1 // SPDX-License-Identifier: GPL-2.0
2 /******************************************************************************
3  *
4  * Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved.
5  *
6  ******************************************************************************/
7 #define _HCI_HAL_INIT_C_
8 
9 #include <osdep_service.h>
10 #include <drv_types.h>
11 #include <rtw_efuse.h>
12 #include <fw.h>
13 #include <rtl8188e_hal.h>
14 #include <phy.h>
15 
16 #define		HAL_BB_ENABLE		1
17 
_ConfigNormalChipOutEP_8188E(struct adapter * adapt,u8 NumOutPipe)18 static void _ConfigNormalChipOutEP_8188E(struct adapter *adapt, u8 NumOutPipe)
19 {
20 	struct hal_data_8188e *haldata = adapt->HalData;
21 
22 	switch (NumOutPipe) {
23 	case	3:
24 		haldata->OutEpQueueSel = TX_SELE_HQ | TX_SELE_LQ | TX_SELE_NQ;
25 		haldata->OutEpNumber = 3;
26 		break;
27 	case	2:
28 		haldata->OutEpQueueSel = TX_SELE_HQ | TX_SELE_NQ;
29 		haldata->OutEpNumber = 2;
30 		break;
31 	case	1:
32 		haldata->OutEpQueueSel = TX_SELE_HQ;
33 		haldata->OutEpNumber = 1;
34 		break;
35 	default:
36 		break;
37 	}
38 	DBG_88E("%s OutEpQueueSel(0x%02x), OutEpNumber(%d)\n", __func__, haldata->OutEpQueueSel, haldata->OutEpNumber);
39 }
40 
HalUsbSetQueuePipeMapping8188EUsb(struct adapter * adapt,u8 NumInPipe,u8 NumOutPipe)41 static bool HalUsbSetQueuePipeMapping8188EUsb(struct adapter *adapt, u8 NumInPipe, u8 NumOutPipe)
42 {
43 	bool			result		= false;
44 
45 	_ConfigNormalChipOutEP_8188E(adapt, NumOutPipe);
46 
47 	/*  Normal chip with one IN and one OUT doesn't have interrupt IN EP. */
48 	if (adapt->HalData->OutEpNumber == 1) {
49 		if (NumInPipe != 1)
50 			return result;
51 	}
52 
53 	/*  All config other than above support one Bulk IN and one Interrupt IN. */
54 
55 	result = Hal_MappingOutPipe(adapt, NumOutPipe);
56 
57 	return result;
58 }
59 
rtw_hal_chip_configure(struct adapter * adapt)60 void rtw_hal_chip_configure(struct adapter *adapt)
61 {
62 	struct hal_data_8188e *haldata = adapt->HalData;
63 	struct dvobj_priv	*pdvobjpriv = adapter_to_dvobj(adapt);
64 
65 	if (pdvobjpriv->ishighspeed)
66 		haldata->UsbBulkOutSize = USB_HIGH_SPEED_BULK_SIZE;/* 512 bytes */
67 	else
68 		haldata->UsbBulkOutSize = USB_FULL_SPEED_BULK_SIZE;/* 64 bytes */
69 
70 	haldata->interfaceIndex = pdvobjpriv->InterfaceNumber;
71 
72 	haldata->UsbTxAggMode		= 1;
73 	haldata->UsbTxAggDescNum	= 0x6;	/*  only 4 bits */
74 
75 	haldata->UsbRxAggMode		= USB_RX_AGG_DMA;/*  USB_RX_AGG_DMA; */
76 	haldata->UsbRxAggBlockCount	= 8; /* unit : 512b */
77 	haldata->UsbRxAggBlockTimeout	= 0x6;
78 	haldata->UsbRxAggPageCount	= 48; /* uint :128 b 0x0A;	10 = MAX_RX_DMA_BUFFER_SIZE/2/haldata->UsbBulkOutSize */
79 	haldata->UsbRxAggPageTimeout	= 0x4; /* 6, absolute time = 34ms/(2^6) */
80 
81 	HalUsbSetQueuePipeMapping8188EUsb(adapt,
82 				pdvobjpriv->RtNumInPipes, pdvobjpriv->RtNumOutPipes);
83 }
84 
rtw_hal_power_on(struct adapter * adapt)85 u32 rtw_hal_power_on(struct adapter *adapt)
86 {
87 	u16 value16;
88 	/*  HW Power on sequence */
89 	if (adapt->HalData->bMacPwrCtrlOn)
90 		return _SUCCESS;
91 
92 	if (!rtl88eu_pwrseqcmdparsing(adapt, PWR_CUT_ALL_MSK,
93 				      Rtl8188E_NIC_PWR_ON_FLOW)) {
94 		DBG_88E(KERN_ERR "%s: run power on flow fail\n", __func__);
95 		return _FAIL;
96 	}
97 
98 	/*  Enable MAC DMA/WMAC/SCHEDULE/SEC block */
99 	/*  Set CR bit10 to enable 32k calibration. Suggested by SD1 Gimmy. Added by tynli. 2011.08.31. */
100 	usb_write16(adapt, REG_CR, 0x00);  /* suggseted by zhouzhou, by page, 20111230 */
101 
102 		/*  Enable MAC DMA/WMAC/SCHEDULE/SEC block */
103 	value16 = usb_read16(adapt, REG_CR);
104 	value16 |= (HCI_TXDMA_EN | HCI_RXDMA_EN | TXDMA_EN | RXDMA_EN
105 				| PROTOCOL_EN | SCHEDULE_EN | ENSEC | CALTMR_EN);
106 	/*  for SDIO - Set CR bit10 to enable 32k calibration. Suggested by SD1 Gimmy. Added by tynli. 2011.08.31. */
107 
108 	usb_write16(adapt, REG_CR, value16);
109 	adapt->HalData->bMacPwrCtrlOn = true;
110 
111 	return _SUCCESS;
112 }
113 
114 /*  Shall USB interface init this? */
_InitInterrupt(struct adapter * Adapter)115 static void _InitInterrupt(struct adapter *Adapter)
116 {
117 	u32 imr, imr_ex;
118 	u8  usb_opt;
119 
120 	/* HISR write one to clear */
121 	usb_write32(Adapter, REG_HISR_88E, 0xFFFFFFFF);
122 	/*  HIMR - */
123 	imr = IMR_PSTIMEOUT_88E | IMR_TBDER_88E | IMR_CPWM_88E | IMR_CPWM2_88E;
124 	usb_write32(Adapter, REG_HIMR_88E, imr);
125 	Adapter->HalData->IntrMask[0] = imr;
126 
127 	imr_ex = IMR_TXERR_88E | IMR_RXERR_88E | IMR_TXFOVW_88E | IMR_RXFOVW_88E;
128 	usb_write32(Adapter, REG_HIMRE_88E, imr_ex);
129 	Adapter->HalData->IntrMask[1] = imr_ex;
130 
131 	/*  REG_USB_SPECIAL_OPTION - BIT(4) */
132 	/*  0; Use interrupt endpoint to upload interrupt pkt */
133 	/*  1; Use bulk endpoint to upload interrupt pkt, */
134 	usb_opt = usb_read8(Adapter, REG_USB_SPECIAL_OPTION);
135 
136 	if (!adapter_to_dvobj(Adapter)->ishighspeed)
137 		usb_opt = usb_opt & (~INT_BULK_SEL);
138 	else
139 		usb_opt = usb_opt | (INT_BULK_SEL);
140 
141 	usb_write8(Adapter, REG_USB_SPECIAL_OPTION, usb_opt);
142 }
143 
_InitQueueReservedPage(struct adapter * Adapter)144 static void _InitQueueReservedPage(struct adapter *Adapter)
145 {
146 	struct registry_priv	*pregistrypriv = &Adapter->registrypriv;
147 	u32 numHQ	= 0;
148 	u32 numLQ	= 0;
149 	u32 numNQ	= 0;
150 	u32 numPubQ;
151 	u32 value32;
152 	u8 value8;
153 	bool bWiFiConfig = pregistrypriv->wifi_spec;
154 
155 	if (bWiFiConfig) {
156 		if (Adapter->HalData->OutEpQueueSel & TX_SELE_HQ)
157 			numHQ =  0x29;
158 
159 		if (Adapter->HalData->OutEpQueueSel & TX_SELE_LQ)
160 			numLQ = 0x1C;
161 
162 		/*  NOTE: This step shall be proceed before writing REG_RQPN. */
163 		if (Adapter->HalData->OutEpQueueSel & TX_SELE_NQ)
164 			numNQ = 0x1C;
165 		value8 = (u8)_NPQ(numNQ);
166 		usb_write8(Adapter, REG_RQPN_NPQ, value8);
167 
168 		numPubQ = 0xA8 - numHQ - numLQ - numNQ;
169 
170 		/*  TX DMA */
171 		value32 = _HPQ(numHQ) | _LPQ(numLQ) | _PUBQ(numPubQ) | LD_RQPN;
172 		usb_write32(Adapter, REG_RQPN, value32);
173 	} else {
174 		usb_write16(Adapter, REG_RQPN_NPQ, 0x0000);/* Just follow MP Team,??? Georgia 03/28 */
175 		usb_write16(Adapter, REG_RQPN_NPQ, 0x0d);
176 		usb_write32(Adapter, REG_RQPN, 0x808E000d);/* reserve 7 page for LPS */
177 	}
178 }
179 
_InitTxBufferBoundary(struct adapter * Adapter,u8 txpktbuf_bndy)180 static void _InitTxBufferBoundary(struct adapter *Adapter, u8 txpktbuf_bndy)
181 {
182 	usb_write8(Adapter, REG_TXPKTBUF_BCNQ_BDNY, txpktbuf_bndy);
183 	usb_write8(Adapter, REG_TXPKTBUF_MGQ_BDNY, txpktbuf_bndy);
184 	usb_write8(Adapter, REG_TXPKTBUF_WMAC_LBK_BF_HD, txpktbuf_bndy);
185 	usb_write8(Adapter, REG_TRXFF_BNDY, txpktbuf_bndy);
186 	usb_write8(Adapter, REG_TDECTRL+1, txpktbuf_bndy);
187 }
188 
_InitPageBoundary(struct adapter * Adapter)189 static void _InitPageBoundary(struct adapter *Adapter)
190 {
191 	/*  RX Page Boundary */
192 	/*  */
193 	u16 rxff_bndy = MAX_RX_DMA_BUFFER_SIZE_88E-1;
194 
195 	usb_write16(Adapter, (REG_TRXFF_BNDY + 2), rxff_bndy);
196 }
197 
_InitNormalChipRegPriority(struct adapter * Adapter,u16 beQ,u16 bkQ,u16 viQ,u16 voQ,u16 mgtQ,u16 hiQ)198 static void _InitNormalChipRegPriority(struct adapter *Adapter, u16 beQ,
199 				       u16 bkQ, u16 viQ, u16 voQ, u16 mgtQ,
200 				       u16 hiQ)
201 {
202 	u16 value16	= (usb_read16(Adapter, REG_TRXDMA_CTRL) & 0x7);
203 
204 	value16 |= _TXDMA_BEQ_MAP(beQ)	| _TXDMA_BKQ_MAP(bkQ) |
205 		   _TXDMA_VIQ_MAP(viQ)	| _TXDMA_VOQ_MAP(voQ) |
206 		   _TXDMA_MGQ_MAP(mgtQ) | _TXDMA_HIQ_MAP(hiQ);
207 
208 	usb_write16(Adapter, REG_TRXDMA_CTRL, value16);
209 }
210 
_InitNormalChipOneOutEpPriority(struct adapter * Adapter)211 static void _InitNormalChipOneOutEpPriority(struct adapter *Adapter)
212 {
213 	u16 value = 0;
214 
215 	switch (Adapter->HalData->OutEpQueueSel) {
216 	case TX_SELE_HQ:
217 		value = QUEUE_HIGH;
218 		break;
219 	case TX_SELE_LQ:
220 		value = QUEUE_LOW;
221 		break;
222 	case TX_SELE_NQ:
223 		value = QUEUE_NORMAL;
224 		break;
225 	default:
226 		break;
227 	}
228 	_InitNormalChipRegPriority(Adapter, value, value, value, value,
229 				   value, value);
230 }
231 
_InitNormalChipTwoOutEpPriority(struct adapter * Adapter)232 static void _InitNormalChipTwoOutEpPriority(struct adapter *Adapter)
233 {
234 	struct registry_priv *pregistrypriv = &Adapter->registrypriv;
235 	u16 beQ, bkQ, viQ, voQ, mgtQ, hiQ;
236 	u16 valueHi = 0;
237 	u16 valueLow = 0;
238 
239 	switch (Adapter->HalData->OutEpQueueSel) {
240 	case (TX_SELE_HQ | TX_SELE_LQ):
241 		valueHi = QUEUE_HIGH;
242 		valueLow = QUEUE_LOW;
243 		break;
244 	case (TX_SELE_NQ | TX_SELE_LQ):
245 		valueHi = QUEUE_NORMAL;
246 		valueLow = QUEUE_LOW;
247 		break;
248 	case (TX_SELE_HQ | TX_SELE_NQ):
249 		valueHi = QUEUE_HIGH;
250 		valueLow = QUEUE_NORMAL;
251 		break;
252 	default:
253 		break;
254 	}
255 
256 	if (!pregistrypriv->wifi_spec) {
257 		beQ	= valueLow;
258 		bkQ	= valueLow;
259 		viQ	= valueHi;
260 		voQ	= valueHi;
261 		mgtQ	= valueHi;
262 		hiQ	= valueHi;
263 	} else {/* for WMM ,CONFIG_OUT_EP_WIFI_MODE */
264 		beQ	= valueLow;
265 		bkQ	= valueHi;
266 		viQ	= valueHi;
267 		voQ	= valueLow;
268 		mgtQ	= valueHi;
269 		hiQ	= valueHi;
270 	}
271 	_InitNormalChipRegPriority(Adapter, beQ, bkQ, viQ, voQ, mgtQ, hiQ);
272 }
273 
_InitNormalChipThreeOutEpPriority(struct adapter * Adapter)274 static void _InitNormalChipThreeOutEpPriority(struct adapter *Adapter)
275 {
276 	struct registry_priv *pregistrypriv = &Adapter->registrypriv;
277 	u16 beQ, bkQ, viQ, voQ, mgtQ, hiQ;
278 
279 	if (!pregistrypriv->wifi_spec) {/*  typical setting */
280 		beQ	= QUEUE_LOW;
281 		bkQ	= QUEUE_LOW;
282 		viQ	= QUEUE_NORMAL;
283 		voQ	= QUEUE_HIGH;
284 		mgtQ	= QUEUE_HIGH;
285 		hiQ	= QUEUE_HIGH;
286 	} else {/*  for WMM */
287 		beQ	= QUEUE_LOW;
288 		bkQ	= QUEUE_NORMAL;
289 		viQ	= QUEUE_NORMAL;
290 		voQ	= QUEUE_HIGH;
291 		mgtQ	= QUEUE_HIGH;
292 		hiQ	= QUEUE_HIGH;
293 	}
294 	_InitNormalChipRegPriority(Adapter, beQ, bkQ, viQ, voQ, mgtQ, hiQ);
295 }
296 
_InitQueuePriority(struct adapter * Adapter)297 static void _InitQueuePriority(struct adapter *Adapter)
298 {
299 	switch (Adapter->HalData->OutEpNumber) {
300 	case 1:
301 		_InitNormalChipOneOutEpPriority(Adapter);
302 		break;
303 	case 2:
304 		_InitNormalChipTwoOutEpPriority(Adapter);
305 		break;
306 	case 3:
307 		_InitNormalChipThreeOutEpPriority(Adapter);
308 		break;
309 	default:
310 		break;
311 	}
312 }
313 
_InitNetworkType(struct adapter * Adapter)314 static void _InitNetworkType(struct adapter *Adapter)
315 {
316 	u32 value32;
317 
318 	value32 = usb_read32(Adapter, REG_CR);
319 	/*  TODO: use the other function to set network type */
320 	value32 = (value32 & ~MASK_NETTYPE) | _NETTYPE(NT_LINK_AP);
321 
322 	usb_write32(Adapter, REG_CR, value32);
323 }
324 
_InitTransferPageSize(struct adapter * Adapter)325 static void _InitTransferPageSize(struct adapter *Adapter)
326 {
327 	/*  Tx page size is always 128. */
328 
329 	u8 value8;
330 
331 	value8 = _PSRX(PBP_128) | _PSTX(PBP_128);
332 	usb_write8(Adapter, REG_PBP, value8);
333 }
334 
_InitDriverInfoSize(struct adapter * Adapter,u8 drvInfoSize)335 static void _InitDriverInfoSize(struct adapter *Adapter, u8 drvInfoSize)
336 {
337 	usb_write8(Adapter, REG_RX_DRVINFO_SZ, drvInfoSize);
338 }
339 
_InitWMACSetting(struct adapter * Adapter)340 static void _InitWMACSetting(struct adapter *Adapter)
341 {
342 	struct hal_data_8188e *haldata = Adapter->HalData;
343 
344 	haldata->ReceiveConfig = RCR_AAP | RCR_APM | RCR_AM | RCR_AB |
345 				  RCR_CBSSID_DATA | RCR_CBSSID_BCN |
346 				  RCR_APP_ICV | RCR_AMF | RCR_HTC_LOC_CTRL |
347 				  RCR_APP_MIC | RCR_APP_PHYSTS;
348 
349 	/*  some REG_RCR will be modified later by phy_ConfigMACWithHeaderFile() */
350 	usb_write32(Adapter, REG_RCR, haldata->ReceiveConfig);
351 
352 	/*  Accept all multicast address */
353 	usb_write32(Adapter, REG_MAR, 0xFFFFFFFF);
354 	usb_write32(Adapter, REG_MAR + 4, 0xFFFFFFFF);
355 }
356 
_InitAdaptiveCtrl(struct adapter * Adapter)357 static void _InitAdaptiveCtrl(struct adapter *Adapter)
358 {
359 	u16 value16;
360 	u32 value32;
361 
362 	/*  Response Rate Set */
363 	value32 = usb_read32(Adapter, REG_RRSR);
364 	value32 &= ~RATE_BITMAP_ALL;
365 	value32 |= RATE_RRSR_CCK_ONLY_1M;
366 	usb_write32(Adapter, REG_RRSR, value32);
367 
368 	/*  CF-END Threshold */
369 
370 	/*  SIFS (used in NAV) */
371 	value16 = _SPEC_SIFS_CCK(0x10) | _SPEC_SIFS_OFDM(0x10);
372 	usb_write16(Adapter, REG_SPEC_SIFS, value16);
373 
374 	/*  Retry Limit */
375 	value16 = _LRL(0x30) | _SRL(0x30);
376 	usb_write16(Adapter, REG_RL, value16);
377 }
378 
_InitEDCA(struct adapter * Adapter)379 static void _InitEDCA(struct adapter *Adapter)
380 {
381 	/*  Set Spec SIFS (used in NAV) */
382 	usb_write16(Adapter, REG_SPEC_SIFS, 0x100a);
383 	usb_write16(Adapter, REG_MAC_SPEC_SIFS, 0x100a);
384 
385 	/*  Set SIFS for CCK */
386 	usb_write16(Adapter, REG_SIFS_CTX, 0x100a);
387 
388 	/*  Set SIFS for OFDM */
389 	usb_write16(Adapter, REG_SIFS_TRX, 0x100a);
390 
391 	/*  TXOP */
392 	usb_write32(Adapter, REG_EDCA_BE_PARAM, 0x005EA42B);
393 	usb_write32(Adapter, REG_EDCA_BK_PARAM, 0x0000A44F);
394 	usb_write32(Adapter, REG_EDCA_VI_PARAM, 0x005EA324);
395 	usb_write32(Adapter, REG_EDCA_VO_PARAM, 0x002FA226);
396 }
397 
_InitRDGSetting(struct adapter * Adapter)398 static void _InitRDGSetting(struct adapter *Adapter)
399 {
400 	usb_write8(Adapter, REG_RD_CTRL, 0xFF);
401 	usb_write16(Adapter, REG_RD_NAV_NXT, 0x200);
402 	usb_write8(Adapter, REG_RD_RESP_PKT_TH, 0x05);
403 }
404 
_InitRxSetting(struct adapter * Adapter)405 static void _InitRxSetting(struct adapter *Adapter)
406 {
407 	usb_write32(Adapter, REG_MACID, 0x87654321);
408 	usb_write32(Adapter, 0x0700, 0x87654321);
409 }
410 
_InitRetryFunction(struct adapter * Adapter)411 static void _InitRetryFunction(struct adapter *Adapter)
412 {
413 	u8 value8;
414 
415 	value8 = usb_read8(Adapter, REG_FWHW_TXQ_CTRL);
416 	value8 |= EN_AMPDU_RTY_NEW;
417 	usb_write8(Adapter, REG_FWHW_TXQ_CTRL, value8);
418 
419 	/*  Set ACK timeout */
420 	usb_write8(Adapter, REG_ACKTO, 0x40);
421 }
422 
423 /*-----------------------------------------------------------------------------
424  * Function:	usb_AggSettingTxUpdate()
425  *
426  * Overview:	Separate TX/RX parameters update independent for TP detection and
427  *			dynamic TX/RX aggreagtion parameters update.
428  *
429  * Input:			struct adapter *
430  *
431  * Output/Return:	NONE
432  *
433  * Revised History:
434  *	When		Who		Remark
435  *	12/10/2010	MHC		Separate to smaller function.
436  *
437  *---------------------------------------------------------------------------
438  */
usb_AggSettingTxUpdate(struct adapter * Adapter)439 static void usb_AggSettingTxUpdate(struct adapter *Adapter)
440 {
441 	struct hal_data_8188e *haldata = Adapter->HalData;
442 	u32 value32;
443 
444 	if (Adapter->registrypriv.wifi_spec)
445 		haldata->UsbTxAggMode = false;
446 
447 	if (haldata->UsbTxAggMode) {
448 		value32 = usb_read32(Adapter, REG_TDECTRL);
449 		value32 = value32 & ~(BLK_DESC_NUM_MASK << BLK_DESC_NUM_SHIFT);
450 		value32 |= ((haldata->UsbTxAggDescNum & BLK_DESC_NUM_MASK) << BLK_DESC_NUM_SHIFT);
451 
452 		usb_write32(Adapter, REG_TDECTRL, value32);
453 	}
454 }	/*  usb_AggSettingTxUpdate */
455 
456 /*-----------------------------------------------------------------------------
457  * Function:	usb_AggSettingRxUpdate()
458  *
459  * Overview:	Separate TX/RX parameters update independent for TP detection and
460  *			dynamic TX/RX aggreagtion parameters update.
461  *
462  * Input:			struct adapter *
463  *
464  * Output/Return:	NONE
465  *
466  * Revised History:
467  *	When		Who		Remark
468  *	12/10/2010	MHC		Separate to smaller function.
469  *
470  *---------------------------------------------------------------------------
471  */
472 static void
usb_AggSettingRxUpdate(struct adapter * Adapter)473 usb_AggSettingRxUpdate(
474 		struct adapter *Adapter
475 	)
476 {
477 	struct hal_data_8188e *haldata = Adapter->HalData;
478 	u8 valueDMA;
479 	u8 valueUSB;
480 
481 	valueDMA = usb_read8(Adapter, REG_TRXDMA_CTRL);
482 	valueUSB = usb_read8(Adapter, REG_USB_SPECIAL_OPTION);
483 
484 	switch (haldata->UsbRxAggMode) {
485 	case USB_RX_AGG_DMA:
486 		valueDMA |= RXDMA_AGG_EN;
487 		valueUSB &= ~USB_AGG_EN;
488 		break;
489 	case USB_RX_AGG_USB:
490 		valueDMA &= ~RXDMA_AGG_EN;
491 		valueUSB |= USB_AGG_EN;
492 		break;
493 	case USB_RX_AGG_MIX:
494 		valueDMA |= RXDMA_AGG_EN;
495 		valueUSB |= USB_AGG_EN;
496 		break;
497 	case USB_RX_AGG_DISABLE:
498 	default:
499 		valueDMA &= ~RXDMA_AGG_EN;
500 		valueUSB &= ~USB_AGG_EN;
501 		break;
502 	}
503 
504 	usb_write8(Adapter, REG_TRXDMA_CTRL, valueDMA);
505 	usb_write8(Adapter, REG_USB_SPECIAL_OPTION, valueUSB);
506 
507 	switch (haldata->UsbRxAggMode) {
508 	case USB_RX_AGG_DMA:
509 		usb_write8(Adapter, REG_RXDMA_AGG_PG_TH, haldata->UsbRxAggPageCount);
510 		usb_write8(Adapter, REG_RXDMA_AGG_PG_TH+1, haldata->UsbRxAggPageTimeout);
511 		break;
512 	case USB_RX_AGG_USB:
513 		usb_write8(Adapter, REG_USB_AGG_TH, haldata->UsbRxAggBlockCount);
514 		usb_write8(Adapter, REG_USB_AGG_TO, haldata->UsbRxAggBlockTimeout);
515 		break;
516 	case USB_RX_AGG_MIX:
517 		usb_write8(Adapter, REG_RXDMA_AGG_PG_TH, haldata->UsbRxAggPageCount);
518 		usb_write8(Adapter, REG_RXDMA_AGG_PG_TH+1, (haldata->UsbRxAggPageTimeout & 0x1F));/* 0x280[12:8] */
519 		usb_write8(Adapter, REG_USB_AGG_TH, haldata->UsbRxAggBlockCount);
520 		usb_write8(Adapter, REG_USB_AGG_TO, haldata->UsbRxAggBlockTimeout);
521 		break;
522 	case USB_RX_AGG_DISABLE:
523 	default:
524 		/*  TODO: */
525 		break;
526 	}
527 
528 	switch (PBP_128) {
529 	case PBP_128:
530 		haldata->HwRxPageSize = 128;
531 		break;
532 	case PBP_64:
533 		haldata->HwRxPageSize = 64;
534 		break;
535 	case PBP_256:
536 		haldata->HwRxPageSize = 256;
537 		break;
538 	case PBP_512:
539 		haldata->HwRxPageSize = 512;
540 		break;
541 	case PBP_1024:
542 		haldata->HwRxPageSize = 1024;
543 		break;
544 	default:
545 		break;
546 	}
547 }	/*  usb_AggSettingRxUpdate */
548 
InitUsbAggregationSetting(struct adapter * Adapter)549 static void InitUsbAggregationSetting(struct adapter *Adapter)
550 {
551 	/*  Tx aggregation setting */
552 	usb_AggSettingTxUpdate(Adapter);
553 
554 	/*  Rx aggregation setting */
555 	usb_AggSettingRxUpdate(Adapter);
556 }
557 
_InitBeaconParameters(struct adapter * Adapter)558 static void _InitBeaconParameters(struct adapter *Adapter)
559 {
560 	struct hal_data_8188e *haldata = Adapter->HalData;
561 
562 	usb_write16(Adapter, REG_BCN_CTRL, 0x1010);
563 
564 	/*  TODO: Remove these magic number */
565 	usb_write16(Adapter, REG_TBTT_PROHIBIT, 0x6404);/*  ms */
566 	usb_write8(Adapter, REG_DRVERLYINT, DRIVER_EARLY_INT_TIME);/*  5ms */
567 	usb_write8(Adapter, REG_BCNDMATIM, BCN_DMA_ATIME_INT_TIME); /*  2ms */
568 
569 	/*  Suggested by designer timchen. Change beacon AIFS to the largest number */
570 	/*  beacause test chip does not contension before sending beacon. by tynli. 2009.11.03 */
571 	usb_write16(Adapter, REG_BCNTCFG, 0x660F);
572 
573 	haldata->RegBcnCtrlVal = usb_read8(Adapter, REG_BCN_CTRL);
574 	haldata->RegTxPause = usb_read8(Adapter, REG_TXPAUSE);
575 	haldata->RegFwHwTxQCtrl = usb_read8(Adapter, REG_FWHW_TXQ_CTRL+2);
576 	haldata->RegReg542 = usb_read8(Adapter, REG_TBTT_PROHIBIT+2);
577 	haldata->RegCR_1 = usb_read8(Adapter, REG_CR+1);
578 }
579 
_BeaconFunctionEnable(struct adapter * Adapter,bool Enable,bool Linked)580 static void _BeaconFunctionEnable(struct adapter *Adapter,
581 				  bool Enable, bool Linked)
582 {
583 	usb_write8(Adapter, REG_BCN_CTRL, (BIT(4) | BIT(3) | BIT(1)));
584 
585 	usb_write8(Adapter, REG_RD_CTRL+1, 0x6F);
586 }
587 
588 /*  Set CCK and OFDM Block "ON" */
_BBTurnOnBlock(struct adapter * Adapter)589 static void _BBTurnOnBlock(struct adapter *Adapter)
590 {
591 	phy_set_bb_reg(Adapter, rFPGA0_RFMOD, bCCKEn, 0x1);
592 	phy_set_bb_reg(Adapter, rFPGA0_RFMOD, bOFDMEn, 0x1);
593 }
594 
_InitAntenna_Selection(struct adapter * Adapter)595 static void _InitAntenna_Selection(struct adapter *Adapter)
596 {
597 	struct hal_data_8188e *haldata = Adapter->HalData;
598 
599 	if (haldata->AntDivCfg == 0)
600 		return;
601 	DBG_88E("==>  %s ....\n", __func__);
602 
603 	usb_write32(Adapter, REG_LEDCFG0, usb_read32(Adapter, REG_LEDCFG0) | BIT(23));
604 	phy_set_bb_reg(Adapter, rFPGA0_XAB_RFParameter, BIT(13), 0x01);
605 
606 	if (phy_query_bb_reg(Adapter, rFPGA0_XA_RFInterfaceOE, 0x300) == Antenna_A)
607 		haldata->CurAntenna = Antenna_A;
608 	else
609 		haldata->CurAntenna = Antenna_B;
610 	DBG_88E("%s,Cur_ant:(%x)%s\n", __func__, haldata->CurAntenna, (haldata->CurAntenna == Antenna_A) ? "Antenna_A" : "Antenna_B");
611 }
612 
613 /*-----------------------------------------------------------------------------
614  * Function:	HwSuspendModeEnable92Cu()
615  *
616  * Overview:	HW suspend mode switch.
617  *
618  * Input:		NONE
619  *
620  * Output:	NONE
621  *
622  * Return:	NONE
623  *
624  * Revised History:
625  *	When		Who		Remark
626  *	08/23/2010	MHC		HW suspend mode switch test..
627  *---------------------------------------------------------------------------
628  */
RfOnOffDetect(struct adapter * adapt)629 enum rt_rf_power_state RfOnOffDetect(struct adapter *adapt)
630 {
631 	u8 val8;
632 	enum rt_rf_power_state rfpowerstate = rf_off;
633 
634 	if (adapt->pwrctrlpriv.bHWPowerdown) {
635 		val8 = usb_read8(adapt, REG_HSISR);
636 		DBG_88E("pwrdown, 0x5c(BIT(7))=%02x\n", val8);
637 		rfpowerstate = (val8 & BIT(7)) ? rf_off : rf_on;
638 	} else { /*  rf on/off */
639 		usb_write8(adapt, REG_MAC_PINMUX_CFG, usb_read8(adapt, REG_MAC_PINMUX_CFG)&~(BIT(3)));
640 		val8 = usb_read8(adapt, REG_GPIO_IO_SEL);
641 		DBG_88E("GPIO_IN=%02x\n", val8);
642 		rfpowerstate = (val8 & BIT(3)) ? rf_on : rf_off;
643 	}
644 	return rfpowerstate;
645 }	/*  HalDetectPwrDownMode */
646 
rtl8188eu_hal_init(struct adapter * Adapter)647 u32 rtl8188eu_hal_init(struct adapter *Adapter)
648 {
649 	u8 value8 = 0;
650 	u16  value16;
651 	u8 txpktbuf_bndy;
652 	u32 status = _SUCCESS;
653 	struct hal_data_8188e *haldata = Adapter->HalData;
654 	struct pwrctrl_priv		*pwrctrlpriv = &Adapter->pwrctrlpriv;
655 	struct registry_priv	*pregistrypriv = &Adapter->registrypriv;
656 	unsigned long init_start_time = jiffies;
657 
658 	#define HAL_INIT_PROFILE_TAG(stage) do {} while (0)
659 
660 	HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_BEGIN);
661 
662 	if (Adapter->pwrctrlpriv.bkeepfwalive) {
663 		if (haldata->odmpriv.RFCalibrateInfo.bIQKInitialized) {
664 			rtl88eu_phy_iq_calibrate(Adapter, true);
665 		} else {
666 			rtl88eu_phy_iq_calibrate(Adapter, false);
667 			haldata->odmpriv.RFCalibrateInfo.bIQKInitialized = true;
668 		}
669 
670 		ODM_TXPowerTrackingCheck(&haldata->odmpriv);
671 		rtl88eu_phy_lc_calibrate(Adapter);
672 
673 		goto exit;
674 	}
675 
676 	HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_INIT_PW_ON);
677 	status = rtw_hal_power_on(Adapter);
678 	if (status == _FAIL) {
679 		RT_TRACE(_module_hci_hal_init_c_, _drv_err_, ("Failed to init power on!\n"));
680 		goto exit;
681 	}
682 
683 	/*  Save target channel */
684 	haldata->CurrentChannel = 6;/* default set to 6 */
685 
686 	if (pwrctrlpriv->reg_rfoff)
687 		pwrctrlpriv->rf_pwrstate = rf_off;
688 
689 	/*  2010/08/09 MH We need to check if we need to turnon or off RF after detecting */
690 	/*  HW GPIO pin. Before PHY_RFConfig8192C. */
691 	/*  2010/08/26 MH If Efuse does not support sective suspend then disable the function. */
692 
693 	if (!pregistrypriv->wifi_spec) {
694 		txpktbuf_bndy = TX_PAGE_BOUNDARY_88E;
695 	} else {
696 		/*  for WMM */
697 		txpktbuf_bndy = WMM_NORMAL_TX_PAGE_BOUNDARY_88E;
698 	}
699 
700 	HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_MISC01);
701 	_InitQueueReservedPage(Adapter);
702 	_InitQueuePriority(Adapter);
703 	_InitPageBoundary(Adapter);
704 	_InitTransferPageSize(Adapter);
705 
706 	_InitTxBufferBoundary(Adapter, 0);
707 
708 	HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_DOWNLOAD_FW);
709 	if (Adapter->registrypriv.mp_mode == 1) {
710 		_InitRxSetting(Adapter);
711 		Adapter->bFWReady = false;
712 	} else {
713 		status = rtl88eu_download_fw(Adapter);
714 
715 		if (status) {
716 			DBG_88E("%s: Download Firmware failed!!\n", __func__);
717 			Adapter->bFWReady = false;
718 			return status;
719 		}
720 		RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("Initializeadapt8192CSdio(): Download Firmware Success!!\n"));
721 		Adapter->bFWReady = true;
722 	}
723 	rtl8188e_InitializeFirmwareVars(Adapter);
724 
725 	rtl88eu_phy_mac_config(Adapter);
726 
727 	rtl88eu_phy_bb_config(Adapter);
728 
729 	rtl88eu_phy_rf_config(Adapter);
730 
731 	HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_EFUSE_PATCH);
732 	status = rtl8188e_iol_efuse_patch(Adapter);
733 	if (status == _FAIL) {
734 		DBG_88E("%s  rtl8188e_iol_efuse_patch failed\n", __func__);
735 		goto exit;
736 	}
737 
738 	_InitTxBufferBoundary(Adapter, txpktbuf_bndy);
739 
740 	HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_INIT_LLTT);
741 	status =  InitLLTTable(Adapter, txpktbuf_bndy);
742 	if (status == _FAIL) {
743 		RT_TRACE(_module_hci_hal_init_c_, _drv_err_, ("Failed to init LLT table\n"));
744 		goto exit;
745 	}
746 
747 	HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_MISC02);
748 	/*  Get Rx PHY status in order to report RSSI and others. */
749 	_InitDriverInfoSize(Adapter, DRVINFO_SZ);
750 
751 	_InitInterrupt(Adapter);
752 	hal_init_macaddr(Adapter);/* set mac_address */
753 	_InitNetworkType(Adapter);/* set msr */
754 	_InitWMACSetting(Adapter);
755 	_InitAdaptiveCtrl(Adapter);
756 	_InitEDCA(Adapter);
757 	_InitRetryFunction(Adapter);
758 	InitUsbAggregationSetting(Adapter);
759 	_InitBeaconParameters(Adapter);
760 	/*  Init CR MACTXEN, MACRXEN after setting RxFF boundary REG_TRXFF_BNDY to patch */
761 	/*  Hw bug which Hw initials RxFF boundary size to a value which is larger than the real Rx buffer size in 88E. */
762 	/*  Enable MACTXEN/MACRXEN block */
763 	value16 = usb_read16(Adapter, REG_CR);
764 	value16 |= (MACTXEN | MACRXEN);
765 	usb_write8(Adapter, REG_CR, value16);
766 
767 	if (haldata->bRDGEnable)
768 		_InitRDGSetting(Adapter);
769 
770 	/* Enable TX Report */
771 	/* Enable Tx Report Timer */
772 	value8 = usb_read8(Adapter, REG_TX_RPT_CTRL);
773 	usb_write8(Adapter,  REG_TX_RPT_CTRL, (value8 | BIT(1) | BIT(0)));
774 	/* Set MAX RPT MACID */
775 	usb_write8(Adapter,  REG_TX_RPT_CTRL+1, 2);/* FOR sta mode ,0: bc/mc ,1:AP */
776 	/* Tx RPT Timer. Unit: 32us */
777 	usb_write16(Adapter, REG_TX_RPT_TIME, 0xCdf0);
778 
779 	usb_write8(Adapter, REG_EARLY_MODE_CONTROL, 0);
780 
781 	usb_write16(Adapter, REG_PKT_VO_VI_LIFE_TIME, 0x0400);	/*  unit: 256us. 256ms */
782 	usb_write16(Adapter, REG_PKT_BE_BK_LIFE_TIME, 0x0400);	/*  unit: 256us. 256ms */
783 
784 	/* Keep RfRegChnlVal for later use. */
785 	haldata->RfRegChnlVal[0] = rtw_hal_read_rfreg(Adapter, (enum rf_radio_path)0, RF_CHNLBW, bRFRegOffsetMask);
786 	haldata->RfRegChnlVal[1] = rtw_hal_read_rfreg(Adapter, (enum rf_radio_path)1, RF_CHNLBW, bRFRegOffsetMask);
787 
788 HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_TURN_ON_BLOCK);
789 	_BBTurnOnBlock(Adapter);
790 
791 HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_INIT_SECURITY);
792 	invalidate_cam_all(Adapter);
793 
794 HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_MISC11);
795 	/*  2010/12/17 MH We need to set TX power according to EFUSE content at first. */
796 	phy_set_tx_power_level(Adapter, haldata->CurrentChannel);
797 
798 /*  Move by Neo for USB SS to below setp */
799 /* _RfPowerSave(Adapter); */
800 
801 	_InitAntenna_Selection(Adapter);
802 
803 	/*  */
804 	/*  Disable BAR, suggested by Scott */
805 	/*  2010.04.09 add by hpfan */
806 	/*  */
807 	usb_write32(Adapter, REG_BAR_MODE_CTRL, 0x0201ffff);
808 
809 	/*  HW SEQ CTRL */
810 	/* set 0x0 to 0xFF by tynli. Default enable HW SEQ NUM. */
811 	usb_write8(Adapter, REG_HWSEQ_CTRL, 0xFF);
812 
813 	if (pregistrypriv->wifi_spec)
814 		usb_write16(Adapter, REG_FAST_EDCA_CTRL, 0);
815 
816 	/* Nav limit , suggest by scott */
817 	usb_write8(Adapter, 0x652, 0x0);
818 
819 HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_INIT_HAL_DM);
820 	rtl8188e_InitHalDm(Adapter);
821 
822 	/*  2010/08/11 MH Merge from 8192SE for Minicard init. We need to confirm current radio status */
823 	/*  and then decide to enable RF or not.!!!??? For Selective suspend mode. We may not */
824 	/*  call initstruct adapter. May cause some problem?? */
825 	/*  Fix the bug that Hw/Sw radio off before S3/S4, the RF off action will not be executed */
826 	/*  in MgntActSet_RF_State() after wake up, because the value of haldata->eRFPowerState */
827 	/*  is the same as eRfOff, we should change it to eRfOn after we config RF parameters. */
828 	/*  Added by tynli. 2010.03.30. */
829 	pwrctrlpriv->rf_pwrstate = rf_on;
830 
831 	/*  enable Tx report. */
832 	usb_write8(Adapter,  REG_FWHW_TXQ_CTRL+1, 0x0F);
833 
834 	/*  Suggested by SD1 pisa. Added by tynli. 2011.10.21. */
835 	usb_write8(Adapter, REG_EARLY_MODE_CONTROL+3, 0x01);/* Pretx_en, for WEP/TKIP SEC */
836 
837 	/* tynli_test_tx_report. */
838 	usb_write16(Adapter, REG_TX_RPT_TIME, 0x3DF0);
839 
840 	/* enable tx DMA to drop the redundate data of packet */
841 	usb_write16(Adapter, REG_TXDMA_OFFSET_CHK, (usb_read16(Adapter, REG_TXDMA_OFFSET_CHK) | DROP_DATA_EN));
842 
843 HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_IQK);
844 		/*  2010/08/26 MH Merge from 8192CE. */
845 	if (pwrctrlpriv->rf_pwrstate == rf_on) {
846 		if (haldata->odmpriv.RFCalibrateInfo.bIQKInitialized) {
847 			rtl88eu_phy_iq_calibrate(Adapter, true);
848 		} else {
849 			rtl88eu_phy_iq_calibrate(Adapter, false);
850 			haldata->odmpriv.RFCalibrateInfo.bIQKInitialized = true;
851 		}
852 
853 HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_PW_TRACK);
854 
855 		ODM_TXPowerTrackingCheck(&haldata->odmpriv);
856 
857 HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_LCK);
858 			rtl88eu_phy_lc_calibrate(Adapter);
859 	}
860 
861 /* HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_INIT_PABIAS); */
862 /*	_InitPABias(Adapter); */
863 	usb_write8(Adapter, REG_USB_HRPWM, 0);
864 
865 	/* ack for xmit mgmt frames. */
866 	usb_write32(Adapter, REG_FWHW_TXQ_CTRL, usb_read32(Adapter, REG_FWHW_TXQ_CTRL) | BIT(12));
867 
868 exit:
869 HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_END);
870 
871 	DBG_88E("%s in %dms\n", __func__,
872 		jiffies_to_msecs(jiffies - init_start_time));
873 
874 	return status;
875 }
876 
CardDisableRTL8188EU(struct adapter * Adapter)877 static void CardDisableRTL8188EU(struct adapter *Adapter)
878 {
879 	u8 val8;
880 
881 	RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("CardDisableRTL8188EU\n"));
882 
883 	/* Stop Tx Report Timer. 0x4EC[Bit1]=b'0 */
884 	val8 = usb_read8(Adapter, REG_TX_RPT_CTRL);
885 	usb_write8(Adapter, REG_TX_RPT_CTRL, val8&(~BIT(1)));
886 
887 	/*  stop rx */
888 	usb_write8(Adapter, REG_CR, 0x0);
889 
890 	/*  Run LPS WL RFOFF flow */
891 	rtl88eu_pwrseqcmdparsing(Adapter, PWR_CUT_ALL_MSK,
892 				 Rtl8188E_NIC_LPS_ENTER_FLOW);
893 
894 	/*  2. 0x1F[7:0] = 0		turn off RF */
895 
896 	val8 = usb_read8(Adapter, REG_MCUFWDL);
897 	if ((val8 & RAM_DL_SEL) && Adapter->bFWReady) { /* 8051 RAM code */
898 		/*  Reset MCU 0x2[10]=0. */
899 		val8 = usb_read8(Adapter, REG_SYS_FUNC_EN+1);
900 		val8 &= ~BIT(2);	/*  0x2[10], FEN_CPUEN */
901 		usb_write8(Adapter, REG_SYS_FUNC_EN+1, val8);
902 	}
903 
904 	/*  reset MCU ready status */
905 	usb_write8(Adapter, REG_MCUFWDL, 0);
906 
907 	/* YJ,add,111212 */
908 	/* Disable 32k */
909 	val8 = usb_read8(Adapter, REG_32K_CTRL);
910 	usb_write8(Adapter, REG_32K_CTRL, val8&(~BIT(0)));
911 
912 	/*  Card disable power action flow */
913 	rtl88eu_pwrseqcmdparsing(Adapter, PWR_CUT_ALL_MSK,
914 				 Rtl8188E_NIC_DISABLE_FLOW);
915 
916 	/*  Reset MCU IO Wrapper */
917 	val8 = usb_read8(Adapter, REG_RSV_CTRL+1);
918 	usb_write8(Adapter, REG_RSV_CTRL+1, (val8&(~BIT(3))));
919 	val8 = usb_read8(Adapter, REG_RSV_CTRL+1);
920 	usb_write8(Adapter, REG_RSV_CTRL+1, val8 | BIT(3));
921 
922 	/* YJ,test add, 111207. For Power Consumption. */
923 	val8 = usb_read8(Adapter, GPIO_IN);
924 	usb_write8(Adapter, GPIO_OUT, val8);
925 	usb_write8(Adapter, GPIO_IO_SEL, 0xFF);/* Reg0x46 */
926 
927 	val8 = usb_read8(Adapter, REG_GPIO_IO_SEL);
928 	usb_write8(Adapter, REG_GPIO_IO_SEL, (val8<<4));
929 	val8 = usb_read8(Adapter, REG_GPIO_IO_SEL+1);
930 	usb_write8(Adapter, REG_GPIO_IO_SEL+1, val8|0x0F);/* Reg0x43 */
931 	usb_write32(Adapter, REG_BB_PAD_CTRL, 0x00080808);/* set LNA ,TRSW,EX_PA Pin to output mode */
932 	Adapter->HalData->bMacPwrCtrlOn = false;
933 	Adapter->bFWReady = false;
934 }
935 
rtl8192cu_hw_power_down(struct adapter * adapt)936 static void rtl8192cu_hw_power_down(struct adapter *adapt)
937 {
938 	/*  2010/-8/09 MH For power down module, we need to enable register block contrl reg at 0x1c. */
939 	/*  Then enable power down control bit of register 0x04 BIT4 and BIT15 as 1. */
940 
941 	/*  Enable register area 0x0-0xc. */
942 	usb_write8(adapt, REG_RSV_CTRL, 0x0);
943 	usb_write16(adapt, REG_APS_FSMCO, 0x8812);
944 }
945 
rtl8188eu_hal_deinit(struct adapter * Adapter)946 u32 rtl8188eu_hal_deinit(struct adapter *Adapter)
947 {
948 	DBG_88E("==> %s\n", __func__);
949 
950 	usb_write32(Adapter, REG_HIMR_88E, IMR_DISABLED_88E);
951 	usb_write32(Adapter, REG_HIMRE_88E, IMR_DISABLED_88E);
952 
953 	DBG_88E("bkeepfwalive(%x)\n", Adapter->pwrctrlpriv.bkeepfwalive);
954 	if (Adapter->pwrctrlpriv.bkeepfwalive) {
955 		if ((Adapter->pwrctrlpriv.bHWPwrPindetect) && (Adapter->pwrctrlpriv.bHWPowerdown))
956 			rtl8192cu_hw_power_down(Adapter);
957 	} else {
958 		if (Adapter->hw_init_completed) {
959 			CardDisableRTL8188EU(Adapter);
960 
961 			if ((Adapter->pwrctrlpriv.bHWPwrPindetect) && (Adapter->pwrctrlpriv.bHWPowerdown))
962 				rtl8192cu_hw_power_down(Adapter);
963 		}
964 	}
965 	return _SUCCESS;
966 }
967 
rtw_hal_inirp_init(struct adapter * Adapter)968 u32 rtw_hal_inirp_init(struct adapter *Adapter)
969 {
970 	u8 i;
971 	struct recv_buf *precvbuf;
972 	uint	status;
973 	struct recv_priv *precvpriv = &Adapter->recvpriv;
974 
975 	status = _SUCCESS;
976 
977 	RT_TRACE(_module_hci_hal_init_c_, _drv_info_,
978 		 ("===> usb_inirp_init\n"));
979 
980 	/* issue Rx irp to receive data */
981 	precvbuf = precvpriv->precv_buf;
982 	for (i = 0; i < NR_RECVBUFF; i++) {
983 		if (usb_read_port(Adapter, RECV_BULK_IN_ADDR, precvbuf) == false) {
984 			RT_TRACE(_module_hci_hal_init_c_, _drv_err_, ("usb_rx_init: usb_read_port error\n"));
985 			status = _FAIL;
986 			goto exit;
987 		}
988 
989 		precvbuf++;
990 	}
991 
992 exit:
993 
994 	RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("<=== usb_inirp_init\n"));
995 
996 	return status;
997 }
998 
999 /*  */
1000 /*  */
1001 /*	EEPROM/EFUSE Content Parsing */
1002 /*  */
1003 /*  */
Hal_EfuseParsePIDVID_8188EU(struct adapter * adapt,u8 * hwinfo,bool AutoLoadFail)1004 static void Hal_EfuseParsePIDVID_8188EU(struct adapter *adapt, u8 *hwinfo, bool AutoLoadFail)
1005 {
1006 	struct hal_data_8188e *haldata = adapt->HalData;
1007 
1008 	if (!AutoLoadFail) {
1009 		/*  VID, PID */
1010 		haldata->EEPROMVID = EF2BYTE(*(__le16 *)&hwinfo[EEPROM_VID_88EU]);
1011 		haldata->EEPROMPID = EF2BYTE(*(__le16 *)&hwinfo[EEPROM_PID_88EU]);
1012 
1013 		/*  Customer ID, 0x00 and 0xff are reserved for Realtek. */
1014 		haldata->EEPROMCustomerID = *(u8 *)&hwinfo[EEPROM_CUSTOMERID_88E];
1015 		haldata->EEPROMSubCustomerID = EEPROM_Default_SubCustomerID;
1016 	} else {
1017 		haldata->EEPROMVID			= EEPROM_Default_VID;
1018 		haldata->EEPROMPID			= EEPROM_Default_PID;
1019 
1020 		/*  Customer ID, 0x00 and 0xff are reserved for Realtek. */
1021 		haldata->EEPROMCustomerID		= EEPROM_Default_CustomerID;
1022 		haldata->EEPROMSubCustomerID	= EEPROM_Default_SubCustomerID;
1023 	}
1024 
1025 	DBG_88E("VID = 0x%04X, PID = 0x%04X\n", haldata->EEPROMVID, haldata->EEPROMPID);
1026 	DBG_88E("Customer ID: 0x%02X, SubCustomer ID: 0x%02X\n", haldata->EEPROMCustomerID, haldata->EEPROMSubCustomerID);
1027 }
1028 
Hal_EfuseParseMACAddr_8188EU(struct adapter * adapt,u8 * hwinfo,bool AutoLoadFail)1029 static void Hal_EfuseParseMACAddr_8188EU(struct adapter *adapt, u8 *hwinfo, bool AutoLoadFail)
1030 {
1031 	u16 i;
1032 	u8 sMacAddr[6] = {0x00, 0xE0, 0x4C, 0x81, 0x88, 0x02};
1033 	struct eeprom_priv *eeprom = GET_EEPROM_EFUSE_PRIV(adapt);
1034 
1035 	if (AutoLoadFail) {
1036 		for (i = 0; i < 6; i++)
1037 			eeprom->mac_addr[i] = sMacAddr[i];
1038 	} else {
1039 		/* Read Permanent MAC address */
1040 		memcpy(eeprom->mac_addr, &hwinfo[EEPROM_MAC_ADDR_88EU], ETH_ALEN);
1041 	}
1042 	RT_TRACE(_module_hci_hal_init_c_, _drv_notice_,
1043 		 ("Hal_EfuseParseMACAddr_8188EU: Permanent Address = %pM\n",
1044 		 eeprom->mac_addr));
1045 }
1046 
1047 static void
readAdapterInfo_8188EU(struct adapter * adapt)1048 readAdapterInfo_8188EU(
1049 		struct adapter *adapt
1050 	)
1051 {
1052 	struct eeprom_priv *eeprom = GET_EEPROM_EFUSE_PRIV(adapt);
1053 
1054 	/* parse the eeprom/efuse content */
1055 	Hal_EfuseParseIDCode88E(adapt, eeprom->efuse_eeprom_data);
1056 	Hal_EfuseParsePIDVID_8188EU(adapt, eeprom->efuse_eeprom_data, eeprom->bautoload_fail_flag);
1057 	Hal_EfuseParseMACAddr_8188EU(adapt, eeprom->efuse_eeprom_data, eeprom->bautoload_fail_flag);
1058 
1059 	Hal_ReadPowerSavingMode88E(adapt, eeprom->efuse_eeprom_data, eeprom->bautoload_fail_flag);
1060 	Hal_ReadTxPowerInfo88E(adapt, eeprom->efuse_eeprom_data, eeprom->bautoload_fail_flag);
1061 	Hal_EfuseParseEEPROMVer88E(adapt, eeprom->efuse_eeprom_data, eeprom->bautoload_fail_flag);
1062 	rtl8188e_EfuseParseChnlPlan(adapt, eeprom->efuse_eeprom_data, eeprom->bautoload_fail_flag);
1063 	Hal_EfuseParseXtal_8188E(adapt, eeprom->efuse_eeprom_data, eeprom->bautoload_fail_flag);
1064 	Hal_EfuseParseCustomerID88E(adapt, eeprom->efuse_eeprom_data, eeprom->bautoload_fail_flag);
1065 	Hal_ReadAntennaDiversity88E(adapt, eeprom->efuse_eeprom_data, eeprom->bautoload_fail_flag);
1066 	Hal_EfuseParseBoardType88E(adapt, eeprom->efuse_eeprom_data, eeprom->bautoload_fail_flag);
1067 	Hal_ReadThermalMeter_88E(adapt, eeprom->efuse_eeprom_data, eeprom->bautoload_fail_flag);
1068 }
1069 
_ReadPROMContent(struct adapter * Adapter)1070 static void _ReadPROMContent(
1071 	struct adapter *Adapter
1072 	)
1073 {
1074 	struct eeprom_priv *eeprom = GET_EEPROM_EFUSE_PRIV(Adapter);
1075 	u8 eeValue;
1076 
1077 	/* check system boot selection */
1078 	eeValue = usb_read8(Adapter, REG_9346CR);
1079 	eeprom->EepromOrEfuse		= (eeValue & BOOT_FROM_EEPROM) ? true : false;
1080 	eeprom->bautoload_fail_flag	= (eeValue & EEPROM_EN) ? false : true;
1081 
1082 	DBG_88E("Boot from %s, Autoload %s !\n", (eeprom->EepromOrEfuse ? "EEPROM" : "EFUSE"),
1083 		(eeprom->bautoload_fail_flag ? "Fail" : "OK"));
1084 
1085 	Hal_InitPGData88E(Adapter);
1086 	readAdapterInfo_8188EU(Adapter);
1087 }
1088 
rtw_hal_read_chip_info(struct adapter * Adapter)1089 void rtw_hal_read_chip_info(struct adapter *Adapter)
1090 {
1091 	unsigned long start = jiffies;
1092 
1093 	MSG_88E("====> %s\n", __func__);
1094 
1095 	_ReadPROMContent(Adapter);
1096 
1097 	MSG_88E("<==== %s in %d ms\n", __func__,
1098 		jiffies_to_msecs(jiffies - start));
1099 }
1100 
1101 #define GPIO_DEBUG_PORT_NUM 0
rtl8192cu_trigger_gpio_0(struct adapter * adapt)1102 static void rtl8192cu_trigger_gpio_0(struct adapter *adapt)
1103 {
1104 }
1105 
ResumeTxBeacon(struct adapter * adapt)1106 static void ResumeTxBeacon(struct adapter *adapt)
1107 {
1108 	struct hal_data_8188e *haldata = adapt->HalData;
1109 
1110 	/*  2010.03.01. Marked by tynli. No need to call workitem beacause we record the value */
1111 	/*  which should be read from register to a global variable. */
1112 
1113 	usb_write8(adapt, REG_FWHW_TXQ_CTRL+2, (haldata->RegFwHwTxQCtrl) | BIT(6));
1114 	haldata->RegFwHwTxQCtrl |= BIT(6);
1115 	usb_write8(adapt, REG_TBTT_PROHIBIT+1, 0xff);
1116 	haldata->RegReg542 |= BIT(0);
1117 	usb_write8(adapt, REG_TBTT_PROHIBIT+2, haldata->RegReg542);
1118 }
1119 
StopTxBeacon(struct adapter * adapt)1120 static void StopTxBeacon(struct adapter *adapt)
1121 {
1122 	struct hal_data_8188e *haldata = adapt->HalData;
1123 
1124 	/*  2010.03.01. Marked by tynli. No need to call workitem beacause we record the value */
1125 	/*  which should be read from register to a global variable. */
1126 
1127 	usb_write8(adapt, REG_FWHW_TXQ_CTRL+2, (haldata->RegFwHwTxQCtrl) & (~BIT(6)));
1128 	haldata->RegFwHwTxQCtrl &= (~BIT(6));
1129 	usb_write8(adapt, REG_TBTT_PROHIBIT+1, 0x64);
1130 	haldata->RegReg542 &= ~(BIT(0));
1131 	usb_write8(adapt, REG_TBTT_PROHIBIT+2, haldata->RegReg542);
1132 
1133 	 /* todo: CheckFwRsvdPageContent(Adapter);  2010.06.23. Added by tynli. */
1134 }
1135 
hw_var_set_opmode(struct adapter * Adapter,u8 variable,u8 * val)1136 static void hw_var_set_opmode(struct adapter *Adapter, u8 variable, u8 *val)
1137 {
1138 	u8 val8;
1139 	u8 mode = *((u8 *)val);
1140 
1141 	/*  disable Port0 TSF update */
1142 	usb_write8(Adapter, REG_BCN_CTRL, usb_read8(Adapter, REG_BCN_CTRL) | BIT(4));
1143 
1144 	/*  set net_type */
1145 	val8 = usb_read8(Adapter, MSR)&0x0c;
1146 	val8 |= mode;
1147 	usb_write8(Adapter, MSR, val8);
1148 
1149 	DBG_88E("%s()-%d mode = %d\n", __func__, __LINE__, mode);
1150 
1151 	if ((mode == _HW_STATE_STATION_) || (mode == _HW_STATE_NOLINK_)) {
1152 		StopTxBeacon(Adapter);
1153 
1154 		usb_write8(Adapter, REG_BCN_CTRL, 0x19);/* disable atim wnd */
1155 	} else if (mode == _HW_STATE_ADHOC_) {
1156 		ResumeTxBeacon(Adapter);
1157 		usb_write8(Adapter, REG_BCN_CTRL, 0x1a);
1158 	} else if (mode == _HW_STATE_AP_) {
1159 		ResumeTxBeacon(Adapter);
1160 
1161 		usb_write8(Adapter, REG_BCN_CTRL, 0x12);
1162 
1163 		/* Set RCR */
1164 		usb_write32(Adapter, REG_RCR, 0x7000208e);/* CBSSID_DATA must set to 0,reject ICV_ERR packet */
1165 		/* enable to rx data frame */
1166 		usb_write16(Adapter, REG_RXFLTMAP2, 0xFFFF);
1167 		/* enable to rx ps-poll */
1168 		usb_write16(Adapter, REG_RXFLTMAP1, 0x0400);
1169 
1170 		/* Beacon Control related register for first time */
1171 		usb_write8(Adapter, REG_BCNDMATIM, 0x02); /*  2ms */
1172 
1173 		usb_write8(Adapter, REG_ATIMWND, 0x0a); /*  10ms */
1174 		usb_write16(Adapter, REG_BCNTCFG, 0x00);
1175 		usb_write16(Adapter, REG_TBTT_PROHIBIT, 0xff04);
1176 		usb_write16(Adapter, REG_TSFTR_SYN_OFFSET, 0x7fff);/*  +32767 (~32ms) */
1177 
1178 		/* reset TSF */
1179 		usb_write8(Adapter, REG_DUAL_TSF_RST, BIT(0));
1180 
1181 		/* BIT3 - If set 0, hw will clr bcnq when tx becon ok/fail or port 0 */
1182 		usb_write8(Adapter, REG_MBID_NUM, usb_read8(Adapter, REG_MBID_NUM) | BIT(3) | BIT(4));
1183 
1184 		/* enable BCN0 Function for if1 */
1185 		/* don't enable update TSF0 for if1 (due to TSF update when beacon/probe rsp are received) */
1186 		usb_write8(Adapter, REG_BCN_CTRL, (DIS_TSF_UDT0_NORMAL_CHIP|EN_BCN_FUNCTION | BIT(1)));
1187 
1188 		/* dis BCN1 ATIM  WND if if2 is station */
1189 		usb_write8(Adapter, REG_BCN_CTRL_1, usb_read8(Adapter, REG_BCN_CTRL_1) | BIT(0));
1190 	}
1191 }
1192 
hw_var_set_macaddr(struct adapter * Adapter,u8 variable,u8 * val)1193 static void hw_var_set_macaddr(struct adapter *Adapter, u8 variable, u8 *val)
1194 {
1195 	u8 idx = 0;
1196 	u32 reg_macid;
1197 
1198 	reg_macid = REG_MACID;
1199 
1200 	for (idx = 0; idx < 6; idx++)
1201 		usb_write8(Adapter, (reg_macid+idx), val[idx]);
1202 }
1203 
hw_var_set_bssid(struct adapter * Adapter,u8 variable,u8 * val)1204 static void hw_var_set_bssid(struct adapter *Adapter, u8 variable, u8 *val)
1205 {
1206 	u8 idx = 0;
1207 	u32 reg_bssid;
1208 
1209 	reg_bssid = REG_BSSID;
1210 
1211 	for (idx = 0; idx < 6; idx++)
1212 		usb_write8(Adapter, (reg_bssid+idx), val[idx]);
1213 }
1214 
hw_var_set_bcn_func(struct adapter * Adapter,u8 variable,u8 * val)1215 static void hw_var_set_bcn_func(struct adapter *Adapter, u8 variable, u8 *val)
1216 {
1217 	u32 bcn_ctrl_reg;
1218 
1219 	bcn_ctrl_reg = REG_BCN_CTRL;
1220 
1221 	if (*((u8 *)val))
1222 		usb_write8(Adapter, bcn_ctrl_reg, (EN_BCN_FUNCTION | EN_TXBCN_RPT));
1223 	else
1224 		usb_write8(Adapter, bcn_ctrl_reg, usb_read8(Adapter, bcn_ctrl_reg)&(~(EN_BCN_FUNCTION | EN_TXBCN_RPT)));
1225 }
1226 
rtw_hal_set_hwreg(struct adapter * Adapter,u8 variable,u8 * val)1227 void rtw_hal_set_hwreg(struct adapter *Adapter, u8 variable, u8 *val)
1228 {
1229 	struct hal_data_8188e *haldata = Adapter->HalData;
1230 	struct dm_priv	*pdmpriv = &haldata->dmpriv;
1231 	struct odm_dm_struct *podmpriv = &haldata->odmpriv;
1232 
1233 	switch (variable) {
1234 	case HW_VAR_MEDIA_STATUS:
1235 		{
1236 			u8 val8;
1237 
1238 			val8 = usb_read8(Adapter, MSR)&0x0c;
1239 			val8 |= *((u8 *)val);
1240 			usb_write8(Adapter, MSR, val8);
1241 		}
1242 		break;
1243 	case HW_VAR_MEDIA_STATUS1:
1244 		{
1245 			u8 val8;
1246 
1247 			val8 = usb_read8(Adapter, MSR) & 0x03;
1248 			val8 |= *((u8 *)val) << 2;
1249 			usb_write8(Adapter, MSR, val8);
1250 		}
1251 		break;
1252 	case HW_VAR_SET_OPMODE:
1253 		hw_var_set_opmode(Adapter, variable, val);
1254 		break;
1255 	case HW_VAR_MAC_ADDR:
1256 		hw_var_set_macaddr(Adapter, variable, val);
1257 		break;
1258 	case HW_VAR_BSSID:
1259 		hw_var_set_bssid(Adapter, variable, val);
1260 		break;
1261 	case HW_VAR_BASIC_RATE:
1262 		{
1263 			u16 BrateCfg = 0;
1264 			u8 RateIndex = 0;
1265 
1266 			/*  2007.01.16, by Emily */
1267 			/*  Select RRSR (in Legacy-OFDM and CCK) */
1268 			/*  For 8190, we select only 24M, 12M, 6M, 11M, 5.5M, 2M, and 1M from the Basic rate. */
1269 			/*  We do not use other rates. */
1270 			HalSetBrateCfg(Adapter, val, &BrateCfg);
1271 			DBG_88E("HW_VAR_BASIC_RATE: BrateCfg(%#x)\n", BrateCfg);
1272 
1273 			/* 2011.03.30 add by Luke Lee */
1274 			/* CCK 2M ACK should be disabled for some BCM and Atheros AP IOT */
1275 			/* because CCK 2M has poor TXEVM */
1276 			/* CCK 5.5M & 11M ACK should be enabled for better performance */
1277 
1278 			BrateCfg = (BrateCfg | 0xd) & 0x15d;
1279 			haldata->BasicRateSet = BrateCfg;
1280 
1281 			BrateCfg |= 0x01; /*  default enable 1M ACK rate */
1282 			/*  Set RRSR rate table. */
1283 			usb_write8(Adapter, REG_RRSR, BrateCfg & 0xff);
1284 			usb_write8(Adapter, REG_RRSR+1, (BrateCfg >> 8) & 0xff);
1285 			usb_write8(Adapter, REG_RRSR+2, usb_read8(Adapter, REG_RRSR+2)&0xf0);
1286 
1287 			/*  Set RTS initial rate */
1288 			while (BrateCfg > 0x1) {
1289 				BrateCfg >>= 1;
1290 				RateIndex++;
1291 			}
1292 			/*  Ziv - Check */
1293 			usb_write8(Adapter, REG_INIRTS_RATE_SEL, RateIndex);
1294 		}
1295 		break;
1296 	case HW_VAR_TXPAUSE:
1297 		usb_write8(Adapter, REG_TXPAUSE, *((u8 *)val));
1298 		break;
1299 	case HW_VAR_BCN_FUNC:
1300 		hw_var_set_bcn_func(Adapter, variable, val);
1301 		break;
1302 	case HW_VAR_CORRECT_TSF:
1303 		{
1304 			u64	tsf;
1305 			struct mlme_ext_priv	*pmlmeext = &Adapter->mlmeextpriv;
1306 			struct mlme_ext_info	*pmlmeinfo = &pmlmeext->mlmext_info;
1307 
1308 			tsf = pmlmeext->TSFValue - rtw_modular64(pmlmeext->TSFValue, (pmlmeinfo->bcn_interval*1024)) - 1024; /* us */
1309 
1310 			if (((pmlmeinfo->state&0x03) == WIFI_FW_ADHOC_STATE) || ((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE))
1311 				StopTxBeacon(Adapter);
1312 
1313 			/* disable related TSF function */
1314 			usb_write8(Adapter, REG_BCN_CTRL, usb_read8(Adapter, REG_BCN_CTRL)&(~BIT(3)));
1315 
1316 			usb_write32(Adapter, REG_TSFTR, tsf);
1317 			usb_write32(Adapter, REG_TSFTR+4, tsf>>32);
1318 
1319 			/* enable related TSF function */
1320 			usb_write8(Adapter, REG_BCN_CTRL, usb_read8(Adapter, REG_BCN_CTRL) | BIT(3));
1321 
1322 			if (((pmlmeinfo->state&0x03) == WIFI_FW_ADHOC_STATE) || ((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE))
1323 				ResumeTxBeacon(Adapter);
1324 		}
1325 		break;
1326 	case HW_VAR_CHECK_BSSID:
1327 		if (*((u8 *)val)) {
1328 			usb_write32(Adapter, REG_RCR, usb_read32(Adapter, REG_RCR)|RCR_CBSSID_DATA|RCR_CBSSID_BCN);
1329 		} else {
1330 			u32 val32;
1331 
1332 			val32 = usb_read32(Adapter, REG_RCR);
1333 
1334 			val32 &= ~(RCR_CBSSID_DATA | RCR_CBSSID_BCN);
1335 
1336 			usb_write32(Adapter, REG_RCR, val32);
1337 		}
1338 		break;
1339 	case HW_VAR_MLME_DISCONNECT:
1340 		/* Set RCR to not to receive data frame when NO LINK state */
1341 		/* reject all data frames */
1342 		usb_write16(Adapter, REG_RXFLTMAP2, 0x00);
1343 
1344 		/* reset TSF */
1345 		usb_write8(Adapter, REG_DUAL_TSF_RST, (BIT(0) | BIT(1)));
1346 
1347 		/* disable update TSF */
1348 		usb_write8(Adapter, REG_BCN_CTRL, usb_read8(Adapter, REG_BCN_CTRL) | BIT(4));
1349 		break;
1350 	case HW_VAR_MLME_SITESURVEY:
1351 		if (*((u8 *)val)) { /* under sitesurvey */
1352 			/* config RCR to receive different BSSID & not to receive data frame */
1353 			u32 v = usb_read32(Adapter, REG_RCR);
1354 
1355 			v &= ~(RCR_CBSSID_BCN);
1356 			usb_write32(Adapter, REG_RCR, v);
1357 			/* reject all data frame */
1358 			usb_write16(Adapter, REG_RXFLTMAP2, 0x00);
1359 
1360 			/* disable update TSF */
1361 			usb_write8(Adapter, REG_BCN_CTRL, usb_read8(Adapter, REG_BCN_CTRL) | BIT(4));
1362 		} else { /* sitesurvey done */
1363 			struct mlme_ext_priv	*pmlmeext = &Adapter->mlmeextpriv;
1364 			struct mlme_ext_info	*pmlmeinfo = &pmlmeext->mlmext_info;
1365 
1366 			if ((is_client_associated_to_ap(Adapter)) ||
1367 			    ((pmlmeinfo->state&0x03) == WIFI_FW_ADHOC_STATE)) {
1368 				/* enable to rx data frame */
1369 				usb_write16(Adapter, REG_RXFLTMAP2, 0xFFFF);
1370 
1371 				/* enable update TSF */
1372 				usb_write8(Adapter, REG_BCN_CTRL, usb_read8(Adapter, REG_BCN_CTRL)&(~BIT(4)));
1373 			} else if ((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE) {
1374 				usb_write16(Adapter, REG_RXFLTMAP2, 0xFFFF);
1375 				/* enable update TSF */
1376 				usb_write8(Adapter, REG_BCN_CTRL, usb_read8(Adapter, REG_BCN_CTRL)&(~BIT(4)));
1377 			}
1378 
1379 			usb_write32(Adapter, REG_RCR, usb_read32(Adapter, REG_RCR)|RCR_CBSSID_BCN);
1380 		}
1381 		break;
1382 	case HW_VAR_MLME_JOIN:
1383 		{
1384 			u8 RetryLimit = 0x30;
1385 			u8 type = *((u8 *)val);
1386 			struct mlme_priv	*pmlmepriv = &Adapter->mlmepriv;
1387 
1388 			if (type == 0) { /*  prepare to join */
1389 				/* enable to rx data frame.Accept all data frame */
1390 				usb_write16(Adapter, REG_RXFLTMAP2, 0xFFFF);
1391 
1392 				usb_write32(Adapter, REG_RCR, usb_read32(Adapter, REG_RCR)|RCR_CBSSID_DATA|RCR_CBSSID_BCN);
1393 
1394 				if (check_fwstate(pmlmepriv, WIFI_STATION_STATE))
1395 					RetryLimit = (haldata->CustomerID == RT_CID_CCX) ? 7 : 48;
1396 				else /*  Ad-hoc Mode */
1397 					RetryLimit = 0x7;
1398 			} else if (type == 1) {
1399 				/* joinbss_event call back when join res < 0 */
1400 				usb_write16(Adapter, REG_RXFLTMAP2, 0x00);
1401 			} else if (type == 2) {
1402 				/* sta add event call back */
1403 				/* enable update TSF */
1404 				usb_write8(Adapter, REG_BCN_CTRL, usb_read8(Adapter, REG_BCN_CTRL)&(~BIT(4)));
1405 
1406 				if (check_fwstate(pmlmepriv, WIFI_ADHOC_STATE|WIFI_ADHOC_MASTER_STATE))
1407 					RetryLimit = 0x7;
1408 			}
1409 			usb_write16(Adapter, REG_RL, RetryLimit << RETRY_LIMIT_SHORT_SHIFT | RetryLimit << RETRY_LIMIT_LONG_SHIFT);
1410 		}
1411 		break;
1412 	case HW_VAR_BEACON_INTERVAL:
1413 		usb_write16(Adapter, REG_BCN_INTERVAL, *((u16 *)val));
1414 		break;
1415 	case HW_VAR_SLOT_TIME:
1416 		{
1417 			u8 u1bAIFS, aSifsTime;
1418 			struct mlme_ext_priv	*pmlmeext = &Adapter->mlmeextpriv;
1419 			struct mlme_ext_info	*pmlmeinfo = &pmlmeext->mlmext_info;
1420 
1421 			usb_write8(Adapter, REG_SLOT, val[0]);
1422 
1423 			if (pmlmeinfo->WMM_enable == 0) {
1424 				if (pmlmeext->cur_wireless_mode == WIRELESS_11B)
1425 					aSifsTime = 10;
1426 				else
1427 					aSifsTime = 16;
1428 
1429 				u1bAIFS = aSifsTime + (2 * pmlmeinfo->slotTime);
1430 
1431 				/*  <Roger_EXP> Temporary removed, 2008.06.20. */
1432 				usb_write8(Adapter, REG_EDCA_VO_PARAM, u1bAIFS);
1433 				usb_write8(Adapter, REG_EDCA_VI_PARAM, u1bAIFS);
1434 				usb_write8(Adapter, REG_EDCA_BE_PARAM, u1bAIFS);
1435 				usb_write8(Adapter, REG_EDCA_BK_PARAM, u1bAIFS);
1436 			}
1437 		}
1438 		break;
1439 	case HW_VAR_RESP_SIFS:
1440 		/* RESP_SIFS for CCK */
1441 		usb_write8(Adapter, REG_R2T_SIFS, val[0]); /*  SIFS_T2T_CCK (0x08) */
1442 		usb_write8(Adapter, REG_R2T_SIFS+1, val[1]); /* SIFS_R2T_CCK(0x08) */
1443 		/* RESP_SIFS for OFDM */
1444 		usb_write8(Adapter, REG_T2T_SIFS, val[2]); /* SIFS_T2T_OFDM (0x0a) */
1445 		usb_write8(Adapter, REG_T2T_SIFS+1, val[3]); /* SIFS_R2T_OFDM(0x0a) */
1446 		break;
1447 	case HW_VAR_ACK_PREAMBLE:
1448 		{
1449 			u8 regTmp;
1450 			u8 bShortPreamble = *((bool *)val);
1451 			/*  Joseph marked out for Netgear 3500 TKIP channel 7 issue.(Temporarily) */
1452 			regTmp = (haldata->nCur40MhzPrimeSC)<<5;
1453 			if (bShortPreamble)
1454 				regTmp |= 0x80;
1455 
1456 			usb_write8(Adapter, REG_RRSR+2, regTmp);
1457 		}
1458 		break;
1459 	case HW_VAR_SEC_CFG:
1460 		usb_write8(Adapter, REG_SECCFG, *((u8 *)val));
1461 		break;
1462 	case HW_VAR_DM_FUNC_OP:
1463 		if (val[0])
1464 			podmpriv->BK_SupportAbility = podmpriv->SupportAbility;
1465 		else
1466 			podmpriv->SupportAbility = podmpriv->BK_SupportAbility;
1467 		break;
1468 	case HW_VAR_DM_FUNC_SET:
1469 		if (*((u32 *)val) == DYNAMIC_ALL_FUNC_ENABLE) {
1470 			pdmpriv->DMFlag = pdmpriv->InitDMFlag;
1471 			podmpriv->SupportAbility =	pdmpriv->InitODMFlag;
1472 		} else {
1473 			podmpriv->SupportAbility |= *((u32 *)val);
1474 		}
1475 		break;
1476 	case HW_VAR_DM_FUNC_CLR:
1477 		podmpriv->SupportAbility &= *((u32 *)val);
1478 		break;
1479 	case HW_VAR_CAM_EMPTY_ENTRY:
1480 		{
1481 			u8 ucIndex = *((u8 *)val);
1482 			u8 i;
1483 			u32 ulCommand = 0;
1484 			u32 ulContent = 0;
1485 			u32 ulEncAlgo = CAM_AES;
1486 
1487 			for (i = 0; i < CAM_CONTENT_COUNT; i++) {
1488 				/*  filled id in CAM config 2 byte */
1489 				if (i == 0)
1490 					ulContent |= (ucIndex & 0x03) | ((u16)(ulEncAlgo)<<2);
1491 				else
1492 					ulContent = 0;
1493 				/*  polling bit, and No Write enable, and address */
1494 				ulCommand = CAM_CONTENT_COUNT*ucIndex+i;
1495 				ulCommand = ulCommand | CAM_POLLINIG|CAM_WRITE;
1496 				/*  write content 0 is equall to mark invalid */
1497 				usb_write32(Adapter, WCAMI, ulContent);  /* delay_ms(40); */
1498 				usb_write32(Adapter, RWCAM, ulCommand);  /* delay_ms(40); */
1499 			}
1500 		}
1501 		break;
1502 	case HW_VAR_CAM_INVALID_ALL:
1503 		usb_write32(Adapter, RWCAM, BIT(31) | BIT(30));
1504 		break;
1505 	case HW_VAR_CAM_WRITE:
1506 		{
1507 			u32 cmd;
1508 			u32 *cam_val = (u32 *)val;
1509 
1510 			usb_write32(Adapter, WCAMI, cam_val[0]);
1511 
1512 			cmd = CAM_POLLINIG | CAM_WRITE | cam_val[1];
1513 			usb_write32(Adapter, RWCAM, cmd);
1514 		}
1515 		break;
1516 	case HW_VAR_AC_PARAM_VO:
1517 		usb_write32(Adapter, REG_EDCA_VO_PARAM, ((u32 *)(val))[0]);
1518 		break;
1519 	case HW_VAR_AC_PARAM_VI:
1520 		usb_write32(Adapter, REG_EDCA_VI_PARAM, ((u32 *)(val))[0]);
1521 		break;
1522 	case HW_VAR_AC_PARAM_BE:
1523 		haldata->AcParam_BE = ((u32 *)(val))[0];
1524 		usb_write32(Adapter, REG_EDCA_BE_PARAM, ((u32 *)(val))[0]);
1525 		break;
1526 	case HW_VAR_AC_PARAM_BK:
1527 		usb_write32(Adapter, REG_EDCA_BK_PARAM, ((u32 *)(val))[0]);
1528 		break;
1529 	case HW_VAR_ACM_CTRL:
1530 		{
1531 			u8 acm_ctrl = *((u8 *)val);
1532 			u8 AcmCtrl = usb_read8(Adapter, REG_ACMHWCTRL);
1533 
1534 			if (acm_ctrl > 1)
1535 				AcmCtrl = AcmCtrl | 0x1;
1536 
1537 			if (acm_ctrl & BIT(3))
1538 				AcmCtrl |= AcmHw_VoqEn;
1539 			else
1540 				AcmCtrl &= (~AcmHw_VoqEn);
1541 
1542 			if (acm_ctrl & BIT(2))
1543 				AcmCtrl |= AcmHw_ViqEn;
1544 			else
1545 				AcmCtrl &= (~AcmHw_ViqEn);
1546 
1547 			if (acm_ctrl & BIT(1))
1548 				AcmCtrl |= AcmHw_BeqEn;
1549 			else
1550 				AcmCtrl &= (~AcmHw_BeqEn);
1551 
1552 			DBG_88E("[HW_VAR_ACM_CTRL] Write 0x%X\n", AcmCtrl);
1553 			usb_write8(Adapter, REG_ACMHWCTRL, AcmCtrl);
1554 		}
1555 		break;
1556 	case HW_VAR_AMPDU_MIN_SPACE:
1557 		{
1558 			u8 MinSpacingToSet;
1559 			u8 SecMinSpace;
1560 
1561 			MinSpacingToSet = *((u8 *)val);
1562 			if (MinSpacingToSet <= 7) {
1563 				switch (Adapter->securitypriv.dot11PrivacyAlgrthm) {
1564 				case _NO_PRIVACY_:
1565 				case _AES_:
1566 					SecMinSpace = 0;
1567 					break;
1568 				case _WEP40_:
1569 				case _WEP104_:
1570 				case _TKIP_:
1571 				case _TKIP_WTMIC_:
1572 					SecMinSpace = 6;
1573 					break;
1574 				default:
1575 					SecMinSpace = 7;
1576 					break;
1577 				}
1578 				if (MinSpacingToSet < SecMinSpace)
1579 					MinSpacingToSet = SecMinSpace;
1580 				usb_write8(Adapter, REG_AMPDU_MIN_SPACE, (usb_read8(Adapter, REG_AMPDU_MIN_SPACE) & 0xf8) | MinSpacingToSet);
1581 			}
1582 		}
1583 		break;
1584 	case HW_VAR_AMPDU_FACTOR:
1585 		{
1586 			u8 RegToSet_Normal[4] = {0x41, 0xa8, 0x72, 0xb9};
1587 			u8 FactorToSet;
1588 			u8 *pRegToSet;
1589 			u8 index = 0;
1590 
1591 			pRegToSet = RegToSet_Normal; /*  0xb972a841; */
1592 			FactorToSet = *((u8 *)val);
1593 			if (FactorToSet <= 3) {
1594 				FactorToSet = 1 << (FactorToSet + 2);
1595 				if (FactorToSet > 0xf)
1596 					FactorToSet = 0xf;
1597 
1598 				for (index = 0; index < 4; index++) {
1599 					if ((pRegToSet[index] & 0xf0) > (FactorToSet<<4))
1600 						pRegToSet[index] = (pRegToSet[index] & 0x0f) | (FactorToSet<<4);
1601 
1602 					if ((pRegToSet[index] & 0x0f) > FactorToSet)
1603 						pRegToSet[index] = (pRegToSet[index] & 0xf0) | (FactorToSet);
1604 
1605 					usb_write8(Adapter, (REG_AGGLEN_LMT+index), pRegToSet[index]);
1606 				}
1607 			}
1608 		}
1609 		break;
1610 	case HW_VAR_RXDMA_AGG_PG_TH:
1611 		{
1612 			u8 threshold = *((u8 *)val);
1613 
1614 			if (threshold == 0)
1615 				threshold = haldata->UsbRxAggPageCount;
1616 			usb_write8(Adapter, REG_RXDMA_AGG_PG_TH, threshold);
1617 		}
1618 		break;
1619 	case HW_VAR_SET_RPWM:
1620 		break;
1621 	case HW_VAR_H2C_FW_PWRMODE:
1622 		{
1623 			u8 psmode = (*(u8 *)val);
1624 
1625 			/*  Forece leave RF low power mode for 1T1R to prevent conficting setting in Fw power */
1626 			/*  saving sequence. 2010.06.07. Added by tynli. Suggested by SD3 yschang. */
1627 			if (psmode != PS_MODE_ACTIVE)
1628 				ODM_RF_Saving(podmpriv, true);
1629 			rtl8188e_set_FwPwrMode_cmd(Adapter, psmode);
1630 		}
1631 		break;
1632 	case HW_VAR_H2C_FW_JOINBSSRPT:
1633 		{
1634 			u8 mstatus = (*(u8 *)val);
1635 
1636 			rtl8188e_set_FwJoinBssReport_cmd(Adapter, mstatus);
1637 		}
1638 		break;
1639 	case HW_VAR_INITIAL_GAIN:
1640 		{
1641 			struct rtw_dig *pDigTable = &podmpriv->DM_DigTable;
1642 			u32 rx_gain = ((u32 *)(val))[0];
1643 
1644 			if (rx_gain == 0xff) {/* restore rx gain */
1645 				ODM_Write_DIG(podmpriv, pDigTable->BackupIGValue);
1646 			} else {
1647 				pDigTable->BackupIGValue = pDigTable->CurIGValue;
1648 				ODM_Write_DIG(podmpriv, rx_gain);
1649 			}
1650 		}
1651 		break;
1652 	case HW_VAR_TRIGGER_GPIO_0:
1653 		rtl8192cu_trigger_gpio_0(Adapter);
1654 		break;
1655 	case HW_VAR_RPT_TIMER_SETTING:
1656 		{
1657 			u16 min_rpt_time = (*(u16 *)val);
1658 
1659 			ODM_RA_Set_TxRPT_Time(podmpriv, min_rpt_time);
1660 		}
1661 		break;
1662 	case HW_VAR_ANTENNA_DIVERSITY_SELECT:
1663 		{
1664 			u8 Optimum_antenna = (*(u8 *)val);
1665 			u8 Ant;
1666 			/* switch antenna to Optimum_antenna */
1667 			if (haldata->CurAntenna !=  Optimum_antenna) {
1668 				Ant = (Optimum_antenna == 2) ? MAIN_ANT : AUX_ANT;
1669 				rtl88eu_dm_update_rx_idle_ant(&haldata->odmpriv, Ant);
1670 
1671 				haldata->CurAntenna = Optimum_antenna;
1672 			}
1673 		}
1674 		break;
1675 	case HW_VAR_EFUSE_BYTES: /*  To set EFUE total used bytes, added by Roger, 2008.12.22. */
1676 		haldata->EfuseUsedBytes = *((u16 *)val);
1677 		break;
1678 	case HW_VAR_FIFO_CLEARN_UP:
1679 		{
1680 			struct pwrctrl_priv *pwrpriv = &Adapter->pwrctrlpriv;
1681 			u8 trycnt = 100;
1682 
1683 			/* pause tx */
1684 			usb_write8(Adapter, REG_TXPAUSE, 0xff);
1685 
1686 			/* keep sn */
1687 			Adapter->xmitpriv.nqos_ssn = usb_read16(Adapter, REG_NQOS_SEQ);
1688 
1689 			if (!pwrpriv->bkeepfwalive) {
1690 				/* RX DMA stop */
1691 				usb_write32(Adapter, REG_RXPKT_NUM, (usb_read32(Adapter, REG_RXPKT_NUM)|RW_RELEASE_EN));
1692 				do {
1693 					if (!(usb_read32(Adapter, REG_RXPKT_NUM)&RXDMA_IDLE))
1694 						break;
1695 				} while (trycnt--);
1696 				if (trycnt == 0)
1697 					DBG_88E("Stop RX DMA failed......\n");
1698 
1699 				/* RQPN Load 0 */
1700 				usb_write16(Adapter, REG_RQPN_NPQ, 0x0);
1701 				usb_write32(Adapter, REG_RQPN, 0x80000000);
1702 				mdelay(10);
1703 			}
1704 		}
1705 		break;
1706 	case HW_VAR_CHECK_TXBUF:
1707 		break;
1708 	case HW_VAR_APFM_ON_MAC:
1709 		haldata->bMacPwrCtrlOn = *val;
1710 		DBG_88E("%s: bMacPwrCtrlOn=%d\n", __func__, haldata->bMacPwrCtrlOn);
1711 		break;
1712 	case HW_VAR_TX_RPT_MAX_MACID:
1713 		{
1714 			u8 maxMacid = *val;
1715 
1716 			DBG_88E("### MacID(%d),Set Max Tx RPT MID(%d)\n", maxMacid, maxMacid+1);
1717 			usb_write8(Adapter, REG_TX_RPT_CTRL+1, maxMacid+1);
1718 		}
1719 		break;
1720 	case HW_VAR_H2C_MEDIA_STATUS_RPT:
1721 		rtl8188e_set_FwMediaStatus_cmd(Adapter, (*(__le16 *)val));
1722 		break;
1723 	case HW_VAR_BCN_VALID:
1724 		/* BCN_VALID, BIT16 of REG_TDECTRL = BIT0 of REG_TDECTRL+2, write 1 to clear, Clear by sw */
1725 		usb_write8(Adapter, REG_TDECTRL+2, usb_read8(Adapter, REG_TDECTRL+2) | BIT(0));
1726 		break;
1727 	default:
1728 		break;
1729 	}
1730 }
1731 
rtw_hal_get_hwreg(struct adapter * Adapter,u8 variable,u8 * val)1732 void rtw_hal_get_hwreg(struct adapter *Adapter, u8 variable, u8 *val)
1733 {
1734 	switch (variable) {
1735 	case HW_VAR_BASIC_RATE:
1736 		*((u16 *)(val)) = Adapter->HalData->BasicRateSet;
1737 		/* fall through */
1738 	case HW_VAR_TXPAUSE:
1739 		val[0] = usb_read8(Adapter, REG_TXPAUSE);
1740 		break;
1741 	case HW_VAR_BCN_VALID:
1742 		/* BCN_VALID, BIT16 of REG_TDECTRL = BIT0 of REG_TDECTRL+2 */
1743 		val[0] = (BIT(0) & usb_read8(Adapter, REG_TDECTRL+2)) ? true : false;
1744 		break;
1745 	case HW_VAR_FWLPS_RF_ON:
1746 		{
1747 			/* When we halt NIC, we should check if FW LPS is leave. */
1748 			if (Adapter->pwrctrlpriv.rf_pwrstate == rf_off) {
1749 				/*  If it is in HW/SW Radio OFF or IPS state, we do not check Fw LPS Leave, */
1750 				/*  because Fw is unload. */
1751 				val[0] = true;
1752 			} else {
1753 				u32 valRCR;
1754 
1755 				valRCR = usb_read32(Adapter, REG_RCR);
1756 				valRCR &= 0x00070000;
1757 				if (valRCR)
1758 					val[0] = false;
1759 				else
1760 					val[0] = true;
1761 			}
1762 		}
1763 		break;
1764 	case HW_VAR_CURRENT_ANTENNA:
1765 		val[0] = Adapter->HalData->CurAntenna;
1766 		break;
1767 	case HW_VAR_EFUSE_BYTES: /*  To get EFUE total used bytes, added by Roger, 2008.12.22. */
1768 		*((u16 *)(val)) = Adapter->HalData->EfuseUsedBytes;
1769 		break;
1770 	case HW_VAR_APFM_ON_MAC:
1771 		*val = Adapter->HalData->bMacPwrCtrlOn;
1772 		break;
1773 	case HW_VAR_CHK_HI_QUEUE_EMPTY:
1774 		*val = ((usb_read32(Adapter, REG_HGQ_INFORMATION)&0x0000ff00) == 0) ? true : false;
1775 		break;
1776 	default:
1777 		break;
1778 	}
1779 }
1780 
1781 /*  */
1782 /*	Description: */
1783 /*		Query setting of specified variable. */
1784 /*  */
rtw_hal_get_def_var(struct adapter * Adapter,enum hal_def_variable eVariable,void * pValue)1785 u8 rtw_hal_get_def_var(
1786 		struct adapter *Adapter,
1787 		enum hal_def_variable eVariable,
1788 		void *pValue
1789 	)
1790 {
1791 	struct hal_data_8188e *haldata = Adapter->HalData;
1792 	u8 bResult = _SUCCESS;
1793 
1794 	switch (eVariable) {
1795 	case HAL_DEF_UNDERCORATEDSMOOTHEDPWDB:
1796 		{
1797 			struct mlme_priv *pmlmepriv = &Adapter->mlmepriv;
1798 			struct sta_priv *pstapriv = &Adapter->stapriv;
1799 			struct sta_info *psta;
1800 
1801 			psta = rtw_get_stainfo(pstapriv, pmlmepriv->cur_network.network.MacAddress);
1802 			if (psta)
1803 				*((int *)pValue) = psta->rssi_stat.UndecoratedSmoothedPWDB;
1804 		}
1805 		break;
1806 	case HAL_DEF_IS_SUPPORT_ANT_DIV:
1807 		*((u8 *)pValue) = (haldata->AntDivCfg == 0) ? false : true;
1808 		break;
1809 	case HAL_DEF_CURRENT_ANTENNA:
1810 		*((u8 *)pValue) = haldata->CurAntenna;
1811 		break;
1812 	case HAL_DEF_DRVINFO_SZ:
1813 		*((u32 *)pValue) = DRVINFO_SZ;
1814 		break;
1815 	case HAL_DEF_MAX_RECVBUF_SZ:
1816 		*((u32 *)pValue) = MAX_RECVBUF_SZ;
1817 		break;
1818 	case HAL_DEF_RX_PACKET_OFFSET:
1819 		*((u32 *)pValue) = RXDESC_SIZE + DRVINFO_SZ;
1820 		break;
1821 	case HAL_DEF_DBG_DM_FUNC:
1822 		*((u32 *)pValue) = haldata->odmpriv.SupportAbility;
1823 		break;
1824 	case HAL_DEF_RA_DECISION_RATE:
1825 		{
1826 			u8 MacID = *((u8 *)pValue);
1827 
1828 			*((u8 *)pValue) = ODM_RA_GetDecisionRate_8188E(&haldata->odmpriv, MacID);
1829 		}
1830 		break;
1831 	case HAL_DEF_RA_SGI:
1832 		{
1833 			u8 MacID = *((u8 *)pValue);
1834 
1835 			*((u8 *)pValue) = ODM_RA_GetShortGI_8188E(&haldata->odmpriv, MacID);
1836 		}
1837 		break;
1838 	case HAL_DEF_PT_PWR_STATUS:
1839 		{
1840 			u8 MacID = *((u8 *)pValue);
1841 
1842 			*((u8 *)pValue) = ODM_RA_GetHwPwrStatus_8188E(&haldata->odmpriv, MacID);
1843 		}
1844 		break;
1845 	case HW_VAR_MAX_RX_AMPDU_FACTOR:
1846 		*((u32 *)pValue) = MAX_AMPDU_FACTOR_64K;
1847 		break;
1848 	case HW_DEF_RA_INFO_DUMP:
1849 		{
1850 			u8 entry_id = *((u8 *)pValue);
1851 
1852 			if (check_fwstate(&Adapter->mlmepriv, _FW_LINKED)) {
1853 				DBG_88E("============ RA status check ===================\n");
1854 				DBG_88E("Mac_id:%d , RateID = %d, RAUseRate = 0x%08x, RateSGI = %d, DecisionRate = 0x%02x ,PTStage = %d\n",
1855 					entry_id,
1856 					haldata->odmpriv.RAInfo[entry_id].RateID,
1857 					haldata->odmpriv.RAInfo[entry_id].RAUseRate,
1858 					haldata->odmpriv.RAInfo[entry_id].RateSGI,
1859 					haldata->odmpriv.RAInfo[entry_id].DecisionRate,
1860 					haldata->odmpriv.RAInfo[entry_id].PTStage);
1861 			}
1862 		}
1863 		break;
1864 	case HW_DEF_ODM_DBG_FLAG:
1865 		{
1866 			struct odm_dm_struct *dm_ocm = &haldata->odmpriv;
1867 
1868 			pr_info("dm_ocm->DebugComponents = 0x%llx\n", dm_ocm->DebugComponents);
1869 		}
1870 		break;
1871 	case HAL_DEF_DBG_DUMP_RXPKT:
1872 		*((u8 *)pValue) = haldata->bDumpRxPkt;
1873 		break;
1874 	case HAL_DEF_DBG_DUMP_TXPKT:
1875 		*((u8 *)pValue) = haldata->bDumpTxPkt;
1876 		break;
1877 	default:
1878 		bResult = _FAIL;
1879 		break;
1880 	}
1881 
1882 	return bResult;
1883 }
1884 
UpdateHalRAMask8188EUsb(struct adapter * adapt,u32 mac_id,u8 rssi_level)1885 void UpdateHalRAMask8188EUsb(struct adapter *adapt, u32 mac_id, u8 rssi_level)
1886 {
1887 	u8 init_rate = 0;
1888 	u8 networkType, raid;
1889 	u32 mask, rate_bitmap;
1890 	u8 shortGIrate = false;
1891 	int	supportRateNum = 0;
1892 	struct sta_info	*psta;
1893 	struct odm_dm_struct *odmpriv = &adapt->HalData->odmpriv;
1894 	struct mlme_ext_priv	*pmlmeext = &adapt->mlmeextpriv;
1895 	struct mlme_ext_info	*pmlmeinfo = &pmlmeext->mlmext_info;
1896 	struct wlan_bssid_ex	*cur_network = &pmlmeinfo->network;
1897 
1898 	if (mac_id >= NUM_STA) /* CAM_SIZE */
1899 		return;
1900 	psta = pmlmeinfo->FW_sta_info[mac_id].psta;
1901 	if (psta == NULL)
1902 		return;
1903 	switch (mac_id) {
1904 	case 0:/*  for infra mode */
1905 		supportRateNum = rtw_get_rateset_len(cur_network->SupportedRates);
1906 		networkType = judge_network_type(adapt, cur_network->SupportedRates, supportRateNum) & 0xf;
1907 		raid = networktype_to_raid(networkType);
1908 		mask = update_supported_rate(cur_network->SupportedRates, supportRateNum);
1909 		mask |= (pmlmeinfo->HT_enable) ? update_MSC_rate(&pmlmeinfo->HT_caps) : 0;
1910 		if (support_short_GI(adapt, &pmlmeinfo->HT_caps))
1911 			shortGIrate = true;
1912 		break;
1913 	case 1:/* for broadcast/multicast */
1914 		supportRateNum = rtw_get_rateset_len(pmlmeinfo->FW_sta_info[mac_id].SupportedRates);
1915 		if (pmlmeext->cur_wireless_mode & WIRELESS_11B)
1916 			networkType = WIRELESS_11B;
1917 		else
1918 			networkType = WIRELESS_11G;
1919 		raid = networktype_to_raid(networkType);
1920 		mask = update_basic_rate(cur_network->SupportedRates, supportRateNum);
1921 		break;
1922 	default: /* for each sta in IBSS */
1923 		supportRateNum = rtw_get_rateset_len(pmlmeinfo->FW_sta_info[mac_id].SupportedRates);
1924 		networkType = judge_network_type(adapt, pmlmeinfo->FW_sta_info[mac_id].SupportedRates, supportRateNum) & 0xf;
1925 		raid = networktype_to_raid(networkType);
1926 		mask = update_supported_rate(cur_network->SupportedRates, supportRateNum);
1927 
1928 		/* todo: support HT in IBSS */
1929 		break;
1930 	}
1931 
1932 	rate_bitmap = ODM_Get_Rate_Bitmap(odmpriv, mac_id, mask, rssi_level);
1933 	DBG_88E("%s => mac_id:%d, networkType:0x%02x, mask:0x%08x\n\t ==> rssi_level:%d, rate_bitmap:0x%08x\n",
1934 		__func__, mac_id, networkType, mask, rssi_level, rate_bitmap);
1935 
1936 	mask &= rate_bitmap;
1937 
1938 	init_rate = get_highest_rate_idx(mask)&0x3f;
1939 
1940 	ODM_RA_UpdateRateInfo_8188E(odmpriv, mac_id, raid, mask, shortGIrate);
1941 
1942 	/* set ra_id */
1943 	psta->raid = raid;
1944 	psta->init_rate = init_rate;
1945 }
1946 
rtw_hal_bcn_related_reg_setting(struct adapter * adapt)1947 void rtw_hal_bcn_related_reg_setting(struct adapter *adapt)
1948 {
1949 	u32 value32;
1950 	struct mlme_ext_priv	*pmlmeext = &adapt->mlmeextpriv;
1951 	struct mlme_ext_info	*pmlmeinfo = &pmlmeext->mlmext_info;
1952 	u32 bcn_ctrl_reg			= REG_BCN_CTRL;
1953 	/* reset TSF, enable update TSF, correcting TSF On Beacon */
1954 
1955 	/* BCN interval */
1956 	usb_write16(adapt, REG_BCN_INTERVAL, pmlmeinfo->bcn_interval);
1957 	usb_write8(adapt, REG_ATIMWND, 0x02);/*  2ms */
1958 
1959 	_InitBeaconParameters(adapt);
1960 
1961 	usb_write8(adapt, REG_SLOT, 0x09);
1962 
1963 	value32 = usb_read32(adapt, REG_TCR);
1964 	value32 &= ~TSFRST;
1965 	usb_write32(adapt,  REG_TCR, value32);
1966 
1967 	value32 |= TSFRST;
1968 	usb_write32(adapt, REG_TCR, value32);
1969 
1970 	/*  NOTE: Fix test chip's bug (about contention windows's randomness) */
1971 	usb_write8(adapt,  REG_RXTSF_OFFSET_CCK, 0x50);
1972 	usb_write8(adapt, REG_RXTSF_OFFSET_OFDM, 0x50);
1973 
1974 	_BeaconFunctionEnable(adapt, true, true);
1975 
1976 	ResumeTxBeacon(adapt);
1977 
1978 	usb_write8(adapt, bcn_ctrl_reg, usb_read8(adapt, bcn_ctrl_reg) | BIT(1));
1979 }
1980 
rtw_hal_def_value_init(struct adapter * adapt)1981 void rtw_hal_def_value_init(struct adapter *adapt)
1982 {
1983 	struct hal_data_8188e *haldata = adapt->HalData;
1984 	struct pwrctrl_priv *pwrctrlpriv;
1985 	u8 i;
1986 
1987 	pwrctrlpriv = &adapt->pwrctrlpriv;
1988 
1989 	/* init default value */
1990 	if (!pwrctrlpriv->bkeepfwalive)
1991 		haldata->LastHMEBoxNum = 0;
1992 
1993 	/* init dm default value */
1994 	haldata->odmpriv.RFCalibrateInfo.bIQKInitialized = false;
1995 	haldata->odmpriv.RFCalibrateInfo.TM_Trigger = 0;/* for IQK */
1996 	haldata->pwrGroupCnt = 0;
1997 	haldata->PGMaxGroup = 13;
1998 	haldata->odmpriv.RFCalibrateInfo.ThermalValue_HP_index = 0;
1999 	for (i = 0; i < HP_THERMAL_NUM; i++)
2000 		haldata->odmpriv.RFCalibrateInfo.ThermalValue_HP[i] = 0;
2001 }
2002