1 /* Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
2 * Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
3 * Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
4 * Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
5 * Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
6 * Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
7 * Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
8 * Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
9 * <http://rt2x00.serialmonkey.com>
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, see <http://www.gnu.org/licenses/>.
23 */
24
25 /* Module: rt2800mmio
26 * Abstract: rt2800 MMIO device routines.
27 */
28
29 #include <linux/kernel.h>
30 #include <linux/module.h>
31 #include <linux/export.h>
32
33 #include "rt2x00.h"
34 #include "rt2x00mmio.h"
35 #include "rt2800.h"
36 #include "rt2800lib.h"
37 #include "rt2800mmio.h"
38
39 /*
40 * TX descriptor initialization
41 */
rt2800mmio_get_txwi(struct queue_entry * entry)42 __le32 *rt2800mmio_get_txwi(struct queue_entry *entry)
43 {
44 return (__le32 *) entry->skb->data;
45 }
46 EXPORT_SYMBOL_GPL(rt2800mmio_get_txwi);
47
rt2800mmio_write_tx_desc(struct queue_entry * entry,struct txentry_desc * txdesc)48 void rt2800mmio_write_tx_desc(struct queue_entry *entry,
49 struct txentry_desc *txdesc)
50 {
51 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
52 struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
53 __le32 *txd = entry_priv->desc;
54 u32 word;
55 const unsigned int txwi_size = entry->queue->winfo_size;
56
57 /*
58 * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
59 * must contains a TXWI structure + 802.11 header + padding + 802.11
60 * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
61 * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
62 * data. It means that LAST_SEC0 is always 0.
63 */
64
65 /*
66 * Initialize TX descriptor
67 */
68 word = 0;
69 rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
70 rt2x00_desc_write(txd, 0, word);
71
72 word = 0;
73 rt2x00_set_field32(&word, TXD_W1_SD_LEN1, entry->skb->len);
74 rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
75 !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
76 rt2x00_set_field32(&word, TXD_W1_BURST,
77 test_bit(ENTRY_TXD_BURST, &txdesc->flags));
78 rt2x00_set_field32(&word, TXD_W1_SD_LEN0, txwi_size);
79 rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
80 rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
81 rt2x00_desc_write(txd, 1, word);
82
83 word = 0;
84 rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
85 skbdesc->skb_dma + txwi_size);
86 rt2x00_desc_write(txd, 2, word);
87
88 word = 0;
89 rt2x00_set_field32(&word, TXD_W3_WIV,
90 !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
91 rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
92 rt2x00_desc_write(txd, 3, word);
93
94 /*
95 * Register descriptor details in skb frame descriptor.
96 */
97 skbdesc->desc = txd;
98 skbdesc->desc_len = TXD_DESC_SIZE;
99 }
100 EXPORT_SYMBOL_GPL(rt2800mmio_write_tx_desc);
101
102 /*
103 * RX control handlers
104 */
rt2800mmio_fill_rxdone(struct queue_entry * entry,struct rxdone_entry_desc * rxdesc)105 void rt2800mmio_fill_rxdone(struct queue_entry *entry,
106 struct rxdone_entry_desc *rxdesc)
107 {
108 struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
109 __le32 *rxd = entry_priv->desc;
110 u32 word;
111
112 word = rt2x00_desc_read(rxd, 3);
113
114 if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
115 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
116
117 /*
118 * Unfortunately we don't know the cipher type used during
119 * decryption. This prevents us from correct providing
120 * correct statistics through debugfs.
121 */
122 rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
123
124 if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
125 /*
126 * Hardware has stripped IV/EIV data from 802.11 frame during
127 * decryption. Unfortunately the descriptor doesn't contain
128 * any fields with the EIV/IV data either, so they can't
129 * be restored by rt2x00lib.
130 */
131 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
132
133 /*
134 * The hardware has already checked the Michael Mic and has
135 * stripped it from the frame. Signal this to mac80211.
136 */
137 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
138
139 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS) {
140 rxdesc->flags |= RX_FLAG_DECRYPTED;
141 } else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC) {
142 /*
143 * In order to check the Michael Mic, the packet must have
144 * been decrypted. Mac80211 doesnt check the MMIC failure
145 * flag to initiate MMIC countermeasures if the decoded flag
146 * has not been set.
147 */
148 rxdesc->flags |= RX_FLAG_DECRYPTED;
149
150 rxdesc->flags |= RX_FLAG_MMIC_ERROR;
151 }
152 }
153
154 if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
155 rxdesc->dev_flags |= RXDONE_MY_BSS;
156
157 if (rt2x00_get_field32(word, RXD_W3_L2PAD))
158 rxdesc->dev_flags |= RXDONE_L2PAD;
159
160 /*
161 * Process the RXWI structure that is at the start of the buffer.
162 */
163 rt2800_process_rxwi(entry, rxdesc);
164 }
165 EXPORT_SYMBOL_GPL(rt2800mmio_fill_rxdone);
166
167 /*
168 * Interrupt functions.
169 */
rt2800mmio_wakeup(struct rt2x00_dev * rt2x00dev)170 static void rt2800mmio_wakeup(struct rt2x00_dev *rt2x00dev)
171 {
172 struct ieee80211_conf conf = { .flags = 0 };
173 struct rt2x00lib_conf libconf = { .conf = &conf };
174
175 rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
176 }
177
rt2800mmio_txdone_entry_check(struct queue_entry * entry,u32 status)178 static bool rt2800mmio_txdone_entry_check(struct queue_entry *entry, u32 status)
179 {
180 __le32 *txwi;
181 u32 word;
182 int wcid, tx_wcid;
183
184 wcid = rt2x00_get_field32(status, TX_STA_FIFO_WCID);
185
186 txwi = rt2800_drv_get_txwi(entry);
187 word = rt2x00_desc_read(txwi, 1);
188 tx_wcid = rt2x00_get_field32(word, TXWI_W1_WIRELESS_CLI_ID);
189
190 return (tx_wcid == wcid);
191 }
192
rt2800mmio_txdone_find_entry(struct queue_entry * entry,void * data)193 static bool rt2800mmio_txdone_find_entry(struct queue_entry *entry, void *data)
194 {
195 u32 status = *(u32 *)data;
196
197 /*
198 * rt2800pci hardware might reorder frames when exchanging traffic
199 * with multiple BA enabled STAs.
200 *
201 * For example, a tx queue
202 * [ STA1 | STA2 | STA1 | STA2 ]
203 * can result in tx status reports
204 * [ STA1 | STA1 | STA2 | STA2 ]
205 * when the hw decides to aggregate the frames for STA1 into one AMPDU.
206 *
207 * To mitigate this effect, associate the tx status to the first frame
208 * in the tx queue with a matching wcid.
209 */
210 if (rt2800mmio_txdone_entry_check(entry, status) &&
211 !test_bit(ENTRY_DATA_STATUS_SET, &entry->flags)) {
212 /*
213 * Got a matching frame, associate the tx status with
214 * the frame
215 */
216 entry->status = status;
217 set_bit(ENTRY_DATA_STATUS_SET, &entry->flags);
218 return true;
219 }
220
221 /* Check the next frame */
222 return false;
223 }
224
rt2800mmio_txdone_match_first(struct queue_entry * entry,void * data)225 static bool rt2800mmio_txdone_match_first(struct queue_entry *entry, void *data)
226 {
227 u32 status = *(u32 *)data;
228
229 /*
230 * Find the first frame without tx status and assign this status to it
231 * regardless if it matches or not.
232 */
233 if (!test_bit(ENTRY_DATA_STATUS_SET, &entry->flags)) {
234 /*
235 * Got a matching frame, associate the tx status with
236 * the frame
237 */
238 entry->status = status;
239 set_bit(ENTRY_DATA_STATUS_SET, &entry->flags);
240 return true;
241 }
242
243 /* Check the next frame */
244 return false;
245 }
rt2800mmio_txdone_release_entries(struct queue_entry * entry,void * data)246 static bool rt2800mmio_txdone_release_entries(struct queue_entry *entry,
247 void *data)
248 {
249 if (test_bit(ENTRY_DATA_STATUS_SET, &entry->flags)) {
250 rt2800_txdone_entry(entry, entry->status,
251 rt2800mmio_get_txwi(entry), true);
252 return false;
253 }
254
255 /* No more frames to release */
256 return true;
257 }
258
rt2800mmio_txdone(struct rt2x00_dev * rt2x00dev)259 static bool rt2800mmio_txdone(struct rt2x00_dev *rt2x00dev)
260 {
261 struct data_queue *queue;
262 u32 status;
263 u8 qid;
264 int max_tx_done = 16;
265
266 while (kfifo_get(&rt2x00dev->txstatus_fifo, &status)) {
267 qid = rt2x00_get_field32(status, TX_STA_FIFO_PID_QUEUE);
268 if (unlikely(qid >= QID_RX)) {
269 /*
270 * Unknown queue, this shouldn't happen. Just drop
271 * this tx status.
272 */
273 rt2x00_warn(rt2x00dev, "Got TX status report with unexpected pid %u, dropping\n",
274 qid);
275 break;
276 }
277
278 queue = rt2x00queue_get_tx_queue(rt2x00dev, qid);
279 if (unlikely(queue == NULL)) {
280 /*
281 * The queue is NULL, this shouldn't happen. Stop
282 * processing here and drop the tx status
283 */
284 rt2x00_warn(rt2x00dev, "Got TX status for an unavailable queue %u, dropping\n",
285 qid);
286 break;
287 }
288
289 if (unlikely(rt2x00queue_empty(queue))) {
290 /*
291 * The queue is empty. Stop processing here
292 * and drop the tx status.
293 */
294 rt2x00_warn(rt2x00dev, "Got TX status for an empty queue %u, dropping\n",
295 qid);
296 break;
297 }
298
299 /*
300 * Let's associate this tx status with the first
301 * matching frame.
302 */
303 if (!rt2x00queue_for_each_entry(queue, Q_INDEX_DONE,
304 Q_INDEX, &status,
305 rt2800mmio_txdone_find_entry)) {
306 /*
307 * We cannot match the tx status to any frame, so just
308 * use the first one.
309 */
310 if (!rt2x00queue_for_each_entry(queue, Q_INDEX_DONE,
311 Q_INDEX, &status,
312 rt2800mmio_txdone_match_first)) {
313 rt2x00_warn(rt2x00dev, "No frame found for TX status on queue %u, dropping\n",
314 qid);
315 break;
316 }
317 }
318
319 /*
320 * Release all frames with a valid tx status.
321 */
322 rt2x00queue_for_each_entry(queue, Q_INDEX_DONE,
323 Q_INDEX, NULL,
324 rt2800mmio_txdone_release_entries);
325
326 if (--max_tx_done == 0)
327 break;
328 }
329
330 return !max_tx_done;
331 }
332
rt2800mmio_enable_interrupt(struct rt2x00_dev * rt2x00dev,struct rt2x00_field32 irq_field)333 static inline void rt2800mmio_enable_interrupt(struct rt2x00_dev *rt2x00dev,
334 struct rt2x00_field32 irq_field)
335 {
336 u32 reg;
337
338 /*
339 * Enable a single interrupt. The interrupt mask register
340 * access needs locking.
341 */
342 spin_lock_irq(&rt2x00dev->irqmask_lock);
343 reg = rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR);
344 rt2x00_set_field32(®, irq_field, 1);
345 rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
346 spin_unlock_irq(&rt2x00dev->irqmask_lock);
347 }
348
rt2800mmio_txstatus_tasklet(unsigned long data)349 void rt2800mmio_txstatus_tasklet(unsigned long data)
350 {
351 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
352 if (rt2800mmio_txdone(rt2x00dev))
353 tasklet_schedule(&rt2x00dev->txstatus_tasklet);
354
355 /*
356 * No need to enable the tx status interrupt here as we always
357 * leave it enabled to minimize the possibility of a tx status
358 * register overflow. See comment in interrupt handler.
359 */
360 }
361 EXPORT_SYMBOL_GPL(rt2800mmio_txstatus_tasklet);
362
rt2800mmio_pretbtt_tasklet(unsigned long data)363 void rt2800mmio_pretbtt_tasklet(unsigned long data)
364 {
365 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
366 rt2x00lib_pretbtt(rt2x00dev);
367 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
368 rt2800mmio_enable_interrupt(rt2x00dev, INT_MASK_CSR_PRE_TBTT);
369 }
370 EXPORT_SYMBOL_GPL(rt2800mmio_pretbtt_tasklet);
371
rt2800mmio_tbtt_tasklet(unsigned long data)372 void rt2800mmio_tbtt_tasklet(unsigned long data)
373 {
374 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
375 struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
376 u32 reg;
377
378 rt2x00lib_beacondone(rt2x00dev);
379
380 if (rt2x00dev->intf_ap_count) {
381 /*
382 * The rt2800pci hardware tbtt timer is off by 1us per tbtt
383 * causing beacon skew and as a result causing problems with
384 * some powersaving clients over time. Shorten the beacon
385 * interval every 64 beacons by 64us to mitigate this effect.
386 */
387 if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 2)) {
388 reg = rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG);
389 rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_INTERVAL,
390 (rt2x00dev->beacon_int * 16) - 1);
391 rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
392 } else if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 1)) {
393 reg = rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG);
394 rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_INTERVAL,
395 (rt2x00dev->beacon_int * 16));
396 rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
397 }
398 drv_data->tbtt_tick++;
399 drv_data->tbtt_tick %= BCN_TBTT_OFFSET;
400 }
401
402 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
403 rt2800mmio_enable_interrupt(rt2x00dev, INT_MASK_CSR_TBTT);
404 }
405 EXPORT_SYMBOL_GPL(rt2800mmio_tbtt_tasklet);
406
rt2800mmio_rxdone_tasklet(unsigned long data)407 void rt2800mmio_rxdone_tasklet(unsigned long data)
408 {
409 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
410 if (rt2x00mmio_rxdone(rt2x00dev))
411 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
412 else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
413 rt2800mmio_enable_interrupt(rt2x00dev, INT_MASK_CSR_RX_DONE);
414 }
415 EXPORT_SYMBOL_GPL(rt2800mmio_rxdone_tasklet);
416
rt2800mmio_autowake_tasklet(unsigned long data)417 void rt2800mmio_autowake_tasklet(unsigned long data)
418 {
419 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
420 rt2800mmio_wakeup(rt2x00dev);
421 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
422 rt2800mmio_enable_interrupt(rt2x00dev,
423 INT_MASK_CSR_AUTO_WAKEUP);
424 }
425 EXPORT_SYMBOL_GPL(rt2800mmio_autowake_tasklet);
426
rt2800mmio_txstatus_interrupt(struct rt2x00_dev * rt2x00dev)427 static void rt2800mmio_txstatus_interrupt(struct rt2x00_dev *rt2x00dev)
428 {
429 u32 status;
430 int i;
431
432 /*
433 * The TX_FIFO_STATUS interrupt needs special care. We should
434 * read TX_STA_FIFO but we should do it immediately as otherwise
435 * the register can overflow and we would lose status reports.
436 *
437 * Hence, read the TX_STA_FIFO register and copy all tx status
438 * reports into a kernel FIFO which is handled in the txstatus
439 * tasklet. We use a tasklet to process the tx status reports
440 * because we can schedule the tasklet multiple times (when the
441 * interrupt fires again during tx status processing).
442 *
443 * Furthermore we don't disable the TX_FIFO_STATUS
444 * interrupt here but leave it enabled so that the TX_STA_FIFO
445 * can also be read while the tx status tasklet gets executed.
446 *
447 * Since we have only one producer and one consumer we don't
448 * need to lock the kfifo.
449 */
450 for (i = 0; i < rt2x00dev->tx->limit; i++) {
451 status = rt2x00mmio_register_read(rt2x00dev, TX_STA_FIFO);
452
453 if (!rt2x00_get_field32(status, TX_STA_FIFO_VALID))
454 break;
455
456 if (!kfifo_put(&rt2x00dev->txstatus_fifo, status)) {
457 rt2x00_warn(rt2x00dev, "TX status FIFO overrun, drop tx status report\n");
458 break;
459 }
460 }
461
462 /* Schedule the tasklet for processing the tx status. */
463 tasklet_schedule(&rt2x00dev->txstatus_tasklet);
464 }
465
rt2800mmio_interrupt(int irq,void * dev_instance)466 irqreturn_t rt2800mmio_interrupt(int irq, void *dev_instance)
467 {
468 struct rt2x00_dev *rt2x00dev = dev_instance;
469 u32 reg, mask;
470
471 /* Read status and ACK all interrupts */
472 reg = rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR);
473 rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
474
475 if (!reg)
476 return IRQ_NONE;
477
478 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
479 return IRQ_HANDLED;
480
481 /*
482 * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
483 * for interrupts and interrupt masks we can just use the value of
484 * INT_SOURCE_CSR to create the interrupt mask.
485 */
486 mask = ~reg;
487
488 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS)) {
489 rt2800mmio_txstatus_interrupt(rt2x00dev);
490 /*
491 * Never disable the TX_FIFO_STATUS interrupt.
492 */
493 rt2x00_set_field32(&mask, INT_MASK_CSR_TX_FIFO_STATUS, 1);
494 }
495
496 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT))
497 tasklet_hi_schedule(&rt2x00dev->pretbtt_tasklet);
498
499 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT))
500 tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
501
502 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
503 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
504
505 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
506 tasklet_schedule(&rt2x00dev->autowake_tasklet);
507
508 /*
509 * Disable all interrupts for which a tasklet was scheduled right now,
510 * the tasklet will reenable the appropriate interrupts.
511 */
512 spin_lock(&rt2x00dev->irqmask_lock);
513 reg = rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR);
514 reg &= mask;
515 rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
516 spin_unlock(&rt2x00dev->irqmask_lock);
517
518 return IRQ_HANDLED;
519 }
520 EXPORT_SYMBOL_GPL(rt2800mmio_interrupt);
521
rt2800mmio_toggle_irq(struct rt2x00_dev * rt2x00dev,enum dev_state state)522 void rt2800mmio_toggle_irq(struct rt2x00_dev *rt2x00dev,
523 enum dev_state state)
524 {
525 u32 reg;
526 unsigned long flags;
527
528 /*
529 * When interrupts are being enabled, the interrupt registers
530 * should clear the register to assure a clean state.
531 */
532 if (state == STATE_RADIO_IRQ_ON) {
533 reg = rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR);
534 rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
535 }
536
537 spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
538 reg = 0;
539 if (state == STATE_RADIO_IRQ_ON) {
540 rt2x00_set_field32(®, INT_MASK_CSR_RX_DONE, 1);
541 rt2x00_set_field32(®, INT_MASK_CSR_TBTT, 1);
542 rt2x00_set_field32(®, INT_MASK_CSR_PRE_TBTT, 1);
543 rt2x00_set_field32(®, INT_MASK_CSR_TX_FIFO_STATUS, 1);
544 rt2x00_set_field32(®, INT_MASK_CSR_AUTO_WAKEUP, 1);
545 }
546 rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
547 spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
548
549 if (state == STATE_RADIO_IRQ_OFF) {
550 /*
551 * Wait for possibly running tasklets to finish.
552 */
553 tasklet_kill(&rt2x00dev->txstatus_tasklet);
554 tasklet_kill(&rt2x00dev->rxdone_tasklet);
555 tasklet_kill(&rt2x00dev->autowake_tasklet);
556 tasklet_kill(&rt2x00dev->tbtt_tasklet);
557 tasklet_kill(&rt2x00dev->pretbtt_tasklet);
558 }
559 }
560 EXPORT_SYMBOL_GPL(rt2800mmio_toggle_irq);
561
562 /*
563 * Queue handlers.
564 */
rt2800mmio_start_queue(struct data_queue * queue)565 void rt2800mmio_start_queue(struct data_queue *queue)
566 {
567 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
568 u32 reg;
569
570 switch (queue->qid) {
571 case QID_RX:
572 reg = rt2x00mmio_register_read(rt2x00dev, MAC_SYS_CTRL);
573 rt2x00_set_field32(®, MAC_SYS_CTRL_ENABLE_RX, 1);
574 rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
575 break;
576 case QID_BEACON:
577 reg = rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG);
578 rt2x00_set_field32(®, BCN_TIME_CFG_TSF_TICKING, 1);
579 rt2x00_set_field32(®, BCN_TIME_CFG_TBTT_ENABLE, 1);
580 rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_GEN, 1);
581 rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
582
583 reg = rt2x00mmio_register_read(rt2x00dev, INT_TIMER_EN);
584 rt2x00_set_field32(®, INT_TIMER_EN_PRE_TBTT_TIMER, 1);
585 rt2x00mmio_register_write(rt2x00dev, INT_TIMER_EN, reg);
586 break;
587 default:
588 break;
589 }
590 }
591 EXPORT_SYMBOL_GPL(rt2800mmio_start_queue);
592
rt2800mmio_kick_queue(struct data_queue * queue)593 void rt2800mmio_kick_queue(struct data_queue *queue)
594 {
595 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
596 struct queue_entry *entry;
597
598 switch (queue->qid) {
599 case QID_AC_VO:
600 case QID_AC_VI:
601 case QID_AC_BE:
602 case QID_AC_BK:
603 WARN_ON_ONCE(rt2x00queue_empty(queue));
604 entry = rt2x00queue_get_entry(queue, Q_INDEX);
605 rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX(queue->qid),
606 entry->entry_idx);
607 break;
608 case QID_MGMT:
609 entry = rt2x00queue_get_entry(queue, Q_INDEX);
610 rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX(5),
611 entry->entry_idx);
612 break;
613 default:
614 break;
615 }
616 }
617 EXPORT_SYMBOL_GPL(rt2800mmio_kick_queue);
618
rt2800mmio_stop_queue(struct data_queue * queue)619 void rt2800mmio_stop_queue(struct data_queue *queue)
620 {
621 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
622 u32 reg;
623
624 switch (queue->qid) {
625 case QID_RX:
626 reg = rt2x00mmio_register_read(rt2x00dev, MAC_SYS_CTRL);
627 rt2x00_set_field32(®, MAC_SYS_CTRL_ENABLE_RX, 0);
628 rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
629 break;
630 case QID_BEACON:
631 reg = rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG);
632 rt2x00_set_field32(®, BCN_TIME_CFG_TSF_TICKING, 0);
633 rt2x00_set_field32(®, BCN_TIME_CFG_TBTT_ENABLE, 0);
634 rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_GEN, 0);
635 rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
636
637 reg = rt2x00mmio_register_read(rt2x00dev, INT_TIMER_EN);
638 rt2x00_set_field32(®, INT_TIMER_EN_PRE_TBTT_TIMER, 0);
639 rt2x00mmio_register_write(rt2x00dev, INT_TIMER_EN, reg);
640
641 /*
642 * Wait for current invocation to finish. The tasklet
643 * won't be scheduled anymore afterwards since we disabled
644 * the TBTT and PRE TBTT timer.
645 */
646 tasklet_kill(&rt2x00dev->tbtt_tasklet);
647 tasklet_kill(&rt2x00dev->pretbtt_tasklet);
648
649 break;
650 default:
651 break;
652 }
653 }
654 EXPORT_SYMBOL_GPL(rt2800mmio_stop_queue);
655
rt2800mmio_queue_init(struct data_queue * queue)656 void rt2800mmio_queue_init(struct data_queue *queue)
657 {
658 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
659 unsigned short txwi_size, rxwi_size;
660
661 rt2800_get_txwi_rxwi_size(rt2x00dev, &txwi_size, &rxwi_size);
662
663 switch (queue->qid) {
664 case QID_RX:
665 queue->limit = 128;
666 queue->data_size = AGGREGATION_SIZE;
667 queue->desc_size = RXD_DESC_SIZE;
668 queue->winfo_size = rxwi_size;
669 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
670 break;
671
672 case QID_AC_VO:
673 case QID_AC_VI:
674 case QID_AC_BE:
675 case QID_AC_BK:
676 queue->limit = 64;
677 queue->data_size = AGGREGATION_SIZE;
678 queue->desc_size = TXD_DESC_SIZE;
679 queue->winfo_size = txwi_size;
680 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
681 break;
682
683 case QID_BEACON:
684 queue->limit = 8;
685 queue->data_size = 0; /* No DMA required for beacons */
686 queue->desc_size = TXD_DESC_SIZE;
687 queue->winfo_size = txwi_size;
688 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
689 break;
690
691 case QID_ATIM:
692 /* fallthrough */
693 default:
694 BUG();
695 break;
696 }
697 }
698 EXPORT_SYMBOL_GPL(rt2800mmio_queue_init);
699
700 /*
701 * Initialization functions.
702 */
rt2800mmio_get_entry_state(struct queue_entry * entry)703 bool rt2800mmio_get_entry_state(struct queue_entry *entry)
704 {
705 struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
706 u32 word;
707
708 if (entry->queue->qid == QID_RX) {
709 word = rt2x00_desc_read(entry_priv->desc, 1);
710
711 return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
712 } else {
713 word = rt2x00_desc_read(entry_priv->desc, 1);
714
715 return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
716 }
717 }
718 EXPORT_SYMBOL_GPL(rt2800mmio_get_entry_state);
719
rt2800mmio_clear_entry(struct queue_entry * entry)720 void rt2800mmio_clear_entry(struct queue_entry *entry)
721 {
722 struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
723 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
724 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
725 u32 word;
726
727 if (entry->queue->qid == QID_RX) {
728 word = rt2x00_desc_read(entry_priv->desc, 0);
729 rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
730 rt2x00_desc_write(entry_priv->desc, 0, word);
731
732 word = rt2x00_desc_read(entry_priv->desc, 1);
733 rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
734 rt2x00_desc_write(entry_priv->desc, 1, word);
735
736 /*
737 * Set RX IDX in register to inform hardware that we have
738 * handled this entry and it is available for reuse again.
739 */
740 rt2x00mmio_register_write(rt2x00dev, RX_CRX_IDX,
741 entry->entry_idx);
742 } else {
743 word = rt2x00_desc_read(entry_priv->desc, 1);
744 rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
745 rt2x00_desc_write(entry_priv->desc, 1, word);
746 }
747 }
748 EXPORT_SYMBOL_GPL(rt2800mmio_clear_entry);
749
rt2800mmio_init_queues(struct rt2x00_dev * rt2x00dev)750 int rt2800mmio_init_queues(struct rt2x00_dev *rt2x00dev)
751 {
752 struct queue_entry_priv_mmio *entry_priv;
753
754 /*
755 * Initialize registers.
756 */
757 entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
758 rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR0,
759 entry_priv->desc_dma);
760 rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT0,
761 rt2x00dev->tx[0].limit);
762 rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX0, 0);
763 rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX0, 0);
764
765 entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
766 rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR1,
767 entry_priv->desc_dma);
768 rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT1,
769 rt2x00dev->tx[1].limit);
770 rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX1, 0);
771 rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX1, 0);
772
773 entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
774 rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR2,
775 entry_priv->desc_dma);
776 rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT2,
777 rt2x00dev->tx[2].limit);
778 rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX2, 0);
779 rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX2, 0);
780
781 entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
782 rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR3,
783 entry_priv->desc_dma);
784 rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT3,
785 rt2x00dev->tx[3].limit);
786 rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX3, 0);
787 rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX3, 0);
788
789 rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR4, 0);
790 rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT4, 0);
791 rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX4, 0);
792 rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX4, 0);
793
794 rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR5, 0);
795 rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT5, 0);
796 rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX5, 0);
797 rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX5, 0);
798
799 entry_priv = rt2x00dev->rx->entries[0].priv_data;
800 rt2x00mmio_register_write(rt2x00dev, RX_BASE_PTR,
801 entry_priv->desc_dma);
802 rt2x00mmio_register_write(rt2x00dev, RX_MAX_CNT,
803 rt2x00dev->rx[0].limit);
804 rt2x00mmio_register_write(rt2x00dev, RX_CRX_IDX,
805 rt2x00dev->rx[0].limit - 1);
806 rt2x00mmio_register_write(rt2x00dev, RX_DRX_IDX, 0);
807
808 rt2800_disable_wpdma(rt2x00dev);
809
810 rt2x00mmio_register_write(rt2x00dev, DELAY_INT_CFG, 0);
811
812 return 0;
813 }
814 EXPORT_SYMBOL_GPL(rt2800mmio_init_queues);
815
rt2800mmio_init_registers(struct rt2x00_dev * rt2x00dev)816 int rt2800mmio_init_registers(struct rt2x00_dev *rt2x00dev)
817 {
818 u32 reg;
819
820 /*
821 * Reset DMA indexes
822 */
823 reg = rt2x00mmio_register_read(rt2x00dev, WPDMA_RST_IDX);
824 rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX0, 1);
825 rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX1, 1);
826 rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX2, 1);
827 rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX3, 1);
828 rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX4, 1);
829 rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX5, 1);
830 rt2x00_set_field32(®, WPDMA_RST_IDX_DRX_IDX0, 1);
831 rt2x00mmio_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
832
833 rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
834 rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
835
836 if (rt2x00_is_pcie(rt2x00dev) &&
837 (rt2x00_rt(rt2x00dev, RT3090) ||
838 rt2x00_rt(rt2x00dev, RT3390) ||
839 rt2x00_rt(rt2x00dev, RT3572) ||
840 rt2x00_rt(rt2x00dev, RT3593) ||
841 rt2x00_rt(rt2x00dev, RT5390) ||
842 rt2x00_rt(rt2x00dev, RT5392) ||
843 rt2x00_rt(rt2x00dev, RT5592))) {
844 reg = rt2x00mmio_register_read(rt2x00dev, AUX_CTRL);
845 rt2x00_set_field32(®, AUX_CTRL_FORCE_PCIE_CLK, 1);
846 rt2x00_set_field32(®, AUX_CTRL_WAKE_PCIE_EN, 1);
847 rt2x00mmio_register_write(rt2x00dev, AUX_CTRL, reg);
848 }
849
850 rt2x00mmio_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
851
852 reg = 0;
853 rt2x00_set_field32(®, MAC_SYS_CTRL_RESET_CSR, 1);
854 rt2x00_set_field32(®, MAC_SYS_CTRL_RESET_BBP, 1);
855 rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
856
857 rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
858
859 return 0;
860 }
861 EXPORT_SYMBOL_GPL(rt2800mmio_init_registers);
862
863 /*
864 * Device state switch handlers.
865 */
rt2800mmio_enable_radio(struct rt2x00_dev * rt2x00dev)866 int rt2800mmio_enable_radio(struct rt2x00_dev *rt2x00dev)
867 {
868 /* Wait for DMA, ignore error until we initialize queues. */
869 rt2800_wait_wpdma_ready(rt2x00dev);
870
871 if (unlikely(rt2800mmio_init_queues(rt2x00dev)))
872 return -EIO;
873
874 return rt2800_enable_radio(rt2x00dev);
875 }
876 EXPORT_SYMBOL_GPL(rt2800mmio_enable_radio);
877
878 MODULE_AUTHOR(DRV_PROJECT);
879 MODULE_VERSION(DRV_VERSION);
880 MODULE_DESCRIPTION("rt2800 MMIO library");
881 MODULE_LICENSE("GPL");
882