1 /******************************************************************************
2 *
3 * Copyright(c) 2009-2012 Realtek Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of version 2 of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * The full GNU General Public License is included in this distribution in the
15 * file called LICENSE.
16 *
17 * Contact Information:
18 * wlanfae <wlanfae@realtek.com>
19 * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
20 * Hsinchu 300, Taiwan.
21 *
22 * Larry Finger <Larry.Finger@lwfinger.net>
23 *
24 *****************************************************************************/
25
26 #include "../wifi.h"
27 #include "../efuse.h"
28 #include "../base.h"
29 #include "../regd.h"
30 #include "../cam.h"
31 #include "../ps.h"
32 #include "../pci.h"
33 #include "reg.h"
34 #include "def.h"
35 #include "phy.h"
36 #include "dm.h"
37 #include "fw.h"
38 #include "led.h"
39 #include "hw.h"
40
rtl92se_get_hw_reg(struct ieee80211_hw * hw,u8 variable,u8 * val)41 void rtl92se_get_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
42 {
43 struct rtl_priv *rtlpriv = rtl_priv(hw);
44 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
45 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
46
47 switch (variable) {
48 case HW_VAR_RCR: {
49 *((u32 *) (val)) = rtlpci->receive_config;
50 break;
51 }
52 case HW_VAR_RF_STATE: {
53 *((enum rf_pwrstate *)(val)) = ppsc->rfpwr_state;
54 break;
55 }
56 case HW_VAR_FW_PSMODE_STATUS: {
57 *((bool *) (val)) = ppsc->fw_current_inpsmode;
58 break;
59 }
60 case HW_VAR_CORRECT_TSF: {
61 u64 tsf;
62 u32 *ptsf_low = (u32 *)&tsf;
63 u32 *ptsf_high = ((u32 *)&tsf) + 1;
64
65 *ptsf_high = rtl_read_dword(rtlpriv, (TSFR + 4));
66 *ptsf_low = rtl_read_dword(rtlpriv, TSFR);
67
68 *((u64 *) (val)) = tsf;
69
70 break;
71 }
72 case HW_VAR_MRC: {
73 *((bool *)(val)) = rtlpriv->dm.current_mrc_switch;
74 break;
75 }
76 case HAL_DEF_WOWLAN:
77 break;
78 default:
79 pr_err("switch case %#x not processed\n", variable);
80 break;
81 }
82 }
83
rtl92se_set_hw_reg(struct ieee80211_hw * hw,u8 variable,u8 * val)84 void rtl92se_set_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
85 {
86 struct rtl_priv *rtlpriv = rtl_priv(hw);
87 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
88 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
89 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
90 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
91 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
92
93 switch (variable) {
94 case HW_VAR_ETHER_ADDR:{
95 rtl_write_dword(rtlpriv, IDR0, ((u32 *)(val))[0]);
96 rtl_write_word(rtlpriv, IDR4, ((u16 *)(val + 4))[0]);
97 break;
98 }
99 case HW_VAR_BASIC_RATE:{
100 u16 rate_cfg = ((u16 *) val)[0];
101 u8 rate_index = 0;
102
103 if (rtlhal->version == VERSION_8192S_ACUT)
104 rate_cfg = rate_cfg & 0x150;
105 else
106 rate_cfg = rate_cfg & 0x15f;
107
108 rate_cfg |= 0x01;
109
110 rtl_write_byte(rtlpriv, RRSR, rate_cfg & 0xff);
111 rtl_write_byte(rtlpriv, RRSR + 1,
112 (rate_cfg >> 8) & 0xff);
113
114 while (rate_cfg > 0x1) {
115 rate_cfg = (rate_cfg >> 1);
116 rate_index++;
117 }
118 rtl_write_byte(rtlpriv, INIRTSMCS_SEL, rate_index);
119
120 break;
121 }
122 case HW_VAR_BSSID:{
123 rtl_write_dword(rtlpriv, BSSIDR, ((u32 *)(val))[0]);
124 rtl_write_word(rtlpriv, BSSIDR + 4,
125 ((u16 *)(val + 4))[0]);
126 break;
127 }
128 case HW_VAR_SIFS:{
129 rtl_write_byte(rtlpriv, SIFS_OFDM, val[0]);
130 rtl_write_byte(rtlpriv, SIFS_OFDM + 1, val[1]);
131 break;
132 }
133 case HW_VAR_SLOT_TIME:{
134 u8 e_aci;
135
136 RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
137 "HW_VAR_SLOT_TIME %x\n", val[0]);
138
139 rtl_write_byte(rtlpriv, SLOT_TIME, val[0]);
140
141 for (e_aci = 0; e_aci < AC_MAX; e_aci++) {
142 rtlpriv->cfg->ops->set_hw_reg(hw,
143 HW_VAR_AC_PARAM,
144 (&e_aci));
145 }
146 break;
147 }
148 case HW_VAR_ACK_PREAMBLE:{
149 u8 reg_tmp;
150 u8 short_preamble = (bool) (*val);
151 reg_tmp = (mac->cur_40_prime_sc) << 5;
152 if (short_preamble)
153 reg_tmp |= 0x80;
154
155 rtl_write_byte(rtlpriv, RRSR + 2, reg_tmp);
156 break;
157 }
158 case HW_VAR_AMPDU_MIN_SPACE:{
159 u8 min_spacing_to_set;
160 u8 sec_min_space;
161
162 min_spacing_to_set = *val;
163 if (min_spacing_to_set <= 7) {
164 if (rtlpriv->sec.pairwise_enc_algorithm ==
165 NO_ENCRYPTION)
166 sec_min_space = 0;
167 else
168 sec_min_space = 1;
169
170 if (min_spacing_to_set < sec_min_space)
171 min_spacing_to_set = sec_min_space;
172 if (min_spacing_to_set > 5)
173 min_spacing_to_set = 5;
174
175 mac->min_space_cfg =
176 ((mac->min_space_cfg & 0xf8) |
177 min_spacing_to_set);
178
179 *val = min_spacing_to_set;
180
181 RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
182 "Set HW_VAR_AMPDU_MIN_SPACE: %#x\n",
183 mac->min_space_cfg);
184
185 rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE,
186 mac->min_space_cfg);
187 }
188 break;
189 }
190 case HW_VAR_SHORTGI_DENSITY:{
191 u8 density_to_set;
192
193 density_to_set = *val;
194 mac->min_space_cfg = rtlpriv->rtlhal.minspace_cfg;
195 mac->min_space_cfg |= (density_to_set << 3);
196
197 RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
198 "Set HW_VAR_SHORTGI_DENSITY: %#x\n",
199 mac->min_space_cfg);
200
201 rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE,
202 mac->min_space_cfg);
203
204 break;
205 }
206 case HW_VAR_AMPDU_FACTOR:{
207 u8 factor_toset;
208 u8 regtoset;
209 u8 factorlevel[18] = {
210 2, 4, 4, 7, 7, 13, 13,
211 13, 2, 7, 7, 13, 13,
212 15, 15, 15, 15, 0};
213 u8 index = 0;
214
215 factor_toset = *val;
216 if (factor_toset <= 3) {
217 factor_toset = (1 << (factor_toset + 2));
218 if (factor_toset > 0xf)
219 factor_toset = 0xf;
220
221 for (index = 0; index < 17; index++) {
222 if (factorlevel[index] > factor_toset)
223 factorlevel[index] =
224 factor_toset;
225 }
226
227 for (index = 0; index < 8; index++) {
228 regtoset = ((factorlevel[index * 2]) |
229 (factorlevel[index *
230 2 + 1] << 4));
231 rtl_write_byte(rtlpriv,
232 AGGLEN_LMT_L + index,
233 regtoset);
234 }
235
236 regtoset = ((factorlevel[16]) |
237 (factorlevel[17] << 4));
238 rtl_write_byte(rtlpriv, AGGLEN_LMT_H, regtoset);
239
240 RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
241 "Set HW_VAR_AMPDU_FACTOR: %#x\n",
242 factor_toset);
243 }
244 break;
245 }
246 case HW_VAR_AC_PARAM:{
247 u8 e_aci = *val;
248 rtl92s_dm_init_edca_turbo(hw);
249
250 if (rtlpci->acm_method != EACMWAY2_SW)
251 rtlpriv->cfg->ops->set_hw_reg(hw,
252 HW_VAR_ACM_CTRL,
253 &e_aci);
254 break;
255 }
256 case HW_VAR_ACM_CTRL:{
257 u8 e_aci = *val;
258 union aci_aifsn *p_aci_aifsn = (union aci_aifsn *)(&(
259 mac->ac[0].aifs));
260 u8 acm = p_aci_aifsn->f.acm;
261 u8 acm_ctrl = rtl_read_byte(rtlpriv, AcmHwCtrl);
262
263 acm_ctrl = acm_ctrl | ((rtlpci->acm_method == 2) ?
264 0x0 : 0x1);
265
266 if (acm) {
267 switch (e_aci) {
268 case AC0_BE:
269 acm_ctrl |= AcmHw_BeqEn;
270 break;
271 case AC2_VI:
272 acm_ctrl |= AcmHw_ViqEn;
273 break;
274 case AC3_VO:
275 acm_ctrl |= AcmHw_VoqEn;
276 break;
277 default:
278 RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
279 "HW_VAR_ACM_CTRL acm set failed: eACI is %d\n",
280 acm);
281 break;
282 }
283 } else {
284 switch (e_aci) {
285 case AC0_BE:
286 acm_ctrl &= (~AcmHw_BeqEn);
287 break;
288 case AC2_VI:
289 acm_ctrl &= (~AcmHw_ViqEn);
290 break;
291 case AC3_VO:
292 acm_ctrl &= (~AcmHw_VoqEn);
293 break;
294 default:
295 pr_err("switch case %#x not processed\n",
296 e_aci);
297 break;
298 }
299 }
300
301 RT_TRACE(rtlpriv, COMP_QOS, DBG_TRACE,
302 "HW_VAR_ACM_CTRL Write 0x%X\n", acm_ctrl);
303 rtl_write_byte(rtlpriv, AcmHwCtrl, acm_ctrl);
304 break;
305 }
306 case HW_VAR_RCR:{
307 rtl_write_dword(rtlpriv, RCR, ((u32 *) (val))[0]);
308 rtlpci->receive_config = ((u32 *) (val))[0];
309 break;
310 }
311 case HW_VAR_RETRY_LIMIT:{
312 u8 retry_limit = val[0];
313
314 rtl_write_word(rtlpriv, RETRY_LIMIT,
315 retry_limit << RETRY_LIMIT_SHORT_SHIFT |
316 retry_limit << RETRY_LIMIT_LONG_SHIFT);
317 break;
318 }
319 case HW_VAR_DUAL_TSF_RST: {
320 break;
321 }
322 case HW_VAR_EFUSE_BYTES: {
323 rtlefuse->efuse_usedbytes = *((u16 *) val);
324 break;
325 }
326 case HW_VAR_EFUSE_USAGE: {
327 rtlefuse->efuse_usedpercentage = *val;
328 break;
329 }
330 case HW_VAR_IO_CMD: {
331 break;
332 }
333 case HW_VAR_WPA_CONFIG: {
334 rtl_write_byte(rtlpriv, REG_SECR, *val);
335 break;
336 }
337 case HW_VAR_SET_RPWM:{
338 break;
339 }
340 case HW_VAR_H2C_FW_PWRMODE:{
341 break;
342 }
343 case HW_VAR_FW_PSMODE_STATUS: {
344 ppsc->fw_current_inpsmode = *((bool *) val);
345 break;
346 }
347 case HW_VAR_H2C_FW_JOINBSSRPT:{
348 break;
349 }
350 case HW_VAR_AID:{
351 break;
352 }
353 case HW_VAR_CORRECT_TSF:{
354 break;
355 }
356 case HW_VAR_MRC: {
357 bool bmrc_toset = *((bool *)val);
358 u8 u1bdata = 0;
359
360 if (bmrc_toset) {
361 rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE,
362 MASKBYTE0, 0x33);
363 u1bdata = (u8)rtl_get_bbreg(hw,
364 ROFDM1_TRXPATHENABLE,
365 MASKBYTE0);
366 rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE,
367 MASKBYTE0,
368 ((u1bdata & 0xf0) | 0x03));
369 u1bdata = (u8)rtl_get_bbreg(hw,
370 ROFDM0_TRXPATHENABLE,
371 MASKBYTE1);
372 rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE,
373 MASKBYTE1,
374 (u1bdata | 0x04));
375
376 /* Update current settings. */
377 rtlpriv->dm.current_mrc_switch = bmrc_toset;
378 } else {
379 rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE,
380 MASKBYTE0, 0x13);
381 u1bdata = (u8)rtl_get_bbreg(hw,
382 ROFDM1_TRXPATHENABLE,
383 MASKBYTE0);
384 rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE,
385 MASKBYTE0,
386 ((u1bdata & 0xf0) | 0x01));
387 u1bdata = (u8)rtl_get_bbreg(hw,
388 ROFDM0_TRXPATHENABLE,
389 MASKBYTE1);
390 rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE,
391 MASKBYTE1, (u1bdata & 0xfb));
392
393 /* Update current settings. */
394 rtlpriv->dm.current_mrc_switch = bmrc_toset;
395 }
396
397 break;
398 }
399 case HW_VAR_FW_LPS_ACTION: {
400 bool enter_fwlps = *((bool *)val);
401 u8 rpwm_val, fw_pwrmode;
402 bool fw_current_inps;
403
404 if (enter_fwlps) {
405 rpwm_val = 0x02; /* RF off */
406 fw_current_inps = true;
407 rtlpriv->cfg->ops->set_hw_reg(hw,
408 HW_VAR_FW_PSMODE_STATUS,
409 (u8 *)(&fw_current_inps));
410 rtlpriv->cfg->ops->set_hw_reg(hw,
411 HW_VAR_H2C_FW_PWRMODE,
412 &ppsc->fwctrl_psmode);
413
414 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SET_RPWM,
415 &rpwm_val);
416 } else {
417 rpwm_val = 0x0C; /* RF on */
418 fw_pwrmode = FW_PS_ACTIVE_MODE;
419 fw_current_inps = false;
420 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SET_RPWM,
421 &rpwm_val);
422 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_H2C_FW_PWRMODE,
423 &fw_pwrmode);
424
425 rtlpriv->cfg->ops->set_hw_reg(hw,
426 HW_VAR_FW_PSMODE_STATUS,
427 (u8 *)(&fw_current_inps));
428 }
429 break; }
430 default:
431 pr_err("switch case %#x not processed\n", variable);
432 break;
433 }
434
435 }
436
rtl92se_enable_hw_security_config(struct ieee80211_hw * hw)437 void rtl92se_enable_hw_security_config(struct ieee80211_hw *hw)
438 {
439 struct rtl_priv *rtlpriv = rtl_priv(hw);
440 u8 sec_reg_value = 0x0;
441
442 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
443 "PairwiseEncAlgorithm = %d GroupEncAlgorithm = %d\n",
444 rtlpriv->sec.pairwise_enc_algorithm,
445 rtlpriv->sec.group_enc_algorithm);
446
447 if (rtlpriv->cfg->mod_params->sw_crypto || rtlpriv->sec.use_sw_sec) {
448 RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
449 "not open hw encryption\n");
450 return;
451 }
452
453 sec_reg_value = SCR_TXENCENABLE | SCR_RXENCENABLE;
454
455 if (rtlpriv->sec.use_defaultkey) {
456 sec_reg_value |= SCR_TXUSEDK;
457 sec_reg_value |= SCR_RXUSEDK;
458 }
459
460 RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD, "The SECR-value %x\n",
461 sec_reg_value);
462
463 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_WPA_CONFIG, &sec_reg_value);
464
465 }
466
_rtl92se_halset_sysclk(struct ieee80211_hw * hw,u8 data)467 static u8 _rtl92se_halset_sysclk(struct ieee80211_hw *hw, u8 data)
468 {
469 struct rtl_priv *rtlpriv = rtl_priv(hw);
470 u8 waitcount = 100;
471 bool bresult = false;
472 u8 tmpvalue;
473
474 rtl_write_byte(rtlpriv, SYS_CLKR + 1, data);
475
476 /* Wait the MAC synchronized. */
477 udelay(400);
478
479 /* Check if it is set ready. */
480 tmpvalue = rtl_read_byte(rtlpriv, SYS_CLKR + 1);
481 bresult = ((tmpvalue & BIT(7)) == (data & BIT(7)));
482
483 if ((data & (BIT(6) | BIT(7))) == false) {
484 waitcount = 100;
485 tmpvalue = 0;
486
487 while (1) {
488 waitcount--;
489
490 tmpvalue = rtl_read_byte(rtlpriv, SYS_CLKR + 1);
491 if ((tmpvalue & BIT(6)))
492 break;
493
494 pr_err("wait for BIT(6) return value %x\n", tmpvalue);
495 if (waitcount == 0)
496 break;
497
498 udelay(10);
499 }
500
501 if (waitcount == 0)
502 bresult = false;
503 else
504 bresult = true;
505 }
506
507 return bresult;
508 }
509
rtl8192se_gpiobit3_cfg_inputmode(struct ieee80211_hw * hw)510 void rtl8192se_gpiobit3_cfg_inputmode(struct ieee80211_hw *hw)
511 {
512 struct rtl_priv *rtlpriv = rtl_priv(hw);
513 u8 u1tmp;
514
515 /* The following config GPIO function */
516 rtl_write_byte(rtlpriv, MAC_PINMUX_CFG, (GPIOMUX_EN | GPIOSEL_GPIO));
517 u1tmp = rtl_read_byte(rtlpriv, GPIO_IO_SEL);
518
519 /* config GPIO3 to input */
520 u1tmp &= HAL_8192S_HW_GPIO_OFF_MASK;
521 rtl_write_byte(rtlpriv, GPIO_IO_SEL, u1tmp);
522
523 }
524
_rtl92se_rf_onoff_detect(struct ieee80211_hw * hw)525 static u8 _rtl92se_rf_onoff_detect(struct ieee80211_hw *hw)
526 {
527 struct rtl_priv *rtlpriv = rtl_priv(hw);
528 u8 u1tmp;
529 u8 retval = ERFON;
530
531 /* The following config GPIO function */
532 rtl_write_byte(rtlpriv, MAC_PINMUX_CFG, (GPIOMUX_EN | GPIOSEL_GPIO));
533 u1tmp = rtl_read_byte(rtlpriv, GPIO_IO_SEL);
534
535 /* config GPIO3 to input */
536 u1tmp &= HAL_8192S_HW_GPIO_OFF_MASK;
537 rtl_write_byte(rtlpriv, GPIO_IO_SEL, u1tmp);
538
539 /* On some of the platform, driver cannot read correct
540 * value without delay between Write_GPIO_SEL and Read_GPIO_IN */
541 mdelay(10);
542
543 /* check GPIO3 */
544 u1tmp = rtl_read_byte(rtlpriv, GPIO_IN_SE);
545 retval = (u1tmp & HAL_8192S_HW_GPIO_OFF_BIT) ? ERFON : ERFOFF;
546
547 return retval;
548 }
549
_rtl92se_macconfig_before_fwdownload(struct ieee80211_hw * hw)550 static void _rtl92se_macconfig_before_fwdownload(struct ieee80211_hw *hw)
551 {
552 struct rtl_priv *rtlpriv = rtl_priv(hw);
553 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
554 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
555
556 u8 i;
557 u8 tmpu1b;
558 u16 tmpu2b;
559 u8 pollingcnt = 20;
560
561 if (rtlpci->first_init) {
562 /* Reset PCIE Digital */
563 tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
564 tmpu1b &= 0xFE;
565 rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b);
566 udelay(1);
567 rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b | BIT(0));
568 }
569
570 /* Switch to SW IO control */
571 tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
572 if (tmpu1b & BIT(7)) {
573 tmpu1b &= ~(BIT(6) | BIT(7));
574
575 /* Set failed, return to prevent hang. */
576 if (!_rtl92se_halset_sysclk(hw, tmpu1b))
577 return;
578 }
579
580 rtl_write_byte(rtlpriv, AFE_PLL_CTRL, 0x0);
581 udelay(50);
582 rtl_write_byte(rtlpriv, LDOA15_CTRL, 0x34);
583 udelay(50);
584
585 /* Clear FW RPWM for FW control LPS.*/
586 rtl_write_byte(rtlpriv, RPWM, 0x0);
587
588 /* Reset MAC-IO and CPU and Core Digital BIT(10)/11/15 */
589 tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
590 tmpu1b &= 0x73;
591 rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b);
592 /* wait for BIT 10/11/15 to pull high automatically!! */
593 mdelay(1);
594
595 rtl_write_byte(rtlpriv, CMDR, 0);
596 rtl_write_byte(rtlpriv, TCR, 0);
597
598 /* Data sheet not define 0x562!!! Copy from WMAC!!!!! */
599 tmpu1b = rtl_read_byte(rtlpriv, 0x562);
600 tmpu1b |= 0x08;
601 rtl_write_byte(rtlpriv, 0x562, tmpu1b);
602 tmpu1b &= ~(BIT(3));
603 rtl_write_byte(rtlpriv, 0x562, tmpu1b);
604
605 /* Enable AFE clock source */
606 tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL);
607 rtl_write_byte(rtlpriv, AFE_XTAL_CTRL, (tmpu1b | 0x01));
608 /* Delay 1.5ms */
609 mdelay(2);
610 tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL + 1);
611 rtl_write_byte(rtlpriv, AFE_XTAL_CTRL + 1, (tmpu1b & 0xfb));
612
613 /* Enable AFE Macro Block's Bandgap */
614 tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC);
615 rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | BIT(0)));
616 mdelay(1);
617
618 /* Enable AFE Mbias */
619 tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC);
620 rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | 0x02));
621 mdelay(1);
622
623 /* Enable LDOA15 block */
624 tmpu1b = rtl_read_byte(rtlpriv, LDOA15_CTRL);
625 rtl_write_byte(rtlpriv, LDOA15_CTRL, (tmpu1b | BIT(0)));
626
627 /* Set Digital Vdd to Retention isolation Path. */
628 tmpu2b = rtl_read_word(rtlpriv, REG_SYS_ISO_CTRL);
629 rtl_write_word(rtlpriv, REG_SYS_ISO_CTRL, (tmpu2b | BIT(11)));
630
631 /* For warm reboot NIC disappera bug. */
632 tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
633 rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(13)));
634
635 rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, 0x68);
636
637 /* Enable AFE PLL Macro Block */
638 /* We need to delay 100u before enabling PLL. */
639 udelay(200);
640 tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL);
641 rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) | BIT(4)));
642
643 /* for divider reset */
644 udelay(100);
645 rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) |
646 BIT(4) | BIT(6)));
647 udelay(10);
648 rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) | BIT(4)));
649 udelay(10);
650
651 /* Enable MAC 80MHZ clock */
652 tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL + 1);
653 rtl_write_byte(rtlpriv, AFE_PLL_CTRL + 1, (tmpu1b | BIT(0)));
654 mdelay(1);
655
656 /* Release isolation AFE PLL & MD */
657 rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, 0xA6);
658
659 /* Enable MAC clock */
660 tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR);
661 rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b | BIT(12) | BIT(11)));
662
663 /* Enable Core digital and enable IOREG R/W */
664 tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
665 rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11)));
666
667 tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
668 rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b & ~(BIT(7)));
669
670 /* enable REG_EN */
671 rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11) | BIT(15)));
672
673 /* Switch the control path. */
674 tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR);
675 rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b & (~BIT(2))));
676
677 tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
678 tmpu1b = ((tmpu1b | BIT(7)) & (~BIT(6)));
679 if (!_rtl92se_halset_sysclk(hw, tmpu1b))
680 return; /* Set failed, return to prevent hang. */
681
682 rtl_write_word(rtlpriv, CMDR, 0x07FC);
683
684 /* MH We must enable the section of code to prevent load IMEM fail. */
685 /* Load MAC register from WMAc temporarily We simulate macreg. */
686 /* txt HW will provide MAC txt later */
687 rtl_write_byte(rtlpriv, 0x6, 0x30);
688 rtl_write_byte(rtlpriv, 0x49, 0xf0);
689
690 rtl_write_byte(rtlpriv, 0x4b, 0x81);
691
692 rtl_write_byte(rtlpriv, 0xb5, 0x21);
693
694 rtl_write_byte(rtlpriv, 0xdc, 0xff);
695 rtl_write_byte(rtlpriv, 0xdd, 0xff);
696 rtl_write_byte(rtlpriv, 0xde, 0xff);
697 rtl_write_byte(rtlpriv, 0xdf, 0xff);
698
699 rtl_write_byte(rtlpriv, 0x11a, 0x00);
700 rtl_write_byte(rtlpriv, 0x11b, 0x00);
701
702 for (i = 0; i < 32; i++)
703 rtl_write_byte(rtlpriv, INIMCS_SEL + i, 0x1b);
704
705 rtl_write_byte(rtlpriv, 0x236, 0xff);
706
707 rtl_write_byte(rtlpriv, 0x503, 0x22);
708
709 if (ppsc->support_aspm && !ppsc->support_backdoor)
710 rtl_write_byte(rtlpriv, 0x560, 0x40);
711 else
712 rtl_write_byte(rtlpriv, 0x560, 0x00);
713
714 rtl_write_byte(rtlpriv, DBG_PORT, 0x91);
715
716 /* Set RX Desc Address */
717 rtl_write_dword(rtlpriv, RDQDA, rtlpci->rx_ring[RX_MPDU_QUEUE].dma);
718 rtl_write_dword(rtlpriv, RCDA, rtlpci->rx_ring[RX_CMD_QUEUE].dma);
719
720 /* Set TX Desc Address */
721 rtl_write_dword(rtlpriv, TBKDA, rtlpci->tx_ring[BK_QUEUE].dma);
722 rtl_write_dword(rtlpriv, TBEDA, rtlpci->tx_ring[BE_QUEUE].dma);
723 rtl_write_dword(rtlpriv, TVIDA, rtlpci->tx_ring[VI_QUEUE].dma);
724 rtl_write_dword(rtlpriv, TVODA, rtlpci->tx_ring[VO_QUEUE].dma);
725 rtl_write_dword(rtlpriv, TBDA, rtlpci->tx_ring[BEACON_QUEUE].dma);
726 rtl_write_dword(rtlpriv, TCDA, rtlpci->tx_ring[TXCMD_QUEUE].dma);
727 rtl_write_dword(rtlpriv, TMDA, rtlpci->tx_ring[MGNT_QUEUE].dma);
728 rtl_write_dword(rtlpriv, THPDA, rtlpci->tx_ring[HIGH_QUEUE].dma);
729 rtl_write_dword(rtlpriv, HDA, rtlpci->tx_ring[HCCA_QUEUE].dma);
730
731 rtl_write_word(rtlpriv, CMDR, 0x37FC);
732
733 /* To make sure that TxDMA can ready to download FW. */
734 /* We should reset TxDMA if IMEM RPT was not ready. */
735 do {
736 tmpu1b = rtl_read_byte(rtlpriv, TCR);
737 if ((tmpu1b & TXDMA_INIT_VALUE) == TXDMA_INIT_VALUE)
738 break;
739
740 udelay(5);
741 } while (pollingcnt--);
742
743 if (pollingcnt <= 0) {
744 pr_err("Polling TXDMA_INIT_VALUE timeout!! Current TCR(%#x)\n",
745 tmpu1b);
746 tmpu1b = rtl_read_byte(rtlpriv, CMDR);
747 rtl_write_byte(rtlpriv, CMDR, tmpu1b & (~TXDMA_EN));
748 udelay(2);
749 /* Reset TxDMA */
750 rtl_write_byte(rtlpriv, CMDR, tmpu1b | TXDMA_EN);
751 }
752
753 /* After MACIO reset,we must refresh LED state. */
754 if ((ppsc->rfoff_reason == RF_CHANGE_BY_IPS) ||
755 (ppsc->rfoff_reason == 0)) {
756 struct rtl_led *pled0 = &rtlpriv->ledctl.sw_led0;
757 enum rf_pwrstate rfpwr_state_toset;
758 rfpwr_state_toset = _rtl92se_rf_onoff_detect(hw);
759
760 if (rfpwr_state_toset == ERFON)
761 rtl92se_sw_led_on(hw, pled0);
762 }
763 }
764
_rtl92se_macconfig_after_fwdownload(struct ieee80211_hw * hw)765 static void _rtl92se_macconfig_after_fwdownload(struct ieee80211_hw *hw)
766 {
767 struct rtl_priv *rtlpriv = rtl_priv(hw);
768 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
769 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
770 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
771 u8 i;
772 u16 tmpu2b;
773
774 /* 1. System Configure Register (Offset: 0x0000 - 0x003F) */
775
776 /* 2. Command Control Register (Offset: 0x0040 - 0x004F) */
777 /* Turn on 0x40 Command register */
778 rtl_write_word(rtlpriv, CMDR, (BBRSTN | BB_GLB_RSTN |
779 SCHEDULE_EN | MACRXEN | MACTXEN | DDMA_EN | FW2HW_EN |
780 RXDMA_EN | TXDMA_EN | HCI_RXDMA_EN | HCI_TXDMA_EN));
781
782 /* Set TCR TX DMA pre 2 FULL enable bit */
783 rtl_write_dword(rtlpriv, TCR, rtl_read_dword(rtlpriv, TCR) |
784 TXDMAPRE2FULL);
785
786 /* Set RCR */
787 rtl_write_dword(rtlpriv, RCR, rtlpci->receive_config);
788
789 /* 3. MACID Setting Register (Offset: 0x0050 - 0x007F) */
790
791 /* 4. Timing Control Register (Offset: 0x0080 - 0x009F) */
792 /* Set CCK/OFDM SIFS */
793 /* CCK SIFS shall always be 10us. */
794 rtl_write_word(rtlpriv, SIFS_CCK, 0x0a0a);
795 rtl_write_word(rtlpriv, SIFS_OFDM, 0x1010);
796
797 /* Set AckTimeout */
798 rtl_write_byte(rtlpriv, ACK_TIMEOUT, 0x40);
799
800 /* Beacon related */
801 rtl_write_word(rtlpriv, BCN_INTERVAL, 100);
802 rtl_write_word(rtlpriv, ATIMWND, 2);
803
804 /* 5. FIFO Control Register (Offset: 0x00A0 - 0x015F) */
805 /* 5.1 Initialize Number of Reserved Pages in Firmware Queue */
806 /* Firmware allocate now, associate with FW internal setting.!!! */
807
808 /* 5.2 Setting TX/RX page size 0/1/2/3/4=64/128/256/512/1024 */
809 /* 5.3 Set driver info, we only accept PHY status now. */
810 /* 5.4 Set RXDMA arbitration to control RXDMA/MAC/FW R/W for RXFIFO */
811 rtl_write_byte(rtlpriv, RXDMA, rtl_read_byte(rtlpriv, RXDMA) | BIT(6));
812
813 /* 6. Adaptive Control Register (Offset: 0x0160 - 0x01CF) */
814 /* Set RRSR to all legacy rate and HT rate
815 * CCK rate is supported by default.
816 * CCK rate will be filtered out only when associated
817 * AP does not support it.
818 * Only enable ACK rate to OFDM 24M
819 * Disable RRSR for CCK rate in A-Cut */
820
821 if (rtlhal->version == VERSION_8192S_ACUT)
822 rtl_write_byte(rtlpriv, RRSR, 0xf0);
823 else if (rtlhal->version == VERSION_8192S_BCUT)
824 rtl_write_byte(rtlpriv, RRSR, 0xff);
825 rtl_write_byte(rtlpriv, RRSR + 1, 0x01);
826 rtl_write_byte(rtlpriv, RRSR + 2, 0x00);
827
828 /* A-Cut IC do not support CCK rate. We forbid ARFR to */
829 /* fallback to CCK rate */
830 for (i = 0; i < 8; i++) {
831 /*Disable RRSR for CCK rate in A-Cut */
832 if (rtlhal->version == VERSION_8192S_ACUT)
833 rtl_write_dword(rtlpriv, ARFR0 + i * 4, 0x1f0ff0f0);
834 }
835
836 /* Different rate use different AMPDU size */
837 /* MCS32/ MCS15_SG use max AMPDU size 15*2=30K */
838 rtl_write_byte(rtlpriv, AGGLEN_LMT_H, 0x0f);
839 /* MCS0/1/2/3 use max AMPDU size 4*2=8K */
840 rtl_write_word(rtlpriv, AGGLEN_LMT_L, 0x7442);
841 /* MCS4/5 use max AMPDU size 8*2=16K 6/7 use 10*2=20K */
842 rtl_write_word(rtlpriv, AGGLEN_LMT_L + 2, 0xddd7);
843 /* MCS8/9 use max AMPDU size 8*2=16K 10/11 use 10*2=20K */
844 rtl_write_word(rtlpriv, AGGLEN_LMT_L + 4, 0xd772);
845 /* MCS12/13/14/15 use max AMPDU size 15*2=30K */
846 rtl_write_word(rtlpriv, AGGLEN_LMT_L + 6, 0xfffd);
847
848 /* Set Data / Response auto rate fallack retry count */
849 rtl_write_dword(rtlpriv, DARFRC, 0x04010000);
850 rtl_write_dword(rtlpriv, DARFRC + 4, 0x09070605);
851 rtl_write_dword(rtlpriv, RARFRC, 0x04010000);
852 rtl_write_dword(rtlpriv, RARFRC + 4, 0x09070605);
853
854 /* 7. EDCA Setting Register (Offset: 0x01D0 - 0x01FF) */
855 /* Set all rate to support SG */
856 rtl_write_word(rtlpriv, SG_RATE, 0xFFFF);
857
858 /* 8. WMAC, BA, and CCX related Register (Offset: 0x0200 - 0x023F) */
859 /* Set NAV protection length */
860 rtl_write_word(rtlpriv, NAV_PROT_LEN, 0x0080);
861 /* CF-END Threshold */
862 rtl_write_byte(rtlpriv, CFEND_TH, 0xFF);
863 /* Set AMPDU minimum space */
864 rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE, 0x07);
865 /* Set TXOP stall control for several queue/HI/BCN/MGT/ */
866 rtl_write_byte(rtlpriv, TXOP_STALL_CTRL, 0x00);
867
868 /* 9. Security Control Register (Offset: 0x0240 - 0x025F) */
869 /* 10. Power Save Control Register (Offset: 0x0260 - 0x02DF) */
870 /* 11. General Purpose Register (Offset: 0x02E0 - 0x02FF) */
871 /* 12. Host Interrupt Status Register (Offset: 0x0300 - 0x030F) */
872 /* 13. Test Mode and Debug Control Register (Offset: 0x0310 - 0x034F) */
873
874 /* 14. Set driver info, we only accept PHY status now. */
875 rtl_write_byte(rtlpriv, RXDRVINFO_SZ, 4);
876
877 /* 15. For EEPROM R/W Workaround */
878 /* 16. For EFUSE to share REG_SYS_FUNC_EN with EEPROM!!! */
879 tmpu2b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN);
880 rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, tmpu2b | BIT(13));
881 tmpu2b = rtl_read_byte(rtlpriv, REG_SYS_ISO_CTRL);
882 rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, tmpu2b & (~BIT(8)));
883
884 /* 17. For EFUSE */
885 /* We may R/W EFUSE in EEPROM mode */
886 if (rtlefuse->epromtype == EEPROM_BOOT_EFUSE) {
887 u8 tempval;
888
889 tempval = rtl_read_byte(rtlpriv, REG_SYS_ISO_CTRL + 1);
890 tempval &= 0xFE;
891 rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, tempval);
892
893 /* Change Program timing */
894 rtl_write_byte(rtlpriv, REG_EFUSE_CTRL + 3, 0x72);
895 RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "EFUSE CONFIG OK\n");
896 }
897
898 RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "OK\n");
899
900 }
901
_rtl92se_hw_configure(struct ieee80211_hw * hw)902 static void _rtl92se_hw_configure(struct ieee80211_hw *hw)
903 {
904 struct rtl_priv *rtlpriv = rtl_priv(hw);
905 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
906 struct rtl_phy *rtlphy = &(rtlpriv->phy);
907 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
908
909 u8 reg_bw_opmode = 0;
910 u32 reg_rrsr = 0;
911 u8 regtmp = 0;
912
913 reg_bw_opmode = BW_OPMODE_20MHZ;
914 reg_rrsr = RATE_ALL_CCK | RATE_ALL_OFDM_AG;
915
916 regtmp = rtl_read_byte(rtlpriv, INIRTSMCS_SEL);
917 reg_rrsr = ((reg_rrsr & 0x000fffff) << 8) | regtmp;
918 rtl_write_dword(rtlpriv, INIRTSMCS_SEL, reg_rrsr);
919 rtl_write_byte(rtlpriv, BW_OPMODE, reg_bw_opmode);
920
921 /* Set Retry Limit here */
922 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RETRY_LIMIT,
923 (u8 *)(&rtlpci->shortretry_limit));
924
925 rtl_write_byte(rtlpriv, MLT, 0x8f);
926
927 /* For Min Spacing configuration. */
928 switch (rtlphy->rf_type) {
929 case RF_1T2R:
930 case RF_1T1R:
931 rtlhal->minspace_cfg = (MAX_MSS_DENSITY_1T << 3);
932 break;
933 case RF_2T2R:
934 case RF_2T2R_GREEN:
935 rtlhal->minspace_cfg = (MAX_MSS_DENSITY_2T << 3);
936 break;
937 }
938 rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE, rtlhal->minspace_cfg);
939 }
940
rtl92se_hw_init(struct ieee80211_hw * hw)941 int rtl92se_hw_init(struct ieee80211_hw *hw)
942 {
943 struct rtl_priv *rtlpriv = rtl_priv(hw);
944 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
945 struct rtl_phy *rtlphy = &(rtlpriv->phy);
946 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
947 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
948 u8 tmp_byte = 0;
949 unsigned long flags;
950 bool rtstatus = true;
951 u8 tmp_u1b;
952 int err = false;
953 u8 i;
954 int wdcapra_add[] = {
955 EDCAPARA_BE, EDCAPARA_BK,
956 EDCAPARA_VI, EDCAPARA_VO};
957 u8 secr_value = 0x0;
958
959 rtlpci->being_init_adapter = true;
960
961 /* As this function can take a very long time (up to 350 ms)
962 * and can be called with irqs disabled, reenable the irqs
963 * to let the other devices continue being serviced.
964 *
965 * It is safe doing so since our own interrupts will only be enabled
966 * in a subsequent step.
967 */
968 local_save_flags(flags);
969 local_irq_enable();
970
971 rtlpriv->intf_ops->disable_aspm(hw);
972
973 /* 1. MAC Initialize */
974 /* Before FW download, we have to set some MAC register */
975 _rtl92se_macconfig_before_fwdownload(hw);
976
977 rtlhal->version = (enum version_8192s)((rtl_read_dword(rtlpriv,
978 PMC_FSM) >> 16) & 0xF);
979
980 rtl8192se_gpiobit3_cfg_inputmode(hw);
981
982 /* 2. download firmware */
983 rtstatus = rtl92s_download_fw(hw);
984 if (!rtstatus) {
985 RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
986 "Failed to download FW. Init HW without FW now... "
987 "Please copy FW into /lib/firmware/rtlwifi\n");
988 err = 1;
989 goto exit;
990 }
991
992 /* After FW download, we have to reset MAC register */
993 _rtl92se_macconfig_after_fwdownload(hw);
994
995 /*Retrieve default FW Cmd IO map. */
996 rtlhal->fwcmd_iomap = rtl_read_word(rtlpriv, LBUS_MON_ADDR);
997 rtlhal->fwcmd_ioparam = rtl_read_dword(rtlpriv, LBUS_ADDR_MASK);
998
999 /* 3. Initialize MAC/PHY Config by MACPHY_reg.txt */
1000 if (!rtl92s_phy_mac_config(hw)) {
1001 pr_err("MAC Config failed\n");
1002 err = rtstatus;
1003 goto exit;
1004 }
1005
1006 /* because last function modify RCR, so we update
1007 * rcr var here, or TP will unstable for receive_config
1008 * is wrong, RX RCR_ACRC32 will cause TP unstabel & Rx
1009 * RCR_APP_ICV will cause mac80211 unassoc for cisco 1252
1010 */
1011 rtlpci->receive_config = rtl_read_dword(rtlpriv, RCR);
1012 rtlpci->receive_config &= ~(RCR_ACRC32 | RCR_AICV);
1013 rtl_write_dword(rtlpriv, RCR, rtlpci->receive_config);
1014
1015 /* Make sure BB/RF write OK. We should prevent enter IPS. radio off. */
1016 /* We must set flag avoid BB/RF config period later!! */
1017 rtl_write_dword(rtlpriv, CMDR, 0x37FC);
1018
1019 /* 4. Initialize BB After MAC Config PHY_reg.txt, AGC_Tab.txt */
1020 if (!rtl92s_phy_bb_config(hw)) {
1021 pr_err("BB Config failed\n");
1022 err = rtstatus;
1023 goto exit;
1024 }
1025
1026 /* 5. Initiailze RF RAIO_A.txt RF RAIO_B.txt */
1027 /* Before initalizing RF. We can not use FW to do RF-R/W. */
1028
1029 rtlphy->rf_mode = RF_OP_BY_SW_3WIRE;
1030
1031 /* Before RF-R/W we must execute the IO from Scott's suggestion. */
1032 rtl_write_byte(rtlpriv, AFE_XTAL_CTRL + 1, 0xDB);
1033 if (rtlhal->version == VERSION_8192S_ACUT)
1034 rtl_write_byte(rtlpriv, SPS1_CTRL + 3, 0x07);
1035 else
1036 rtl_write_byte(rtlpriv, RF_CTRL, 0x07);
1037
1038 if (!rtl92s_phy_rf_config(hw)) {
1039 RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "RF Config failed\n");
1040 err = rtstatus;
1041 goto exit;
1042 }
1043
1044 /* After read predefined TXT, we must set BB/MAC/RF
1045 * register as our requirement */
1046
1047 rtlphy->rfreg_chnlval[0] = rtl92s_phy_query_rf_reg(hw,
1048 (enum radio_path)0,
1049 RF_CHNLBW,
1050 RFREG_OFFSET_MASK);
1051 rtlphy->rfreg_chnlval[1] = rtl92s_phy_query_rf_reg(hw,
1052 (enum radio_path)1,
1053 RF_CHNLBW,
1054 RFREG_OFFSET_MASK);
1055
1056 /*---- Set CCK and OFDM Block "ON"----*/
1057 rtl_set_bbreg(hw, RFPGA0_RFMOD, BCCKEN, 0x1);
1058 rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 0x1);
1059
1060 /*3 Set Hardware(Do nothing now) */
1061 _rtl92se_hw_configure(hw);
1062
1063 /* Read EEPROM TX power index and PHY_REG_PG.txt to capture correct */
1064 /* TX power index for different rate set. */
1065 /* Get original hw reg values */
1066 rtl92s_phy_get_hw_reg_originalvalue(hw);
1067 /* Write correct tx power index */
1068 rtl92s_phy_set_txpower(hw, rtlphy->current_channel);
1069
1070 /* We must set MAC address after firmware download. */
1071 for (i = 0; i < 6; i++)
1072 rtl_write_byte(rtlpriv, MACIDR0 + i, rtlefuse->dev_addr[i]);
1073
1074 /* EEPROM R/W workaround */
1075 tmp_u1b = rtl_read_byte(rtlpriv, MAC_PINMUX_CFG);
1076 rtl_write_byte(rtlpriv, MAC_PINMUX_CFG, tmp_u1b & (~BIT(3)));
1077
1078 rtl_write_byte(rtlpriv, 0x4d, 0x0);
1079
1080 if (hal_get_firmwareversion(rtlpriv) >= 0x49) {
1081 tmp_byte = rtl_read_byte(rtlpriv, FW_RSVD_PG_CRTL) & (~BIT(4));
1082 tmp_byte = tmp_byte | BIT(5);
1083 rtl_write_byte(rtlpriv, FW_RSVD_PG_CRTL, tmp_byte);
1084 rtl_write_dword(rtlpriv, TXDESC_MSK, 0xFFFFCFFF);
1085 }
1086
1087 /* We enable high power and RA related mechanism after NIC
1088 * initialized. */
1089 if (hal_get_firmwareversion(rtlpriv) >= 0x35) {
1090 /* Fw v.53 and later. */
1091 rtl92s_phy_set_fw_cmd(hw, FW_CMD_RA_INIT);
1092 } else if (hal_get_firmwareversion(rtlpriv) == 0x34) {
1093 /* Fw v.52. */
1094 rtl_write_dword(rtlpriv, WFM5, FW_RA_INIT);
1095 rtl92s_phy_chk_fwcmd_iodone(hw);
1096 } else {
1097 /* Compatible earlier FW version. */
1098 rtl_write_dword(rtlpriv, WFM5, FW_RA_RESET);
1099 rtl92s_phy_chk_fwcmd_iodone(hw);
1100 rtl_write_dword(rtlpriv, WFM5, FW_RA_ACTIVE);
1101 rtl92s_phy_chk_fwcmd_iodone(hw);
1102 rtl_write_dword(rtlpriv, WFM5, FW_RA_REFRESH);
1103 rtl92s_phy_chk_fwcmd_iodone(hw);
1104 }
1105
1106 /* Add to prevent ASPM bug. */
1107 /* Always enable hst and NIC clock request. */
1108 rtl92s_phy_switch_ephy_parameter(hw);
1109
1110 /* Security related
1111 * 1. Clear all H/W keys.
1112 * 2. Enable H/W encryption/decryption. */
1113 rtl_cam_reset_all_entry(hw);
1114 secr_value |= SCR_TXENCENABLE;
1115 secr_value |= SCR_RXENCENABLE;
1116 secr_value |= SCR_NOSKMC;
1117 rtl_write_byte(rtlpriv, REG_SECR, secr_value);
1118
1119 for (i = 0; i < 4; i++)
1120 rtl_write_dword(rtlpriv, wdcapra_add[i], 0x5e4322);
1121
1122 if (rtlphy->rf_type == RF_1T2R) {
1123 bool mrc2set = true;
1124 /* Turn on B-Path */
1125 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_MRC, (u8 *)&mrc2set);
1126 }
1127
1128 rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_ON);
1129 rtl92s_dm_init(hw);
1130 exit:
1131 local_irq_restore(flags);
1132 rtlpci->being_init_adapter = false;
1133 return err;
1134 }
1135
rtl92se_set_mac_addr(struct rtl_io * io,const u8 * addr)1136 void rtl92se_set_mac_addr(struct rtl_io *io, const u8 *addr)
1137 {
1138 /* This is a stub. */
1139 }
1140
rtl92se_set_check_bssid(struct ieee80211_hw * hw,bool check_bssid)1141 void rtl92se_set_check_bssid(struct ieee80211_hw *hw, bool check_bssid)
1142 {
1143 struct rtl_priv *rtlpriv = rtl_priv(hw);
1144 u32 reg_rcr;
1145
1146 if (rtlpriv->psc.rfpwr_state != ERFON)
1147 return;
1148
1149 rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RCR, (u8 *)(®_rcr));
1150
1151 if (check_bssid) {
1152 reg_rcr |= (RCR_CBSSID);
1153 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(®_rcr));
1154 } else if (!check_bssid) {
1155 reg_rcr &= (~RCR_CBSSID);
1156 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(®_rcr));
1157 }
1158
1159 }
1160
_rtl92se_set_media_status(struct ieee80211_hw * hw,enum nl80211_iftype type)1161 static int _rtl92se_set_media_status(struct ieee80211_hw *hw,
1162 enum nl80211_iftype type)
1163 {
1164 struct rtl_priv *rtlpriv = rtl_priv(hw);
1165 u8 bt_msr = rtl_read_byte(rtlpriv, MSR);
1166 u32 temp;
1167 bt_msr &= ~MSR_LINK_MASK;
1168
1169 switch (type) {
1170 case NL80211_IFTYPE_UNSPECIFIED:
1171 bt_msr |= (MSR_LINK_NONE << MSR_LINK_SHIFT);
1172 RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
1173 "Set Network type to NO LINK!\n");
1174 break;
1175 case NL80211_IFTYPE_ADHOC:
1176 bt_msr |= (MSR_LINK_ADHOC << MSR_LINK_SHIFT);
1177 RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
1178 "Set Network type to Ad Hoc!\n");
1179 break;
1180 case NL80211_IFTYPE_STATION:
1181 bt_msr |= (MSR_LINK_MANAGED << MSR_LINK_SHIFT);
1182 RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
1183 "Set Network type to STA!\n");
1184 break;
1185 case NL80211_IFTYPE_AP:
1186 bt_msr |= (MSR_LINK_MASTER << MSR_LINK_SHIFT);
1187 RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
1188 "Set Network type to AP!\n");
1189 break;
1190 default:
1191 pr_err("Network type %d not supported!\n", type);
1192 return 1;
1193
1194 }
1195
1196 if (type != NL80211_IFTYPE_AP &&
1197 rtlpriv->mac80211.link_state < MAC80211_LINKED)
1198 bt_msr = rtl_read_byte(rtlpriv, MSR) & ~MSR_LINK_MASK;
1199 rtl_write_byte(rtlpriv, MSR, bt_msr);
1200
1201 temp = rtl_read_dword(rtlpriv, TCR);
1202 rtl_write_dword(rtlpriv, TCR, temp & (~BIT(8)));
1203 rtl_write_dword(rtlpriv, TCR, temp | BIT(8));
1204
1205
1206 return 0;
1207 }
1208
1209 /* HW_VAR_MEDIA_STATUS & HW_VAR_CECHK_BSSID */
rtl92se_set_network_type(struct ieee80211_hw * hw,enum nl80211_iftype type)1210 int rtl92se_set_network_type(struct ieee80211_hw *hw, enum nl80211_iftype type)
1211 {
1212 struct rtl_priv *rtlpriv = rtl_priv(hw);
1213
1214 if (_rtl92se_set_media_status(hw, type))
1215 return -EOPNOTSUPP;
1216
1217 if (rtlpriv->mac80211.link_state == MAC80211_LINKED) {
1218 if (type != NL80211_IFTYPE_AP)
1219 rtl92se_set_check_bssid(hw, true);
1220 } else {
1221 rtl92se_set_check_bssid(hw, false);
1222 }
1223
1224 return 0;
1225 }
1226
1227 /* don't set REG_EDCA_BE_PARAM here because mac80211 will send pkt when scan */
rtl92se_set_qos(struct ieee80211_hw * hw,int aci)1228 void rtl92se_set_qos(struct ieee80211_hw *hw, int aci)
1229 {
1230 struct rtl_priv *rtlpriv = rtl_priv(hw);
1231 rtl92s_dm_init_edca_turbo(hw);
1232
1233 switch (aci) {
1234 case AC1_BK:
1235 rtl_write_dword(rtlpriv, EDCAPARA_BK, 0xa44f);
1236 break;
1237 case AC0_BE:
1238 /* rtl_write_dword(rtlpriv, EDCAPARA_BE, u4b_ac_param); */
1239 break;
1240 case AC2_VI:
1241 rtl_write_dword(rtlpriv, EDCAPARA_VI, 0x5e4322);
1242 break;
1243 case AC3_VO:
1244 rtl_write_dword(rtlpriv, EDCAPARA_VO, 0x2f3222);
1245 break;
1246 default:
1247 WARN_ONCE(true, "rtl8192se: invalid aci: %d !\n", aci);
1248 break;
1249 }
1250 }
1251
rtl92se_enable_interrupt(struct ieee80211_hw * hw)1252 void rtl92se_enable_interrupt(struct ieee80211_hw *hw)
1253 {
1254 struct rtl_priv *rtlpriv = rtl_priv(hw);
1255 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1256
1257 rtl_write_dword(rtlpriv, INTA_MASK, rtlpci->irq_mask[0]);
1258 /* Support Bit 32-37(Assign as Bit 0-5) interrupt setting now */
1259 rtl_write_dword(rtlpriv, INTA_MASK + 4, rtlpci->irq_mask[1] & 0x3F);
1260 rtlpci->irq_enabled = true;
1261 }
1262
rtl92se_disable_interrupt(struct ieee80211_hw * hw)1263 void rtl92se_disable_interrupt(struct ieee80211_hw *hw)
1264 {
1265 struct rtl_priv *rtlpriv;
1266 struct rtl_pci *rtlpci;
1267
1268 rtlpriv = rtl_priv(hw);
1269 /* if firmware not available, no interrupts */
1270 if (!rtlpriv || !rtlpriv->max_fw_size)
1271 return;
1272 rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1273 rtl_write_dword(rtlpriv, INTA_MASK, 0);
1274 rtl_write_dword(rtlpriv, INTA_MASK + 4, 0);
1275 rtlpci->irq_enabled = false;
1276 }
1277
_rtl92s_set_sysclk(struct ieee80211_hw * hw,u8 data)1278 static u8 _rtl92s_set_sysclk(struct ieee80211_hw *hw, u8 data)
1279 {
1280 struct rtl_priv *rtlpriv = rtl_priv(hw);
1281 u8 waitcnt = 100;
1282 bool result = false;
1283 u8 tmp;
1284
1285 rtl_write_byte(rtlpriv, SYS_CLKR + 1, data);
1286
1287 /* Wait the MAC synchronized. */
1288 udelay(400);
1289
1290 /* Check if it is set ready. */
1291 tmp = rtl_read_byte(rtlpriv, SYS_CLKR + 1);
1292 result = ((tmp & BIT(7)) == (data & BIT(7)));
1293
1294 if ((data & (BIT(6) | BIT(7))) == false) {
1295 waitcnt = 100;
1296 tmp = 0;
1297
1298 while (1) {
1299 waitcnt--;
1300 tmp = rtl_read_byte(rtlpriv, SYS_CLKR + 1);
1301
1302 if ((tmp & BIT(6)))
1303 break;
1304
1305 pr_err("wait for BIT(6) return value %x\n", tmp);
1306
1307 if (waitcnt == 0)
1308 break;
1309 udelay(10);
1310 }
1311
1312 if (waitcnt == 0)
1313 result = false;
1314 else
1315 result = true;
1316 }
1317
1318 return result;
1319 }
1320
_rtl92s_phy_set_rfhalt(struct ieee80211_hw * hw)1321 static void _rtl92s_phy_set_rfhalt(struct ieee80211_hw *hw)
1322 {
1323 struct rtl_priv *rtlpriv = rtl_priv(hw);
1324 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1325 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
1326 u8 u1btmp;
1327
1328 if (rtlhal->driver_going2unload)
1329 rtl_write_byte(rtlpriv, 0x560, 0x0);
1330
1331 /* Power save for BB/RF */
1332 u1btmp = rtl_read_byte(rtlpriv, LDOV12D_CTRL);
1333 u1btmp |= BIT(0);
1334 rtl_write_byte(rtlpriv, LDOV12D_CTRL, u1btmp);
1335 rtl_write_byte(rtlpriv, SPS1_CTRL, 0x0);
1336 rtl_write_byte(rtlpriv, TXPAUSE, 0xFF);
1337 rtl_write_word(rtlpriv, CMDR, 0x57FC);
1338 udelay(100);
1339 rtl_write_word(rtlpriv, CMDR, 0x77FC);
1340 rtl_write_byte(rtlpriv, PHY_CCA, 0x0);
1341 udelay(10);
1342 rtl_write_word(rtlpriv, CMDR, 0x37FC);
1343 udelay(10);
1344 rtl_write_word(rtlpriv, CMDR, 0x77FC);
1345 udelay(10);
1346 rtl_write_word(rtlpriv, CMDR, 0x57FC);
1347 rtl_write_word(rtlpriv, CMDR, 0x0000);
1348
1349 if (rtlhal->driver_going2unload) {
1350 u1btmp = rtl_read_byte(rtlpriv, (REG_SYS_FUNC_EN + 1));
1351 u1btmp &= ~(BIT(0));
1352 rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, u1btmp);
1353 }
1354
1355 u1btmp = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
1356
1357 /* Add description. After switch control path. register
1358 * after page1 will be invisible. We can not do any IO
1359 * for register>0x40. After resume&MACIO reset, we need
1360 * to remember previous reg content. */
1361 if (u1btmp & BIT(7)) {
1362 u1btmp &= ~(BIT(6) | BIT(7));
1363 if (!_rtl92s_set_sysclk(hw, u1btmp)) {
1364 pr_err("Switch ctrl path fail\n");
1365 return;
1366 }
1367 }
1368
1369 /* Power save for MAC */
1370 if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS &&
1371 !rtlhal->driver_going2unload) {
1372 /* enable LED function */
1373 rtl_write_byte(rtlpriv, 0x03, 0xF9);
1374 /* SW/HW radio off or halt adapter!! For example S3/S4 */
1375 } else {
1376 /* LED function disable. Power range is about 8mA now. */
1377 /* if write 0xF1 disconnet_pci power
1378 * ifconfig wlan0 down power are both high 35:70 */
1379 /* if write oxF9 disconnet_pci power
1380 * ifconfig wlan0 down power are both low 12:45*/
1381 rtl_write_byte(rtlpriv, 0x03, 0xF9);
1382 }
1383
1384 rtl_write_byte(rtlpriv, SYS_CLKR + 1, 0x70);
1385 rtl_write_byte(rtlpriv, AFE_PLL_CTRL + 1, 0x68);
1386 rtl_write_byte(rtlpriv, AFE_PLL_CTRL, 0x00);
1387 rtl_write_byte(rtlpriv, LDOA15_CTRL, 0x34);
1388 rtl_write_byte(rtlpriv, AFE_XTAL_CTRL, 0x0E);
1389 RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
1390
1391 }
1392
_rtl92se_gen_refreshledstate(struct ieee80211_hw * hw)1393 static void _rtl92se_gen_refreshledstate(struct ieee80211_hw *hw)
1394 {
1395 struct rtl_priv *rtlpriv = rtl_priv(hw);
1396 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1397 struct rtl_led *pled0 = &rtlpriv->ledctl.sw_led0;
1398
1399 if (rtlpci->up_first_time == 1)
1400 return;
1401
1402 if (rtlpriv->psc.rfoff_reason == RF_CHANGE_BY_IPS)
1403 rtl92se_sw_led_on(hw, pled0);
1404 else
1405 rtl92se_sw_led_off(hw, pled0);
1406 }
1407
1408
_rtl92se_power_domain_init(struct ieee80211_hw * hw)1409 static void _rtl92se_power_domain_init(struct ieee80211_hw *hw)
1410 {
1411 struct rtl_priv *rtlpriv = rtl_priv(hw);
1412 u16 tmpu2b;
1413 u8 tmpu1b;
1414
1415 rtlpriv->psc.pwrdomain_protect = true;
1416
1417 tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
1418 if (tmpu1b & BIT(7)) {
1419 tmpu1b &= ~(BIT(6) | BIT(7));
1420 if (!_rtl92s_set_sysclk(hw, tmpu1b)) {
1421 rtlpriv->psc.pwrdomain_protect = false;
1422 return;
1423 }
1424 }
1425
1426 rtl_write_byte(rtlpriv, AFE_PLL_CTRL, 0x0);
1427 rtl_write_byte(rtlpriv, LDOA15_CTRL, 0x34);
1428
1429 /* Reset MAC-IO and CPU and Core Digital BIT10/11/15 */
1430 tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
1431
1432 /* If IPS we need to turn LED on. So we not
1433 * not disable BIT 3/7 of reg3. */
1434 if (rtlpriv->psc.rfoff_reason & (RF_CHANGE_BY_IPS | RF_CHANGE_BY_HW))
1435 tmpu1b &= 0xFB;
1436 else
1437 tmpu1b &= 0x73;
1438
1439 rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b);
1440 /* wait for BIT 10/11/15 to pull high automatically!! */
1441 mdelay(1);
1442
1443 rtl_write_byte(rtlpriv, CMDR, 0);
1444 rtl_write_byte(rtlpriv, TCR, 0);
1445
1446 /* Data sheet not define 0x562!!! Copy from WMAC!!!!! */
1447 tmpu1b = rtl_read_byte(rtlpriv, 0x562);
1448 tmpu1b |= 0x08;
1449 rtl_write_byte(rtlpriv, 0x562, tmpu1b);
1450 tmpu1b &= ~(BIT(3));
1451 rtl_write_byte(rtlpriv, 0x562, tmpu1b);
1452
1453 /* Enable AFE clock source */
1454 tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL);
1455 rtl_write_byte(rtlpriv, AFE_XTAL_CTRL, (tmpu1b | 0x01));
1456 /* Delay 1.5ms */
1457 udelay(1500);
1458 tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL + 1);
1459 rtl_write_byte(rtlpriv, AFE_XTAL_CTRL + 1, (tmpu1b & 0xfb));
1460
1461 /* Enable AFE Macro Block's Bandgap */
1462 tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC);
1463 rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | BIT(0)));
1464 mdelay(1);
1465
1466 /* Enable AFE Mbias */
1467 tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC);
1468 rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | 0x02));
1469 mdelay(1);
1470
1471 /* Enable LDOA15 block */
1472 tmpu1b = rtl_read_byte(rtlpriv, LDOA15_CTRL);
1473 rtl_write_byte(rtlpriv, LDOA15_CTRL, (tmpu1b | BIT(0)));
1474
1475 /* Set Digital Vdd to Retention isolation Path. */
1476 tmpu2b = rtl_read_word(rtlpriv, REG_SYS_ISO_CTRL);
1477 rtl_write_word(rtlpriv, REG_SYS_ISO_CTRL, (tmpu2b | BIT(11)));
1478
1479
1480 /* For warm reboot NIC disappera bug. */
1481 tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
1482 rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(13)));
1483
1484 rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, 0x68);
1485
1486 /* Enable AFE PLL Macro Block */
1487 tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL);
1488 rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) | BIT(4)));
1489 /* Enable MAC 80MHZ clock */
1490 tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL + 1);
1491 rtl_write_byte(rtlpriv, AFE_PLL_CTRL + 1, (tmpu1b | BIT(0)));
1492 mdelay(1);
1493
1494 /* Release isolation AFE PLL & MD */
1495 rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, 0xA6);
1496
1497 /* Enable MAC clock */
1498 tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR);
1499 rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b | BIT(12) | BIT(11)));
1500
1501 /* Enable Core digital and enable IOREG R/W */
1502 tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
1503 rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11)));
1504 /* enable REG_EN */
1505 rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11) | BIT(15)));
1506
1507 /* Switch the control path. */
1508 tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR);
1509 rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b & (~BIT(2))));
1510
1511 tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
1512 tmpu1b = ((tmpu1b | BIT(7)) & (~BIT(6)));
1513 if (!_rtl92s_set_sysclk(hw, tmpu1b)) {
1514 rtlpriv->psc.pwrdomain_protect = false;
1515 return;
1516 }
1517
1518 rtl_write_word(rtlpriv, CMDR, 0x37FC);
1519
1520 /* After MACIO reset,we must refresh LED state. */
1521 _rtl92se_gen_refreshledstate(hw);
1522
1523 rtlpriv->psc.pwrdomain_protect = false;
1524 }
1525
rtl92se_card_disable(struct ieee80211_hw * hw)1526 void rtl92se_card_disable(struct ieee80211_hw *hw)
1527 {
1528 struct rtl_priv *rtlpriv = rtl_priv(hw);
1529 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1530 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1531 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
1532 enum nl80211_iftype opmode;
1533 u8 wait = 30;
1534
1535 rtlpriv->intf_ops->enable_aspm(hw);
1536
1537 if (rtlpci->driver_is_goingto_unload ||
1538 ppsc->rfoff_reason > RF_CHANGE_BY_PS)
1539 rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF);
1540
1541 /* we should chnge GPIO to input mode
1542 * this will drop away current about 25mA*/
1543 rtl8192se_gpiobit3_cfg_inputmode(hw);
1544
1545 /* this is very important for ips power save */
1546 while (wait-- >= 10 && rtlpriv->psc.pwrdomain_protect) {
1547 if (rtlpriv->psc.pwrdomain_protect)
1548 mdelay(20);
1549 else
1550 break;
1551 }
1552
1553 mac->link_state = MAC80211_NOLINK;
1554 opmode = NL80211_IFTYPE_UNSPECIFIED;
1555 _rtl92se_set_media_status(hw, opmode);
1556
1557 _rtl92s_phy_set_rfhalt(hw);
1558 udelay(100);
1559 }
1560
rtl92se_interrupt_recognized(struct ieee80211_hw * hw,struct rtl_int * intvec)1561 void rtl92se_interrupt_recognized(struct ieee80211_hw *hw,
1562 struct rtl_int *intvec)
1563 {
1564 struct rtl_priv *rtlpriv = rtl_priv(hw);
1565 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1566
1567 intvec->inta = rtl_read_dword(rtlpriv, ISR) & rtlpci->irq_mask[0];
1568 rtl_write_dword(rtlpriv, ISR, intvec->inta);
1569
1570 intvec->intb = rtl_read_dword(rtlpriv, ISR + 4) & rtlpci->irq_mask[1];
1571 rtl_write_dword(rtlpriv, ISR + 4, intvec->intb);
1572 }
1573
rtl92se_set_beacon_related_registers(struct ieee80211_hw * hw)1574 void rtl92se_set_beacon_related_registers(struct ieee80211_hw *hw)
1575 {
1576 struct rtl_priv *rtlpriv = rtl_priv(hw);
1577 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1578 u16 bcntime_cfg = 0;
1579 u16 bcn_cw = 6, bcn_ifs = 0xf;
1580 u16 atim_window = 2;
1581
1582 /* ATIM Window (in unit of TU). */
1583 rtl_write_word(rtlpriv, ATIMWND, atim_window);
1584
1585 /* Beacon interval (in unit of TU). */
1586 rtl_write_word(rtlpriv, BCN_INTERVAL, mac->beacon_interval);
1587
1588 /* DrvErlyInt (in unit of TU). (Time to send
1589 * interrupt to notify driver to change
1590 * beacon content) */
1591 rtl_write_word(rtlpriv, BCN_DRV_EARLY_INT, 10 << 4);
1592
1593 /* BcnDMATIM(in unit of us). Indicates the
1594 * time before TBTT to perform beacon queue DMA */
1595 rtl_write_word(rtlpriv, BCN_DMATIME, 256);
1596
1597 /* Force beacon frame transmission even
1598 * after receiving beacon frame from
1599 * other ad hoc STA */
1600 rtl_write_byte(rtlpriv, BCN_ERR_THRESH, 100);
1601
1602 /* Beacon Time Configuration */
1603 if (mac->opmode == NL80211_IFTYPE_ADHOC)
1604 bcntime_cfg |= (bcn_cw << BCN_TCFG_CW_SHIFT);
1605
1606 /* TODO: bcn_ifs may required to be changed on ASIC */
1607 bcntime_cfg |= bcn_ifs << BCN_TCFG_IFS;
1608
1609 /*for beacon changed */
1610 rtl92s_phy_set_beacon_hwreg(hw, mac->beacon_interval);
1611 }
1612
rtl92se_set_beacon_interval(struct ieee80211_hw * hw)1613 void rtl92se_set_beacon_interval(struct ieee80211_hw *hw)
1614 {
1615 struct rtl_priv *rtlpriv = rtl_priv(hw);
1616 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1617 u16 bcn_interval = mac->beacon_interval;
1618
1619 /* Beacon interval (in unit of TU). */
1620 rtl_write_word(rtlpriv, BCN_INTERVAL, bcn_interval);
1621 /* 2008.10.24 added by tynli for beacon changed. */
1622 rtl92s_phy_set_beacon_hwreg(hw, bcn_interval);
1623 }
1624
rtl92se_update_interrupt_mask(struct ieee80211_hw * hw,u32 add_msr,u32 rm_msr)1625 void rtl92se_update_interrupt_mask(struct ieee80211_hw *hw,
1626 u32 add_msr, u32 rm_msr)
1627 {
1628 struct rtl_priv *rtlpriv = rtl_priv(hw);
1629 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1630
1631 RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD, "add_msr:%x, rm_msr:%x\n",
1632 add_msr, rm_msr);
1633
1634 if (add_msr)
1635 rtlpci->irq_mask[0] |= add_msr;
1636
1637 if (rm_msr)
1638 rtlpci->irq_mask[0] &= (~rm_msr);
1639
1640 rtl92se_disable_interrupt(hw);
1641 rtl92se_enable_interrupt(hw);
1642 }
1643
_rtl8192se_get_IC_Inferiority(struct ieee80211_hw * hw)1644 static void _rtl8192se_get_IC_Inferiority(struct ieee80211_hw *hw)
1645 {
1646 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1647 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1648 u8 efuse_id;
1649
1650 rtlhal->ic_class = IC_INFERIORITY_A;
1651
1652 /* Only retrieving while using EFUSE. */
1653 if ((rtlefuse->epromtype == EEPROM_BOOT_EFUSE) &&
1654 !rtlefuse->autoload_failflag) {
1655 efuse_id = efuse_read_1byte(hw, EFUSE_IC_ID_OFFSET);
1656
1657 if (efuse_id == 0xfe)
1658 rtlhal->ic_class = IC_INFERIORITY_B;
1659 }
1660 }
1661
_rtl92se_read_adapter_info(struct ieee80211_hw * hw)1662 static void _rtl92se_read_adapter_info(struct ieee80211_hw *hw)
1663 {
1664 struct rtl_priv *rtlpriv = rtl_priv(hw);
1665 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1666 struct rtl_phy *rtlphy = &(rtlpriv->phy);
1667 struct device *dev = &rtl_pcipriv(hw)->dev.pdev->dev;
1668 u16 i, usvalue;
1669 u16 eeprom_id;
1670 u8 tempval;
1671 u8 hwinfo[HWSET_MAX_SIZE_92S];
1672 u8 rf_path, index;
1673
1674 switch (rtlefuse->epromtype) {
1675 case EEPROM_BOOT_EFUSE:
1676 rtl_efuse_shadow_map_update(hw);
1677 break;
1678
1679 case EEPROM_93C46:
1680 pr_err("RTL819X Not boot from eeprom, check it !!\n");
1681 return;
1682
1683 default:
1684 dev_warn(dev, "no efuse data\n");
1685 return;
1686 }
1687
1688 memcpy(hwinfo, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
1689 HWSET_MAX_SIZE_92S);
1690
1691 RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_DMESG, "MAP",
1692 hwinfo, HWSET_MAX_SIZE_92S);
1693
1694 eeprom_id = *((u16 *)&hwinfo[0]);
1695 if (eeprom_id != RTL8190_EEPROM_ID) {
1696 RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
1697 "EEPROM ID(%#x) is invalid!!\n", eeprom_id);
1698 rtlefuse->autoload_failflag = true;
1699 } else {
1700 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
1701 rtlefuse->autoload_failflag = false;
1702 }
1703
1704 if (rtlefuse->autoload_failflag)
1705 return;
1706
1707 _rtl8192se_get_IC_Inferiority(hw);
1708
1709 /* Read IC Version && Channel Plan */
1710 /* VID, DID SE 0xA-D */
1711 rtlefuse->eeprom_vid = *(u16 *)&hwinfo[EEPROM_VID];
1712 rtlefuse->eeprom_did = *(u16 *)&hwinfo[EEPROM_DID];
1713 rtlefuse->eeprom_svid = *(u16 *)&hwinfo[EEPROM_SVID];
1714 rtlefuse->eeprom_smid = *(u16 *)&hwinfo[EEPROM_SMID];
1715 rtlefuse->eeprom_version = *(u16 *)&hwinfo[EEPROM_VERSION];
1716
1717 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1718 "EEPROMId = 0x%4x\n", eeprom_id);
1719 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1720 "EEPROM VID = 0x%4x\n", rtlefuse->eeprom_vid);
1721 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1722 "EEPROM DID = 0x%4x\n", rtlefuse->eeprom_did);
1723 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1724 "EEPROM SVID = 0x%4x\n", rtlefuse->eeprom_svid);
1725 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1726 "EEPROM SMID = 0x%4x\n", rtlefuse->eeprom_smid);
1727
1728 for (i = 0; i < 6; i += 2) {
1729 usvalue = *(u16 *)&hwinfo[EEPROM_MAC_ADDR + i];
1730 *((u16 *) (&rtlefuse->dev_addr[i])) = usvalue;
1731 }
1732
1733 for (i = 0; i < 6; i++)
1734 rtl_write_byte(rtlpriv, MACIDR0 + i, rtlefuse->dev_addr[i]);
1735
1736 RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "%pM\n", rtlefuse->dev_addr);
1737
1738 /* Get Tx Power Level by Channel */
1739 /* Read Tx power of Channel 1 ~ 14 from EEPROM. */
1740 /* 92S suupport RF A & B */
1741 for (rf_path = 0; rf_path < 2; rf_path++) {
1742 for (i = 0; i < 3; i++) {
1743 /* Read CCK RF A & B Tx power */
1744 rtlefuse->eeprom_chnlarea_txpwr_cck[rf_path][i] =
1745 hwinfo[EEPROM_TXPOWERBASE + rf_path * 3 + i];
1746
1747 /* Read OFDM RF A & B Tx power for 1T */
1748 rtlefuse->eeprom_chnlarea_txpwr_ht40_1s[rf_path][i] =
1749 hwinfo[EEPROM_TXPOWERBASE + 6 + rf_path * 3 + i];
1750
1751 /* Read OFDM RF A & B Tx power for 2T */
1752 rtlefuse->eprom_chnl_txpwr_ht40_2sdf[rf_path][i]
1753 = hwinfo[EEPROM_TXPOWERBASE + 12 +
1754 rf_path * 3 + i];
1755 }
1756 }
1757
1758 for (rf_path = 0; rf_path < 2; rf_path++)
1759 for (i = 0; i < 3; i++)
1760 RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
1761 "RF(%d) EEPROM CCK Area(%d) = 0x%x\n",
1762 rf_path, i,
1763 rtlefuse->eeprom_chnlarea_txpwr_cck
1764 [rf_path][i]);
1765 for (rf_path = 0; rf_path < 2; rf_path++)
1766 for (i = 0; i < 3; i++)
1767 RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
1768 "RF(%d) EEPROM HT40 1S Area(%d) = 0x%x\n",
1769 rf_path, i,
1770 rtlefuse->eeprom_chnlarea_txpwr_ht40_1s
1771 [rf_path][i]);
1772 for (rf_path = 0; rf_path < 2; rf_path++)
1773 for (i = 0; i < 3; i++)
1774 RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
1775 "RF(%d) EEPROM HT40 2S Diff Area(%d) = 0x%x\n",
1776 rf_path, i,
1777 rtlefuse->eprom_chnl_txpwr_ht40_2sdf
1778 [rf_path][i]);
1779
1780 for (rf_path = 0; rf_path < 2; rf_path++) {
1781
1782 /* Assign dedicated channel tx power */
1783 for (i = 0; i < 14; i++) {
1784 /* channel 1~3 use the same Tx Power Level. */
1785 if (i < 3)
1786 index = 0;
1787 /* Channel 4-8 */
1788 else if (i < 8)
1789 index = 1;
1790 /* Channel 9-14 */
1791 else
1792 index = 2;
1793
1794 /* Record A & B CCK /OFDM - 1T/2T Channel area
1795 * tx power */
1796 rtlefuse->txpwrlevel_cck[rf_path][i] =
1797 rtlefuse->eeprom_chnlarea_txpwr_cck
1798 [rf_path][index];
1799 rtlefuse->txpwrlevel_ht40_1s[rf_path][i] =
1800 rtlefuse->eeprom_chnlarea_txpwr_ht40_1s
1801 [rf_path][index];
1802 rtlefuse->txpwrlevel_ht40_2s[rf_path][i] =
1803 rtlefuse->eprom_chnl_txpwr_ht40_2sdf
1804 [rf_path][index];
1805 }
1806
1807 for (i = 0; i < 14; i++) {
1808 RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1809 "RF(%d)-Ch(%d) [CCK / HT40_1S / HT40_2S] = [0x%x / 0x%x / 0x%x]\n",
1810 rf_path, i,
1811 rtlefuse->txpwrlevel_cck[rf_path][i],
1812 rtlefuse->txpwrlevel_ht40_1s[rf_path][i],
1813 rtlefuse->txpwrlevel_ht40_2s[rf_path][i]);
1814 }
1815 }
1816
1817 for (rf_path = 0; rf_path < 2; rf_path++) {
1818 for (i = 0; i < 3; i++) {
1819 /* Read Power diff limit. */
1820 rtlefuse->eeprom_pwrgroup[rf_path][i] =
1821 hwinfo[EEPROM_TXPWRGROUP + rf_path * 3 + i];
1822 }
1823 }
1824
1825 for (rf_path = 0; rf_path < 2; rf_path++) {
1826 /* Fill Pwr group */
1827 for (i = 0; i < 14; i++) {
1828 /* Chanel 1-3 */
1829 if (i < 3)
1830 index = 0;
1831 /* Channel 4-8 */
1832 else if (i < 8)
1833 index = 1;
1834 /* Channel 9-13 */
1835 else
1836 index = 2;
1837
1838 rtlefuse->pwrgroup_ht20[rf_path][i] =
1839 (rtlefuse->eeprom_pwrgroup[rf_path][index] &
1840 0xf);
1841 rtlefuse->pwrgroup_ht40[rf_path][i] =
1842 ((rtlefuse->eeprom_pwrgroup[rf_path][index] &
1843 0xf0) >> 4);
1844
1845 RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1846 "RF-%d pwrgroup_ht20[%d] = 0x%x\n",
1847 rf_path, i,
1848 rtlefuse->pwrgroup_ht20[rf_path][i]);
1849 RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1850 "RF-%d pwrgroup_ht40[%d] = 0x%x\n",
1851 rf_path, i,
1852 rtlefuse->pwrgroup_ht40[rf_path][i]);
1853 }
1854 }
1855
1856 for (i = 0; i < 14; i++) {
1857 /* Read tx power difference between HT OFDM 20/40 MHZ */
1858 /* channel 1-3 */
1859 if (i < 3)
1860 index = 0;
1861 /* Channel 4-8 */
1862 else if (i < 8)
1863 index = 1;
1864 /* Channel 9-14 */
1865 else
1866 index = 2;
1867
1868 tempval = hwinfo[EEPROM_TX_PWR_HT20_DIFF + index] & 0xff;
1869 rtlefuse->txpwr_ht20diff[RF90_PATH_A][i] = (tempval & 0xF);
1870 rtlefuse->txpwr_ht20diff[RF90_PATH_B][i] =
1871 ((tempval >> 4) & 0xF);
1872
1873 /* Read OFDM<->HT tx power diff */
1874 /* Channel 1-3 */
1875 if (i < 3)
1876 index = 0;
1877 /* Channel 4-8 */
1878 else if (i < 8)
1879 index = 0x11;
1880 /* Channel 9-14 */
1881 else
1882 index = 1;
1883
1884 tempval = hwinfo[EEPROM_TX_PWR_OFDM_DIFF + index] & 0xff;
1885 rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][i] =
1886 (tempval & 0xF);
1887 rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][i] =
1888 ((tempval >> 4) & 0xF);
1889
1890 tempval = hwinfo[TX_PWR_SAFETY_CHK];
1891 rtlefuse->txpwr_safetyflag = (tempval & 0x01);
1892 }
1893
1894 rtlefuse->eeprom_regulatory = 0;
1895 if (rtlefuse->eeprom_version >= 2) {
1896 /* BIT(0)~2 */
1897 if (rtlefuse->eeprom_version >= 4)
1898 rtlefuse->eeprom_regulatory =
1899 (hwinfo[EEPROM_REGULATORY] & 0x7);
1900 else /* BIT(0) */
1901 rtlefuse->eeprom_regulatory =
1902 (hwinfo[EEPROM_REGULATORY] & 0x1);
1903 }
1904 RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1905 "eeprom_regulatory = 0x%x\n", rtlefuse->eeprom_regulatory);
1906
1907 for (i = 0; i < 14; i++)
1908 RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1909 "RF-A Ht20 to HT40 Diff[%d] = 0x%x\n",
1910 i, rtlefuse->txpwr_ht20diff[RF90_PATH_A][i]);
1911 for (i = 0; i < 14; i++)
1912 RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1913 "RF-A Legacy to Ht40 Diff[%d] = 0x%x\n",
1914 i, rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][i]);
1915 for (i = 0; i < 14; i++)
1916 RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1917 "RF-B Ht20 to HT40 Diff[%d] = 0x%x\n",
1918 i, rtlefuse->txpwr_ht20diff[RF90_PATH_B][i]);
1919 for (i = 0; i < 14; i++)
1920 RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1921 "RF-B Legacy to HT40 Diff[%d] = 0x%x\n",
1922 i, rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][i]);
1923
1924 RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1925 "TxPwrSafetyFlag = %d\n", rtlefuse->txpwr_safetyflag);
1926
1927 /* Read RF-indication and Tx Power gain
1928 * index diff of legacy to HT OFDM rate. */
1929 tempval = hwinfo[EEPROM_RFIND_POWERDIFF] & 0xff;
1930 rtlefuse->eeprom_txpowerdiff = tempval;
1931 rtlefuse->legacy_httxpowerdiff =
1932 rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][0];
1933
1934 RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1935 "TxPowerDiff = %#x\n", rtlefuse->eeprom_txpowerdiff);
1936
1937 /* Get TSSI value for each path. */
1938 usvalue = *(u16 *)&hwinfo[EEPROM_TSSI_A];
1939 rtlefuse->eeprom_tssi[RF90_PATH_A] = (u8)((usvalue & 0xff00) >> 8);
1940 usvalue = hwinfo[EEPROM_TSSI_B];
1941 rtlefuse->eeprom_tssi[RF90_PATH_B] = (u8)(usvalue & 0xff);
1942
1943 RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, "TSSI_A = 0x%x, TSSI_B = 0x%x\n",
1944 rtlefuse->eeprom_tssi[RF90_PATH_A],
1945 rtlefuse->eeprom_tssi[RF90_PATH_B]);
1946
1947 /* Read antenna tx power offset of B/C/D to A from EEPROM */
1948 /* and read ThermalMeter from EEPROM */
1949 tempval = hwinfo[EEPROM_THERMALMETER];
1950 rtlefuse->eeprom_thermalmeter = tempval;
1951 RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1952 "thermalmeter = 0x%x\n", rtlefuse->eeprom_thermalmeter);
1953
1954 /* ThermalMeter, BIT(0)~3 for RFIC1, BIT(4)~7 for RFIC2 */
1955 rtlefuse->thermalmeter[0] = (rtlefuse->eeprom_thermalmeter & 0x1f);
1956 rtlefuse->tssi_13dbm = rtlefuse->eeprom_thermalmeter * 100;
1957
1958 /* Read CrystalCap from EEPROM */
1959 tempval = hwinfo[EEPROM_CRYSTALCAP] >> 4;
1960 rtlefuse->eeprom_crystalcap = tempval;
1961 /* CrystalCap, BIT(12)~15 */
1962 rtlefuse->crystalcap = rtlefuse->eeprom_crystalcap;
1963
1964 /* Read IC Version && Channel Plan */
1965 /* Version ID, Channel plan */
1966 rtlefuse->eeprom_channelplan = hwinfo[EEPROM_CHANNELPLAN];
1967 rtlefuse->txpwr_fromeprom = true;
1968 RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1969 "EEPROM ChannelPlan = 0x%4x\n", rtlefuse->eeprom_channelplan);
1970
1971 /* Read Customer ID or Board Type!!! */
1972 tempval = hwinfo[EEPROM_BOARDTYPE];
1973 /* Change RF type definition */
1974 if (tempval == 0)
1975 rtlphy->rf_type = RF_2T2R;
1976 else if (tempval == 1)
1977 rtlphy->rf_type = RF_1T2R;
1978 else if (tempval == 2)
1979 rtlphy->rf_type = RF_1T2R;
1980 else if (tempval == 3)
1981 rtlphy->rf_type = RF_1T1R;
1982
1983 /* 1T2R but 1SS (1x1 receive combining) */
1984 rtlefuse->b1x1_recvcombine = false;
1985 if (rtlphy->rf_type == RF_1T2R) {
1986 tempval = rtl_read_byte(rtlpriv, 0x07);
1987 if (!(tempval & BIT(0))) {
1988 rtlefuse->b1x1_recvcombine = true;
1989 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1990 "RF_TYPE=1T2R but only 1SS\n");
1991 }
1992 }
1993 rtlefuse->b1ss_support = rtlefuse->b1x1_recvcombine;
1994 rtlefuse->eeprom_oemid = *&hwinfo[EEPROM_CUSTOMID];
1995
1996 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "EEPROM Customer ID: 0x%2x\n",
1997 rtlefuse->eeprom_oemid);
1998
1999 /* set channel paln to world wide 13 */
2000 rtlefuse->channel_plan = COUNTRY_CODE_WORLD_WIDE_13;
2001 }
2002
rtl92se_read_eeprom_info(struct ieee80211_hw * hw)2003 void rtl92se_read_eeprom_info(struct ieee80211_hw *hw)
2004 {
2005 struct rtl_priv *rtlpriv = rtl_priv(hw);
2006 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
2007 u8 tmp_u1b = 0;
2008
2009 tmp_u1b = rtl_read_byte(rtlpriv, EPROM_CMD);
2010
2011 if (tmp_u1b & BIT(4)) {
2012 RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EEPROM\n");
2013 rtlefuse->epromtype = EEPROM_93C46;
2014 } else {
2015 RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EFUSE\n");
2016 rtlefuse->epromtype = EEPROM_BOOT_EFUSE;
2017 }
2018
2019 if (tmp_u1b & BIT(5)) {
2020 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
2021 rtlefuse->autoload_failflag = false;
2022 _rtl92se_read_adapter_info(hw);
2023 } else {
2024 pr_err("Autoload ERR!!\n");
2025 rtlefuse->autoload_failflag = true;
2026 }
2027 }
2028
rtl92se_update_hal_rate_table(struct ieee80211_hw * hw,struct ieee80211_sta * sta)2029 static void rtl92se_update_hal_rate_table(struct ieee80211_hw *hw,
2030 struct ieee80211_sta *sta)
2031 {
2032 struct rtl_priv *rtlpriv = rtl_priv(hw);
2033 struct rtl_phy *rtlphy = &(rtlpriv->phy);
2034 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2035 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
2036 u32 ratr_value;
2037 u8 ratr_index = 0;
2038 u8 nmode = mac->ht_enable;
2039 u8 mimo_ps = IEEE80211_SMPS_OFF;
2040 u16 shortgi_rate = 0;
2041 u32 tmp_ratr_value = 0;
2042 u8 curtxbw_40mhz = mac->bw_40;
2043 u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
2044 1 : 0;
2045 u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
2046 1 : 0;
2047 enum wireless_mode wirelessmode = mac->mode;
2048
2049 if (rtlhal->current_bandtype == BAND_ON_5G)
2050 ratr_value = sta->supp_rates[1] << 4;
2051 else
2052 ratr_value = sta->supp_rates[0];
2053 if (mac->opmode == NL80211_IFTYPE_ADHOC)
2054 ratr_value = 0xfff;
2055 ratr_value |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
2056 sta->ht_cap.mcs.rx_mask[0] << 12);
2057 switch (wirelessmode) {
2058 case WIRELESS_MODE_B:
2059 ratr_value &= 0x0000000D;
2060 break;
2061 case WIRELESS_MODE_G:
2062 ratr_value &= 0x00000FF5;
2063 break;
2064 case WIRELESS_MODE_N_24G:
2065 case WIRELESS_MODE_N_5G:
2066 nmode = 1;
2067 if (mimo_ps == IEEE80211_SMPS_STATIC) {
2068 ratr_value &= 0x0007F005;
2069 } else {
2070 u32 ratr_mask;
2071
2072 if (get_rf_type(rtlphy) == RF_1T2R ||
2073 get_rf_type(rtlphy) == RF_1T1R) {
2074 if (curtxbw_40mhz)
2075 ratr_mask = 0x000ff015;
2076 else
2077 ratr_mask = 0x000ff005;
2078 } else {
2079 if (curtxbw_40mhz)
2080 ratr_mask = 0x0f0ff015;
2081 else
2082 ratr_mask = 0x0f0ff005;
2083 }
2084
2085 ratr_value &= ratr_mask;
2086 }
2087 break;
2088 default:
2089 if (rtlphy->rf_type == RF_1T2R)
2090 ratr_value &= 0x000ff0ff;
2091 else
2092 ratr_value &= 0x0f0ff0ff;
2093
2094 break;
2095 }
2096
2097 if (rtlpriv->rtlhal.version >= VERSION_8192S_BCUT)
2098 ratr_value &= 0x0FFFFFFF;
2099 else if (rtlpriv->rtlhal.version == VERSION_8192S_ACUT)
2100 ratr_value &= 0x0FFFFFF0;
2101
2102 if (nmode && ((curtxbw_40mhz &&
2103 curshortgi_40mhz) || (!curtxbw_40mhz &&
2104 curshortgi_20mhz))) {
2105
2106 ratr_value |= 0x10000000;
2107 tmp_ratr_value = (ratr_value >> 12);
2108
2109 for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) {
2110 if ((1 << shortgi_rate) & tmp_ratr_value)
2111 break;
2112 }
2113
2114 shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) |
2115 (shortgi_rate << 4) | (shortgi_rate);
2116
2117 rtl_write_byte(rtlpriv, SG_RATE, shortgi_rate);
2118 }
2119
2120 rtl_write_dword(rtlpriv, ARFR0 + ratr_index * 4, ratr_value);
2121 if (ratr_value & 0xfffff000)
2122 rtl92s_phy_set_fw_cmd(hw, FW_CMD_RA_REFRESH_N);
2123 else
2124 rtl92s_phy_set_fw_cmd(hw, FW_CMD_RA_REFRESH_BG);
2125
2126 RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG, "%x\n",
2127 rtl_read_dword(rtlpriv, ARFR0));
2128 }
2129
rtl92se_update_hal_rate_mask(struct ieee80211_hw * hw,struct ieee80211_sta * sta,u8 rssi_level,bool update_bw)2130 static void rtl92se_update_hal_rate_mask(struct ieee80211_hw *hw,
2131 struct ieee80211_sta *sta,
2132 u8 rssi_level, bool update_bw)
2133 {
2134 struct rtl_priv *rtlpriv = rtl_priv(hw);
2135 struct rtl_phy *rtlphy = &(rtlpriv->phy);
2136 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2137 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
2138 struct rtl_sta_info *sta_entry = NULL;
2139 u32 ratr_bitmap;
2140 u8 ratr_index = 0;
2141 u8 curtxbw_40mhz = (sta->bandwidth >= IEEE80211_STA_RX_BW_40) ? 1 : 0;
2142 u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
2143 1 : 0;
2144 u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
2145 1 : 0;
2146 enum wireless_mode wirelessmode = 0;
2147 bool shortgi = false;
2148 u32 ratr_value = 0;
2149 u8 shortgi_rate = 0;
2150 u32 mask = 0;
2151 u32 band = 0;
2152 bool bmulticast = false;
2153 u8 macid = 0;
2154 u8 mimo_ps = IEEE80211_SMPS_OFF;
2155
2156 sta_entry = (struct rtl_sta_info *) sta->drv_priv;
2157 wirelessmode = sta_entry->wireless_mode;
2158 if (mac->opmode == NL80211_IFTYPE_STATION)
2159 curtxbw_40mhz = mac->bw_40;
2160 else if (mac->opmode == NL80211_IFTYPE_AP ||
2161 mac->opmode == NL80211_IFTYPE_ADHOC)
2162 macid = sta->aid + 1;
2163
2164 if (rtlhal->current_bandtype == BAND_ON_5G)
2165 ratr_bitmap = sta->supp_rates[1] << 4;
2166 else
2167 ratr_bitmap = sta->supp_rates[0];
2168 if (mac->opmode == NL80211_IFTYPE_ADHOC)
2169 ratr_bitmap = 0xfff;
2170 ratr_bitmap |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
2171 sta->ht_cap.mcs.rx_mask[0] << 12);
2172 switch (wirelessmode) {
2173 case WIRELESS_MODE_B:
2174 band |= WIRELESS_11B;
2175 ratr_index = RATR_INX_WIRELESS_B;
2176 if (ratr_bitmap & 0x0000000c)
2177 ratr_bitmap &= 0x0000000d;
2178 else
2179 ratr_bitmap &= 0x0000000f;
2180 break;
2181 case WIRELESS_MODE_G:
2182 band |= (WIRELESS_11G | WIRELESS_11B);
2183 ratr_index = RATR_INX_WIRELESS_GB;
2184
2185 if (rssi_level == 1)
2186 ratr_bitmap &= 0x00000f00;
2187 else if (rssi_level == 2)
2188 ratr_bitmap &= 0x00000ff0;
2189 else
2190 ratr_bitmap &= 0x00000ff5;
2191 break;
2192 case WIRELESS_MODE_A:
2193 band |= WIRELESS_11A;
2194 ratr_index = RATR_INX_WIRELESS_A;
2195 ratr_bitmap &= 0x00000ff0;
2196 break;
2197 case WIRELESS_MODE_N_24G:
2198 case WIRELESS_MODE_N_5G:
2199 band |= (WIRELESS_11N | WIRELESS_11G | WIRELESS_11B);
2200 ratr_index = RATR_INX_WIRELESS_NGB;
2201
2202 if (mimo_ps == IEEE80211_SMPS_STATIC) {
2203 if (rssi_level == 1)
2204 ratr_bitmap &= 0x00070000;
2205 else if (rssi_level == 2)
2206 ratr_bitmap &= 0x0007f000;
2207 else
2208 ratr_bitmap &= 0x0007f005;
2209 } else {
2210 if (rtlphy->rf_type == RF_1T2R ||
2211 rtlphy->rf_type == RF_1T1R) {
2212 if (rssi_level == 1) {
2213 ratr_bitmap &= 0x000f0000;
2214 } else if (rssi_level == 3) {
2215 ratr_bitmap &= 0x000fc000;
2216 } else if (rssi_level == 5) {
2217 ratr_bitmap &= 0x000ff000;
2218 } else {
2219 if (curtxbw_40mhz)
2220 ratr_bitmap &= 0x000ff015;
2221 else
2222 ratr_bitmap &= 0x000ff005;
2223 }
2224 } else {
2225 if (rssi_level == 1) {
2226 ratr_bitmap &= 0x0f8f0000;
2227 } else if (rssi_level == 3) {
2228 ratr_bitmap &= 0x0f8fc000;
2229 } else if (rssi_level == 5) {
2230 ratr_bitmap &= 0x0f8ff000;
2231 } else {
2232 if (curtxbw_40mhz)
2233 ratr_bitmap &= 0x0f8ff015;
2234 else
2235 ratr_bitmap &= 0x0f8ff005;
2236 }
2237 }
2238 }
2239
2240 if ((curtxbw_40mhz && curshortgi_40mhz) ||
2241 (!curtxbw_40mhz && curshortgi_20mhz)) {
2242 if (macid == 0)
2243 shortgi = true;
2244 else if (macid == 1)
2245 shortgi = false;
2246 }
2247 break;
2248 default:
2249 band |= (WIRELESS_11N | WIRELESS_11G | WIRELESS_11B);
2250 ratr_index = RATR_INX_WIRELESS_NGB;
2251
2252 if (rtlphy->rf_type == RF_1T2R)
2253 ratr_bitmap &= 0x000ff0ff;
2254 else
2255 ratr_bitmap &= 0x0f8ff0ff;
2256 break;
2257 }
2258 sta_entry->ratr_index = ratr_index;
2259
2260 if (rtlpriv->rtlhal.version >= VERSION_8192S_BCUT)
2261 ratr_bitmap &= 0x0FFFFFFF;
2262 else if (rtlpriv->rtlhal.version == VERSION_8192S_ACUT)
2263 ratr_bitmap &= 0x0FFFFFF0;
2264
2265 if (shortgi) {
2266 ratr_bitmap |= 0x10000000;
2267 /* Get MAX MCS available. */
2268 ratr_value = (ratr_bitmap >> 12);
2269 for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) {
2270 if ((1 << shortgi_rate) & ratr_value)
2271 break;
2272 }
2273
2274 shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) |
2275 (shortgi_rate << 4) | (shortgi_rate);
2276 rtl_write_byte(rtlpriv, SG_RATE, shortgi_rate);
2277 }
2278
2279 mask |= (bmulticast ? 1 : 0) << 9 | (macid & 0x1f) << 4 | (band & 0xf);
2280
2281 RT_TRACE(rtlpriv, COMP_RATR, DBG_TRACE, "mask = %x, bitmap = %x\n",
2282 mask, ratr_bitmap);
2283 rtl_write_dword(rtlpriv, 0x2c4, ratr_bitmap);
2284 rtl_write_dword(rtlpriv, WFM5, (FW_RA_UPDATE_MASK | (mask << 8)));
2285
2286 if (macid != 0)
2287 sta_entry->ratr_index = ratr_index;
2288 }
2289
rtl92se_update_hal_rate_tbl(struct ieee80211_hw * hw,struct ieee80211_sta * sta,u8 rssi_level,bool update_bw)2290 void rtl92se_update_hal_rate_tbl(struct ieee80211_hw *hw,
2291 struct ieee80211_sta *sta, u8 rssi_level, bool update_bw)
2292 {
2293 struct rtl_priv *rtlpriv = rtl_priv(hw);
2294
2295 if (rtlpriv->dm.useramask)
2296 rtl92se_update_hal_rate_mask(hw, sta, rssi_level, update_bw);
2297 else
2298 rtl92se_update_hal_rate_table(hw, sta);
2299 }
2300
rtl92se_update_channel_access_setting(struct ieee80211_hw * hw)2301 void rtl92se_update_channel_access_setting(struct ieee80211_hw *hw)
2302 {
2303 struct rtl_priv *rtlpriv = rtl_priv(hw);
2304 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2305 u16 sifs_timer;
2306
2307 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SLOT_TIME,
2308 &mac->slot_time);
2309 sifs_timer = 0x0e0e;
2310 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SIFS, (u8 *)&sifs_timer);
2311
2312 }
2313
2314 /* this ifunction is for RFKILL, it's different with windows,
2315 * because UI will disable wireless when GPIO Radio Off.
2316 * And here we not check or Disable/Enable ASPM like windows*/
rtl92se_gpio_radio_on_off_checking(struct ieee80211_hw * hw,u8 * valid)2317 bool rtl92se_gpio_radio_on_off_checking(struct ieee80211_hw *hw, u8 *valid)
2318 {
2319 struct rtl_priv *rtlpriv = rtl_priv(hw);
2320 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
2321 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
2322 enum rf_pwrstate rfpwr_toset /*, cur_rfstate */;
2323 unsigned long flag = 0;
2324 bool actuallyset = false;
2325 bool turnonbypowerdomain = false;
2326
2327 /* just 8191se can check gpio before firstup, 92c/92d have fixed it */
2328 if ((rtlpci->up_first_time == 1) || (rtlpci->being_init_adapter))
2329 return false;
2330
2331 if (ppsc->swrf_processing)
2332 return false;
2333
2334 spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
2335 if (ppsc->rfchange_inprogress) {
2336 spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2337 return false;
2338 } else {
2339 ppsc->rfchange_inprogress = true;
2340 spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2341 }
2342
2343 /* cur_rfstate = ppsc->rfpwr_state;*/
2344
2345 /* because after _rtl92s_phy_set_rfhalt, all power
2346 * closed, so we must open some power for GPIO check,
2347 * or we will always check GPIO RFOFF here,
2348 * And we should close power after GPIO check */
2349 if (RT_IN_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC)) {
2350 _rtl92se_power_domain_init(hw);
2351 turnonbypowerdomain = true;
2352 }
2353
2354 rfpwr_toset = _rtl92se_rf_onoff_detect(hw);
2355
2356 if ((ppsc->hwradiooff) && (rfpwr_toset == ERFON)) {
2357 RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
2358 "RFKILL-HW Radio ON, RF ON\n");
2359
2360 rfpwr_toset = ERFON;
2361 ppsc->hwradiooff = false;
2362 actuallyset = true;
2363 } else if ((!ppsc->hwradiooff) && (rfpwr_toset == ERFOFF)) {
2364 RT_TRACE(rtlpriv, COMP_RF,
2365 DBG_DMESG, "RFKILL-HW Radio OFF, RF OFF\n");
2366
2367 rfpwr_toset = ERFOFF;
2368 ppsc->hwradiooff = true;
2369 actuallyset = true;
2370 }
2371
2372 if (actuallyset) {
2373 spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
2374 ppsc->rfchange_inprogress = false;
2375 spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2376
2377 /* this not include ifconfig wlan0 down case */
2378 /* } else if (rfpwr_toset == ERFOFF || cur_rfstate == ERFOFF) { */
2379 } else {
2380 /* because power_domain_init may be happen when
2381 * _rtl92s_phy_set_rfhalt, this will open some powers
2382 * and cause current increasing about 40 mA for ips,
2383 * rfoff and ifconfig down, so we set
2384 * _rtl92s_phy_set_rfhalt again here */
2385 if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC &&
2386 turnonbypowerdomain) {
2387 _rtl92s_phy_set_rfhalt(hw);
2388 RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
2389 }
2390
2391 spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
2392 ppsc->rfchange_inprogress = false;
2393 spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2394 }
2395
2396 *valid = 1;
2397 return !ppsc->hwradiooff;
2398
2399 }
2400
2401 /* Is_wepkey just used for WEP used as group & pairwise key
2402 * if pairwise is AES ang group is WEP Is_wepkey == false.*/
rtl92se_set_key(struct ieee80211_hw * hw,u32 key_index,u8 * p_macaddr,bool is_group,u8 enc_algo,bool is_wepkey,bool clear_all)2403 void rtl92se_set_key(struct ieee80211_hw *hw, u32 key_index, u8 *p_macaddr,
2404 bool is_group, u8 enc_algo, bool is_wepkey, bool clear_all)
2405 {
2406 struct rtl_priv *rtlpriv = rtl_priv(hw);
2407 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2408 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
2409 u8 *macaddr = p_macaddr;
2410
2411 u32 entry_id = 0;
2412 bool is_pairwise = false;
2413
2414 static u8 cam_const_addr[4][6] = {
2415 {0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
2416 {0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
2417 {0x00, 0x00, 0x00, 0x00, 0x00, 0x02},
2418 {0x00, 0x00, 0x00, 0x00, 0x00, 0x03}
2419 };
2420 static u8 cam_const_broad[] = {
2421 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
2422 };
2423
2424 if (clear_all) {
2425 u8 idx = 0;
2426 u8 cam_offset = 0;
2427 u8 clear_number = 5;
2428
2429 RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "clear_all\n");
2430
2431 for (idx = 0; idx < clear_number; idx++) {
2432 rtl_cam_mark_invalid(hw, cam_offset + idx);
2433 rtl_cam_empty_entry(hw, cam_offset + idx);
2434
2435 if (idx < 5) {
2436 memset(rtlpriv->sec.key_buf[idx], 0,
2437 MAX_KEY_LEN);
2438 rtlpriv->sec.key_len[idx] = 0;
2439 }
2440 }
2441
2442 } else {
2443 switch (enc_algo) {
2444 case WEP40_ENCRYPTION:
2445 enc_algo = CAM_WEP40;
2446 break;
2447 case WEP104_ENCRYPTION:
2448 enc_algo = CAM_WEP104;
2449 break;
2450 case TKIP_ENCRYPTION:
2451 enc_algo = CAM_TKIP;
2452 break;
2453 case AESCCMP_ENCRYPTION:
2454 enc_algo = CAM_AES;
2455 break;
2456 default:
2457 pr_err("switch case %#x not processed\n",
2458 enc_algo);
2459 enc_algo = CAM_TKIP;
2460 break;
2461 }
2462
2463 if (is_wepkey || rtlpriv->sec.use_defaultkey) {
2464 macaddr = cam_const_addr[key_index];
2465 entry_id = key_index;
2466 } else {
2467 if (is_group) {
2468 macaddr = cam_const_broad;
2469 entry_id = key_index;
2470 } else {
2471 if (mac->opmode == NL80211_IFTYPE_AP) {
2472 entry_id = rtl_cam_get_free_entry(hw,
2473 p_macaddr);
2474 if (entry_id >= TOTAL_CAM_ENTRY) {
2475 pr_err("Can not find free hw security cam entry\n");
2476 return;
2477 }
2478 } else {
2479 entry_id = CAM_PAIRWISE_KEY_POSITION;
2480 }
2481
2482 key_index = PAIRWISE_KEYIDX;
2483 is_pairwise = true;
2484 }
2485 }
2486
2487 if (rtlpriv->sec.key_len[key_index] == 0) {
2488 RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
2489 "delete one entry, entry_id is %d\n",
2490 entry_id);
2491 if (mac->opmode == NL80211_IFTYPE_AP)
2492 rtl_cam_del_entry(hw, p_macaddr);
2493 rtl_cam_delete_one_entry(hw, p_macaddr, entry_id);
2494 } else {
2495 RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
2496 "add one entry\n");
2497 if (is_pairwise) {
2498 RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
2499 "set Pairwise key\n");
2500
2501 rtl_cam_add_one_entry(hw, macaddr, key_index,
2502 entry_id, enc_algo,
2503 CAM_CONFIG_NO_USEDK,
2504 rtlpriv->sec.key_buf[key_index]);
2505 } else {
2506 RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
2507 "set group key\n");
2508
2509 if (mac->opmode == NL80211_IFTYPE_ADHOC) {
2510 rtl_cam_add_one_entry(hw,
2511 rtlefuse->dev_addr,
2512 PAIRWISE_KEYIDX,
2513 CAM_PAIRWISE_KEY_POSITION,
2514 enc_algo, CAM_CONFIG_NO_USEDK,
2515 rtlpriv->sec.key_buf[entry_id]);
2516 }
2517
2518 rtl_cam_add_one_entry(hw, macaddr, key_index,
2519 entry_id, enc_algo,
2520 CAM_CONFIG_NO_USEDK,
2521 rtlpriv->sec.key_buf[entry_id]);
2522 }
2523
2524 }
2525 }
2526 }
2527
rtl92se_suspend(struct ieee80211_hw * hw)2528 void rtl92se_suspend(struct ieee80211_hw *hw)
2529 {
2530 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
2531
2532 rtlpci->up_first_time = true;
2533 }
2534
rtl92se_resume(struct ieee80211_hw * hw)2535 void rtl92se_resume(struct ieee80211_hw *hw)
2536 {
2537 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
2538 u32 val;
2539
2540 pci_read_config_dword(rtlpci->pdev, 0x40, &val);
2541 if ((val & 0x0000ff00) != 0)
2542 pci_write_config_dword(rtlpci->pdev, 0x40,
2543 val & 0xffff00ff);
2544 }
2545