1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
4 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
5 <http://rt2x00.serialmonkey.com>
6
7 */
8
9 /*
10 Module: rt2x00lib
11 Abstract: rt2x00 generic device routines.
12 */
13
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/log2.h>
18 #include <linux/of.h>
19 #include <linux/of_net.h>
20
21 #include "rt2x00.h"
22 #include "rt2x00lib.h"
23
24 /*
25 * Utility functions.
26 */
rt2x00lib_get_bssidx(struct rt2x00_dev * rt2x00dev,struct ieee80211_vif * vif)27 u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev,
28 struct ieee80211_vif *vif)
29 {
30 /*
31 * When in STA mode, bssidx is always 0 otherwise local_address[5]
32 * contains the bss number, see BSS_ID_MASK comments for details.
33 */
34 if (rt2x00dev->intf_sta_count)
35 return 0;
36 return vif->addr[5] & (rt2x00dev->ops->max_ap_intf - 1);
37 }
38 EXPORT_SYMBOL_GPL(rt2x00lib_get_bssidx);
39
40 /*
41 * Radio control handlers.
42 */
rt2x00lib_enable_radio(struct rt2x00_dev * rt2x00dev)43 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
44 {
45 int status;
46
47 /*
48 * Don't enable the radio twice.
49 * And check if the hardware button has been disabled.
50 */
51 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
52 return 0;
53
54 /*
55 * Initialize all data queues.
56 */
57 rt2x00queue_init_queues(rt2x00dev);
58
59 /*
60 * Enable radio.
61 */
62 status =
63 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
64 if (status)
65 return status;
66
67 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
68
69 rt2x00leds_led_radio(rt2x00dev, true);
70 rt2x00led_led_activity(rt2x00dev, true);
71
72 set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
73
74 /*
75 * Enable queues.
76 */
77 rt2x00queue_start_queues(rt2x00dev);
78 rt2x00link_start_tuner(rt2x00dev);
79
80 /*
81 * Start watchdog monitoring.
82 */
83 rt2x00link_start_watchdog(rt2x00dev);
84
85 return 0;
86 }
87
rt2x00lib_disable_radio(struct rt2x00_dev * rt2x00dev)88 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
89 {
90 if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
91 return;
92
93 /*
94 * Stop watchdog monitoring.
95 */
96 rt2x00link_stop_watchdog(rt2x00dev);
97
98 /*
99 * Stop all queues
100 */
101 rt2x00link_stop_tuner(rt2x00dev);
102 rt2x00queue_stop_queues(rt2x00dev);
103 rt2x00queue_flush_queues(rt2x00dev, true);
104
105 /*
106 * Disable radio.
107 */
108 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
109 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
110 rt2x00led_led_activity(rt2x00dev, false);
111 rt2x00leds_led_radio(rt2x00dev, false);
112 }
113
rt2x00lib_intf_scheduled_iter(void * data,u8 * mac,struct ieee80211_vif * vif)114 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
115 struct ieee80211_vif *vif)
116 {
117 struct rt2x00_dev *rt2x00dev = data;
118 struct rt2x00_intf *intf = vif_to_intf(vif);
119
120 /*
121 * It is possible the radio was disabled while the work had been
122 * scheduled. If that happens we should return here immediately,
123 * note that in the spinlock protected area above the delayed_flags
124 * have been cleared correctly.
125 */
126 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
127 return;
128
129 if (test_and_clear_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags)) {
130 mutex_lock(&intf->beacon_skb_mutex);
131 rt2x00queue_update_beacon(rt2x00dev, vif);
132 mutex_unlock(&intf->beacon_skb_mutex);
133 }
134 }
135
rt2x00lib_intf_scheduled(struct work_struct * work)136 static void rt2x00lib_intf_scheduled(struct work_struct *work)
137 {
138 struct rt2x00_dev *rt2x00dev =
139 container_of(work, struct rt2x00_dev, intf_work);
140
141 /*
142 * Iterate over each interface and perform the
143 * requested configurations.
144 */
145 ieee80211_iterate_active_interfaces(rt2x00dev->hw,
146 IEEE80211_IFACE_ITER_RESUME_ALL,
147 rt2x00lib_intf_scheduled_iter,
148 rt2x00dev);
149 }
150
rt2x00lib_autowakeup(struct work_struct * work)151 static void rt2x00lib_autowakeup(struct work_struct *work)
152 {
153 struct rt2x00_dev *rt2x00dev =
154 container_of(work, struct rt2x00_dev, autowakeup_work.work);
155
156 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
157 return;
158
159 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
160 rt2x00_err(rt2x00dev, "Device failed to wakeup\n");
161 clear_bit(CONFIG_POWERSAVING, &rt2x00dev->flags);
162 }
163
164 /*
165 * Interrupt context handlers.
166 */
rt2x00lib_bc_buffer_iter(void * data,u8 * mac,struct ieee80211_vif * vif)167 static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac,
168 struct ieee80211_vif *vif)
169 {
170 struct ieee80211_tx_control control = {};
171 struct rt2x00_dev *rt2x00dev = data;
172 struct sk_buff *skb;
173
174 /*
175 * Only AP mode interfaces do broad- and multicast buffering
176 */
177 if (vif->type != NL80211_IFTYPE_AP)
178 return;
179
180 /*
181 * Send out buffered broad- and multicast frames
182 */
183 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
184 while (skb) {
185 rt2x00mac_tx(rt2x00dev->hw, &control, skb);
186 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
187 }
188 }
189
rt2x00lib_beaconupdate_iter(void * data,u8 * mac,struct ieee80211_vif * vif)190 static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac,
191 struct ieee80211_vif *vif)
192 {
193 struct rt2x00_dev *rt2x00dev = data;
194
195 if (vif->type != NL80211_IFTYPE_AP &&
196 vif->type != NL80211_IFTYPE_ADHOC &&
197 vif->type != NL80211_IFTYPE_MESH_POINT)
198 return;
199
200 /*
201 * Update the beacon without locking. This is safe on PCI devices
202 * as they only update the beacon periodically here. This should
203 * never be called for USB devices.
204 */
205 WARN_ON(rt2x00_is_usb(rt2x00dev));
206 rt2x00queue_update_beacon(rt2x00dev, vif);
207 }
208
rt2x00lib_beacondone(struct rt2x00_dev * rt2x00dev)209 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
210 {
211 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
212 return;
213
214 /* send buffered bc/mc frames out for every bssid */
215 ieee80211_iterate_active_interfaces_atomic(
216 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
217 rt2x00lib_bc_buffer_iter, rt2x00dev);
218 /*
219 * Devices with pre tbtt interrupt don't need to update the beacon
220 * here as they will fetch the next beacon directly prior to
221 * transmission.
222 */
223 if (rt2x00_has_cap_pre_tbtt_interrupt(rt2x00dev))
224 return;
225
226 /* fetch next beacon */
227 ieee80211_iterate_active_interfaces_atomic(
228 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
229 rt2x00lib_beaconupdate_iter, rt2x00dev);
230 }
231 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
232
rt2x00lib_pretbtt(struct rt2x00_dev * rt2x00dev)233 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev)
234 {
235 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
236 return;
237
238 /* fetch next beacon */
239 ieee80211_iterate_active_interfaces_atomic(
240 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
241 rt2x00lib_beaconupdate_iter, rt2x00dev);
242 }
243 EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt);
244
rt2x00lib_dmastart(struct queue_entry * entry)245 void rt2x00lib_dmastart(struct queue_entry *entry)
246 {
247 set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
248 rt2x00queue_index_inc(entry, Q_INDEX);
249 }
250 EXPORT_SYMBOL_GPL(rt2x00lib_dmastart);
251
rt2x00lib_dmadone(struct queue_entry * entry)252 void rt2x00lib_dmadone(struct queue_entry *entry)
253 {
254 set_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags);
255 clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
256 rt2x00queue_index_inc(entry, Q_INDEX_DMA_DONE);
257 }
258 EXPORT_SYMBOL_GPL(rt2x00lib_dmadone);
259
rt2x00lib_txdone_bar_status(struct queue_entry * entry)260 static inline int rt2x00lib_txdone_bar_status(struct queue_entry *entry)
261 {
262 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
263 struct ieee80211_bar *bar = (void *) entry->skb->data;
264 struct rt2x00_bar_list_entry *bar_entry;
265 int ret;
266
267 if (likely(!ieee80211_is_back_req(bar->frame_control)))
268 return 0;
269
270 /*
271 * Unlike all other frames, the status report for BARs does
272 * not directly come from the hardware as it is incapable of
273 * matching a BA to a previously send BAR. The hardware will
274 * report all BARs as if they weren't acked at all.
275 *
276 * Instead the RX-path will scan for incoming BAs and set the
277 * block_acked flag if it sees one that was likely caused by
278 * a BAR from us.
279 *
280 * Remove remaining BARs here and return their status for
281 * TX done processing.
282 */
283 ret = 0;
284 rcu_read_lock();
285 list_for_each_entry_rcu(bar_entry, &rt2x00dev->bar_list, list) {
286 if (bar_entry->entry != entry)
287 continue;
288
289 spin_lock_bh(&rt2x00dev->bar_list_lock);
290 /* Return whether this BAR was blockacked or not */
291 ret = bar_entry->block_acked;
292 /* Remove the BAR from our checklist */
293 list_del_rcu(&bar_entry->list);
294 spin_unlock_bh(&rt2x00dev->bar_list_lock);
295 kfree_rcu(bar_entry, head);
296
297 break;
298 }
299 rcu_read_unlock();
300
301 return ret;
302 }
303
rt2x00lib_fill_tx_status(struct rt2x00_dev * rt2x00dev,struct ieee80211_tx_info * tx_info,struct skb_frame_desc * skbdesc,struct txdone_entry_desc * txdesc,bool success)304 static void rt2x00lib_fill_tx_status(struct rt2x00_dev *rt2x00dev,
305 struct ieee80211_tx_info *tx_info,
306 struct skb_frame_desc *skbdesc,
307 struct txdone_entry_desc *txdesc,
308 bool success)
309 {
310 u8 rate_idx, rate_flags, retry_rates;
311 int i;
312
313 rate_idx = skbdesc->tx_rate_idx;
314 rate_flags = skbdesc->tx_rate_flags;
315 retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
316 (txdesc->retry + 1) : 1;
317
318 /*
319 * Initialize TX status
320 */
321 memset(&tx_info->status, 0, sizeof(tx_info->status));
322 tx_info->status.ack_signal = 0;
323
324 /*
325 * Frame was send with retries, hardware tried
326 * different rates to send out the frame, at each
327 * retry it lowered the rate 1 step except when the
328 * lowest rate was used.
329 */
330 for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
331 tx_info->status.rates[i].idx = rate_idx - i;
332 tx_info->status.rates[i].flags = rate_flags;
333
334 if (rate_idx - i == 0) {
335 /*
336 * The lowest rate (index 0) was used until the
337 * number of max retries was reached.
338 */
339 tx_info->status.rates[i].count = retry_rates - i;
340 i++;
341 break;
342 }
343 tx_info->status.rates[i].count = 1;
344 }
345 if (i < (IEEE80211_TX_MAX_RATES - 1))
346 tx_info->status.rates[i].idx = -1; /* terminate */
347
348 if (test_bit(TXDONE_NO_ACK_REQ, &txdesc->flags))
349 tx_info->flags |= IEEE80211_TX_CTL_NO_ACK;
350
351 if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
352 if (success)
353 tx_info->flags |= IEEE80211_TX_STAT_ACK;
354 else
355 rt2x00dev->low_level_stats.dot11ACKFailureCount++;
356 }
357
358 /*
359 * Every single frame has it's own tx status, hence report
360 * every frame as ampdu of size 1.
361 *
362 * TODO: if we can find out how many frames were aggregated
363 * by the hw we could provide the real ampdu_len to mac80211
364 * which would allow the rc algorithm to better decide on
365 * which rates are suitable.
366 */
367 if (test_bit(TXDONE_AMPDU, &txdesc->flags) ||
368 tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
369 tx_info->flags |= IEEE80211_TX_STAT_AMPDU |
370 IEEE80211_TX_CTL_AMPDU;
371 tx_info->status.ampdu_len = 1;
372 tx_info->status.ampdu_ack_len = success ? 1 : 0;
373 }
374
375 if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
376 if (success)
377 rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
378 else
379 rt2x00dev->low_level_stats.dot11RTSFailureCount++;
380 }
381 }
382
rt2x00lib_clear_entry(struct rt2x00_dev * rt2x00dev,struct queue_entry * entry)383 static void rt2x00lib_clear_entry(struct rt2x00_dev *rt2x00dev,
384 struct queue_entry *entry)
385 {
386 /*
387 * Make this entry available for reuse.
388 */
389 entry->skb = NULL;
390 entry->flags = 0;
391
392 rt2x00dev->ops->lib->clear_entry(entry);
393
394 rt2x00queue_index_inc(entry, Q_INDEX_DONE);
395
396 /*
397 * If the data queue was below the threshold before the txdone
398 * handler we must make sure the packet queue in the mac80211 stack
399 * is reenabled when the txdone handler has finished. This has to be
400 * serialized with rt2x00mac_tx(), otherwise we can wake up queue
401 * before it was stopped.
402 */
403 spin_lock_bh(&entry->queue->tx_lock);
404 if (!rt2x00queue_threshold(entry->queue))
405 rt2x00queue_unpause_queue(entry->queue);
406 spin_unlock_bh(&entry->queue->tx_lock);
407 }
408
rt2x00lib_txdone_nomatch(struct queue_entry * entry,struct txdone_entry_desc * txdesc)409 void rt2x00lib_txdone_nomatch(struct queue_entry *entry,
410 struct txdone_entry_desc *txdesc)
411 {
412 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
413 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
414 struct ieee80211_tx_info txinfo = {};
415 bool success;
416
417 /*
418 * Unmap the skb.
419 */
420 rt2x00queue_unmap_skb(entry);
421
422 /*
423 * Signal that the TX descriptor is no longer in the skb.
424 */
425 skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
426
427 /*
428 * Send frame to debugfs immediately, after this call is completed
429 * we are going to overwrite the skb->cb array.
430 */
431 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry);
432
433 /*
434 * Determine if the frame has been successfully transmitted and
435 * remove BARs from our check list while checking for their
436 * TX status.
437 */
438 success =
439 rt2x00lib_txdone_bar_status(entry) ||
440 test_bit(TXDONE_SUCCESS, &txdesc->flags);
441
442 if (!test_bit(TXDONE_UNKNOWN, &txdesc->flags)) {
443 /*
444 * Update TX statistics.
445 */
446 rt2x00dev->link.qual.tx_success += success;
447 rt2x00dev->link.qual.tx_failed += !success;
448
449 rt2x00lib_fill_tx_status(rt2x00dev, &txinfo, skbdesc, txdesc,
450 success);
451 ieee80211_tx_status_noskb(rt2x00dev->hw, skbdesc->sta, &txinfo);
452 }
453
454 dev_kfree_skb_any(entry->skb);
455 rt2x00lib_clear_entry(rt2x00dev, entry);
456 }
457 EXPORT_SYMBOL_GPL(rt2x00lib_txdone_nomatch);
458
rt2x00lib_txdone(struct queue_entry * entry,struct txdone_entry_desc * txdesc)459 void rt2x00lib_txdone(struct queue_entry *entry,
460 struct txdone_entry_desc *txdesc)
461 {
462 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
463 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
464 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
465 u8 skbdesc_flags = skbdesc->flags;
466 unsigned int header_length;
467 bool success;
468
469 /*
470 * Unmap the skb.
471 */
472 rt2x00queue_unmap_skb(entry);
473
474 /*
475 * Remove the extra tx headroom from the skb.
476 */
477 skb_pull(entry->skb, rt2x00dev->extra_tx_headroom);
478
479 /*
480 * Signal that the TX descriptor is no longer in the skb.
481 */
482 skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
483
484 /*
485 * Determine the length of 802.11 header.
486 */
487 header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
488
489 /*
490 * Remove L2 padding which was added during
491 */
492 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_L2PAD))
493 rt2x00queue_remove_l2pad(entry->skb, header_length);
494
495 /*
496 * If the IV/EIV data was stripped from the frame before it was
497 * passed to the hardware, we should now reinsert it again because
498 * mac80211 will expect the same data to be present it the
499 * frame as it was passed to us.
500 */
501 if (rt2x00_has_cap_hw_crypto(rt2x00dev))
502 rt2x00crypto_tx_insert_iv(entry->skb, header_length);
503
504 /*
505 * Send frame to debugfs immediately, after this call is completed
506 * we are going to overwrite the skb->cb array.
507 */
508 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry);
509
510 /*
511 * Determine if the frame has been successfully transmitted and
512 * remove BARs from our check list while checking for their
513 * TX status.
514 */
515 success =
516 rt2x00lib_txdone_bar_status(entry) ||
517 test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
518 test_bit(TXDONE_UNKNOWN, &txdesc->flags);
519
520 /*
521 * Update TX statistics.
522 */
523 rt2x00dev->link.qual.tx_success += success;
524 rt2x00dev->link.qual.tx_failed += !success;
525
526 rt2x00lib_fill_tx_status(rt2x00dev, tx_info, skbdesc, txdesc, success);
527
528 /*
529 * Only send the status report to mac80211 when it's a frame
530 * that originated in mac80211. If this was a extra frame coming
531 * through a mac80211 library call (RTS/CTS) then we should not
532 * send the status report back.
533 */
534 if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) {
535 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_TASKLET_CONTEXT))
536 ieee80211_tx_status(rt2x00dev->hw, entry->skb);
537 else
538 ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb);
539 } else {
540 dev_kfree_skb_any(entry->skb);
541 }
542
543 rt2x00lib_clear_entry(rt2x00dev, entry);
544 }
545 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
546
rt2x00lib_txdone_noinfo(struct queue_entry * entry,u32 status)547 void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status)
548 {
549 struct txdone_entry_desc txdesc;
550
551 txdesc.flags = 0;
552 __set_bit(status, &txdesc.flags);
553 txdesc.retry = 0;
554
555 rt2x00lib_txdone(entry, &txdesc);
556 }
557 EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo);
558
rt2x00lib_find_ie(u8 * data,unsigned int len,u8 ie)559 static u8 *rt2x00lib_find_ie(u8 *data, unsigned int len, u8 ie)
560 {
561 struct ieee80211_mgmt *mgmt = (void *)data;
562 u8 *pos, *end;
563
564 pos = (u8 *)mgmt->u.beacon.variable;
565 end = data + len;
566 while (pos < end) {
567 if (pos + 2 + pos[1] > end)
568 return NULL;
569
570 if (pos[0] == ie)
571 return pos;
572
573 pos += 2 + pos[1];
574 }
575
576 return NULL;
577 }
578
rt2x00lib_sleep(struct work_struct * work)579 static void rt2x00lib_sleep(struct work_struct *work)
580 {
581 struct rt2x00_dev *rt2x00dev =
582 container_of(work, struct rt2x00_dev, sleep_work);
583
584 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
585 return;
586
587 /*
588 * Check again is powersaving is enabled, to prevent races from delayed
589 * work execution.
590 */
591 if (!test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
592 rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf,
593 IEEE80211_CONF_CHANGE_PS);
594 }
595
rt2x00lib_rxdone_check_ba(struct rt2x00_dev * rt2x00dev,struct sk_buff * skb,struct rxdone_entry_desc * rxdesc)596 static void rt2x00lib_rxdone_check_ba(struct rt2x00_dev *rt2x00dev,
597 struct sk_buff *skb,
598 struct rxdone_entry_desc *rxdesc)
599 {
600 struct rt2x00_bar_list_entry *entry;
601 struct ieee80211_bar *ba = (void *)skb->data;
602
603 if (likely(!ieee80211_is_back(ba->frame_control)))
604 return;
605
606 if (rxdesc->size < sizeof(*ba) + FCS_LEN)
607 return;
608
609 rcu_read_lock();
610 list_for_each_entry_rcu(entry, &rt2x00dev->bar_list, list) {
611
612 if (ba->start_seq_num != entry->start_seq_num)
613 continue;
614
615 #define TID_CHECK(a, b) ( \
616 ((a) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK)) == \
617 ((b) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK))) \
618
619 if (!TID_CHECK(ba->control, entry->control))
620 continue;
621
622 #undef TID_CHECK
623
624 if (!ether_addr_equal_64bits(ba->ra, entry->ta))
625 continue;
626
627 if (!ether_addr_equal_64bits(ba->ta, entry->ra))
628 continue;
629
630 /* Mark BAR since we received the according BA */
631 spin_lock_bh(&rt2x00dev->bar_list_lock);
632 entry->block_acked = 1;
633 spin_unlock_bh(&rt2x00dev->bar_list_lock);
634 break;
635 }
636 rcu_read_unlock();
637
638 }
639
rt2x00lib_rxdone_check_ps(struct rt2x00_dev * rt2x00dev,struct sk_buff * skb,struct rxdone_entry_desc * rxdesc)640 static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev *rt2x00dev,
641 struct sk_buff *skb,
642 struct rxdone_entry_desc *rxdesc)
643 {
644 struct ieee80211_hdr *hdr = (void *) skb->data;
645 struct ieee80211_tim_ie *tim_ie;
646 u8 *tim;
647 u8 tim_len;
648 bool cam;
649
650 /* If this is not a beacon, or if mac80211 has no powersaving
651 * configured, or if the device is already in powersaving mode
652 * we can exit now. */
653 if (likely(!ieee80211_is_beacon(hdr->frame_control) ||
654 !(rt2x00dev->hw->conf.flags & IEEE80211_CONF_PS)))
655 return;
656
657 /* min. beacon length + FCS_LEN */
658 if (skb->len <= 40 + FCS_LEN)
659 return;
660
661 /* and only beacons from the associated BSSID, please */
662 if (!(rxdesc->dev_flags & RXDONE_MY_BSS) ||
663 !rt2x00dev->aid)
664 return;
665
666 rt2x00dev->last_beacon = jiffies;
667
668 tim = rt2x00lib_find_ie(skb->data, skb->len - FCS_LEN, WLAN_EID_TIM);
669 if (!tim)
670 return;
671
672 if (tim[1] < sizeof(*tim_ie))
673 return;
674
675 tim_len = tim[1];
676 tim_ie = (struct ieee80211_tim_ie *) &tim[2];
677
678 /* Check whenever the PHY can be turned off again. */
679
680 /* 1. What about buffered unicast traffic for our AID? */
681 cam = ieee80211_check_tim(tim_ie, tim_len, rt2x00dev->aid);
682
683 /* 2. Maybe the AP wants to send multicast/broadcast data? */
684 cam |= (tim_ie->bitmap_ctrl & 0x01);
685
686 if (!cam && !test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
687 queue_work(rt2x00dev->workqueue, &rt2x00dev->sleep_work);
688 }
689
rt2x00lib_rxdone_read_signal(struct rt2x00_dev * rt2x00dev,struct rxdone_entry_desc * rxdesc)690 static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
691 struct rxdone_entry_desc *rxdesc)
692 {
693 struct ieee80211_supported_band *sband;
694 const struct rt2x00_rate *rate;
695 unsigned int i;
696 int signal = rxdesc->signal;
697 int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
698
699 switch (rxdesc->rate_mode) {
700 case RATE_MODE_CCK:
701 case RATE_MODE_OFDM:
702 /*
703 * For non-HT rates the MCS value needs to contain the
704 * actually used rate modulation (CCK or OFDM).
705 */
706 if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
707 signal = RATE_MCS(rxdesc->rate_mode, signal);
708
709 sband = &rt2x00dev->bands[rt2x00dev->curr_band];
710 for (i = 0; i < sband->n_bitrates; i++) {
711 rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
712 if (((type == RXDONE_SIGNAL_PLCP) &&
713 (rate->plcp == signal)) ||
714 ((type == RXDONE_SIGNAL_BITRATE) &&
715 (rate->bitrate == signal)) ||
716 ((type == RXDONE_SIGNAL_MCS) &&
717 (rate->mcs == signal))) {
718 return i;
719 }
720 }
721 break;
722 case RATE_MODE_HT_MIX:
723 case RATE_MODE_HT_GREENFIELD:
724 if (signal >= 0 && signal <= 76)
725 return signal;
726 break;
727 default:
728 break;
729 }
730
731 rt2x00_warn(rt2x00dev, "Frame received with unrecognized signal, mode=0x%.4x, signal=0x%.4x, type=%d\n",
732 rxdesc->rate_mode, signal, type);
733 return 0;
734 }
735
rt2x00lib_rxdone(struct queue_entry * entry,gfp_t gfp)736 void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp)
737 {
738 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
739 struct rxdone_entry_desc rxdesc;
740 struct sk_buff *skb;
741 struct ieee80211_rx_status *rx_status;
742 unsigned int header_length;
743 int rate_idx;
744
745 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) ||
746 !test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
747 goto submit_entry;
748
749 if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags))
750 goto submit_entry;
751
752 /*
753 * Allocate a new sk_buffer. If no new buffer available, drop the
754 * received frame and reuse the existing buffer.
755 */
756 skb = rt2x00queue_alloc_rxskb(entry, gfp);
757 if (!skb)
758 goto submit_entry;
759
760 /*
761 * Unmap the skb.
762 */
763 rt2x00queue_unmap_skb(entry);
764
765 /*
766 * Extract the RXD details.
767 */
768 memset(&rxdesc, 0, sizeof(rxdesc));
769 rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
770
771 /*
772 * Check for valid size in case we get corrupted descriptor from
773 * hardware.
774 */
775 if (unlikely(rxdesc.size == 0 ||
776 rxdesc.size > entry->queue->data_size)) {
777 rt2x00_err(rt2x00dev, "Wrong frame size %d max %d\n",
778 rxdesc.size, entry->queue->data_size);
779 dev_kfree_skb(entry->skb);
780 goto renew_skb;
781 }
782
783 /*
784 * The data behind the ieee80211 header must be
785 * aligned on a 4 byte boundary.
786 */
787 header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
788
789 /*
790 * Hardware might have stripped the IV/EIV/ICV data,
791 * in that case it is possible that the data was
792 * provided separately (through hardware descriptor)
793 * in which case we should reinsert the data into the frame.
794 */
795 if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
796 (rxdesc.flags & RX_FLAG_IV_STRIPPED))
797 rt2x00crypto_rx_insert_iv(entry->skb, header_length,
798 &rxdesc);
799 else if (header_length &&
800 (rxdesc.size > header_length) &&
801 (rxdesc.dev_flags & RXDONE_L2PAD))
802 rt2x00queue_remove_l2pad(entry->skb, header_length);
803
804 /* Trim buffer to correct size */
805 skb_trim(entry->skb, rxdesc.size);
806
807 /*
808 * Translate the signal to the correct bitrate index.
809 */
810 rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
811 if (rxdesc.rate_mode == RATE_MODE_HT_MIX ||
812 rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD)
813 rxdesc.encoding = RX_ENC_HT;
814
815 /*
816 * Check if this is a beacon, and more frames have been
817 * buffered while we were in powersaving mode.
818 */
819 rt2x00lib_rxdone_check_ps(rt2x00dev, entry->skb, &rxdesc);
820
821 /*
822 * Check for incoming BlockAcks to match to the BlockAckReqs
823 * we've send out.
824 */
825 rt2x00lib_rxdone_check_ba(rt2x00dev, entry->skb, &rxdesc);
826
827 /*
828 * Update extra components
829 */
830 rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
831 rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
832 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry);
833
834 /*
835 * Initialize RX status information, and send frame
836 * to mac80211.
837 */
838 rx_status = IEEE80211_SKB_RXCB(entry->skb);
839
840 /* Ensure that all fields of rx_status are initialized
841 * properly. The skb->cb array was used for driver
842 * specific informations, so rx_status might contain
843 * garbage.
844 */
845 memset(rx_status, 0, sizeof(*rx_status));
846
847 rx_status->mactime = rxdesc.timestamp;
848 rx_status->band = rt2x00dev->curr_band;
849 rx_status->freq = rt2x00dev->curr_freq;
850 rx_status->rate_idx = rate_idx;
851 rx_status->signal = rxdesc.rssi;
852 rx_status->flag = rxdesc.flags;
853 rx_status->enc_flags = rxdesc.enc_flags;
854 rx_status->encoding = rxdesc.encoding;
855 rx_status->bw = rxdesc.bw;
856 rx_status->antenna = rt2x00dev->link.ant.active.rx;
857
858 ieee80211_rx_ni(rt2x00dev->hw, entry->skb);
859
860 renew_skb:
861 /*
862 * Replace the skb with the freshly allocated one.
863 */
864 entry->skb = skb;
865
866 submit_entry:
867 entry->flags = 0;
868 rt2x00queue_index_inc(entry, Q_INDEX_DONE);
869 if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) &&
870 test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
871 rt2x00dev->ops->lib->clear_entry(entry);
872 }
873 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
874
875 /*
876 * Driver initialization handlers.
877 */
878 const struct rt2x00_rate rt2x00_supported_rates[12] = {
879 {
880 .flags = DEV_RATE_CCK,
881 .bitrate = 10,
882 .ratemask = BIT(0),
883 .plcp = 0x00,
884 .mcs = RATE_MCS(RATE_MODE_CCK, 0),
885 },
886 {
887 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
888 .bitrate = 20,
889 .ratemask = BIT(1),
890 .plcp = 0x01,
891 .mcs = RATE_MCS(RATE_MODE_CCK, 1),
892 },
893 {
894 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
895 .bitrate = 55,
896 .ratemask = BIT(2),
897 .plcp = 0x02,
898 .mcs = RATE_MCS(RATE_MODE_CCK, 2),
899 },
900 {
901 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
902 .bitrate = 110,
903 .ratemask = BIT(3),
904 .plcp = 0x03,
905 .mcs = RATE_MCS(RATE_MODE_CCK, 3),
906 },
907 {
908 .flags = DEV_RATE_OFDM,
909 .bitrate = 60,
910 .ratemask = BIT(4),
911 .plcp = 0x0b,
912 .mcs = RATE_MCS(RATE_MODE_OFDM, 0),
913 },
914 {
915 .flags = DEV_RATE_OFDM,
916 .bitrate = 90,
917 .ratemask = BIT(5),
918 .plcp = 0x0f,
919 .mcs = RATE_MCS(RATE_MODE_OFDM, 1),
920 },
921 {
922 .flags = DEV_RATE_OFDM,
923 .bitrate = 120,
924 .ratemask = BIT(6),
925 .plcp = 0x0a,
926 .mcs = RATE_MCS(RATE_MODE_OFDM, 2),
927 },
928 {
929 .flags = DEV_RATE_OFDM,
930 .bitrate = 180,
931 .ratemask = BIT(7),
932 .plcp = 0x0e,
933 .mcs = RATE_MCS(RATE_MODE_OFDM, 3),
934 },
935 {
936 .flags = DEV_RATE_OFDM,
937 .bitrate = 240,
938 .ratemask = BIT(8),
939 .plcp = 0x09,
940 .mcs = RATE_MCS(RATE_MODE_OFDM, 4),
941 },
942 {
943 .flags = DEV_RATE_OFDM,
944 .bitrate = 360,
945 .ratemask = BIT(9),
946 .plcp = 0x0d,
947 .mcs = RATE_MCS(RATE_MODE_OFDM, 5),
948 },
949 {
950 .flags = DEV_RATE_OFDM,
951 .bitrate = 480,
952 .ratemask = BIT(10),
953 .plcp = 0x08,
954 .mcs = RATE_MCS(RATE_MODE_OFDM, 6),
955 },
956 {
957 .flags = DEV_RATE_OFDM,
958 .bitrate = 540,
959 .ratemask = BIT(11),
960 .plcp = 0x0c,
961 .mcs = RATE_MCS(RATE_MODE_OFDM, 7),
962 },
963 };
964
rt2x00lib_channel(struct ieee80211_channel * entry,const int channel,const int tx_power,const int value)965 static void rt2x00lib_channel(struct ieee80211_channel *entry,
966 const int channel, const int tx_power,
967 const int value)
968 {
969 /* XXX: this assumption about the band is wrong for 802.11j */
970 entry->band = channel <= 14 ? NL80211_BAND_2GHZ : NL80211_BAND_5GHZ;
971 entry->center_freq = ieee80211_channel_to_frequency(channel,
972 entry->band);
973 entry->hw_value = value;
974 entry->max_power = tx_power;
975 entry->max_antenna_gain = 0xff;
976 }
977
rt2x00lib_rate(struct ieee80211_rate * entry,const u16 index,const struct rt2x00_rate * rate)978 static void rt2x00lib_rate(struct ieee80211_rate *entry,
979 const u16 index, const struct rt2x00_rate *rate)
980 {
981 entry->flags = 0;
982 entry->bitrate = rate->bitrate;
983 entry->hw_value = index;
984 entry->hw_value_short = index;
985
986 if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
987 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
988 }
989
rt2x00lib_set_mac_address(struct rt2x00_dev * rt2x00dev,u8 * eeprom_mac_addr)990 void rt2x00lib_set_mac_address(struct rt2x00_dev *rt2x00dev, u8 *eeprom_mac_addr)
991 {
992 of_get_mac_address(rt2x00dev->dev->of_node, eeprom_mac_addr);
993
994 if (!is_valid_ether_addr(eeprom_mac_addr)) {
995 eth_random_addr(eeprom_mac_addr);
996 rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", eeprom_mac_addr);
997 }
998 }
999 EXPORT_SYMBOL_GPL(rt2x00lib_set_mac_address);
1000
rt2x00lib_probe_hw_modes(struct rt2x00_dev * rt2x00dev,struct hw_mode_spec * spec)1001 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
1002 struct hw_mode_spec *spec)
1003 {
1004 struct ieee80211_hw *hw = rt2x00dev->hw;
1005 struct ieee80211_channel *channels;
1006 struct ieee80211_rate *rates;
1007 unsigned int num_rates;
1008 unsigned int i;
1009
1010 num_rates = 0;
1011 if (spec->supported_rates & SUPPORT_RATE_CCK)
1012 num_rates += 4;
1013 if (spec->supported_rates & SUPPORT_RATE_OFDM)
1014 num_rates += 8;
1015
1016 channels = kcalloc(spec->num_channels, sizeof(*channels), GFP_KERNEL);
1017 if (!channels)
1018 return -ENOMEM;
1019
1020 rates = kcalloc(num_rates, sizeof(*rates), GFP_KERNEL);
1021 if (!rates)
1022 goto exit_free_channels;
1023
1024 /*
1025 * Initialize Rate list.
1026 */
1027 for (i = 0; i < num_rates; i++)
1028 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
1029
1030 /*
1031 * Initialize Channel list.
1032 */
1033 for (i = 0; i < spec->num_channels; i++) {
1034 rt2x00lib_channel(&channels[i],
1035 spec->channels[i].channel,
1036 spec->channels_info[i].max_power, i);
1037 }
1038
1039 /*
1040 * Intitialize 802.11b, 802.11g
1041 * Rates: CCK, OFDM.
1042 * Channels: 2.4 GHz
1043 */
1044 if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
1045 rt2x00dev->bands[NL80211_BAND_2GHZ].n_channels = 14;
1046 rt2x00dev->bands[NL80211_BAND_2GHZ].n_bitrates = num_rates;
1047 rt2x00dev->bands[NL80211_BAND_2GHZ].channels = channels;
1048 rt2x00dev->bands[NL80211_BAND_2GHZ].bitrates = rates;
1049 hw->wiphy->bands[NL80211_BAND_2GHZ] =
1050 &rt2x00dev->bands[NL80211_BAND_2GHZ];
1051 memcpy(&rt2x00dev->bands[NL80211_BAND_2GHZ].ht_cap,
1052 &spec->ht, sizeof(spec->ht));
1053 }
1054
1055 /*
1056 * Intitialize 802.11a
1057 * Rates: OFDM.
1058 * Channels: OFDM, UNII, HiperLAN2.
1059 */
1060 if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
1061 rt2x00dev->bands[NL80211_BAND_5GHZ].n_channels =
1062 spec->num_channels - 14;
1063 rt2x00dev->bands[NL80211_BAND_5GHZ].n_bitrates =
1064 num_rates - 4;
1065 rt2x00dev->bands[NL80211_BAND_5GHZ].channels = &channels[14];
1066 rt2x00dev->bands[NL80211_BAND_5GHZ].bitrates = &rates[4];
1067 hw->wiphy->bands[NL80211_BAND_5GHZ] =
1068 &rt2x00dev->bands[NL80211_BAND_5GHZ];
1069 memcpy(&rt2x00dev->bands[NL80211_BAND_5GHZ].ht_cap,
1070 &spec->ht, sizeof(spec->ht));
1071 }
1072
1073 return 0;
1074
1075 exit_free_channels:
1076 kfree(channels);
1077 rt2x00_err(rt2x00dev, "Allocation ieee80211 modes failed\n");
1078 return -ENOMEM;
1079 }
1080
rt2x00lib_remove_hw(struct rt2x00_dev * rt2x00dev)1081 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
1082 {
1083 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
1084 ieee80211_unregister_hw(rt2x00dev->hw);
1085
1086 if (likely(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ])) {
1087 kfree(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ]->channels);
1088 kfree(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ]->bitrates);
1089 rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ] = NULL;
1090 rt2x00dev->hw->wiphy->bands[NL80211_BAND_5GHZ] = NULL;
1091 }
1092
1093 kfree(rt2x00dev->spec.channels_info);
1094 kfree(rt2x00dev->chan_survey);
1095 }
1096
1097 static const struct ieee80211_tpt_blink rt2x00_tpt_blink[] = {
1098 { .throughput = 0 * 1024, .blink_time = 334 },
1099 { .throughput = 1 * 1024, .blink_time = 260 },
1100 { .throughput = 2 * 1024, .blink_time = 220 },
1101 { .throughput = 5 * 1024, .blink_time = 190 },
1102 { .throughput = 10 * 1024, .blink_time = 170 },
1103 { .throughput = 25 * 1024, .blink_time = 150 },
1104 { .throughput = 54 * 1024, .blink_time = 130 },
1105 { .throughput = 120 * 1024, .blink_time = 110 },
1106 { .throughput = 265 * 1024, .blink_time = 80 },
1107 { .throughput = 586 * 1024, .blink_time = 50 },
1108 };
1109
rt2x00lib_probe_hw(struct rt2x00_dev * rt2x00dev)1110 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
1111 {
1112 struct hw_mode_spec *spec = &rt2x00dev->spec;
1113 int status;
1114
1115 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
1116 return 0;
1117
1118 /*
1119 * Initialize HW modes.
1120 */
1121 status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
1122 if (status)
1123 return status;
1124
1125 /*
1126 * Initialize HW fields.
1127 */
1128 rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
1129
1130 /*
1131 * Initialize extra TX headroom required.
1132 */
1133 rt2x00dev->hw->extra_tx_headroom =
1134 max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM,
1135 rt2x00dev->extra_tx_headroom);
1136
1137 /*
1138 * Take TX headroom required for alignment into account.
1139 */
1140 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_L2PAD))
1141 rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE;
1142 else if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DMA))
1143 rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE;
1144
1145 /*
1146 * Tell mac80211 about the size of our private STA structure.
1147 */
1148 rt2x00dev->hw->sta_data_size = sizeof(struct rt2x00_sta);
1149
1150 /*
1151 * Allocate tx status FIFO for driver use.
1152 */
1153 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_TXSTATUS_FIFO)) {
1154 /*
1155 * Allocate the txstatus fifo. In the worst case the tx
1156 * status fifo has to hold the tx status of all entries
1157 * in all tx queues. Hence, calculate the kfifo size as
1158 * tx_queues * entry_num and round up to the nearest
1159 * power of 2.
1160 */
1161 int kfifo_size =
1162 roundup_pow_of_two(rt2x00dev->ops->tx_queues *
1163 rt2x00dev->tx->limit *
1164 sizeof(u32));
1165
1166 status = kfifo_alloc(&rt2x00dev->txstatus_fifo, kfifo_size,
1167 GFP_KERNEL);
1168 if (status)
1169 return status;
1170 }
1171
1172 /*
1173 * Initialize tasklets if used by the driver. Tasklets are
1174 * disabled until the interrupts are turned on. The driver
1175 * has to handle that.
1176 */
1177 #define RT2X00_TASKLET_INIT(taskletname) \
1178 if (rt2x00dev->ops->lib->taskletname) { \
1179 tasklet_setup(&rt2x00dev->taskletname, \
1180 rt2x00dev->ops->lib->taskletname); \
1181 }
1182
1183 RT2X00_TASKLET_INIT(txstatus_tasklet);
1184 RT2X00_TASKLET_INIT(pretbtt_tasklet);
1185 RT2X00_TASKLET_INIT(tbtt_tasklet);
1186 RT2X00_TASKLET_INIT(rxdone_tasklet);
1187 RT2X00_TASKLET_INIT(autowake_tasklet);
1188
1189 #undef RT2X00_TASKLET_INIT
1190
1191 ieee80211_create_tpt_led_trigger(rt2x00dev->hw,
1192 IEEE80211_TPT_LEDTRIG_FL_RADIO,
1193 rt2x00_tpt_blink,
1194 ARRAY_SIZE(rt2x00_tpt_blink));
1195
1196 /*
1197 * Register HW.
1198 */
1199 status = ieee80211_register_hw(rt2x00dev->hw);
1200 if (status)
1201 return status;
1202
1203 set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
1204
1205 return 0;
1206 }
1207
1208 /*
1209 * Initialization/uninitialization handlers.
1210 */
rt2x00lib_uninitialize(struct rt2x00_dev * rt2x00dev)1211 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
1212 {
1213 if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1214 return;
1215
1216 /*
1217 * Stop rfkill polling.
1218 */
1219 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1220 rt2x00rfkill_unregister(rt2x00dev);
1221
1222 /*
1223 * Allow the HW to uninitialize.
1224 */
1225 rt2x00dev->ops->lib->uninitialize(rt2x00dev);
1226
1227 /*
1228 * Free allocated queue entries.
1229 */
1230 rt2x00queue_uninitialize(rt2x00dev);
1231 }
1232
rt2x00lib_initialize(struct rt2x00_dev * rt2x00dev)1233 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
1234 {
1235 int status;
1236
1237 if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1238 return 0;
1239
1240 /*
1241 * Allocate all queue entries.
1242 */
1243 status = rt2x00queue_initialize(rt2x00dev);
1244 if (status)
1245 return status;
1246
1247 /*
1248 * Initialize the device.
1249 */
1250 status = rt2x00dev->ops->lib->initialize(rt2x00dev);
1251 if (status) {
1252 rt2x00queue_uninitialize(rt2x00dev);
1253 return status;
1254 }
1255
1256 set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
1257
1258 /*
1259 * Start rfkill polling.
1260 */
1261 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1262 rt2x00rfkill_register(rt2x00dev);
1263
1264 return 0;
1265 }
1266
rt2x00lib_start(struct rt2x00_dev * rt2x00dev)1267 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1268 {
1269 int retval = 0;
1270
1271 /*
1272 * If this is the first interface which is added,
1273 * we should load the firmware now.
1274 */
1275 retval = rt2x00lib_load_firmware(rt2x00dev);
1276 if (retval)
1277 goto out;
1278
1279 /*
1280 * Initialize the device.
1281 */
1282 retval = rt2x00lib_initialize(rt2x00dev);
1283 if (retval)
1284 goto out;
1285
1286 rt2x00dev->intf_ap_count = 0;
1287 rt2x00dev->intf_sta_count = 0;
1288 rt2x00dev->intf_associated = 0;
1289
1290 /* Enable the radio */
1291 retval = rt2x00lib_enable_radio(rt2x00dev);
1292 if (retval)
1293 goto out;
1294
1295 set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
1296
1297 out:
1298 return retval;
1299 }
1300
rt2x00lib_stop(struct rt2x00_dev * rt2x00dev)1301 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1302 {
1303 if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1304 return;
1305
1306 /*
1307 * Perhaps we can add something smarter here,
1308 * but for now just disabling the radio should do.
1309 */
1310 rt2x00lib_disable_radio(rt2x00dev);
1311
1312 rt2x00dev->intf_ap_count = 0;
1313 rt2x00dev->intf_sta_count = 0;
1314 rt2x00dev->intf_associated = 0;
1315 }
1316
rt2x00lib_set_if_combinations(struct rt2x00_dev * rt2x00dev)1317 static inline void rt2x00lib_set_if_combinations(struct rt2x00_dev *rt2x00dev)
1318 {
1319 struct ieee80211_iface_limit *if_limit;
1320 struct ieee80211_iface_combination *if_combination;
1321
1322 if (rt2x00dev->ops->max_ap_intf < 2)
1323 return;
1324
1325 /*
1326 * Build up AP interface limits structure.
1327 */
1328 if_limit = &rt2x00dev->if_limits_ap;
1329 if_limit->max = rt2x00dev->ops->max_ap_intf;
1330 if_limit->types = BIT(NL80211_IFTYPE_AP);
1331 #ifdef CONFIG_MAC80211_MESH
1332 if_limit->types |= BIT(NL80211_IFTYPE_MESH_POINT);
1333 #endif
1334
1335 /*
1336 * Build up AP interface combinations structure.
1337 */
1338 if_combination = &rt2x00dev->if_combinations[IF_COMB_AP];
1339 if_combination->limits = if_limit;
1340 if_combination->n_limits = 1;
1341 if_combination->max_interfaces = if_limit->max;
1342 if_combination->num_different_channels = 1;
1343
1344 /*
1345 * Finally, specify the possible combinations to mac80211.
1346 */
1347 rt2x00dev->hw->wiphy->iface_combinations = rt2x00dev->if_combinations;
1348 rt2x00dev->hw->wiphy->n_iface_combinations = 1;
1349 }
1350
rt2x00dev_extra_tx_headroom(struct rt2x00_dev * rt2x00dev)1351 static unsigned int rt2x00dev_extra_tx_headroom(struct rt2x00_dev *rt2x00dev)
1352 {
1353 if (WARN_ON(!rt2x00dev->tx))
1354 return 0;
1355
1356 if (rt2x00_is_usb(rt2x00dev))
1357 return rt2x00dev->tx[0].winfo_size + rt2x00dev->tx[0].desc_size;
1358
1359 return rt2x00dev->tx[0].winfo_size;
1360 }
1361
1362 /*
1363 * driver allocation handlers.
1364 */
rt2x00lib_probe_dev(struct rt2x00_dev * rt2x00dev)1365 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1366 {
1367 int retval = -ENOMEM;
1368
1369 /*
1370 * Set possible interface combinations.
1371 */
1372 rt2x00lib_set_if_combinations(rt2x00dev);
1373
1374 /*
1375 * Allocate the driver data memory, if necessary.
1376 */
1377 if (rt2x00dev->ops->drv_data_size > 0) {
1378 rt2x00dev->drv_data = kzalloc(rt2x00dev->ops->drv_data_size,
1379 GFP_KERNEL);
1380 if (!rt2x00dev->drv_data) {
1381 retval = -ENOMEM;
1382 goto exit;
1383 }
1384 }
1385
1386 spin_lock_init(&rt2x00dev->irqmask_lock);
1387 mutex_init(&rt2x00dev->csr_mutex);
1388 mutex_init(&rt2x00dev->conf_mutex);
1389 INIT_LIST_HEAD(&rt2x00dev->bar_list);
1390 spin_lock_init(&rt2x00dev->bar_list_lock);
1391 hrtimer_init(&rt2x00dev->txstatus_timer, CLOCK_MONOTONIC,
1392 HRTIMER_MODE_REL);
1393
1394 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1395
1396 /*
1397 * Make room for rt2x00_intf inside the per-interface
1398 * structure ieee80211_vif.
1399 */
1400 rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1401
1402 /*
1403 * rt2x00 devices can only use the last n bits of the MAC address
1404 * for virtual interfaces.
1405 */
1406 rt2x00dev->hw->wiphy->addr_mask[ETH_ALEN - 1] =
1407 (rt2x00dev->ops->max_ap_intf - 1);
1408
1409 /*
1410 * Initialize work.
1411 */
1412 rt2x00dev->workqueue =
1413 alloc_ordered_workqueue("%s", 0, wiphy_name(rt2x00dev->hw->wiphy));
1414 if (!rt2x00dev->workqueue) {
1415 retval = -ENOMEM;
1416 goto exit;
1417 }
1418
1419 INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1420 INIT_DELAYED_WORK(&rt2x00dev->autowakeup_work, rt2x00lib_autowakeup);
1421 INIT_WORK(&rt2x00dev->sleep_work, rt2x00lib_sleep);
1422
1423 /*
1424 * Let the driver probe the device to detect the capabilities.
1425 */
1426 retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1427 if (retval) {
1428 rt2x00_err(rt2x00dev, "Failed to allocate device\n");
1429 goto exit;
1430 }
1431
1432 /*
1433 * Allocate queue array.
1434 */
1435 retval = rt2x00queue_allocate(rt2x00dev);
1436 if (retval)
1437 goto exit;
1438
1439 /* Cache TX headroom value */
1440 rt2x00dev->extra_tx_headroom = rt2x00dev_extra_tx_headroom(rt2x00dev);
1441
1442 /*
1443 * Determine which operating modes are supported, all modes
1444 * which require beaconing, depend on the availability of
1445 * beacon entries.
1446 */
1447 rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
1448 if (rt2x00dev->bcn->limit > 0)
1449 rt2x00dev->hw->wiphy->interface_modes |=
1450 BIT(NL80211_IFTYPE_ADHOC) |
1451 #ifdef CONFIG_MAC80211_MESH
1452 BIT(NL80211_IFTYPE_MESH_POINT) |
1453 #endif
1454 BIT(NL80211_IFTYPE_AP);
1455
1456 rt2x00dev->hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
1457
1458 wiphy_ext_feature_set(rt2x00dev->hw->wiphy,
1459 NL80211_EXT_FEATURE_CQM_RSSI_LIST);
1460
1461 /*
1462 * Initialize ieee80211 structure.
1463 */
1464 retval = rt2x00lib_probe_hw(rt2x00dev);
1465 if (retval) {
1466 rt2x00_err(rt2x00dev, "Failed to initialize hw\n");
1467 goto exit;
1468 }
1469
1470 /*
1471 * Register extra components.
1472 */
1473 rt2x00link_register(rt2x00dev);
1474 rt2x00leds_register(rt2x00dev);
1475 rt2x00debug_register(rt2x00dev);
1476
1477 /*
1478 * Start rfkill polling.
1479 */
1480 if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1481 rt2x00rfkill_register(rt2x00dev);
1482
1483 return 0;
1484
1485 exit:
1486 rt2x00lib_remove_dev(rt2x00dev);
1487
1488 return retval;
1489 }
1490 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1491
rt2x00lib_remove_dev(struct rt2x00_dev * rt2x00dev)1492 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1493 {
1494 clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1495
1496 /*
1497 * Stop rfkill polling.
1498 */
1499 if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1500 rt2x00rfkill_unregister(rt2x00dev);
1501
1502 /*
1503 * Disable radio.
1504 */
1505 rt2x00lib_disable_radio(rt2x00dev);
1506
1507 /*
1508 * Stop all work.
1509 */
1510 cancel_work_sync(&rt2x00dev->intf_work);
1511 cancel_delayed_work_sync(&rt2x00dev->autowakeup_work);
1512 cancel_work_sync(&rt2x00dev->sleep_work);
1513
1514 hrtimer_cancel(&rt2x00dev->txstatus_timer);
1515
1516 /*
1517 * Kill the tx status tasklet.
1518 */
1519 tasklet_kill(&rt2x00dev->txstatus_tasklet);
1520 tasklet_kill(&rt2x00dev->pretbtt_tasklet);
1521 tasklet_kill(&rt2x00dev->tbtt_tasklet);
1522 tasklet_kill(&rt2x00dev->rxdone_tasklet);
1523 tasklet_kill(&rt2x00dev->autowake_tasklet);
1524
1525 /*
1526 * Uninitialize device.
1527 */
1528 rt2x00lib_uninitialize(rt2x00dev);
1529
1530 if (rt2x00dev->workqueue)
1531 destroy_workqueue(rt2x00dev->workqueue);
1532
1533 /*
1534 * Free the tx status fifo.
1535 */
1536 kfifo_free(&rt2x00dev->txstatus_fifo);
1537
1538 /*
1539 * Free extra components
1540 */
1541 rt2x00debug_deregister(rt2x00dev);
1542 rt2x00leds_unregister(rt2x00dev);
1543
1544 /*
1545 * Free ieee80211_hw memory.
1546 */
1547 rt2x00lib_remove_hw(rt2x00dev);
1548
1549 /*
1550 * Free firmware image.
1551 */
1552 rt2x00lib_free_firmware(rt2x00dev);
1553
1554 /*
1555 * Free queue structures.
1556 */
1557 rt2x00queue_free(rt2x00dev);
1558
1559 /*
1560 * Free the driver data.
1561 */
1562 kfree(rt2x00dev->drv_data);
1563 }
1564 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1565
1566 /*
1567 * Device state handlers
1568 */
rt2x00lib_suspend(struct rt2x00_dev * rt2x00dev)1569 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev)
1570 {
1571 rt2x00_dbg(rt2x00dev, "Going to sleep\n");
1572
1573 /*
1574 * Prevent mac80211 from accessing driver while suspended.
1575 */
1576 if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
1577 return 0;
1578
1579 /*
1580 * Cleanup as much as possible.
1581 */
1582 rt2x00lib_uninitialize(rt2x00dev);
1583
1584 /*
1585 * Suspend/disable extra components.
1586 */
1587 rt2x00leds_suspend(rt2x00dev);
1588 rt2x00debug_deregister(rt2x00dev);
1589
1590 /*
1591 * Set device mode to sleep for power management,
1592 * on some hardware this call seems to consistently fail.
1593 * From the specifications it is hard to tell why it fails,
1594 * and if this is a "bad thing".
1595 * Overall it is safe to just ignore the failure and
1596 * continue suspending. The only downside is that the
1597 * device will not be in optimal power save mode, but with
1598 * the radio and the other components already disabled the
1599 * device is as good as disabled.
1600 */
1601 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
1602 rt2x00_warn(rt2x00dev, "Device failed to enter sleep state, continue suspending\n");
1603
1604 return 0;
1605 }
1606 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1607
rt2x00lib_resume(struct rt2x00_dev * rt2x00dev)1608 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1609 {
1610 rt2x00_dbg(rt2x00dev, "Waking up\n");
1611
1612 /*
1613 * Restore/enable extra components.
1614 */
1615 rt2x00debug_register(rt2x00dev);
1616 rt2x00leds_resume(rt2x00dev);
1617
1618 /*
1619 * We are ready again to receive requests from mac80211.
1620 */
1621 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1622
1623 return 0;
1624 }
1625 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1626
1627 /*
1628 * rt2x00lib module information.
1629 */
1630 MODULE_AUTHOR(DRV_PROJECT);
1631 MODULE_VERSION(DRV_VERSION);
1632 MODULE_DESCRIPTION("rt2x00 library");
1633 MODULE_LICENSE("GPL");
1634