1  /*
2   * Copyright(c) 2016 Intel Corporation.
3   *
4   * This file is provided under a dual BSD/GPLv2 license.  When using or
5   * redistributing this file, you may do so under either license.
6   *
7   * GPL LICENSE SUMMARY
8   *
9   * This program is free software; you can redistribute it and/or modify
10   * it under the terms of version 2 of the GNU General Public License as
11   * published by the Free Software Foundation.
12   *
13   * This program is distributed in the hope that it will be useful, but
14   * WITHOUT ANY WARRANTY; without even the implied warranty of
15   * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16   * General Public License for more details.
17   *
18   * BSD LICENSE
19   *
20   * Redistribution and use in source and binary forms, with or without
21   * modification, are permitted provided that the following conditions
22   * are met:
23   *
24   *  - Redistributions of source code must retain the above copyright
25   *    notice, this list of conditions and the following disclaimer.
26   *  - Redistributions in binary form must reproduce the above copyright
27   *    notice, this list of conditions and the following disclaimer in
28   *    the documentation and/or other materials provided with the
29   *    distribution.
30   *  - Neither the name of Intel Corporation nor the names of its
31   *    contributors may be used to endorse or promote products derived
32   *    from this software without specific prior written permission.
33   *
34   * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35   * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36   * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37   * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38   * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39   * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40   * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41   * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42   * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43   * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44   * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45   *
46   */
47  
48  #include <linux/slab.h>
49  #include <linux/vmalloc.h>
50  #include <rdma/ib_umem.h>
51  #include <rdma/rdma_vt.h>
52  #include "vt.h"
53  #include "mr.h"
54  #include "trace.h"
55  
56  /**
57   * rvt_driver_mr_init - Init MR resources per driver
58   * @rdi: rvt dev struct
59   *
60   * Do any intilization needed when a driver registers with rdmavt.
61   *
62   * Return: 0 on success or errno on failure
63   */
rvt_driver_mr_init(struct rvt_dev_info * rdi)64  int rvt_driver_mr_init(struct rvt_dev_info *rdi)
65  {
66  	unsigned int lkey_table_size = rdi->dparms.lkey_table_size;
67  	unsigned lk_tab_size;
68  	int i;
69  
70  	/*
71  	 * The top hfi1_lkey_table_size bits are used to index the
72  	 * table.  The lower 8 bits can be owned by the user (copied from
73  	 * the LKEY).  The remaining bits act as a generation number or tag.
74  	 */
75  	if (!lkey_table_size)
76  		return -EINVAL;
77  
78  	spin_lock_init(&rdi->lkey_table.lock);
79  
80  	/* ensure generation is at least 4 bits */
81  	if (lkey_table_size > RVT_MAX_LKEY_TABLE_BITS) {
82  		rvt_pr_warn(rdi, "lkey bits %u too large, reduced to %u\n",
83  			    lkey_table_size, RVT_MAX_LKEY_TABLE_BITS);
84  		rdi->dparms.lkey_table_size = RVT_MAX_LKEY_TABLE_BITS;
85  		lkey_table_size = rdi->dparms.lkey_table_size;
86  	}
87  	rdi->lkey_table.max = 1 << lkey_table_size;
88  	rdi->lkey_table.shift = 32 - lkey_table_size;
89  	lk_tab_size = rdi->lkey_table.max * sizeof(*rdi->lkey_table.table);
90  	rdi->lkey_table.table = (struct rvt_mregion __rcu **)
91  			       vmalloc_node(lk_tab_size, rdi->dparms.node);
92  	if (!rdi->lkey_table.table)
93  		return -ENOMEM;
94  
95  	RCU_INIT_POINTER(rdi->dma_mr, NULL);
96  	for (i = 0; i < rdi->lkey_table.max; i++)
97  		RCU_INIT_POINTER(rdi->lkey_table.table[i], NULL);
98  
99  	return 0;
100  }
101  
102  /**
103   *rvt_mr_exit: clean up MR
104   *@rdi: rvt dev structure
105   *
106   * called when drivers have unregistered or perhaps failed to register with us
107   */
rvt_mr_exit(struct rvt_dev_info * rdi)108  void rvt_mr_exit(struct rvt_dev_info *rdi)
109  {
110  	if (rdi->dma_mr)
111  		rvt_pr_err(rdi, "DMA MR not null!\n");
112  
113  	vfree(rdi->lkey_table.table);
114  }
115  
rvt_deinit_mregion(struct rvt_mregion * mr)116  static void rvt_deinit_mregion(struct rvt_mregion *mr)
117  {
118  	int i = mr->mapsz;
119  
120  	mr->mapsz = 0;
121  	while (i)
122  		kfree(mr->map[--i]);
123  	percpu_ref_exit(&mr->refcount);
124  }
125  
__rvt_mregion_complete(struct percpu_ref * ref)126  static void __rvt_mregion_complete(struct percpu_ref *ref)
127  {
128  	struct rvt_mregion *mr = container_of(ref, struct rvt_mregion,
129  					      refcount);
130  
131  	complete(&mr->comp);
132  }
133  
rvt_init_mregion(struct rvt_mregion * mr,struct ib_pd * pd,int count,unsigned int percpu_flags)134  static int rvt_init_mregion(struct rvt_mregion *mr, struct ib_pd *pd,
135  			    int count, unsigned int percpu_flags)
136  {
137  	int m, i = 0;
138  	struct rvt_dev_info *dev = ib_to_rvt(pd->device);
139  
140  	mr->mapsz = 0;
141  	m = (count + RVT_SEGSZ - 1) / RVT_SEGSZ;
142  	for (; i < m; i++) {
143  		mr->map[i] = kzalloc_node(sizeof(*mr->map[0]), GFP_KERNEL,
144  					  dev->dparms.node);
145  		if (!mr->map[i])
146  			goto bail;
147  		mr->mapsz++;
148  	}
149  	init_completion(&mr->comp);
150  	/* count returning the ptr to user */
151  	if (percpu_ref_init(&mr->refcount, &__rvt_mregion_complete,
152  			    percpu_flags, GFP_KERNEL))
153  		goto bail;
154  
155  	atomic_set(&mr->lkey_invalid, 0);
156  	mr->pd = pd;
157  	mr->max_segs = count;
158  	return 0;
159  bail:
160  	rvt_deinit_mregion(mr);
161  	return -ENOMEM;
162  }
163  
164  /**
165   * rvt_alloc_lkey - allocate an lkey
166   * @mr: memory region that this lkey protects
167   * @dma_region: 0->normal key, 1->restricted DMA key
168   *
169   * Returns 0 if successful, otherwise returns -errno.
170   *
171   * Increments mr reference count as required.
172   *
173   * Sets the lkey field mr for non-dma regions.
174   *
175   */
rvt_alloc_lkey(struct rvt_mregion * mr,int dma_region)176  static int rvt_alloc_lkey(struct rvt_mregion *mr, int dma_region)
177  {
178  	unsigned long flags;
179  	u32 r;
180  	u32 n;
181  	int ret = 0;
182  	struct rvt_dev_info *dev = ib_to_rvt(mr->pd->device);
183  	struct rvt_lkey_table *rkt = &dev->lkey_table;
184  
185  	rvt_get_mr(mr);
186  	spin_lock_irqsave(&rkt->lock, flags);
187  
188  	/* special case for dma_mr lkey == 0 */
189  	if (dma_region) {
190  		struct rvt_mregion *tmr;
191  
192  		tmr = rcu_access_pointer(dev->dma_mr);
193  		if (!tmr) {
194  			mr->lkey_published = 1;
195  			/* Insure published written first */
196  			rcu_assign_pointer(dev->dma_mr, mr);
197  			rvt_get_mr(mr);
198  		}
199  		goto success;
200  	}
201  
202  	/* Find the next available LKEY */
203  	r = rkt->next;
204  	n = r;
205  	for (;;) {
206  		if (!rcu_access_pointer(rkt->table[r]))
207  			break;
208  		r = (r + 1) & (rkt->max - 1);
209  		if (r == n)
210  			goto bail;
211  	}
212  	rkt->next = (r + 1) & (rkt->max - 1);
213  	/*
214  	 * Make sure lkey is never zero which is reserved to indicate an
215  	 * unrestricted LKEY.
216  	 */
217  	rkt->gen++;
218  	/*
219  	 * bits are capped to ensure enough bits for generation number
220  	 */
221  	mr->lkey = (r << (32 - dev->dparms.lkey_table_size)) |
222  		((((1 << (24 - dev->dparms.lkey_table_size)) - 1) & rkt->gen)
223  		 << 8);
224  	if (mr->lkey == 0) {
225  		mr->lkey |= 1 << 8;
226  		rkt->gen++;
227  	}
228  	mr->lkey_published = 1;
229  	/* Insure published written first */
230  	rcu_assign_pointer(rkt->table[r], mr);
231  success:
232  	spin_unlock_irqrestore(&rkt->lock, flags);
233  out:
234  	return ret;
235  bail:
236  	rvt_put_mr(mr);
237  	spin_unlock_irqrestore(&rkt->lock, flags);
238  	ret = -ENOMEM;
239  	goto out;
240  }
241  
242  /**
243   * rvt_free_lkey - free an lkey
244   * @mr: mr to free from tables
245   */
rvt_free_lkey(struct rvt_mregion * mr)246  static void rvt_free_lkey(struct rvt_mregion *mr)
247  {
248  	unsigned long flags;
249  	u32 lkey = mr->lkey;
250  	u32 r;
251  	struct rvt_dev_info *dev = ib_to_rvt(mr->pd->device);
252  	struct rvt_lkey_table *rkt = &dev->lkey_table;
253  	int freed = 0;
254  
255  	spin_lock_irqsave(&rkt->lock, flags);
256  	if (!lkey) {
257  		if (mr->lkey_published) {
258  			mr->lkey_published = 0;
259  			/* insure published is written before pointer */
260  			rcu_assign_pointer(dev->dma_mr, NULL);
261  			rvt_put_mr(mr);
262  		}
263  	} else {
264  		if (!mr->lkey_published)
265  			goto out;
266  		r = lkey >> (32 - dev->dparms.lkey_table_size);
267  		mr->lkey_published = 0;
268  		/* insure published is written before pointer */
269  		rcu_assign_pointer(rkt->table[r], NULL);
270  	}
271  	freed++;
272  out:
273  	spin_unlock_irqrestore(&rkt->lock, flags);
274  	if (freed)
275  		percpu_ref_kill(&mr->refcount);
276  }
277  
__rvt_alloc_mr(int count,struct ib_pd * pd)278  static struct rvt_mr *__rvt_alloc_mr(int count, struct ib_pd *pd)
279  {
280  	struct rvt_mr *mr;
281  	int rval = -ENOMEM;
282  	int m;
283  
284  	/* Allocate struct plus pointers to first level page tables. */
285  	m = (count + RVT_SEGSZ - 1) / RVT_SEGSZ;
286  	mr = kzalloc(struct_size(mr, mr.map, m), GFP_KERNEL);
287  	if (!mr)
288  		goto bail;
289  
290  	rval = rvt_init_mregion(&mr->mr, pd, count, 0);
291  	if (rval)
292  		goto bail;
293  	/*
294  	 * ib_reg_phys_mr() will initialize mr->ibmr except for
295  	 * lkey and rkey.
296  	 */
297  	rval = rvt_alloc_lkey(&mr->mr, 0);
298  	if (rval)
299  		goto bail_mregion;
300  	mr->ibmr.lkey = mr->mr.lkey;
301  	mr->ibmr.rkey = mr->mr.lkey;
302  done:
303  	return mr;
304  
305  bail_mregion:
306  	rvt_deinit_mregion(&mr->mr);
307  bail:
308  	kfree(mr);
309  	mr = ERR_PTR(rval);
310  	goto done;
311  }
312  
__rvt_free_mr(struct rvt_mr * mr)313  static void __rvt_free_mr(struct rvt_mr *mr)
314  {
315  	rvt_free_lkey(&mr->mr);
316  	rvt_deinit_mregion(&mr->mr);
317  	kfree(mr);
318  }
319  
320  /**
321   * rvt_get_dma_mr - get a DMA memory region
322   * @pd: protection domain for this memory region
323   * @acc: access flags
324   *
325   * Return: the memory region on success, otherwise returns an errno.
326   * Note that all DMA addresses should be created via the functions in
327   * struct dma_virt_ops.
328   */
rvt_get_dma_mr(struct ib_pd * pd,int acc)329  struct ib_mr *rvt_get_dma_mr(struct ib_pd *pd, int acc)
330  {
331  	struct rvt_mr *mr;
332  	struct ib_mr *ret;
333  	int rval;
334  
335  	if (ibpd_to_rvtpd(pd)->user)
336  		return ERR_PTR(-EPERM);
337  
338  	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
339  	if (!mr) {
340  		ret = ERR_PTR(-ENOMEM);
341  		goto bail;
342  	}
343  
344  	rval = rvt_init_mregion(&mr->mr, pd, 0, 0);
345  	if (rval) {
346  		ret = ERR_PTR(rval);
347  		goto bail;
348  	}
349  
350  	rval = rvt_alloc_lkey(&mr->mr, 1);
351  	if (rval) {
352  		ret = ERR_PTR(rval);
353  		goto bail_mregion;
354  	}
355  
356  	mr->mr.access_flags = acc;
357  	ret = &mr->ibmr;
358  done:
359  	return ret;
360  
361  bail_mregion:
362  	rvt_deinit_mregion(&mr->mr);
363  bail:
364  	kfree(mr);
365  	goto done;
366  }
367  
368  /**
369   * rvt_reg_user_mr - register a userspace memory region
370   * @pd: protection domain for this memory region
371   * @start: starting userspace address
372   * @length: length of region to register
373   * @mr_access_flags: access flags for this memory region
374   * @udata: unused by the driver
375   *
376   * Return: the memory region on success, otherwise returns an errno.
377   */
rvt_reg_user_mr(struct ib_pd * pd,u64 start,u64 length,u64 virt_addr,int mr_access_flags,struct ib_udata * udata)378  struct ib_mr *rvt_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
379  			      u64 virt_addr, int mr_access_flags,
380  			      struct ib_udata *udata)
381  {
382  	struct rvt_mr *mr;
383  	struct ib_umem *umem;
384  	struct scatterlist *sg;
385  	int n, m, entry;
386  	struct ib_mr *ret;
387  
388  	if (length == 0)
389  		return ERR_PTR(-EINVAL);
390  
391  	umem = ib_umem_get(pd->uobject->context, start, length,
392  			   mr_access_flags, 0);
393  	if (IS_ERR(umem))
394  		return (void *)umem;
395  
396  	n = umem->nmap;
397  
398  	mr = __rvt_alloc_mr(n, pd);
399  	if (IS_ERR(mr)) {
400  		ret = (struct ib_mr *)mr;
401  		goto bail_umem;
402  	}
403  
404  	mr->mr.user_base = start;
405  	mr->mr.iova = virt_addr;
406  	mr->mr.length = length;
407  	mr->mr.offset = ib_umem_offset(umem);
408  	mr->mr.access_flags = mr_access_flags;
409  	mr->umem = umem;
410  
411  	mr->mr.page_shift = umem->page_shift;
412  	m = 0;
413  	n = 0;
414  	for_each_sg(umem->sg_head.sgl, sg, umem->nmap, entry) {
415  		void *vaddr;
416  
417  		vaddr = page_address(sg_page(sg));
418  		if (!vaddr) {
419  			ret = ERR_PTR(-EINVAL);
420  			goto bail_inval;
421  		}
422  		mr->mr.map[m]->segs[n].vaddr = vaddr;
423  		mr->mr.map[m]->segs[n].length = BIT(umem->page_shift);
424  		trace_rvt_mr_user_seg(&mr->mr, m, n, vaddr,
425  				      BIT(umem->page_shift));
426  		n++;
427  		if (n == RVT_SEGSZ) {
428  			m++;
429  			n = 0;
430  		}
431  	}
432  	return &mr->ibmr;
433  
434  bail_inval:
435  	__rvt_free_mr(mr);
436  
437  bail_umem:
438  	ib_umem_release(umem);
439  
440  	return ret;
441  }
442  
443  /**
444   * rvt_dereg_clean_qp_cb - callback from iterator
445   * @qp - the qp
446   * @v - the mregion (as u64)
447   *
448   * This routine fields the callback for all QPs and
449   * for QPs in the same PD as the MR will call the
450   * rvt_qp_mr_clean() to potentially cleanup references.
451   */
rvt_dereg_clean_qp_cb(struct rvt_qp * qp,u64 v)452  static void rvt_dereg_clean_qp_cb(struct rvt_qp *qp, u64 v)
453  {
454  	struct rvt_mregion *mr = (struct rvt_mregion *)v;
455  
456  	/* skip PDs that are not ours */
457  	if (mr->pd != qp->ibqp.pd)
458  		return;
459  	rvt_qp_mr_clean(qp, mr->lkey);
460  }
461  
462  /**
463   * rvt_dereg_clean_qps - find QPs for reference cleanup
464   * @mr - the MR that is being deregistered
465   *
466   * This routine iterates RC QPs looking for references
467   * to the lkey noted in mr.
468   */
rvt_dereg_clean_qps(struct rvt_mregion * mr)469  static void rvt_dereg_clean_qps(struct rvt_mregion *mr)
470  {
471  	struct rvt_dev_info *rdi = ib_to_rvt(mr->pd->device);
472  
473  	rvt_qp_iter(rdi, (u64)mr, rvt_dereg_clean_qp_cb);
474  }
475  
476  /**
477   * rvt_check_refs - check references
478   * @mr - the megion
479   * @t - the caller identification
480   *
481   * This routine checks MRs holding a reference during
482   * when being de-registered.
483   *
484   * If the count is non-zero, the code calls a clean routine then
485   * waits for the timeout for the count to zero.
486   */
rvt_check_refs(struct rvt_mregion * mr,const char * t)487  static int rvt_check_refs(struct rvt_mregion *mr, const char *t)
488  {
489  	unsigned long timeout;
490  	struct rvt_dev_info *rdi = ib_to_rvt(mr->pd->device);
491  
492  	if (mr->lkey) {
493  		/* avoid dma mr */
494  		rvt_dereg_clean_qps(mr);
495  		/* @mr was indexed on rcu protected @lkey_table */
496  		synchronize_rcu();
497  	}
498  
499  	timeout = wait_for_completion_timeout(&mr->comp, 5 * HZ);
500  	if (!timeout) {
501  		rvt_pr_err(rdi,
502  			   "%s timeout mr %p pd %p lkey %x refcount %ld\n",
503  			   t, mr, mr->pd, mr->lkey,
504  			   atomic_long_read(&mr->refcount.count));
505  		rvt_get_mr(mr);
506  		return -EBUSY;
507  	}
508  	return 0;
509  }
510  
511  /**
512   * rvt_mr_has_lkey - is MR
513   * @mr - the mregion
514   * @lkey - the lkey
515   */
rvt_mr_has_lkey(struct rvt_mregion * mr,u32 lkey)516  bool rvt_mr_has_lkey(struct rvt_mregion *mr, u32 lkey)
517  {
518  	return mr && lkey == mr->lkey;
519  }
520  
521  /**
522   * rvt_ss_has_lkey - is mr in sge tests
523   * @ss - the sge state
524   * @lkey
525   *
526   * This code tests for an MR in the indicated
527   * sge state.
528   */
rvt_ss_has_lkey(struct rvt_sge_state * ss,u32 lkey)529  bool rvt_ss_has_lkey(struct rvt_sge_state *ss, u32 lkey)
530  {
531  	int i;
532  	bool rval = false;
533  
534  	if (!ss->num_sge)
535  		return rval;
536  	/* first one */
537  	rval = rvt_mr_has_lkey(ss->sge.mr, lkey);
538  	/* any others */
539  	for (i = 0; !rval && i < ss->num_sge - 1; i++)
540  		rval = rvt_mr_has_lkey(ss->sg_list[i].mr, lkey);
541  	return rval;
542  }
543  
544  /**
545   * rvt_dereg_mr - unregister and free a memory region
546   * @ibmr: the memory region to free
547   *
548   *
549   * Note that this is called to free MRs created by rvt_get_dma_mr()
550   * or rvt_reg_user_mr().
551   *
552   * Returns 0 on success.
553   */
rvt_dereg_mr(struct ib_mr * ibmr)554  int rvt_dereg_mr(struct ib_mr *ibmr)
555  {
556  	struct rvt_mr *mr = to_imr(ibmr);
557  	int ret;
558  
559  	rvt_free_lkey(&mr->mr);
560  
561  	rvt_put_mr(&mr->mr); /* will set completion if last */
562  	ret = rvt_check_refs(&mr->mr, __func__);
563  	if (ret)
564  		goto out;
565  	rvt_deinit_mregion(&mr->mr);
566  	if (mr->umem)
567  		ib_umem_release(mr->umem);
568  	kfree(mr);
569  out:
570  	return ret;
571  }
572  
573  /**
574   * rvt_alloc_mr - Allocate a memory region usable with the
575   * @pd: protection domain for this memory region
576   * @mr_type: mem region type
577   * @max_num_sg: Max number of segments allowed
578   *
579   * Return: the memory region on success, otherwise return an errno.
580   */
rvt_alloc_mr(struct ib_pd * pd,enum ib_mr_type mr_type,u32 max_num_sg)581  struct ib_mr *rvt_alloc_mr(struct ib_pd *pd,
582  			   enum ib_mr_type mr_type,
583  			   u32 max_num_sg)
584  {
585  	struct rvt_mr *mr;
586  
587  	if (mr_type != IB_MR_TYPE_MEM_REG)
588  		return ERR_PTR(-EINVAL);
589  
590  	mr = __rvt_alloc_mr(max_num_sg, pd);
591  	if (IS_ERR(mr))
592  		return (struct ib_mr *)mr;
593  
594  	return &mr->ibmr;
595  }
596  
597  /**
598   * rvt_set_page - page assignment function called by ib_sg_to_pages
599   * @ibmr: memory region
600   * @addr: dma address of mapped page
601   *
602   * Return: 0 on success
603   */
rvt_set_page(struct ib_mr * ibmr,u64 addr)604  static int rvt_set_page(struct ib_mr *ibmr, u64 addr)
605  {
606  	struct rvt_mr *mr = to_imr(ibmr);
607  	u32 ps = 1 << mr->mr.page_shift;
608  	u32 mapped_segs = mr->mr.length >> mr->mr.page_shift;
609  	int m, n;
610  
611  	if (unlikely(mapped_segs == mr->mr.max_segs))
612  		return -ENOMEM;
613  
614  	if (mr->mr.length == 0) {
615  		mr->mr.user_base = addr;
616  		mr->mr.iova = addr;
617  	}
618  
619  	m = mapped_segs / RVT_SEGSZ;
620  	n = mapped_segs % RVT_SEGSZ;
621  	mr->mr.map[m]->segs[n].vaddr = (void *)addr;
622  	mr->mr.map[m]->segs[n].length = ps;
623  	trace_rvt_mr_page_seg(&mr->mr, m, n, (void *)addr, ps);
624  	mr->mr.length += ps;
625  
626  	return 0;
627  }
628  
629  /**
630   * rvt_map_mr_sg - map sg list and set it the memory region
631   * @ibmr: memory region
632   * @sg: dma mapped scatterlist
633   * @sg_nents: number of entries in sg
634   * @sg_offset: offset in bytes into sg
635   *
636   * Return: number of sg elements mapped to the memory region
637   */
rvt_map_mr_sg(struct ib_mr * ibmr,struct scatterlist * sg,int sg_nents,unsigned int * sg_offset)638  int rvt_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg,
639  		  int sg_nents, unsigned int *sg_offset)
640  {
641  	struct rvt_mr *mr = to_imr(ibmr);
642  
643  	mr->mr.length = 0;
644  	mr->mr.page_shift = PAGE_SHIFT;
645  	return ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset,
646  			      rvt_set_page);
647  }
648  
649  /**
650   * rvt_fast_reg_mr - fast register physical MR
651   * @qp: the queue pair where the work request comes from
652   * @ibmr: the memory region to be registered
653   * @key: updated key for this memory region
654   * @access: access flags for this memory region
655   *
656   * Returns 0 on success.
657   */
rvt_fast_reg_mr(struct rvt_qp * qp,struct ib_mr * ibmr,u32 key,int access)658  int rvt_fast_reg_mr(struct rvt_qp *qp, struct ib_mr *ibmr, u32 key,
659  		    int access)
660  {
661  	struct rvt_mr *mr = to_imr(ibmr);
662  
663  	if (qp->ibqp.pd != mr->mr.pd)
664  		return -EACCES;
665  
666  	/* not applicable to dma MR or user MR */
667  	if (!mr->mr.lkey || mr->umem)
668  		return -EINVAL;
669  
670  	if ((key & 0xFFFFFF00) != (mr->mr.lkey & 0xFFFFFF00))
671  		return -EINVAL;
672  
673  	ibmr->lkey = key;
674  	ibmr->rkey = key;
675  	mr->mr.lkey = key;
676  	mr->mr.access_flags = access;
677  	atomic_set(&mr->mr.lkey_invalid, 0);
678  
679  	return 0;
680  }
681  EXPORT_SYMBOL(rvt_fast_reg_mr);
682  
683  /**
684   * rvt_invalidate_rkey - invalidate an MR rkey
685   * @qp: queue pair associated with the invalidate op
686   * @rkey: rkey to invalidate
687   *
688   * Returns 0 on success.
689   */
rvt_invalidate_rkey(struct rvt_qp * qp,u32 rkey)690  int rvt_invalidate_rkey(struct rvt_qp *qp, u32 rkey)
691  {
692  	struct rvt_dev_info *dev = ib_to_rvt(qp->ibqp.device);
693  	struct rvt_lkey_table *rkt = &dev->lkey_table;
694  	struct rvt_mregion *mr;
695  
696  	if (rkey == 0)
697  		return -EINVAL;
698  
699  	rcu_read_lock();
700  	mr = rcu_dereference(
701  		rkt->table[(rkey >> (32 - dev->dparms.lkey_table_size))]);
702  	if (unlikely(!mr || mr->lkey != rkey || qp->ibqp.pd != mr->pd))
703  		goto bail;
704  
705  	atomic_set(&mr->lkey_invalid, 1);
706  	rcu_read_unlock();
707  	return 0;
708  
709  bail:
710  	rcu_read_unlock();
711  	return -EINVAL;
712  }
713  EXPORT_SYMBOL(rvt_invalidate_rkey);
714  
715  /**
716   * rvt_alloc_fmr - allocate a fast memory region
717   * @pd: the protection domain for this memory region
718   * @mr_access_flags: access flags for this memory region
719   * @fmr_attr: fast memory region attributes
720   *
721   * Return: the memory region on success, otherwise returns an errno.
722   */
rvt_alloc_fmr(struct ib_pd * pd,int mr_access_flags,struct ib_fmr_attr * fmr_attr)723  struct ib_fmr *rvt_alloc_fmr(struct ib_pd *pd, int mr_access_flags,
724  			     struct ib_fmr_attr *fmr_attr)
725  {
726  	struct rvt_fmr *fmr;
727  	int m;
728  	struct ib_fmr *ret;
729  	int rval = -ENOMEM;
730  
731  	/* Allocate struct plus pointers to first level page tables. */
732  	m = (fmr_attr->max_pages + RVT_SEGSZ - 1) / RVT_SEGSZ;
733  	fmr = kzalloc(struct_size(fmr, mr.map, m), GFP_KERNEL);
734  	if (!fmr)
735  		goto bail;
736  
737  	rval = rvt_init_mregion(&fmr->mr, pd, fmr_attr->max_pages,
738  				PERCPU_REF_INIT_ATOMIC);
739  	if (rval)
740  		goto bail;
741  
742  	/*
743  	 * ib_alloc_fmr() will initialize fmr->ibfmr except for lkey &
744  	 * rkey.
745  	 */
746  	rval = rvt_alloc_lkey(&fmr->mr, 0);
747  	if (rval)
748  		goto bail_mregion;
749  	fmr->ibfmr.rkey = fmr->mr.lkey;
750  	fmr->ibfmr.lkey = fmr->mr.lkey;
751  	/*
752  	 * Resources are allocated but no valid mapping (RKEY can't be
753  	 * used).
754  	 */
755  	fmr->mr.access_flags = mr_access_flags;
756  	fmr->mr.max_segs = fmr_attr->max_pages;
757  	fmr->mr.page_shift = fmr_attr->page_shift;
758  
759  	ret = &fmr->ibfmr;
760  done:
761  	return ret;
762  
763  bail_mregion:
764  	rvt_deinit_mregion(&fmr->mr);
765  bail:
766  	kfree(fmr);
767  	ret = ERR_PTR(rval);
768  	goto done;
769  }
770  
771  /**
772   * rvt_map_phys_fmr - set up a fast memory region
773   * @ibfmr: the fast memory region to set up
774   * @page_list: the list of pages to associate with the fast memory region
775   * @list_len: the number of pages to associate with the fast memory region
776   * @iova: the virtual address of the start of the fast memory region
777   *
778   * This may be called from interrupt context.
779   *
780   * Return: 0 on success
781   */
782  
rvt_map_phys_fmr(struct ib_fmr * ibfmr,u64 * page_list,int list_len,u64 iova)783  int rvt_map_phys_fmr(struct ib_fmr *ibfmr, u64 *page_list,
784  		     int list_len, u64 iova)
785  {
786  	struct rvt_fmr *fmr = to_ifmr(ibfmr);
787  	struct rvt_lkey_table *rkt;
788  	unsigned long flags;
789  	int m, n;
790  	unsigned long i;
791  	u32 ps;
792  	struct rvt_dev_info *rdi = ib_to_rvt(ibfmr->device);
793  
794  	i = atomic_long_read(&fmr->mr.refcount.count);
795  	if (i > 2)
796  		return -EBUSY;
797  
798  	if (list_len > fmr->mr.max_segs)
799  		return -EINVAL;
800  
801  	rkt = &rdi->lkey_table;
802  	spin_lock_irqsave(&rkt->lock, flags);
803  	fmr->mr.user_base = iova;
804  	fmr->mr.iova = iova;
805  	ps = 1 << fmr->mr.page_shift;
806  	fmr->mr.length = list_len * ps;
807  	m = 0;
808  	n = 0;
809  	for (i = 0; i < list_len; i++) {
810  		fmr->mr.map[m]->segs[n].vaddr = (void *)page_list[i];
811  		fmr->mr.map[m]->segs[n].length = ps;
812  		trace_rvt_mr_fmr_seg(&fmr->mr, m, n, (void *)page_list[i], ps);
813  		if (++n == RVT_SEGSZ) {
814  			m++;
815  			n = 0;
816  		}
817  	}
818  	spin_unlock_irqrestore(&rkt->lock, flags);
819  	return 0;
820  }
821  
822  /**
823   * rvt_unmap_fmr - unmap fast memory regions
824   * @fmr_list: the list of fast memory regions to unmap
825   *
826   * Return: 0 on success.
827   */
rvt_unmap_fmr(struct list_head * fmr_list)828  int rvt_unmap_fmr(struct list_head *fmr_list)
829  {
830  	struct rvt_fmr *fmr;
831  	struct rvt_lkey_table *rkt;
832  	unsigned long flags;
833  	struct rvt_dev_info *rdi;
834  
835  	list_for_each_entry(fmr, fmr_list, ibfmr.list) {
836  		rdi = ib_to_rvt(fmr->ibfmr.device);
837  		rkt = &rdi->lkey_table;
838  		spin_lock_irqsave(&rkt->lock, flags);
839  		fmr->mr.user_base = 0;
840  		fmr->mr.iova = 0;
841  		fmr->mr.length = 0;
842  		spin_unlock_irqrestore(&rkt->lock, flags);
843  	}
844  	return 0;
845  }
846  
847  /**
848   * rvt_dealloc_fmr - deallocate a fast memory region
849   * @ibfmr: the fast memory region to deallocate
850   *
851   * Return: 0 on success.
852   */
rvt_dealloc_fmr(struct ib_fmr * ibfmr)853  int rvt_dealloc_fmr(struct ib_fmr *ibfmr)
854  {
855  	struct rvt_fmr *fmr = to_ifmr(ibfmr);
856  	int ret = 0;
857  
858  	rvt_free_lkey(&fmr->mr);
859  	rvt_put_mr(&fmr->mr); /* will set completion if last */
860  	ret = rvt_check_refs(&fmr->mr, __func__);
861  	if (ret)
862  		goto out;
863  	rvt_deinit_mregion(&fmr->mr);
864  	kfree(fmr);
865  out:
866  	return ret;
867  }
868  
869  /**
870   * rvt_sge_adjacent - is isge compressible
871   * @last_sge: last outgoing SGE written
872   * @sge: SGE to check
873   *
874   * If adjacent will update last_sge to add length.
875   *
876   * Return: true if isge is adjacent to last sge
877   */
rvt_sge_adjacent(struct rvt_sge * last_sge,struct ib_sge * sge)878  static inline bool rvt_sge_adjacent(struct rvt_sge *last_sge,
879  				    struct ib_sge *sge)
880  {
881  	if (last_sge && sge->lkey == last_sge->mr->lkey &&
882  	    ((uint64_t)(last_sge->vaddr + last_sge->length) == sge->addr)) {
883  		if (sge->lkey) {
884  			if (unlikely((sge->addr - last_sge->mr->user_base +
885  			      sge->length > last_sge->mr->length)))
886  				return false; /* overrun, caller will catch */
887  		} else {
888  			last_sge->length += sge->length;
889  		}
890  		last_sge->sge_length += sge->length;
891  		trace_rvt_sge_adjacent(last_sge, sge);
892  		return true;
893  	}
894  	return false;
895  }
896  
897  /**
898   * rvt_lkey_ok - check IB SGE for validity and initialize
899   * @rkt: table containing lkey to check SGE against
900   * @pd: protection domain
901   * @isge: outgoing internal SGE
902   * @last_sge: last outgoing SGE written
903   * @sge: SGE to check
904   * @acc: access flags
905   *
906   * Check the IB SGE for validity and initialize our internal version
907   * of it.
908   *
909   * Increments the reference count when a new sge is stored.
910   *
911   * Return: 0 if compressed, 1 if added , otherwise returns -errno.
912   */
rvt_lkey_ok(struct rvt_lkey_table * rkt,struct rvt_pd * pd,struct rvt_sge * isge,struct rvt_sge * last_sge,struct ib_sge * sge,int acc)913  int rvt_lkey_ok(struct rvt_lkey_table *rkt, struct rvt_pd *pd,
914  		struct rvt_sge *isge, struct rvt_sge *last_sge,
915  		struct ib_sge *sge, int acc)
916  {
917  	struct rvt_mregion *mr;
918  	unsigned n, m;
919  	size_t off;
920  
921  	/*
922  	 * We use LKEY == zero for kernel virtual addresses
923  	 * (see rvt_get_dma_mr() and dma_virt_ops).
924  	 */
925  	if (sge->lkey == 0) {
926  		struct rvt_dev_info *dev = ib_to_rvt(pd->ibpd.device);
927  
928  		if (pd->user)
929  			return -EINVAL;
930  		if (rvt_sge_adjacent(last_sge, sge))
931  			return 0;
932  		rcu_read_lock();
933  		mr = rcu_dereference(dev->dma_mr);
934  		if (!mr)
935  			goto bail;
936  		rvt_get_mr(mr);
937  		rcu_read_unlock();
938  
939  		isge->mr = mr;
940  		isge->vaddr = (void *)sge->addr;
941  		isge->length = sge->length;
942  		isge->sge_length = sge->length;
943  		isge->m = 0;
944  		isge->n = 0;
945  		goto ok;
946  	}
947  	if (rvt_sge_adjacent(last_sge, sge))
948  		return 0;
949  	rcu_read_lock();
950  	mr = rcu_dereference(rkt->table[sge->lkey >> rkt->shift]);
951  	if (!mr)
952  		goto bail;
953  	rvt_get_mr(mr);
954  	if (!READ_ONCE(mr->lkey_published))
955  		goto bail_unref;
956  
957  	if (unlikely(atomic_read(&mr->lkey_invalid) ||
958  		     mr->lkey != sge->lkey || mr->pd != &pd->ibpd))
959  		goto bail_unref;
960  
961  	off = sge->addr - mr->user_base;
962  	if (unlikely(sge->addr < mr->user_base ||
963  		     off + sge->length > mr->length ||
964  		     (mr->access_flags & acc) != acc))
965  		goto bail_unref;
966  	rcu_read_unlock();
967  
968  	off += mr->offset;
969  	if (mr->page_shift) {
970  		/*
971  		 * page sizes are uniform power of 2 so no loop is necessary
972  		 * entries_spanned_by_off is the number of times the loop below
973  		 * would have executed.
974  		*/
975  		size_t entries_spanned_by_off;
976  
977  		entries_spanned_by_off = off >> mr->page_shift;
978  		off -= (entries_spanned_by_off << mr->page_shift);
979  		m = entries_spanned_by_off / RVT_SEGSZ;
980  		n = entries_spanned_by_off % RVT_SEGSZ;
981  	} else {
982  		m = 0;
983  		n = 0;
984  		while (off >= mr->map[m]->segs[n].length) {
985  			off -= mr->map[m]->segs[n].length;
986  			n++;
987  			if (n >= RVT_SEGSZ) {
988  				m++;
989  				n = 0;
990  			}
991  		}
992  	}
993  	isge->mr = mr;
994  	isge->vaddr = mr->map[m]->segs[n].vaddr + off;
995  	isge->length = mr->map[m]->segs[n].length - off;
996  	isge->sge_length = sge->length;
997  	isge->m = m;
998  	isge->n = n;
999  ok:
1000  	trace_rvt_sge_new(isge, sge);
1001  	return 1;
1002  bail_unref:
1003  	rvt_put_mr(mr);
1004  bail:
1005  	rcu_read_unlock();
1006  	return -EINVAL;
1007  }
1008  EXPORT_SYMBOL(rvt_lkey_ok);
1009  
1010  /**
1011   * rvt_rkey_ok - check the IB virtual address, length, and RKEY
1012   * @qp: qp for validation
1013   * @sge: SGE state
1014   * @len: length of data
1015   * @vaddr: virtual address to place data
1016   * @rkey: rkey to check
1017   * @acc: access flags
1018   *
1019   * Return: 1 if successful, otherwise 0.
1020   *
1021   * increments the reference count upon success
1022   */
rvt_rkey_ok(struct rvt_qp * qp,struct rvt_sge * sge,u32 len,u64 vaddr,u32 rkey,int acc)1023  int rvt_rkey_ok(struct rvt_qp *qp, struct rvt_sge *sge,
1024  		u32 len, u64 vaddr, u32 rkey, int acc)
1025  {
1026  	struct rvt_dev_info *dev = ib_to_rvt(qp->ibqp.device);
1027  	struct rvt_lkey_table *rkt = &dev->lkey_table;
1028  	struct rvt_mregion *mr;
1029  	unsigned n, m;
1030  	size_t off;
1031  
1032  	/*
1033  	 * We use RKEY == zero for kernel virtual addresses
1034  	 * (see rvt_get_dma_mr() and dma_virt_ops).
1035  	 */
1036  	rcu_read_lock();
1037  	if (rkey == 0) {
1038  		struct rvt_pd *pd = ibpd_to_rvtpd(qp->ibqp.pd);
1039  		struct rvt_dev_info *rdi = ib_to_rvt(pd->ibpd.device);
1040  
1041  		if (pd->user)
1042  			goto bail;
1043  		mr = rcu_dereference(rdi->dma_mr);
1044  		if (!mr)
1045  			goto bail;
1046  		rvt_get_mr(mr);
1047  		rcu_read_unlock();
1048  
1049  		sge->mr = mr;
1050  		sge->vaddr = (void *)vaddr;
1051  		sge->length = len;
1052  		sge->sge_length = len;
1053  		sge->m = 0;
1054  		sge->n = 0;
1055  		goto ok;
1056  	}
1057  
1058  	mr = rcu_dereference(rkt->table[rkey >> rkt->shift]);
1059  	if (!mr)
1060  		goto bail;
1061  	rvt_get_mr(mr);
1062  	/* insure mr read is before test */
1063  	if (!READ_ONCE(mr->lkey_published))
1064  		goto bail_unref;
1065  	if (unlikely(atomic_read(&mr->lkey_invalid) ||
1066  		     mr->lkey != rkey || qp->ibqp.pd != mr->pd))
1067  		goto bail_unref;
1068  
1069  	off = vaddr - mr->iova;
1070  	if (unlikely(vaddr < mr->iova || off + len > mr->length ||
1071  		     (mr->access_flags & acc) == 0))
1072  		goto bail_unref;
1073  	rcu_read_unlock();
1074  
1075  	off += mr->offset;
1076  	if (mr->page_shift) {
1077  		/*
1078  		 * page sizes are uniform power of 2 so no loop is necessary
1079  		 * entries_spanned_by_off is the number of times the loop below
1080  		 * would have executed.
1081  		*/
1082  		size_t entries_spanned_by_off;
1083  
1084  		entries_spanned_by_off = off >> mr->page_shift;
1085  		off -= (entries_spanned_by_off << mr->page_shift);
1086  		m = entries_spanned_by_off / RVT_SEGSZ;
1087  		n = entries_spanned_by_off % RVT_SEGSZ;
1088  	} else {
1089  		m = 0;
1090  		n = 0;
1091  		while (off >= mr->map[m]->segs[n].length) {
1092  			off -= mr->map[m]->segs[n].length;
1093  			n++;
1094  			if (n >= RVT_SEGSZ) {
1095  				m++;
1096  				n = 0;
1097  			}
1098  		}
1099  	}
1100  	sge->mr = mr;
1101  	sge->vaddr = mr->map[m]->segs[n].vaddr + off;
1102  	sge->length = mr->map[m]->segs[n].length - off;
1103  	sge->sge_length = len;
1104  	sge->m = m;
1105  	sge->n = n;
1106  ok:
1107  	return 1;
1108  bail_unref:
1109  	rvt_put_mr(mr);
1110  bail:
1111  	rcu_read_unlock();
1112  	return 0;
1113  }
1114  EXPORT_SYMBOL(rvt_rkey_ok);
1115