.iova = addr;
617 }
618
619 m = mapped_segs / RVT_SEGSZ;
620 n = mapped_segs % RVT_SEGSZ;
621 mr->mr.map[m]->segs[n].vaddr = (void *)addr;
622 mr->mr.map[m]->segs[n].length = ps;
623 trace_rvt_mr_page_seg(&mr->mr, m, n, (void *)addr, ps);
624 mr->mr.length += ps;
625
626 return 0;
627 }
628
629 /**
630 * rvt_map_mr_sg - map sg list and set it the memory region
631 * @ibmr: memory region
632 * @sg: dma mapped scatterlist
633 * @sg_nents: number of entries in sg
634 * @sg_offset: offset in bytes into sg
635 *
636 * Return: number of sg elements mapped to the memory region
637 */
rvt_map_mr_sg(struct ib_mr * ibmr,struct scatterlist * sg,int sg_nents,unsigned int * sg_offset)638 int rvt_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg,
639 int sg_nents, unsigned int *sg_offset)
640 {
641 struct rvt_mr *mr = to_imr(ibmr);
642
643 mr->mr.length = 0;
644 mr->mr.page_shift = PAGE_SHIFT;
645 return ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset,
646 rvt_set_page);
647 }
648
649 /**
650 * rvt_fast_reg_mr - fast register physical MR
651 * @qp: the queue pair where the work request comes from
652 * @ibmr: the memory region to be registered
653 * @key: updated key for this memory region
654 * @access: access flags for this memory region
655 *
656 * Returns 0 on success.
657 */
rvt_fast_reg_mr(struct rvt_qp * qp,struct ib_mr * ibmr,u32 key,int access)658 int rvt_fast_reg_mr(struct rvt_qp *qp, struct ib_mr *ibmr, u32 key,
659 int access)
660 {
661 struct rvt_mr *mr = to_imr(ibmr);
662
663 if (qp->ibqp.pd != mr->mr.pd)
664 return -EACCES;
665
666 /* not applicable to dma MR or user MR */
667 if (!mr->mr.lkey || mr->umem)
668 return -EINVAL;
669
670 if ((key & 0xFFFFFF00) != (mr->mr.lkey & 0xFFFFFF00))
671 return -EINVAL;
672
673 ibmr->lkey = key;
674 ibmr->rkey = key;
675 mr->mr.lkey = key;
676 mr->mr.access_flags = access;
677 atomic_set(&mr->mr.lkey_invalid, 0);
678
679 return 0;
680 }
681 EXPORT_SYMBOL(rvt_fast_reg_mr);
682
683 /**
684 * rvt_invalidate_rkey - invalidate an MR rkey
685 * @qp: queue pair associated with the invalidate op
686 * @rkey: rkey to invalidate
687 *
688 * Returns 0 on success.
689 */
rvt_invalidate_rkey(struct rvt_qp * qp,u32 rkey)690 int rvt_invalidate_rkey(struct rvt_qp *qp, u32 rkey)
691 {
692 struct rvt_dev_info *dev = ib_to_rvt(qp->ibqp.device);
693 struct rvt_lkey_table *rkt = &dev->lkey_table;
694 struct rvt_mregion *mr;
695
696 if (rkey == 0)
697 return -EINVAL;
698
699 rcu_read_lock();
700 mr = rcu_dereference(
701 rkt->table[(rkey >> (32 - dev->dparms.lkey_table_size))]);
702 if (unlikely(!mr || mr->lkey != rkey || qp->ibqp.pd != mr->pd))
703 goto bail;
704
705 atomic_set(&mr->lkey_invalid, 1);
706 rcu_read_unlock();
707 return 0;
708
709 bail:
710 rcu_read_unlock();
711 return -EINVAL;
712 }
713 EXPORT_SYMBOL(rvt_invalidate_rkey);
714
715 /**
716 * rvt_alloc_fmr - allocate a fast memory region
717 * @pd: the protection domain for this memory region
718 * @mr_access_flags: access flags for this memory region
719 * @fmr_attr: fast memory region attributes
720 *
721 * Return: the memory region on success, otherwise returns an errno.
722 */
rvt_alloc_fmr(struct ib_pd * pd,int mr_access_flags,struct ib_fmr_attr * fmr_attr)723 struct ib_fmr *rvt_alloc_fmr(struct ib_pd *pd, int mr_access_flags,
724 struct ib_fmr_attr *fmr_attr)
725 {
726 struct rvt_fmr *fmr;
727 int m;
728 struct ib_fmr *ret;
729 int rval = -ENOMEM;
730
731 /* Allocate struct plus pointers to first level page tables. */
732 m = (fmr_attr->max_pages + RVT_SEGSZ - 1) / RVT_SEGSZ;
733 fmr = kzalloc(struct_size(fmr, mr.map, m), GFP_KERNEL);
734 if (!fmr)
735 goto bail;
736
737 rval = rvt_init_mregion(&fmr->mr, pd, fmr_attr->max_pages,
738 PERCPU_REF_INIT_ATOMIC);
739 if (rval)
740 goto bail;
741
742 /*
743 * ib_alloc_fmr() will initialize fmr->ibfmr except for lkey &
744 * rkey.
745 */
746 rval = rvt_alloc_lkey(&fmr->mr, 0);
747 if (rval)
748 goto bail_mregion;
749 fmr->ibfmr.rkey = fmr->mr.lkey;
750 fmr->ibfmr.lkey = fmr->mr.lkey;
751 /*
752 * Resources are allocated but no valid mapping (RKEY can't be
753 * used).
754 */
755 fmr->mr.access_flags = mr_access_flags;
756 fmr->mr.max_segs = fmr_attr->max_pages;
757 fmr->mr.page_shift = fmr_attr->page_shift;
758
759 ret = &fmr->ibfmr;
760 done:
761 return ret;
762
763 bail_mregion:
764 rvt_deinit_mregion(&fmr->mr);
765 bail:
766 kfree(fmr);
767 ret = ERR_PTR(rval);
768 goto done;
769 }
770
771 /**
772 * rvt_map_phys_fmr - set up a fast memory region
773 * @ibfmr: the fast memory region to set up
774 * @page_list: the list of pages to associate with the fast memory region
775 * @list_len: the number of pages to associate with the fast memory region
776 * @iova: the virtual address of the start of the fast memory region
777 *
778 * This may be called from interrupt context.
779 *
780 * Return: 0 on success
781 */
782
rvt_map_phys_fmr(struct ib_fmr * ibfmr,u64 * page_list,int list_len,u64 iova)783 int rvt_map_phys_fmr(struct ib_fmr *ibfmr, u64 *page_list,
784 int list_len, u64 iova)
785 {
786 struct rvt_fmr *fmr = to_ifmr(ibfmr);
787 struct rvt_lkey_table *rkt;
788 unsigned long flags;
789 int m, n;
790 unsigned long i;
791 u32 ps;
792 struct rvt_dev_info *rdi = ib_to_rvt(ibfmr->device);
793
794 i = atomic_long_read(&fmr->mr.refcount.count);
795 if (i > 2)
796 return -EBUSY;
797
798 if (list_len > fmr->mr.max_segs)
799 return -EINVAL;
800
801 rkt = &rdi->lkey_table;
802 spin_lock_irqsave(&rkt->lock, flags);
803 fmr->mr.user_base = iova;
804 fmr->mr.iova = iova;
805 ps = 1 << fmr->mr.page_shift;
806 fmr->mr.length = list_len * ps;
807 m = 0;
808 n = 0;
809 for (i = 0; i < list_len; i++) {
810 fmr->mr.map[m]->segs[n].vaddr = (void *)page_list[i];
811 fmr->mr.map[m]->segs[n].length = ps;
812 trace_rvt_mr_fmr_seg(&fmr->mr, m, n, (void *)page_list[i], ps);
813 if (++n == RVT_SEGSZ) {
814 m++;
815 n = 0;
816 }
817 }
818 spin_unlock_irqrestore(&rkt->lock, flags);
819 return 0;
820 }
821
822 /**
823 * rvt_unmap_fmr - unmap fast memory regions
824 * @fmr_list: the list of fast memory regions to unmap
825 *
826 * Return: 0 on success.
827 */
rvt_unmap_fmr(struct list_head * fmr_list)828 int rvt_unmap_fmr(struct list_head *fmr_list)
829 {
830 struct rvt_fmr *fmr;
831 struct rvt_lkey_table *rkt;
832 unsigned long flags;
833 struct rvt_dev_info *rdi;
834
835 list_for_each_entry(fmr, fmr_list, ibfmr.list) {
836 rdi = ib_to_rvt(fmr->ibfmr.device);
837 rkt = &rdi->lkey_table;
838 spin_lock_irqsave(&rkt->lock, flags);
839 fmr->mr.user_base = 0;
840 fmr->mr.iova = 0;
841 fmr->mr.length = 0;
842 spin_unlock_irqrestore(&rkt->lock, flags);
843 }
844 return 0;
845 }
846
847 /**
848 * rvt_dealloc_fmr - deallocate a fast memory region
849 * @ibfmr: the fast memory region to deallocate
850 *
851 * Return: 0 on success.
852 */
rvt_dealloc_fmr(struct ib_fmr * ibfmr)853 int rvt_dealloc_fmr(struct ib_fmr *ibfmr)
854 {
855 struct rvt_fmr *fmr = to_ifmr(ibfmr);
856 int ret = 0;
857
858 rvt_free_lkey(&fmr->mr);
859 rvt_put_mr(&fmr->mr); /* will set completion if last */
860 ret = rvt_check_refs(&fmr->mr, __func__);
861 if (ret)
862 goto out;
863 rvt_deinit_mregion(&fmr->mr);
864 kfree(fmr);
865 out:
866 return ret;
867 }
868
869 /**
870 * rvt_sge_adjacent - is isge compressible
871 * @last_sge: last outgoing SGE written
872 * @sge: SGE to check
873 *
874 * If adjacent will update last_sge to add length.
875 *
876 * Return: true if isge is adjacent to last sge
877 */
rvt_sge_adjacent(struct rvt_sge * last_sge,struct ib_sge * sge)878 static inline bool rvt_sge_adjacent(struct rvt_sge *last_sge,
879 struct ib_sge *sge)
880 {
881 if (last_sge && sge->lkey == last_sge->mr->lkey &&
882 ((uint64_t)(last_sge->vaddr + last_sge->length) == sge->addr)) {
883 if (sge->lkey) {
884 if (unlikely((sge->addr - last_sge->mr->user_base +
885 sge->length > last_sge->mr->length)))
886 return false; /* overrun, caller will catch */
887 } else {
888 last_sge->length += sge->length;
889 }
890 last_sge->sge_length += sge->length;
891 trace_rvt_sge_adjacent(last_sge, sge);
892 return true;
893 }
894 return false;
895 }
896
897 /**
898 * rvt_lkey_ok - check IB SGE for validity and initialize
899 * @rkt: table containing lkey to check SGE against
900 * @pd: protection domain
901 * @isge: outgoing internal SGE
902 * @last_sge: last outgoing SGE written
903 * @sge: SGE to check
904 * @acc: access flags
905 *
906 * Check the IB SGE for validity and initialize our internal version
907 * of it.
908 *
909 * Increments the reference count when a new sge is stored.
910 *
911 * Return: 0 if compressed, 1 if added , otherwise returns -errno.
912 */
rvt_lkey_ok(struct rvt_lkey_table * rkt,struct rvt_pd * pd,struct rvt_sge * isge,struct rvt_sge * last_sge,struct ib_sge * sge,int acc)913 int rvt_lkey_ok(struct rvt_lkey_table *rkt, struct rvt_pd *pd,
914 struct rvt_sge *isge, struct rvt_sge *last_sge,
915 struct ib_sge *sge, int acc)
916 {
917 struct rvt_mregion *mr;
918 unsigned n, m;
919 size_t off;
920
921 /*
922 * We use LKEY == zero for kernel virtual addresses
923 * (see rvt_get_dma_mr() and dma_virt_ops).
924 */
925 if (sge->lkey == 0) {
926 struct rvt_dev_info *dev = ib_to_rvt(pd->ibpd.device);
927
928 if (pd->user)
929 return -EINVAL;
930 if (rvt_sge_adjacent(last_sge, sge))
931 return 0;
932 rcu_read_lock();
933 mr = rcu_dereference(dev->dma_mr);
934 if (!mr)
935 goto bail;
936 rvt_get_mr(mr);
937 rcu_read_unlock();
938
939 isge->mr = mr;
940 isge->vaddr = (void *)sge->addr;
941 isge->length = sge->length;
942 isge->sge_length = sge->length;
943 isge->m = 0;
944 isge->n = 0;
945 goto ok;
946 }
947 if (rvt_sge_adjacent(last_sge, sge))
948 return 0;
949 rcu_read_lock();
950 mr = rcu_dereference(rkt->table[sge->lkey >> rkt->shift]);
951 if (!mr)
952 goto bail;
953 rvt_get_mr(mr);
954 if (!READ_ONCE(mr->lkey_published))
955 goto bail_unref;
956
957 if (unlikely(atomic_read(&mr->lkey_invalid) ||
958 mr->lkey != sge->lkey || mr->pd != &pd->ibpd))
959 goto bail_unref;
960
961 off = sge->addr - mr->user_base;
962 if (unlikely(sge->addr < mr->user_base ||
963 off + sge->length > mr->length ||
964 (mr->access_flags & acc) != acc))
965 goto bail_unref;
966 rcu_read_unlock();
967
968 off += mr->offset;
969 if (mr->page_shift) {
970 /*
971 * page sizes are uniform power of 2 so no loop is necessary
972 * entries_spanned_by_off is the number of times the loop below
973 * would have executed.
974 */
975 size_t entries_spanned_by_off;
976
977 entries_spanned_by_off = off >> mr->page_shift;
978 off -= (entries_spanned_by_off << mr->page_shift);
979 m = entries_spanned_by_off / RVT_SEGSZ;
980 n = entries_spanned_by_off % RVT_SEGSZ;
981 } else {
982 m = 0;
983 n = 0;
984 while (off >= mr->map[m]->segs[n].length) {
985 off -= mr->map[m]->segs[n].length;
986 n++;
987 if (n >= RVT_SEGSZ) {
988 m++;
989 n = 0;
990 }
991 }
992 }
993 isge->mr = mr;
994 isge->vaddr = mr->map[m]->segs[n].vaddr + off;
995 isge->length = mr->map[m]->segs[n].length - off;
996 isge->sge_length = sge->length;
997 isge->m = m;
998 isge->n = n;
999 ok:
1000 trace_rvt_sge_new(isge, sge);
1001 return 1;
1002 bail_unref:
1003 rvt_put_mr(mr);
1004 bail:
1005 rcu_read_unlock();
1006 return -EINVAL;
1007 }
1008 EXPORT_SYMBOL(rvt_lkey_ok);
1009
1010 /**
1011 * rvt_rkey_ok - check the IB virtual address, length, and RKEY
1012 * @qp: qp for validation
1013 * @sge: SGE state
1014 * @len: length of data
1015 * @vaddr: virtual address to place data
1016 * @rkey: rkey to check
1017 * @acc: access flags
1018 *
1019 * Return: 1 if successful, otherwise 0.
1020 *
1021 * increments the reference count upon success
1022 */
rvt_rkey_ok(struct rvt_qp * qp,struct rvt_sge * sge,u32 len,u64 vaddr,u32 rkey,int acc)1023 int rvt_rkey_ok(struct rvt_qp *qp, struct rvt_sge *sge,
1024 u32 len, u64 vaddr, u32 rkey, int acc)
1025 {
1026 struct rvt_dev_info *dev = ib_to_rvt(qp->ibqp.device);
1027 struct rvt_lkey_table *rkt = &dev->lkey_table;
1028 struct rvt_mregion *mr;
1029 unsigned n, m;
1030 size_t off;
1031
1032 /*
1033 * We use RKEY == zero for kernel virtual addresses
1034 * (see rvt_get_dma_mr() and dma_virt_ops).
1035 */
1036 rcu_read_lock();
1037 if (rkey == 0) {
1038 struct rvt_pd *pd = ibpd_to_rvtpd(qp->ibqp.pd);
1039 struct rvt_dev_info *rdi = ib_to_rvt(pd->ibpd.device);
1040
1041 if (pd->user)
1042 goto bail;
1043 mr = rcu_dereference(rdi->dma_mr);
1044 if (!mr)
1045 goto bail;
1046 rvt_get_mr(mr);
1047 rcu_read_unlock();
1048
1049 sge->mr = mr;
1050 sge->vaddr = (void *)vaddr;
1051 sge->length = len;
1052 sge->sge_length = len;
1053 sge->m = 0;
1054 sge->n = 0;
1055 goto ok;
1056 }
1057
1058 mr = rcu_dereference(rkt->table[rkey >> rkt->shift]);
1059 if (!mr)
1060 goto bail;
1061 rvt_get_mr(mr);
1062 /* insure mr read is before test */
1063 if (!READ_ONCE(mr->lkey_published))
1064 goto bail_unref;
1065 if (unlikely(atomic_read(&mr->lkey_invalid) ||
1066 mr->lkey != rkey || qp->ibqp.pd != mr->pd))
1067 goto bail_unref;
1068
1069 off = vaddr - mr->iova;
1070 if (unlikely(vaddr < mr->iova || off + len > mr->length ||
1071 (mr->access_flags & acc) == 0))
1072 goto bail_unref;
1073 rcu_read_unlock();
1074
1075 off += mr->offset;
1076 if (mr->page_shift) {
1077 /*
1078 * page sizes are uniform power of 2 so no loop is necessary
1079 * entries_spanned_by_off is the number of times the loop below
1080 * would have executed.
1081 */
1082 size_t entries_spanned_by_off;
1083
1084 entries_spanned_by_off = off >> mr->page_shift;
1085 off -= (entries_spanned_by_off << mr->page_shift);
1086 m = entries_spanned_by_off / RVT_SEGSZ;
1087 n = entries_spanned_by_off % RVT_SEGSZ;
1088 } else {
1089 m = 0;
1090 n = 0;
1091 while (off >= mr->map[m]->segs[n].length) {
1092 off -= mr->map[m]->segs[n].length;
1093 n++;
1094 if (n >= RVT_SEGSZ) {
1095 m++;
1096 n = 0;
1097 }
1098 }
1099 }
1100 sge->mr = mr;
1101 sge->vaddr = mr->map[m]->segs[n].vaddr + off;
1102 sge->length = mr->map[m]->segs[n].length - off;
1103 sge->sge_length = len;
1104 sge->m = m;
1105 sge->n = n;
1106 ok:
1107 return 1;
1108 bail_unref:
1109 rvt_put_mr(mr);
1110 bail:
1111 rcu_read_unlock();
1112 return 0;
1113 }
1114 EXPORT_SYMBOL(rvt_rkey_ok);
1115