1 /*
2 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4 <http://rt2x00.serialmonkey.com>
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 /*
21 Module: rt2x00lib
22 Abstract: rt2x00 generic device routines.
23 */
24
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/slab.h>
28 #include <linux/log2.h>
29 #include <linux/of.h>
30 #include <linux/of_net.h>
31
32 #include "rt2x00.h"
33 #include "rt2x00lib.h"
34
35 /*
36 * Utility functions.
37 */
rt2x00lib_get_bssidx(struct rt2x00_dev * rt2x00dev,struct ieee80211_vif * vif)38 u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev,
39 struct ieee80211_vif *vif)
40 {
41 /*
42 * When in STA mode, bssidx is always 0 otherwise local_address[5]
43 * contains the bss number, see BSS_ID_MASK comments for details.
44 */
45 if (rt2x00dev->intf_sta_count)
46 return 0;
47 return vif->addr[5] & (rt2x00dev->ops->max_ap_intf - 1);
48 }
49 EXPORT_SYMBOL_GPL(rt2x00lib_get_bssidx);
50
51 /*
52 * Radio control handlers.
53 */
rt2x00lib_enable_radio(struct rt2x00_dev * rt2x00dev)54 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
55 {
56 int status;
57
58 /*
59 * Don't enable the radio twice.
60 * And check if the hardware button has been disabled.
61 */
62 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
63 return 0;
64
65 /*
66 * Initialize all data queues.
67 */
68 rt2x00queue_init_queues(rt2x00dev);
69
70 /*
71 * Enable radio.
72 */
73 status =
74 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
75 if (status)
76 return status;
77
78 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
79
80 rt2x00leds_led_radio(rt2x00dev, true);
81 rt2x00led_led_activity(rt2x00dev, true);
82
83 set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
84
85 /*
86 * Enable queues.
87 */
88 rt2x00queue_start_queues(rt2x00dev);
89 rt2x00link_start_tuner(rt2x00dev);
90
91 /*
92 * Start watchdog monitoring.
93 */
94 rt2x00link_start_watchdog(rt2x00dev);
95
96 return 0;
97 }
98
rt2x00lib_disable_radio(struct rt2x00_dev * rt2x00dev)99 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
100 {
101 if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
102 return;
103
104 /*
105 * Stop watchdog monitoring.
106 */
107 rt2x00link_stop_watchdog(rt2x00dev);
108
109 /*
110 * Stop all queues
111 */
112 rt2x00link_stop_tuner(rt2x00dev);
113 rt2x00queue_stop_queues(rt2x00dev);
114 rt2x00queue_flush_queues(rt2x00dev, true);
115
116 /*
117 * Disable radio.
118 */
119 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
120 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
121 rt2x00led_led_activity(rt2x00dev, false);
122 rt2x00leds_led_radio(rt2x00dev, false);
123 }
124
rt2x00lib_intf_scheduled_iter(void * data,u8 * mac,struct ieee80211_vif * vif)125 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
126 struct ieee80211_vif *vif)
127 {
128 struct rt2x00_dev *rt2x00dev = data;
129 struct rt2x00_intf *intf = vif_to_intf(vif);
130
131 /*
132 * It is possible the radio was disabled while the work had been
133 * scheduled. If that happens we should return here immediately,
134 * note that in the spinlock protected area above the delayed_flags
135 * have been cleared correctly.
136 */
137 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
138 return;
139
140 if (test_and_clear_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags)) {
141 mutex_lock(&intf->beacon_skb_mutex);
142 rt2x00queue_update_beacon(rt2x00dev, vif);
143 mutex_unlock(&intf->beacon_skb_mutex);
144 }
145 }
146
rt2x00lib_intf_scheduled(struct work_struct * work)147 static void rt2x00lib_intf_scheduled(struct work_struct *work)
148 {
149 struct rt2x00_dev *rt2x00dev =
150 container_of(work, struct rt2x00_dev, intf_work);
151
152 /*
153 * Iterate over each interface and perform the
154 * requested configurations.
155 */
156 ieee80211_iterate_active_interfaces(rt2x00dev->hw,
157 IEEE80211_IFACE_ITER_RESUME_ALL,
158 rt2x00lib_intf_scheduled_iter,
159 rt2x00dev);
160 }
161
rt2x00lib_autowakeup(struct work_struct * work)162 static void rt2x00lib_autowakeup(struct work_struct *work)
163 {
164 struct rt2x00_dev *rt2x00dev =
165 container_of(work, struct rt2x00_dev, autowakeup_work.work);
166
167 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
168 return;
169
170 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
171 rt2x00_err(rt2x00dev, "Device failed to wakeup\n");
172 clear_bit(CONFIG_POWERSAVING, &rt2x00dev->flags);
173 }
174
175 /*
176 * Interrupt context handlers.
177 */
rt2x00lib_bc_buffer_iter(void * data,u8 * mac,struct ieee80211_vif * vif)178 static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac,
179 struct ieee80211_vif *vif)
180 {
181 struct ieee80211_tx_control control = {};
182 struct rt2x00_dev *rt2x00dev = data;
183 struct sk_buff *skb;
184
185 /*
186 * Only AP mode interfaces do broad- and multicast buffering
187 */
188 if (vif->type != NL80211_IFTYPE_AP)
189 return;
190
191 /*
192 * Send out buffered broad- and multicast frames
193 */
194 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
195 while (skb) {
196 rt2x00mac_tx(rt2x00dev->hw, &control, skb);
197 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
198 }
199 }
200
rt2x00lib_beaconupdate_iter(void * data,u8 * mac,struct ieee80211_vif * vif)201 static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac,
202 struct ieee80211_vif *vif)
203 {
204 struct rt2x00_dev *rt2x00dev = data;
205
206 if (vif->type != NL80211_IFTYPE_AP &&
207 vif->type != NL80211_IFTYPE_ADHOC &&
208 vif->type != NL80211_IFTYPE_MESH_POINT &&
209 vif->type != NL80211_IFTYPE_WDS)
210 return;
211
212 /*
213 * Update the beacon without locking. This is safe on PCI devices
214 * as they only update the beacon periodically here. This should
215 * never be called for USB devices.
216 */
217 WARN_ON(rt2x00_is_usb(rt2x00dev));
218 rt2x00queue_update_beacon(rt2x00dev, vif);
219 }
220
rt2x00lib_beacondone(struct rt2x00_dev * rt2x00dev)221 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
222 {
223 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
224 return;
225
226 /* send buffered bc/mc frames out for every bssid */
227 ieee80211_iterate_active_interfaces_atomic(
228 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
229 rt2x00lib_bc_buffer_iter, rt2x00dev);
230 /*
231 * Devices with pre tbtt interrupt don't need to update the beacon
232 * here as they will fetch the next beacon directly prior to
233 * transmission.
234 */
235 if (rt2x00_has_cap_pre_tbtt_interrupt(rt2x00dev))
236 return;
237
238 /* fetch next beacon */
239 ieee80211_iterate_active_interfaces_atomic(
240 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
241 rt2x00lib_beaconupdate_iter, rt2x00dev);
242 }
243 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
244
rt2x00lib_pretbtt(struct rt2x00_dev * rt2x00dev)245 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev)
246 {
247 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
248 return;
249
250 /* fetch next beacon */
251 ieee80211_iterate_active_interfaces_atomic(
252 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
253 rt2x00lib_beaconupdate_iter, rt2x00dev);
254 }
255 EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt);
256
rt2x00lib_dmastart(struct queue_entry * entry)257 void rt2x00lib_dmastart(struct queue_entry *entry)
258 {
259 set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
260 rt2x00queue_index_inc(entry, Q_INDEX);
261 }
262 EXPORT_SYMBOL_GPL(rt2x00lib_dmastart);
263
rt2x00lib_dmadone(struct queue_entry * entry)264 void rt2x00lib_dmadone(struct queue_entry *entry)
265 {
266 set_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags);
267 clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
268 rt2x00queue_index_inc(entry, Q_INDEX_DMA_DONE);
269 }
270 EXPORT_SYMBOL_GPL(rt2x00lib_dmadone);
271
rt2x00lib_txdone_bar_status(struct queue_entry * entry)272 static inline int rt2x00lib_txdone_bar_status(struct queue_entry *entry)
273 {
274 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
275 struct ieee80211_bar *bar = (void *) entry->skb->data;
276 struct rt2x00_bar_list_entry *bar_entry;
277 int ret;
278
279 if (likely(!ieee80211_is_back_req(bar->frame_control)))
280 return 0;
281
282 /*
283 * Unlike all other frames, the status report for BARs does
284 * not directly come from the hardware as it is incapable of
285 * matching a BA to a previously send BAR. The hardware will
286 * report all BARs as if they weren't acked at all.
287 *
288 * Instead the RX-path will scan for incoming BAs and set the
289 * block_acked flag if it sees one that was likely caused by
290 * a BAR from us.
291 *
292 * Remove remaining BARs here and return their status for
293 * TX done processing.
294 */
295 ret = 0;
296 rcu_read_lock();
297 list_for_each_entry_rcu(bar_entry, &rt2x00dev->bar_list, list) {
298 if (bar_entry->entry != entry)
299 continue;
300
301 spin_lock_bh(&rt2x00dev->bar_list_lock);
302 /* Return whether this BAR was blockacked or not */
303 ret = bar_entry->block_acked;
304 /* Remove the BAR from our checklist */
305 list_del_rcu(&bar_entry->list);
306 spin_unlock_bh(&rt2x00dev->bar_list_lock);
307 kfree_rcu(bar_entry, head);
308
309 break;
310 }
311 rcu_read_unlock();
312
313 return ret;
314 }
315
rt2x00lib_fill_tx_status(struct rt2x00_dev * rt2x00dev,struct ieee80211_tx_info * tx_info,struct skb_frame_desc * skbdesc,struct txdone_entry_desc * txdesc,bool success)316 static void rt2x00lib_fill_tx_status(struct rt2x00_dev *rt2x00dev,
317 struct ieee80211_tx_info *tx_info,
318 struct skb_frame_desc *skbdesc,
319 struct txdone_entry_desc *txdesc,
320 bool success)
321 {
322 u8 rate_idx, rate_flags, retry_rates;
323 int i;
324
325 rate_idx = skbdesc->tx_rate_idx;
326 rate_flags = skbdesc->tx_rate_flags;
327 retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
328 (txdesc->retry + 1) : 1;
329
330 /*
331 * Initialize TX status
332 */
333 memset(&tx_info->status, 0, sizeof(tx_info->status));
334 tx_info->status.ack_signal = 0;
335
336 /*
337 * Frame was send with retries, hardware tried
338 * different rates to send out the frame, at each
339 * retry it lowered the rate 1 step except when the
340 * lowest rate was used.
341 */
342 for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
343 tx_info->status.rates[i].idx = rate_idx - i;
344 tx_info->status.rates[i].flags = rate_flags;
345
346 if (rate_idx - i == 0) {
347 /*
348 * The lowest rate (index 0) was used until the
349 * number of max retries was reached.
350 */
351 tx_info->status.rates[i].count = retry_rates - i;
352 i++;
353 break;
354 }
355 tx_info->status.rates[i].count = 1;
356 }
357 if (i < (IEEE80211_TX_MAX_RATES - 1))
358 tx_info->status.rates[i].idx = -1; /* terminate */
359
360 if (test_bit(TXDONE_NO_ACK_REQ, &txdesc->flags))
361 tx_info->flags |= IEEE80211_TX_CTL_NO_ACK;
362
363 if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
364 if (success)
365 tx_info->flags |= IEEE80211_TX_STAT_ACK;
366 else
367 rt2x00dev->low_level_stats.dot11ACKFailureCount++;
368 }
369
370 /*
371 * Every single frame has it's own tx status, hence report
372 * every frame as ampdu of size 1.
373 *
374 * TODO: if we can find out how many frames were aggregated
375 * by the hw we could provide the real ampdu_len to mac80211
376 * which would allow the rc algorithm to better decide on
377 * which rates are suitable.
378 */
379 if (test_bit(TXDONE_AMPDU, &txdesc->flags) ||
380 tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
381 tx_info->flags |= IEEE80211_TX_STAT_AMPDU |
382 IEEE80211_TX_CTL_AMPDU;
383 tx_info->status.ampdu_len = 1;
384 tx_info->status.ampdu_ack_len = success ? 1 : 0;
385
386 if (!success)
387 tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
388 }
389
390 if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
391 if (success)
392 rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
393 else
394 rt2x00dev->low_level_stats.dot11RTSFailureCount++;
395 }
396 }
397
rt2x00lib_clear_entry(struct rt2x00_dev * rt2x00dev,struct queue_entry * entry)398 static void rt2x00lib_clear_entry(struct rt2x00_dev *rt2x00dev,
399 struct queue_entry *entry)
400 {
401 /*
402 * Make this entry available for reuse.
403 */
404 entry->skb = NULL;
405 entry->flags = 0;
406
407 rt2x00dev->ops->lib->clear_entry(entry);
408
409 rt2x00queue_index_inc(entry, Q_INDEX_DONE);
410
411 /*
412 * If the data queue was below the threshold before the txdone
413 * handler we must make sure the packet queue in the mac80211 stack
414 * is reenabled when the txdone handler has finished. This has to be
415 * serialized with rt2x00mac_tx(), otherwise we can wake up queue
416 * before it was stopped.
417 */
418 spin_lock_bh(&entry->queue->tx_lock);
419 if (!rt2x00queue_threshold(entry->queue))
420 rt2x00queue_unpause_queue(entry->queue);
421 spin_unlock_bh(&entry->queue->tx_lock);
422 }
423
rt2x00lib_txdone_nomatch(struct queue_entry * entry,struct txdone_entry_desc * txdesc)424 void rt2x00lib_txdone_nomatch(struct queue_entry *entry,
425 struct txdone_entry_desc *txdesc)
426 {
427 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
428 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
429 struct ieee80211_tx_info txinfo = {};
430 bool success;
431
432 /*
433 * Unmap the skb.
434 */
435 rt2x00queue_unmap_skb(entry);
436
437 /*
438 * Signal that the TX descriptor is no longer in the skb.
439 */
440 skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
441
442 /*
443 * Send frame to debugfs immediately, after this call is completed
444 * we are going to overwrite the skb->cb array.
445 */
446 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry);
447
448 /*
449 * Determine if the frame has been successfully transmitted and
450 * remove BARs from our check list while checking for their
451 * TX status.
452 */
453 success =
454 rt2x00lib_txdone_bar_status(entry) ||
455 test_bit(TXDONE_SUCCESS, &txdesc->flags);
456
457 if (!test_bit(TXDONE_UNKNOWN, &txdesc->flags)) {
458 /*
459 * Update TX statistics.
460 */
461 rt2x00dev->link.qual.tx_success += success;
462 rt2x00dev->link.qual.tx_failed += !success;
463
464 rt2x00lib_fill_tx_status(rt2x00dev, &txinfo, skbdesc, txdesc,
465 success);
466 ieee80211_tx_status_noskb(rt2x00dev->hw, skbdesc->sta, &txinfo);
467 }
468
469 dev_kfree_skb_any(entry->skb);
470 rt2x00lib_clear_entry(rt2x00dev, entry);
471 }
472 EXPORT_SYMBOL_GPL(rt2x00lib_txdone_nomatch);
473
rt2x00lib_txdone(struct queue_entry * entry,struct txdone_entry_desc * txdesc)474 void rt2x00lib_txdone(struct queue_entry *entry,
475 struct txdone_entry_desc *txdesc)
476 {
477 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
478 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
479 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
480 u8 skbdesc_flags = skbdesc->flags;
481 unsigned int header_length;
482 bool success;
483
484 /*
485 * Unmap the skb.
486 */
487 rt2x00queue_unmap_skb(entry);
488
489 /*
490 * Remove the extra tx headroom from the skb.
491 */
492 skb_pull(entry->skb, rt2x00dev->extra_tx_headroom);
493
494 /*
495 * Signal that the TX descriptor is no longer in the skb.
496 */
497 skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
498
499 /*
500 * Determine the length of 802.11 header.
501 */
502 header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
503
504 /*
505 * Remove L2 padding which was added during
506 */
507 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_L2PAD))
508 rt2x00queue_remove_l2pad(entry->skb, header_length);
509
510 /*
511 * If the IV/EIV data was stripped from the frame before it was
512 * passed to the hardware, we should now reinsert it again because
513 * mac80211 will expect the same data to be present it the
514 * frame as it was passed to us.
515 */
516 if (rt2x00_has_cap_hw_crypto(rt2x00dev))
517 rt2x00crypto_tx_insert_iv(entry->skb, header_length);
518
519 /*
520 * Send frame to debugfs immediately, after this call is completed
521 * we are going to overwrite the skb->cb array.
522 */
523 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry);
524
525 /*
526 * Determine if the frame has been successfully transmitted and
527 * remove BARs from our check list while checking for their
528 * TX status.
529 */
530 success =
531 rt2x00lib_txdone_bar_status(entry) ||
532 test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
533 test_bit(TXDONE_UNKNOWN, &txdesc->flags);
534
535 /*
536 * Update TX statistics.
537 */
538 rt2x00dev->link.qual.tx_success += success;
539 rt2x00dev->link.qual.tx_failed += !success;
540
541 rt2x00lib_fill_tx_status(rt2x00dev, tx_info, skbdesc, txdesc, success);
542
543 /*
544 * Only send the status report to mac80211 when it's a frame
545 * that originated in mac80211. If this was a extra frame coming
546 * through a mac80211 library call (RTS/CTS) then we should not
547 * send the status report back.
548 */
549 if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) {
550 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_TASKLET_CONTEXT))
551 ieee80211_tx_status(rt2x00dev->hw, entry->skb);
552 else
553 ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb);
554 } else {
555 dev_kfree_skb_any(entry->skb);
556 }
557
558 rt2x00lib_clear_entry(rt2x00dev, entry);
559 }
560 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
561
rt2x00lib_txdone_noinfo(struct queue_entry * entry,u32 status)562 void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status)
563 {
564 struct txdone_entry_desc txdesc;
565
566 txdesc.flags = 0;
567 __set_bit(status, &txdesc.flags);
568 txdesc.retry = 0;
569
570 rt2x00lib_txdone(entry, &txdesc);
571 }
572 EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo);
573
rt2x00lib_find_ie(u8 * data,unsigned int len,u8 ie)574 static u8 *rt2x00lib_find_ie(u8 *data, unsigned int len, u8 ie)
575 {
576 struct ieee80211_mgmt *mgmt = (void *)data;
577 u8 *pos, *end;
578
579 pos = (u8 *)mgmt->u.beacon.variable;
580 end = data + len;
581 while (pos < end) {
582 if (pos + 2 + pos[1] > end)
583 return NULL;
584
585 if (pos[0] == ie)
586 return pos;
587
588 pos += 2 + pos[1];
589 }
590
591 return NULL;
592 }
593
rt2x00lib_sleep(struct work_struct * work)594 static void rt2x00lib_sleep(struct work_struct *work)
595 {
596 struct rt2x00_dev *rt2x00dev =
597 container_of(work, struct rt2x00_dev, sleep_work);
598
599 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
600 return;
601
602 /*
603 * Check again is powersaving is enabled, to prevent races from delayed
604 * work execution.
605 */
606 if (!test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
607 rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf,
608 IEEE80211_CONF_CHANGE_PS);
609 }
610
rt2x00lib_rxdone_check_ba(struct rt2x00_dev * rt2x00dev,struct sk_buff * skb,struct rxdone_entry_desc * rxdesc)611 static void rt2x00lib_rxdone_check_ba(struct rt2x00_dev *rt2x00dev,
612 struct sk_buff *skb,
613 struct rxdone_entry_desc *rxdesc)
614 {
615 struct rt2x00_bar_list_entry *entry;
616 struct ieee80211_bar *ba = (void *)skb->data;
617
618 if (likely(!ieee80211_is_back(ba->frame_control)))
619 return;
620
621 if (rxdesc->size < sizeof(*ba) + FCS_LEN)
622 return;
623
624 rcu_read_lock();
625 list_for_each_entry_rcu(entry, &rt2x00dev->bar_list, list) {
626
627 if (ba->start_seq_num != entry->start_seq_num)
628 continue;
629
630 #define TID_CHECK(a, b) ( \
631 ((a) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK)) == \
632 ((b) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK))) \
633
634 if (!TID_CHECK(ba->control, entry->control))
635 continue;
636
637 #undef TID_CHECK
638
639 if (!ether_addr_equal_64bits(ba->ra, entry->ta))
640 continue;
641
642 if (!ether_addr_equal_64bits(ba->ta, entry->ra))
643 continue;
644
645 /* Mark BAR since we received the according BA */
646 spin_lock_bh(&rt2x00dev->bar_list_lock);
647 entry->block_acked = 1;
648 spin_unlock_bh(&rt2x00dev->bar_list_lock);
649 break;
650 }
651 rcu_read_unlock();
652
653 }
654
rt2x00lib_rxdone_check_ps(struct rt2x00_dev * rt2x00dev,struct sk_buff * skb,struct rxdone_entry_desc * rxdesc)655 static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev *rt2x00dev,
656 struct sk_buff *skb,
657 struct rxdone_entry_desc *rxdesc)
658 {
659 struct ieee80211_hdr *hdr = (void *) skb->data;
660 struct ieee80211_tim_ie *tim_ie;
661 u8 *tim;
662 u8 tim_len;
663 bool cam;
664
665 /* If this is not a beacon, or if mac80211 has no powersaving
666 * configured, or if the device is already in powersaving mode
667 * we can exit now. */
668 if (likely(!ieee80211_is_beacon(hdr->frame_control) ||
669 !(rt2x00dev->hw->conf.flags & IEEE80211_CONF_PS)))
670 return;
671
672 /* min. beacon length + FCS_LEN */
673 if (skb->len <= 40 + FCS_LEN)
674 return;
675
676 /* and only beacons from the associated BSSID, please */
677 if (!(rxdesc->dev_flags & RXDONE_MY_BSS) ||
678 !rt2x00dev->aid)
679 return;
680
681 rt2x00dev->last_beacon = jiffies;
682
683 tim = rt2x00lib_find_ie(skb->data, skb->len - FCS_LEN, WLAN_EID_TIM);
684 if (!tim)
685 return;
686
687 if (tim[1] < sizeof(*tim_ie))
688 return;
689
690 tim_len = tim[1];
691 tim_ie = (struct ieee80211_tim_ie *) &tim[2];
692
693 /* Check whenever the PHY can be turned off again. */
694
695 /* 1. What about buffered unicast traffic for our AID? */
696 cam = ieee80211_check_tim(tim_ie, tim_len, rt2x00dev->aid);
697
698 /* 2. Maybe the AP wants to send multicast/broadcast data? */
699 cam |= (tim_ie->bitmap_ctrl & 0x01);
700
701 if (!cam && !test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
702 queue_work(rt2x00dev->workqueue, &rt2x00dev->sleep_work);
703 }
704
rt2x00lib_rxdone_read_signal(struct rt2x00_dev * rt2x00dev,struct rxdone_entry_desc * rxdesc)705 static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
706 struct rxdone_entry_desc *rxdesc)
707 {
708 struct ieee80211_supported_band *sband;
709 const struct rt2x00_rate *rate;
710 unsigned int i;
711 int signal = rxdesc->signal;
712 int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
713
714 switch (rxdesc->rate_mode) {
715 case RATE_MODE_CCK:
716 case RATE_MODE_OFDM:
717 /*
718 * For non-HT rates the MCS value needs to contain the
719 * actually used rate modulation (CCK or OFDM).
720 */
721 if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
722 signal = RATE_MCS(rxdesc->rate_mode, signal);
723
724 sband = &rt2x00dev->bands[rt2x00dev->curr_band];
725 for (i = 0; i < sband->n_bitrates; i++) {
726 rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
727 if (((type == RXDONE_SIGNAL_PLCP) &&
728 (rate->plcp == signal)) ||
729 ((type == RXDONE_SIGNAL_BITRATE) &&
730 (rate->bitrate == signal)) ||
731 ((type == RXDONE_SIGNAL_MCS) &&
732 (rate->mcs == signal))) {
733 return i;
734 }
735 }
736 break;
737 case RATE_MODE_HT_MIX:
738 case RATE_MODE_HT_GREENFIELD:
739 if (signal >= 0 && signal <= 76)
740 return signal;
741 break;
742 default:
743 break;
744 }
745
746 rt2x00_warn(rt2x00dev, "Frame received with unrecognized signal, mode=0x%.4x, signal=0x%.4x, type=%d\n",
747 rxdesc->rate_mode, signal, type);
748 return 0;
749 }
750
rt2x00lib_rxdone(struct queue_entry * entry,gfp_t gfp)751 void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp)
752 {
753 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
754 struct rxdone_entry_desc rxdesc;
755 struct sk_buff *skb;
756 struct ieee80211_rx_status *rx_status;
757 unsigned int header_length;
758 int rate_idx;
759
760 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) ||
761 !test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
762 goto submit_entry;
763
764 if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags))
765 goto submit_entry;
766
767 /*
768 * Allocate a new sk_buffer. If no new buffer available, drop the
769 * received frame and reuse the existing buffer.
770 */
771 skb = rt2x00queue_alloc_rxskb(entry, gfp);
772 if (!skb)
773 goto submit_entry;
774
775 /*
776 * Unmap the skb.
777 */
778 rt2x00queue_unmap_skb(entry);
779
780 /*
781 * Extract the RXD details.
782 */
783 memset(&rxdesc, 0, sizeof(rxdesc));
784 rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
785
786 /*
787 * Check for valid size in case we get corrupted descriptor from
788 * hardware.
789 */
790 if (unlikely(rxdesc.size == 0 ||
791 rxdesc.size > entry->queue->data_size)) {
792 rt2x00_err(rt2x00dev, "Wrong frame size %d max %d\n",
793 rxdesc.size, entry->queue->data_size);
794 dev_kfree_skb(entry->skb);
795 goto renew_skb;
796 }
797
798 /*
799 * The data behind the ieee80211 header must be
800 * aligned on a 4 byte boundary.
801 */
802 header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
803
804 /*
805 * Hardware might have stripped the IV/EIV/ICV data,
806 * in that case it is possible that the data was
807 * provided separately (through hardware descriptor)
808 * in which case we should reinsert the data into the frame.
809 */
810 if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
811 (rxdesc.flags & RX_FLAG_IV_STRIPPED))
812 rt2x00crypto_rx_insert_iv(entry->skb, header_length,
813 &rxdesc);
814 else if (header_length &&
815 (rxdesc.size > header_length) &&
816 (rxdesc.dev_flags & RXDONE_L2PAD))
817 rt2x00queue_remove_l2pad(entry->skb, header_length);
818
819 /* Trim buffer to correct size */
820 skb_trim(entry->skb, rxdesc.size);
821
822 /*
823 * Translate the signal to the correct bitrate index.
824 */
825 rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
826 if (rxdesc.rate_mode == RATE_MODE_HT_MIX ||
827 rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD)
828 rxdesc.encoding = RX_ENC_HT;
829
830 /*
831 * Check if this is a beacon, and more frames have been
832 * buffered while we were in powersaving mode.
833 */
834 rt2x00lib_rxdone_check_ps(rt2x00dev, entry->skb, &rxdesc);
835
836 /*
837 * Check for incoming BlockAcks to match to the BlockAckReqs
838 * we've send out.
839 */
840 rt2x00lib_rxdone_check_ba(rt2x00dev, entry->skb, &rxdesc);
841
842 /*
843 * Update extra components
844 */
845 rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
846 rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
847 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry);
848
849 /*
850 * Initialize RX status information, and send frame
851 * to mac80211.
852 */
853 rx_status = IEEE80211_SKB_RXCB(entry->skb);
854
855 /* Ensure that all fields of rx_status are initialized
856 * properly. The skb->cb array was used for driver
857 * specific informations, so rx_status might contain
858 * garbage.
859 */
860 memset(rx_status, 0, sizeof(*rx_status));
861
862 rx_status->mactime = rxdesc.timestamp;
863 rx_status->band = rt2x00dev->curr_band;
864 rx_status->freq = rt2x00dev->curr_freq;
865 rx_status->rate_idx = rate_idx;
866 rx_status->signal = rxdesc.rssi;
867 rx_status->flag = rxdesc.flags;
868 rx_status->enc_flags = rxdesc.enc_flags;
869 rx_status->encoding = rxdesc.encoding;
870 rx_status->bw = rxdesc.bw;
871 rx_status->antenna = rt2x00dev->link.ant.active.rx;
872
873 ieee80211_rx_ni(rt2x00dev->hw, entry->skb);
874
875 renew_skb:
876 /*
877 * Replace the skb with the freshly allocated one.
878 */
879 entry->skb = skb;
880
881 submit_entry:
882 entry->flags = 0;
883 rt2x00queue_index_inc(entry, Q_INDEX_DONE);
884 if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) &&
885 test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
886 rt2x00dev->ops->lib->clear_entry(entry);
887 }
888 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
889
890 /*
891 * Driver initialization handlers.
892 */
893 const struct rt2x00_rate rt2x00_supported_rates[12] = {
894 {
895 .flags = DEV_RATE_CCK,
896 .bitrate = 10,
897 .ratemask = BIT(0),
898 .plcp = 0x00,
899 .mcs = RATE_MCS(RATE_MODE_CCK, 0),
900 },
901 {
902 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
903 .bitrate = 20,
904 .ratemask = BIT(1),
905 .plcp = 0x01,
906 .mcs = RATE_MCS(RATE_MODE_CCK, 1),
907 },
908 {
909 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
910 .bitrate = 55,
911 .ratemask = BIT(2),
912 .plcp = 0x02,
913 .mcs = RATE_MCS(RATE_MODE_CCK, 2),
914 },
915 {
916 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
917 .bitrate = 110,
918 .ratemask = BIT(3),
919 .plcp = 0x03,
920 .mcs = RATE_MCS(RATE_MODE_CCK, 3),
921 },
922 {
923 .flags = DEV_RATE_OFDM,
924 .bitrate = 60,
925 .ratemask = BIT(4),
926 .plcp = 0x0b,
927 .mcs = RATE_MCS(RATE_MODE_OFDM, 0),
928 },
929 {
930 .flags = DEV_RATE_OFDM,
931 .bitrate = 90,
932 .ratemask = BIT(5),
933 .plcp = 0x0f,
934 .mcs = RATE_MCS(RATE_MODE_OFDM, 1),
935 },
936 {
937 .flags = DEV_RATE_OFDM,
938 .bitrate = 120,
939 .ratemask = BIT(6),
940 .plcp = 0x0a,
941 .mcs = RATE_MCS(RATE_MODE_OFDM, 2),
942 },
943 {
944 .flags = DEV_RATE_OFDM,
945 .bitrate = 180,
946 .ratemask = BIT(7),
947 .plcp = 0x0e,
948 .mcs = RATE_MCS(RATE_MODE_OFDM, 3),
949 },
950 {
951 .flags = DEV_RATE_OFDM,
952 .bitrate = 240,
953 .ratemask = BIT(8),
954 .plcp = 0x09,
955 .mcs = RATE_MCS(RATE_MODE_OFDM, 4),
956 },
957 {
958 .flags = DEV_RATE_OFDM,
959 .bitrate = 360,
960 .ratemask = BIT(9),
961 .plcp = 0x0d,
962 .mcs = RATE_MCS(RATE_MODE_OFDM, 5),
963 },
964 {
965 .flags = DEV_RATE_OFDM,
966 .bitrate = 480,
967 .ratemask = BIT(10),
968 .plcp = 0x08,
969 .mcs = RATE_MCS(RATE_MODE_OFDM, 6),
970 },
971 {
972 .flags = DEV_RATE_OFDM,
973 .bitrate = 540,
974 .ratemask = BIT(11),
975 .plcp = 0x0c,
976 .mcs = RATE_MCS(RATE_MODE_OFDM, 7),
977 },
978 };
979
rt2x00lib_channel(struct ieee80211_channel * entry,const int channel,const int tx_power,const int value)980 static void rt2x00lib_channel(struct ieee80211_channel *entry,
981 const int channel, const int tx_power,
982 const int value)
983 {
984 /* XXX: this assumption about the band is wrong for 802.11j */
985 entry->band = channel <= 14 ? NL80211_BAND_2GHZ : NL80211_BAND_5GHZ;
986 entry->center_freq = ieee80211_channel_to_frequency(channel,
987 entry->band);
988 entry->hw_value = value;
989 entry->max_power = tx_power;
990 entry->max_antenna_gain = 0xff;
991 }
992
rt2x00lib_rate(struct ieee80211_rate * entry,const u16 index,const struct rt2x00_rate * rate)993 static void rt2x00lib_rate(struct ieee80211_rate *entry,
994 const u16 index, const struct rt2x00_rate *rate)
995 {
996 entry->flags = 0;
997 entry->bitrate = rate->bitrate;
998 entry->hw_value = index;
999 entry->hw_value_short = index;
1000
1001 if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
1002 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
1003 }
1004
rt2x00lib_set_mac_address(struct rt2x00_dev * rt2x00dev,u8 * eeprom_mac_addr)1005 void rt2x00lib_set_mac_address(struct rt2x00_dev *rt2x00dev, u8 *eeprom_mac_addr)
1006 {
1007 const char *mac_addr;
1008
1009 mac_addr = of_get_mac_address(rt2x00dev->dev->of_node);
1010 if (mac_addr)
1011 ether_addr_copy(eeprom_mac_addr, mac_addr);
1012
1013 if (!is_valid_ether_addr(eeprom_mac_addr)) {
1014 eth_random_addr(eeprom_mac_addr);
1015 rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", eeprom_mac_addr);
1016 }
1017 }
1018 EXPORT_SYMBOL_GPL(rt2x00lib_set_mac_address);
1019
rt2x00lib_probe_hw_modes(struct rt2x00_dev * rt2x00dev,struct hw_mode_spec * spec)1020 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
1021 struct hw_mode_spec *spec)
1022 {
1023 struct ieee80211_hw *hw = rt2x00dev->hw;
1024 struct ieee80211_channel *channels;
1025 struct ieee80211_rate *rates;
1026 unsigned int num_rates;
1027 unsigned int i;
1028
1029 num_rates = 0;
1030 if (spec->supported_rates & SUPPORT_RATE_CCK)
1031 num_rates += 4;
1032 if (spec->supported_rates & SUPPORT_RATE_OFDM)
1033 num_rates += 8;
1034
1035 channels = kcalloc(spec->num_channels, sizeof(*channels), GFP_KERNEL);
1036 if (!channels)
1037 return -ENOMEM;
1038
1039 rates = kcalloc(num_rates, sizeof(*rates), GFP_KERNEL);
1040 if (!rates)
1041 goto exit_free_channels;
1042
1043 /*
1044 * Initialize Rate list.
1045 */
1046 for (i = 0; i < num_rates; i++)
1047 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
1048
1049 /*
1050 * Initialize Channel list.
1051 */
1052 for (i = 0; i < spec->num_channels; i++) {
1053 rt2x00lib_channel(&channels[i],
1054 spec->channels[i].channel,
1055 spec->channels_info[i].max_power, i);
1056 }
1057
1058 /*
1059 * Intitialize 802.11b, 802.11g
1060 * Rates: CCK, OFDM.
1061 * Channels: 2.4 GHz
1062 */
1063 if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
1064 rt2x00dev->bands[NL80211_BAND_2GHZ].n_channels = 14;
1065 rt2x00dev->bands[NL80211_BAND_2GHZ].n_bitrates = num_rates;
1066 rt2x00dev->bands[NL80211_BAND_2GHZ].channels = channels;
1067 rt2x00dev->bands[NL80211_BAND_2GHZ].bitrates = rates;
1068 hw->wiphy->bands[NL80211_BAND_2GHZ] =
1069 &rt2x00dev->bands[NL80211_BAND_2GHZ];
1070 memcpy(&rt2x00dev->bands[NL80211_BAND_2GHZ].ht_cap,
1071 &spec->ht, sizeof(spec->ht));
1072 }
1073
1074 /*
1075 * Intitialize 802.11a
1076 * Rates: OFDM.
1077 * Channels: OFDM, UNII, HiperLAN2.
1078 */
1079 if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
1080 rt2x00dev->bands[NL80211_BAND_5GHZ].n_channels =
1081 spec->num_channels - 14;
1082 rt2x00dev->bands[NL80211_BAND_5GHZ].n_bitrates =
1083 num_rates - 4;
1084 rt2x00dev->bands[NL80211_BAND_5GHZ].channels = &channels[14];
1085 rt2x00dev->bands[NL80211_BAND_5GHZ].bitrates = &rates[4];
1086 hw->wiphy->bands[NL80211_BAND_5GHZ] =
1087 &rt2x00dev->bands[NL80211_BAND_5GHZ];
1088 memcpy(&rt2x00dev->bands[NL80211_BAND_5GHZ].ht_cap,
1089 &spec->ht, sizeof(spec->ht));
1090 }
1091
1092 return 0;
1093
1094 exit_free_channels:
1095 kfree(channels);
1096 rt2x00_err(rt2x00dev, "Allocation ieee80211 modes failed\n");
1097 return -ENOMEM;
1098 }
1099
rt2x00lib_remove_hw(struct rt2x00_dev * rt2x00dev)1100 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
1101 {
1102 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
1103 ieee80211_unregister_hw(rt2x00dev->hw);
1104
1105 if (likely(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ])) {
1106 kfree(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ]->channels);
1107 kfree(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ]->bitrates);
1108 rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ] = NULL;
1109 rt2x00dev->hw->wiphy->bands[NL80211_BAND_5GHZ] = NULL;
1110 }
1111
1112 kfree(rt2x00dev->spec.channels_info);
1113 }
1114
rt2x00lib_probe_hw(struct rt2x00_dev * rt2x00dev)1115 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
1116 {
1117 struct hw_mode_spec *spec = &rt2x00dev->spec;
1118 int status;
1119
1120 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
1121 return 0;
1122
1123 /*
1124 * Initialize HW modes.
1125 */
1126 status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
1127 if (status)
1128 return status;
1129
1130 /*
1131 * Initialize HW fields.
1132 */
1133 rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
1134
1135 /*
1136 * Initialize extra TX headroom required.
1137 */
1138 rt2x00dev->hw->extra_tx_headroom =
1139 max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM,
1140 rt2x00dev->extra_tx_headroom);
1141
1142 /*
1143 * Take TX headroom required for alignment into account.
1144 */
1145 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_L2PAD))
1146 rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE;
1147 else if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DMA))
1148 rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE;
1149
1150 /*
1151 * Tell mac80211 about the size of our private STA structure.
1152 */
1153 rt2x00dev->hw->sta_data_size = sizeof(struct rt2x00_sta);
1154
1155 /*
1156 * Allocate tx status FIFO for driver use.
1157 */
1158 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_TXSTATUS_FIFO)) {
1159 /*
1160 * Allocate the txstatus fifo. In the worst case the tx
1161 * status fifo has to hold the tx status of all entries
1162 * in all tx queues. Hence, calculate the kfifo size as
1163 * tx_queues * entry_num and round up to the nearest
1164 * power of 2.
1165 */
1166 int kfifo_size =
1167 roundup_pow_of_two(rt2x00dev->ops->tx_queues *
1168 rt2x00dev->tx->limit *
1169 sizeof(u32));
1170
1171 status = kfifo_alloc(&rt2x00dev->txstatus_fifo, kfifo_size,
1172 GFP_KERNEL);
1173 if (status)
1174 return status;
1175 }
1176
1177 /*
1178 * Initialize tasklets if used by the driver. Tasklets are
1179 * disabled until the interrupts are turned on. The driver
1180 * has to handle that.
1181 */
1182 #define RT2X00_TASKLET_INIT(taskletname) \
1183 if (rt2x00dev->ops->lib->taskletname) { \
1184 tasklet_init(&rt2x00dev->taskletname, \
1185 rt2x00dev->ops->lib->taskletname, \
1186 (unsigned long)rt2x00dev); \
1187 }
1188
1189 RT2X00_TASKLET_INIT(txstatus_tasklet);
1190 RT2X00_TASKLET_INIT(pretbtt_tasklet);
1191 RT2X00_TASKLET_INIT(tbtt_tasklet);
1192 RT2X00_TASKLET_INIT(rxdone_tasklet);
1193 RT2X00_TASKLET_INIT(autowake_tasklet);
1194
1195 #undef RT2X00_TASKLET_INIT
1196
1197 /*
1198 * Register HW.
1199 */
1200 status = ieee80211_register_hw(rt2x00dev->hw);
1201 if (status)
1202 return status;
1203
1204 set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
1205
1206 return 0;
1207 }
1208
1209 /*
1210 * Initialization/uninitialization handlers.
1211 */
rt2x00lib_uninitialize(struct rt2x00_dev * rt2x00dev)1212 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
1213 {
1214 if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1215 return;
1216
1217 /*
1218 * Stop rfkill polling.
1219 */
1220 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1221 rt2x00rfkill_unregister(rt2x00dev);
1222
1223 /*
1224 * Allow the HW to uninitialize.
1225 */
1226 rt2x00dev->ops->lib->uninitialize(rt2x00dev);
1227
1228 /*
1229 * Free allocated queue entries.
1230 */
1231 rt2x00queue_uninitialize(rt2x00dev);
1232 }
1233
rt2x00lib_initialize(struct rt2x00_dev * rt2x00dev)1234 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
1235 {
1236 int status;
1237
1238 if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1239 return 0;
1240
1241 /*
1242 * Allocate all queue entries.
1243 */
1244 status = rt2x00queue_initialize(rt2x00dev);
1245 if (status)
1246 return status;
1247
1248 /*
1249 * Initialize the device.
1250 */
1251 status = rt2x00dev->ops->lib->initialize(rt2x00dev);
1252 if (status) {
1253 rt2x00queue_uninitialize(rt2x00dev);
1254 return status;
1255 }
1256
1257 set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
1258
1259 /*
1260 * Start rfkill polling.
1261 */
1262 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1263 rt2x00rfkill_register(rt2x00dev);
1264
1265 return 0;
1266 }
1267
rt2x00lib_start(struct rt2x00_dev * rt2x00dev)1268 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1269 {
1270 int retval;
1271
1272 if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1273 return 0;
1274
1275 /*
1276 * If this is the first interface which is added,
1277 * we should load the firmware now.
1278 */
1279 retval = rt2x00lib_load_firmware(rt2x00dev);
1280 if (retval)
1281 return retval;
1282
1283 /*
1284 * Initialize the device.
1285 */
1286 retval = rt2x00lib_initialize(rt2x00dev);
1287 if (retval)
1288 return retval;
1289
1290 rt2x00dev->intf_ap_count = 0;
1291 rt2x00dev->intf_sta_count = 0;
1292 rt2x00dev->intf_associated = 0;
1293
1294 /* Enable the radio */
1295 retval = rt2x00lib_enable_radio(rt2x00dev);
1296 if (retval)
1297 return retval;
1298
1299 set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
1300
1301 return 0;
1302 }
1303
rt2x00lib_stop(struct rt2x00_dev * rt2x00dev)1304 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1305 {
1306 if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1307 return;
1308
1309 /*
1310 * Perhaps we can add something smarter here,
1311 * but for now just disabling the radio should do.
1312 */
1313 rt2x00lib_disable_radio(rt2x00dev);
1314
1315 rt2x00dev->intf_ap_count = 0;
1316 rt2x00dev->intf_sta_count = 0;
1317 rt2x00dev->intf_associated = 0;
1318 }
1319
rt2x00lib_set_if_combinations(struct rt2x00_dev * rt2x00dev)1320 static inline void rt2x00lib_set_if_combinations(struct rt2x00_dev *rt2x00dev)
1321 {
1322 struct ieee80211_iface_limit *if_limit;
1323 struct ieee80211_iface_combination *if_combination;
1324
1325 if (rt2x00dev->ops->max_ap_intf < 2)
1326 return;
1327
1328 /*
1329 * Build up AP interface limits structure.
1330 */
1331 if_limit = &rt2x00dev->if_limits_ap;
1332 if_limit->max = rt2x00dev->ops->max_ap_intf;
1333 if_limit->types = BIT(NL80211_IFTYPE_AP);
1334 #ifdef CONFIG_MAC80211_MESH
1335 if_limit->types |= BIT(NL80211_IFTYPE_MESH_POINT);
1336 #endif
1337
1338 /*
1339 * Build up AP interface combinations structure.
1340 */
1341 if_combination = &rt2x00dev->if_combinations[IF_COMB_AP];
1342 if_combination->limits = if_limit;
1343 if_combination->n_limits = 1;
1344 if_combination->max_interfaces = if_limit->max;
1345 if_combination->num_different_channels = 1;
1346
1347 /*
1348 * Finally, specify the possible combinations to mac80211.
1349 */
1350 rt2x00dev->hw->wiphy->iface_combinations = rt2x00dev->if_combinations;
1351 rt2x00dev->hw->wiphy->n_iface_combinations = 1;
1352 }
1353
rt2x00dev_extra_tx_headroom(struct rt2x00_dev * rt2x00dev)1354 static unsigned int rt2x00dev_extra_tx_headroom(struct rt2x00_dev *rt2x00dev)
1355 {
1356 if (WARN_ON(!rt2x00dev->tx))
1357 return 0;
1358
1359 if (rt2x00_is_usb(rt2x00dev))
1360 return rt2x00dev->tx[0].winfo_size + rt2x00dev->tx[0].desc_size;
1361
1362 return rt2x00dev->tx[0].winfo_size;
1363 }
1364
1365 /*
1366 * driver allocation handlers.
1367 */
rt2x00lib_probe_dev(struct rt2x00_dev * rt2x00dev)1368 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1369 {
1370 int retval = -ENOMEM;
1371
1372 /*
1373 * Set possible interface combinations.
1374 */
1375 rt2x00lib_set_if_combinations(rt2x00dev);
1376
1377 /*
1378 * Allocate the driver data memory, if necessary.
1379 */
1380 if (rt2x00dev->ops->drv_data_size > 0) {
1381 rt2x00dev->drv_data = kzalloc(rt2x00dev->ops->drv_data_size,
1382 GFP_KERNEL);
1383 if (!rt2x00dev->drv_data) {
1384 retval = -ENOMEM;
1385 goto exit;
1386 }
1387 }
1388
1389 spin_lock_init(&rt2x00dev->irqmask_lock);
1390 mutex_init(&rt2x00dev->csr_mutex);
1391 mutex_init(&rt2x00dev->conf_mutex);
1392 INIT_LIST_HEAD(&rt2x00dev->bar_list);
1393 spin_lock_init(&rt2x00dev->bar_list_lock);
1394
1395 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1396
1397 /*
1398 * Make room for rt2x00_intf inside the per-interface
1399 * structure ieee80211_vif.
1400 */
1401 rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1402
1403 /*
1404 * rt2x00 devices can only use the last n bits of the MAC address
1405 * for virtual interfaces.
1406 */
1407 rt2x00dev->hw->wiphy->addr_mask[ETH_ALEN - 1] =
1408 (rt2x00dev->ops->max_ap_intf - 1);
1409
1410 /*
1411 * Initialize work.
1412 */
1413 rt2x00dev->workqueue =
1414 alloc_ordered_workqueue("%s", 0, wiphy_name(rt2x00dev->hw->wiphy));
1415 if (!rt2x00dev->workqueue) {
1416 retval = -ENOMEM;
1417 goto exit;
1418 }
1419
1420 INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1421 INIT_DELAYED_WORK(&rt2x00dev->autowakeup_work, rt2x00lib_autowakeup);
1422 INIT_WORK(&rt2x00dev->sleep_work, rt2x00lib_sleep);
1423
1424 /*
1425 * Let the driver probe the device to detect the capabilities.
1426 */
1427 retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1428 if (retval) {
1429 rt2x00_err(rt2x00dev, "Failed to allocate device\n");
1430 goto exit;
1431 }
1432
1433 /*
1434 * Allocate queue array.
1435 */
1436 retval = rt2x00queue_allocate(rt2x00dev);
1437 if (retval)
1438 goto exit;
1439
1440 /* Cache TX headroom value */
1441 rt2x00dev->extra_tx_headroom = rt2x00dev_extra_tx_headroom(rt2x00dev);
1442
1443 /*
1444 * Determine which operating modes are supported, all modes
1445 * which require beaconing, depend on the availability of
1446 * beacon entries.
1447 */
1448 rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
1449 if (rt2x00dev->bcn->limit > 0)
1450 rt2x00dev->hw->wiphy->interface_modes |=
1451 BIT(NL80211_IFTYPE_ADHOC) |
1452 #ifdef CONFIG_MAC80211_MESH
1453 BIT(NL80211_IFTYPE_MESH_POINT) |
1454 #endif
1455 #ifdef CONFIG_WIRELESS_WDS
1456 BIT(NL80211_IFTYPE_WDS) |
1457 #endif
1458 BIT(NL80211_IFTYPE_AP);
1459
1460 rt2x00dev->hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
1461
1462 wiphy_ext_feature_set(rt2x00dev->hw->wiphy,
1463 NL80211_EXT_FEATURE_CQM_RSSI_LIST);
1464
1465 /*
1466 * Initialize ieee80211 structure.
1467 */
1468 retval = rt2x00lib_probe_hw(rt2x00dev);
1469 if (retval) {
1470 rt2x00_err(rt2x00dev, "Failed to initialize hw\n");
1471 goto exit;
1472 }
1473
1474 /*
1475 * Register extra components.
1476 */
1477 rt2x00link_register(rt2x00dev);
1478 rt2x00leds_register(rt2x00dev);
1479 rt2x00debug_register(rt2x00dev);
1480
1481 /*
1482 * Start rfkill polling.
1483 */
1484 if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1485 rt2x00rfkill_register(rt2x00dev);
1486
1487 return 0;
1488
1489 exit:
1490 rt2x00lib_remove_dev(rt2x00dev);
1491
1492 return retval;
1493 }
1494 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1495
rt2x00lib_remove_dev(struct rt2x00_dev * rt2x00dev)1496 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1497 {
1498 clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1499
1500 /*
1501 * Stop rfkill polling.
1502 */
1503 if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1504 rt2x00rfkill_unregister(rt2x00dev);
1505
1506 /*
1507 * Disable radio.
1508 */
1509 rt2x00lib_disable_radio(rt2x00dev);
1510
1511 /*
1512 * Stop all work.
1513 */
1514 cancel_work_sync(&rt2x00dev->intf_work);
1515 cancel_delayed_work_sync(&rt2x00dev->autowakeup_work);
1516 cancel_work_sync(&rt2x00dev->sleep_work);
1517
1518 /*
1519 * Kill the tx status tasklet.
1520 */
1521 tasklet_kill(&rt2x00dev->txstatus_tasklet);
1522 tasklet_kill(&rt2x00dev->pretbtt_tasklet);
1523 tasklet_kill(&rt2x00dev->tbtt_tasklet);
1524 tasklet_kill(&rt2x00dev->rxdone_tasklet);
1525 tasklet_kill(&rt2x00dev->autowake_tasklet);
1526
1527 /*
1528 * Uninitialize device.
1529 */
1530 rt2x00lib_uninitialize(rt2x00dev);
1531
1532 if (rt2x00dev->workqueue)
1533 destroy_workqueue(rt2x00dev->workqueue);
1534
1535 /*
1536 * Free the tx status fifo.
1537 */
1538 kfifo_free(&rt2x00dev->txstatus_fifo);
1539
1540 /*
1541 * Free extra components
1542 */
1543 rt2x00debug_deregister(rt2x00dev);
1544 rt2x00leds_unregister(rt2x00dev);
1545
1546 /*
1547 * Free ieee80211_hw memory.
1548 */
1549 rt2x00lib_remove_hw(rt2x00dev);
1550
1551 /*
1552 * Free firmware image.
1553 */
1554 rt2x00lib_free_firmware(rt2x00dev);
1555
1556 /*
1557 * Free queue structures.
1558 */
1559 rt2x00queue_free(rt2x00dev);
1560
1561 /*
1562 * Free the driver data.
1563 */
1564 kfree(rt2x00dev->drv_data);
1565 }
1566 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1567
1568 /*
1569 * Device state handlers
1570 */
1571 #ifdef CONFIG_PM
rt2x00lib_suspend(struct rt2x00_dev * rt2x00dev,pm_message_t state)1572 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1573 {
1574 rt2x00_dbg(rt2x00dev, "Going to sleep\n");
1575
1576 /*
1577 * Prevent mac80211 from accessing driver while suspended.
1578 */
1579 if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
1580 return 0;
1581
1582 /*
1583 * Cleanup as much as possible.
1584 */
1585 rt2x00lib_uninitialize(rt2x00dev);
1586
1587 /*
1588 * Suspend/disable extra components.
1589 */
1590 rt2x00leds_suspend(rt2x00dev);
1591 rt2x00debug_deregister(rt2x00dev);
1592
1593 /*
1594 * Set device mode to sleep for power management,
1595 * on some hardware this call seems to consistently fail.
1596 * From the specifications it is hard to tell why it fails,
1597 * and if this is a "bad thing".
1598 * Overall it is safe to just ignore the failure and
1599 * continue suspending. The only downside is that the
1600 * device will not be in optimal power save mode, but with
1601 * the radio and the other components already disabled the
1602 * device is as good as disabled.
1603 */
1604 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
1605 rt2x00_warn(rt2x00dev, "Device failed to enter sleep state, continue suspending\n");
1606
1607 return 0;
1608 }
1609 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1610
rt2x00lib_resume(struct rt2x00_dev * rt2x00dev)1611 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1612 {
1613 rt2x00_dbg(rt2x00dev, "Waking up\n");
1614
1615 /*
1616 * Restore/enable extra components.
1617 */
1618 rt2x00debug_register(rt2x00dev);
1619 rt2x00leds_resume(rt2x00dev);
1620
1621 /*
1622 * We are ready again to receive requests from mac80211.
1623 */
1624 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1625
1626 return 0;
1627 }
1628 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1629 #endif /* CONFIG_PM */
1630
1631 /*
1632 * rt2x00lib module information.
1633 */
1634 MODULE_AUTHOR(DRV_PROJECT);
1635 MODULE_VERSION(DRV_VERSION);
1636 MODULE_DESCRIPTION("rt2x00 library");
1637 MODULE_LICENSE("GPL");
1638