1 // SPDX-License-Identifier: GPL-2.0
2 /******************************************************************************
3  *
4  * Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved.
5  *
6  ******************************************************************************/
7 #define _HCI_HAL_INIT_C_
8 
9 #include <osdep_service.h>
10 #include <drv_types.h>
11 #include <rtw_efuse.h>
12 #include <fw.h>
13 #include <rtl8188e_hal.h>
14 #include <phy.h>
15 
16 #define		HAL_BB_ENABLE		1
17 
_ConfigNormalChipOutEP_8188E(struct adapter * adapt,u8 NumOutPipe)18 static void _ConfigNormalChipOutEP_8188E(struct adapter *adapt, u8 NumOutPipe)
19 {
20 	struct hal_data_8188e *haldata = adapt->HalData;
21 
22 	switch (NumOutPipe) {
23 	case	3:
24 		haldata->OutEpQueueSel = TX_SELE_HQ | TX_SELE_LQ | TX_SELE_NQ;
25 		haldata->OutEpNumber = 3;
26 		break;
27 	case	2:
28 		haldata->OutEpQueueSel = TX_SELE_HQ | TX_SELE_NQ;
29 		haldata->OutEpNumber = 2;
30 		break;
31 	case	1:
32 		haldata->OutEpQueueSel = TX_SELE_HQ;
33 		haldata->OutEpNumber = 1;
34 		break;
35 	default:
36 		break;
37 	}
38 	DBG_88E("%s OutEpQueueSel(0x%02x), OutEpNumber(%d)\n", __func__, haldata->OutEpQueueSel, haldata->OutEpNumber);
39 }
40 
HalUsbSetQueuePipeMapping8188EUsb(struct adapter * adapt,u8 NumInPipe,u8 NumOutPipe)41 static bool HalUsbSetQueuePipeMapping8188EUsb(struct adapter *adapt, u8 NumInPipe, u8 NumOutPipe)
42 {
43 	bool			result		= false;
44 
45 	_ConfigNormalChipOutEP_8188E(adapt, NumOutPipe);
46 
47 	/*  Normal chip with one IN and one OUT doesn't have interrupt IN EP. */
48 	if (adapt->HalData->OutEpNumber == 1) {
49 		if (NumInPipe != 1)
50 			return result;
51 	}
52 
53 	/*  All config other than above support one Bulk IN and one Interrupt IN. */
54 
55 	result = hal_mapping_out_pipe(adapt, NumOutPipe);
56 
57 	return result;
58 }
59 
rtw_hal_chip_configure(struct adapter * adapt)60 void rtw_hal_chip_configure(struct adapter *adapt)
61 {
62 	struct hal_data_8188e *haldata = adapt->HalData;
63 	struct dvobj_priv	*pdvobjpriv = adapter_to_dvobj(adapt);
64 
65 	if (pdvobjpriv->ishighspeed)
66 		haldata->UsbBulkOutSize = USB_HIGH_SPEED_BULK_SIZE;/* 512 bytes */
67 	else
68 		haldata->UsbBulkOutSize = USB_FULL_SPEED_BULK_SIZE;/* 64 bytes */
69 
70 	haldata->interfaceIndex = pdvobjpriv->InterfaceNumber;
71 
72 	haldata->UsbTxAggMode		= 1;
73 	haldata->UsbTxAggDescNum	= 0x6;	/*  only 4 bits */
74 
75 	haldata->UsbRxAggMode		= USB_RX_AGG_DMA;/*  USB_RX_AGG_DMA; */
76 	haldata->UsbRxAggBlockCount	= 8; /* unit : 512b */
77 	haldata->UsbRxAggBlockTimeout	= 0x6;
78 	haldata->UsbRxAggPageCount	= 48; /* uint :128 b 0x0A;	10 = MAX_RX_DMA_BUFFER_SIZE/2/haldata->UsbBulkOutSize */
79 	haldata->UsbRxAggPageTimeout	= 0x4; /* 6, absolute time = 34ms/(2^6) */
80 
81 	HalUsbSetQueuePipeMapping8188EUsb(adapt, pdvobjpriv->RtNumInPipes,
82 					  pdvobjpriv->RtNumOutPipes);
83 }
84 
rtw_hal_power_on(struct adapter * adapt)85 u32 rtw_hal_power_on(struct adapter *adapt)
86 {
87 	u16 value16;
88 	/*  HW Power on sequence */
89 	if (adapt->HalData->bMacPwrCtrlOn)
90 		return _SUCCESS;
91 
92 	if (!rtl88eu_pwrseqcmdparsing(adapt, PWR_CUT_ALL_MSK,
93 				      Rtl8188E_NIC_PWR_ON_FLOW)) {
94 		DBG_88E(KERN_ERR "%s: run power on flow fail\n", __func__);
95 		return _FAIL;
96 	}
97 
98 	/*  Enable MAC DMA/WMAC/SCHEDULE/SEC block */
99 	/*  Set CR bit10 to enable 32k calibration. Suggested by SD1 Gimmy. Added by tynli. 2011.08.31. */
100 	usb_write16(adapt, REG_CR, 0x00);  /* suggseted by zhouzhou, by page, 20111230 */
101 
102 		/*  Enable MAC DMA/WMAC/SCHEDULE/SEC block */
103 	value16 = usb_read16(adapt, REG_CR);
104 	value16 |= (HCI_TXDMA_EN | HCI_RXDMA_EN | TXDMA_EN | RXDMA_EN
105 				| PROTOCOL_EN | SCHEDULE_EN | ENSEC | CALTMR_EN);
106 	/*  for SDIO - Set CR bit10 to enable 32k calibration. Suggested by SD1 Gimmy. Added by tynli. 2011.08.31. */
107 
108 	usb_write16(adapt, REG_CR, value16);
109 	adapt->HalData->bMacPwrCtrlOn = true;
110 
111 	return _SUCCESS;
112 }
113 
114 /*  Shall USB interface init this? */
_InitInterrupt(struct adapter * Adapter)115 static void _InitInterrupt(struct adapter *Adapter)
116 {
117 	u32 imr, imr_ex;
118 	u8  usb_opt;
119 
120 	/* HISR write one to clear */
121 	usb_write32(Adapter, REG_HISR_88E, 0xFFFFFFFF);
122 	/*  HIMR - */
123 	imr = IMR_PSTIMEOUT_88E | IMR_TBDER_88E | IMR_CPWM_88E | IMR_CPWM2_88E;
124 	usb_write32(Adapter, REG_HIMR_88E, imr);
125 	Adapter->HalData->IntrMask[0] = imr;
126 
127 	imr_ex = IMR_TXERR_88E | IMR_RXERR_88E | IMR_TXFOVW_88E | IMR_RXFOVW_88E;
128 	usb_write32(Adapter, REG_HIMRE_88E, imr_ex);
129 	Adapter->HalData->IntrMask[1] = imr_ex;
130 
131 	/*  REG_USB_SPECIAL_OPTION - BIT(4) */
132 	/*  0; Use interrupt endpoint to upload interrupt pkt */
133 	/*  1; Use bulk endpoint to upload interrupt pkt, */
134 	usb_opt = usb_read8(Adapter, REG_USB_SPECIAL_OPTION);
135 
136 	if (!adapter_to_dvobj(Adapter)->ishighspeed)
137 		usb_opt = usb_opt & (~INT_BULK_SEL);
138 	else
139 		usb_opt = usb_opt | (INT_BULK_SEL);
140 
141 	usb_write8(Adapter, REG_USB_SPECIAL_OPTION, usb_opt);
142 }
143 
_InitQueueReservedPage(struct adapter * Adapter)144 static void _InitQueueReservedPage(struct adapter *Adapter)
145 {
146 	struct registry_priv	*pregistrypriv = &Adapter->registrypriv;
147 	u32 numHQ	= 0;
148 	u32 numLQ	= 0;
149 	u32 numNQ	= 0;
150 	u32 numPubQ;
151 	u32 value32;
152 	u8 value8;
153 	bool bWiFiConfig = pregistrypriv->wifi_spec;
154 
155 	if (bWiFiConfig) {
156 		if (Adapter->HalData->OutEpQueueSel & TX_SELE_HQ)
157 			numHQ =  0x29;
158 
159 		if (Adapter->HalData->OutEpQueueSel & TX_SELE_LQ)
160 			numLQ = 0x1C;
161 
162 		/*  NOTE: This step shall be proceed before writing REG_RQPN. */
163 		if (Adapter->HalData->OutEpQueueSel & TX_SELE_NQ)
164 			numNQ = 0x1C;
165 		value8 = (u8)_NPQ(numNQ);
166 		usb_write8(Adapter, REG_RQPN_NPQ, value8);
167 
168 		numPubQ = 0xA8 - numHQ - numLQ - numNQ;
169 
170 		/*  TX DMA */
171 		value32 = _HPQ(numHQ) | _LPQ(numLQ) | _PUBQ(numPubQ) | LD_RQPN;
172 		usb_write32(Adapter, REG_RQPN, value32);
173 	} else {
174 		usb_write16(Adapter, REG_RQPN_NPQ, 0x0000);/* Just follow MP Team,??? Georgia 03/28 */
175 		usb_write16(Adapter, REG_RQPN_NPQ, 0x0d);
176 		usb_write32(Adapter, REG_RQPN, 0x808E000d);/* reserve 7 page for LPS */
177 	}
178 }
179 
_InitTxBufferBoundary(struct adapter * Adapter,u8 txpktbuf_bndy)180 static void _InitTxBufferBoundary(struct adapter *Adapter, u8 txpktbuf_bndy)
181 {
182 	usb_write8(Adapter, REG_TXPKTBUF_BCNQ_BDNY, txpktbuf_bndy);
183 	usb_write8(Adapter, REG_TXPKTBUF_MGQ_BDNY, txpktbuf_bndy);
184 	usb_write8(Adapter, REG_TXPKTBUF_WMAC_LBK_BF_HD, txpktbuf_bndy);
185 	usb_write8(Adapter, REG_TRXFF_BNDY, txpktbuf_bndy);
186 	usb_write8(Adapter, REG_TDECTRL + 1, txpktbuf_bndy);
187 }
188 
_InitPageBoundary(struct adapter * Adapter)189 static void _InitPageBoundary(struct adapter *Adapter)
190 {
191 	/*  RX Page Boundary */
192 	/*  */
193 	u16 rxff_bndy = MAX_RX_DMA_BUFFER_SIZE_88E - 1;
194 
195 	usb_write16(Adapter, (REG_TRXFF_BNDY + 2), rxff_bndy);
196 }
197 
_InitNormalChipRegPriority(struct adapter * Adapter,u16 beQ,u16 bkQ,u16 viQ,u16 voQ,u16 mgtQ,u16 hiQ)198 static void _InitNormalChipRegPriority(struct adapter *Adapter, u16 beQ,
199 				       u16 bkQ, u16 viQ, u16 voQ, u16 mgtQ,
200 				       u16 hiQ)
201 {
202 	u16 value16	= (usb_read16(Adapter, REG_TRXDMA_CTRL) & 0x7);
203 
204 	value16 |= _TXDMA_BEQ_MAP(beQ)	| _TXDMA_BKQ_MAP(bkQ) |
205 		   _TXDMA_VIQ_MAP(viQ)	| _TXDMA_VOQ_MAP(voQ) |
206 		   _TXDMA_MGQ_MAP(mgtQ) | _TXDMA_HIQ_MAP(hiQ);
207 
208 	usb_write16(Adapter, REG_TRXDMA_CTRL, value16);
209 }
210 
_InitNormalChipOneOutEpPriority(struct adapter * Adapter)211 static void _InitNormalChipOneOutEpPriority(struct adapter *Adapter)
212 {
213 	u16 value = 0;
214 
215 	switch (Adapter->HalData->OutEpQueueSel) {
216 	case TX_SELE_HQ:
217 		value = QUEUE_HIGH;
218 		break;
219 	case TX_SELE_LQ:
220 		value = QUEUE_LOW;
221 		break;
222 	case TX_SELE_NQ:
223 		value = QUEUE_NORMAL;
224 		break;
225 	default:
226 		break;
227 	}
228 	_InitNormalChipRegPriority(Adapter, value, value, value, value,
229 				   value, value);
230 }
231 
_InitNormalChipTwoOutEpPriority(struct adapter * Adapter)232 static void _InitNormalChipTwoOutEpPriority(struct adapter *Adapter)
233 {
234 	struct registry_priv *pregistrypriv = &Adapter->registrypriv;
235 	u16 beQ, bkQ, viQ, voQ, mgtQ, hiQ;
236 	u16 valueHi = 0;
237 	u16 valueLow = 0;
238 
239 	switch (Adapter->HalData->OutEpQueueSel) {
240 	case (TX_SELE_HQ | TX_SELE_LQ):
241 		valueHi = QUEUE_HIGH;
242 		valueLow = QUEUE_LOW;
243 		break;
244 	case (TX_SELE_NQ | TX_SELE_LQ):
245 		valueHi = QUEUE_NORMAL;
246 		valueLow = QUEUE_LOW;
247 		break;
248 	case (TX_SELE_HQ | TX_SELE_NQ):
249 		valueHi = QUEUE_HIGH;
250 		valueLow = QUEUE_NORMAL;
251 		break;
252 	default:
253 		break;
254 	}
255 
256 	if (!pregistrypriv->wifi_spec) {
257 		beQ	= valueLow;
258 		bkQ	= valueLow;
259 		viQ	= valueHi;
260 		voQ	= valueHi;
261 		mgtQ	= valueHi;
262 		hiQ	= valueHi;
263 	} else {/* for WMM ,CONFIG_OUT_EP_WIFI_MODE */
264 		beQ	= valueLow;
265 		bkQ	= valueHi;
266 		viQ	= valueHi;
267 		voQ	= valueLow;
268 		mgtQ	= valueHi;
269 		hiQ	= valueHi;
270 	}
271 	_InitNormalChipRegPriority(Adapter, beQ, bkQ, viQ, voQ, mgtQ, hiQ);
272 }
273 
_InitNormalChipThreeOutEpPriority(struct adapter * Adapter)274 static void _InitNormalChipThreeOutEpPriority(struct adapter *Adapter)
275 {
276 	struct registry_priv *pregistrypriv = &Adapter->registrypriv;
277 	u16 beQ, bkQ, viQ, voQ, mgtQ, hiQ;
278 
279 	if (!pregistrypriv->wifi_spec) {/*  typical setting */
280 		beQ	= QUEUE_LOW;
281 		bkQ	= QUEUE_LOW;
282 		viQ	= QUEUE_NORMAL;
283 		voQ	= QUEUE_HIGH;
284 		mgtQ	= QUEUE_HIGH;
285 		hiQ	= QUEUE_HIGH;
286 	} else {/*  for WMM */
287 		beQ	= QUEUE_LOW;
288 		bkQ	= QUEUE_NORMAL;
289 		viQ	= QUEUE_NORMAL;
290 		voQ	= QUEUE_HIGH;
291 		mgtQ	= QUEUE_HIGH;
292 		hiQ	= QUEUE_HIGH;
293 	}
294 	_InitNormalChipRegPriority(Adapter, beQ, bkQ, viQ, voQ, mgtQ, hiQ);
295 }
296 
_InitQueuePriority(struct adapter * Adapter)297 static void _InitQueuePriority(struct adapter *Adapter)
298 {
299 	switch (Adapter->HalData->OutEpNumber) {
300 	case 1:
301 		_InitNormalChipOneOutEpPriority(Adapter);
302 		break;
303 	case 2:
304 		_InitNormalChipTwoOutEpPriority(Adapter);
305 		break;
306 	case 3:
307 		_InitNormalChipThreeOutEpPriority(Adapter);
308 		break;
309 	default:
310 		break;
311 	}
312 }
313 
_InitNetworkType(struct adapter * Adapter)314 static void _InitNetworkType(struct adapter *Adapter)
315 {
316 	u32 value32;
317 
318 	value32 = usb_read32(Adapter, REG_CR);
319 	/*  TODO: use the other function to set network type */
320 	value32 = (value32 & ~MASK_NETTYPE) | _NETTYPE(NT_LINK_AP);
321 
322 	usb_write32(Adapter, REG_CR, value32);
323 }
324 
_InitTransferPageSize(struct adapter * Adapter)325 static void _InitTransferPageSize(struct adapter *Adapter)
326 {
327 	/*  Tx page size is always 128. */
328 
329 	u8 value8;
330 
331 	value8 = _PSRX(PBP_128) | _PSTX(PBP_128);
332 	usb_write8(Adapter, REG_PBP, value8);
333 }
334 
_InitDriverInfoSize(struct adapter * Adapter,u8 drvInfoSize)335 static void _InitDriverInfoSize(struct adapter *Adapter, u8 drvInfoSize)
336 {
337 	usb_write8(Adapter, REG_RX_DRVINFO_SZ, drvInfoSize);
338 }
339 
_InitWMACSetting(struct adapter * Adapter)340 static void _InitWMACSetting(struct adapter *Adapter)
341 {
342 	struct hal_data_8188e *haldata = Adapter->HalData;
343 
344 	haldata->ReceiveConfig = RCR_AAP | RCR_APM | RCR_AM | RCR_AB |
345 				  RCR_CBSSID_DATA | RCR_CBSSID_BCN |
346 				  RCR_APP_ICV | RCR_AMF | RCR_HTC_LOC_CTRL |
347 				  RCR_APP_MIC | RCR_APP_PHYSTS;
348 
349 	/*  some REG_RCR will be modified later by phy_ConfigMACWithHeaderFile() */
350 	usb_write32(Adapter, REG_RCR, haldata->ReceiveConfig);
351 
352 	/*  Accept all multicast address */
353 	usb_write32(Adapter, REG_MAR, 0xFFFFFFFF);
354 	usb_write32(Adapter, REG_MAR + 4, 0xFFFFFFFF);
355 }
356 
_InitAdaptiveCtrl(struct adapter * Adapter)357 static void _InitAdaptiveCtrl(struct adapter *Adapter)
358 {
359 	u16 value16;
360 	u32 value32;
361 
362 	/*  Response Rate Set */
363 	value32 = usb_read32(Adapter, REG_RRSR);
364 	value32 &= ~RATE_BITMAP_ALL;
365 	value32 |= RATE_RRSR_CCK_ONLY_1M;
366 	usb_write32(Adapter, REG_RRSR, value32);
367 
368 	/*  CF-END Threshold */
369 
370 	/*  SIFS (used in NAV) */
371 	value16 = _SPEC_SIFS_CCK(0x10) | _SPEC_SIFS_OFDM(0x10);
372 	usb_write16(Adapter, REG_SPEC_SIFS, value16);
373 
374 	/*  Retry Limit */
375 	value16 = _LRL(0x30) | _SRL(0x30);
376 	usb_write16(Adapter, REG_RL, value16);
377 }
378 
_InitEDCA(struct adapter * Adapter)379 static void _InitEDCA(struct adapter *Adapter)
380 {
381 	/*  Set Spec SIFS (used in NAV) */
382 	usb_write16(Adapter, REG_SPEC_SIFS, 0x100a);
383 	usb_write16(Adapter, REG_MAC_SPEC_SIFS, 0x100a);
384 
385 	/*  Set SIFS for CCK */
386 	usb_write16(Adapter, REG_SIFS_CTX, 0x100a);
387 
388 	/*  Set SIFS for OFDM */
389 	usb_write16(Adapter, REG_SIFS_TRX, 0x100a);
390 
391 	/*  TXOP */
392 	usb_write32(Adapter, REG_EDCA_BE_PARAM, 0x005EA42B);
393 	usb_write32(Adapter, REG_EDCA_BK_PARAM, 0x0000A44F);
394 	usb_write32(Adapter, REG_EDCA_VI_PARAM, 0x005EA324);
395 	usb_write32(Adapter, REG_EDCA_VO_PARAM, 0x002FA226);
396 }
397 
_InitRDGSetting(struct adapter * Adapter)398 static void _InitRDGSetting(struct adapter *Adapter)
399 {
400 	usb_write8(Adapter, REG_RD_CTRL, 0xFF);
401 	usb_write16(Adapter, REG_RD_NAV_NXT, 0x200);
402 	usb_write8(Adapter, REG_RD_RESP_PKT_TH, 0x05);
403 }
404 
_InitRxSetting(struct adapter * Adapter)405 static void _InitRxSetting(struct adapter *Adapter)
406 {
407 	usb_write32(Adapter, REG_MACID, 0x87654321);
408 	usb_write32(Adapter, 0x0700, 0x87654321);
409 }
410 
_InitRetryFunction(struct adapter * Adapter)411 static void _InitRetryFunction(struct adapter *Adapter)
412 {
413 	u8 value8;
414 
415 	value8 = usb_read8(Adapter, REG_FWHW_TXQ_CTRL);
416 	value8 |= EN_AMPDU_RTY_NEW;
417 	usb_write8(Adapter, REG_FWHW_TXQ_CTRL, value8);
418 
419 	/*  Set ACK timeout */
420 	usb_write8(Adapter, REG_ACKTO, 0x40);
421 }
422 
423 /*-----------------------------------------------------------------------------
424  * Function:	usb_AggSettingTxUpdate()
425  *
426  * Overview:	Separate TX/RX parameters update independent for TP detection and
427  *			dynamic TX/RX aggreagtion parameters update.
428  *
429  * Input:			struct adapter *
430  *
431  * Output/Return:	NONE
432  *
433  * Revised History:
434  *	When		Who		Remark
435  *	12/10/2010	MHC		Separate to smaller function.
436  *
437  *---------------------------------------------------------------------------
438  */
usb_AggSettingTxUpdate(struct adapter * Adapter)439 static void usb_AggSettingTxUpdate(struct adapter *Adapter)
440 {
441 	struct hal_data_8188e *haldata = Adapter->HalData;
442 	u32 value32;
443 
444 	if (Adapter->registrypriv.wifi_spec)
445 		haldata->UsbTxAggMode = false;
446 
447 	if (haldata->UsbTxAggMode) {
448 		value32 = usb_read32(Adapter, REG_TDECTRL);
449 		value32 = value32 & ~(BLK_DESC_NUM_MASK << BLK_DESC_NUM_SHIFT);
450 		value32 |= ((haldata->UsbTxAggDescNum & BLK_DESC_NUM_MASK) << BLK_DESC_NUM_SHIFT);
451 
452 		usb_write32(Adapter, REG_TDECTRL, value32);
453 	}
454 }	/*  usb_AggSettingTxUpdate */
455 
456 /*-----------------------------------------------------------------------------
457  * Function:	usb_AggSettingRxUpdate()
458  *
459  * Overview:	Separate TX/RX parameters update independent for TP detection and
460  *			dynamic TX/RX aggreagtion parameters update.
461  *
462  * Input:			struct adapter *
463  *
464  * Output/Return:	NONE
465  *
466  * Revised History:
467  *	When		Who		Remark
468  *	12/10/2010	MHC		Separate to smaller function.
469  *
470  *---------------------------------------------------------------------------
471  */
usb_AggSettingRxUpdate(struct adapter * Adapter)472 static void usb_AggSettingRxUpdate(struct adapter *Adapter)
473 {
474 	struct hal_data_8188e *haldata = Adapter->HalData;
475 	u8 valueDMA;
476 	u8 valueUSB;
477 
478 	valueDMA = usb_read8(Adapter, REG_TRXDMA_CTRL);
479 	valueUSB = usb_read8(Adapter, REG_USB_SPECIAL_OPTION);
480 
481 	switch (haldata->UsbRxAggMode) {
482 	case USB_RX_AGG_DMA:
483 		valueDMA |= RXDMA_AGG_EN;
484 		valueUSB &= ~USB_AGG_EN;
485 		break;
486 	case USB_RX_AGG_USB:
487 		valueDMA &= ~RXDMA_AGG_EN;
488 		valueUSB |= USB_AGG_EN;
489 		break;
490 	case USB_RX_AGG_MIX:
491 		valueDMA |= RXDMA_AGG_EN;
492 		valueUSB |= USB_AGG_EN;
493 		break;
494 	case USB_RX_AGG_DISABLE:
495 	default:
496 		valueDMA &= ~RXDMA_AGG_EN;
497 		valueUSB &= ~USB_AGG_EN;
498 		break;
499 	}
500 
501 	usb_write8(Adapter, REG_TRXDMA_CTRL, valueDMA);
502 	usb_write8(Adapter, REG_USB_SPECIAL_OPTION, valueUSB);
503 
504 	switch (haldata->UsbRxAggMode) {
505 	case USB_RX_AGG_DMA:
506 		usb_write8(Adapter, REG_RXDMA_AGG_PG_TH, haldata->UsbRxAggPageCount);
507 		usb_write8(Adapter, REG_RXDMA_AGG_PG_TH + 1, haldata->UsbRxAggPageTimeout);
508 		break;
509 	case USB_RX_AGG_USB:
510 		usb_write8(Adapter, REG_USB_AGG_TH, haldata->UsbRxAggBlockCount);
511 		usb_write8(Adapter, REG_USB_AGG_TO, haldata->UsbRxAggBlockTimeout);
512 		break;
513 	case USB_RX_AGG_MIX:
514 		usb_write8(Adapter, REG_RXDMA_AGG_PG_TH, haldata->UsbRxAggPageCount);
515 		usb_write8(Adapter, REG_RXDMA_AGG_PG_TH + 1, (haldata->UsbRxAggPageTimeout & 0x1F));/* 0x280[12:8] */
516 		usb_write8(Adapter, REG_USB_AGG_TH, haldata->UsbRxAggBlockCount);
517 		usb_write8(Adapter, REG_USB_AGG_TO, haldata->UsbRxAggBlockTimeout);
518 		break;
519 	case USB_RX_AGG_DISABLE:
520 	default:
521 		/*  TODO: */
522 		break;
523 	}
524 
525 	switch (PBP_128) {
526 	case PBP_128:
527 		haldata->HwRxPageSize = 128;
528 		break;
529 	case PBP_64:
530 		haldata->HwRxPageSize = 64;
531 		break;
532 	case PBP_256:
533 		haldata->HwRxPageSize = 256;
534 		break;
535 	case PBP_512:
536 		haldata->HwRxPageSize = 512;
537 		break;
538 	case PBP_1024:
539 		haldata->HwRxPageSize = 1024;
540 		break;
541 	default:
542 		break;
543 	}
544 }	/*  usb_AggSettingRxUpdate */
545 
InitUsbAggregationSetting(struct adapter * Adapter)546 static void InitUsbAggregationSetting(struct adapter *Adapter)
547 {
548 	/*  Tx aggregation setting */
549 	usb_AggSettingTxUpdate(Adapter);
550 
551 	/*  Rx aggregation setting */
552 	usb_AggSettingRxUpdate(Adapter);
553 }
554 
_InitBeaconParameters(struct adapter * Adapter)555 static void _InitBeaconParameters(struct adapter *Adapter)
556 {
557 	struct hal_data_8188e *haldata = Adapter->HalData;
558 
559 	usb_write16(Adapter, REG_BCN_CTRL, 0x1010);
560 
561 	/*  TODO: Remove these magic number */
562 	usb_write16(Adapter, REG_TBTT_PROHIBIT, 0x6404);/*  ms */
563 	usb_write8(Adapter, REG_DRVERLYINT, DRIVER_EARLY_INT_TIME);/*  5ms */
564 	usb_write8(Adapter, REG_BCNDMATIM, BCN_DMA_ATIME_INT_TIME); /*  2ms */
565 
566 	/*  Suggested by designer timchen. Change beacon AIFS to the largest number */
567 	/*  beacause test chip does not contension before sending beacon. by tynli. 2009.11.03 */
568 	usb_write16(Adapter, REG_BCNTCFG, 0x660F);
569 
570 	haldata->RegBcnCtrlVal = usb_read8(Adapter, REG_BCN_CTRL);
571 	haldata->RegTxPause = usb_read8(Adapter, REG_TXPAUSE);
572 	haldata->RegFwHwTxQCtrl = usb_read8(Adapter, REG_FWHW_TXQ_CTRL + 2);
573 	haldata->RegReg542 = usb_read8(Adapter, REG_TBTT_PROHIBIT + 2);
574 	haldata->RegCR_1 = usb_read8(Adapter, REG_CR + 1);
575 }
576 
_BeaconFunctionEnable(struct adapter * Adapter,bool Enable,bool Linked)577 static void _BeaconFunctionEnable(struct adapter *Adapter,
578 				  bool Enable, bool Linked)
579 {
580 	usb_write8(Adapter, REG_BCN_CTRL, (BIT(4) | BIT(3) | BIT(1)));
581 
582 	usb_write8(Adapter, REG_RD_CTRL + 1, 0x6F);
583 }
584 
585 /*  Set CCK and OFDM Block "ON" */
_BBTurnOnBlock(struct adapter * Adapter)586 static void _BBTurnOnBlock(struct adapter *Adapter)
587 {
588 	phy_set_bb_reg(Adapter, rFPGA0_RFMOD, bCCKEn, 0x1);
589 	phy_set_bb_reg(Adapter, rFPGA0_RFMOD, bOFDMEn, 0x1);
590 }
591 
_InitAntenna_Selection(struct adapter * Adapter)592 static void _InitAntenna_Selection(struct adapter *Adapter)
593 {
594 	struct hal_data_8188e *haldata = Adapter->HalData;
595 
596 	if (haldata->AntDivCfg == 0)
597 		return;
598 	DBG_88E("==>  %s ....\n", __func__);
599 
600 	usb_write32(Adapter, REG_LEDCFG0, usb_read32(Adapter, REG_LEDCFG0) | BIT(23));
601 	phy_set_bb_reg(Adapter, rFPGA0_XAB_RFParameter, BIT(13), 0x01);
602 
603 	if (phy_query_bb_reg(Adapter, rFPGA0_XA_RFInterfaceOE, 0x300) == Antenna_A)
604 		haldata->CurAntenna = Antenna_A;
605 	else
606 		haldata->CurAntenna = Antenna_B;
607 	DBG_88E("%s,Cur_ant:(%x)%s\n", __func__, haldata->CurAntenna, (haldata->CurAntenna == Antenna_A) ? "Antenna_A" : "Antenna_B");
608 }
609 
610 /*-----------------------------------------------------------------------------
611  * Function:	HwSuspendModeEnable92Cu()
612  *
613  * Overview:	HW suspend mode switch.
614  *
615  * Input:		NONE
616  *
617  * Output:	NONE
618  *
619  * Return:	NONE
620  *
621  * Revised History:
622  *	When		Who		Remark
623  *	08/23/2010	MHC		HW suspend mode switch test..
624  *---------------------------------------------------------------------------
625  */
RfOnOffDetect(struct adapter * adapt)626 enum rt_rf_power_state RfOnOffDetect(struct adapter *adapt)
627 {
628 	u8 val8;
629 	enum rt_rf_power_state rfpowerstate = rf_off;
630 
631 	if (adapt->pwrctrlpriv.bHWPowerdown) {
632 		val8 = usb_read8(adapt, REG_HSISR);
633 		DBG_88E("pwrdown, 0x5c(BIT(7))=%02x\n", val8);
634 		rfpowerstate = (val8 & BIT(7)) ? rf_off : rf_on;
635 	} else { /*  rf on/off */
636 		usb_write8(adapt, REG_MAC_PINMUX_CFG, usb_read8(adapt, REG_MAC_PINMUX_CFG) & ~(BIT(3)));
637 		val8 = usb_read8(adapt, REG_GPIO_IO_SEL);
638 		DBG_88E("GPIO_IN=%02x\n", val8);
639 		rfpowerstate = (val8 & BIT(3)) ? rf_on : rf_off;
640 	}
641 	return rfpowerstate;
642 }	/*  HalDetectPwrDownMode */
643 
rtl8188eu_hal_init(struct adapter * Adapter)644 u32 rtl8188eu_hal_init(struct adapter *Adapter)
645 {
646 	u8 value8 = 0;
647 	u16  value16;
648 	u8 txpktbuf_bndy;
649 	u32 status = _SUCCESS;
650 	struct hal_data_8188e *haldata = Adapter->HalData;
651 	struct pwrctrl_priv		*pwrctrlpriv = &Adapter->pwrctrlpriv;
652 	struct registry_priv	*pregistrypriv = &Adapter->registrypriv;
653 	unsigned long init_start_time = jiffies;
654 
655 	#define HAL_INIT_PROFILE_TAG(stage) do {} while (0)
656 
657 	HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_BEGIN);
658 
659 	if (Adapter->pwrctrlpriv.bkeepfwalive) {
660 		if (haldata->odmpriv.RFCalibrateInfo.bIQKInitialized) {
661 			rtl88eu_phy_iq_calibrate(Adapter, true);
662 		} else {
663 			rtl88eu_phy_iq_calibrate(Adapter, false);
664 			haldata->odmpriv.RFCalibrateInfo.bIQKInitialized = true;
665 		}
666 
667 		ODM_TXPowerTrackingCheck(&haldata->odmpriv);
668 		rtl88eu_phy_lc_calibrate(Adapter);
669 
670 		goto exit;
671 	}
672 
673 	HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_INIT_PW_ON);
674 	status = rtw_hal_power_on(Adapter);
675 	if (status == _FAIL) {
676 		RT_TRACE(_module_hci_hal_init_c_, _drv_err_, ("Failed to init power on!\n"));
677 		goto exit;
678 	}
679 
680 	/*  Save target channel */
681 	haldata->CurrentChannel = 6;/* default set to 6 */
682 
683 	if (pwrctrlpriv->reg_rfoff)
684 		pwrctrlpriv->rf_pwrstate = rf_off;
685 
686 	/*  2010/08/09 MH We need to check if we need to turnon or off RF after detecting */
687 	/*  HW GPIO pin. Before PHY_RFConfig8192C. */
688 	/*  2010/08/26 MH If Efuse does not support sective suspend then disable the function. */
689 
690 	if (!pregistrypriv->wifi_spec) {
691 		txpktbuf_bndy = TX_PAGE_BOUNDARY_88E;
692 	} else {
693 		/*  for WMM */
694 		txpktbuf_bndy = WMM_NORMAL_TX_PAGE_BOUNDARY_88E;
695 	}
696 
697 	HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_MISC01);
698 	_InitQueueReservedPage(Adapter);
699 	_InitQueuePriority(Adapter);
700 	_InitPageBoundary(Adapter);
701 	_InitTransferPageSize(Adapter);
702 
703 	_InitTxBufferBoundary(Adapter, 0);
704 
705 	HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_DOWNLOAD_FW);
706 	if (Adapter->registrypriv.mp_mode == 1) {
707 		_InitRxSetting(Adapter);
708 		Adapter->bFWReady = false;
709 	} else {
710 		status = rtl88eu_download_fw(Adapter);
711 
712 		if (status) {
713 			DBG_88E("%s: Download Firmware failed!!\n", __func__);
714 			Adapter->bFWReady = false;
715 			return status;
716 		}
717 		RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("Initializeadapt8192CSdio(): Download Firmware Success!!\n"));
718 		Adapter->bFWReady = true;
719 	}
720 	rtl8188e_InitializeFirmwareVars(Adapter);
721 
722 	rtl88eu_phy_mac_config(Adapter);
723 
724 	rtl88eu_phy_bb_config(Adapter);
725 
726 	rtl88eu_phy_rf_config(Adapter);
727 
728 	HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_EFUSE_PATCH);
729 	status = rtl8188e_iol_efuse_patch(Adapter);
730 	if (status == _FAIL) {
731 		DBG_88E("%s  rtl8188e_iol_efuse_patch failed\n", __func__);
732 		goto exit;
733 	}
734 
735 	_InitTxBufferBoundary(Adapter, txpktbuf_bndy);
736 
737 	HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_INIT_LLTT);
738 	status =  InitLLTTable(Adapter, txpktbuf_bndy);
739 	if (status == _FAIL) {
740 		RT_TRACE(_module_hci_hal_init_c_, _drv_err_, ("Failed to init LLT table\n"));
741 		goto exit;
742 	}
743 
744 	HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_MISC02);
745 	/*  Get Rx PHY status in order to report RSSI and others. */
746 	_InitDriverInfoSize(Adapter, DRVINFO_SZ);
747 
748 	_InitInterrupt(Adapter);
749 	rtw_hal_set_hwreg(Adapter, HW_VAR_MAC_ADDR,
750 			  Adapter->eeprompriv.mac_addr);
751 	_InitNetworkType(Adapter);/* set msr */
752 	_InitWMACSetting(Adapter);
753 	_InitAdaptiveCtrl(Adapter);
754 	_InitEDCA(Adapter);
755 	_InitRetryFunction(Adapter);
756 	InitUsbAggregationSetting(Adapter);
757 	_InitBeaconParameters(Adapter);
758 	/*  Init CR MACTXEN, MACRXEN after setting RxFF boundary REG_TRXFF_BNDY to patch */
759 	/*  Hw bug which Hw initials RxFF boundary size to a value which is larger than the real Rx buffer size in 88E. */
760 	/*  Enable MACTXEN/MACRXEN block */
761 	value16 = usb_read16(Adapter, REG_CR);
762 	value16 |= (MACTXEN | MACRXEN);
763 	usb_write8(Adapter, REG_CR, value16);
764 
765 	if (haldata->bRDGEnable)
766 		_InitRDGSetting(Adapter);
767 
768 	/* Enable TX Report */
769 	/* Enable Tx Report Timer */
770 	value8 = usb_read8(Adapter, REG_TX_RPT_CTRL);
771 	usb_write8(Adapter,  REG_TX_RPT_CTRL, (value8 | BIT(1) | BIT(0)));
772 	/* Set MAX RPT MACID */
773 	usb_write8(Adapter,  REG_TX_RPT_CTRL + 1, 2);/* FOR sta mode ,0: bc/mc ,1:AP */
774 	/* Tx RPT Timer. Unit: 32us */
775 	usb_write16(Adapter, REG_TX_RPT_TIME, 0xCdf0);
776 
777 	usb_write8(Adapter, REG_EARLY_MODE_CONTROL, 0);
778 
779 	usb_write16(Adapter, REG_PKT_VO_VI_LIFE_TIME, 0x0400);	/*  unit: 256us. 256ms */
780 	usb_write16(Adapter, REG_PKT_BE_BK_LIFE_TIME, 0x0400);	/*  unit: 256us. 256ms */
781 
782 	/* Keep RfRegChnlVal for later use. */
783 	haldata->RfRegChnlVal[0] = rtw_hal_read_rfreg(Adapter, (enum rf_radio_path)0, RF_CHNLBW, bRFRegOffsetMask);
784 	haldata->RfRegChnlVal[1] = rtw_hal_read_rfreg(Adapter, (enum rf_radio_path)1, RF_CHNLBW, bRFRegOffsetMask);
785 
786 	HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_TURN_ON_BLOCK);
787 	_BBTurnOnBlock(Adapter);
788 
789 	HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_INIT_SECURITY);
790 	invalidate_cam_all(Adapter);
791 
792 	HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_MISC11);
793 	/*  2010/12/17 MH We need to set TX power according to EFUSE content at first. */
794 	phy_set_tx_power_level(Adapter, haldata->CurrentChannel);
795 
796 /*  Move by Neo for USB SS to below setp */
797 /* _RfPowerSave(Adapter); */
798 
799 	_InitAntenna_Selection(Adapter);
800 
801 	/*  */
802 	/*  Disable BAR, suggested by Scott */
803 	/*  2010.04.09 add by hpfan */
804 	/*  */
805 	usb_write32(Adapter, REG_BAR_MODE_CTRL, 0x0201ffff);
806 
807 	/*  HW SEQ CTRL */
808 	/* set 0x0 to 0xFF by tynli. Default enable HW SEQ NUM. */
809 	usb_write8(Adapter, REG_HWSEQ_CTRL, 0xFF);
810 
811 	if (pregistrypriv->wifi_spec)
812 		usb_write16(Adapter, REG_FAST_EDCA_CTRL, 0);
813 
814 	/* Nav limit , suggest by scott */
815 	usb_write8(Adapter, 0x652, 0x0);
816 
817 	HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_INIT_HAL_DM);
818 	rtl8188e_InitHalDm(Adapter);
819 
820 	/*  2010/08/11 MH Merge from 8192SE for Minicard init. We need to confirm current radio status */
821 	/*  and then decide to enable RF or not.!!!??? For Selective suspend mode. We may not */
822 	/*  call initstruct adapter. May cause some problem?? */
823 	/*  Fix the bug that Hw/Sw radio off before S3/S4, the RF off action will not be executed */
824 	/*  in MgntActSet_RF_State() after wake up, because the value of haldata->eRFPowerState */
825 	/*  is the same as eRfOff, we should change it to eRfOn after we config RF parameters. */
826 	/*  Added by tynli. 2010.03.30. */
827 	pwrctrlpriv->rf_pwrstate = rf_on;
828 
829 	/*  enable Tx report. */
830 	usb_write8(Adapter,  REG_FWHW_TXQ_CTRL + 1, 0x0F);
831 
832 	/*  Suggested by SD1 pisa. Added by tynli. 2011.10.21. */
833 	usb_write8(Adapter, REG_EARLY_MODE_CONTROL + 3, 0x01);/* Pretx_en, for WEP/TKIP SEC */
834 
835 	/* tynli_test_tx_report. */
836 	usb_write16(Adapter, REG_TX_RPT_TIME, 0x3DF0);
837 
838 	/* enable tx DMA to drop the redundate data of packet */
839 	usb_write16(Adapter, REG_TXDMA_OFFSET_CHK, (usb_read16(Adapter, REG_TXDMA_OFFSET_CHK) | DROP_DATA_EN));
840 
841 	HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_IQK);
842 	/*  2010/08/26 MH Merge from 8192CE. */
843 	if (pwrctrlpriv->rf_pwrstate == rf_on) {
844 		if (haldata->odmpriv.RFCalibrateInfo.bIQKInitialized) {
845 			rtl88eu_phy_iq_calibrate(Adapter, true);
846 		} else {
847 			rtl88eu_phy_iq_calibrate(Adapter, false);
848 			haldata->odmpriv.RFCalibrateInfo.bIQKInitialized = true;
849 		}
850 
851 		HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_PW_TRACK);
852 
853 		ODM_TXPowerTrackingCheck(&haldata->odmpriv);
854 
855 		HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_LCK);
856 		rtl88eu_phy_lc_calibrate(Adapter);
857 	}
858 
859 /* HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_INIT_PABIAS); */
860 /*	_InitPABias(Adapter); */
861 	usb_write8(Adapter, REG_USB_HRPWM, 0);
862 
863 	/* ack for xmit mgmt frames. */
864 	usb_write32(Adapter, REG_FWHW_TXQ_CTRL, usb_read32(Adapter, REG_FWHW_TXQ_CTRL) | BIT(12));
865 
866 exit:
867 	HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_END);
868 
869 	DBG_88E("%s in %dms\n", __func__,
870 		jiffies_to_msecs(jiffies - init_start_time));
871 
872 	return status;
873 }
874 
CardDisableRTL8188EU(struct adapter * Adapter)875 static void CardDisableRTL8188EU(struct adapter *Adapter)
876 {
877 	u8 val8;
878 
879 	RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("%s\n", __func__));
880 
881 	/* Stop Tx Report Timer. 0x4EC[Bit1]=b'0 */
882 	val8 = usb_read8(Adapter, REG_TX_RPT_CTRL);
883 	usb_write8(Adapter, REG_TX_RPT_CTRL, val8 & (~BIT(1)));
884 
885 	/*  stop rx */
886 	usb_write8(Adapter, REG_CR, 0x0);
887 
888 	/*  Run LPS WL RFOFF flow */
889 	rtl88eu_pwrseqcmdparsing(Adapter, PWR_CUT_ALL_MSK,
890 				 Rtl8188E_NIC_LPS_ENTER_FLOW);
891 
892 	/*  2. 0x1F[7:0] = 0		turn off RF */
893 
894 	val8 = usb_read8(Adapter, REG_MCUFWDL);
895 	if ((val8 & RAM_DL_SEL) && Adapter->bFWReady) { /* 8051 RAM code */
896 		/*  Reset MCU 0x2[10]=0. */
897 		val8 = usb_read8(Adapter, REG_SYS_FUNC_EN + 1);
898 		val8 &= ~BIT(2);	/*  0x2[10], FEN_CPUEN */
899 		usb_write8(Adapter, REG_SYS_FUNC_EN + 1, val8);
900 	}
901 
902 	/*  reset MCU ready status */
903 	usb_write8(Adapter, REG_MCUFWDL, 0);
904 
905 	/* YJ,add,111212 */
906 	/* Disable 32k */
907 	val8 = usb_read8(Adapter, REG_32K_CTRL);
908 	usb_write8(Adapter, REG_32K_CTRL, val8 & (~BIT(0)));
909 
910 	/*  Card disable power action flow */
911 	rtl88eu_pwrseqcmdparsing(Adapter, PWR_CUT_ALL_MSK,
912 				 Rtl8188E_NIC_DISABLE_FLOW);
913 
914 	/*  Reset MCU IO Wrapper */
915 	val8 = usb_read8(Adapter, REG_RSV_CTRL + 1);
916 	usb_write8(Adapter, REG_RSV_CTRL + 1, (val8 & (~BIT(3))));
917 	val8 = usb_read8(Adapter, REG_RSV_CTRL + 1);
918 	usb_write8(Adapter, REG_RSV_CTRL + 1, val8 | BIT(3));
919 
920 	/* YJ,test add, 111207. For Power Consumption. */
921 	val8 = usb_read8(Adapter, GPIO_IN);
922 	usb_write8(Adapter, GPIO_OUT, val8);
923 	usb_write8(Adapter, GPIO_IO_SEL, 0xFF);/* Reg0x46 */
924 
925 	val8 = usb_read8(Adapter, REG_GPIO_IO_SEL);
926 	usb_write8(Adapter, REG_GPIO_IO_SEL, (val8 << 4));
927 	val8 = usb_read8(Adapter, REG_GPIO_IO_SEL + 1);
928 	usb_write8(Adapter, REG_GPIO_IO_SEL + 1, val8 | 0x0F);/* Reg0x43 */
929 	usb_write32(Adapter, REG_BB_PAD_CTRL, 0x00080808);/* set LNA ,TRSW,EX_PA Pin to output mode */
930 	Adapter->HalData->bMacPwrCtrlOn = false;
931 	Adapter->bFWReady = false;
932 }
933 
rtl8192cu_hw_power_down(struct adapter * adapt)934 static void rtl8192cu_hw_power_down(struct adapter *adapt)
935 {
936 	/*  2010/-8/09 MH For power down module, we need to enable register block contrl reg at 0x1c. */
937 	/*  Then enable power down control bit of register 0x04 BIT4 and BIT15 as 1. */
938 
939 	/*  Enable register area 0x0-0xc. */
940 	usb_write8(adapt, REG_RSV_CTRL, 0x0);
941 	usb_write16(adapt, REG_APS_FSMCO, 0x8812);
942 }
943 
rtl8188eu_hal_deinit(struct adapter * Adapter)944 u32 rtl8188eu_hal_deinit(struct adapter *Adapter)
945 {
946 	DBG_88E("==> %s\n", __func__);
947 
948 	usb_write32(Adapter, REG_HIMR_88E, IMR_DISABLED_88E);
949 	usb_write32(Adapter, REG_HIMRE_88E, IMR_DISABLED_88E);
950 
951 	DBG_88E("bkeepfwalive(%x)\n", Adapter->pwrctrlpriv.bkeepfwalive);
952 	if (Adapter->pwrctrlpriv.bkeepfwalive) {
953 		if ((Adapter->pwrctrlpriv.bHWPwrPindetect) && (Adapter->pwrctrlpriv.bHWPowerdown))
954 			rtl8192cu_hw_power_down(Adapter);
955 	} else {
956 		if (Adapter->hw_init_completed) {
957 			CardDisableRTL8188EU(Adapter);
958 
959 			if ((Adapter->pwrctrlpriv.bHWPwrPindetect) && (Adapter->pwrctrlpriv.bHWPowerdown))
960 				rtl8192cu_hw_power_down(Adapter);
961 		}
962 	}
963 	return _SUCCESS;
964 }
965 
rtw_hal_inirp_init(struct adapter * Adapter)966 u32 rtw_hal_inirp_init(struct adapter *Adapter)
967 {
968 	u8 i;
969 	struct recv_buf *precvbuf;
970 	uint	status;
971 	struct recv_priv *precvpriv = &Adapter->recvpriv;
972 
973 	status = _SUCCESS;
974 
975 	RT_TRACE(_module_hci_hal_init_c_, _drv_info_,
976 		 ("===> usb_inirp_init\n"));
977 
978 	/* issue Rx irp to receive data */
979 	precvbuf = precvpriv->precv_buf;
980 	for (i = 0; i < NR_RECVBUFF; i++) {
981 		if (!usb_read_port(Adapter, RECV_BULK_IN_ADDR, precvbuf)) {
982 			RT_TRACE(_module_hci_hal_init_c_, _drv_err_, ("usb_rx_init: usb_read_port error\n"));
983 			status = _FAIL;
984 			goto exit;
985 		}
986 
987 		precvbuf++;
988 	}
989 
990 exit:
991 
992 	RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("<=== usb_inirp_init\n"));
993 
994 	return status;
995 }
996 
997 /*  */
998 /*  */
999 /*	EEPROM/EFUSE Content Parsing */
1000 /*  */
1001 /*  */
Hal_EfuseParsePIDVID_8188EU(struct adapter * adapt,u8 * hwinfo,bool AutoLoadFail)1002 static void Hal_EfuseParsePIDVID_8188EU(struct adapter *adapt, u8 *hwinfo, bool AutoLoadFail)
1003 {
1004 	struct hal_data_8188e *haldata = adapt->HalData;
1005 
1006 	if (!AutoLoadFail) {
1007 		/*  VID, PID */
1008 		haldata->EEPROMVID = EF2BYTE(*(__le16 *)&hwinfo[EEPROM_VID_88EU]);
1009 		haldata->EEPROMPID = EF2BYTE(*(__le16 *)&hwinfo[EEPROM_PID_88EU]);
1010 
1011 		/*  Customer ID, 0x00 and 0xff are reserved for Realtek. */
1012 		haldata->EEPROMCustomerID = *(u8 *)&hwinfo[EEPROM_CUSTOMERID_88E];
1013 		haldata->EEPROMSubCustomerID = EEPROM_Default_SubCustomerID;
1014 	} else {
1015 		haldata->EEPROMVID			= EEPROM_Default_VID;
1016 		haldata->EEPROMPID			= EEPROM_Default_PID;
1017 
1018 		/*  Customer ID, 0x00 and 0xff are reserved for Realtek. */
1019 		haldata->EEPROMCustomerID		= EEPROM_Default_CustomerID;
1020 		haldata->EEPROMSubCustomerID	= EEPROM_Default_SubCustomerID;
1021 	}
1022 
1023 	DBG_88E("VID = 0x%04X, PID = 0x%04X\n", haldata->EEPROMVID, haldata->EEPROMPID);
1024 	DBG_88E("Customer ID: 0x%02X, SubCustomer ID: 0x%02X\n", haldata->EEPROMCustomerID, haldata->EEPROMSubCustomerID);
1025 }
1026 
Hal_EfuseParseMACAddr_8188EU(struct adapter * adapt,u8 * hwinfo,bool AutoLoadFail)1027 static void Hal_EfuseParseMACAddr_8188EU(struct adapter *adapt, u8 *hwinfo, bool AutoLoadFail)
1028 {
1029 	u16 i;
1030 	u8 sMacAddr[6] = {0x00, 0xE0, 0x4C, 0x81, 0x88, 0x02};
1031 	struct eeprom_priv *eeprom = GET_EEPROM_EFUSE_PRIV(adapt);
1032 
1033 	if (AutoLoadFail) {
1034 		for (i = 0; i < 6; i++)
1035 			eeprom->mac_addr[i] = sMacAddr[i];
1036 	} else {
1037 		/* Read Permanent MAC address */
1038 		memcpy(eeprom->mac_addr, &hwinfo[EEPROM_MAC_ADDR_88EU], ETH_ALEN);
1039 	}
1040 	RT_TRACE(_module_hci_hal_init_c_, _drv_notice_,
1041 		 ("%s: Permanent Address = %pM\n", __func__, eeprom->mac_addr));
1042 }
1043 
readAdapterInfo_8188EU(struct adapter * adapt)1044 static void readAdapterInfo_8188EU(struct adapter *adapt)
1045 {
1046 	struct eeprom_priv *eeprom = GET_EEPROM_EFUSE_PRIV(adapt);
1047 
1048 	/* parse the eeprom/efuse content */
1049 	Hal_EfuseParseIDCode88E(adapt, eeprom->efuse_eeprom_data);
1050 	Hal_EfuseParsePIDVID_8188EU(adapt, eeprom->efuse_eeprom_data, eeprom->bautoload_fail_flag);
1051 	Hal_EfuseParseMACAddr_8188EU(adapt, eeprom->efuse_eeprom_data, eeprom->bautoload_fail_flag);
1052 
1053 	Hal_ReadPowerSavingMode88E(adapt, eeprom->efuse_eeprom_data, eeprom->bautoload_fail_flag);
1054 	Hal_ReadTxPowerInfo88E(adapt, eeprom->efuse_eeprom_data, eeprom->bautoload_fail_flag);
1055 	Hal_EfuseParseEEPROMVer88E(adapt, eeprom->efuse_eeprom_data, eeprom->bautoload_fail_flag);
1056 	rtl8188e_EfuseParseChnlPlan(adapt, eeprom->efuse_eeprom_data, eeprom->bautoload_fail_flag);
1057 	Hal_EfuseParseXtal_8188E(adapt, eeprom->efuse_eeprom_data, eeprom->bautoload_fail_flag);
1058 	Hal_EfuseParseCustomerID88E(adapt, eeprom->efuse_eeprom_data, eeprom->bautoload_fail_flag);
1059 	Hal_ReadAntennaDiversity88E(adapt, eeprom->efuse_eeprom_data, eeprom->bautoload_fail_flag);
1060 	Hal_EfuseParseBoardType88E(adapt, eeprom->efuse_eeprom_data, eeprom->bautoload_fail_flag);
1061 	Hal_ReadThermalMeter_88E(adapt, eeprom->efuse_eeprom_data, eeprom->bautoload_fail_flag);
1062 }
1063 
_ReadPROMContent(struct adapter * Adapter)1064 static void _ReadPROMContent(struct adapter *Adapter)
1065 {
1066 	struct eeprom_priv *eeprom = GET_EEPROM_EFUSE_PRIV(Adapter);
1067 	u8 eeValue;
1068 
1069 	/* check system boot selection */
1070 	eeValue = usb_read8(Adapter, REG_9346CR);
1071 	eeprom->EepromOrEfuse		= (eeValue & BOOT_FROM_EEPROM) ? true : false;
1072 	eeprom->bautoload_fail_flag	= (eeValue & EEPROM_EN) ? false : true;
1073 
1074 	DBG_88E("Boot from %s, Autoload %s !\n", (eeprom->EepromOrEfuse ? "EEPROM" : "EFUSE"),
1075 		(eeprom->bautoload_fail_flag ? "Fail" : "OK"));
1076 
1077 	Hal_InitPGData88E(Adapter);
1078 	readAdapterInfo_8188EU(Adapter);
1079 }
1080 
rtw_hal_read_chip_info(struct adapter * Adapter)1081 void rtw_hal_read_chip_info(struct adapter *Adapter)
1082 {
1083 	unsigned long start = jiffies;
1084 
1085 	MSG_88E("====> %s\n", __func__);
1086 
1087 	_ReadPROMContent(Adapter);
1088 
1089 	MSG_88E("<==== %s in %d ms\n", __func__,
1090 		jiffies_to_msecs(jiffies - start));
1091 }
1092 
1093 #define GPIO_DEBUG_PORT_NUM 0
rtl8192cu_trigger_gpio_0(struct adapter * adapt)1094 static void rtl8192cu_trigger_gpio_0(struct adapter *adapt)
1095 {
1096 }
1097 
ResumeTxBeacon(struct adapter * adapt)1098 static void ResumeTxBeacon(struct adapter *adapt)
1099 {
1100 	struct hal_data_8188e *haldata = adapt->HalData;
1101 
1102 	/*  2010.03.01. Marked by tynli. No need to call workitem beacause we record the value */
1103 	/*  which should be read from register to a global variable. */
1104 
1105 	usb_write8(adapt, REG_FWHW_TXQ_CTRL + 2, (haldata->RegFwHwTxQCtrl) | BIT(6));
1106 	haldata->RegFwHwTxQCtrl |= BIT(6);
1107 	usb_write8(adapt, REG_TBTT_PROHIBIT + 1, 0xff);
1108 	haldata->RegReg542 |= BIT(0);
1109 	usb_write8(adapt, REG_TBTT_PROHIBIT + 2, haldata->RegReg542);
1110 }
1111 
StopTxBeacon(struct adapter * adapt)1112 static void StopTxBeacon(struct adapter *adapt)
1113 {
1114 	struct hal_data_8188e *haldata = adapt->HalData;
1115 
1116 	/*  2010.03.01. Marked by tynli. No need to call workitem beacause we record the value */
1117 	/*  which should be read from register to a global variable. */
1118 
1119 	usb_write8(adapt, REG_FWHW_TXQ_CTRL + 2, (haldata->RegFwHwTxQCtrl) & (~BIT(6)));
1120 	haldata->RegFwHwTxQCtrl &= (~BIT(6));
1121 	usb_write8(adapt, REG_TBTT_PROHIBIT + 1, 0x64);
1122 	haldata->RegReg542 &= ~(BIT(0));
1123 	usb_write8(adapt, REG_TBTT_PROHIBIT + 2, haldata->RegReg542);
1124 
1125 	 /* todo: CheckFwRsvdPageContent(Adapter);  2010.06.23. Added by tynli. */
1126 }
1127 
hw_var_set_opmode(struct adapter * Adapter,u8 variable,u8 * val)1128 static void hw_var_set_opmode(struct adapter *Adapter, u8 variable, u8 *val)
1129 {
1130 	u8 val8;
1131 	u8 mode = *((u8 *)val);
1132 
1133 	/*  disable Port0 TSF update */
1134 	usb_write8(Adapter, REG_BCN_CTRL, usb_read8(Adapter, REG_BCN_CTRL) | BIT(4));
1135 
1136 	/*  set net_type */
1137 	val8 = usb_read8(Adapter, MSR) & 0x0c;
1138 	val8 |= mode;
1139 	usb_write8(Adapter, MSR, val8);
1140 
1141 	DBG_88E("%s()-%d mode = %d\n", __func__, __LINE__, mode);
1142 
1143 	if ((mode == _HW_STATE_STATION_) || (mode == _HW_STATE_NOLINK_)) {
1144 		StopTxBeacon(Adapter);
1145 
1146 		usb_write8(Adapter, REG_BCN_CTRL, 0x19);/* disable atim wnd */
1147 	} else if (mode == _HW_STATE_ADHOC_) {
1148 		ResumeTxBeacon(Adapter);
1149 		usb_write8(Adapter, REG_BCN_CTRL, 0x1a);
1150 	} else if (mode == _HW_STATE_AP_) {
1151 		ResumeTxBeacon(Adapter);
1152 
1153 		usb_write8(Adapter, REG_BCN_CTRL, 0x12);
1154 
1155 		/* Set RCR */
1156 		usb_write32(Adapter, REG_RCR, 0x7000208e);/* CBSSID_DATA must set to 0,reject ICV_ERR packet */
1157 		/* enable to rx data frame */
1158 		usb_write16(Adapter, REG_RXFLTMAP2, 0xFFFF);
1159 		/* enable to rx ps-poll */
1160 		usb_write16(Adapter, REG_RXFLTMAP1, 0x0400);
1161 
1162 		/* Beacon Control related register for first time */
1163 		usb_write8(Adapter, REG_BCNDMATIM, 0x02); /*  2ms */
1164 
1165 		usb_write8(Adapter, REG_ATIMWND, 0x0a); /*  10ms */
1166 		usb_write16(Adapter, REG_BCNTCFG, 0x00);
1167 		usb_write16(Adapter, REG_TBTT_PROHIBIT, 0xff04);
1168 		usb_write16(Adapter, REG_TSFTR_SYN_OFFSET, 0x7fff);/*  +32767 (~32ms) */
1169 
1170 		/* reset TSF */
1171 		usb_write8(Adapter, REG_DUAL_TSF_RST, BIT(0));
1172 
1173 		/* BIT3 - If set 0, hw will clr bcnq when tx becon ok/fail or port 0 */
1174 		usb_write8(Adapter, REG_MBID_NUM, usb_read8(Adapter, REG_MBID_NUM) | BIT(3) | BIT(4));
1175 
1176 		/* enable BCN0 Function for if1 */
1177 		/* don't enable update TSF0 for if1 (due to TSF update when beacon/probe rsp are received) */
1178 		usb_write8(Adapter, REG_BCN_CTRL, (DIS_TSF_UDT0_NORMAL_CHIP | EN_BCN_FUNCTION | BIT(1)));
1179 
1180 		/* dis BCN1 ATIM  WND if if2 is station */
1181 		usb_write8(Adapter, REG_BCN_CTRL_1, usb_read8(Adapter, REG_BCN_CTRL_1) | BIT(0));
1182 	}
1183 }
1184 
hw_var_set_macaddr(struct adapter * Adapter,u8 variable,u8 * val)1185 static void hw_var_set_macaddr(struct adapter *Adapter, u8 variable, u8 *val)
1186 {
1187 	u8 idx = 0;
1188 	u32 reg_macid;
1189 
1190 	reg_macid = REG_MACID;
1191 
1192 	for (idx = 0; idx < 6; idx++)
1193 		usb_write8(Adapter, (reg_macid + idx), val[idx]);
1194 }
1195 
hw_var_set_bssid(struct adapter * Adapter,u8 variable,u8 * val)1196 static void hw_var_set_bssid(struct adapter *Adapter, u8 variable, u8 *val)
1197 {
1198 	u8 idx = 0;
1199 	u32 reg_bssid;
1200 
1201 	reg_bssid = REG_BSSID;
1202 
1203 	for (idx = 0; idx < 6; idx++)
1204 		usb_write8(Adapter, (reg_bssid + idx), val[idx]);
1205 }
1206 
hw_var_set_bcn_func(struct adapter * Adapter,u8 variable,u8 * val)1207 static void hw_var_set_bcn_func(struct adapter *Adapter, u8 variable, u8 *val)
1208 {
1209 	u32 bcn_ctrl_reg;
1210 
1211 	bcn_ctrl_reg = REG_BCN_CTRL;
1212 
1213 	if (*((u8 *)val))
1214 		usb_write8(Adapter, bcn_ctrl_reg, (EN_BCN_FUNCTION | EN_TXBCN_RPT));
1215 	else
1216 		usb_write8(Adapter, bcn_ctrl_reg, usb_read8(Adapter, bcn_ctrl_reg) & (~(EN_BCN_FUNCTION | EN_TXBCN_RPT)));
1217 }
1218 
rtw_hal_set_hwreg(struct adapter * Adapter,u8 variable,u8 * val)1219 void rtw_hal_set_hwreg(struct adapter *Adapter, u8 variable, u8 *val)
1220 {
1221 	struct hal_data_8188e *haldata = Adapter->HalData;
1222 	struct dm_priv	*pdmpriv = &haldata->dmpriv;
1223 	struct odm_dm_struct *podmpriv = &haldata->odmpriv;
1224 
1225 	switch (variable) {
1226 	case HW_VAR_MEDIA_STATUS:
1227 		{
1228 			u8 val8;
1229 
1230 			val8 = usb_read8(Adapter, MSR) & 0x0c;
1231 			val8 |= *((u8 *)val);
1232 			usb_write8(Adapter, MSR, val8);
1233 		}
1234 		break;
1235 	case HW_VAR_MEDIA_STATUS1:
1236 		{
1237 			u8 val8;
1238 
1239 			val8 = usb_read8(Adapter, MSR) & 0x03;
1240 			val8 |= *((u8 *)val) << 2;
1241 			usb_write8(Adapter, MSR, val8);
1242 		}
1243 		break;
1244 	case HW_VAR_SET_OPMODE:
1245 		hw_var_set_opmode(Adapter, variable, val);
1246 		break;
1247 	case HW_VAR_MAC_ADDR:
1248 		hw_var_set_macaddr(Adapter, variable, val);
1249 		break;
1250 	case HW_VAR_BSSID:
1251 		hw_var_set_bssid(Adapter, variable, val);
1252 		break;
1253 	case HW_VAR_BASIC_RATE:
1254 		{
1255 			u16 BrateCfg = 0;
1256 			u8 RateIndex = 0;
1257 
1258 			/*  2007.01.16, by Emily */
1259 			/*  Select RRSR (in Legacy-OFDM and CCK) */
1260 			/*  For 8190, we select only 24M, 12M, 6M, 11M, 5.5M, 2M, and 1M from the Basic rate. */
1261 			/*  We do not use other rates. */
1262 			hal_set_brate_cfg(val, &BrateCfg);
1263 			DBG_88E("HW_VAR_BASIC_RATE: BrateCfg(%#x)\n", BrateCfg);
1264 
1265 			/* 2011.03.30 add by Luke Lee */
1266 			/* CCK 2M ACK should be disabled for some BCM and Atheros AP IOT */
1267 			/* because CCK 2M has poor TXEVM */
1268 			/* CCK 5.5M & 11M ACK should be enabled for better performance */
1269 
1270 			BrateCfg = (BrateCfg | 0xd) & 0x15d;
1271 			haldata->BasicRateSet = BrateCfg;
1272 
1273 			BrateCfg |= 0x01; /*  default enable 1M ACK rate */
1274 			/*  Set RRSR rate table. */
1275 			usb_write8(Adapter, REG_RRSR, BrateCfg & 0xff);
1276 			usb_write8(Adapter, REG_RRSR + 1, (BrateCfg >> 8) & 0xff);
1277 			usb_write8(Adapter, REG_RRSR + 2, usb_read8(Adapter, REG_RRSR + 2) & 0xf0);
1278 
1279 			/*  Set RTS initial rate */
1280 			while (BrateCfg > 0x1) {
1281 				BrateCfg >>= 1;
1282 				RateIndex++;
1283 			}
1284 			/*  Ziv - Check */
1285 			usb_write8(Adapter, REG_INIRTS_RATE_SEL, RateIndex);
1286 		}
1287 		break;
1288 	case HW_VAR_TXPAUSE:
1289 		usb_write8(Adapter, REG_TXPAUSE, *((u8 *)val));
1290 		break;
1291 	case HW_VAR_BCN_FUNC:
1292 		hw_var_set_bcn_func(Adapter, variable, val);
1293 		break;
1294 	case HW_VAR_CORRECT_TSF:
1295 		{
1296 			u64	tsf;
1297 			struct mlme_ext_priv	*pmlmeext = &Adapter->mlmeextpriv;
1298 			struct mlme_ext_info	*pmlmeinfo = &pmlmeext->mlmext_info;
1299 
1300 			tsf = pmlmeext->TSFValue - do_div(pmlmeext->TSFValue, (pmlmeinfo->bcn_interval * 1024)) - 1024; /* us */
1301 
1302 			if (((pmlmeinfo->state & 0x03) == WIFI_FW_ADHOC_STATE) || ((pmlmeinfo->state & 0x03) == WIFI_FW_AP_STATE))
1303 				StopTxBeacon(Adapter);
1304 
1305 			/* disable related TSF function */
1306 			usb_write8(Adapter, REG_BCN_CTRL, usb_read8(Adapter, REG_BCN_CTRL) & (~BIT(3)));
1307 
1308 			usb_write32(Adapter, REG_TSFTR, tsf);
1309 			usb_write32(Adapter, REG_TSFTR + 4, tsf >> 32);
1310 
1311 			/* enable related TSF function */
1312 			usb_write8(Adapter, REG_BCN_CTRL, usb_read8(Adapter, REG_BCN_CTRL) | BIT(3));
1313 
1314 			if (((pmlmeinfo->state & 0x03) == WIFI_FW_ADHOC_STATE) || ((pmlmeinfo->state & 0x03) == WIFI_FW_AP_STATE))
1315 				ResumeTxBeacon(Adapter);
1316 		}
1317 		break;
1318 	case HW_VAR_CHECK_BSSID:
1319 		if (*((u8 *)val)) {
1320 			usb_write32(Adapter, REG_RCR, usb_read32(Adapter, REG_RCR) | RCR_CBSSID_DATA | RCR_CBSSID_BCN);
1321 		} else {
1322 			u32 val32;
1323 
1324 			val32 = usb_read32(Adapter, REG_RCR);
1325 
1326 			val32 &= ~(RCR_CBSSID_DATA | RCR_CBSSID_BCN);
1327 
1328 			usb_write32(Adapter, REG_RCR, val32);
1329 		}
1330 		break;
1331 	case HW_VAR_MLME_DISCONNECT:
1332 		/* Set RCR to not to receive data frame when NO LINK state */
1333 		/* reject all data frames */
1334 		usb_write16(Adapter, REG_RXFLTMAP2, 0x00);
1335 
1336 		/* reset TSF */
1337 		usb_write8(Adapter, REG_DUAL_TSF_RST, (BIT(0) | BIT(1)));
1338 
1339 		/* disable update TSF */
1340 		usb_write8(Adapter, REG_BCN_CTRL, usb_read8(Adapter, REG_BCN_CTRL) | BIT(4));
1341 		break;
1342 	case HW_VAR_MLME_SITESURVEY:
1343 		if (*((u8 *)val)) { /* under sitesurvey */
1344 			/* config RCR to receive different BSSID & not to receive data frame */
1345 			u32 v = usb_read32(Adapter, REG_RCR);
1346 
1347 			v &= ~(RCR_CBSSID_BCN);
1348 			usb_write32(Adapter, REG_RCR, v);
1349 			/* reject all data frame */
1350 			usb_write16(Adapter, REG_RXFLTMAP2, 0x00);
1351 
1352 			/* disable update TSF */
1353 			usb_write8(Adapter, REG_BCN_CTRL, usb_read8(Adapter, REG_BCN_CTRL) | BIT(4));
1354 		} else { /* sitesurvey done */
1355 			struct mlme_ext_priv	*pmlmeext = &Adapter->mlmeextpriv;
1356 			struct mlme_ext_info	*pmlmeinfo = &pmlmeext->mlmext_info;
1357 
1358 			if ((is_client_associated_to_ap(Adapter)) ||
1359 			    ((pmlmeinfo->state & 0x03) == WIFI_FW_ADHOC_STATE)) {
1360 				/* enable to rx data frame */
1361 				usb_write16(Adapter, REG_RXFLTMAP2, 0xFFFF);
1362 
1363 				/* enable update TSF */
1364 				usb_write8(Adapter, REG_BCN_CTRL, usb_read8(Adapter, REG_BCN_CTRL) & (~BIT(4)));
1365 			} else if ((pmlmeinfo->state & 0x03) == WIFI_FW_AP_STATE) {
1366 				usb_write16(Adapter, REG_RXFLTMAP2, 0xFFFF);
1367 				/* enable update TSF */
1368 				usb_write8(Adapter, REG_BCN_CTRL, usb_read8(Adapter, REG_BCN_CTRL) & (~BIT(4)));
1369 			}
1370 
1371 			usb_write32(Adapter, REG_RCR, usb_read32(Adapter, REG_RCR) | RCR_CBSSID_BCN);
1372 		}
1373 		break;
1374 	case HW_VAR_MLME_JOIN:
1375 		{
1376 			u8 RetryLimit = 0x30;
1377 			u8 type = *((u8 *)val);
1378 			struct mlme_priv	*pmlmepriv = &Adapter->mlmepriv;
1379 
1380 			if (type == 0) { /*  prepare to join */
1381 				/* enable to rx data frame.Accept all data frame */
1382 				usb_write16(Adapter, REG_RXFLTMAP2, 0xFFFF);
1383 
1384 				usb_write32(Adapter, REG_RCR, usb_read32(Adapter, REG_RCR) | RCR_CBSSID_DATA | RCR_CBSSID_BCN);
1385 
1386 				if (check_fwstate(pmlmepriv, WIFI_STATION_STATE))
1387 					RetryLimit = (haldata->CustomerID == RT_CID_CCX) ? 7 : 48;
1388 				else /*  Ad-hoc Mode */
1389 					RetryLimit = 0x7;
1390 			} else if (type == 1) {
1391 				/* joinbss_event call back when join res < 0 */
1392 				usb_write16(Adapter, REG_RXFLTMAP2, 0x00);
1393 			} else if (type == 2) {
1394 				/* sta add event call back */
1395 				/* enable update TSF */
1396 				usb_write8(Adapter, REG_BCN_CTRL, usb_read8(Adapter, REG_BCN_CTRL) & (~BIT(4)));
1397 
1398 				if (check_fwstate(pmlmepriv, WIFI_ADHOC_STATE | WIFI_ADHOC_MASTER_STATE))
1399 					RetryLimit = 0x7;
1400 			}
1401 			usb_write16(Adapter, REG_RL, RetryLimit << RETRY_LIMIT_SHORT_SHIFT | RetryLimit << RETRY_LIMIT_LONG_SHIFT);
1402 		}
1403 		break;
1404 	case HW_VAR_BEACON_INTERVAL:
1405 		usb_write16(Adapter, REG_BCN_INTERVAL, *((u16 *)val));
1406 		break;
1407 	case HW_VAR_SLOT_TIME:
1408 		{
1409 			u8 u1bAIFS, aSifsTime;
1410 			struct mlme_ext_priv	*pmlmeext = &Adapter->mlmeextpriv;
1411 			struct mlme_ext_info	*pmlmeinfo = &pmlmeext->mlmext_info;
1412 
1413 			usb_write8(Adapter, REG_SLOT, val[0]);
1414 
1415 			if (pmlmeinfo->WMM_enable == 0) {
1416 				if (pmlmeext->cur_wireless_mode == WIRELESS_11B)
1417 					aSifsTime = 10;
1418 				else
1419 					aSifsTime = 16;
1420 
1421 				u1bAIFS = aSifsTime + (2 * pmlmeinfo->slotTime);
1422 
1423 				/*  <Roger_EXP> Temporary removed, 2008.06.20. */
1424 				usb_write8(Adapter, REG_EDCA_VO_PARAM, u1bAIFS);
1425 				usb_write8(Adapter, REG_EDCA_VI_PARAM, u1bAIFS);
1426 				usb_write8(Adapter, REG_EDCA_BE_PARAM, u1bAIFS);
1427 				usb_write8(Adapter, REG_EDCA_BK_PARAM, u1bAIFS);
1428 			}
1429 		}
1430 		break;
1431 	case HW_VAR_RESP_SIFS:
1432 		/* RESP_SIFS for CCK */
1433 		usb_write8(Adapter, REG_R2T_SIFS, val[0]); /*  SIFS_T2T_CCK (0x08) */
1434 		usb_write8(Adapter, REG_R2T_SIFS + 1, val[1]); /* SIFS_R2T_CCK(0x08) */
1435 		/* RESP_SIFS for OFDM */
1436 		usb_write8(Adapter, REG_T2T_SIFS, val[2]); /* SIFS_T2T_OFDM (0x0a) */
1437 		usb_write8(Adapter, REG_T2T_SIFS + 1, val[3]); /* SIFS_R2T_OFDM(0x0a) */
1438 		break;
1439 	case HW_VAR_ACK_PREAMBLE:
1440 		{
1441 			u8 regTmp;
1442 			u8 bShortPreamble = *((bool *)val);
1443 			/*  Joseph marked out for Netgear 3500 TKIP channel 7 issue.(Temporarily) */
1444 			regTmp = (haldata->nCur40MhzPrimeSC) << 5;
1445 			if (bShortPreamble)
1446 				regTmp |= 0x80;
1447 
1448 			usb_write8(Adapter, REG_RRSR + 2, regTmp);
1449 		}
1450 		break;
1451 	case HW_VAR_SEC_CFG:
1452 		usb_write8(Adapter, REG_SECCFG, *((u8 *)val));
1453 		break;
1454 	case HW_VAR_DM_FUNC_OP:
1455 		if (val[0])
1456 			podmpriv->BK_SupportAbility = podmpriv->SupportAbility;
1457 		else
1458 			podmpriv->SupportAbility = podmpriv->BK_SupportAbility;
1459 		break;
1460 	case HW_VAR_DM_FUNC_SET:
1461 		if (*((u32 *)val) == DYNAMIC_ALL_FUNC_ENABLE) {
1462 			pdmpriv->DMFlag = pdmpriv->InitDMFlag;
1463 			podmpriv->SupportAbility =	pdmpriv->InitODMFlag;
1464 		} else {
1465 			podmpriv->SupportAbility |= *((u32 *)val);
1466 		}
1467 		break;
1468 	case HW_VAR_DM_FUNC_CLR:
1469 		podmpriv->SupportAbility &= *((u32 *)val);
1470 		break;
1471 	case HW_VAR_CAM_EMPTY_ENTRY:
1472 		{
1473 			u8 ucIndex = *((u8 *)val);
1474 			u8 i;
1475 			u32 ulCommand = 0;
1476 			u32 ulContent = 0;
1477 			u32 ulEncAlgo = CAM_AES;
1478 
1479 			for (i = 0; i < CAM_CONTENT_COUNT; i++) {
1480 				/*  filled id in CAM config 2 byte */
1481 				if (i == 0)
1482 					ulContent |= (ucIndex & 0x03) | ((u16)(ulEncAlgo) << 2);
1483 				else
1484 					ulContent = 0;
1485 				/*  polling bit, and No Write enable, and address */
1486 				ulCommand = CAM_CONTENT_COUNT * ucIndex + i;
1487 				ulCommand = ulCommand | CAM_POLLINIG |
1488 					    CAM_WRITE;
1489 				/*  write content 0 is equall to mark invalid */
1490 				usb_write32(Adapter, WCAMI, ulContent);  /* delay_ms(40); */
1491 				usb_write32(Adapter, RWCAM, ulCommand);  /* delay_ms(40); */
1492 			}
1493 		}
1494 		break;
1495 	case HW_VAR_CAM_INVALID_ALL:
1496 		usb_write32(Adapter, RWCAM, BIT(31) | BIT(30));
1497 		break;
1498 	case HW_VAR_CAM_WRITE:
1499 		{
1500 			u32 cmd;
1501 			u32 *cam_val = (u32 *)val;
1502 
1503 			usb_write32(Adapter, WCAMI, cam_val[0]);
1504 
1505 			cmd = CAM_POLLINIG | CAM_WRITE | cam_val[1];
1506 			usb_write32(Adapter, RWCAM, cmd);
1507 		}
1508 		break;
1509 	case HW_VAR_AC_PARAM_VO:
1510 		usb_write32(Adapter, REG_EDCA_VO_PARAM, ((u32 *)(val))[0]);
1511 		break;
1512 	case HW_VAR_AC_PARAM_VI:
1513 		usb_write32(Adapter, REG_EDCA_VI_PARAM, ((u32 *)(val))[0]);
1514 		break;
1515 	case HW_VAR_AC_PARAM_BE:
1516 		haldata->AcParam_BE = ((u32 *)(val))[0];
1517 		usb_write32(Adapter, REG_EDCA_BE_PARAM, ((u32 *)(val))[0]);
1518 		break;
1519 	case HW_VAR_AC_PARAM_BK:
1520 		usb_write32(Adapter, REG_EDCA_BK_PARAM, ((u32 *)(val))[0]);
1521 		break;
1522 	case HW_VAR_ACM_CTRL:
1523 		{
1524 			u8 acm_ctrl = *((u8 *)val);
1525 			u8 AcmCtrl = usb_read8(Adapter, REG_ACMHWCTRL);
1526 
1527 			if (acm_ctrl > 1)
1528 				AcmCtrl = AcmCtrl | 0x1;
1529 
1530 			if (acm_ctrl & BIT(3))
1531 				AcmCtrl |= AcmHw_VoqEn;
1532 			else
1533 				AcmCtrl &= (~AcmHw_VoqEn);
1534 
1535 			if (acm_ctrl & BIT(2))
1536 				AcmCtrl |= AcmHw_ViqEn;
1537 			else
1538 				AcmCtrl &= (~AcmHw_ViqEn);
1539 
1540 			if (acm_ctrl & BIT(1))
1541 				AcmCtrl |= AcmHw_BeqEn;
1542 			else
1543 				AcmCtrl &= (~AcmHw_BeqEn);
1544 
1545 			DBG_88E("[HW_VAR_ACM_CTRL] Write 0x%X\n", AcmCtrl);
1546 			usb_write8(Adapter, REG_ACMHWCTRL, AcmCtrl);
1547 		}
1548 		break;
1549 	case HW_VAR_AMPDU_MIN_SPACE:
1550 		{
1551 			u8 MinSpacingToSet;
1552 			u8 SecMinSpace;
1553 
1554 			MinSpacingToSet = *((u8 *)val);
1555 			if (MinSpacingToSet <= 7) {
1556 				switch (Adapter->securitypriv.dot11PrivacyAlgrthm) {
1557 				case _NO_PRIVACY_:
1558 				case _AES_:
1559 					SecMinSpace = 0;
1560 					break;
1561 				case _WEP40_:
1562 				case _WEP104_:
1563 				case _TKIP_:
1564 				case _TKIP_WTMIC_:
1565 					SecMinSpace = 6;
1566 					break;
1567 				default:
1568 					SecMinSpace = 7;
1569 					break;
1570 				}
1571 				if (MinSpacingToSet < SecMinSpace)
1572 					MinSpacingToSet = SecMinSpace;
1573 				usb_write8(Adapter, REG_AMPDU_MIN_SPACE, (usb_read8(Adapter, REG_AMPDU_MIN_SPACE) & 0xf8) | MinSpacingToSet);
1574 			}
1575 		}
1576 		break;
1577 	case HW_VAR_AMPDU_FACTOR:
1578 		{
1579 			u8 RegToSet_Normal[4] = {0x41, 0xa8, 0x72, 0xb9};
1580 			u8 FactorToSet;
1581 			u8 *pRegToSet;
1582 			u8 index = 0;
1583 
1584 			pRegToSet = RegToSet_Normal; /*  0xb972a841; */
1585 			FactorToSet = *((u8 *)val);
1586 			if (FactorToSet <= 3) {
1587 				FactorToSet = 1 << (FactorToSet + 2);
1588 				if (FactorToSet > 0xf)
1589 					FactorToSet = 0xf;
1590 
1591 				for (index = 0; index < 4; index++) {
1592 					if ((pRegToSet[index] & 0xf0) > (FactorToSet << 4))
1593 						pRegToSet[index] = (pRegToSet[index] & 0x0f) | (FactorToSet << 4);
1594 
1595 					if ((pRegToSet[index] & 0x0f) > FactorToSet)
1596 						pRegToSet[index] = (pRegToSet[index] & 0xf0) | (FactorToSet);
1597 
1598 					usb_write8(Adapter, (REG_AGGLEN_LMT + index), pRegToSet[index]);
1599 				}
1600 			}
1601 		}
1602 		break;
1603 	case HW_VAR_RXDMA_AGG_PG_TH:
1604 		{
1605 			u8 threshold = *((u8 *)val);
1606 
1607 			if (threshold == 0)
1608 				threshold = haldata->UsbRxAggPageCount;
1609 			usb_write8(Adapter, REG_RXDMA_AGG_PG_TH, threshold);
1610 		}
1611 		break;
1612 	case HW_VAR_SET_RPWM:
1613 		break;
1614 	case HW_VAR_H2C_FW_PWRMODE:
1615 		{
1616 			u8 psmode = (*(u8 *)val);
1617 
1618 			/*  Forece leave RF low power mode for 1T1R to prevent conficting setting in Fw power */
1619 			/*  saving sequence. 2010.06.07. Added by tynli. Suggested by SD3 yschang. */
1620 			if (psmode != PS_MODE_ACTIVE)
1621 				ODM_RF_Saving(podmpriv, true);
1622 			rtl8188e_set_FwPwrMode_cmd(Adapter, psmode);
1623 		}
1624 		break;
1625 	case HW_VAR_H2C_FW_JOINBSSRPT:
1626 		{
1627 			u8 mstatus = (*(u8 *)val);
1628 
1629 			rtl8188e_set_FwJoinBssReport_cmd(Adapter, mstatus);
1630 		}
1631 		break;
1632 	case HW_VAR_INITIAL_GAIN:
1633 		{
1634 			struct rtw_dig *pDigTable = &podmpriv->DM_DigTable;
1635 			u32 rx_gain = ((u32 *)(val))[0];
1636 
1637 			if (rx_gain == 0xff) {/* restore rx gain */
1638 				ODM_Write_DIG(podmpriv, pDigTable->BackupIGValue);
1639 			} else {
1640 				pDigTable->BackupIGValue = pDigTable->CurIGValue;
1641 				ODM_Write_DIG(podmpriv, rx_gain);
1642 			}
1643 		}
1644 		break;
1645 	case HW_VAR_TRIGGER_GPIO_0:
1646 		rtl8192cu_trigger_gpio_0(Adapter);
1647 		break;
1648 	case HW_VAR_RPT_TIMER_SETTING:
1649 		{
1650 			u16 min_rpt_time = (*(u16 *)val);
1651 
1652 			ODM_RA_Set_TxRPT_Time(podmpriv, min_rpt_time);
1653 		}
1654 		break;
1655 	case HW_VAR_ANTENNA_DIVERSITY_SELECT:
1656 		{
1657 			u8 Optimum_antenna = (*(u8 *)val);
1658 			u8 Ant;
1659 			/* switch antenna to Optimum_antenna */
1660 			if (haldata->CurAntenna !=  Optimum_antenna) {
1661 				Ant = (Optimum_antenna == 2) ? MAIN_ANT : AUX_ANT;
1662 				rtl88eu_dm_update_rx_idle_ant(&haldata->odmpriv, Ant);
1663 
1664 				haldata->CurAntenna = Optimum_antenna;
1665 			}
1666 		}
1667 		break;
1668 	case HW_VAR_EFUSE_BYTES: /*  To set EFUE total used bytes, added by Roger, 2008.12.22. */
1669 		haldata->EfuseUsedBytes = *((u16 *)val);
1670 		break;
1671 	case HW_VAR_FIFO_CLEARN_UP:
1672 		{
1673 			struct pwrctrl_priv *pwrpriv = &Adapter->pwrctrlpriv;
1674 			u8 trycnt = 100;
1675 
1676 			/* pause tx */
1677 			usb_write8(Adapter, REG_TXPAUSE, 0xff);
1678 
1679 			/* keep sn */
1680 			Adapter->xmitpriv.nqos_ssn = usb_read16(Adapter, REG_NQOS_SEQ);
1681 
1682 			if (!pwrpriv->bkeepfwalive) {
1683 				/* RX DMA stop */
1684 				usb_write32(Adapter, REG_RXPKT_NUM, (usb_read32(Adapter, REG_RXPKT_NUM) | RW_RELEASE_EN));
1685 				do {
1686 					if (!(usb_read32(Adapter, REG_RXPKT_NUM) & RXDMA_IDLE))
1687 						break;
1688 				} while (trycnt--);
1689 				if (trycnt == 0)
1690 					DBG_88E("Stop RX DMA failed......\n");
1691 
1692 				/* RQPN Load 0 */
1693 				usb_write16(Adapter, REG_RQPN_NPQ, 0x0);
1694 				usb_write32(Adapter, REG_RQPN, 0x80000000);
1695 				mdelay(10);
1696 			}
1697 		}
1698 		break;
1699 	case HW_VAR_CHECK_TXBUF:
1700 		break;
1701 	case HW_VAR_APFM_ON_MAC:
1702 		haldata->bMacPwrCtrlOn = *val;
1703 		DBG_88E("%s: bMacPwrCtrlOn=%d\n", __func__, haldata->bMacPwrCtrlOn);
1704 		break;
1705 	case HW_VAR_TX_RPT_MAX_MACID:
1706 		{
1707 			u8 maxMacid = *val;
1708 
1709 			DBG_88E("### MacID(%d),Set Max Tx RPT MID(%d)\n", maxMacid, maxMacid + 1);
1710 			usb_write8(Adapter, REG_TX_RPT_CTRL + 1, maxMacid + 1);
1711 		}
1712 		break;
1713 	case HW_VAR_H2C_MEDIA_STATUS_RPT:
1714 		rtl8188e_set_FwMediaStatus_cmd(Adapter, (*(__le16 *)val));
1715 		break;
1716 	case HW_VAR_BCN_VALID:
1717 		/* BCN_VALID, BIT16 of REG_TDECTRL = BIT0 of REG_TDECTRL+2, write 1 to clear, Clear by sw */
1718 		usb_write8(Adapter, REG_TDECTRL + 2, usb_read8(Adapter, REG_TDECTRL + 2) | BIT(0));
1719 		break;
1720 	default:
1721 		break;
1722 	}
1723 }
1724 
rtw_hal_get_hwreg(struct adapter * Adapter,u8 variable,u8 * val)1725 void rtw_hal_get_hwreg(struct adapter *Adapter, u8 variable, u8 *val)
1726 {
1727 	switch (variable) {
1728 	case HW_VAR_BASIC_RATE:
1729 		*((u16 *)(val)) = Adapter->HalData->BasicRateSet;
1730 		fallthrough;
1731 	case HW_VAR_TXPAUSE:
1732 		val[0] = usb_read8(Adapter, REG_TXPAUSE);
1733 		break;
1734 	case HW_VAR_BCN_VALID:
1735 		/* BCN_VALID, BIT16 of REG_TDECTRL = BIT0 of REG_TDECTRL+2 */
1736 		val[0] = (BIT(0) & usb_read8(Adapter, REG_TDECTRL + 2)) ? true : false;
1737 		break;
1738 	case HW_VAR_FWLPS_RF_ON:
1739 		{
1740 			/* When we halt NIC, we should check if FW LPS is leave. */
1741 			if (Adapter->pwrctrlpriv.rf_pwrstate == rf_off) {
1742 				/*  If it is in HW/SW Radio OFF or IPS state, we do not check Fw LPS Leave, */
1743 				/*  because Fw is unload. */
1744 				val[0] = true;
1745 			} else {
1746 				u32 valRCR;
1747 
1748 				valRCR = usb_read32(Adapter, REG_RCR);
1749 				valRCR &= 0x00070000;
1750 				if (valRCR)
1751 					val[0] = false;
1752 				else
1753 					val[0] = true;
1754 			}
1755 		}
1756 		break;
1757 	case HW_VAR_CURRENT_ANTENNA:
1758 		val[0] = Adapter->HalData->CurAntenna;
1759 		break;
1760 	case HW_VAR_EFUSE_BYTES: /*  To get EFUE total used bytes, added by Roger, 2008.12.22. */
1761 		*((u16 *)(val)) = Adapter->HalData->EfuseUsedBytes;
1762 		break;
1763 	case HW_VAR_APFM_ON_MAC:
1764 		*val = Adapter->HalData->bMacPwrCtrlOn;
1765 		break;
1766 	case HW_VAR_CHK_HI_QUEUE_EMPTY:
1767 		*val = ((usb_read32(Adapter, REG_HGQ_INFORMATION) & 0x0000ff00) == 0) ? true : false;
1768 		break;
1769 	default:
1770 		break;
1771 	}
1772 }
1773 
1774 /*  */
1775 /*	Description: */
1776 /*		Query setting of specified variable. */
1777 /*  */
rtw_hal_get_def_var(struct adapter * Adapter,enum hal_def_variable eVariable,void * pValue)1778 u8 rtw_hal_get_def_var(struct adapter *Adapter, enum hal_def_variable eVariable,
1779 		       void *pValue)
1780 {
1781 	struct hal_data_8188e *haldata = Adapter->HalData;
1782 	u8 bResult = _SUCCESS;
1783 
1784 	switch (eVariable) {
1785 	case HAL_DEF_UNDERCORATEDSMOOTHEDPWDB:
1786 		{
1787 			struct mlme_priv *pmlmepriv = &Adapter->mlmepriv;
1788 			struct sta_priv *pstapriv = &Adapter->stapriv;
1789 			struct sta_info *psta;
1790 
1791 			psta = rtw_get_stainfo(pstapriv, pmlmepriv->cur_network.network.MacAddress);
1792 			if (psta)
1793 				*((int *)pValue) = psta->rssi_stat.UndecoratedSmoothedPWDB;
1794 		}
1795 		break;
1796 	case HAL_DEF_IS_SUPPORT_ANT_DIV:
1797 		*((u8 *)pValue) = (haldata->AntDivCfg == 0) ? false : true;
1798 		break;
1799 	case HAL_DEF_CURRENT_ANTENNA:
1800 		*((u8 *)pValue) = haldata->CurAntenna;
1801 		break;
1802 	case HAL_DEF_DRVINFO_SZ:
1803 		*((u32 *)pValue) = DRVINFO_SZ;
1804 		break;
1805 	case HAL_DEF_MAX_RECVBUF_SZ:
1806 		*((u32 *)pValue) = MAX_RECVBUF_SZ;
1807 		break;
1808 	case HAL_DEF_RX_PACKET_OFFSET:
1809 		*((u32 *)pValue) = RXDESC_SIZE + DRVINFO_SZ;
1810 		break;
1811 	case HAL_DEF_DBG_DM_FUNC:
1812 		*((u32 *)pValue) = haldata->odmpriv.SupportAbility;
1813 		break;
1814 	case HAL_DEF_RA_DECISION_RATE:
1815 		{
1816 			u8 MacID = *((u8 *)pValue);
1817 
1818 			*((u8 *)pValue) = ODM_RA_GetDecisionRate_8188E(&haldata->odmpriv, MacID);
1819 		}
1820 		break;
1821 	case HAL_DEF_RA_SGI:
1822 		{
1823 			u8 MacID = *((u8 *)pValue);
1824 
1825 			*((u8 *)pValue) = ODM_RA_GetShortGI_8188E(&haldata->odmpriv, MacID);
1826 		}
1827 		break;
1828 	case HAL_DEF_PT_PWR_STATUS:
1829 		{
1830 			u8 MacID = *((u8 *)pValue);
1831 
1832 			*((u8 *)pValue) = ODM_RA_GetHwPwrStatus_8188E(&haldata->odmpriv, MacID);
1833 		}
1834 		break;
1835 	case HW_VAR_MAX_RX_AMPDU_FACTOR:
1836 		*((u32 *)pValue) = MAX_AMPDU_FACTOR_64K;
1837 		break;
1838 	case HW_DEF_RA_INFO_DUMP:
1839 		{
1840 			u8 entry_id = *((u8 *)pValue);
1841 
1842 			if (check_fwstate(&Adapter->mlmepriv, _FW_LINKED)) {
1843 				DBG_88E("============ RA status check ===================\n");
1844 				DBG_88E("Mac_id:%d , RateID = %d, RAUseRate = 0x%08x, RateSGI = %d, DecisionRate = 0x%02x ,PTStage = %d\n",
1845 					entry_id,
1846 					haldata->odmpriv.RAInfo[entry_id].RateID,
1847 					haldata->odmpriv.RAInfo[entry_id].RAUseRate,
1848 					haldata->odmpriv.RAInfo[entry_id].RateSGI,
1849 					haldata->odmpriv.RAInfo[entry_id].DecisionRate,
1850 					haldata->odmpriv.RAInfo[entry_id].PTStage);
1851 			}
1852 		}
1853 		break;
1854 	case HW_DEF_ODM_DBG_FLAG:
1855 		{
1856 			struct odm_dm_struct *dm_ocm = &haldata->odmpriv;
1857 
1858 			pr_info("dm_ocm->DebugComponents = 0x%llx\n", dm_ocm->DebugComponents);
1859 		}
1860 		break;
1861 	case HAL_DEF_DBG_DUMP_RXPKT:
1862 		*((u8 *)pValue) = haldata->bDumpRxPkt;
1863 		break;
1864 	case HAL_DEF_DBG_DUMP_TXPKT:
1865 		*((u8 *)pValue) = haldata->bDumpTxPkt;
1866 		break;
1867 	default:
1868 		bResult = _FAIL;
1869 		break;
1870 	}
1871 
1872 	return bResult;
1873 }
1874 
UpdateHalRAMask8188EUsb(struct adapter * adapt,u32 mac_id,u8 rssi_level)1875 void UpdateHalRAMask8188EUsb(struct adapter *adapt, u32 mac_id, u8 rssi_level)
1876 {
1877 	u8 init_rate = 0;
1878 	u8 networkType, raid;
1879 	u32 mask, rate_bitmap;
1880 	u8 shortGIrate = false;
1881 	int	supportRateNum = 0;
1882 	struct sta_info	*psta;
1883 	struct odm_dm_struct *odmpriv = &adapt->HalData->odmpriv;
1884 	struct mlme_ext_priv	*pmlmeext = &adapt->mlmeextpriv;
1885 	struct mlme_ext_info	*pmlmeinfo = &pmlmeext->mlmext_info;
1886 	struct wlan_bssid_ex	*cur_network = &pmlmeinfo->network;
1887 
1888 	if (mac_id >= NUM_STA) /* CAM_SIZE */
1889 		return;
1890 	psta = pmlmeinfo->FW_sta_info[mac_id].psta;
1891 	if (!psta)
1892 		return;
1893 	switch (mac_id) {
1894 	case 0:/*  for infra mode */
1895 		supportRateNum = rtw_get_rateset_len(cur_network->SupportedRates);
1896 		networkType = judge_network_type(adapt, cur_network->SupportedRates) & 0xf;
1897 		raid = networktype_to_raid(networkType);
1898 		mask = update_supported_rate(cur_network->SupportedRates, supportRateNum);
1899 		mask |= (pmlmeinfo->HT_enable) ? update_MSC_rate(&pmlmeinfo->HT_caps) : 0;
1900 		if (support_short_GI(adapt, &pmlmeinfo->HT_caps))
1901 			shortGIrate = true;
1902 		break;
1903 	case 1:/* for broadcast/multicast */
1904 		supportRateNum = rtw_get_rateset_len(pmlmeinfo->FW_sta_info[mac_id].SupportedRates);
1905 		if (pmlmeext->cur_wireless_mode & WIRELESS_11B)
1906 			networkType = WIRELESS_11B;
1907 		else
1908 			networkType = WIRELESS_11G;
1909 		raid = networktype_to_raid(networkType);
1910 		mask = update_basic_rate(cur_network->SupportedRates, supportRateNum);
1911 		break;
1912 	default: /* for each sta in IBSS */
1913 		supportRateNum = rtw_get_rateset_len(pmlmeinfo->FW_sta_info[mac_id].SupportedRates);
1914 		networkType = judge_network_type(adapt, pmlmeinfo->FW_sta_info[mac_id].SupportedRates) & 0xf;
1915 		raid = networktype_to_raid(networkType);
1916 		mask = update_supported_rate(cur_network->SupportedRates, supportRateNum);
1917 
1918 		/* todo: support HT in IBSS */
1919 		break;
1920 	}
1921 
1922 	rate_bitmap = ODM_Get_Rate_Bitmap(odmpriv, mac_id, mask, rssi_level);
1923 	DBG_88E("%s => mac_id:%d, networkType:0x%02x, mask:0x%08x\n\t ==> rssi_level:%d, rate_bitmap:0x%08x\n",
1924 		__func__, mac_id, networkType, mask, rssi_level, rate_bitmap);
1925 
1926 	mask &= rate_bitmap;
1927 
1928 	init_rate = get_highest_rate_idx(mask) & 0x3f;
1929 
1930 	ODM_RA_UpdateRateInfo_8188E(odmpriv, mac_id, raid, mask, shortGIrate);
1931 
1932 	/* set ra_id */
1933 	psta->raid = raid;
1934 	psta->init_rate = init_rate;
1935 }
1936 
beacon_timing_control(struct adapter * adapt)1937 void beacon_timing_control(struct adapter *adapt)
1938 {
1939 	u32 value32;
1940 	struct mlme_ext_priv	*pmlmeext = &adapt->mlmeextpriv;
1941 	struct mlme_ext_info	*pmlmeinfo = &pmlmeext->mlmext_info;
1942 	u32 bcn_ctrl_reg			= REG_BCN_CTRL;
1943 	/* reset TSF, enable update TSF, correcting TSF On Beacon */
1944 
1945 	/* BCN interval */
1946 	usb_write16(adapt, REG_BCN_INTERVAL, pmlmeinfo->bcn_interval);
1947 	usb_write8(adapt, REG_ATIMWND, 0x02);/*  2ms */
1948 
1949 	_InitBeaconParameters(adapt);
1950 
1951 	usb_write8(adapt, REG_SLOT, 0x09);
1952 
1953 	value32 = usb_read32(adapt, REG_TCR);
1954 	value32 &= ~TSFRST;
1955 	usb_write32(adapt,  REG_TCR, value32);
1956 
1957 	value32 |= TSFRST;
1958 	usb_write32(adapt, REG_TCR, value32);
1959 
1960 	/*  NOTE: Fix test chip's bug (about contention windows's randomness) */
1961 	usb_write8(adapt,  REG_RXTSF_OFFSET_CCK, 0x50);
1962 	usb_write8(adapt, REG_RXTSF_OFFSET_OFDM, 0x50);
1963 
1964 	_BeaconFunctionEnable(adapt, true, true);
1965 
1966 	ResumeTxBeacon(adapt);
1967 
1968 	usb_write8(adapt, bcn_ctrl_reg, usb_read8(adapt, bcn_ctrl_reg) | BIT(1));
1969 }
1970 
rtw_hal_def_value_init(struct adapter * adapt)1971 void rtw_hal_def_value_init(struct adapter *adapt)
1972 {
1973 	struct hal_data_8188e *haldata = adapt->HalData;
1974 	struct pwrctrl_priv *pwrctrlpriv;
1975 	u8 i;
1976 
1977 	pwrctrlpriv = &adapt->pwrctrlpriv;
1978 
1979 	/* init default value */
1980 	if (!pwrctrlpriv->bkeepfwalive)
1981 		haldata->LastHMEBoxNum = 0;
1982 
1983 	/* init dm default value */
1984 	haldata->odmpriv.RFCalibrateInfo.bIQKInitialized = false;
1985 	haldata->odmpriv.RFCalibrateInfo.TM_Trigger = 0;/* for IQK */
1986 	haldata->pwrGroupCnt = 0;
1987 	haldata->PGMaxGroup = 13;
1988 	haldata->odmpriv.RFCalibrateInfo.ThermalValue_HP_index = 0;
1989 	for (i = 0; i < HP_THERMAL_NUM; i++)
1990 		haldata->odmpriv.RFCalibrateInfo.ThermalValue_HP[i] = 0;
1991 }
1992