1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
3 * Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
4 * Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
5 * Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
6 * Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
7 * Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
8 * Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
9 * Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
10 * <http://rt2x00.serialmonkey.com>
11 */
12
13 /* Module: rt2800mmio
14 * Abstract: rt2800 MMIO device routines.
15 */
16
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/export.h>
20
21 #include "rt2x00.h"
22 #include "rt2x00mmio.h"
23 #include "rt2800.h"
24 #include "rt2800lib.h"
25 #include "rt2800mmio.h"
26
rt2800mmio_get_dma_done(struct data_queue * queue)27 unsigned int rt2800mmio_get_dma_done(struct data_queue *queue)
28 {
29 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
30 struct queue_entry *entry;
31 int idx, qid;
32
33 switch (queue->qid) {
34 case QID_AC_VO:
35 case QID_AC_VI:
36 case QID_AC_BE:
37 case QID_AC_BK:
38 qid = queue->qid;
39 idx = rt2x00mmio_register_read(rt2x00dev, TX_DTX_IDX(qid));
40 break;
41 case QID_MGMT:
42 idx = rt2x00mmio_register_read(rt2x00dev, TX_DTX_IDX(5));
43 break;
44 case QID_RX:
45 entry = rt2x00queue_get_entry(queue, Q_INDEX_DMA_DONE);
46 idx = entry->entry_idx;
47 break;
48 default:
49 WARN_ON_ONCE(1);
50 idx = 0;
51 break;
52 }
53
54 return idx;
55 }
56 EXPORT_SYMBOL_GPL(rt2800mmio_get_dma_done);
57
58 /*
59 * TX descriptor initialization
60 */
rt2800mmio_get_txwi(struct queue_entry * entry)61 __le32 *rt2800mmio_get_txwi(struct queue_entry *entry)
62 {
63 return (__le32 *) entry->skb->data;
64 }
65 EXPORT_SYMBOL_GPL(rt2800mmio_get_txwi);
66
rt2800mmio_write_tx_desc(struct queue_entry * entry,struct txentry_desc * txdesc)67 void rt2800mmio_write_tx_desc(struct queue_entry *entry,
68 struct txentry_desc *txdesc)
69 {
70 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
71 struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
72 __le32 *txd = entry_priv->desc;
73 u32 word;
74 const unsigned int txwi_size = entry->queue->winfo_size;
75
76 /*
77 * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
78 * must contains a TXWI structure + 802.11 header + padding + 802.11
79 * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
80 * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
81 * data. It means that LAST_SEC0 is always 0.
82 */
83
84 /*
85 * Initialize TX descriptor
86 */
87 word = 0;
88 rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
89 rt2x00_desc_write(txd, 0, word);
90
91 word = 0;
92 rt2x00_set_field32(&word, TXD_W1_SD_LEN1, entry->skb->len);
93 rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
94 !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
95 rt2x00_set_field32(&word, TXD_W1_BURST,
96 test_bit(ENTRY_TXD_BURST, &txdesc->flags));
97 rt2x00_set_field32(&word, TXD_W1_SD_LEN0, txwi_size);
98 rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
99 rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
100 rt2x00_desc_write(txd, 1, word);
101
102 word = 0;
103 rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
104 skbdesc->skb_dma + txwi_size);
105 rt2x00_desc_write(txd, 2, word);
106
107 word = 0;
108 rt2x00_set_field32(&word, TXD_W3_WIV,
109 !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
110 rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
111 rt2x00_desc_write(txd, 3, word);
112
113 /*
114 * Register descriptor details in skb frame descriptor.
115 */
116 skbdesc->desc = txd;
117 skbdesc->desc_len = TXD_DESC_SIZE;
118 }
119 EXPORT_SYMBOL_GPL(rt2800mmio_write_tx_desc);
120
121 /*
122 * RX control handlers
123 */
rt2800mmio_fill_rxdone(struct queue_entry * entry,struct rxdone_entry_desc * rxdesc)124 void rt2800mmio_fill_rxdone(struct queue_entry *entry,
125 struct rxdone_entry_desc *rxdesc)
126 {
127 struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
128 __le32 *rxd = entry_priv->desc;
129 u32 word;
130
131 word = rt2x00_desc_read(rxd, 3);
132
133 if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
134 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
135
136 /*
137 * Unfortunately we don't know the cipher type used during
138 * decryption. This prevents us from correct providing
139 * correct statistics through debugfs.
140 */
141 rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
142
143 if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
144 /*
145 * Hardware has stripped IV/EIV data from 802.11 frame during
146 * decryption. Unfortunately the descriptor doesn't contain
147 * any fields with the EIV/IV data either, so they can't
148 * be restored by rt2x00lib.
149 */
150 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
151
152 /*
153 * The hardware has already checked the Michael Mic and has
154 * stripped it from the frame. Signal this to mac80211.
155 */
156 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
157
158 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS) {
159 rxdesc->flags |= RX_FLAG_DECRYPTED;
160 } else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC) {
161 /*
162 * In order to check the Michael Mic, the packet must have
163 * been decrypted. Mac80211 doesnt check the MMIC failure
164 * flag to initiate MMIC countermeasures if the decoded flag
165 * has not been set.
166 */
167 rxdesc->flags |= RX_FLAG_DECRYPTED;
168
169 rxdesc->flags |= RX_FLAG_MMIC_ERROR;
170 }
171 }
172
173 if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
174 rxdesc->dev_flags |= RXDONE_MY_BSS;
175
176 if (rt2x00_get_field32(word, RXD_W3_L2PAD))
177 rxdesc->dev_flags |= RXDONE_L2PAD;
178
179 /*
180 * Process the RXWI structure that is at the start of the buffer.
181 */
182 rt2800_process_rxwi(entry, rxdesc);
183 }
184 EXPORT_SYMBOL_GPL(rt2800mmio_fill_rxdone);
185
186 /*
187 * Interrupt functions.
188 */
rt2800mmio_wakeup(struct rt2x00_dev * rt2x00dev)189 static void rt2800mmio_wakeup(struct rt2x00_dev *rt2x00dev)
190 {
191 struct ieee80211_conf conf = { .flags = 0 };
192 struct rt2x00lib_conf libconf = { .conf = &conf };
193
194 rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
195 }
196
rt2800mmio_enable_interrupt(struct rt2x00_dev * rt2x00dev,struct rt2x00_field32 irq_field)197 static inline void rt2800mmio_enable_interrupt(struct rt2x00_dev *rt2x00dev,
198 struct rt2x00_field32 irq_field)
199 {
200 u32 reg;
201
202 /*
203 * Enable a single interrupt. The interrupt mask register
204 * access needs locking.
205 */
206 spin_lock_irq(&rt2x00dev->irqmask_lock);
207 reg = rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR);
208 rt2x00_set_field32(®, irq_field, 1);
209 rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
210 spin_unlock_irq(&rt2x00dev->irqmask_lock);
211 }
212
rt2800mmio_pretbtt_tasklet(unsigned long data)213 void rt2800mmio_pretbtt_tasklet(unsigned long data)
214 {
215 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
216 rt2x00lib_pretbtt(rt2x00dev);
217 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
218 rt2800mmio_enable_interrupt(rt2x00dev, INT_MASK_CSR_PRE_TBTT);
219 }
220 EXPORT_SYMBOL_GPL(rt2800mmio_pretbtt_tasklet);
221
rt2800mmio_tbtt_tasklet(unsigned long data)222 void rt2800mmio_tbtt_tasklet(unsigned long data)
223 {
224 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
225 struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
226 u32 reg;
227
228 rt2x00lib_beacondone(rt2x00dev);
229
230 if (rt2x00dev->intf_ap_count) {
231 /*
232 * The rt2800pci hardware tbtt timer is off by 1us per tbtt
233 * causing beacon skew and as a result causing problems with
234 * some powersaving clients over time. Shorten the beacon
235 * interval every 64 beacons by 64us to mitigate this effect.
236 */
237 if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 2)) {
238 reg = rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG);
239 rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_INTERVAL,
240 (rt2x00dev->beacon_int * 16) - 1);
241 rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
242 } else if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 1)) {
243 reg = rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG);
244 rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_INTERVAL,
245 (rt2x00dev->beacon_int * 16));
246 rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
247 }
248 drv_data->tbtt_tick++;
249 drv_data->tbtt_tick %= BCN_TBTT_OFFSET;
250 }
251
252 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
253 rt2800mmio_enable_interrupt(rt2x00dev, INT_MASK_CSR_TBTT);
254 }
255 EXPORT_SYMBOL_GPL(rt2800mmio_tbtt_tasklet);
256
rt2800mmio_rxdone_tasklet(unsigned long data)257 void rt2800mmio_rxdone_tasklet(unsigned long data)
258 {
259 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
260 if (rt2x00mmio_rxdone(rt2x00dev))
261 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
262 else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
263 rt2800mmio_enable_interrupt(rt2x00dev, INT_MASK_CSR_RX_DONE);
264 }
265 EXPORT_SYMBOL_GPL(rt2800mmio_rxdone_tasklet);
266
rt2800mmio_autowake_tasklet(unsigned long data)267 void rt2800mmio_autowake_tasklet(unsigned long data)
268 {
269 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
270 rt2800mmio_wakeup(rt2x00dev);
271 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
272 rt2800mmio_enable_interrupt(rt2x00dev,
273 INT_MASK_CSR_AUTO_WAKEUP);
274 }
275 EXPORT_SYMBOL_GPL(rt2800mmio_autowake_tasklet);
276
rt2800mmio_fetch_txstatus(struct rt2x00_dev * rt2x00dev)277 static void rt2800mmio_fetch_txstatus(struct rt2x00_dev *rt2x00dev)
278 {
279 u32 status;
280 unsigned long flags;
281
282 /*
283 * The TX_FIFO_STATUS interrupt needs special care. We should
284 * read TX_STA_FIFO but we should do it immediately as otherwise
285 * the register can overflow and we would lose status reports.
286 *
287 * Hence, read the TX_STA_FIFO register and copy all tx status
288 * reports into a kernel FIFO which is handled in the txstatus
289 * tasklet. We use a tasklet to process the tx status reports
290 * because we can schedule the tasklet multiple times (when the
291 * interrupt fires again during tx status processing).
292 *
293 * We also read statuses from tx status timeout timer, use
294 * lock to prevent concurent writes to fifo.
295 */
296
297 spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
298
299 while (!kfifo_is_full(&rt2x00dev->txstatus_fifo)) {
300 status = rt2x00mmio_register_read(rt2x00dev, TX_STA_FIFO);
301 if (!rt2x00_get_field32(status, TX_STA_FIFO_VALID))
302 break;
303
304 kfifo_put(&rt2x00dev->txstatus_fifo, status);
305 }
306
307 spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
308 }
309
rt2800mmio_txstatus_tasklet(unsigned long data)310 void rt2800mmio_txstatus_tasklet(unsigned long data)
311 {
312 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
313
314 rt2800_txdone(rt2x00dev, 16);
315
316 if (!kfifo_is_empty(&rt2x00dev->txstatus_fifo))
317 tasklet_schedule(&rt2x00dev->txstatus_tasklet);
318
319 }
320 EXPORT_SYMBOL_GPL(rt2800mmio_txstatus_tasklet);
321
rt2800mmio_interrupt(int irq,void * dev_instance)322 irqreturn_t rt2800mmio_interrupt(int irq, void *dev_instance)
323 {
324 struct rt2x00_dev *rt2x00dev = dev_instance;
325 u32 reg, mask;
326
327 /* Read status and ACK all interrupts */
328 reg = rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR);
329 rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
330
331 if (!reg)
332 return IRQ_NONE;
333
334 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
335 return IRQ_HANDLED;
336
337 /*
338 * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
339 * for interrupts and interrupt masks we can just use the value of
340 * INT_SOURCE_CSR to create the interrupt mask.
341 */
342 mask = ~reg;
343
344 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS)) {
345 rt2x00_set_field32(&mask, INT_MASK_CSR_TX_FIFO_STATUS, 1);
346 rt2800mmio_fetch_txstatus(rt2x00dev);
347 if (!kfifo_is_empty(&rt2x00dev->txstatus_fifo))
348 tasklet_schedule(&rt2x00dev->txstatus_tasklet);
349 }
350
351 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT))
352 tasklet_hi_schedule(&rt2x00dev->pretbtt_tasklet);
353
354 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT))
355 tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
356
357 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
358 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
359
360 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
361 tasklet_schedule(&rt2x00dev->autowake_tasklet);
362
363 /*
364 * Disable all interrupts for which a tasklet was scheduled right now,
365 * the tasklet will reenable the appropriate interrupts.
366 */
367 spin_lock(&rt2x00dev->irqmask_lock);
368 reg = rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR);
369 reg &= mask;
370 rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
371 spin_unlock(&rt2x00dev->irqmask_lock);
372
373 return IRQ_HANDLED;
374 }
375 EXPORT_SYMBOL_GPL(rt2800mmio_interrupt);
376
rt2800mmio_toggle_irq(struct rt2x00_dev * rt2x00dev,enum dev_state state)377 void rt2800mmio_toggle_irq(struct rt2x00_dev *rt2x00dev,
378 enum dev_state state)
379 {
380 u32 reg;
381 unsigned long flags;
382
383 /*
384 * When interrupts are being enabled, the interrupt registers
385 * should clear the register to assure a clean state.
386 */
387 if (state == STATE_RADIO_IRQ_ON) {
388 reg = rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR);
389 rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
390 }
391
392 spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
393 reg = 0;
394 if (state == STATE_RADIO_IRQ_ON) {
395 rt2x00_set_field32(®, INT_MASK_CSR_RX_DONE, 1);
396 rt2x00_set_field32(®, INT_MASK_CSR_TBTT, 1);
397 rt2x00_set_field32(®, INT_MASK_CSR_PRE_TBTT, 1);
398 rt2x00_set_field32(®, INT_MASK_CSR_TX_FIFO_STATUS, 1);
399 rt2x00_set_field32(®, INT_MASK_CSR_AUTO_WAKEUP, 1);
400 }
401 rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
402 spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
403
404 if (state == STATE_RADIO_IRQ_OFF) {
405 /*
406 * Wait for possibly running tasklets to finish.
407 */
408 tasklet_kill(&rt2x00dev->txstatus_tasklet);
409 tasklet_kill(&rt2x00dev->rxdone_tasklet);
410 tasklet_kill(&rt2x00dev->autowake_tasklet);
411 tasklet_kill(&rt2x00dev->tbtt_tasklet);
412 tasklet_kill(&rt2x00dev->pretbtt_tasklet);
413 }
414 }
415 EXPORT_SYMBOL_GPL(rt2800mmio_toggle_irq);
416
417 /*
418 * Queue handlers.
419 */
rt2800mmio_start_queue(struct data_queue * queue)420 void rt2800mmio_start_queue(struct data_queue *queue)
421 {
422 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
423 u32 reg;
424
425 switch (queue->qid) {
426 case QID_RX:
427 reg = rt2x00mmio_register_read(rt2x00dev, MAC_SYS_CTRL);
428 rt2x00_set_field32(®, MAC_SYS_CTRL_ENABLE_RX, 1);
429 rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
430 break;
431 case QID_BEACON:
432 reg = rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG);
433 rt2x00_set_field32(®, BCN_TIME_CFG_TSF_TICKING, 1);
434 rt2x00_set_field32(®, BCN_TIME_CFG_TBTT_ENABLE, 1);
435 rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_GEN, 1);
436 rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
437
438 reg = rt2x00mmio_register_read(rt2x00dev, INT_TIMER_EN);
439 rt2x00_set_field32(®, INT_TIMER_EN_PRE_TBTT_TIMER, 1);
440 rt2x00mmio_register_write(rt2x00dev, INT_TIMER_EN, reg);
441 break;
442 default:
443 break;
444 }
445 }
446 EXPORT_SYMBOL_GPL(rt2800mmio_start_queue);
447
448 /* 200 ms */
449 #define TXSTATUS_TIMEOUT 200000000
450
rt2800mmio_kick_queue(struct data_queue * queue)451 void rt2800mmio_kick_queue(struct data_queue *queue)
452 {
453 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
454 struct queue_entry *entry;
455
456 switch (queue->qid) {
457 case QID_AC_VO:
458 case QID_AC_VI:
459 case QID_AC_BE:
460 case QID_AC_BK:
461 WARN_ON_ONCE(rt2x00queue_empty(queue));
462 entry = rt2x00queue_get_entry(queue, Q_INDEX);
463 rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX(queue->qid),
464 entry->entry_idx);
465 hrtimer_start(&rt2x00dev->txstatus_timer,
466 TXSTATUS_TIMEOUT, HRTIMER_MODE_REL);
467 break;
468 case QID_MGMT:
469 entry = rt2x00queue_get_entry(queue, Q_INDEX);
470 rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX(5),
471 entry->entry_idx);
472 break;
473 default:
474 break;
475 }
476 }
477 EXPORT_SYMBOL_GPL(rt2800mmio_kick_queue);
478
rt2800mmio_flush_queue(struct data_queue * queue,bool drop)479 void rt2800mmio_flush_queue(struct data_queue *queue, bool drop)
480 {
481 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
482 bool tx_queue = false;
483 unsigned int i;
484
485 switch (queue->qid) {
486 case QID_AC_VO:
487 case QID_AC_VI:
488 case QID_AC_BE:
489 case QID_AC_BK:
490 tx_queue = true;
491 break;
492 case QID_RX:
493 break;
494 default:
495 return;
496 }
497
498 for (i = 0; i < 5; i++) {
499 /*
500 * Check if the driver is already done, otherwise we
501 * have to sleep a little while to give the driver/hw
502 * the oppurtunity to complete interrupt process itself.
503 */
504 if (rt2x00queue_empty(queue))
505 break;
506
507 /*
508 * For TX queues schedule completion tasklet to catch
509 * tx status timeouts, othewise just wait.
510 */
511 if (tx_queue)
512 queue_work(rt2x00dev->workqueue, &rt2x00dev->txdone_work);
513
514 /*
515 * Wait for a little while to give the driver
516 * the oppurtunity to recover itself.
517 */
518 msleep(50);
519 }
520 }
521 EXPORT_SYMBOL_GPL(rt2800mmio_flush_queue);
522
rt2800mmio_stop_queue(struct data_queue * queue)523 void rt2800mmio_stop_queue(struct data_queue *queue)
524 {
525 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
526 u32 reg;
527
528 switch (queue->qid) {
529 case QID_RX:
530 reg = rt2x00mmio_register_read(rt2x00dev, MAC_SYS_CTRL);
531 rt2x00_set_field32(®, MAC_SYS_CTRL_ENABLE_RX, 0);
532 rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
533 break;
534 case QID_BEACON:
535 reg = rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG);
536 rt2x00_set_field32(®, BCN_TIME_CFG_TSF_TICKING, 0);
537 rt2x00_set_field32(®, BCN_TIME_CFG_TBTT_ENABLE, 0);
538 rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_GEN, 0);
539 rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
540
541 reg = rt2x00mmio_register_read(rt2x00dev, INT_TIMER_EN);
542 rt2x00_set_field32(®, INT_TIMER_EN_PRE_TBTT_TIMER, 0);
543 rt2x00mmio_register_write(rt2x00dev, INT_TIMER_EN, reg);
544
545 /*
546 * Wait for current invocation to finish. The tasklet
547 * won't be scheduled anymore afterwards since we disabled
548 * the TBTT and PRE TBTT timer.
549 */
550 tasklet_kill(&rt2x00dev->tbtt_tasklet);
551 tasklet_kill(&rt2x00dev->pretbtt_tasklet);
552
553 break;
554 default:
555 break;
556 }
557 }
558 EXPORT_SYMBOL_GPL(rt2800mmio_stop_queue);
559
rt2800mmio_queue_init(struct data_queue * queue)560 void rt2800mmio_queue_init(struct data_queue *queue)
561 {
562 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
563 unsigned short txwi_size, rxwi_size;
564
565 rt2800_get_txwi_rxwi_size(rt2x00dev, &txwi_size, &rxwi_size);
566
567 switch (queue->qid) {
568 case QID_RX:
569 queue->limit = 128;
570 queue->data_size = AGGREGATION_SIZE;
571 queue->desc_size = RXD_DESC_SIZE;
572 queue->winfo_size = rxwi_size;
573 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
574 break;
575
576 case QID_AC_VO:
577 case QID_AC_VI:
578 case QID_AC_BE:
579 case QID_AC_BK:
580 queue->limit = 64;
581 queue->data_size = AGGREGATION_SIZE;
582 queue->desc_size = TXD_DESC_SIZE;
583 queue->winfo_size = txwi_size;
584 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
585 break;
586
587 case QID_BEACON:
588 queue->limit = 8;
589 queue->data_size = 0; /* No DMA required for beacons */
590 queue->desc_size = TXD_DESC_SIZE;
591 queue->winfo_size = txwi_size;
592 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
593 break;
594
595 case QID_ATIM:
596 /* fallthrough */
597 default:
598 BUG();
599 break;
600 }
601 }
602 EXPORT_SYMBOL_GPL(rt2800mmio_queue_init);
603
604 /*
605 * Initialization functions.
606 */
rt2800mmio_get_entry_state(struct queue_entry * entry)607 bool rt2800mmio_get_entry_state(struct queue_entry *entry)
608 {
609 struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
610 u32 word;
611
612 if (entry->queue->qid == QID_RX) {
613 word = rt2x00_desc_read(entry_priv->desc, 1);
614
615 return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
616 } else {
617 word = rt2x00_desc_read(entry_priv->desc, 1);
618
619 return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
620 }
621 }
622 EXPORT_SYMBOL_GPL(rt2800mmio_get_entry_state);
623
rt2800mmio_clear_entry(struct queue_entry * entry)624 void rt2800mmio_clear_entry(struct queue_entry *entry)
625 {
626 struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
627 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
628 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
629 u32 word;
630
631 if (entry->queue->qid == QID_RX) {
632 word = rt2x00_desc_read(entry_priv->desc, 0);
633 rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
634 rt2x00_desc_write(entry_priv->desc, 0, word);
635
636 word = rt2x00_desc_read(entry_priv->desc, 1);
637 rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
638 rt2x00_desc_write(entry_priv->desc, 1, word);
639
640 /*
641 * Set RX IDX in register to inform hardware that we have
642 * handled this entry and it is available for reuse again.
643 */
644 rt2x00mmio_register_write(rt2x00dev, RX_CRX_IDX,
645 entry->entry_idx);
646 } else {
647 word = rt2x00_desc_read(entry_priv->desc, 1);
648 rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
649 rt2x00_desc_write(entry_priv->desc, 1, word);
650
651 /* If last entry stop txstatus timer */
652 if (entry->queue->length == 1)
653 hrtimer_cancel(&rt2x00dev->txstatus_timer);
654 }
655 }
656 EXPORT_SYMBOL_GPL(rt2800mmio_clear_entry);
657
rt2800mmio_init_queues(struct rt2x00_dev * rt2x00dev)658 int rt2800mmio_init_queues(struct rt2x00_dev *rt2x00dev)
659 {
660 struct queue_entry_priv_mmio *entry_priv;
661
662 /*
663 * Initialize registers.
664 */
665 entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
666 rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR0,
667 entry_priv->desc_dma);
668 rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT0,
669 rt2x00dev->tx[0].limit);
670 rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX0, 0);
671 rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX0, 0);
672
673 entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
674 rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR1,
675 entry_priv->desc_dma);
676 rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT1,
677 rt2x00dev->tx[1].limit);
678 rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX1, 0);
679 rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX1, 0);
680
681 entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
682 rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR2,
683 entry_priv->desc_dma);
684 rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT2,
685 rt2x00dev->tx[2].limit);
686 rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX2, 0);
687 rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX2, 0);
688
689 entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
690 rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR3,
691 entry_priv->desc_dma);
692 rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT3,
693 rt2x00dev->tx[3].limit);
694 rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX3, 0);
695 rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX3, 0);
696
697 rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR4, 0);
698 rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT4, 0);
699 rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX4, 0);
700 rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX4, 0);
701
702 rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR5, 0);
703 rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT5, 0);
704 rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX5, 0);
705 rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX5, 0);
706
707 entry_priv = rt2x00dev->rx->entries[0].priv_data;
708 rt2x00mmio_register_write(rt2x00dev, RX_BASE_PTR,
709 entry_priv->desc_dma);
710 rt2x00mmio_register_write(rt2x00dev, RX_MAX_CNT,
711 rt2x00dev->rx[0].limit);
712 rt2x00mmio_register_write(rt2x00dev, RX_CRX_IDX,
713 rt2x00dev->rx[0].limit - 1);
714 rt2x00mmio_register_write(rt2x00dev, RX_DRX_IDX, 0);
715
716 rt2800_disable_wpdma(rt2x00dev);
717
718 rt2x00mmio_register_write(rt2x00dev, DELAY_INT_CFG, 0);
719
720 return 0;
721 }
722 EXPORT_SYMBOL_GPL(rt2800mmio_init_queues);
723
rt2800mmio_init_registers(struct rt2x00_dev * rt2x00dev)724 int rt2800mmio_init_registers(struct rt2x00_dev *rt2x00dev)
725 {
726 u32 reg;
727
728 /*
729 * Reset DMA indexes
730 */
731 reg = rt2x00mmio_register_read(rt2x00dev, WPDMA_RST_IDX);
732 rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX0, 1);
733 rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX1, 1);
734 rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX2, 1);
735 rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX3, 1);
736 rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX4, 1);
737 rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX5, 1);
738 rt2x00_set_field32(®, WPDMA_RST_IDX_DRX_IDX0, 1);
739 rt2x00mmio_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
740
741 rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
742 rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
743
744 if (rt2x00_is_pcie(rt2x00dev) &&
745 (rt2x00_rt(rt2x00dev, RT3090) ||
746 rt2x00_rt(rt2x00dev, RT3390) ||
747 rt2x00_rt(rt2x00dev, RT3572) ||
748 rt2x00_rt(rt2x00dev, RT3593) ||
749 rt2x00_rt(rt2x00dev, RT5390) ||
750 rt2x00_rt(rt2x00dev, RT5392) ||
751 rt2x00_rt(rt2x00dev, RT5592))) {
752 reg = rt2x00mmio_register_read(rt2x00dev, AUX_CTRL);
753 rt2x00_set_field32(®, AUX_CTRL_FORCE_PCIE_CLK, 1);
754 rt2x00_set_field32(®, AUX_CTRL_WAKE_PCIE_EN, 1);
755 rt2x00mmio_register_write(rt2x00dev, AUX_CTRL, reg);
756 }
757
758 rt2x00mmio_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
759
760 reg = 0;
761 rt2x00_set_field32(®, MAC_SYS_CTRL_RESET_CSR, 1);
762 rt2x00_set_field32(®, MAC_SYS_CTRL_RESET_BBP, 1);
763 rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
764
765 rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
766
767 return 0;
768 }
769 EXPORT_SYMBOL_GPL(rt2800mmio_init_registers);
770
771 /*
772 * Device state switch handlers.
773 */
rt2800mmio_enable_radio(struct rt2x00_dev * rt2x00dev)774 int rt2800mmio_enable_radio(struct rt2x00_dev *rt2x00dev)
775 {
776 /* Wait for DMA, ignore error until we initialize queues. */
777 rt2800_wait_wpdma_ready(rt2x00dev);
778
779 if (unlikely(rt2800mmio_init_queues(rt2x00dev)))
780 return -EIO;
781
782 return rt2800_enable_radio(rt2x00dev);
783 }
784 EXPORT_SYMBOL_GPL(rt2800mmio_enable_radio);
785
rt2800mmio_work_txdone(struct work_struct * work)786 static void rt2800mmio_work_txdone(struct work_struct *work)
787 {
788 struct rt2x00_dev *rt2x00dev =
789 container_of(work, struct rt2x00_dev, txdone_work);
790
791 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
792 return;
793
794 while (!kfifo_is_empty(&rt2x00dev->txstatus_fifo) ||
795 rt2800_txstatus_timeout(rt2x00dev)) {
796
797 tasklet_disable(&rt2x00dev->txstatus_tasklet);
798 rt2800_txdone(rt2x00dev, UINT_MAX);
799 rt2800_txdone_nostatus(rt2x00dev);
800 tasklet_enable(&rt2x00dev->txstatus_tasklet);
801 }
802
803 if (rt2800_txstatus_pending(rt2x00dev))
804 hrtimer_start(&rt2x00dev->txstatus_timer,
805 TXSTATUS_TIMEOUT, HRTIMER_MODE_REL);
806 }
807
rt2800mmio_tx_sta_fifo_timeout(struct hrtimer * timer)808 static enum hrtimer_restart rt2800mmio_tx_sta_fifo_timeout(struct hrtimer *timer)
809 {
810 struct rt2x00_dev *rt2x00dev =
811 container_of(timer, struct rt2x00_dev, txstatus_timer);
812
813 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
814 goto out;
815
816 if (!rt2800_txstatus_pending(rt2x00dev))
817 goto out;
818
819 rt2800mmio_fetch_txstatus(rt2x00dev);
820 if (!kfifo_is_empty(&rt2x00dev->txstatus_fifo))
821 tasklet_schedule(&rt2x00dev->txstatus_tasklet);
822 else
823 queue_work(rt2x00dev->workqueue, &rt2x00dev->txdone_work);
824 out:
825 return HRTIMER_NORESTART;
826 }
827
rt2800mmio_probe_hw(struct rt2x00_dev * rt2x00dev)828 int rt2800mmio_probe_hw(struct rt2x00_dev *rt2x00dev)
829 {
830 int retval;
831
832 retval = rt2800_probe_hw(rt2x00dev);
833 if (retval)
834 return retval;
835
836 /*
837 * Set txstatus timer function.
838 */
839 rt2x00dev->txstatus_timer.function = rt2800mmio_tx_sta_fifo_timeout;
840
841 /*
842 * Overwrite TX done handler
843 */
844 INIT_WORK(&rt2x00dev->txdone_work, rt2800mmio_work_txdone);
845
846 return 0;
847 }
848 EXPORT_SYMBOL_GPL(rt2800mmio_probe_hw);
849
850 MODULE_AUTHOR(DRV_PROJECT);
851 MODULE_VERSION(DRV_VERSION);
852 MODULE_DESCRIPTION("rt2800 MMIO library");
853 MODULE_LICENSE("GPL");
854