1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * RDMA Transport Layer
4 *
5 * Copyright (c) 2014 - 2018 ProfitBricks GmbH. All rights reserved.
6 * Copyright (c) 2018 - 2019 1&1 IONOS Cloud GmbH. All rights reserved.
7 * Copyright (c) 2019 - 2020 1&1 IONOS SE. All rights reserved.
8 */
9
10 #undef pr_fmt
11 #define pr_fmt(fmt) KBUILD_MODNAME " L" __stringify(__LINE__) ": " fmt
12
13 #include <linux/module.h>
14 #include <linux/mempool.h>
15
16 #include "rtrs-srv.h"
17 #include "rtrs-log.h"
18 #include <rdma/ib_cm.h>
19 #include <rdma/ib_verbs.h>
20
21 MODULE_DESCRIPTION("RDMA Transport Server");
22 MODULE_LICENSE("GPL");
23
24 /* Must be power of 2, see mask from mr->page_size in ib_sg_to_pages() */
25 #define DEFAULT_MAX_CHUNK_SIZE (128 << 10)
26 #define DEFAULT_SESS_QUEUE_DEPTH 512
27 #define MAX_HDR_SIZE PAGE_SIZE
28
29 /* We guarantee to serve 10 paths at least */
30 #define CHUNK_POOL_SZ 10
31
32 static struct rtrs_rdma_dev_pd dev_pd;
33 static mempool_t *chunk_pool;
34 struct class *rtrs_dev_class;
35 static struct rtrs_srv_ib_ctx ib_ctx;
36
37 static int __read_mostly max_chunk_size = DEFAULT_MAX_CHUNK_SIZE;
38 static int __read_mostly sess_queue_depth = DEFAULT_SESS_QUEUE_DEPTH;
39
40 static bool always_invalidate = true;
41 module_param(always_invalidate, bool, 0444);
42 MODULE_PARM_DESC(always_invalidate,
43 "Invalidate memory registration for contiguous memory regions before accessing.");
44
45 module_param_named(max_chunk_size, max_chunk_size, int, 0444);
46 MODULE_PARM_DESC(max_chunk_size,
47 "Max size for each IO request, when change the unit is in byte (default: "
48 __stringify(DEFAULT_MAX_CHUNK_SIZE) "KB)");
49
50 module_param_named(sess_queue_depth, sess_queue_depth, int, 0444);
51 MODULE_PARM_DESC(sess_queue_depth,
52 "Number of buffers for pending I/O requests to allocate per session. Maximum: "
53 __stringify(MAX_SESS_QUEUE_DEPTH) " (default: "
54 __stringify(DEFAULT_SESS_QUEUE_DEPTH) ")");
55
56 static cpumask_t cq_affinity_mask = { CPU_BITS_ALL };
57
58 static struct workqueue_struct *rtrs_wq;
59
to_srv_con(struct rtrs_con * c)60 static inline struct rtrs_srv_con *to_srv_con(struct rtrs_con *c)
61 {
62 return container_of(c, struct rtrs_srv_con, c);
63 }
64
to_srv_sess(struct rtrs_sess * s)65 static inline struct rtrs_srv_sess *to_srv_sess(struct rtrs_sess *s)
66 {
67 return container_of(s, struct rtrs_srv_sess, s);
68 }
69
__rtrs_srv_change_state(struct rtrs_srv_sess * sess,enum rtrs_srv_state new_state)70 static bool __rtrs_srv_change_state(struct rtrs_srv_sess *sess,
71 enum rtrs_srv_state new_state)
72 {
73 enum rtrs_srv_state old_state;
74 bool changed = false;
75
76 lockdep_assert_held(&sess->state_lock);
77 old_state = sess->state;
78 switch (new_state) {
79 case RTRS_SRV_CONNECTED:
80 switch (old_state) {
81 case RTRS_SRV_CONNECTING:
82 changed = true;
83 fallthrough;
84 default:
85 break;
86 }
87 break;
88 case RTRS_SRV_CLOSING:
89 switch (old_state) {
90 case RTRS_SRV_CONNECTING:
91 case RTRS_SRV_CONNECTED:
92 changed = true;
93 fallthrough;
94 default:
95 break;
96 }
97 break;
98 case RTRS_SRV_CLOSED:
99 switch (old_state) {
100 case RTRS_SRV_CLOSING:
101 changed = true;
102 fallthrough;
103 default:
104 break;
105 }
106 break;
107 default:
108 break;
109 }
110 if (changed)
111 sess->state = new_state;
112
113 return changed;
114 }
115
rtrs_srv_change_state_get_old(struct rtrs_srv_sess * sess,enum rtrs_srv_state new_state,enum rtrs_srv_state * old_state)116 static bool rtrs_srv_change_state_get_old(struct rtrs_srv_sess *sess,
117 enum rtrs_srv_state new_state,
118 enum rtrs_srv_state *old_state)
119 {
120 bool changed;
121
122 spin_lock_irq(&sess->state_lock);
123 *old_state = sess->state;
124 changed = __rtrs_srv_change_state(sess, new_state);
125 spin_unlock_irq(&sess->state_lock);
126
127 return changed;
128 }
129
rtrs_srv_change_state(struct rtrs_srv_sess * sess,enum rtrs_srv_state new_state)130 static bool rtrs_srv_change_state(struct rtrs_srv_sess *sess,
131 enum rtrs_srv_state new_state)
132 {
133 enum rtrs_srv_state old_state;
134
135 return rtrs_srv_change_state_get_old(sess, new_state, &old_state);
136 }
137
free_id(struct rtrs_srv_op * id)138 static void free_id(struct rtrs_srv_op *id)
139 {
140 if (!id)
141 return;
142 kfree(id);
143 }
144
rtrs_srv_free_ops_ids(struct rtrs_srv_sess * sess)145 static void rtrs_srv_free_ops_ids(struct rtrs_srv_sess *sess)
146 {
147 struct rtrs_srv *srv = sess->srv;
148 int i;
149
150 WARN_ON(atomic_read(&sess->ids_inflight));
151 if (sess->ops_ids) {
152 for (i = 0; i < srv->queue_depth; i++)
153 free_id(sess->ops_ids[i]);
154 kfree(sess->ops_ids);
155 sess->ops_ids = NULL;
156 }
157 }
158
159 static void rtrs_srv_rdma_done(struct ib_cq *cq, struct ib_wc *wc);
160
161 static struct ib_cqe io_comp_cqe = {
162 .done = rtrs_srv_rdma_done
163 };
164
rtrs_srv_alloc_ops_ids(struct rtrs_srv_sess * sess)165 static int rtrs_srv_alloc_ops_ids(struct rtrs_srv_sess *sess)
166 {
167 struct rtrs_srv *srv = sess->srv;
168 struct rtrs_srv_op *id;
169 int i;
170
171 sess->ops_ids = kcalloc(srv->queue_depth, sizeof(*sess->ops_ids),
172 GFP_KERNEL);
173 if (!sess->ops_ids)
174 goto err;
175
176 for (i = 0; i < srv->queue_depth; ++i) {
177 id = kzalloc(sizeof(*id), GFP_KERNEL);
178 if (!id)
179 goto err;
180
181 sess->ops_ids[i] = id;
182 }
183 init_waitqueue_head(&sess->ids_waitq);
184 atomic_set(&sess->ids_inflight, 0);
185
186 return 0;
187
188 err:
189 rtrs_srv_free_ops_ids(sess);
190 return -ENOMEM;
191 }
192
rtrs_srv_get_ops_ids(struct rtrs_srv_sess * sess)193 static inline void rtrs_srv_get_ops_ids(struct rtrs_srv_sess *sess)
194 {
195 atomic_inc(&sess->ids_inflight);
196 }
197
rtrs_srv_put_ops_ids(struct rtrs_srv_sess * sess)198 static inline void rtrs_srv_put_ops_ids(struct rtrs_srv_sess *sess)
199 {
200 if (atomic_dec_and_test(&sess->ids_inflight))
201 wake_up(&sess->ids_waitq);
202 }
203
rtrs_srv_wait_ops_ids(struct rtrs_srv_sess * sess)204 static void rtrs_srv_wait_ops_ids(struct rtrs_srv_sess *sess)
205 {
206 wait_event(sess->ids_waitq, !atomic_read(&sess->ids_inflight));
207 }
208
209
rtrs_srv_reg_mr_done(struct ib_cq * cq,struct ib_wc * wc)210 static void rtrs_srv_reg_mr_done(struct ib_cq *cq, struct ib_wc *wc)
211 {
212 struct rtrs_srv_con *con = cq->cq_context;
213 struct rtrs_sess *s = con->c.sess;
214 struct rtrs_srv_sess *sess = to_srv_sess(s);
215
216 if (unlikely(wc->status != IB_WC_SUCCESS)) {
217 rtrs_err(s, "REG MR failed: %s\n",
218 ib_wc_status_msg(wc->status));
219 close_sess(sess);
220 return;
221 }
222 }
223
224 static struct ib_cqe local_reg_cqe = {
225 .done = rtrs_srv_reg_mr_done
226 };
227
rdma_write_sg(struct rtrs_srv_op * id)228 static int rdma_write_sg(struct rtrs_srv_op *id)
229 {
230 struct rtrs_sess *s = id->con->c.sess;
231 struct rtrs_srv_sess *sess = to_srv_sess(s);
232 dma_addr_t dma_addr = sess->dma_addr[id->msg_id];
233 struct rtrs_srv_mr *srv_mr;
234 struct rtrs_srv *srv = sess->srv;
235 struct ib_send_wr inv_wr, imm_wr;
236 struct ib_rdma_wr *wr = NULL;
237 enum ib_send_flags flags;
238 size_t sg_cnt;
239 int err, offset;
240 bool need_inval;
241 u32 rkey = 0;
242 struct ib_reg_wr rwr;
243 struct ib_sge *plist;
244 struct ib_sge list;
245
246 sg_cnt = le16_to_cpu(id->rd_msg->sg_cnt);
247 need_inval = le16_to_cpu(id->rd_msg->flags) & RTRS_MSG_NEED_INVAL_F;
248 if (unlikely(sg_cnt != 1))
249 return -EINVAL;
250
251 offset = 0;
252
253 wr = &id->tx_wr;
254 plist = &id->tx_sg;
255 plist->addr = dma_addr + offset;
256 plist->length = le32_to_cpu(id->rd_msg->desc[0].len);
257
258 /* WR will fail with length error
259 * if this is 0
260 */
261 if (unlikely(plist->length == 0)) {
262 rtrs_err(s, "Invalid RDMA-Write sg list length 0\n");
263 return -EINVAL;
264 }
265
266 plist->lkey = sess->s.dev->ib_pd->local_dma_lkey;
267 offset += plist->length;
268
269 wr->wr.sg_list = plist;
270 wr->wr.num_sge = 1;
271 wr->remote_addr = le64_to_cpu(id->rd_msg->desc[0].addr);
272 wr->rkey = le32_to_cpu(id->rd_msg->desc[0].key);
273 if (rkey == 0)
274 rkey = wr->rkey;
275 else
276 /* Only one key is actually used */
277 WARN_ON_ONCE(rkey != wr->rkey);
278
279 wr->wr.opcode = IB_WR_RDMA_WRITE;
280 wr->wr.ex.imm_data = 0;
281 wr->wr.send_flags = 0;
282
283 if (need_inval && always_invalidate) {
284 wr->wr.next = &rwr.wr;
285 rwr.wr.next = &inv_wr;
286 inv_wr.next = &imm_wr;
287 } else if (always_invalidate) {
288 wr->wr.next = &rwr.wr;
289 rwr.wr.next = &imm_wr;
290 } else if (need_inval) {
291 wr->wr.next = &inv_wr;
292 inv_wr.next = &imm_wr;
293 } else {
294 wr->wr.next = &imm_wr;
295 }
296 /*
297 * From time to time we have to post signaled sends,
298 * or send queue will fill up and only QP reset can help.
299 */
300 flags = (atomic_inc_return(&id->con->wr_cnt) % srv->queue_depth) ?
301 0 : IB_SEND_SIGNALED;
302
303 if (need_inval) {
304 inv_wr.sg_list = NULL;
305 inv_wr.num_sge = 0;
306 inv_wr.opcode = IB_WR_SEND_WITH_INV;
307 inv_wr.send_flags = 0;
308 inv_wr.ex.invalidate_rkey = rkey;
309 }
310
311 imm_wr.next = NULL;
312 if (always_invalidate) {
313 struct rtrs_msg_rkey_rsp *msg;
314
315 srv_mr = &sess->mrs[id->msg_id];
316 rwr.wr.opcode = IB_WR_REG_MR;
317 rwr.wr.num_sge = 0;
318 rwr.mr = srv_mr->mr;
319 rwr.wr.send_flags = 0;
320 rwr.key = srv_mr->mr->rkey;
321 rwr.access = (IB_ACCESS_LOCAL_WRITE |
322 IB_ACCESS_REMOTE_WRITE);
323 msg = srv_mr->iu->buf;
324 msg->buf_id = cpu_to_le16(id->msg_id);
325 msg->type = cpu_to_le16(RTRS_MSG_RKEY_RSP);
326 msg->rkey = cpu_to_le32(srv_mr->mr->rkey);
327
328 list.addr = srv_mr->iu->dma_addr;
329 list.length = sizeof(*msg);
330 list.lkey = sess->s.dev->ib_pd->local_dma_lkey;
331 imm_wr.sg_list = &list;
332 imm_wr.num_sge = 1;
333 imm_wr.opcode = IB_WR_SEND_WITH_IMM;
334 ib_dma_sync_single_for_device(sess->s.dev->ib_dev,
335 srv_mr->iu->dma_addr,
336 srv_mr->iu->size, DMA_TO_DEVICE);
337 } else {
338 imm_wr.sg_list = NULL;
339 imm_wr.num_sge = 0;
340 imm_wr.opcode = IB_WR_RDMA_WRITE_WITH_IMM;
341 }
342 imm_wr.send_flags = flags;
343 imm_wr.ex.imm_data = cpu_to_be32(rtrs_to_io_rsp_imm(id->msg_id,
344 0, need_inval));
345
346 imm_wr.wr_cqe = &io_comp_cqe;
347 ib_dma_sync_single_for_device(sess->s.dev->ib_dev, dma_addr,
348 offset, DMA_BIDIRECTIONAL);
349
350 err = ib_post_send(id->con->c.qp, &id->tx_wr.wr, NULL);
351 if (unlikely(err))
352 rtrs_err(s,
353 "Posting RDMA-Write-Request to QP failed, err: %d\n",
354 err);
355
356 return err;
357 }
358
359 /**
360 * send_io_resp_imm() - respond to client with empty IMM on failed READ/WRITE
361 * requests or on successful WRITE request.
362 * @con: the connection to send back result
363 * @id: the id associated with the IO
364 * @errno: the error number of the IO.
365 *
366 * Return 0 on success, errno otherwise.
367 */
send_io_resp_imm(struct rtrs_srv_con * con,struct rtrs_srv_op * id,int errno)368 static int send_io_resp_imm(struct rtrs_srv_con *con, struct rtrs_srv_op *id,
369 int errno)
370 {
371 struct rtrs_sess *s = con->c.sess;
372 struct rtrs_srv_sess *sess = to_srv_sess(s);
373 struct ib_send_wr inv_wr, imm_wr, *wr = NULL;
374 struct ib_reg_wr rwr;
375 struct rtrs_srv *srv = sess->srv;
376 struct rtrs_srv_mr *srv_mr;
377 bool need_inval = false;
378 enum ib_send_flags flags;
379 u32 imm;
380 int err;
381
382 if (id->dir == READ) {
383 struct rtrs_msg_rdma_read *rd_msg = id->rd_msg;
384 size_t sg_cnt;
385
386 need_inval = le16_to_cpu(rd_msg->flags) &
387 RTRS_MSG_NEED_INVAL_F;
388 sg_cnt = le16_to_cpu(rd_msg->sg_cnt);
389
390 if (need_inval) {
391 if (likely(sg_cnt)) {
392 inv_wr.sg_list = NULL;
393 inv_wr.num_sge = 0;
394 inv_wr.opcode = IB_WR_SEND_WITH_INV;
395 inv_wr.send_flags = 0;
396 /* Only one key is actually used */
397 inv_wr.ex.invalidate_rkey =
398 le32_to_cpu(rd_msg->desc[0].key);
399 } else {
400 WARN_ON_ONCE(1);
401 need_inval = false;
402 }
403 }
404 }
405
406 if (need_inval && always_invalidate) {
407 wr = &inv_wr;
408 inv_wr.next = &rwr.wr;
409 rwr.wr.next = &imm_wr;
410 } else if (always_invalidate) {
411 wr = &rwr.wr;
412 rwr.wr.next = &imm_wr;
413 } else if (need_inval) {
414 wr = &inv_wr;
415 inv_wr.next = &imm_wr;
416 } else {
417 wr = &imm_wr;
418 }
419 /*
420 * From time to time we have to post signalled sends,
421 * or send queue will fill up and only QP reset can help.
422 */
423 flags = (atomic_inc_return(&con->wr_cnt) % srv->queue_depth) ?
424 0 : IB_SEND_SIGNALED;
425 imm = rtrs_to_io_rsp_imm(id->msg_id, errno, need_inval);
426 imm_wr.next = NULL;
427 if (always_invalidate) {
428 struct ib_sge list;
429 struct rtrs_msg_rkey_rsp *msg;
430
431 srv_mr = &sess->mrs[id->msg_id];
432 rwr.wr.next = &imm_wr;
433 rwr.wr.opcode = IB_WR_REG_MR;
434 rwr.wr.num_sge = 0;
435 rwr.wr.send_flags = 0;
436 rwr.mr = srv_mr->mr;
437 rwr.key = srv_mr->mr->rkey;
438 rwr.access = (IB_ACCESS_LOCAL_WRITE |
439 IB_ACCESS_REMOTE_WRITE);
440 msg = srv_mr->iu->buf;
441 msg->buf_id = cpu_to_le16(id->msg_id);
442 msg->type = cpu_to_le16(RTRS_MSG_RKEY_RSP);
443 msg->rkey = cpu_to_le32(srv_mr->mr->rkey);
444
445 list.addr = srv_mr->iu->dma_addr;
446 list.length = sizeof(*msg);
447 list.lkey = sess->s.dev->ib_pd->local_dma_lkey;
448 imm_wr.sg_list = &list;
449 imm_wr.num_sge = 1;
450 imm_wr.opcode = IB_WR_SEND_WITH_IMM;
451 ib_dma_sync_single_for_device(sess->s.dev->ib_dev,
452 srv_mr->iu->dma_addr,
453 srv_mr->iu->size, DMA_TO_DEVICE);
454 } else {
455 imm_wr.sg_list = NULL;
456 imm_wr.num_sge = 0;
457 imm_wr.opcode = IB_WR_RDMA_WRITE_WITH_IMM;
458 }
459 imm_wr.send_flags = flags;
460 imm_wr.wr_cqe = &io_comp_cqe;
461
462 imm_wr.ex.imm_data = cpu_to_be32(imm);
463
464 err = ib_post_send(id->con->c.qp, wr, NULL);
465 if (unlikely(err))
466 rtrs_err_rl(s, "Posting RDMA-Reply to QP failed, err: %d\n",
467 err);
468
469 return err;
470 }
471
close_sess(struct rtrs_srv_sess * sess)472 void close_sess(struct rtrs_srv_sess *sess)
473 {
474 enum rtrs_srv_state old_state;
475
476 if (rtrs_srv_change_state_get_old(sess, RTRS_SRV_CLOSING,
477 &old_state))
478 queue_work(rtrs_wq, &sess->close_work);
479 WARN_ON(sess->state != RTRS_SRV_CLOSING);
480 }
481
rtrs_srv_state_str(enum rtrs_srv_state state)482 static inline const char *rtrs_srv_state_str(enum rtrs_srv_state state)
483 {
484 switch (state) {
485 case RTRS_SRV_CONNECTING:
486 return "RTRS_SRV_CONNECTING";
487 case RTRS_SRV_CONNECTED:
488 return "RTRS_SRV_CONNECTED";
489 case RTRS_SRV_CLOSING:
490 return "RTRS_SRV_CLOSING";
491 case RTRS_SRV_CLOSED:
492 return "RTRS_SRV_CLOSED";
493 default:
494 return "UNKNOWN";
495 }
496 }
497
498 /**
499 * rtrs_srv_resp_rdma() - Finish an RDMA request
500 *
501 * @id: Internal RTRS operation identifier
502 * @status: Response Code sent to the other side for this operation.
503 * 0 = success, <=0 error
504 * Context: any
505 *
506 * Finish a RDMA operation. A message is sent to the client and the
507 * corresponding memory areas will be released.
508 */
rtrs_srv_resp_rdma(struct rtrs_srv_op * id,int status)509 bool rtrs_srv_resp_rdma(struct rtrs_srv_op *id, int status)
510 {
511 struct rtrs_srv_sess *sess;
512 struct rtrs_srv_con *con;
513 struct rtrs_sess *s;
514 int err;
515
516 if (WARN_ON(!id))
517 return true;
518
519 con = id->con;
520 s = con->c.sess;
521 sess = to_srv_sess(s);
522
523 id->status = status;
524
525 if (unlikely(sess->state != RTRS_SRV_CONNECTED)) {
526 rtrs_err_rl(s,
527 "Sending I/O response failed, session is disconnected, sess state %s\n",
528 rtrs_srv_state_str(sess->state));
529 goto out;
530 }
531 if (always_invalidate) {
532 struct rtrs_srv_mr *mr = &sess->mrs[id->msg_id];
533
534 ib_update_fast_reg_key(mr->mr, ib_inc_rkey(mr->mr->rkey));
535 }
536 if (unlikely(atomic_sub_return(1,
537 &con->sq_wr_avail) < 0)) {
538 pr_err("IB send queue full\n");
539 atomic_add(1, &con->sq_wr_avail);
540 spin_lock(&con->rsp_wr_wait_lock);
541 list_add_tail(&id->wait_list, &con->rsp_wr_wait_list);
542 spin_unlock(&con->rsp_wr_wait_lock);
543 return false;
544 }
545
546 if (status || id->dir == WRITE || !id->rd_msg->sg_cnt)
547 err = send_io_resp_imm(con, id, status);
548 else
549 err = rdma_write_sg(id);
550
551 if (unlikely(err)) {
552 rtrs_err_rl(s, "IO response failed: %d\n", err);
553 close_sess(sess);
554 }
555 out:
556 rtrs_srv_put_ops_ids(sess);
557 return true;
558 }
559 EXPORT_SYMBOL(rtrs_srv_resp_rdma);
560
561 /**
562 * rtrs_srv_set_sess_priv() - Set private pointer in rtrs_srv.
563 * @srv: Session pointer
564 * @priv: The private pointer that is associated with the session.
565 */
rtrs_srv_set_sess_priv(struct rtrs_srv * srv,void * priv)566 void rtrs_srv_set_sess_priv(struct rtrs_srv *srv, void *priv)
567 {
568 srv->priv = priv;
569 }
570 EXPORT_SYMBOL(rtrs_srv_set_sess_priv);
571
unmap_cont_bufs(struct rtrs_srv_sess * sess)572 static void unmap_cont_bufs(struct rtrs_srv_sess *sess)
573 {
574 int i;
575
576 for (i = 0; i < sess->mrs_num; i++) {
577 struct rtrs_srv_mr *srv_mr;
578
579 srv_mr = &sess->mrs[i];
580 rtrs_iu_free(srv_mr->iu, DMA_TO_DEVICE,
581 sess->s.dev->ib_dev, 1);
582 ib_dereg_mr(srv_mr->mr);
583 ib_dma_unmap_sg(sess->s.dev->ib_dev, srv_mr->sgt.sgl,
584 srv_mr->sgt.nents, DMA_BIDIRECTIONAL);
585 sg_free_table(&srv_mr->sgt);
586 }
587 kfree(sess->mrs);
588 }
589
map_cont_bufs(struct rtrs_srv_sess * sess)590 static int map_cont_bufs(struct rtrs_srv_sess *sess)
591 {
592 struct rtrs_srv *srv = sess->srv;
593 struct rtrs_sess *ss = &sess->s;
594 int i, mri, err, mrs_num;
595 unsigned int chunk_bits;
596 int chunks_per_mr = 1;
597
598 /*
599 * Here we map queue_depth chunks to MR. Firstly we have to
600 * figure out how many chunks can we map per MR.
601 */
602 if (always_invalidate) {
603 /*
604 * in order to do invalidate for each chunks of memory, we needs
605 * more memory regions.
606 */
607 mrs_num = srv->queue_depth;
608 } else {
609 chunks_per_mr =
610 sess->s.dev->ib_dev->attrs.max_fast_reg_page_list_len;
611 mrs_num = DIV_ROUND_UP(srv->queue_depth, chunks_per_mr);
612 chunks_per_mr = DIV_ROUND_UP(srv->queue_depth, mrs_num);
613 }
614
615 sess->mrs = kcalloc(mrs_num, sizeof(*sess->mrs), GFP_KERNEL);
616 if (!sess->mrs)
617 return -ENOMEM;
618
619 sess->mrs_num = mrs_num;
620
621 for (mri = 0; mri < mrs_num; mri++) {
622 struct rtrs_srv_mr *srv_mr = &sess->mrs[mri];
623 struct sg_table *sgt = &srv_mr->sgt;
624 struct scatterlist *s;
625 struct ib_mr *mr;
626 int nr, chunks;
627
628 chunks = chunks_per_mr * mri;
629 if (!always_invalidate)
630 chunks_per_mr = min_t(int, chunks_per_mr,
631 srv->queue_depth - chunks);
632
633 err = sg_alloc_table(sgt, chunks_per_mr, GFP_KERNEL);
634 if (err)
635 goto err;
636
637 for_each_sg(sgt->sgl, s, chunks_per_mr, i)
638 sg_set_page(s, srv->chunks[chunks + i],
639 max_chunk_size, 0);
640
641 nr = ib_dma_map_sg(sess->s.dev->ib_dev, sgt->sgl,
642 sgt->nents, DMA_BIDIRECTIONAL);
643 if (nr < sgt->nents) {
644 err = nr < 0 ? nr : -EINVAL;
645 goto free_sg;
646 }
647 mr = ib_alloc_mr(sess->s.dev->ib_pd, IB_MR_TYPE_MEM_REG,
648 sgt->nents);
649 if (IS_ERR(mr)) {
650 err = PTR_ERR(mr);
651 goto unmap_sg;
652 }
653 nr = ib_map_mr_sg(mr, sgt->sgl, sgt->nents,
654 NULL, max_chunk_size);
655 if (nr < 0 || nr < sgt->nents) {
656 err = nr < 0 ? nr : -EINVAL;
657 goto dereg_mr;
658 }
659
660 if (always_invalidate) {
661 srv_mr->iu = rtrs_iu_alloc(1,
662 sizeof(struct rtrs_msg_rkey_rsp),
663 GFP_KERNEL, sess->s.dev->ib_dev,
664 DMA_TO_DEVICE, rtrs_srv_rdma_done);
665 if (!srv_mr->iu) {
666 err = -ENOMEM;
667 rtrs_err(ss, "rtrs_iu_alloc(), err: %d\n", err);
668 goto free_iu;
669 }
670 }
671 /* Eventually dma addr for each chunk can be cached */
672 for_each_sg(sgt->sgl, s, sgt->orig_nents, i)
673 sess->dma_addr[chunks + i] = sg_dma_address(s);
674
675 ib_update_fast_reg_key(mr, ib_inc_rkey(mr->rkey));
676 srv_mr->mr = mr;
677
678 continue;
679 err:
680 while (mri--) {
681 srv_mr = &sess->mrs[mri];
682 sgt = &srv_mr->sgt;
683 mr = srv_mr->mr;
684 free_iu:
685 rtrs_iu_free(srv_mr->iu, DMA_TO_DEVICE,
686 sess->s.dev->ib_dev, 1);
687 dereg_mr:
688 ib_dereg_mr(mr);
689 unmap_sg:
690 ib_dma_unmap_sg(sess->s.dev->ib_dev, sgt->sgl,
691 sgt->nents, DMA_BIDIRECTIONAL);
692 free_sg:
693 sg_free_table(sgt);
694 }
695 kfree(sess->mrs);
696
697 return err;
698 }
699
700 chunk_bits = ilog2(srv->queue_depth - 1) + 1;
701 sess->mem_bits = (MAX_IMM_PAYL_BITS - chunk_bits);
702
703 return 0;
704 }
705
rtrs_srv_hb_err_handler(struct rtrs_con * c)706 static void rtrs_srv_hb_err_handler(struct rtrs_con *c)
707 {
708 close_sess(to_srv_sess(c->sess));
709 }
710
rtrs_srv_init_hb(struct rtrs_srv_sess * sess)711 static void rtrs_srv_init_hb(struct rtrs_srv_sess *sess)
712 {
713 rtrs_init_hb(&sess->s, &io_comp_cqe,
714 RTRS_HB_INTERVAL_MS,
715 RTRS_HB_MISSED_MAX,
716 rtrs_srv_hb_err_handler,
717 rtrs_wq);
718 }
719
rtrs_srv_start_hb(struct rtrs_srv_sess * sess)720 static void rtrs_srv_start_hb(struct rtrs_srv_sess *sess)
721 {
722 rtrs_start_hb(&sess->s);
723 }
724
rtrs_srv_stop_hb(struct rtrs_srv_sess * sess)725 static void rtrs_srv_stop_hb(struct rtrs_srv_sess *sess)
726 {
727 rtrs_stop_hb(&sess->s);
728 }
729
rtrs_srv_info_rsp_done(struct ib_cq * cq,struct ib_wc * wc)730 static void rtrs_srv_info_rsp_done(struct ib_cq *cq, struct ib_wc *wc)
731 {
732 struct rtrs_srv_con *con = cq->cq_context;
733 struct rtrs_sess *s = con->c.sess;
734 struct rtrs_srv_sess *sess = to_srv_sess(s);
735 struct rtrs_iu *iu;
736
737 iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
738 rtrs_iu_free(iu, DMA_TO_DEVICE, sess->s.dev->ib_dev, 1);
739
740 if (unlikely(wc->status != IB_WC_SUCCESS)) {
741 rtrs_err(s, "Sess info response send failed: %s\n",
742 ib_wc_status_msg(wc->status));
743 close_sess(sess);
744 return;
745 }
746 WARN_ON(wc->opcode != IB_WC_SEND);
747 }
748
rtrs_srv_sess_up(struct rtrs_srv_sess * sess)749 static void rtrs_srv_sess_up(struct rtrs_srv_sess *sess)
750 {
751 struct rtrs_srv *srv = sess->srv;
752 struct rtrs_srv_ctx *ctx = srv->ctx;
753 int up;
754
755 mutex_lock(&srv->paths_ev_mutex);
756 up = ++srv->paths_up;
757 if (up == 1)
758 ctx->ops.link_ev(srv, RTRS_SRV_LINK_EV_CONNECTED, NULL);
759 mutex_unlock(&srv->paths_ev_mutex);
760
761 /* Mark session as established */
762 sess->established = true;
763 }
764
rtrs_srv_sess_down(struct rtrs_srv_sess * sess)765 static void rtrs_srv_sess_down(struct rtrs_srv_sess *sess)
766 {
767 struct rtrs_srv *srv = sess->srv;
768 struct rtrs_srv_ctx *ctx = srv->ctx;
769
770 if (!sess->established)
771 return;
772
773 sess->established = false;
774 mutex_lock(&srv->paths_ev_mutex);
775 WARN_ON(!srv->paths_up);
776 if (--srv->paths_up == 0)
777 ctx->ops.link_ev(srv, RTRS_SRV_LINK_EV_DISCONNECTED, srv->priv);
778 mutex_unlock(&srv->paths_ev_mutex);
779 }
780
781 static int post_recv_sess(struct rtrs_srv_sess *sess);
782
process_info_req(struct rtrs_srv_con * con,struct rtrs_msg_info_req * msg)783 static int process_info_req(struct rtrs_srv_con *con,
784 struct rtrs_msg_info_req *msg)
785 {
786 struct rtrs_sess *s = con->c.sess;
787 struct rtrs_srv_sess *sess = to_srv_sess(s);
788 struct ib_send_wr *reg_wr = NULL;
789 struct rtrs_msg_info_rsp *rsp;
790 struct rtrs_iu *tx_iu;
791 struct ib_reg_wr *rwr;
792 int mri, err;
793 size_t tx_sz;
794
795 err = post_recv_sess(sess);
796 if (unlikely(err)) {
797 rtrs_err(s, "post_recv_sess(), err: %d\n", err);
798 return err;
799 }
800 rwr = kcalloc(sess->mrs_num, sizeof(*rwr), GFP_KERNEL);
801 if (unlikely(!rwr))
802 return -ENOMEM;
803 strlcpy(sess->s.sessname, msg->sessname, sizeof(sess->s.sessname));
804
805 tx_sz = sizeof(*rsp);
806 tx_sz += sizeof(rsp->desc[0]) * sess->mrs_num;
807 tx_iu = rtrs_iu_alloc(1, tx_sz, GFP_KERNEL, sess->s.dev->ib_dev,
808 DMA_TO_DEVICE, rtrs_srv_info_rsp_done);
809 if (unlikely(!tx_iu)) {
810 err = -ENOMEM;
811 goto rwr_free;
812 }
813
814 rsp = tx_iu->buf;
815 rsp->type = cpu_to_le16(RTRS_MSG_INFO_RSP);
816 rsp->sg_cnt = cpu_to_le16(sess->mrs_num);
817
818 for (mri = 0; mri < sess->mrs_num; mri++) {
819 struct ib_mr *mr = sess->mrs[mri].mr;
820
821 rsp->desc[mri].addr = cpu_to_le64(mr->iova);
822 rsp->desc[mri].key = cpu_to_le32(mr->rkey);
823 rsp->desc[mri].len = cpu_to_le32(mr->length);
824
825 /*
826 * Fill in reg MR request and chain them *backwards*
827 */
828 rwr[mri].wr.next = mri ? &rwr[mri - 1].wr : NULL;
829 rwr[mri].wr.opcode = IB_WR_REG_MR;
830 rwr[mri].wr.wr_cqe = &local_reg_cqe;
831 rwr[mri].wr.num_sge = 0;
832 rwr[mri].wr.send_flags = mri ? 0 : IB_SEND_SIGNALED;
833 rwr[mri].mr = mr;
834 rwr[mri].key = mr->rkey;
835 rwr[mri].access = (IB_ACCESS_LOCAL_WRITE |
836 IB_ACCESS_REMOTE_WRITE);
837 reg_wr = &rwr[mri].wr;
838 }
839
840 err = rtrs_srv_create_sess_files(sess);
841 if (unlikely(err))
842 goto iu_free;
843 kobject_get(&sess->kobj);
844 get_device(&sess->srv->dev);
845 rtrs_srv_change_state(sess, RTRS_SRV_CONNECTED);
846 rtrs_srv_start_hb(sess);
847
848 /*
849 * We do not account number of established connections at the current
850 * moment, we rely on the client, which should send info request when
851 * all connections are successfully established. Thus, simply notify
852 * listener with a proper event if we are the first path.
853 */
854 rtrs_srv_sess_up(sess);
855
856 ib_dma_sync_single_for_device(sess->s.dev->ib_dev, tx_iu->dma_addr,
857 tx_iu->size, DMA_TO_DEVICE);
858
859 /* Send info response */
860 err = rtrs_iu_post_send(&con->c, tx_iu, tx_sz, reg_wr);
861 if (unlikely(err)) {
862 rtrs_err(s, "rtrs_iu_post_send(), err: %d\n", err);
863 iu_free:
864 rtrs_iu_free(tx_iu, DMA_TO_DEVICE, sess->s.dev->ib_dev, 1);
865 }
866 rwr_free:
867 kfree(rwr);
868
869 return err;
870 }
871
rtrs_srv_info_req_done(struct ib_cq * cq,struct ib_wc * wc)872 static void rtrs_srv_info_req_done(struct ib_cq *cq, struct ib_wc *wc)
873 {
874 struct rtrs_srv_con *con = cq->cq_context;
875 struct rtrs_sess *s = con->c.sess;
876 struct rtrs_srv_sess *sess = to_srv_sess(s);
877 struct rtrs_msg_info_req *msg;
878 struct rtrs_iu *iu;
879 int err;
880
881 WARN_ON(con->c.cid);
882
883 iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
884 if (unlikely(wc->status != IB_WC_SUCCESS)) {
885 rtrs_err(s, "Sess info request receive failed: %s\n",
886 ib_wc_status_msg(wc->status));
887 goto close;
888 }
889 WARN_ON(wc->opcode != IB_WC_RECV);
890
891 if (unlikely(wc->byte_len < sizeof(*msg))) {
892 rtrs_err(s, "Sess info request is malformed: size %d\n",
893 wc->byte_len);
894 goto close;
895 }
896 ib_dma_sync_single_for_cpu(sess->s.dev->ib_dev, iu->dma_addr,
897 iu->size, DMA_FROM_DEVICE);
898 msg = iu->buf;
899 if (unlikely(le16_to_cpu(msg->type) != RTRS_MSG_INFO_REQ)) {
900 rtrs_err(s, "Sess info request is malformed: type %d\n",
901 le16_to_cpu(msg->type));
902 goto close;
903 }
904 err = process_info_req(con, msg);
905 if (unlikely(err))
906 goto close;
907
908 out:
909 rtrs_iu_free(iu, DMA_FROM_DEVICE, sess->s.dev->ib_dev, 1);
910 return;
911 close:
912 close_sess(sess);
913 goto out;
914 }
915
post_recv_info_req(struct rtrs_srv_con * con)916 static int post_recv_info_req(struct rtrs_srv_con *con)
917 {
918 struct rtrs_sess *s = con->c.sess;
919 struct rtrs_srv_sess *sess = to_srv_sess(s);
920 struct rtrs_iu *rx_iu;
921 int err;
922
923 rx_iu = rtrs_iu_alloc(1, sizeof(struct rtrs_msg_info_req),
924 GFP_KERNEL, sess->s.dev->ib_dev,
925 DMA_FROM_DEVICE, rtrs_srv_info_req_done);
926 if (unlikely(!rx_iu))
927 return -ENOMEM;
928 /* Prepare for getting info response */
929 err = rtrs_iu_post_recv(&con->c, rx_iu);
930 if (unlikely(err)) {
931 rtrs_err(s, "rtrs_iu_post_recv(), err: %d\n", err);
932 rtrs_iu_free(rx_iu, DMA_FROM_DEVICE, sess->s.dev->ib_dev, 1);
933 return err;
934 }
935
936 return 0;
937 }
938
post_recv_io(struct rtrs_srv_con * con,size_t q_size)939 static int post_recv_io(struct rtrs_srv_con *con, size_t q_size)
940 {
941 int i, err;
942
943 for (i = 0; i < q_size; i++) {
944 err = rtrs_post_recv_empty(&con->c, &io_comp_cqe);
945 if (unlikely(err))
946 return err;
947 }
948
949 return 0;
950 }
951
post_recv_sess(struct rtrs_srv_sess * sess)952 static int post_recv_sess(struct rtrs_srv_sess *sess)
953 {
954 struct rtrs_srv *srv = sess->srv;
955 struct rtrs_sess *s = &sess->s;
956 size_t q_size;
957 int err, cid;
958
959 for (cid = 0; cid < sess->s.con_num; cid++) {
960 if (cid == 0)
961 q_size = SERVICE_CON_QUEUE_DEPTH;
962 else
963 q_size = srv->queue_depth;
964
965 err = post_recv_io(to_srv_con(sess->s.con[cid]), q_size);
966 if (unlikely(err)) {
967 rtrs_err(s, "post_recv_io(), err: %d\n", err);
968 return err;
969 }
970 }
971
972 return 0;
973 }
974
process_read(struct rtrs_srv_con * con,struct rtrs_msg_rdma_read * msg,u32 buf_id,u32 off)975 static void process_read(struct rtrs_srv_con *con,
976 struct rtrs_msg_rdma_read *msg,
977 u32 buf_id, u32 off)
978 {
979 struct rtrs_sess *s = con->c.sess;
980 struct rtrs_srv_sess *sess = to_srv_sess(s);
981 struct rtrs_srv *srv = sess->srv;
982 struct rtrs_srv_ctx *ctx = srv->ctx;
983 struct rtrs_srv_op *id;
984
985 size_t usr_len, data_len;
986 void *data;
987 int ret;
988
989 if (unlikely(sess->state != RTRS_SRV_CONNECTED)) {
990 rtrs_err_rl(s,
991 "Processing read request failed, session is disconnected, sess state %s\n",
992 rtrs_srv_state_str(sess->state));
993 return;
994 }
995 if (unlikely(msg->sg_cnt != 1 && msg->sg_cnt != 0)) {
996 rtrs_err_rl(s,
997 "Processing read request failed, invalid message\n");
998 return;
999 }
1000 rtrs_srv_get_ops_ids(sess);
1001 rtrs_srv_update_rdma_stats(sess->stats, off, READ);
1002 id = sess->ops_ids[buf_id];
1003 id->con = con;
1004 id->dir = READ;
1005 id->msg_id = buf_id;
1006 id->rd_msg = msg;
1007 usr_len = le16_to_cpu(msg->usr_len);
1008 data_len = off - usr_len;
1009 data = page_address(srv->chunks[buf_id]);
1010 ret = ctx->ops.rdma_ev(srv, srv->priv, id, READ, data, data_len,
1011 data + data_len, usr_len);
1012
1013 if (unlikely(ret)) {
1014 rtrs_err_rl(s,
1015 "Processing read request failed, user module cb reported for msg_id %d, err: %d\n",
1016 buf_id, ret);
1017 goto send_err_msg;
1018 }
1019
1020 return;
1021
1022 send_err_msg:
1023 ret = send_io_resp_imm(con, id, ret);
1024 if (ret < 0) {
1025 rtrs_err_rl(s,
1026 "Sending err msg for failed RDMA-Write-Req failed, msg_id %d, err: %d\n",
1027 buf_id, ret);
1028 close_sess(sess);
1029 }
1030 rtrs_srv_put_ops_ids(sess);
1031 }
1032
process_write(struct rtrs_srv_con * con,struct rtrs_msg_rdma_write * req,u32 buf_id,u32 off)1033 static void process_write(struct rtrs_srv_con *con,
1034 struct rtrs_msg_rdma_write *req,
1035 u32 buf_id, u32 off)
1036 {
1037 struct rtrs_sess *s = con->c.sess;
1038 struct rtrs_srv_sess *sess = to_srv_sess(s);
1039 struct rtrs_srv *srv = sess->srv;
1040 struct rtrs_srv_ctx *ctx = srv->ctx;
1041 struct rtrs_srv_op *id;
1042
1043 size_t data_len, usr_len;
1044 void *data;
1045 int ret;
1046
1047 if (unlikely(sess->state != RTRS_SRV_CONNECTED)) {
1048 rtrs_err_rl(s,
1049 "Processing write request failed, session is disconnected, sess state %s\n",
1050 rtrs_srv_state_str(sess->state));
1051 return;
1052 }
1053 rtrs_srv_get_ops_ids(sess);
1054 rtrs_srv_update_rdma_stats(sess->stats, off, WRITE);
1055 id = sess->ops_ids[buf_id];
1056 id->con = con;
1057 id->dir = WRITE;
1058 id->msg_id = buf_id;
1059
1060 usr_len = le16_to_cpu(req->usr_len);
1061 data_len = off - usr_len;
1062 data = page_address(srv->chunks[buf_id]);
1063 ret = ctx->ops.rdma_ev(srv, srv->priv, id, WRITE, data, data_len,
1064 data + data_len, usr_len);
1065 if (unlikely(ret)) {
1066 rtrs_err_rl(s,
1067 "Processing write request failed, user module callback reports err: %d\n",
1068 ret);
1069 goto send_err_msg;
1070 }
1071
1072 return;
1073
1074 send_err_msg:
1075 ret = send_io_resp_imm(con, id, ret);
1076 if (ret < 0) {
1077 rtrs_err_rl(s,
1078 "Processing write request failed, sending I/O response failed, msg_id %d, err: %d\n",
1079 buf_id, ret);
1080 close_sess(sess);
1081 }
1082 rtrs_srv_put_ops_ids(sess);
1083 }
1084
process_io_req(struct rtrs_srv_con * con,void * msg,u32 id,u32 off)1085 static void process_io_req(struct rtrs_srv_con *con, void *msg,
1086 u32 id, u32 off)
1087 {
1088 struct rtrs_sess *s = con->c.sess;
1089 struct rtrs_srv_sess *sess = to_srv_sess(s);
1090 struct rtrs_msg_rdma_hdr *hdr;
1091 unsigned int type;
1092
1093 ib_dma_sync_single_for_cpu(sess->s.dev->ib_dev, sess->dma_addr[id],
1094 max_chunk_size, DMA_BIDIRECTIONAL);
1095 hdr = msg;
1096 type = le16_to_cpu(hdr->type);
1097
1098 switch (type) {
1099 case RTRS_MSG_WRITE:
1100 process_write(con, msg, id, off);
1101 break;
1102 case RTRS_MSG_READ:
1103 process_read(con, msg, id, off);
1104 break;
1105 default:
1106 rtrs_err(s,
1107 "Processing I/O request failed, unknown message type received: 0x%02x\n",
1108 type);
1109 goto err;
1110 }
1111
1112 return;
1113
1114 err:
1115 close_sess(sess);
1116 }
1117
rtrs_srv_inv_rkey_done(struct ib_cq * cq,struct ib_wc * wc)1118 static void rtrs_srv_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1119 {
1120 struct rtrs_srv_mr *mr =
1121 container_of(wc->wr_cqe, typeof(*mr), inv_cqe);
1122 struct rtrs_srv_con *con = cq->cq_context;
1123 struct rtrs_sess *s = con->c.sess;
1124 struct rtrs_srv_sess *sess = to_srv_sess(s);
1125 struct rtrs_srv *srv = sess->srv;
1126 u32 msg_id, off;
1127 void *data;
1128
1129 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1130 rtrs_err(s, "Failed IB_WR_LOCAL_INV: %s\n",
1131 ib_wc_status_msg(wc->status));
1132 close_sess(sess);
1133 }
1134 msg_id = mr->msg_id;
1135 off = mr->msg_off;
1136 data = page_address(srv->chunks[msg_id]) + off;
1137 process_io_req(con, data, msg_id, off);
1138 }
1139
rtrs_srv_inv_rkey(struct rtrs_srv_con * con,struct rtrs_srv_mr * mr)1140 static int rtrs_srv_inv_rkey(struct rtrs_srv_con *con,
1141 struct rtrs_srv_mr *mr)
1142 {
1143 struct ib_send_wr wr = {
1144 .opcode = IB_WR_LOCAL_INV,
1145 .wr_cqe = &mr->inv_cqe,
1146 .send_flags = IB_SEND_SIGNALED,
1147 .ex.invalidate_rkey = mr->mr->rkey,
1148 };
1149 mr->inv_cqe.done = rtrs_srv_inv_rkey_done;
1150
1151 return ib_post_send(con->c.qp, &wr, NULL);
1152 }
1153
rtrs_rdma_process_wr_wait_list(struct rtrs_srv_con * con)1154 static void rtrs_rdma_process_wr_wait_list(struct rtrs_srv_con *con)
1155 {
1156 spin_lock(&con->rsp_wr_wait_lock);
1157 while (!list_empty(&con->rsp_wr_wait_list)) {
1158 struct rtrs_srv_op *id;
1159 int ret;
1160
1161 id = list_entry(con->rsp_wr_wait_list.next,
1162 struct rtrs_srv_op, wait_list);
1163 list_del(&id->wait_list);
1164
1165 spin_unlock(&con->rsp_wr_wait_lock);
1166 ret = rtrs_srv_resp_rdma(id, id->status);
1167 spin_lock(&con->rsp_wr_wait_lock);
1168
1169 if (!ret) {
1170 list_add(&id->wait_list, &con->rsp_wr_wait_list);
1171 break;
1172 }
1173 }
1174 spin_unlock(&con->rsp_wr_wait_lock);
1175 }
1176
rtrs_srv_rdma_done(struct ib_cq * cq,struct ib_wc * wc)1177 static void rtrs_srv_rdma_done(struct ib_cq *cq, struct ib_wc *wc)
1178 {
1179 struct rtrs_srv_con *con = cq->cq_context;
1180 struct rtrs_sess *s = con->c.sess;
1181 struct rtrs_srv_sess *sess = to_srv_sess(s);
1182 struct rtrs_srv *srv = sess->srv;
1183 u32 imm_type, imm_payload;
1184 int err;
1185
1186 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1187 if (wc->status != IB_WC_WR_FLUSH_ERR) {
1188 rtrs_err(s,
1189 "%s (wr_cqe: %p, type: %d, vendor_err: 0x%x, len: %u)\n",
1190 ib_wc_status_msg(wc->status), wc->wr_cqe,
1191 wc->opcode, wc->vendor_err, wc->byte_len);
1192 close_sess(sess);
1193 }
1194 return;
1195 }
1196
1197 switch (wc->opcode) {
1198 case IB_WC_RECV_RDMA_WITH_IMM:
1199 /*
1200 * post_recv() RDMA write completions of IO reqs (read/write)
1201 * and hb
1202 */
1203 if (WARN_ON(wc->wr_cqe != &io_comp_cqe))
1204 return;
1205 err = rtrs_post_recv_empty(&con->c, &io_comp_cqe);
1206 if (unlikely(err)) {
1207 rtrs_err(s, "rtrs_post_recv(), err: %d\n", err);
1208 close_sess(sess);
1209 break;
1210 }
1211 rtrs_from_imm(be32_to_cpu(wc->ex.imm_data),
1212 &imm_type, &imm_payload);
1213 if (likely(imm_type == RTRS_IO_REQ_IMM)) {
1214 u32 msg_id, off;
1215 void *data;
1216
1217 msg_id = imm_payload >> sess->mem_bits;
1218 off = imm_payload & ((1 << sess->mem_bits) - 1);
1219 if (unlikely(msg_id >= srv->queue_depth ||
1220 off >= max_chunk_size)) {
1221 rtrs_err(s, "Wrong msg_id %u, off %u\n",
1222 msg_id, off);
1223 close_sess(sess);
1224 return;
1225 }
1226 if (always_invalidate) {
1227 struct rtrs_srv_mr *mr = &sess->mrs[msg_id];
1228
1229 mr->msg_off = off;
1230 mr->msg_id = msg_id;
1231 err = rtrs_srv_inv_rkey(con, mr);
1232 if (unlikely(err)) {
1233 rtrs_err(s, "rtrs_post_recv(), err: %d\n",
1234 err);
1235 close_sess(sess);
1236 break;
1237 }
1238 } else {
1239 data = page_address(srv->chunks[msg_id]) + off;
1240 process_io_req(con, data, msg_id, off);
1241 }
1242 } else if (imm_type == RTRS_HB_MSG_IMM) {
1243 WARN_ON(con->c.cid);
1244 rtrs_send_hb_ack(&sess->s);
1245 } else if (imm_type == RTRS_HB_ACK_IMM) {
1246 WARN_ON(con->c.cid);
1247 sess->s.hb_missed_cnt = 0;
1248 } else {
1249 rtrs_wrn(s, "Unknown IMM type %u\n", imm_type);
1250 }
1251 break;
1252 case IB_WC_RDMA_WRITE:
1253 case IB_WC_SEND:
1254 /*
1255 * post_send() RDMA write completions of IO reqs (read/write)
1256 * and hb
1257 */
1258 atomic_add(srv->queue_depth, &con->sq_wr_avail);
1259
1260 if (unlikely(!list_empty_careful(&con->rsp_wr_wait_list)))
1261 rtrs_rdma_process_wr_wait_list(con);
1262
1263 break;
1264 default:
1265 rtrs_wrn(s, "Unexpected WC type: %d\n", wc->opcode);
1266 return;
1267 }
1268 }
1269
1270 /**
1271 * rtrs_srv_get_sess_name() - Get rtrs_srv peer hostname.
1272 * @srv: Session
1273 * @sessname: Sessname buffer
1274 * @len: Length of sessname buffer
1275 */
rtrs_srv_get_sess_name(struct rtrs_srv * srv,char * sessname,size_t len)1276 int rtrs_srv_get_sess_name(struct rtrs_srv *srv, char *sessname, size_t len)
1277 {
1278 struct rtrs_srv_sess *sess;
1279 int err = -ENOTCONN;
1280
1281 mutex_lock(&srv->paths_mutex);
1282 list_for_each_entry(sess, &srv->paths_list, s.entry) {
1283 if (sess->state != RTRS_SRV_CONNECTED)
1284 continue;
1285 strlcpy(sessname, sess->s.sessname,
1286 min_t(size_t, sizeof(sess->s.sessname), len));
1287 err = 0;
1288 break;
1289 }
1290 mutex_unlock(&srv->paths_mutex);
1291
1292 return err;
1293 }
1294 EXPORT_SYMBOL(rtrs_srv_get_sess_name);
1295
1296 /**
1297 * rtrs_srv_get_sess_qdepth() - Get rtrs_srv qdepth.
1298 * @srv: Session
1299 */
rtrs_srv_get_queue_depth(struct rtrs_srv * srv)1300 int rtrs_srv_get_queue_depth(struct rtrs_srv *srv)
1301 {
1302 return srv->queue_depth;
1303 }
1304 EXPORT_SYMBOL(rtrs_srv_get_queue_depth);
1305
find_next_bit_ring(struct rtrs_srv_sess * sess)1306 static int find_next_bit_ring(struct rtrs_srv_sess *sess)
1307 {
1308 struct ib_device *ib_dev = sess->s.dev->ib_dev;
1309 int v;
1310
1311 v = cpumask_next(sess->cur_cq_vector, &cq_affinity_mask);
1312 if (v >= nr_cpu_ids || v >= ib_dev->num_comp_vectors)
1313 v = cpumask_first(&cq_affinity_mask);
1314 return v;
1315 }
1316
rtrs_srv_get_next_cq_vector(struct rtrs_srv_sess * sess)1317 static int rtrs_srv_get_next_cq_vector(struct rtrs_srv_sess *sess)
1318 {
1319 sess->cur_cq_vector = find_next_bit_ring(sess);
1320
1321 return sess->cur_cq_vector;
1322 }
1323
rtrs_srv_dev_release(struct device * dev)1324 static void rtrs_srv_dev_release(struct device *dev)
1325 {
1326 struct rtrs_srv *srv = container_of(dev, struct rtrs_srv, dev);
1327
1328 kfree(srv);
1329 }
1330
__alloc_srv(struct rtrs_srv_ctx * ctx,const uuid_t * paths_uuid)1331 static struct rtrs_srv *__alloc_srv(struct rtrs_srv_ctx *ctx,
1332 const uuid_t *paths_uuid)
1333 {
1334 struct rtrs_srv *srv;
1335 int i;
1336
1337 srv = kzalloc(sizeof(*srv), GFP_KERNEL);
1338 if (!srv)
1339 return NULL;
1340
1341 refcount_set(&srv->refcount, 1);
1342 INIT_LIST_HEAD(&srv->paths_list);
1343 mutex_init(&srv->paths_mutex);
1344 mutex_init(&srv->paths_ev_mutex);
1345 uuid_copy(&srv->paths_uuid, paths_uuid);
1346 srv->queue_depth = sess_queue_depth;
1347 srv->ctx = ctx;
1348 device_initialize(&srv->dev);
1349 srv->dev.release = rtrs_srv_dev_release;
1350
1351 srv->chunks = kcalloc(srv->queue_depth, sizeof(*srv->chunks),
1352 GFP_KERNEL);
1353 if (!srv->chunks)
1354 goto err_free_srv;
1355
1356 for (i = 0; i < srv->queue_depth; i++) {
1357 srv->chunks[i] = mempool_alloc(chunk_pool, GFP_KERNEL);
1358 if (!srv->chunks[i])
1359 goto err_free_chunks;
1360 }
1361 list_add(&srv->ctx_list, &ctx->srv_list);
1362
1363 return srv;
1364
1365 err_free_chunks:
1366 while (i--)
1367 mempool_free(srv->chunks[i], chunk_pool);
1368 kfree(srv->chunks);
1369
1370 err_free_srv:
1371 kfree(srv);
1372
1373 return NULL;
1374 }
1375
free_srv(struct rtrs_srv * srv)1376 static void free_srv(struct rtrs_srv *srv)
1377 {
1378 int i;
1379
1380 WARN_ON(refcount_read(&srv->refcount));
1381 for (i = 0; i < srv->queue_depth; i++)
1382 mempool_free(srv->chunks[i], chunk_pool);
1383 kfree(srv->chunks);
1384 mutex_destroy(&srv->paths_mutex);
1385 mutex_destroy(&srv->paths_ev_mutex);
1386 /* last put to release the srv structure */
1387 put_device(&srv->dev);
1388 }
1389
__find_srv_and_get(struct rtrs_srv_ctx * ctx,const uuid_t * paths_uuid)1390 static inline struct rtrs_srv *__find_srv_and_get(struct rtrs_srv_ctx *ctx,
1391 const uuid_t *paths_uuid)
1392 {
1393 struct rtrs_srv *srv;
1394
1395 list_for_each_entry(srv, &ctx->srv_list, ctx_list) {
1396 if (uuid_equal(&srv->paths_uuid, paths_uuid) &&
1397 refcount_inc_not_zero(&srv->refcount))
1398 return srv;
1399 }
1400
1401 return NULL;
1402 }
1403
get_or_create_srv(struct rtrs_srv_ctx * ctx,const uuid_t * paths_uuid)1404 static struct rtrs_srv *get_or_create_srv(struct rtrs_srv_ctx *ctx,
1405 const uuid_t *paths_uuid)
1406 {
1407 struct rtrs_srv *srv;
1408
1409 mutex_lock(&ctx->srv_mutex);
1410 srv = __find_srv_and_get(ctx, paths_uuid);
1411 if (!srv)
1412 srv = __alloc_srv(ctx, paths_uuid);
1413 mutex_unlock(&ctx->srv_mutex);
1414
1415 return srv;
1416 }
1417
put_srv(struct rtrs_srv * srv)1418 static void put_srv(struct rtrs_srv *srv)
1419 {
1420 if (refcount_dec_and_test(&srv->refcount)) {
1421 struct rtrs_srv_ctx *ctx = srv->ctx;
1422
1423 WARN_ON(srv->dev.kobj.state_in_sysfs);
1424
1425 mutex_lock(&ctx->srv_mutex);
1426 list_del(&srv->ctx_list);
1427 mutex_unlock(&ctx->srv_mutex);
1428 free_srv(srv);
1429 }
1430 }
1431
__add_path_to_srv(struct rtrs_srv * srv,struct rtrs_srv_sess * sess)1432 static void __add_path_to_srv(struct rtrs_srv *srv,
1433 struct rtrs_srv_sess *sess)
1434 {
1435 list_add_tail(&sess->s.entry, &srv->paths_list);
1436 srv->paths_num++;
1437 WARN_ON(srv->paths_num >= MAX_PATHS_NUM);
1438 }
1439
del_path_from_srv(struct rtrs_srv_sess * sess)1440 static void del_path_from_srv(struct rtrs_srv_sess *sess)
1441 {
1442 struct rtrs_srv *srv = sess->srv;
1443
1444 if (WARN_ON(!srv))
1445 return;
1446
1447 mutex_lock(&srv->paths_mutex);
1448 list_del(&sess->s.entry);
1449 WARN_ON(!srv->paths_num);
1450 srv->paths_num--;
1451 mutex_unlock(&srv->paths_mutex);
1452 }
1453
1454 /* return true if addresses are the same, error other wise */
sockaddr_cmp(const struct sockaddr * a,const struct sockaddr * b)1455 static int sockaddr_cmp(const struct sockaddr *a, const struct sockaddr *b)
1456 {
1457 switch (a->sa_family) {
1458 case AF_IB:
1459 return memcmp(&((struct sockaddr_ib *)a)->sib_addr,
1460 &((struct sockaddr_ib *)b)->sib_addr,
1461 sizeof(struct ib_addr)) &&
1462 (b->sa_family == AF_IB);
1463 case AF_INET:
1464 return memcmp(&((struct sockaddr_in *)a)->sin_addr,
1465 &((struct sockaddr_in *)b)->sin_addr,
1466 sizeof(struct in_addr)) &&
1467 (b->sa_family == AF_INET);
1468 case AF_INET6:
1469 return memcmp(&((struct sockaddr_in6 *)a)->sin6_addr,
1470 &((struct sockaddr_in6 *)b)->sin6_addr,
1471 sizeof(struct in6_addr)) &&
1472 (b->sa_family == AF_INET6);
1473 default:
1474 return -ENOENT;
1475 }
1476 }
1477
__is_path_w_addr_exists(struct rtrs_srv * srv,struct rdma_addr * addr)1478 static bool __is_path_w_addr_exists(struct rtrs_srv *srv,
1479 struct rdma_addr *addr)
1480 {
1481 struct rtrs_srv_sess *sess;
1482
1483 list_for_each_entry(sess, &srv->paths_list, s.entry)
1484 if (!sockaddr_cmp((struct sockaddr *)&sess->s.dst_addr,
1485 (struct sockaddr *)&addr->dst_addr) &&
1486 !sockaddr_cmp((struct sockaddr *)&sess->s.src_addr,
1487 (struct sockaddr *)&addr->src_addr))
1488 return true;
1489
1490 return false;
1491 }
1492
free_sess(struct rtrs_srv_sess * sess)1493 static void free_sess(struct rtrs_srv_sess *sess)
1494 {
1495 if (sess->kobj.state_in_sysfs)
1496 kobject_put(&sess->kobj);
1497 else
1498 kfree(sess);
1499 }
1500
rtrs_srv_close_work(struct work_struct * work)1501 static void rtrs_srv_close_work(struct work_struct *work)
1502 {
1503 struct rtrs_srv_sess *sess;
1504 struct rtrs_srv_con *con;
1505 int i;
1506
1507 sess = container_of(work, typeof(*sess), close_work);
1508
1509 rtrs_srv_destroy_sess_files(sess);
1510 rtrs_srv_stop_hb(sess);
1511
1512 for (i = 0; i < sess->s.con_num; i++) {
1513 if (!sess->s.con[i])
1514 continue;
1515 con = to_srv_con(sess->s.con[i]);
1516 rdma_disconnect(con->c.cm_id);
1517 ib_drain_qp(con->c.qp);
1518 }
1519 /* Wait for all inflights */
1520 rtrs_srv_wait_ops_ids(sess);
1521
1522 /* Notify upper layer if we are the last path */
1523 rtrs_srv_sess_down(sess);
1524
1525 unmap_cont_bufs(sess);
1526 rtrs_srv_free_ops_ids(sess);
1527
1528 for (i = 0; i < sess->s.con_num; i++) {
1529 if (!sess->s.con[i])
1530 continue;
1531 con = to_srv_con(sess->s.con[i]);
1532 rtrs_cq_qp_destroy(&con->c);
1533 rdma_destroy_id(con->c.cm_id);
1534 kfree(con);
1535 }
1536 rtrs_ib_dev_put(sess->s.dev);
1537
1538 del_path_from_srv(sess);
1539 put_srv(sess->srv);
1540 sess->srv = NULL;
1541 rtrs_srv_change_state(sess, RTRS_SRV_CLOSED);
1542
1543 kfree(sess->dma_addr);
1544 kfree(sess->s.con);
1545 free_sess(sess);
1546 }
1547
rtrs_rdma_do_accept(struct rtrs_srv_sess * sess,struct rdma_cm_id * cm_id)1548 static int rtrs_rdma_do_accept(struct rtrs_srv_sess *sess,
1549 struct rdma_cm_id *cm_id)
1550 {
1551 struct rtrs_srv *srv = sess->srv;
1552 struct rtrs_msg_conn_rsp msg;
1553 struct rdma_conn_param param;
1554 int err;
1555
1556 param = (struct rdma_conn_param) {
1557 .rnr_retry_count = 7,
1558 .private_data = &msg,
1559 .private_data_len = sizeof(msg),
1560 };
1561
1562 msg = (struct rtrs_msg_conn_rsp) {
1563 .magic = cpu_to_le16(RTRS_MAGIC),
1564 .version = cpu_to_le16(RTRS_PROTO_VER),
1565 .queue_depth = cpu_to_le16(srv->queue_depth),
1566 .max_io_size = cpu_to_le32(max_chunk_size - MAX_HDR_SIZE),
1567 .max_hdr_size = cpu_to_le32(MAX_HDR_SIZE),
1568 };
1569
1570 if (always_invalidate)
1571 msg.flags = cpu_to_le32(RTRS_MSG_NEW_RKEY_F);
1572
1573 err = rdma_accept(cm_id, ¶m);
1574 if (err)
1575 pr_err("rdma_accept(), err: %d\n", err);
1576
1577 return err;
1578 }
1579
rtrs_rdma_do_reject(struct rdma_cm_id * cm_id,int errno)1580 static int rtrs_rdma_do_reject(struct rdma_cm_id *cm_id, int errno)
1581 {
1582 struct rtrs_msg_conn_rsp msg;
1583 int err;
1584
1585 msg = (struct rtrs_msg_conn_rsp) {
1586 .magic = cpu_to_le16(RTRS_MAGIC),
1587 .version = cpu_to_le16(RTRS_PROTO_VER),
1588 .errno = cpu_to_le16(errno),
1589 };
1590
1591 err = rdma_reject(cm_id, &msg, sizeof(msg), IB_CM_REJ_CONSUMER_DEFINED);
1592 if (err)
1593 pr_err("rdma_reject(), err: %d\n", err);
1594
1595 /* Bounce errno back */
1596 return errno;
1597 }
1598
1599 static struct rtrs_srv_sess *
__find_sess(struct rtrs_srv * srv,const uuid_t * sess_uuid)1600 __find_sess(struct rtrs_srv *srv, const uuid_t *sess_uuid)
1601 {
1602 struct rtrs_srv_sess *sess;
1603
1604 list_for_each_entry(sess, &srv->paths_list, s.entry) {
1605 if (uuid_equal(&sess->s.uuid, sess_uuid))
1606 return sess;
1607 }
1608
1609 return NULL;
1610 }
1611
create_con(struct rtrs_srv_sess * sess,struct rdma_cm_id * cm_id,unsigned int cid)1612 static int create_con(struct rtrs_srv_sess *sess,
1613 struct rdma_cm_id *cm_id,
1614 unsigned int cid)
1615 {
1616 struct rtrs_srv *srv = sess->srv;
1617 struct rtrs_sess *s = &sess->s;
1618 struct rtrs_srv_con *con;
1619
1620 u16 cq_size, wr_queue_size;
1621 int err, cq_vector;
1622
1623 con = kzalloc(sizeof(*con), GFP_KERNEL);
1624 if (!con) {
1625 err = -ENOMEM;
1626 goto err;
1627 }
1628
1629 spin_lock_init(&con->rsp_wr_wait_lock);
1630 INIT_LIST_HEAD(&con->rsp_wr_wait_list);
1631 con->c.cm_id = cm_id;
1632 con->c.sess = &sess->s;
1633 con->c.cid = cid;
1634 atomic_set(&con->wr_cnt, 0);
1635
1636 if (con->c.cid == 0) {
1637 /*
1638 * All receive and all send (each requiring invalidate)
1639 * + 2 for drain and heartbeat
1640 */
1641 wr_queue_size = SERVICE_CON_QUEUE_DEPTH * 3 + 2;
1642 cq_size = wr_queue_size;
1643 } else {
1644 /*
1645 * If we have all receive requests posted and
1646 * all write requests posted and each read request
1647 * requires an invalidate request + drain
1648 * and qp gets into error state.
1649 */
1650 cq_size = srv->queue_depth * 3 + 1;
1651 /*
1652 * In theory we might have queue_depth * 32
1653 * outstanding requests if an unsafe global key is used
1654 * and we have queue_depth read requests each consisting
1655 * of 32 different addresses. div 3 for mlx5.
1656 */
1657 wr_queue_size = sess->s.dev->ib_dev->attrs.max_qp_wr / 3;
1658 }
1659 atomic_set(&con->sq_wr_avail, wr_queue_size);
1660 cq_vector = rtrs_srv_get_next_cq_vector(sess);
1661
1662 /* TODO: SOFTIRQ can be faster, but be careful with softirq context */
1663 err = rtrs_cq_qp_create(&sess->s, &con->c, 1, cq_vector, cq_size,
1664 wr_queue_size, IB_POLL_WORKQUEUE);
1665 if (err) {
1666 rtrs_err(s, "rtrs_cq_qp_create(), err: %d\n", err);
1667 goto free_con;
1668 }
1669 if (con->c.cid == 0) {
1670 err = post_recv_info_req(con);
1671 if (err)
1672 goto free_cqqp;
1673 }
1674 WARN_ON(sess->s.con[cid]);
1675 sess->s.con[cid] = &con->c;
1676
1677 /*
1678 * Change context from server to current connection. The other
1679 * way is to use cm_id->qp->qp_context, which does not work on OFED.
1680 */
1681 cm_id->context = &con->c;
1682
1683 return 0;
1684
1685 free_cqqp:
1686 rtrs_cq_qp_destroy(&con->c);
1687 free_con:
1688 kfree(con);
1689
1690 err:
1691 return err;
1692 }
1693
__alloc_sess(struct rtrs_srv * srv,struct rdma_cm_id * cm_id,unsigned int con_num,unsigned int recon_cnt,const uuid_t * uuid)1694 static struct rtrs_srv_sess *__alloc_sess(struct rtrs_srv *srv,
1695 struct rdma_cm_id *cm_id,
1696 unsigned int con_num,
1697 unsigned int recon_cnt,
1698 const uuid_t *uuid)
1699 {
1700 struct rtrs_srv_sess *sess;
1701 int err = -ENOMEM;
1702
1703 if (srv->paths_num >= MAX_PATHS_NUM) {
1704 err = -ECONNRESET;
1705 goto err;
1706 }
1707 if (__is_path_w_addr_exists(srv, &cm_id->route.addr)) {
1708 err = -EEXIST;
1709 pr_err("Path with same addr exists\n");
1710 goto err;
1711 }
1712 sess = kzalloc(sizeof(*sess), GFP_KERNEL);
1713 if (!sess)
1714 goto err;
1715
1716 sess->stats = kzalloc(sizeof(*sess->stats), GFP_KERNEL);
1717 if (!sess->stats)
1718 goto err_free_sess;
1719
1720 sess->stats->sess = sess;
1721
1722 sess->dma_addr = kcalloc(srv->queue_depth, sizeof(*sess->dma_addr),
1723 GFP_KERNEL);
1724 if (!sess->dma_addr)
1725 goto err_free_stats;
1726
1727 sess->s.con = kcalloc(con_num, sizeof(*sess->s.con), GFP_KERNEL);
1728 if (!sess->s.con)
1729 goto err_free_dma_addr;
1730
1731 sess->state = RTRS_SRV_CONNECTING;
1732 sess->srv = srv;
1733 sess->cur_cq_vector = -1;
1734 sess->s.dst_addr = cm_id->route.addr.dst_addr;
1735 sess->s.src_addr = cm_id->route.addr.src_addr;
1736 sess->s.con_num = con_num;
1737 sess->s.recon_cnt = recon_cnt;
1738 uuid_copy(&sess->s.uuid, uuid);
1739 spin_lock_init(&sess->state_lock);
1740 INIT_WORK(&sess->close_work, rtrs_srv_close_work);
1741 rtrs_srv_init_hb(sess);
1742
1743 sess->s.dev = rtrs_ib_dev_find_or_add(cm_id->device, &dev_pd);
1744 if (!sess->s.dev) {
1745 err = -ENOMEM;
1746 goto err_free_con;
1747 }
1748 err = map_cont_bufs(sess);
1749 if (err)
1750 goto err_put_dev;
1751
1752 err = rtrs_srv_alloc_ops_ids(sess);
1753 if (err)
1754 goto err_unmap_bufs;
1755
1756 __add_path_to_srv(srv, sess);
1757
1758 return sess;
1759
1760 err_unmap_bufs:
1761 unmap_cont_bufs(sess);
1762 err_put_dev:
1763 rtrs_ib_dev_put(sess->s.dev);
1764 err_free_con:
1765 kfree(sess->s.con);
1766 err_free_dma_addr:
1767 kfree(sess->dma_addr);
1768 err_free_stats:
1769 kfree(sess->stats);
1770 err_free_sess:
1771 kfree(sess);
1772 err:
1773 return ERR_PTR(err);
1774 }
1775
rtrs_rdma_connect(struct rdma_cm_id * cm_id,const struct rtrs_msg_conn_req * msg,size_t len)1776 static int rtrs_rdma_connect(struct rdma_cm_id *cm_id,
1777 const struct rtrs_msg_conn_req *msg,
1778 size_t len)
1779 {
1780 struct rtrs_srv_ctx *ctx = cm_id->context;
1781 struct rtrs_srv_sess *sess;
1782 struct rtrs_srv *srv;
1783
1784 u16 version, con_num, cid;
1785 u16 recon_cnt;
1786 int err;
1787
1788 if (len < sizeof(*msg)) {
1789 pr_err("Invalid RTRS connection request\n");
1790 goto reject_w_econnreset;
1791 }
1792 if (le16_to_cpu(msg->magic) != RTRS_MAGIC) {
1793 pr_err("Invalid RTRS magic\n");
1794 goto reject_w_econnreset;
1795 }
1796 version = le16_to_cpu(msg->version);
1797 if (version >> 8 != RTRS_PROTO_VER_MAJOR) {
1798 pr_err("Unsupported major RTRS version: %d, expected %d\n",
1799 version >> 8, RTRS_PROTO_VER_MAJOR);
1800 goto reject_w_econnreset;
1801 }
1802 con_num = le16_to_cpu(msg->cid_num);
1803 if (con_num > 4096) {
1804 /* Sanity check */
1805 pr_err("Too many connections requested: %d\n", con_num);
1806 goto reject_w_econnreset;
1807 }
1808 cid = le16_to_cpu(msg->cid);
1809 if (cid >= con_num) {
1810 /* Sanity check */
1811 pr_err("Incorrect cid: %d >= %d\n", cid, con_num);
1812 goto reject_w_econnreset;
1813 }
1814 recon_cnt = le16_to_cpu(msg->recon_cnt);
1815 srv = get_or_create_srv(ctx, &msg->paths_uuid);
1816 if (!srv) {
1817 err = -ENOMEM;
1818 goto reject_w_err;
1819 }
1820 mutex_lock(&srv->paths_mutex);
1821 sess = __find_sess(srv, &msg->sess_uuid);
1822 if (sess) {
1823 struct rtrs_sess *s = &sess->s;
1824
1825 /* Session already holds a reference */
1826 put_srv(srv);
1827
1828 if (sess->state != RTRS_SRV_CONNECTING) {
1829 rtrs_err(s, "Session in wrong state: %s\n",
1830 rtrs_srv_state_str(sess->state));
1831 mutex_unlock(&srv->paths_mutex);
1832 goto reject_w_econnreset;
1833 }
1834 /*
1835 * Sanity checks
1836 */
1837 if (con_num != s->con_num || cid >= s->con_num) {
1838 rtrs_err(s, "Incorrect request: %d, %d\n",
1839 cid, con_num);
1840 mutex_unlock(&srv->paths_mutex);
1841 goto reject_w_econnreset;
1842 }
1843 if (s->con[cid]) {
1844 rtrs_err(s, "Connection already exists: %d\n",
1845 cid);
1846 mutex_unlock(&srv->paths_mutex);
1847 goto reject_w_econnreset;
1848 }
1849 } else {
1850 sess = __alloc_sess(srv, cm_id, con_num, recon_cnt,
1851 &msg->sess_uuid);
1852 if (IS_ERR(sess)) {
1853 mutex_unlock(&srv->paths_mutex);
1854 put_srv(srv);
1855 err = PTR_ERR(sess);
1856 goto reject_w_err;
1857 }
1858 }
1859 err = create_con(sess, cm_id, cid);
1860 if (err) {
1861 (void)rtrs_rdma_do_reject(cm_id, err);
1862 /*
1863 * Since session has other connections we follow normal way
1864 * through workqueue, but still return an error to tell cma.c
1865 * to call rdma_destroy_id() for current connection.
1866 */
1867 goto close_and_return_err;
1868 }
1869 err = rtrs_rdma_do_accept(sess, cm_id);
1870 if (err) {
1871 (void)rtrs_rdma_do_reject(cm_id, err);
1872 /*
1873 * Since current connection was successfully added to the
1874 * session we follow normal way through workqueue to close the
1875 * session, thus return 0 to tell cma.c we call
1876 * rdma_destroy_id() ourselves.
1877 */
1878 err = 0;
1879 goto close_and_return_err;
1880 }
1881 mutex_unlock(&srv->paths_mutex);
1882
1883 return 0;
1884
1885 reject_w_err:
1886 return rtrs_rdma_do_reject(cm_id, err);
1887
1888 reject_w_econnreset:
1889 return rtrs_rdma_do_reject(cm_id, -ECONNRESET);
1890
1891 close_and_return_err:
1892 close_sess(sess);
1893 mutex_unlock(&srv->paths_mutex);
1894
1895 return err;
1896 }
1897
rtrs_srv_rdma_cm_handler(struct rdma_cm_id * cm_id,struct rdma_cm_event * ev)1898 static int rtrs_srv_rdma_cm_handler(struct rdma_cm_id *cm_id,
1899 struct rdma_cm_event *ev)
1900 {
1901 struct rtrs_srv_sess *sess = NULL;
1902 struct rtrs_sess *s = NULL;
1903
1904 if (ev->event != RDMA_CM_EVENT_CONNECT_REQUEST) {
1905 struct rtrs_con *c = cm_id->context;
1906
1907 s = c->sess;
1908 sess = to_srv_sess(s);
1909 }
1910
1911 switch (ev->event) {
1912 case RDMA_CM_EVENT_CONNECT_REQUEST:
1913 /*
1914 * In case of error cma.c will destroy cm_id,
1915 * see cma_process_remove()
1916 */
1917 return rtrs_rdma_connect(cm_id, ev->param.conn.private_data,
1918 ev->param.conn.private_data_len);
1919 case RDMA_CM_EVENT_ESTABLISHED:
1920 /* Nothing here */
1921 break;
1922 case RDMA_CM_EVENT_REJECTED:
1923 case RDMA_CM_EVENT_CONNECT_ERROR:
1924 case RDMA_CM_EVENT_UNREACHABLE:
1925 rtrs_err(s, "CM error (CM event: %s, err: %d)\n",
1926 rdma_event_msg(ev->event), ev->status);
1927 close_sess(sess);
1928 break;
1929 case RDMA_CM_EVENT_DISCONNECTED:
1930 case RDMA_CM_EVENT_ADDR_CHANGE:
1931 case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1932 close_sess(sess);
1933 break;
1934 case RDMA_CM_EVENT_DEVICE_REMOVAL:
1935 close_sess(sess);
1936 break;
1937 default:
1938 pr_err("Ignoring unexpected CM event %s, err %d\n",
1939 rdma_event_msg(ev->event), ev->status);
1940 break;
1941 }
1942
1943 return 0;
1944 }
1945
rtrs_srv_cm_init(struct rtrs_srv_ctx * ctx,struct sockaddr * addr,enum rdma_ucm_port_space ps)1946 static struct rdma_cm_id *rtrs_srv_cm_init(struct rtrs_srv_ctx *ctx,
1947 struct sockaddr *addr,
1948 enum rdma_ucm_port_space ps)
1949 {
1950 struct rdma_cm_id *cm_id;
1951 int ret;
1952
1953 cm_id = rdma_create_id(&init_net, rtrs_srv_rdma_cm_handler,
1954 ctx, ps, IB_QPT_RC);
1955 if (IS_ERR(cm_id)) {
1956 ret = PTR_ERR(cm_id);
1957 pr_err("Creating id for RDMA connection failed, err: %d\n",
1958 ret);
1959 goto err_out;
1960 }
1961 ret = rdma_bind_addr(cm_id, addr);
1962 if (ret) {
1963 pr_err("Binding RDMA address failed, err: %d\n", ret);
1964 goto err_cm;
1965 }
1966 ret = rdma_listen(cm_id, 64);
1967 if (ret) {
1968 pr_err("Listening on RDMA connection failed, err: %d\n",
1969 ret);
1970 goto err_cm;
1971 }
1972
1973 return cm_id;
1974
1975 err_cm:
1976 rdma_destroy_id(cm_id);
1977 err_out:
1978
1979 return ERR_PTR(ret);
1980 }
1981
rtrs_srv_rdma_init(struct rtrs_srv_ctx * ctx,u16 port)1982 static int rtrs_srv_rdma_init(struct rtrs_srv_ctx *ctx, u16 port)
1983 {
1984 struct sockaddr_in6 sin = {
1985 .sin6_family = AF_INET6,
1986 .sin6_addr = IN6ADDR_ANY_INIT,
1987 .sin6_port = htons(port),
1988 };
1989 struct sockaddr_ib sib = {
1990 .sib_family = AF_IB,
1991 .sib_sid = cpu_to_be64(RDMA_IB_IP_PS_IB | port),
1992 .sib_sid_mask = cpu_to_be64(0xffffffffffffffffULL),
1993 .sib_pkey = cpu_to_be16(0xffff),
1994 };
1995 struct rdma_cm_id *cm_ip, *cm_ib;
1996 int ret;
1997
1998 /*
1999 * We accept both IPoIB and IB connections, so we need to keep
2000 * two cm id's, one for each socket type and port space.
2001 * If the cm initialization of one of the id's fails, we abort
2002 * everything.
2003 */
2004 cm_ip = rtrs_srv_cm_init(ctx, (struct sockaddr *)&sin, RDMA_PS_TCP);
2005 if (IS_ERR(cm_ip))
2006 return PTR_ERR(cm_ip);
2007
2008 cm_ib = rtrs_srv_cm_init(ctx, (struct sockaddr *)&sib, RDMA_PS_IB);
2009 if (IS_ERR(cm_ib)) {
2010 ret = PTR_ERR(cm_ib);
2011 goto free_cm_ip;
2012 }
2013
2014 ctx->cm_id_ip = cm_ip;
2015 ctx->cm_id_ib = cm_ib;
2016
2017 return 0;
2018
2019 free_cm_ip:
2020 rdma_destroy_id(cm_ip);
2021
2022 return ret;
2023 }
2024
alloc_srv_ctx(struct rtrs_srv_ops * ops)2025 static struct rtrs_srv_ctx *alloc_srv_ctx(struct rtrs_srv_ops *ops)
2026 {
2027 struct rtrs_srv_ctx *ctx;
2028
2029 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2030 if (!ctx)
2031 return NULL;
2032
2033 ctx->ops = *ops;
2034 mutex_init(&ctx->srv_mutex);
2035 INIT_LIST_HEAD(&ctx->srv_list);
2036
2037 return ctx;
2038 }
2039
free_srv_ctx(struct rtrs_srv_ctx * ctx)2040 static void free_srv_ctx(struct rtrs_srv_ctx *ctx)
2041 {
2042 WARN_ON(!list_empty(&ctx->srv_list));
2043 mutex_destroy(&ctx->srv_mutex);
2044 kfree(ctx);
2045 }
2046
rtrs_srv_add_one(struct ib_device * device)2047 static int rtrs_srv_add_one(struct ib_device *device)
2048 {
2049 struct rtrs_srv_ctx *ctx;
2050 int ret = 0;
2051
2052 mutex_lock(&ib_ctx.ib_dev_mutex);
2053 if (ib_ctx.ib_dev_count)
2054 goto out;
2055
2056 /*
2057 * Since our CM IDs are NOT bound to any ib device we will create them
2058 * only once
2059 */
2060 ctx = ib_ctx.srv_ctx;
2061 ret = rtrs_srv_rdma_init(ctx, ib_ctx.port);
2062 if (ret) {
2063 /*
2064 * We errored out here.
2065 * According to the ib code, if we encounter an error here then the
2066 * error code is ignored, and no more calls to our ops are made.
2067 */
2068 pr_err("Failed to initialize RDMA connection");
2069 goto err_out;
2070 }
2071
2072 out:
2073 /*
2074 * Keep a track on the number of ib devices added
2075 */
2076 ib_ctx.ib_dev_count++;
2077
2078 err_out:
2079 mutex_unlock(&ib_ctx.ib_dev_mutex);
2080 return ret;
2081 }
2082
rtrs_srv_remove_one(struct ib_device * device,void * client_data)2083 static void rtrs_srv_remove_one(struct ib_device *device, void *client_data)
2084 {
2085 struct rtrs_srv_ctx *ctx;
2086
2087 mutex_lock(&ib_ctx.ib_dev_mutex);
2088 ib_ctx.ib_dev_count--;
2089
2090 if (ib_ctx.ib_dev_count)
2091 goto out;
2092
2093 /*
2094 * Since our CM IDs are NOT bound to any ib device we will remove them
2095 * only once, when the last device is removed
2096 */
2097 ctx = ib_ctx.srv_ctx;
2098 rdma_destroy_id(ctx->cm_id_ip);
2099 rdma_destroy_id(ctx->cm_id_ib);
2100
2101 out:
2102 mutex_unlock(&ib_ctx.ib_dev_mutex);
2103 }
2104
2105 static struct ib_client rtrs_srv_client = {
2106 .name = "rtrs_server",
2107 .add = rtrs_srv_add_one,
2108 .remove = rtrs_srv_remove_one
2109 };
2110
2111 /**
2112 * rtrs_srv_open() - open RTRS server context
2113 * @ops: callback functions
2114 * @port: port to listen on
2115 *
2116 * Creates server context with specified callbacks.
2117 *
2118 * Return a valid pointer on success otherwise PTR_ERR.
2119 */
rtrs_srv_open(struct rtrs_srv_ops * ops,u16 port)2120 struct rtrs_srv_ctx *rtrs_srv_open(struct rtrs_srv_ops *ops, u16 port)
2121 {
2122 struct rtrs_srv_ctx *ctx;
2123 int err;
2124
2125 ctx = alloc_srv_ctx(ops);
2126 if (!ctx)
2127 return ERR_PTR(-ENOMEM);
2128
2129 mutex_init(&ib_ctx.ib_dev_mutex);
2130 ib_ctx.srv_ctx = ctx;
2131 ib_ctx.port = port;
2132
2133 err = ib_register_client(&rtrs_srv_client);
2134 if (err) {
2135 free_srv_ctx(ctx);
2136 return ERR_PTR(err);
2137 }
2138
2139 return ctx;
2140 }
2141 EXPORT_SYMBOL(rtrs_srv_open);
2142
close_sessions(struct rtrs_srv * srv)2143 static void close_sessions(struct rtrs_srv *srv)
2144 {
2145 struct rtrs_srv_sess *sess;
2146
2147 mutex_lock(&srv->paths_mutex);
2148 list_for_each_entry(sess, &srv->paths_list, s.entry)
2149 close_sess(sess);
2150 mutex_unlock(&srv->paths_mutex);
2151 }
2152
close_ctx(struct rtrs_srv_ctx * ctx)2153 static void close_ctx(struct rtrs_srv_ctx *ctx)
2154 {
2155 struct rtrs_srv *srv;
2156
2157 mutex_lock(&ctx->srv_mutex);
2158 list_for_each_entry(srv, &ctx->srv_list, ctx_list)
2159 close_sessions(srv);
2160 mutex_unlock(&ctx->srv_mutex);
2161 flush_workqueue(rtrs_wq);
2162 }
2163
2164 /**
2165 * rtrs_srv_close() - close RTRS server context
2166 * @ctx: pointer to server context
2167 *
2168 * Closes RTRS server context with all client sessions.
2169 */
rtrs_srv_close(struct rtrs_srv_ctx * ctx)2170 void rtrs_srv_close(struct rtrs_srv_ctx *ctx)
2171 {
2172 ib_unregister_client(&rtrs_srv_client);
2173 mutex_destroy(&ib_ctx.ib_dev_mutex);
2174 close_ctx(ctx);
2175 free_srv_ctx(ctx);
2176 }
2177 EXPORT_SYMBOL(rtrs_srv_close);
2178
check_module_params(void)2179 static int check_module_params(void)
2180 {
2181 if (sess_queue_depth < 1 || sess_queue_depth > MAX_SESS_QUEUE_DEPTH) {
2182 pr_err("Invalid sess_queue_depth value %d, has to be >= %d, <= %d.\n",
2183 sess_queue_depth, 1, MAX_SESS_QUEUE_DEPTH);
2184 return -EINVAL;
2185 }
2186 if (max_chunk_size < 4096 || !is_power_of_2(max_chunk_size)) {
2187 pr_err("Invalid max_chunk_size value %d, has to be >= %d and should be power of two.\n",
2188 max_chunk_size, 4096);
2189 return -EINVAL;
2190 }
2191
2192 /*
2193 * Check if IB immediate data size is enough to hold the mem_id and the
2194 * offset inside the memory chunk
2195 */
2196 if ((ilog2(sess_queue_depth - 1) + 1) +
2197 (ilog2(max_chunk_size - 1) + 1) > MAX_IMM_PAYL_BITS) {
2198 pr_err("RDMA immediate size (%db) not enough to encode %d buffers of size %dB. Reduce 'sess_queue_depth' or 'max_chunk_size' parameters.\n",
2199 MAX_IMM_PAYL_BITS, sess_queue_depth, max_chunk_size);
2200 return -EINVAL;
2201 }
2202
2203 return 0;
2204 }
2205
rtrs_server_init(void)2206 static int __init rtrs_server_init(void)
2207 {
2208 int err;
2209
2210 pr_info("Loading module %s, proto %s: (max_chunk_size: %d (pure IO %ld, headers %ld) , sess_queue_depth: %d, always_invalidate: %d)\n",
2211 KBUILD_MODNAME, RTRS_PROTO_VER_STRING,
2212 max_chunk_size, max_chunk_size - MAX_HDR_SIZE, MAX_HDR_SIZE,
2213 sess_queue_depth, always_invalidate);
2214
2215 rtrs_rdma_dev_pd_init(0, &dev_pd);
2216
2217 err = check_module_params();
2218 if (err) {
2219 pr_err("Failed to load module, invalid module parameters, err: %d\n",
2220 err);
2221 return err;
2222 }
2223 chunk_pool = mempool_create_page_pool(sess_queue_depth * CHUNK_POOL_SZ,
2224 get_order(max_chunk_size));
2225 if (!chunk_pool)
2226 return -ENOMEM;
2227 rtrs_dev_class = class_create(THIS_MODULE, "rtrs-server");
2228 if (IS_ERR(rtrs_dev_class)) {
2229 err = PTR_ERR(rtrs_dev_class);
2230 goto out_chunk_pool;
2231 }
2232 rtrs_wq = alloc_workqueue("rtrs_server_wq", 0, 0);
2233 if (!rtrs_wq) {
2234 err = -ENOMEM;
2235 goto out_dev_class;
2236 }
2237
2238 return 0;
2239
2240 out_dev_class:
2241 class_destroy(rtrs_dev_class);
2242 out_chunk_pool:
2243 mempool_destroy(chunk_pool);
2244
2245 return err;
2246 }
2247
rtrs_server_exit(void)2248 static void __exit rtrs_server_exit(void)
2249 {
2250 destroy_workqueue(rtrs_wq);
2251 class_destroy(rtrs_dev_class);
2252 mempool_destroy(chunk_pool);
2253 rtrs_rdma_dev_pd_deinit(&dev_pd);
2254 }
2255
2256 module_init(rtrs_server_init);
2257 module_exit(rtrs_server_exit);
2258