1 /*
2 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4 Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
5 <http://rt2x00.serialmonkey.com>
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, see <http://www.gnu.org/licenses/>.
19 */
20
21 /*
22 Module: rt2x00
23 Abstract: rt2x00 global information.
24 */
25
26 #ifndef RT2X00_H
27 #define RT2X00_H
28
29 #include <linux/bitops.h>
30 #include <linux/interrupt.h>
31 #include <linux/skbuff.h>
32 #include <linux/workqueue.h>
33 #include <linux/firmware.h>
34 #include <linux/leds.h>
35 #include <linux/mutex.h>
36 #include <linux/etherdevice.h>
37 #include <linux/input-polldev.h>
38 #include <linux/kfifo.h>
39 #include <linux/hrtimer.h>
40 #include <linux/average.h>
41 #include <linux/usb.h>
42 #include <linux/clk.h>
43
44 #include <net/mac80211.h>
45
46 #include "rt2x00debug.h"
47 #include "rt2x00dump.h"
48 #include "rt2x00leds.h"
49 #include "rt2x00reg.h"
50 #include "rt2x00queue.h"
51
52 /*
53 * Module information.
54 */
55 #define DRV_VERSION "2.3.0"
56 #define DRV_PROJECT "http://rt2x00.serialmonkey.com"
57
58 /* Debug definitions.
59 * Debug output has to be enabled during compile time.
60 */
61 #ifdef CONFIG_RT2X00_DEBUG
62 #define DEBUG
63 #endif /* CONFIG_RT2X00_DEBUG */
64
65 /* Utility printing macros
66 * rt2x00_probe_err is for messages when rt2x00_dev is uninitialized
67 */
68 #define rt2x00_probe_err(fmt, ...) \
69 printk(KERN_ERR KBUILD_MODNAME ": %s: Error - " fmt, \
70 __func__, ##__VA_ARGS__)
71 #define rt2x00_err(dev, fmt, ...) \
72 wiphy_err((dev)->hw->wiphy, "%s: Error - " fmt, \
73 __func__, ##__VA_ARGS__)
74 #define rt2x00_warn(dev, fmt, ...) \
75 wiphy_warn((dev)->hw->wiphy, "%s: Warning - " fmt, \
76 __func__, ##__VA_ARGS__)
77 #define rt2x00_info(dev, fmt, ...) \
78 wiphy_info((dev)->hw->wiphy, "%s: Info - " fmt, \
79 __func__, ##__VA_ARGS__)
80
81 /* Various debug levels */
82 #define rt2x00_dbg(dev, fmt, ...) \
83 wiphy_dbg((dev)->hw->wiphy, "%s: Debug - " fmt, \
84 __func__, ##__VA_ARGS__)
85 #define rt2x00_eeprom_dbg(dev, fmt, ...) \
86 wiphy_dbg((dev)->hw->wiphy, "%s: EEPROM recovery - " fmt, \
87 __func__, ##__VA_ARGS__)
88
89 /*
90 * Duration calculations
91 * The rate variable passed is: 100kbs.
92 * To convert from bytes to bits we multiply size with 8,
93 * then the size is multiplied with 10 to make the
94 * real rate -> rate argument correction.
95 */
96 #define GET_DURATION(__size, __rate) (((__size) * 8 * 10) / (__rate))
97 #define GET_DURATION_RES(__size, __rate)(((__size) * 8 * 10) % (__rate))
98
99 /*
100 * Determine the number of L2 padding bytes required between the header and
101 * the payload.
102 */
103 #define L2PAD_SIZE(__hdrlen) (-(__hdrlen) & 3)
104
105 /*
106 * Determine the alignment requirement,
107 * to make sure the 802.11 payload is padded to a 4-byte boundrary
108 * we must determine the address of the payload and calculate the
109 * amount of bytes needed to move the data.
110 */
111 #define ALIGN_SIZE(__skb, __header) \
112 (((unsigned long)((__skb)->data + (__header))) & 3)
113
114 /*
115 * Constants for extra TX headroom for alignment purposes.
116 */
117 #define RT2X00_ALIGN_SIZE 4 /* Only whole frame needs alignment */
118 #define RT2X00_L2PAD_SIZE 8 /* Both header & payload need alignment */
119
120 /*
121 * Standard timing and size defines.
122 * These values should follow the ieee80211 specifications.
123 */
124 #define ACK_SIZE 14
125 #define IEEE80211_HEADER 24
126 #define PLCP 48
127 #define BEACON 100
128 #define PREAMBLE 144
129 #define SHORT_PREAMBLE 72
130 #define SLOT_TIME 20
131 #define SHORT_SLOT_TIME 9
132 #define SIFS 10
133 #define PIFS (SIFS + SLOT_TIME)
134 #define SHORT_PIFS (SIFS + SHORT_SLOT_TIME)
135 #define DIFS (PIFS + SLOT_TIME)
136 #define SHORT_DIFS (SHORT_PIFS + SHORT_SLOT_TIME)
137 #define EIFS (SIFS + DIFS + \
138 GET_DURATION(IEEE80211_HEADER + ACK_SIZE, 10))
139 #define SHORT_EIFS (SIFS + SHORT_DIFS + \
140 GET_DURATION(IEEE80211_HEADER + ACK_SIZE, 10))
141
142 enum rt2x00_chip_intf {
143 RT2X00_CHIP_INTF_PCI,
144 RT2X00_CHIP_INTF_PCIE,
145 RT2X00_CHIP_INTF_USB,
146 RT2X00_CHIP_INTF_SOC,
147 };
148
149 /*
150 * Chipset identification
151 * The chipset on the device is composed of a RT and RF chip.
152 * The chipset combination is important for determining device capabilities.
153 */
154 struct rt2x00_chip {
155 u16 rt;
156 #define RT2460 0x2460
157 #define RT2560 0x2560
158 #define RT2570 0x2570
159 #define RT2661 0x2661
160 #define RT2573 0x2573
161 #define RT2860 0x2860 /* 2.4GHz */
162 #define RT2872 0x2872 /* WSOC */
163 #define RT2883 0x2883 /* WSOC */
164 #define RT3070 0x3070
165 #define RT3071 0x3071
166 #define RT3090 0x3090 /* 2.4GHz PCIe */
167 #define RT3290 0x3290
168 #define RT3352 0x3352 /* WSOC */
169 #define RT3390 0x3390
170 #define RT3572 0x3572
171 #define RT3593 0x3593
172 #define RT3883 0x3883 /* WSOC */
173 #define RT5350 0x5350 /* WSOC 2.4GHz */
174 #define RT5390 0x5390 /* 2.4GHz */
175 #define RT5392 0x5392 /* 2.4GHz */
176 #define RT5592 0x5592
177 #define RT6352 0x6352 /* WSOC 2.4GHz */
178
179 u16 rf;
180 u16 rev;
181
182 enum rt2x00_chip_intf intf;
183 };
184
185 /*
186 * RF register values that belong to a particular channel.
187 */
188 struct rf_channel {
189 int channel;
190 u32 rf1;
191 u32 rf2;
192 u32 rf3;
193 u32 rf4;
194 };
195
196 /*
197 * Channel information structure
198 */
199 struct channel_info {
200 unsigned int flags;
201 #define GEOGRAPHY_ALLOWED 0x00000001
202
203 short max_power;
204 short default_power1;
205 short default_power2;
206 short default_power3;
207 };
208
209 /*
210 * Antenna setup values.
211 */
212 struct antenna_setup {
213 enum antenna rx;
214 enum antenna tx;
215 u8 rx_chain_num;
216 u8 tx_chain_num;
217 };
218
219 /*
220 * Quality statistics about the currently active link.
221 */
222 struct link_qual {
223 /*
224 * Statistics required for Link tuning by driver
225 * The rssi value is provided by rt2x00lib during the
226 * link_tuner() callback function.
227 * The false_cca field is filled during the link_stats()
228 * callback function and could be used during the
229 * link_tuner() callback function.
230 */
231 int rssi;
232 int false_cca;
233
234 /*
235 * VGC levels
236 * Hardware driver will tune the VGC level during each call
237 * to the link_tuner() callback function. This vgc_level is
238 * is determined based on the link quality statistics like
239 * average RSSI and the false CCA count.
240 *
241 * In some cases the drivers need to differentiate between
242 * the currently "desired" VGC level and the level configured
243 * in the hardware. The latter is important to reduce the
244 * number of BBP register reads to reduce register access
245 * overhead. For this reason we store both values here.
246 */
247 u8 vgc_level;
248 u8 vgc_level_reg;
249
250 /*
251 * Statistics required for Signal quality calculation.
252 * These fields might be changed during the link_stats()
253 * callback function.
254 */
255 int rx_success;
256 int rx_failed;
257 int tx_success;
258 int tx_failed;
259 };
260
261 DECLARE_EWMA(rssi, 10, 8)
262
263 /*
264 * Antenna settings about the currently active link.
265 */
266 struct link_ant {
267 /*
268 * Antenna flags
269 */
270 unsigned int flags;
271 #define ANTENNA_RX_DIVERSITY 0x00000001
272 #define ANTENNA_TX_DIVERSITY 0x00000002
273 #define ANTENNA_MODE_SAMPLE 0x00000004
274
275 /*
276 * Currently active TX/RX antenna setup.
277 * When software diversity is used, this will indicate
278 * which antenna is actually used at this time.
279 */
280 struct antenna_setup active;
281
282 /*
283 * RSSI history information for the antenna.
284 * Used to determine when to switch antenna
285 * when using software diversity.
286 */
287 int rssi_history;
288
289 /*
290 * Current RSSI average of the currently active antenna.
291 * Similar to the avg_rssi in the link_qual structure
292 * this value is updated by using the walking average.
293 */
294 struct ewma_rssi rssi_ant;
295 };
296
297 /*
298 * To optimize the quality of the link we need to store
299 * the quality of received frames and periodically
300 * optimize the link.
301 */
302 struct link {
303 /*
304 * Link tuner counter
305 * The number of times the link has been tuned
306 * since the radio has been switched on.
307 */
308 u32 count;
309
310 /*
311 * Quality measurement values.
312 */
313 struct link_qual qual;
314
315 /*
316 * TX/RX antenna setup.
317 */
318 struct link_ant ant;
319
320 /*
321 * Currently active average RSSI value
322 */
323 struct ewma_rssi avg_rssi;
324
325 /*
326 * Work structure for scheduling periodic link tuning.
327 */
328 struct delayed_work work;
329
330 /*
331 * Work structure for scheduling periodic watchdog monitoring.
332 * This work must be scheduled on the kernel workqueue, while
333 * all other work structures must be queued on the mac80211
334 * workqueue. This guarantees that the watchdog can schedule
335 * other work structures and wait for their completion in order
336 * to bring the device/driver back into the desired state.
337 */
338 struct delayed_work watchdog_work;
339
340 /*
341 * Work structure for scheduling periodic AGC adjustments.
342 */
343 struct delayed_work agc_work;
344
345 /*
346 * Work structure for scheduling periodic VCO calibration.
347 */
348 struct delayed_work vco_work;
349 };
350
351 enum rt2x00_delayed_flags {
352 DELAYED_UPDATE_BEACON,
353 };
354
355 /*
356 * Interface structure
357 * Per interface configuration details, this structure
358 * is allocated as the private data for ieee80211_vif.
359 */
360 struct rt2x00_intf {
361 /*
362 * beacon->skb must be protected with the mutex.
363 */
364 struct mutex beacon_skb_mutex;
365
366 /*
367 * Entry in the beacon queue which belongs to
368 * this interface. Each interface has its own
369 * dedicated beacon entry.
370 */
371 struct queue_entry *beacon;
372 bool enable_beacon;
373
374 /*
375 * Actions that needed rescheduling.
376 */
377 unsigned long delayed_flags;
378
379 /*
380 * Software sequence counter, this is only required
381 * for hardware which doesn't support hardware
382 * sequence counting.
383 */
384 atomic_t seqno;
385 };
386
vif_to_intf(struct ieee80211_vif * vif)387 static inline struct rt2x00_intf* vif_to_intf(struct ieee80211_vif *vif)
388 {
389 return (struct rt2x00_intf *)vif->drv_priv;
390 }
391
392 /**
393 * struct hw_mode_spec: Hardware specifications structure
394 *
395 * Details about the supported modes, rates and channels
396 * of a particular chipset. This is used by rt2x00lib
397 * to build the ieee80211_hw_mode array for mac80211.
398 *
399 * @supported_bands: Bitmask contained the supported bands (2.4GHz, 5.2GHz).
400 * @supported_rates: Rate types which are supported (CCK, OFDM).
401 * @num_channels: Number of supported channels. This is used as array size
402 * for @tx_power_a, @tx_power_bg and @channels.
403 * @channels: Device/chipset specific channel values (See &struct rf_channel).
404 * @channels_info: Additional information for channels (See &struct channel_info).
405 * @ht: Driver HT Capabilities (See &ieee80211_sta_ht_cap).
406 */
407 struct hw_mode_spec {
408 unsigned int supported_bands;
409 #define SUPPORT_BAND_2GHZ 0x00000001
410 #define SUPPORT_BAND_5GHZ 0x00000002
411
412 unsigned int supported_rates;
413 #define SUPPORT_RATE_CCK 0x00000001
414 #define SUPPORT_RATE_OFDM 0x00000002
415
416 unsigned int num_channels;
417 const struct rf_channel *channels;
418 const struct channel_info *channels_info;
419
420 struct ieee80211_sta_ht_cap ht;
421 };
422
423 /*
424 * Configuration structure wrapper around the
425 * mac80211 configuration structure.
426 * When mac80211 configures the driver, rt2x00lib
427 * can precalculate values which are equal for all
428 * rt2x00 drivers. Those values can be stored in here.
429 */
430 struct rt2x00lib_conf {
431 struct ieee80211_conf *conf;
432
433 struct rf_channel rf;
434 struct channel_info channel;
435 };
436
437 /*
438 * Configuration structure for erp settings.
439 */
440 struct rt2x00lib_erp {
441 int short_preamble;
442 int cts_protection;
443
444 u32 basic_rates;
445
446 int slot_time;
447
448 short sifs;
449 short pifs;
450 short difs;
451 short eifs;
452
453 u16 beacon_int;
454 u16 ht_opmode;
455 };
456
457 /*
458 * Configuration structure for hardware encryption.
459 */
460 struct rt2x00lib_crypto {
461 enum cipher cipher;
462
463 enum set_key_cmd cmd;
464 const u8 *address;
465
466 u32 bssidx;
467
468 u8 key[16];
469 u8 tx_mic[8];
470 u8 rx_mic[8];
471
472 int wcid;
473 };
474
475 /*
476 * Configuration structure wrapper around the
477 * rt2x00 interface configuration handler.
478 */
479 struct rt2x00intf_conf {
480 /*
481 * Interface type
482 */
483 enum nl80211_iftype type;
484
485 /*
486 * TSF sync value, this is dependent on the operation type.
487 */
488 enum tsf_sync sync;
489
490 /*
491 * The MAC and BSSID addresses are simple array of bytes,
492 * these arrays are little endian, so when sending the addresses
493 * to the drivers, copy the it into a endian-signed variable.
494 *
495 * Note that all devices (except rt2500usb) have 32 bits
496 * register word sizes. This means that whatever variable we
497 * pass _must_ be a multiple of 32 bits. Otherwise the device
498 * might not accept what we are sending to it.
499 * This will also make it easier for the driver to write
500 * the data to the device.
501 */
502 __le32 mac[2];
503 __le32 bssid[2];
504 };
505
506 /*
507 * Private structure for storing STA details
508 * wcid: Wireless Client ID
509 */
510 struct rt2x00_sta {
511 int wcid;
512 };
513
sta_to_rt2x00_sta(struct ieee80211_sta * sta)514 static inline struct rt2x00_sta* sta_to_rt2x00_sta(struct ieee80211_sta *sta)
515 {
516 return (struct rt2x00_sta *)sta->drv_priv;
517 }
518
519 /*
520 * rt2x00lib callback functions.
521 */
522 struct rt2x00lib_ops {
523 /*
524 * Interrupt handlers.
525 */
526 irq_handler_t irq_handler;
527
528 /*
529 * TX status tasklet handler.
530 */
531 void (*txstatus_tasklet) (unsigned long data);
532 void (*pretbtt_tasklet) (unsigned long data);
533 void (*tbtt_tasklet) (unsigned long data);
534 void (*rxdone_tasklet) (unsigned long data);
535 void (*autowake_tasklet) (unsigned long data);
536
537 /*
538 * Device init handlers.
539 */
540 int (*probe_hw) (struct rt2x00_dev *rt2x00dev);
541 char *(*get_firmware_name) (struct rt2x00_dev *rt2x00dev);
542 int (*check_firmware) (struct rt2x00_dev *rt2x00dev,
543 const u8 *data, const size_t len);
544 int (*load_firmware) (struct rt2x00_dev *rt2x00dev,
545 const u8 *data, const size_t len);
546
547 /*
548 * Device initialization/deinitialization handlers.
549 */
550 int (*initialize) (struct rt2x00_dev *rt2x00dev);
551 void (*uninitialize) (struct rt2x00_dev *rt2x00dev);
552
553 /*
554 * queue initialization handlers
555 */
556 bool (*get_entry_state) (struct queue_entry *entry);
557 void (*clear_entry) (struct queue_entry *entry);
558
559 /*
560 * Radio control handlers.
561 */
562 int (*set_device_state) (struct rt2x00_dev *rt2x00dev,
563 enum dev_state state);
564 int (*rfkill_poll) (struct rt2x00_dev *rt2x00dev);
565 void (*link_stats) (struct rt2x00_dev *rt2x00dev,
566 struct link_qual *qual);
567 void (*reset_tuner) (struct rt2x00_dev *rt2x00dev,
568 struct link_qual *qual);
569 void (*link_tuner) (struct rt2x00_dev *rt2x00dev,
570 struct link_qual *qual, const u32 count);
571 void (*gain_calibration) (struct rt2x00_dev *rt2x00dev);
572 void (*vco_calibration) (struct rt2x00_dev *rt2x00dev);
573
574 /*
575 * Data queue handlers.
576 */
577 void (*watchdog) (struct rt2x00_dev *rt2x00dev);
578 void (*start_queue) (struct data_queue *queue);
579 void (*kick_queue) (struct data_queue *queue);
580 void (*stop_queue) (struct data_queue *queue);
581 void (*flush_queue) (struct data_queue *queue, bool drop);
582 void (*tx_dma_done) (struct queue_entry *entry);
583
584 /*
585 * TX control handlers
586 */
587 void (*write_tx_desc) (struct queue_entry *entry,
588 struct txentry_desc *txdesc);
589 void (*write_tx_data) (struct queue_entry *entry,
590 struct txentry_desc *txdesc);
591 void (*write_beacon) (struct queue_entry *entry,
592 struct txentry_desc *txdesc);
593 void (*clear_beacon) (struct queue_entry *entry);
594 int (*get_tx_data_len) (struct queue_entry *entry);
595
596 /*
597 * RX control handlers
598 */
599 void (*fill_rxdone) (struct queue_entry *entry,
600 struct rxdone_entry_desc *rxdesc);
601
602 /*
603 * Configuration handlers.
604 */
605 int (*config_shared_key) (struct rt2x00_dev *rt2x00dev,
606 struct rt2x00lib_crypto *crypto,
607 struct ieee80211_key_conf *key);
608 int (*config_pairwise_key) (struct rt2x00_dev *rt2x00dev,
609 struct rt2x00lib_crypto *crypto,
610 struct ieee80211_key_conf *key);
611 void (*config_filter) (struct rt2x00_dev *rt2x00dev,
612 const unsigned int filter_flags);
613 void (*config_intf) (struct rt2x00_dev *rt2x00dev,
614 struct rt2x00_intf *intf,
615 struct rt2x00intf_conf *conf,
616 const unsigned int flags);
617 #define CONFIG_UPDATE_TYPE ( 1 << 1 )
618 #define CONFIG_UPDATE_MAC ( 1 << 2 )
619 #define CONFIG_UPDATE_BSSID ( 1 << 3 )
620
621 void (*config_erp) (struct rt2x00_dev *rt2x00dev,
622 struct rt2x00lib_erp *erp,
623 u32 changed);
624 void (*config_ant) (struct rt2x00_dev *rt2x00dev,
625 struct antenna_setup *ant);
626 void (*config) (struct rt2x00_dev *rt2x00dev,
627 struct rt2x00lib_conf *libconf,
628 const unsigned int changed_flags);
629 int (*sta_add) (struct rt2x00_dev *rt2x00dev,
630 struct ieee80211_vif *vif,
631 struct ieee80211_sta *sta);
632 int (*sta_remove) (struct rt2x00_dev *rt2x00dev,
633 struct ieee80211_sta *sta);
634 };
635
636 /*
637 * rt2x00 driver callback operation structure.
638 */
639 struct rt2x00_ops {
640 const char *name;
641 const unsigned int drv_data_size;
642 const unsigned int max_ap_intf;
643 const unsigned int eeprom_size;
644 const unsigned int rf_size;
645 const unsigned int tx_queues;
646 void (*queue_init)(struct data_queue *queue);
647 const struct rt2x00lib_ops *lib;
648 const void *drv;
649 const struct ieee80211_ops *hw;
650 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
651 const struct rt2x00debug *debugfs;
652 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
653 };
654
655 /*
656 * rt2x00 state flags
657 */
658 enum rt2x00_state_flags {
659 /*
660 * Device flags
661 */
662 DEVICE_STATE_PRESENT,
663 DEVICE_STATE_REGISTERED_HW,
664 DEVICE_STATE_INITIALIZED,
665 DEVICE_STATE_STARTED,
666 DEVICE_STATE_ENABLED_RADIO,
667 DEVICE_STATE_SCANNING,
668
669 /*
670 * Driver configuration
671 */
672 CONFIG_CHANNEL_HT40,
673 CONFIG_POWERSAVING,
674 CONFIG_HT_DISABLED,
675 CONFIG_QOS_DISABLED,
676 CONFIG_MONITORING,
677
678 /*
679 * Mark we currently are sequentially reading TX_STA_FIFO register
680 * FIXME: this is for only rt2800usb, should go to private data
681 */
682 TX_STATUS_READING,
683 };
684
685 /*
686 * rt2x00 capability flags
687 */
688 enum rt2x00_capability_flags {
689 /*
690 * Requirements
691 */
692 REQUIRE_FIRMWARE,
693 REQUIRE_BEACON_GUARD,
694 REQUIRE_ATIM_QUEUE,
695 REQUIRE_DMA,
696 REQUIRE_COPY_IV,
697 REQUIRE_L2PAD,
698 REQUIRE_TXSTATUS_FIFO,
699 REQUIRE_TASKLET_CONTEXT,
700 REQUIRE_SW_SEQNO,
701 REQUIRE_HT_TX_DESC,
702 REQUIRE_PS_AUTOWAKE,
703 REQUIRE_DELAYED_RFKILL,
704
705 /*
706 * Capabilities
707 */
708 CAPABILITY_HW_BUTTON,
709 CAPABILITY_HW_CRYPTO,
710 CAPABILITY_POWER_LIMIT,
711 CAPABILITY_CONTROL_FILTERS,
712 CAPABILITY_CONTROL_FILTER_PSPOLL,
713 CAPABILITY_PRE_TBTT_INTERRUPT,
714 CAPABILITY_LINK_TUNING,
715 CAPABILITY_FRAME_TYPE,
716 CAPABILITY_RF_SEQUENCE,
717 CAPABILITY_EXTERNAL_LNA_A,
718 CAPABILITY_EXTERNAL_LNA_BG,
719 CAPABILITY_DOUBLE_ANTENNA,
720 CAPABILITY_BT_COEXIST,
721 CAPABILITY_VCO_RECALIBRATION,
722 CAPABILITY_EXTERNAL_PA_TX0,
723 CAPABILITY_EXTERNAL_PA_TX1,
724 };
725
726 /*
727 * Interface combinations
728 */
729 enum {
730 IF_COMB_AP = 0,
731 NUM_IF_COMB,
732 };
733
734 /*
735 * rt2x00 device structure.
736 */
737 struct rt2x00_dev {
738 /*
739 * Device structure.
740 * The structure stored in here depends on the
741 * system bus (PCI or USB).
742 * When accessing this variable, the rt2x00dev_{pci,usb}
743 * macros should be used for correct typecasting.
744 */
745 struct device *dev;
746
747 /*
748 * Callback functions.
749 */
750 const struct rt2x00_ops *ops;
751
752 /*
753 * Driver data.
754 */
755 void *drv_data;
756
757 /*
758 * IEEE80211 control structure.
759 */
760 struct ieee80211_hw *hw;
761 struct ieee80211_supported_band bands[NUM_NL80211_BANDS];
762 enum nl80211_band curr_band;
763 int curr_freq;
764
765 /*
766 * If enabled, the debugfs interface structures
767 * required for deregistration of debugfs.
768 */
769 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
770 struct rt2x00debug_intf *debugfs_intf;
771 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
772
773 /*
774 * LED structure for changing the LED status
775 * by mac8011 or the kernel.
776 */
777 #ifdef CONFIG_RT2X00_LIB_LEDS
778 struct rt2x00_led led_radio;
779 struct rt2x00_led led_assoc;
780 struct rt2x00_led led_qual;
781 u16 led_mcu_reg;
782 #endif /* CONFIG_RT2X00_LIB_LEDS */
783
784 /*
785 * Device state flags.
786 * In these flags the current status is stored.
787 * Access to these flags should occur atomically.
788 */
789 unsigned long flags;
790
791 /*
792 * Device capabiltiy flags.
793 * In these flags the device/driver capabilities are stored.
794 * Access to these flags should occur non-atomically.
795 */
796 unsigned long cap_flags;
797
798 /*
799 * Device information, Bus IRQ and name (PCI, SoC)
800 */
801 int irq;
802 const char *name;
803
804 /*
805 * Chipset identification.
806 */
807 struct rt2x00_chip chip;
808
809 /*
810 * hw capability specifications.
811 */
812 struct hw_mode_spec spec;
813
814 /*
815 * This is the default TX/RX antenna setup as indicated
816 * by the device's EEPROM.
817 */
818 struct antenna_setup default_ant;
819
820 /*
821 * Register pointers
822 * csr.base: CSR base register address. (PCI)
823 * csr.cache: CSR cache for usb_control_msg. (USB)
824 */
825 union csr {
826 void __iomem *base;
827 void *cache;
828 } csr;
829
830 /*
831 * Mutex to protect register accesses.
832 * For PCI and USB devices it protects against concurrent indirect
833 * register access (BBP, RF, MCU) since accessing those
834 * registers require multiple calls to the CSR registers.
835 * For USB devices it also protects the csr_cache since that
836 * field is used for normal CSR access and it cannot support
837 * multiple callers simultaneously.
838 */
839 struct mutex csr_mutex;
840
841 /*
842 * Mutex to synchronize config and link tuner.
843 */
844 struct mutex conf_mutex;
845 /*
846 * Current packet filter configuration for the device.
847 * This contains all currently active FIF_* flags send
848 * to us by mac80211 during configure_filter().
849 */
850 unsigned int packet_filter;
851
852 /*
853 * Interface details:
854 * - Open ap interface count.
855 * - Open sta interface count.
856 * - Association count.
857 * - Beaconing enabled count.
858 */
859 unsigned int intf_ap_count;
860 unsigned int intf_sta_count;
861 unsigned int intf_associated;
862 unsigned int intf_beaconing;
863
864 /*
865 * Interface combinations
866 */
867 struct ieee80211_iface_limit if_limits_ap;
868 struct ieee80211_iface_combination if_combinations[NUM_IF_COMB];
869
870 /*
871 * Link quality
872 */
873 struct link link;
874
875 /*
876 * EEPROM data.
877 */
878 __le16 *eeprom;
879
880 /*
881 * Active RF register values.
882 * These are stored here so we don't need
883 * to read the rf registers and can directly
884 * use this value instead.
885 * This field should be accessed by using
886 * rt2x00_rf_read() and rt2x00_rf_write().
887 */
888 u32 *rf;
889
890 /*
891 * LNA gain
892 */
893 short lna_gain;
894
895 /*
896 * Current TX power value.
897 */
898 u16 tx_power;
899
900 /*
901 * Current retry values.
902 */
903 u8 short_retry;
904 u8 long_retry;
905
906 /*
907 * Rssi <-> Dbm offset
908 */
909 u8 rssi_offset;
910
911 /*
912 * Frequency offset.
913 */
914 u8 freq_offset;
915
916 /*
917 * Association id.
918 */
919 u16 aid;
920
921 /*
922 * Beacon interval.
923 */
924 u16 beacon_int;
925
926 /**
927 * Timestamp of last received beacon
928 */
929 unsigned long last_beacon;
930
931 /*
932 * Low level statistics which will have
933 * to be kept up to date while device is running.
934 */
935 struct ieee80211_low_level_stats low_level_stats;
936
937 /**
938 * Work queue for all work which should not be placed
939 * on the mac80211 workqueue (because of dependencies
940 * between various work structures).
941 */
942 struct workqueue_struct *workqueue;
943
944 /*
945 * Scheduled work.
946 * NOTE: intf_work will use ieee80211_iterate_active_interfaces()
947 * which means it cannot be placed on the hw->workqueue
948 * due to RTNL locking requirements.
949 */
950 struct work_struct intf_work;
951
952 /**
953 * Scheduled work for TX/RX done handling (USB devices)
954 */
955 struct work_struct rxdone_work;
956 struct work_struct txdone_work;
957
958 /*
959 * Powersaving work
960 */
961 struct delayed_work autowakeup_work;
962 struct work_struct sleep_work;
963
964 /*
965 * Data queue arrays for RX, TX, Beacon and ATIM.
966 */
967 unsigned int data_queues;
968 struct data_queue *rx;
969 struct data_queue *tx;
970 struct data_queue *bcn;
971 struct data_queue *atim;
972
973 /*
974 * Firmware image.
975 */
976 const struct firmware *fw;
977
978 /*
979 * FIFO for storing tx status reports between isr and tasklet.
980 */
981 DECLARE_KFIFO_PTR(txstatus_fifo, u32);
982
983 /*
984 * Timer to ensure tx status reports are read (rt2800usb).
985 */
986 struct hrtimer txstatus_timer;
987
988 /*
989 * Tasklet for processing tx status reports (rt2800pci).
990 */
991 struct tasklet_struct txstatus_tasklet;
992 struct tasklet_struct pretbtt_tasklet;
993 struct tasklet_struct tbtt_tasklet;
994 struct tasklet_struct rxdone_tasklet;
995 struct tasklet_struct autowake_tasklet;
996
997 /*
998 * Used for VCO periodic calibration.
999 */
1000 int rf_channel;
1001
1002 /*
1003 * Protect the interrupt mask register.
1004 */
1005 spinlock_t irqmask_lock;
1006
1007 /*
1008 * List of BlockAckReq TX entries that need driver BlockAck processing.
1009 */
1010 struct list_head bar_list;
1011 spinlock_t bar_list_lock;
1012
1013 /* Extra TX headroom required for alignment purposes. */
1014 unsigned int extra_tx_headroom;
1015
1016 struct usb_anchor *anchor;
1017
1018 /* Clock for System On Chip devices. */
1019 struct clk *clk;
1020 };
1021
1022 struct rt2x00_bar_list_entry {
1023 struct list_head list;
1024 struct rcu_head head;
1025
1026 struct queue_entry *entry;
1027 int block_acked;
1028
1029 /* Relevant parts of the IEEE80211 BAR header */
1030 __u8 ra[6];
1031 __u8 ta[6];
1032 __le16 control;
1033 __le16 start_seq_num;
1034 };
1035
1036 /*
1037 * Register defines.
1038 * Some registers require multiple attempts before success,
1039 * in those cases REGISTER_BUSY_COUNT attempts should be
1040 * taken with a REGISTER_BUSY_DELAY interval. Due to USB
1041 * bus delays, we do not have to loop so many times to wait
1042 * for valid register value on that bus.
1043 */
1044 #define REGISTER_BUSY_COUNT 100
1045 #define REGISTER_USB_BUSY_COUNT 20
1046 #define REGISTER_BUSY_DELAY 100
1047
1048 /*
1049 * Generic RF access.
1050 * The RF is being accessed by word index.
1051 */
rt2x00_rf_read(struct rt2x00_dev * rt2x00dev,const unsigned int word)1052 static inline u32 rt2x00_rf_read(struct rt2x00_dev *rt2x00dev,
1053 const unsigned int word)
1054 {
1055 BUG_ON(word < 1 || word > rt2x00dev->ops->rf_size / sizeof(u32));
1056 return rt2x00dev->rf[word - 1];
1057 }
1058
rt2x00_rf_write(struct rt2x00_dev * rt2x00dev,const unsigned int word,u32 data)1059 static inline void rt2x00_rf_write(struct rt2x00_dev *rt2x00dev,
1060 const unsigned int word, u32 data)
1061 {
1062 BUG_ON(word < 1 || word > rt2x00dev->ops->rf_size / sizeof(u32));
1063 rt2x00dev->rf[word - 1] = data;
1064 }
1065
1066 /*
1067 * Generic EEPROM access. The EEPROM is being accessed by word or byte index.
1068 */
rt2x00_eeprom_addr(struct rt2x00_dev * rt2x00dev,const unsigned int word)1069 static inline void *rt2x00_eeprom_addr(struct rt2x00_dev *rt2x00dev,
1070 const unsigned int word)
1071 {
1072 return (void *)&rt2x00dev->eeprom[word];
1073 }
1074
rt2x00_eeprom_read(struct rt2x00_dev * rt2x00dev,const unsigned int word)1075 static inline u16 rt2x00_eeprom_read(struct rt2x00_dev *rt2x00dev,
1076 const unsigned int word)
1077 {
1078 return le16_to_cpu(rt2x00dev->eeprom[word]);
1079 }
1080
rt2x00_eeprom_write(struct rt2x00_dev * rt2x00dev,const unsigned int word,u16 data)1081 static inline void rt2x00_eeprom_write(struct rt2x00_dev *rt2x00dev,
1082 const unsigned int word, u16 data)
1083 {
1084 rt2x00dev->eeprom[word] = cpu_to_le16(data);
1085 }
1086
rt2x00_eeprom_byte(struct rt2x00_dev * rt2x00dev,const unsigned int byte)1087 static inline u8 rt2x00_eeprom_byte(struct rt2x00_dev *rt2x00dev,
1088 const unsigned int byte)
1089 {
1090 return *(((u8 *)rt2x00dev->eeprom) + byte);
1091 }
1092
1093 /*
1094 * Chipset handlers
1095 */
rt2x00_set_chip(struct rt2x00_dev * rt2x00dev,const u16 rt,const u16 rf,const u16 rev)1096 static inline void rt2x00_set_chip(struct rt2x00_dev *rt2x00dev,
1097 const u16 rt, const u16 rf, const u16 rev)
1098 {
1099 rt2x00dev->chip.rt = rt;
1100 rt2x00dev->chip.rf = rf;
1101 rt2x00dev->chip.rev = rev;
1102
1103 rt2x00_info(rt2x00dev, "Chipset detected - rt: %04x, rf: %04x, rev: %04x\n",
1104 rt2x00dev->chip.rt, rt2x00dev->chip.rf,
1105 rt2x00dev->chip.rev);
1106 }
1107
rt2x00_set_rt(struct rt2x00_dev * rt2x00dev,const u16 rt,const u16 rev)1108 static inline void rt2x00_set_rt(struct rt2x00_dev *rt2x00dev,
1109 const u16 rt, const u16 rev)
1110 {
1111 rt2x00dev->chip.rt = rt;
1112 rt2x00dev->chip.rev = rev;
1113
1114 rt2x00_info(rt2x00dev, "RT chipset %04x, rev %04x detected\n",
1115 rt2x00dev->chip.rt, rt2x00dev->chip.rev);
1116 }
1117
rt2x00_set_rf(struct rt2x00_dev * rt2x00dev,const u16 rf)1118 static inline void rt2x00_set_rf(struct rt2x00_dev *rt2x00dev, const u16 rf)
1119 {
1120 rt2x00dev->chip.rf = rf;
1121
1122 rt2x00_info(rt2x00dev, "RF chipset %04x detected\n",
1123 rt2x00dev->chip.rf);
1124 }
1125
rt2x00_rt(struct rt2x00_dev * rt2x00dev,const u16 rt)1126 static inline bool rt2x00_rt(struct rt2x00_dev *rt2x00dev, const u16 rt)
1127 {
1128 return (rt2x00dev->chip.rt == rt);
1129 }
1130
rt2x00_rf(struct rt2x00_dev * rt2x00dev,const u16 rf)1131 static inline bool rt2x00_rf(struct rt2x00_dev *rt2x00dev, const u16 rf)
1132 {
1133 return (rt2x00dev->chip.rf == rf);
1134 }
1135
rt2x00_rev(struct rt2x00_dev * rt2x00dev)1136 static inline u16 rt2x00_rev(struct rt2x00_dev *rt2x00dev)
1137 {
1138 return rt2x00dev->chip.rev;
1139 }
1140
rt2x00_rt_rev(struct rt2x00_dev * rt2x00dev,const u16 rt,const u16 rev)1141 static inline bool rt2x00_rt_rev(struct rt2x00_dev *rt2x00dev,
1142 const u16 rt, const u16 rev)
1143 {
1144 return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) == rev);
1145 }
1146
rt2x00_rt_rev_lt(struct rt2x00_dev * rt2x00dev,const u16 rt,const u16 rev)1147 static inline bool rt2x00_rt_rev_lt(struct rt2x00_dev *rt2x00dev,
1148 const u16 rt, const u16 rev)
1149 {
1150 return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) < rev);
1151 }
1152
rt2x00_rt_rev_gte(struct rt2x00_dev * rt2x00dev,const u16 rt,const u16 rev)1153 static inline bool rt2x00_rt_rev_gte(struct rt2x00_dev *rt2x00dev,
1154 const u16 rt, const u16 rev)
1155 {
1156 return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) >= rev);
1157 }
1158
rt2x00_set_chip_intf(struct rt2x00_dev * rt2x00dev,enum rt2x00_chip_intf intf)1159 static inline void rt2x00_set_chip_intf(struct rt2x00_dev *rt2x00dev,
1160 enum rt2x00_chip_intf intf)
1161 {
1162 rt2x00dev->chip.intf = intf;
1163 }
1164
rt2x00_intf(struct rt2x00_dev * rt2x00dev,enum rt2x00_chip_intf intf)1165 static inline bool rt2x00_intf(struct rt2x00_dev *rt2x00dev,
1166 enum rt2x00_chip_intf intf)
1167 {
1168 return (rt2x00dev->chip.intf == intf);
1169 }
1170
rt2x00_is_pci(struct rt2x00_dev * rt2x00dev)1171 static inline bool rt2x00_is_pci(struct rt2x00_dev *rt2x00dev)
1172 {
1173 return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCI) ||
1174 rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCIE);
1175 }
1176
rt2x00_is_pcie(struct rt2x00_dev * rt2x00dev)1177 static inline bool rt2x00_is_pcie(struct rt2x00_dev *rt2x00dev)
1178 {
1179 return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCIE);
1180 }
1181
rt2x00_is_usb(struct rt2x00_dev * rt2x00dev)1182 static inline bool rt2x00_is_usb(struct rt2x00_dev *rt2x00dev)
1183 {
1184 return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_USB);
1185 }
1186
rt2x00_is_soc(struct rt2x00_dev * rt2x00dev)1187 static inline bool rt2x00_is_soc(struct rt2x00_dev *rt2x00dev)
1188 {
1189 return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_SOC);
1190 }
1191
1192 /* Helpers for capability flags */
1193
1194 static inline bool
rt2x00_has_cap_flag(struct rt2x00_dev * rt2x00dev,enum rt2x00_capability_flags cap_flag)1195 rt2x00_has_cap_flag(struct rt2x00_dev *rt2x00dev,
1196 enum rt2x00_capability_flags cap_flag)
1197 {
1198 return test_bit(cap_flag, &rt2x00dev->cap_flags);
1199 }
1200
1201 static inline bool
rt2x00_has_cap_hw_crypto(struct rt2x00_dev * rt2x00dev)1202 rt2x00_has_cap_hw_crypto(struct rt2x00_dev *rt2x00dev)
1203 {
1204 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_HW_CRYPTO);
1205 }
1206
1207 static inline bool
rt2x00_has_cap_power_limit(struct rt2x00_dev * rt2x00dev)1208 rt2x00_has_cap_power_limit(struct rt2x00_dev *rt2x00dev)
1209 {
1210 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_POWER_LIMIT);
1211 }
1212
1213 static inline bool
rt2x00_has_cap_control_filters(struct rt2x00_dev * rt2x00dev)1214 rt2x00_has_cap_control_filters(struct rt2x00_dev *rt2x00dev)
1215 {
1216 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_CONTROL_FILTERS);
1217 }
1218
1219 static inline bool
rt2x00_has_cap_control_filter_pspoll(struct rt2x00_dev * rt2x00dev)1220 rt2x00_has_cap_control_filter_pspoll(struct rt2x00_dev *rt2x00dev)
1221 {
1222 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_CONTROL_FILTER_PSPOLL);
1223 }
1224
1225 static inline bool
rt2x00_has_cap_pre_tbtt_interrupt(struct rt2x00_dev * rt2x00dev)1226 rt2x00_has_cap_pre_tbtt_interrupt(struct rt2x00_dev *rt2x00dev)
1227 {
1228 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_PRE_TBTT_INTERRUPT);
1229 }
1230
1231 static inline bool
rt2x00_has_cap_link_tuning(struct rt2x00_dev * rt2x00dev)1232 rt2x00_has_cap_link_tuning(struct rt2x00_dev *rt2x00dev)
1233 {
1234 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_LINK_TUNING);
1235 }
1236
1237 static inline bool
rt2x00_has_cap_frame_type(struct rt2x00_dev * rt2x00dev)1238 rt2x00_has_cap_frame_type(struct rt2x00_dev *rt2x00dev)
1239 {
1240 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_FRAME_TYPE);
1241 }
1242
1243 static inline bool
rt2x00_has_cap_rf_sequence(struct rt2x00_dev * rt2x00dev)1244 rt2x00_has_cap_rf_sequence(struct rt2x00_dev *rt2x00dev)
1245 {
1246 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_RF_SEQUENCE);
1247 }
1248
1249 static inline bool
rt2x00_has_cap_external_lna_a(struct rt2x00_dev * rt2x00dev)1250 rt2x00_has_cap_external_lna_a(struct rt2x00_dev *rt2x00dev)
1251 {
1252 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_EXTERNAL_LNA_A);
1253 }
1254
1255 static inline bool
rt2x00_has_cap_external_lna_bg(struct rt2x00_dev * rt2x00dev)1256 rt2x00_has_cap_external_lna_bg(struct rt2x00_dev *rt2x00dev)
1257 {
1258 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_EXTERNAL_LNA_BG);
1259 }
1260
1261 static inline bool
rt2x00_has_cap_double_antenna(struct rt2x00_dev * rt2x00dev)1262 rt2x00_has_cap_double_antenna(struct rt2x00_dev *rt2x00dev)
1263 {
1264 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_DOUBLE_ANTENNA);
1265 }
1266
1267 static inline bool
rt2x00_has_cap_bt_coexist(struct rt2x00_dev * rt2x00dev)1268 rt2x00_has_cap_bt_coexist(struct rt2x00_dev *rt2x00dev)
1269 {
1270 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_BT_COEXIST);
1271 }
1272
1273 static inline bool
rt2x00_has_cap_vco_recalibration(struct rt2x00_dev * rt2x00dev)1274 rt2x00_has_cap_vco_recalibration(struct rt2x00_dev *rt2x00dev)
1275 {
1276 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_VCO_RECALIBRATION);
1277 }
1278
1279 /**
1280 * rt2x00queue_map_txskb - Map a skb into DMA for TX purposes.
1281 * @entry: Pointer to &struct queue_entry
1282 *
1283 * Returns -ENOMEM if mapping fail, 0 otherwise.
1284 */
1285 int rt2x00queue_map_txskb(struct queue_entry *entry);
1286
1287 /**
1288 * rt2x00queue_unmap_skb - Unmap a skb from DMA.
1289 * @entry: Pointer to &struct queue_entry
1290 */
1291 void rt2x00queue_unmap_skb(struct queue_entry *entry);
1292
1293 /**
1294 * rt2x00queue_get_tx_queue - Convert tx queue index to queue pointer
1295 * @rt2x00dev: Pointer to &struct rt2x00_dev.
1296 * @queue: rt2x00 queue index (see &enum data_queue_qid).
1297 *
1298 * Returns NULL for non tx queues.
1299 */
1300 static inline struct data_queue *
rt2x00queue_get_tx_queue(struct rt2x00_dev * rt2x00dev,const enum data_queue_qid queue)1301 rt2x00queue_get_tx_queue(struct rt2x00_dev *rt2x00dev,
1302 const enum data_queue_qid queue)
1303 {
1304 if (queue < rt2x00dev->ops->tx_queues && rt2x00dev->tx)
1305 return &rt2x00dev->tx[queue];
1306
1307 if (queue == QID_ATIM)
1308 return rt2x00dev->atim;
1309
1310 return NULL;
1311 }
1312
1313 /**
1314 * rt2x00queue_get_entry - Get queue entry where the given index points to.
1315 * @queue: Pointer to &struct data_queue from where we obtain the entry.
1316 * @index: Index identifier for obtaining the correct index.
1317 */
1318 struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
1319 enum queue_index index);
1320
1321 /**
1322 * rt2x00queue_pause_queue - Pause a data queue
1323 * @queue: Pointer to &struct data_queue.
1324 *
1325 * This function will pause the data queue locally, preventing
1326 * new frames to be added to the queue (while the hardware is
1327 * still allowed to run).
1328 */
1329 void rt2x00queue_pause_queue(struct data_queue *queue);
1330
1331 /**
1332 * rt2x00queue_unpause_queue - unpause a data queue
1333 * @queue: Pointer to &struct data_queue.
1334 *
1335 * This function will unpause the data queue locally, allowing
1336 * new frames to be added to the queue again.
1337 */
1338 void rt2x00queue_unpause_queue(struct data_queue *queue);
1339
1340 /**
1341 * rt2x00queue_start_queue - Start a data queue
1342 * @queue: Pointer to &struct data_queue.
1343 *
1344 * This function will start handling all pending frames in the queue.
1345 */
1346 void rt2x00queue_start_queue(struct data_queue *queue);
1347
1348 /**
1349 * rt2x00queue_stop_queue - Halt a data queue
1350 * @queue: Pointer to &struct data_queue.
1351 *
1352 * This function will stop all pending frames in the queue.
1353 */
1354 void rt2x00queue_stop_queue(struct data_queue *queue);
1355
1356 /**
1357 * rt2x00queue_flush_queue - Flush a data queue
1358 * @queue: Pointer to &struct data_queue.
1359 * @drop: True to drop all pending frames.
1360 *
1361 * This function will flush the queue. After this call
1362 * the queue is guaranteed to be empty.
1363 */
1364 void rt2x00queue_flush_queue(struct data_queue *queue, bool drop);
1365
1366 /**
1367 * rt2x00queue_start_queues - Start all data queues
1368 * @rt2x00dev: Pointer to &struct rt2x00_dev.
1369 *
1370 * This function will loop through all available queues to start them
1371 */
1372 void rt2x00queue_start_queues(struct rt2x00_dev *rt2x00dev);
1373
1374 /**
1375 * rt2x00queue_stop_queues - Halt all data queues
1376 * @rt2x00dev: Pointer to &struct rt2x00_dev.
1377 *
1378 * This function will loop through all available queues to stop
1379 * any pending frames.
1380 */
1381 void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev);
1382
1383 /**
1384 * rt2x00queue_flush_queues - Flush all data queues
1385 * @rt2x00dev: Pointer to &struct rt2x00_dev.
1386 * @drop: True to drop all pending frames.
1387 *
1388 * This function will loop through all available queues to flush
1389 * any pending frames.
1390 */
1391 void rt2x00queue_flush_queues(struct rt2x00_dev *rt2x00dev, bool drop);
1392
1393 /*
1394 * Debugfs handlers.
1395 */
1396 /**
1397 * rt2x00debug_dump_frame - Dump a frame to userspace through debugfs.
1398 * @rt2x00dev: Pointer to &struct rt2x00_dev.
1399 * @type: The type of frame that is being dumped.
1400 * @entry: The queue entry containing the frame to be dumped.
1401 */
1402 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1403 void rt2x00debug_dump_frame(struct rt2x00_dev *rt2x00dev,
1404 enum rt2x00_dump_type type, struct queue_entry *entry);
1405 #else
rt2x00debug_dump_frame(struct rt2x00_dev * rt2x00dev,enum rt2x00_dump_type type,struct queue_entry * entry)1406 static inline void rt2x00debug_dump_frame(struct rt2x00_dev *rt2x00dev,
1407 enum rt2x00_dump_type type,
1408 struct queue_entry *entry)
1409 {
1410 }
1411 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1412
1413 /*
1414 * Utility functions.
1415 */
1416 u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev,
1417 struct ieee80211_vif *vif);
1418 void rt2x00lib_set_mac_address(struct rt2x00_dev *rt2x00dev, u8 *eeprom_mac_addr);
1419
1420 /*
1421 * Interrupt context handlers.
1422 */
1423 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev);
1424 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev);
1425 void rt2x00lib_dmastart(struct queue_entry *entry);
1426 void rt2x00lib_dmadone(struct queue_entry *entry);
1427 void rt2x00lib_txdone(struct queue_entry *entry,
1428 struct txdone_entry_desc *txdesc);
1429 void rt2x00lib_txdone_nomatch(struct queue_entry *entry,
1430 struct txdone_entry_desc *txdesc);
1431 void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status);
1432 void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp);
1433
1434 /*
1435 * mac80211 handlers.
1436 */
1437 void rt2x00mac_tx(struct ieee80211_hw *hw,
1438 struct ieee80211_tx_control *control,
1439 struct sk_buff *skb);
1440 int rt2x00mac_start(struct ieee80211_hw *hw);
1441 void rt2x00mac_stop(struct ieee80211_hw *hw);
1442 int rt2x00mac_add_interface(struct ieee80211_hw *hw,
1443 struct ieee80211_vif *vif);
1444 void rt2x00mac_remove_interface(struct ieee80211_hw *hw,
1445 struct ieee80211_vif *vif);
1446 int rt2x00mac_config(struct ieee80211_hw *hw, u32 changed);
1447 void rt2x00mac_configure_filter(struct ieee80211_hw *hw,
1448 unsigned int changed_flags,
1449 unsigned int *total_flags,
1450 u64 multicast);
1451 int rt2x00mac_set_tim(struct ieee80211_hw *hw, struct ieee80211_sta *sta,
1452 bool set);
1453 #ifdef CONFIG_RT2X00_LIB_CRYPTO
1454 int rt2x00mac_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd,
1455 struct ieee80211_vif *vif, struct ieee80211_sta *sta,
1456 struct ieee80211_key_conf *key);
1457 #else
1458 #define rt2x00mac_set_key NULL
1459 #endif /* CONFIG_RT2X00_LIB_CRYPTO */
1460 void rt2x00mac_sw_scan_start(struct ieee80211_hw *hw,
1461 struct ieee80211_vif *vif,
1462 const u8 *mac_addr);
1463 void rt2x00mac_sw_scan_complete(struct ieee80211_hw *hw,
1464 struct ieee80211_vif *vif);
1465 int rt2x00mac_get_stats(struct ieee80211_hw *hw,
1466 struct ieee80211_low_level_stats *stats);
1467 void rt2x00mac_bss_info_changed(struct ieee80211_hw *hw,
1468 struct ieee80211_vif *vif,
1469 struct ieee80211_bss_conf *bss_conf,
1470 u32 changes);
1471 int rt2x00mac_conf_tx(struct ieee80211_hw *hw,
1472 struct ieee80211_vif *vif, u16 queue,
1473 const struct ieee80211_tx_queue_params *params);
1474 void rt2x00mac_rfkill_poll(struct ieee80211_hw *hw);
1475 void rt2x00mac_flush(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1476 u32 queues, bool drop);
1477 int rt2x00mac_set_antenna(struct ieee80211_hw *hw, u32 tx_ant, u32 rx_ant);
1478 int rt2x00mac_get_antenna(struct ieee80211_hw *hw, u32 *tx_ant, u32 *rx_ant);
1479 void rt2x00mac_get_ringparam(struct ieee80211_hw *hw,
1480 u32 *tx, u32 *tx_max, u32 *rx, u32 *rx_max);
1481 bool rt2x00mac_tx_frames_pending(struct ieee80211_hw *hw);
1482
1483 /*
1484 * Driver allocation handlers.
1485 */
1486 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev);
1487 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev);
1488 #ifdef CONFIG_PM
1489 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state);
1490 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev);
1491 #endif /* CONFIG_PM */
1492
1493 #endif /* RT2X00_H */
1494