1 /*
2 * Copyright (c) 2014 Redpine Signals Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include <linux/etherdevice.h>
18 #include <linux/timer.h>
19 #include "rsi_mgmt.h"
20 #include "rsi_common.h"
21 #include "rsi_ps.h"
22 #include "rsi_hal.h"
23
24 static struct bootup_params boot_params_20 = {
25 .magic_number = cpu_to_le16(0x5aa5),
26 .crystal_good_time = 0x0,
27 .valid = cpu_to_le32(VALID_20),
28 .reserved_for_valids = 0x0,
29 .bootup_mode_info = 0x0,
30 .digital_loop_back_params = 0x0,
31 .rtls_timestamp_en = 0x0,
32 .host_spi_intr_cfg = 0x0,
33 .device_clk_info = {{
34 .pll_config_g = {
35 .tapll_info_g = {
36 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)|
37 (TA_PLL_M_VAL_20)),
38 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20),
39 },
40 .pll960_info_g = {
41 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)|
42 (PLL960_N_VAL_20)),
43 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20),
44 .pll_reg_3 = 0x0,
45 },
46 .afepll_info_g = {
47 .pll_reg = cpu_to_le16(0x9f0),
48 }
49 },
50 .switch_clk_g = {
51 .switch_clk_info = cpu_to_le16(0xb),
52 .bbp_lmac_clk_reg_val = cpu_to_le16(0x111),
53 .umac_clock_reg_config = cpu_to_le16(0x48),
54 .qspi_uart_clock_reg_config = cpu_to_le16(0x1211)
55 }
56 },
57 {
58 .pll_config_g = {
59 .tapll_info_g = {
60 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)|
61 (TA_PLL_M_VAL_20)),
62 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20),
63 },
64 .pll960_info_g = {
65 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)|
66 (PLL960_N_VAL_20)),
67 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20),
68 .pll_reg_3 = 0x0,
69 },
70 .afepll_info_g = {
71 .pll_reg = cpu_to_le16(0x9f0),
72 }
73 },
74 .switch_clk_g = {
75 .switch_clk_info = 0x0,
76 .bbp_lmac_clk_reg_val = 0x0,
77 .umac_clock_reg_config = 0x0,
78 .qspi_uart_clock_reg_config = 0x0
79 }
80 },
81 {
82 .pll_config_g = {
83 .tapll_info_g = {
84 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)|
85 (TA_PLL_M_VAL_20)),
86 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20),
87 },
88 .pll960_info_g = {
89 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)|
90 (PLL960_N_VAL_20)),
91 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20),
92 .pll_reg_3 = 0x0,
93 },
94 .afepll_info_g = {
95 .pll_reg = cpu_to_le16(0x9f0),
96 }
97 },
98 .switch_clk_g = {
99 .switch_clk_info = 0x0,
100 .bbp_lmac_clk_reg_val = 0x0,
101 .umac_clock_reg_config = 0x0,
102 .qspi_uart_clock_reg_config = 0x0
103 }
104 } },
105 .buckboost_wakeup_cnt = 0x0,
106 .pmu_wakeup_wait = 0x0,
107 .shutdown_wait_time = 0x0,
108 .pmu_slp_clkout_sel = 0x0,
109 .wdt_prog_value = 0x0,
110 .wdt_soc_rst_delay = 0x0,
111 .dcdc_operation_mode = 0x0,
112 .soc_reset_wait_cnt = 0x0,
113 .waiting_time_at_fresh_sleep = 0x0,
114 .max_threshold_to_avoid_sleep = 0x0,
115 .beacon_resedue_alg_en = 0,
116 };
117
118 static struct bootup_params boot_params_40 = {
119 .magic_number = cpu_to_le16(0x5aa5),
120 .crystal_good_time = 0x0,
121 .valid = cpu_to_le32(VALID_40),
122 .reserved_for_valids = 0x0,
123 .bootup_mode_info = 0x0,
124 .digital_loop_back_params = 0x0,
125 .rtls_timestamp_en = 0x0,
126 .host_spi_intr_cfg = 0x0,
127 .device_clk_info = {{
128 .pll_config_g = {
129 .tapll_info_g = {
130 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)|
131 (TA_PLL_M_VAL_40)),
132 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40),
133 },
134 .pll960_info_g = {
135 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)|
136 (PLL960_N_VAL_40)),
137 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40),
138 .pll_reg_3 = 0x0,
139 },
140 .afepll_info_g = {
141 .pll_reg = cpu_to_le16(0x9f0),
142 }
143 },
144 .switch_clk_g = {
145 .switch_clk_info = cpu_to_le16(0x09),
146 .bbp_lmac_clk_reg_val = cpu_to_le16(0x1121),
147 .umac_clock_reg_config = cpu_to_le16(0x48),
148 .qspi_uart_clock_reg_config = cpu_to_le16(0x1211)
149 }
150 },
151 {
152 .pll_config_g = {
153 .tapll_info_g = {
154 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)|
155 (TA_PLL_M_VAL_40)),
156 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40),
157 },
158 .pll960_info_g = {
159 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)|
160 (PLL960_N_VAL_40)),
161 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40),
162 .pll_reg_3 = 0x0,
163 },
164 .afepll_info_g = {
165 .pll_reg = cpu_to_le16(0x9f0),
166 }
167 },
168 .switch_clk_g = {
169 .switch_clk_info = 0x0,
170 .bbp_lmac_clk_reg_val = 0x0,
171 .umac_clock_reg_config = 0x0,
172 .qspi_uart_clock_reg_config = 0x0
173 }
174 },
175 {
176 .pll_config_g = {
177 .tapll_info_g = {
178 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)|
179 (TA_PLL_M_VAL_40)),
180 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40),
181 },
182 .pll960_info_g = {
183 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)|
184 (PLL960_N_VAL_40)),
185 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40),
186 .pll_reg_3 = 0x0,
187 },
188 .afepll_info_g = {
189 .pll_reg = cpu_to_le16(0x9f0),
190 }
191 },
192 .switch_clk_g = {
193 .switch_clk_info = 0x0,
194 .bbp_lmac_clk_reg_val = 0x0,
195 .umac_clock_reg_config = 0x0,
196 .qspi_uart_clock_reg_config = 0x0
197 }
198 } },
199 .buckboost_wakeup_cnt = 0x0,
200 .pmu_wakeup_wait = 0x0,
201 .shutdown_wait_time = 0x0,
202 .pmu_slp_clkout_sel = 0x0,
203 .wdt_prog_value = 0x0,
204 .wdt_soc_rst_delay = 0x0,
205 .dcdc_operation_mode = 0x0,
206 .soc_reset_wait_cnt = 0x0,
207 .waiting_time_at_fresh_sleep = 0x0,
208 .max_threshold_to_avoid_sleep = 0x0,
209 .beacon_resedue_alg_en = 0,
210 };
211
212 static struct bootup_params_9116 boot_params_9116_20 = {
213 .magic_number = cpu_to_le16(LOADED_TOKEN),
214 .valid = cpu_to_le32(VALID_20),
215 .device_clk_info_9116 = {{
216 .pll_config_9116_g = {
217 .pll_ctrl_set_reg = cpu_to_le16(0xd518),
218 .pll_ctrl_clr_reg = cpu_to_le16(0x2ae7),
219 .pll_modem_conig_reg = cpu_to_le16(0x2000),
220 .soc_clk_config_reg = cpu_to_le16(0x0c18),
221 .adc_dac_strm1_config_reg = cpu_to_le16(0x1100),
222 .adc_dac_strm2_config_reg = cpu_to_le16(0x6600),
223 },
224 .switch_clk_9116_g = {
225 .switch_clk_info =
226 cpu_to_le32((RSI_SWITCH_TASS_CLK |
227 RSI_SWITCH_WLAN_BBP_LMAC_CLK_REG |
228 RSI_SWITCH_BBP_LMAC_CLK_REG)),
229 .tass_clock_reg = cpu_to_le32(0x083C0503),
230 .wlan_bbp_lmac_clk_reg_val = cpu_to_le32(0x01042001),
231 .zbbt_bbp_lmac_clk_reg_val = cpu_to_le32(0x02010001),
232 .bbp_lmac_clk_en_val = cpu_to_le32(0x0000003b),
233 }
234 },
235 },
236 };
237
238 static struct bootup_params_9116 boot_params_9116_40 = {
239 .magic_number = cpu_to_le16(LOADED_TOKEN),
240 .valid = cpu_to_le32(VALID_40),
241 .device_clk_info_9116 = {{
242 .pll_config_9116_g = {
243 .pll_ctrl_set_reg = cpu_to_le16(0xd518),
244 .pll_ctrl_clr_reg = cpu_to_le16(0x2ae7),
245 .pll_modem_conig_reg = cpu_to_le16(0x3000),
246 .soc_clk_config_reg = cpu_to_le16(0x0c18),
247 .adc_dac_strm1_config_reg = cpu_to_le16(0x0000),
248 .adc_dac_strm2_config_reg = cpu_to_le16(0x6600),
249 },
250 .switch_clk_9116_g = {
251 .switch_clk_info =
252 cpu_to_le32((RSI_SWITCH_TASS_CLK |
253 RSI_SWITCH_WLAN_BBP_LMAC_CLK_REG |
254 RSI_SWITCH_BBP_LMAC_CLK_REG |
255 RSI_MODEM_CLK_160MHZ)),
256 .tass_clock_reg = cpu_to_le32(0x083C0503),
257 .wlan_bbp_lmac_clk_reg_val = cpu_to_le32(0x01042002),
258 .zbbt_bbp_lmac_clk_reg_val = cpu_to_le32(0x04010002),
259 .bbp_lmac_clk_en_val = cpu_to_le32(0x0000003b),
260 }
261 },
262 },
263 };
264
265 static u16 mcs[] = {13, 26, 39, 52, 78, 104, 117, 130};
266
267 /**
268 * rsi_set_default_parameters() - This function sets default parameters.
269 * @common: Pointer to the driver private structure.
270 *
271 * Return: none
272 */
rsi_set_default_parameters(struct rsi_common * common)273 static void rsi_set_default_parameters(struct rsi_common *common)
274 {
275 common->band = NL80211_BAND_2GHZ;
276 common->channel_width = BW_20MHZ;
277 common->rts_threshold = IEEE80211_MAX_RTS_THRESHOLD;
278 common->channel = 1;
279 common->min_rate = 0xffff;
280 common->fsm_state = FSM_CARD_NOT_READY;
281 common->iface_down = true;
282 common->endpoint = EP_2GHZ_20MHZ;
283 common->driver_mode = 1; /* End to end mode */
284 common->lp_ps_handshake_mode = 0; /* Default no handShake mode*/
285 common->ulp_ps_handshake_mode = 2; /* Default PKT handShake mode*/
286 common->rf_power_val = 0; /* Default 1.9V */
287 common->wlan_rf_power_mode = 0;
288 common->obm_ant_sel_val = 2;
289 common->beacon_interval = RSI_BEACON_INTERVAL;
290 common->dtim_cnt = RSI_DTIM_COUNT;
291 common->w9116_features.pll_mode = 0x0;
292 common->w9116_features.rf_type = 1;
293 common->w9116_features.wireless_mode = 0;
294 common->w9116_features.enable_ppe = 0;
295 common->w9116_features.afe_type = 1;
296 common->w9116_features.dpd = 0;
297 common->w9116_features.sifs_tx_enable = 0;
298 common->w9116_features.ps_options = 0;
299 }
300
init_bgscan_params(struct rsi_common * common)301 void init_bgscan_params(struct rsi_common *common)
302 {
303 memset((u8 *)&common->bgscan, 0, sizeof(struct rsi_bgscan_params));
304 common->bgscan.bgscan_threshold = RSI_DEF_BGSCAN_THRLD;
305 common->bgscan.roam_threshold = RSI_DEF_ROAM_THRLD;
306 common->bgscan.bgscan_periodicity = RSI_BGSCAN_PERIODICITY;
307 common->bgscan.num_bgscan_channels = 0;
308 common->bgscan.two_probe = 1;
309 common->bgscan.active_scan_duration = RSI_ACTIVE_SCAN_TIME;
310 common->bgscan.passive_scan_duration = RSI_PASSIVE_SCAN_TIME;
311 }
312
313 /**
314 * rsi_set_contention_vals() - This function sets the contention values for the
315 * backoff procedure.
316 * @common: Pointer to the driver private structure.
317 *
318 * Return: None.
319 */
rsi_set_contention_vals(struct rsi_common * common)320 static void rsi_set_contention_vals(struct rsi_common *common)
321 {
322 u8 ii = 0;
323
324 for (; ii < NUM_EDCA_QUEUES; ii++) {
325 common->tx_qinfo[ii].wme_params =
326 (((common->edca_params[ii].cw_min / 2) +
327 (common->edca_params[ii].aifs)) *
328 WMM_SHORT_SLOT_TIME + SIFS_DURATION);
329 common->tx_qinfo[ii].weight = common->tx_qinfo[ii].wme_params;
330 common->tx_qinfo[ii].pkt_contended = 0;
331 }
332 }
333
334 /**
335 * rsi_send_internal_mgmt_frame() - This function sends management frames to
336 * firmware.Also schedules packet to queue
337 * for transmission.
338 * @common: Pointer to the driver private structure.
339 * @skb: Pointer to the socket buffer structure.
340 *
341 * Return: 0 on success, -1 on failure.
342 */
rsi_send_internal_mgmt_frame(struct rsi_common * common,struct sk_buff * skb)343 static int rsi_send_internal_mgmt_frame(struct rsi_common *common,
344 struct sk_buff *skb)
345 {
346 struct skb_info *tx_params;
347 struct rsi_cmd_desc *desc;
348
349 if (skb == NULL) {
350 rsi_dbg(ERR_ZONE, "%s: Unable to allocate skb\n", __func__);
351 return -ENOMEM;
352 }
353 desc = (struct rsi_cmd_desc *)skb->data;
354 desc->desc_dword0.len_qno |= cpu_to_le16(DESC_IMMEDIATE_WAKEUP);
355 skb->priority = MGMT_SOFT_Q;
356 tx_params = (struct skb_info *)&IEEE80211_SKB_CB(skb)->driver_data;
357 tx_params->flags |= INTERNAL_MGMT_PKT;
358 skb_queue_tail(&common->tx_queue[MGMT_SOFT_Q], skb);
359 rsi_set_event(&common->tx_thread.event);
360 return 0;
361 }
362
363 /**
364 * rsi_load_radio_caps() - This function is used to send radio capabilities
365 * values to firmware.
366 * @common: Pointer to the driver private structure.
367 *
368 * Return: 0 on success, corresponding negative error code on failure.
369 */
rsi_load_radio_caps(struct rsi_common * common)370 static int rsi_load_radio_caps(struct rsi_common *common)
371 {
372 struct rsi_radio_caps *radio_caps;
373 struct rsi_hw *adapter = common->priv;
374 u16 inx = 0;
375 u8 ii;
376 u8 radio_id = 0;
377 u16 gc[20] = {0xf0, 0xf0, 0xf0, 0xf0,
378 0xf0, 0xf0, 0xf0, 0xf0,
379 0xf0, 0xf0, 0xf0, 0xf0,
380 0xf0, 0xf0, 0xf0, 0xf0,
381 0xf0, 0xf0, 0xf0, 0xf0};
382 struct sk_buff *skb;
383 u16 frame_len = sizeof(struct rsi_radio_caps);
384
385 rsi_dbg(INFO_ZONE, "%s: Sending rate symbol req frame\n", __func__);
386
387 skb = dev_alloc_skb(frame_len);
388
389 if (!skb) {
390 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
391 __func__);
392 return -ENOMEM;
393 }
394
395 memset(skb->data, 0, frame_len);
396 radio_caps = (struct rsi_radio_caps *)skb->data;
397
398 radio_caps->desc_dword0.frame_type = RADIO_CAPABILITIES;
399 radio_caps->channel_num = common->channel;
400 radio_caps->rf_model = RSI_RF_TYPE;
401
402 radio_caps->radio_cfg_info = RSI_LMAC_CLOCK_80MHZ;
403 if (common->channel_width == BW_40MHZ) {
404 radio_caps->radio_cfg_info |= RSI_ENABLE_40MHZ;
405
406 if (common->fsm_state == FSM_MAC_INIT_DONE) {
407 struct ieee80211_hw *hw = adapter->hw;
408 struct ieee80211_conf *conf = &hw->conf;
409
410 if (conf_is_ht40_plus(conf)) {
411 radio_caps->ppe_ack_rate =
412 cpu_to_le16(LOWER_20_ENABLE |
413 (LOWER_20_ENABLE >> 12));
414 } else if (conf_is_ht40_minus(conf)) {
415 radio_caps->ppe_ack_rate =
416 cpu_to_le16(UPPER_20_ENABLE |
417 (UPPER_20_ENABLE >> 12));
418 } else {
419 radio_caps->ppe_ack_rate =
420 cpu_to_le16((BW_40MHZ << 12) |
421 FULL40M_ENABLE);
422 }
423 }
424 }
425 radio_caps->radio_info |= radio_id;
426
427 if (adapter->device_model == RSI_DEV_9116 &&
428 common->channel_width == BW_20MHZ)
429 radio_caps->radio_cfg_info &= ~0x3;
430
431 radio_caps->sifs_tx_11n = cpu_to_le16(SIFS_TX_11N_VALUE);
432 radio_caps->sifs_tx_11b = cpu_to_le16(SIFS_TX_11B_VALUE);
433 radio_caps->slot_rx_11n = cpu_to_le16(SHORT_SLOT_VALUE);
434 radio_caps->ofdm_ack_tout = cpu_to_le16(OFDM_ACK_TOUT_VALUE);
435 radio_caps->cck_ack_tout = cpu_to_le16(CCK_ACK_TOUT_VALUE);
436 radio_caps->preamble_type = cpu_to_le16(LONG_PREAMBLE);
437
438 for (ii = 0; ii < MAX_HW_QUEUES; ii++) {
439 radio_caps->qos_params[ii].cont_win_min_q = cpu_to_le16(3);
440 radio_caps->qos_params[ii].cont_win_max_q = cpu_to_le16(0x3f);
441 radio_caps->qos_params[ii].aifsn_val_q = cpu_to_le16(2);
442 radio_caps->qos_params[ii].txop_q = 0;
443 }
444
445 for (ii = 0; ii < NUM_EDCA_QUEUES; ii++) {
446 if (common->edca_params[ii].cw_max > 0) {
447 radio_caps->qos_params[ii].cont_win_min_q =
448 cpu_to_le16(common->edca_params[ii].cw_min);
449 radio_caps->qos_params[ii].cont_win_max_q =
450 cpu_to_le16(common->edca_params[ii].cw_max);
451 radio_caps->qos_params[ii].aifsn_val_q =
452 cpu_to_le16(common->edca_params[ii].aifs << 8);
453 radio_caps->qos_params[ii].txop_q =
454 cpu_to_le16(common->edca_params[ii].txop);
455 }
456 }
457
458 radio_caps->qos_params[BROADCAST_HW_Q].txop_q = cpu_to_le16(0xffff);
459 radio_caps->qos_params[MGMT_HW_Q].txop_q = 0;
460 radio_caps->qos_params[BEACON_HW_Q].txop_q = cpu_to_le16(0xffff);
461
462 memcpy(&common->rate_pwr[0], &gc[0], 40);
463 for (ii = 0; ii < 20; ii++)
464 radio_caps->gcpd_per_rate[inx++] =
465 cpu_to_le16(common->rate_pwr[ii] & 0x00FF);
466
467 rsi_set_len_qno(&radio_caps->desc_dword0.len_qno,
468 (frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q);
469
470 skb_put(skb, frame_len);
471
472 return rsi_send_internal_mgmt_frame(common, skb);
473 }
474
475 /**
476 * rsi_mgmt_pkt_to_core() - This function is the entry point for Mgmt module.
477 * @common: Pointer to the driver private structure.
478 * @msg: Pointer to received packet.
479 * @msg_len: Length of the received packet.
480 *
481 * Return: 0 on success, -1 on failure.
482 */
rsi_mgmt_pkt_to_core(struct rsi_common * common,u8 * msg,s32 msg_len)483 static int rsi_mgmt_pkt_to_core(struct rsi_common *common,
484 u8 *msg,
485 s32 msg_len)
486 {
487 struct rsi_hw *adapter = common->priv;
488 struct ieee80211_tx_info *info;
489 struct skb_info *rx_params;
490 u8 pad_bytes = msg[4];
491 struct sk_buff *skb;
492
493 if (!adapter->sc_nvifs)
494 return -ENOLINK;
495
496 msg_len -= pad_bytes;
497 if (msg_len <= 0) {
498 rsi_dbg(MGMT_RX_ZONE,
499 "%s: Invalid rx msg of len = %d\n",
500 __func__, msg_len);
501 return -EINVAL;
502 }
503
504 skb = dev_alloc_skb(msg_len);
505 if (!skb)
506 return -ENOMEM;
507
508 skb_put_data(skb,
509 (u8 *)(msg + FRAME_DESC_SZ + pad_bytes),
510 msg_len);
511
512 info = IEEE80211_SKB_CB(skb);
513 rx_params = (struct skb_info *)info->driver_data;
514 rx_params->rssi = rsi_get_rssi(msg);
515 rx_params->channel = rsi_get_channel(msg);
516 rsi_indicate_pkt_to_os(common, skb);
517
518 return 0;
519 }
520
521 /**
522 * rsi_hal_send_sta_notify_frame() - This function sends the station notify
523 * frame to firmware.
524 * @common: Pointer to the driver private structure.
525 * @opmode: Operating mode of device.
526 * @notify_event: Notification about station connection.
527 * @bssid: bssid.
528 * @qos_enable: Qos is enabled.
529 * @aid: Aid (unique for all STA).
530 * @sta_id: station id.
531 * @vif: Pointer to the ieee80211_vif structure.
532 *
533 * Return: status: 0 on success, corresponding negative error code on failure.
534 */
rsi_hal_send_sta_notify_frame(struct rsi_common * common,enum opmode opmode,u8 notify_event,const unsigned char * bssid,u8 qos_enable,u16 aid,u16 sta_id,struct ieee80211_vif * vif)535 int rsi_hal_send_sta_notify_frame(struct rsi_common *common, enum opmode opmode,
536 u8 notify_event, const unsigned char *bssid,
537 u8 qos_enable, u16 aid, u16 sta_id,
538 struct ieee80211_vif *vif)
539 {
540 struct sk_buff *skb = NULL;
541 struct rsi_peer_notify *peer_notify;
542 u16 vap_id = ((struct vif_priv *)vif->drv_priv)->vap_id;
543 int status;
544 u16 frame_len = sizeof(struct rsi_peer_notify);
545
546 rsi_dbg(MGMT_TX_ZONE, "%s: Sending sta notify frame\n", __func__);
547
548 skb = dev_alloc_skb(frame_len);
549
550 if (!skb) {
551 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
552 __func__);
553 return -ENOMEM;
554 }
555
556 memset(skb->data, 0, frame_len);
557 peer_notify = (struct rsi_peer_notify *)skb->data;
558
559 if (opmode == RSI_OPMODE_STA)
560 peer_notify->command = cpu_to_le16(PEER_TYPE_AP << 1);
561 else if (opmode == RSI_OPMODE_AP)
562 peer_notify->command = cpu_to_le16(PEER_TYPE_STA << 1);
563
564 switch (notify_event) {
565 case STA_CONNECTED:
566 peer_notify->command |= cpu_to_le16(RSI_ADD_PEER);
567 break;
568 case STA_DISCONNECTED:
569 peer_notify->command |= cpu_to_le16(RSI_DELETE_PEER);
570 break;
571 default:
572 break;
573 }
574
575 peer_notify->command |= cpu_to_le16((aid & 0xfff) << 4);
576 ether_addr_copy(peer_notify->mac_addr, bssid);
577 peer_notify->mpdu_density = cpu_to_le16(RSI_MPDU_DENSITY);
578 peer_notify->sta_flags = cpu_to_le32((qos_enable) ? 1 : 0);
579
580 rsi_set_len_qno(&peer_notify->desc.desc_dword0.len_qno,
581 (frame_len - FRAME_DESC_SZ),
582 RSI_WIFI_MGMT_Q);
583 peer_notify->desc.desc_dword0.frame_type = PEER_NOTIFY;
584 peer_notify->desc.desc_dword3.qid_tid = sta_id;
585 peer_notify->desc.desc_dword3.sta_id = vap_id;
586
587 skb_put(skb, frame_len);
588
589 status = rsi_send_internal_mgmt_frame(common, skb);
590
591 if ((vif->type == NL80211_IFTYPE_STATION) &&
592 (!status && qos_enable)) {
593 rsi_set_contention_vals(common);
594 status = rsi_load_radio_caps(common);
595 }
596 return status;
597 }
598
599 /**
600 * rsi_send_aggregation_params_frame() - This function sends the ampdu
601 * indication frame to firmware.
602 * @common: Pointer to the driver private structure.
603 * @tid: traffic identifier.
604 * @ssn: ssn.
605 * @buf_size: buffer size.
606 * @event: notification about station connection.
607 * @sta_id: station id.
608 *
609 * Return: 0 on success, corresponding negative error code on failure.
610 */
rsi_send_aggregation_params_frame(struct rsi_common * common,u16 tid,u16 ssn,u8 buf_size,u8 event,u8 sta_id)611 int rsi_send_aggregation_params_frame(struct rsi_common *common,
612 u16 tid,
613 u16 ssn,
614 u8 buf_size,
615 u8 event,
616 u8 sta_id)
617 {
618 struct sk_buff *skb = NULL;
619 struct rsi_aggr_params *aggr_params;
620 u16 frame_len = sizeof(struct rsi_aggr_params);
621
622 skb = dev_alloc_skb(frame_len);
623
624 if (!skb) {
625 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
626 __func__);
627 return -ENOMEM;
628 }
629
630 memset(skb->data, 0, frame_len);
631 aggr_params = (struct rsi_aggr_params *)skb->data;
632
633 rsi_dbg(MGMT_TX_ZONE, "%s: Sending AMPDU indication frame\n", __func__);
634
635 rsi_set_len_qno(&aggr_params->desc_dword0.len_qno, 0, RSI_WIFI_MGMT_Q);
636 aggr_params->desc_dword0.frame_type = AMPDU_IND;
637
638 aggr_params->aggr_params = tid & RSI_AGGR_PARAMS_TID_MASK;
639 aggr_params->peer_id = sta_id;
640 if (event == STA_TX_ADDBA_DONE) {
641 aggr_params->seq_start = cpu_to_le16(ssn);
642 aggr_params->baw_size = cpu_to_le16(buf_size);
643 aggr_params->aggr_params |= RSI_AGGR_PARAMS_START;
644 } else if (event == STA_RX_ADDBA_DONE) {
645 aggr_params->seq_start = cpu_to_le16(ssn);
646 aggr_params->aggr_params |= (RSI_AGGR_PARAMS_START |
647 RSI_AGGR_PARAMS_RX_AGGR);
648 } else if (event == STA_RX_DELBA) {
649 aggr_params->aggr_params |= RSI_AGGR_PARAMS_RX_AGGR;
650 }
651
652 skb_put(skb, frame_len);
653
654 return rsi_send_internal_mgmt_frame(common, skb);
655 }
656
657 /**
658 * rsi_program_bb_rf() - This function starts base band and RF programming.
659 * This is called after initial configurations are done.
660 * @common: Pointer to the driver private structure.
661 *
662 * Return: 0 on success, corresponding negative error code on failure.
663 */
rsi_program_bb_rf(struct rsi_common * common)664 static int rsi_program_bb_rf(struct rsi_common *common)
665 {
666 struct sk_buff *skb;
667 struct rsi_bb_rf_prog *bb_rf_prog;
668 u16 frame_len = sizeof(struct rsi_bb_rf_prog);
669
670 rsi_dbg(MGMT_TX_ZONE, "%s: Sending program BB/RF frame\n", __func__);
671
672 skb = dev_alloc_skb(frame_len);
673 if (!skb) {
674 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
675 __func__);
676 return -ENOMEM;
677 }
678
679 memset(skb->data, 0, frame_len);
680 bb_rf_prog = (struct rsi_bb_rf_prog *)skb->data;
681
682 rsi_set_len_qno(&bb_rf_prog->desc_dword0.len_qno, 0, RSI_WIFI_MGMT_Q);
683 bb_rf_prog->desc_dword0.frame_type = BBP_PROG_IN_TA;
684 bb_rf_prog->endpoint = common->endpoint;
685 bb_rf_prog->rf_power_mode = common->wlan_rf_power_mode;
686
687 if (common->rf_reset) {
688 bb_rf_prog->flags = cpu_to_le16(RF_RESET_ENABLE);
689 rsi_dbg(MGMT_TX_ZONE, "%s: ===> RF RESET REQUEST SENT <===\n",
690 __func__);
691 common->rf_reset = 0;
692 }
693 common->bb_rf_prog_count = 1;
694 bb_rf_prog->flags |= cpu_to_le16(PUT_BBP_RESET | BBP_REG_WRITE |
695 (RSI_RF_TYPE << 4));
696 skb_put(skb, frame_len);
697
698 return rsi_send_internal_mgmt_frame(common, skb);
699 }
700
701 /**
702 * rsi_set_vap_capabilities() - This function send vap capability to firmware.
703 * @common: Pointer to the driver private structure.
704 * @mode: Operating mode of device.
705 * @mac_addr: MAC address
706 * @vap_id: Rate information - offset and mask
707 * @vap_status: VAP status - ADD, DELETE or UPDATE
708 *
709 * Return: 0 on success, corresponding negative error code on failure.
710 */
rsi_set_vap_capabilities(struct rsi_common * common,enum opmode mode,u8 * mac_addr,u8 vap_id,u8 vap_status)711 int rsi_set_vap_capabilities(struct rsi_common *common,
712 enum opmode mode,
713 u8 *mac_addr,
714 u8 vap_id,
715 u8 vap_status)
716 {
717 struct sk_buff *skb = NULL;
718 struct rsi_vap_caps *vap_caps;
719 struct rsi_hw *adapter = common->priv;
720 struct ieee80211_hw *hw = adapter->hw;
721 struct ieee80211_conf *conf = &hw->conf;
722 u16 frame_len = sizeof(struct rsi_vap_caps);
723
724 rsi_dbg(MGMT_TX_ZONE, "%s: Sending VAP capabilities frame\n", __func__);
725
726 skb = dev_alloc_skb(frame_len);
727 if (!skb) {
728 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
729 __func__);
730 return -ENOMEM;
731 }
732
733 memset(skb->data, 0, frame_len);
734 vap_caps = (struct rsi_vap_caps *)skb->data;
735
736 rsi_set_len_qno(&vap_caps->desc_dword0.len_qno,
737 (frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q);
738 vap_caps->desc_dword0.frame_type = VAP_CAPABILITIES;
739 vap_caps->status = vap_status;
740 vap_caps->vif_type = mode;
741 vap_caps->channel_bw = common->channel_width;
742 vap_caps->vap_id = vap_id;
743 vap_caps->radioid_macid = ((common->mac_id & 0xf) << 4) |
744 (common->radio_id & 0xf);
745
746 memcpy(vap_caps->mac_addr, mac_addr, IEEE80211_ADDR_LEN);
747 vap_caps->keep_alive_period = cpu_to_le16(90);
748 vap_caps->frag_threshold = cpu_to_le16(IEEE80211_MAX_FRAG_THRESHOLD);
749
750 vap_caps->rts_threshold = cpu_to_le16(common->rts_threshold);
751
752 if (common->band == NL80211_BAND_5GHZ) {
753 vap_caps->default_ctrl_rate = cpu_to_le16(RSI_RATE_6);
754 vap_caps->default_mgmt_rate = cpu_to_le32(RSI_RATE_6);
755 } else {
756 vap_caps->default_ctrl_rate = cpu_to_le16(RSI_RATE_1);
757 vap_caps->default_mgmt_rate = cpu_to_le32(RSI_RATE_1);
758 }
759 if (conf_is_ht40(conf)) {
760 if (conf_is_ht40_minus(conf))
761 vap_caps->ctrl_rate_flags =
762 cpu_to_le16(UPPER_20_ENABLE);
763 else if (conf_is_ht40_plus(conf))
764 vap_caps->ctrl_rate_flags =
765 cpu_to_le16(LOWER_20_ENABLE);
766 else
767 vap_caps->ctrl_rate_flags =
768 cpu_to_le16(FULL40M_ENABLE);
769 }
770
771 vap_caps->default_data_rate = 0;
772 vap_caps->beacon_interval = cpu_to_le16(common->beacon_interval);
773 vap_caps->dtim_period = cpu_to_le16(common->dtim_cnt);
774
775 skb_put(skb, frame_len);
776
777 return rsi_send_internal_mgmt_frame(common, skb);
778 }
779
780 /**
781 * rsi_hal_load_key() - This function is used to load keys within the firmware.
782 * @common: Pointer to the driver private structure.
783 * @data: Pointer to the key data.
784 * @key_len: Key length to be loaded.
785 * @key_type: Type of key: GROUP/PAIRWISE.
786 * @key_id: Key index.
787 * @cipher: Type of cipher used.
788 * @sta_id: Station id.
789 * @vif: Pointer to the ieee80211_vif structure.
790 *
791 * Return: 0 on success, -1 on failure.
792 */
rsi_hal_load_key(struct rsi_common * common,u8 * data,u16 key_len,u8 key_type,u8 key_id,u32 cipher,s16 sta_id,struct ieee80211_vif * vif)793 int rsi_hal_load_key(struct rsi_common *common,
794 u8 *data,
795 u16 key_len,
796 u8 key_type,
797 u8 key_id,
798 u32 cipher,
799 s16 sta_id,
800 struct ieee80211_vif *vif)
801 {
802 struct sk_buff *skb = NULL;
803 struct rsi_set_key *set_key;
804 u16 key_descriptor = 0;
805 u16 frame_len = sizeof(struct rsi_set_key);
806
807 rsi_dbg(MGMT_TX_ZONE, "%s: Sending load key frame\n", __func__);
808
809 skb = dev_alloc_skb(frame_len);
810 if (!skb) {
811 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
812 __func__);
813 return -ENOMEM;
814 }
815
816 memset(skb->data, 0, frame_len);
817 set_key = (struct rsi_set_key *)skb->data;
818
819 if (key_type == RSI_GROUP_KEY) {
820 key_descriptor = RSI_KEY_TYPE_BROADCAST;
821 if (vif->type == NL80211_IFTYPE_AP)
822 key_descriptor |= RSI_KEY_MODE_AP;
823 }
824 if ((cipher == WLAN_CIPHER_SUITE_WEP40) ||
825 (cipher == WLAN_CIPHER_SUITE_WEP104)) {
826 key_id = 0;
827 key_descriptor |= RSI_WEP_KEY;
828 if (key_len >= 13)
829 key_descriptor |= RSI_WEP_KEY_104;
830 } else if (cipher != KEY_TYPE_CLEAR) {
831 key_descriptor |= RSI_CIPHER_WPA;
832 if (cipher == WLAN_CIPHER_SUITE_TKIP)
833 key_descriptor |= RSI_CIPHER_TKIP;
834 }
835 key_descriptor |= RSI_PROTECT_DATA_FRAMES;
836 key_descriptor |= (key_id << RSI_KEY_ID_OFFSET);
837
838 rsi_set_len_qno(&set_key->desc_dword0.len_qno,
839 (frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q);
840 set_key->desc_dword0.frame_type = SET_KEY_REQ;
841 set_key->key_desc = cpu_to_le16(key_descriptor);
842 set_key->sta_id = sta_id;
843
844 if (data) {
845 if ((cipher == WLAN_CIPHER_SUITE_WEP40) ||
846 (cipher == WLAN_CIPHER_SUITE_WEP104)) {
847 memcpy(&set_key->key[key_id][1], data, key_len * 2);
848 } else {
849 memcpy(&set_key->key[0][0], data, key_len);
850 }
851 memcpy(set_key->tx_mic_key, &data[16], 8);
852 memcpy(set_key->rx_mic_key, &data[24], 8);
853 } else {
854 memset(&set_key[FRAME_DESC_SZ], 0, frame_len - FRAME_DESC_SZ);
855 }
856
857 skb_put(skb, frame_len);
858
859 return rsi_send_internal_mgmt_frame(common, skb);
860 }
861
862 /*
863 * This function sends the common device configuration parameters to device.
864 * This frame includes the useful information to make device works on
865 * specific operating mode.
866 */
rsi_send_common_dev_params(struct rsi_common * common)867 static int rsi_send_common_dev_params(struct rsi_common *common)
868 {
869 struct sk_buff *skb;
870 u16 frame_len;
871 struct rsi_config_vals *dev_cfgs;
872
873 frame_len = sizeof(struct rsi_config_vals);
874
875 rsi_dbg(MGMT_TX_ZONE, "Sending common device config params\n");
876 skb = dev_alloc_skb(frame_len);
877 if (!skb) {
878 rsi_dbg(ERR_ZONE, "%s: Unable to allocate skb\n", __func__);
879 return -ENOMEM;
880 }
881
882 memset(skb->data, 0, frame_len);
883
884 dev_cfgs = (struct rsi_config_vals *)skb->data;
885 memset(dev_cfgs, 0, (sizeof(struct rsi_config_vals)));
886
887 rsi_set_len_qno(&dev_cfgs->len_qno, (frame_len - FRAME_DESC_SZ),
888 RSI_COEX_Q);
889 dev_cfgs->pkt_type = COMMON_DEV_CONFIG;
890
891 dev_cfgs->lp_ps_handshake = common->lp_ps_handshake_mode;
892 dev_cfgs->ulp_ps_handshake = common->ulp_ps_handshake_mode;
893
894 dev_cfgs->unused_ulp_gpio = RSI_UNUSED_ULP_GPIO_BITMAP;
895 dev_cfgs->unused_soc_gpio_bitmap =
896 cpu_to_le32(RSI_UNUSED_SOC_GPIO_BITMAP);
897
898 dev_cfgs->opermode = common->oper_mode;
899 dev_cfgs->wlan_rf_pwr_mode = common->wlan_rf_power_mode;
900 dev_cfgs->driver_mode = common->driver_mode;
901 dev_cfgs->region_code = NL80211_DFS_FCC;
902 dev_cfgs->antenna_sel_val = common->obm_ant_sel_val;
903
904 skb_put(skb, frame_len);
905
906 return rsi_send_internal_mgmt_frame(common, skb);
907 }
908
909 /*
910 * rsi_load_bootup_params() - This function send bootup params to the firmware.
911 * @common: Pointer to the driver private structure.
912 *
913 * Return: 0 on success, corresponding error code on failure.
914 */
rsi_load_bootup_params(struct rsi_common * common)915 static int rsi_load_bootup_params(struct rsi_common *common)
916 {
917 struct sk_buff *skb;
918 struct rsi_boot_params *boot_params;
919
920 rsi_dbg(MGMT_TX_ZONE, "%s: Sending boot params frame\n", __func__);
921 skb = dev_alloc_skb(sizeof(struct rsi_boot_params));
922 if (!skb) {
923 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
924 __func__);
925 return -ENOMEM;
926 }
927
928 memset(skb->data, 0, sizeof(struct rsi_boot_params));
929 boot_params = (struct rsi_boot_params *)skb->data;
930
931 rsi_dbg(MGMT_TX_ZONE, "%s:\n", __func__);
932
933 if (common->channel_width == BW_40MHZ) {
934 memcpy(&boot_params->bootup_params,
935 &boot_params_40,
936 sizeof(struct bootup_params));
937 rsi_dbg(MGMT_TX_ZONE, "%s: Packet 40MHZ <=== %d\n", __func__,
938 UMAC_CLK_40BW);
939 boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_40BW);
940 } else {
941 memcpy(&boot_params->bootup_params,
942 &boot_params_20,
943 sizeof(struct bootup_params));
944 if (boot_params_20.valid != cpu_to_le32(VALID_20)) {
945 boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_20BW);
946 rsi_dbg(MGMT_TX_ZONE,
947 "%s: Packet 20MHZ <=== %d\n", __func__,
948 UMAC_CLK_20BW);
949 } else {
950 boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_40MHZ);
951 rsi_dbg(MGMT_TX_ZONE,
952 "%s: Packet 20MHZ <=== %d\n", __func__,
953 UMAC_CLK_40MHZ);
954 }
955 }
956
957 /**
958 * Bit{0:11} indicates length of the Packet
959 * Bit{12:15} indicates host queue number
960 */
961 boot_params->desc_word[0] = cpu_to_le16(sizeof(struct bootup_params) |
962 (RSI_WIFI_MGMT_Q << 12));
963 boot_params->desc_word[1] = cpu_to_le16(BOOTUP_PARAMS_REQUEST);
964
965 skb_put(skb, sizeof(struct rsi_boot_params));
966
967 return rsi_send_internal_mgmt_frame(common, skb);
968 }
969
rsi_load_9116_bootup_params(struct rsi_common * common)970 static int rsi_load_9116_bootup_params(struct rsi_common *common)
971 {
972 struct sk_buff *skb;
973 struct rsi_boot_params_9116 *boot_params;
974
975 rsi_dbg(MGMT_TX_ZONE, "%s: Sending boot params frame\n", __func__);
976
977 skb = dev_alloc_skb(sizeof(struct rsi_boot_params_9116));
978 if (!skb)
979 return -ENOMEM;
980 memset(skb->data, 0, sizeof(struct rsi_boot_params));
981 boot_params = (struct rsi_boot_params_9116 *)skb->data;
982
983 if (common->channel_width == BW_40MHZ) {
984 memcpy(&boot_params->bootup_params,
985 &boot_params_9116_40,
986 sizeof(struct bootup_params_9116));
987 rsi_dbg(MGMT_TX_ZONE, "%s: Packet 40MHZ <=== %d\n", __func__,
988 UMAC_CLK_40BW);
989 boot_params->umac_clk = cpu_to_le16(UMAC_CLK_40BW);
990 } else {
991 memcpy(&boot_params->bootup_params,
992 &boot_params_9116_20,
993 sizeof(struct bootup_params_9116));
994 if (boot_params_20.valid != cpu_to_le32(VALID_20)) {
995 boot_params->umac_clk = cpu_to_le16(UMAC_CLK_20BW);
996 rsi_dbg(MGMT_TX_ZONE,
997 "%s: Packet 20MHZ <=== %d\n", __func__,
998 UMAC_CLK_20BW);
999 } else {
1000 boot_params->umac_clk = cpu_to_le16(UMAC_CLK_40MHZ);
1001 rsi_dbg(MGMT_TX_ZONE,
1002 "%s: Packet 20MHZ <=== %d\n", __func__,
1003 UMAC_CLK_40MHZ);
1004 }
1005 }
1006 rsi_set_len_qno(&boot_params->desc_dword0.len_qno,
1007 sizeof(struct bootup_params_9116), RSI_WIFI_MGMT_Q);
1008 boot_params->desc_dword0.frame_type = BOOTUP_PARAMS_REQUEST;
1009 skb_put(skb, sizeof(struct rsi_boot_params_9116));
1010
1011 return rsi_send_internal_mgmt_frame(common, skb);
1012 }
1013
1014 /**
1015 * rsi_send_reset_mac() - This function prepares reset MAC request and sends an
1016 * internal management frame to indicate it to firmware.
1017 * @common: Pointer to the driver private structure.
1018 *
1019 * Return: 0 on success, corresponding error code on failure.
1020 */
rsi_send_reset_mac(struct rsi_common * common)1021 static int rsi_send_reset_mac(struct rsi_common *common)
1022 {
1023 struct sk_buff *skb;
1024 struct rsi_mac_frame *mgmt_frame;
1025
1026 rsi_dbg(MGMT_TX_ZONE, "%s: Sending reset MAC frame\n", __func__);
1027
1028 skb = dev_alloc_skb(FRAME_DESC_SZ);
1029 if (!skb) {
1030 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1031 __func__);
1032 return -ENOMEM;
1033 }
1034
1035 memset(skb->data, 0, FRAME_DESC_SZ);
1036 mgmt_frame = (struct rsi_mac_frame *)skb->data;
1037
1038 mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
1039 mgmt_frame->desc_word[1] = cpu_to_le16(RESET_MAC_REQ);
1040 mgmt_frame->desc_word[4] = cpu_to_le16(RETRY_COUNT << 8);
1041
1042 #define RSI_9116_DEF_TA_AGGR 3
1043 if (common->priv->device_model == RSI_DEV_9116)
1044 mgmt_frame->desc_word[3] |=
1045 cpu_to_le16(RSI_9116_DEF_TA_AGGR << 8);
1046
1047 skb_put(skb, FRAME_DESC_SZ);
1048
1049 return rsi_send_internal_mgmt_frame(common, skb);
1050 }
1051
1052 /**
1053 * rsi_band_check() - This function programs the band
1054 * @common: Pointer to the driver private structure.
1055 * @curchan: Pointer to the current channel structure.
1056 *
1057 * Return: 0 on success, corresponding error code on failure.
1058 */
rsi_band_check(struct rsi_common * common,struct ieee80211_channel * curchan)1059 int rsi_band_check(struct rsi_common *common,
1060 struct ieee80211_channel *curchan)
1061 {
1062 struct rsi_hw *adapter = common->priv;
1063 struct ieee80211_hw *hw = adapter->hw;
1064 u8 prev_bw = common->channel_width;
1065 u8 prev_ep = common->endpoint;
1066 int status = 0;
1067
1068 if (common->band != curchan->band) {
1069 common->rf_reset = 1;
1070 common->band = curchan->band;
1071 }
1072
1073 if ((hw->conf.chandef.width == NL80211_CHAN_WIDTH_20_NOHT) ||
1074 (hw->conf.chandef.width == NL80211_CHAN_WIDTH_20))
1075 common->channel_width = BW_20MHZ;
1076 else
1077 common->channel_width = BW_40MHZ;
1078
1079 if (common->band == NL80211_BAND_2GHZ) {
1080 if (common->channel_width)
1081 common->endpoint = EP_2GHZ_40MHZ;
1082 else
1083 common->endpoint = EP_2GHZ_20MHZ;
1084 } else {
1085 if (common->channel_width)
1086 common->endpoint = EP_5GHZ_40MHZ;
1087 else
1088 common->endpoint = EP_5GHZ_20MHZ;
1089 }
1090
1091 if (common->endpoint != prev_ep) {
1092 status = rsi_program_bb_rf(common);
1093 if (status)
1094 return status;
1095 }
1096
1097 if (common->channel_width != prev_bw) {
1098 if (adapter->device_model == RSI_DEV_9116)
1099 status = rsi_load_9116_bootup_params(common);
1100 else
1101 status = rsi_load_bootup_params(common);
1102 if (status)
1103 return status;
1104
1105 status = rsi_load_radio_caps(common);
1106 if (status)
1107 return status;
1108 }
1109
1110 return status;
1111 }
1112
1113 /**
1114 * rsi_set_channel() - This function programs the channel.
1115 * @common: Pointer to the driver private structure.
1116 * @channel: Channel value to be set.
1117 *
1118 * Return: 0 on success, corresponding error code on failure.
1119 */
rsi_set_channel(struct rsi_common * common,struct ieee80211_channel * channel)1120 int rsi_set_channel(struct rsi_common *common,
1121 struct ieee80211_channel *channel)
1122 {
1123 struct sk_buff *skb = NULL;
1124 struct rsi_chan_config *chan_cfg;
1125 u16 frame_len = sizeof(struct rsi_chan_config);
1126
1127 rsi_dbg(MGMT_TX_ZONE,
1128 "%s: Sending scan req frame\n", __func__);
1129
1130 skb = dev_alloc_skb(frame_len);
1131 if (!skb) {
1132 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1133 __func__);
1134 return -ENOMEM;
1135 }
1136
1137 if (!channel) {
1138 dev_kfree_skb(skb);
1139 return 0;
1140 }
1141 memset(skb->data, 0, frame_len);
1142 chan_cfg = (struct rsi_chan_config *)skb->data;
1143
1144 rsi_set_len_qno(&chan_cfg->desc_dword0.len_qno, 0, RSI_WIFI_MGMT_Q);
1145 chan_cfg->desc_dword0.frame_type = SCAN_REQUEST;
1146 chan_cfg->channel_number = channel->hw_value;
1147 chan_cfg->antenna_gain_offset_2g = channel->max_antenna_gain;
1148 chan_cfg->antenna_gain_offset_5g = channel->max_antenna_gain;
1149 chan_cfg->region_rftype = (RSI_RF_TYPE & 0xf) << 4;
1150
1151 if ((channel->flags & IEEE80211_CHAN_NO_IR) ||
1152 (channel->flags & IEEE80211_CHAN_RADAR)) {
1153 chan_cfg->antenna_gain_offset_2g |= RSI_CHAN_RADAR;
1154 } else {
1155 if (common->tx_power < channel->max_power)
1156 chan_cfg->tx_power = cpu_to_le16(common->tx_power);
1157 else
1158 chan_cfg->tx_power = cpu_to_le16(channel->max_power);
1159 }
1160 chan_cfg->region_rftype |= (common->priv->dfs_region & 0xf);
1161
1162 if (common->channel_width == BW_40MHZ)
1163 chan_cfg->channel_width = 0x1;
1164
1165 common->channel = channel->hw_value;
1166
1167 skb_put(skb, frame_len);
1168
1169 return rsi_send_internal_mgmt_frame(common, skb);
1170 }
1171
1172 /**
1173 * rsi_send_radio_params_update() - This function sends the radio
1174 * parameters update to device
1175 * @common: Pointer to the driver private structure.
1176 *
1177 * Return: 0 on success, corresponding error code on failure.
1178 */
rsi_send_radio_params_update(struct rsi_common * common)1179 int rsi_send_radio_params_update(struct rsi_common *common)
1180 {
1181 struct rsi_mac_frame *cmd_frame;
1182 struct sk_buff *skb = NULL;
1183
1184 rsi_dbg(MGMT_TX_ZONE,
1185 "%s: Sending Radio Params update frame\n", __func__);
1186
1187 skb = dev_alloc_skb(FRAME_DESC_SZ);
1188 if (!skb) {
1189 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1190 __func__);
1191 return -ENOMEM;
1192 }
1193
1194 memset(skb->data, 0, FRAME_DESC_SZ);
1195 cmd_frame = (struct rsi_mac_frame *)skb->data;
1196
1197 cmd_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
1198 cmd_frame->desc_word[1] = cpu_to_le16(RADIO_PARAMS_UPDATE);
1199 cmd_frame->desc_word[3] = cpu_to_le16(BIT(0));
1200
1201 cmd_frame->desc_word[3] |= cpu_to_le16(common->tx_power << 8);
1202
1203 skb_put(skb, FRAME_DESC_SZ);
1204
1205 return rsi_send_internal_mgmt_frame(common, skb);
1206 }
1207
1208 /* This function programs the threshold. */
rsi_send_vap_dynamic_update(struct rsi_common * common)1209 int rsi_send_vap_dynamic_update(struct rsi_common *common)
1210 {
1211 struct sk_buff *skb;
1212 struct rsi_dynamic_s *dynamic_frame;
1213
1214 rsi_dbg(MGMT_TX_ZONE,
1215 "%s: Sending vap update indication frame\n", __func__);
1216
1217 skb = dev_alloc_skb(sizeof(struct rsi_dynamic_s));
1218 if (!skb)
1219 return -ENOMEM;
1220
1221 memset(skb->data, 0, sizeof(struct rsi_dynamic_s));
1222 dynamic_frame = (struct rsi_dynamic_s *)skb->data;
1223 rsi_set_len_qno(&dynamic_frame->desc_dword0.len_qno,
1224 sizeof(dynamic_frame->frame_body), RSI_WIFI_MGMT_Q);
1225
1226 dynamic_frame->desc_dword0.frame_type = VAP_DYNAMIC_UPDATE;
1227 dynamic_frame->desc_dword2.pkt_info =
1228 cpu_to_le32(common->rts_threshold);
1229
1230 if (common->wow_flags & RSI_WOW_ENABLED) {
1231 /* Beacon miss threshold */
1232 dynamic_frame->desc_dword3.token =
1233 cpu_to_le16(RSI_BCN_MISS_THRESHOLD);
1234 dynamic_frame->frame_body.keep_alive_period =
1235 cpu_to_le16(RSI_WOW_KEEPALIVE);
1236 } else {
1237 dynamic_frame->frame_body.keep_alive_period =
1238 cpu_to_le16(RSI_DEF_KEEPALIVE);
1239 }
1240
1241 dynamic_frame->desc_dword3.sta_id = 0; /* vap id */
1242
1243 skb_put(skb, sizeof(struct rsi_dynamic_s));
1244
1245 return rsi_send_internal_mgmt_frame(common, skb);
1246 }
1247
1248 /**
1249 * rsi_compare() - This function is used to compare two integers
1250 * @a: pointer to the first integer
1251 * @b: pointer to the second integer
1252 *
1253 * Return: 0 if both are equal, -1 if the first is smaller, else 1
1254 */
rsi_compare(const void * a,const void * b)1255 static int rsi_compare(const void *a, const void *b)
1256 {
1257 u16 _a = *(const u16 *)(a);
1258 u16 _b = *(const u16 *)(b);
1259
1260 if (_a > _b)
1261 return -1;
1262
1263 if (_a < _b)
1264 return 1;
1265
1266 return 0;
1267 }
1268
1269 /**
1270 * rsi_map_rates() - This function is used to map selected rates to hw rates.
1271 * @rate: The standard rate to be mapped.
1272 * @offset: Offset that will be returned.
1273 *
1274 * Return: 0 if it is a mcs rate, else 1
1275 */
rsi_map_rates(u16 rate,int * offset)1276 static bool rsi_map_rates(u16 rate, int *offset)
1277 {
1278 int kk;
1279 for (kk = 0; kk < ARRAY_SIZE(rsi_mcsrates); kk++) {
1280 if (rate == mcs[kk]) {
1281 *offset = kk;
1282 return false;
1283 }
1284 }
1285
1286 for (kk = 0; kk < ARRAY_SIZE(rsi_rates); kk++) {
1287 if (rate == rsi_rates[kk].bitrate / 5) {
1288 *offset = kk;
1289 break;
1290 }
1291 }
1292 return true;
1293 }
1294
1295 /**
1296 * rsi_send_auto_rate_request() - This function is to set rates for connection
1297 * and send autorate request to firmware.
1298 * @common: Pointer to the driver private structure.
1299 * @sta: mac80211 station.
1300 * @sta_id: station id.
1301 * @vif: Pointer to the ieee80211_vif structure.
1302 *
1303 * Return: 0 on success, corresponding error code on failure.
1304 */
rsi_send_auto_rate_request(struct rsi_common * common,struct ieee80211_sta * sta,u16 sta_id,struct ieee80211_vif * vif)1305 static int rsi_send_auto_rate_request(struct rsi_common *common,
1306 struct ieee80211_sta *sta,
1307 u16 sta_id,
1308 struct ieee80211_vif *vif)
1309 {
1310 struct sk_buff *skb;
1311 struct rsi_auto_rate *auto_rate;
1312 int ii = 0, jj = 0, kk = 0;
1313 struct ieee80211_hw *hw = common->priv->hw;
1314 u8 band = hw->conf.chandef.chan->band;
1315 u8 num_supported_rates = 0;
1316 u8 rate_table_offset, rate_offset = 0;
1317 u32 rate_bitmap;
1318 u16 *selected_rates, min_rate;
1319 bool is_ht = false, is_sgi = false;
1320 u16 frame_len = sizeof(struct rsi_auto_rate);
1321
1322 rsi_dbg(MGMT_TX_ZONE,
1323 "%s: Sending auto rate request frame\n", __func__);
1324
1325 skb = dev_alloc_skb(frame_len);
1326 if (!skb) {
1327 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1328 __func__);
1329 return -ENOMEM;
1330 }
1331
1332 memset(skb->data, 0, frame_len);
1333 selected_rates = kzalloc(2 * RSI_TBL_SZ, GFP_KERNEL);
1334 if (!selected_rates) {
1335 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of mem\n",
1336 __func__);
1337 dev_kfree_skb(skb);
1338 return -ENOMEM;
1339 }
1340
1341 auto_rate = (struct rsi_auto_rate *)skb->data;
1342
1343 auto_rate->aarf_rssi = cpu_to_le16(((u16)3 << 6) | (u16)(18 & 0x3f));
1344 auto_rate->collision_tolerance = cpu_to_le16(3);
1345 auto_rate->failure_limit = cpu_to_le16(3);
1346 auto_rate->initial_boundary = cpu_to_le16(3);
1347 auto_rate->max_threshold_limt = cpu_to_le16(27);
1348
1349 auto_rate->desc.desc_dword0.frame_type = AUTO_RATE_IND;
1350
1351 if (common->channel_width == BW_40MHZ)
1352 auto_rate->desc.desc_dword3.qid_tid = BW_40MHZ;
1353 auto_rate->desc.desc_dword3.sta_id = sta_id;
1354
1355 if (vif->type == NL80211_IFTYPE_STATION) {
1356 rate_bitmap = common->bitrate_mask[band];
1357 is_ht = common->vif_info[0].is_ht;
1358 is_sgi = common->vif_info[0].sgi;
1359 } else {
1360 rate_bitmap = sta->supp_rates[band];
1361 is_ht = sta->ht_cap.ht_supported;
1362 if ((sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ||
1363 (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40))
1364 is_sgi = true;
1365 }
1366
1367 if (band == NL80211_BAND_2GHZ) {
1368 if ((rate_bitmap == 0) && (is_ht))
1369 min_rate = RSI_RATE_MCS0;
1370 else
1371 min_rate = RSI_RATE_1;
1372 rate_table_offset = 0;
1373 } else {
1374 if ((rate_bitmap == 0) && (is_ht))
1375 min_rate = RSI_RATE_MCS0;
1376 else
1377 min_rate = RSI_RATE_6;
1378 rate_table_offset = 4;
1379 }
1380
1381 for (ii = 0, jj = 0;
1382 ii < (ARRAY_SIZE(rsi_rates) - rate_table_offset); ii++) {
1383 if (rate_bitmap & BIT(ii)) {
1384 selected_rates[jj++] =
1385 (rsi_rates[ii + rate_table_offset].bitrate / 5);
1386 rate_offset++;
1387 }
1388 }
1389 num_supported_rates = jj;
1390
1391 if (is_ht) {
1392 for (ii = 0; ii < ARRAY_SIZE(mcs); ii++)
1393 selected_rates[jj++] = mcs[ii];
1394 num_supported_rates += ARRAY_SIZE(mcs);
1395 rate_offset += ARRAY_SIZE(mcs);
1396 }
1397
1398 sort(selected_rates, jj, sizeof(u16), &rsi_compare, NULL);
1399
1400 /* mapping the rates to RSI rates */
1401 for (ii = 0; ii < jj; ii++) {
1402 if (rsi_map_rates(selected_rates[ii], &kk)) {
1403 auto_rate->supported_rates[ii] =
1404 cpu_to_le16(rsi_rates[kk].hw_value);
1405 } else {
1406 auto_rate->supported_rates[ii] =
1407 cpu_to_le16(rsi_mcsrates[kk]);
1408 }
1409 }
1410
1411 /* loading HT rates in the bottom half of the auto rate table */
1412 if (is_ht) {
1413 for (ii = rate_offset, kk = ARRAY_SIZE(rsi_mcsrates) - 1;
1414 ii < rate_offset + 2 * ARRAY_SIZE(rsi_mcsrates); ii++) {
1415 if (is_sgi || conf_is_ht40(&common->priv->hw->conf))
1416 auto_rate->supported_rates[ii++] =
1417 cpu_to_le16(rsi_mcsrates[kk] | BIT(9));
1418 else
1419 auto_rate->supported_rates[ii++] =
1420 cpu_to_le16(rsi_mcsrates[kk]);
1421 auto_rate->supported_rates[ii] =
1422 cpu_to_le16(rsi_mcsrates[kk--]);
1423 }
1424
1425 for (; ii < (RSI_TBL_SZ - 1); ii++) {
1426 auto_rate->supported_rates[ii] =
1427 cpu_to_le16(rsi_mcsrates[0]);
1428 }
1429 }
1430
1431 for (; ii < RSI_TBL_SZ; ii++)
1432 auto_rate->supported_rates[ii] = cpu_to_le16(min_rate);
1433
1434 auto_rate->num_supported_rates = cpu_to_le16(num_supported_rates * 2);
1435 auto_rate->moderate_rate_inx = cpu_to_le16(num_supported_rates / 2);
1436 num_supported_rates *= 2;
1437
1438 rsi_set_len_qno(&auto_rate->desc.desc_dword0.len_qno,
1439 (frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q);
1440
1441 skb_put(skb, frame_len);
1442 kfree(selected_rates);
1443
1444 return rsi_send_internal_mgmt_frame(common, skb);
1445 }
1446
1447 /**
1448 * rsi_inform_bss_status() - This function informs about bss status with the
1449 * help of sta notify params by sending an internal
1450 * management frame to firmware.
1451 * @common: Pointer to the driver private structure.
1452 * @opmode: Operating mode of device.
1453 * @status: Bss status type.
1454 * @addr: Address of the register.
1455 * @qos_enable: Qos is enabled.
1456 * @aid: Aid (unique for all STAs).
1457 * @sta: mac80211 station.
1458 * @sta_id: station id.
1459 * @assoc_cap: capabilities.
1460 * @vif: Pointer to the ieee80211_vif structure.
1461 *
1462 * Return: None.
1463 */
rsi_inform_bss_status(struct rsi_common * common,enum opmode opmode,u8 status,const u8 * addr,u8 qos_enable,u16 aid,struct ieee80211_sta * sta,u16 sta_id,u16 assoc_cap,struct ieee80211_vif * vif)1464 void rsi_inform_bss_status(struct rsi_common *common,
1465 enum opmode opmode,
1466 u8 status,
1467 const u8 *addr,
1468 u8 qos_enable,
1469 u16 aid,
1470 struct ieee80211_sta *sta,
1471 u16 sta_id,
1472 u16 assoc_cap,
1473 struct ieee80211_vif *vif)
1474 {
1475 if (status) {
1476 if (opmode == RSI_OPMODE_STA)
1477 common->hw_data_qs_blocked = true;
1478 rsi_hal_send_sta_notify_frame(common,
1479 opmode,
1480 STA_CONNECTED,
1481 addr,
1482 qos_enable,
1483 aid, sta_id,
1484 vif);
1485 if (common->min_rate == 0xffff)
1486 rsi_send_auto_rate_request(common, sta, sta_id, vif);
1487 if (opmode == RSI_OPMODE_STA &&
1488 !(assoc_cap & WLAN_CAPABILITY_PRIVACY) &&
1489 !rsi_send_block_unblock_frame(common, false))
1490 common->hw_data_qs_blocked = false;
1491 } else {
1492 if (opmode == RSI_OPMODE_STA)
1493 common->hw_data_qs_blocked = true;
1494
1495 if (!(common->wow_flags & RSI_WOW_ENABLED))
1496 rsi_hal_send_sta_notify_frame(common, opmode,
1497 STA_DISCONNECTED, addr,
1498 qos_enable, aid, sta_id,
1499 vif);
1500 if (opmode == RSI_OPMODE_STA)
1501 rsi_send_block_unblock_frame(common, true);
1502 }
1503 }
1504
1505 /**
1506 * rsi_eeprom_read() - This function sends a frame to read the mac address
1507 * from the eeprom.
1508 * @common: Pointer to the driver private structure.
1509 *
1510 * Return: 0 on success, -1 on failure.
1511 */
rsi_eeprom_read(struct rsi_common * common)1512 static int rsi_eeprom_read(struct rsi_common *common)
1513 {
1514 struct rsi_eeprom_read_frame *mgmt_frame;
1515 struct rsi_hw *adapter = common->priv;
1516 struct sk_buff *skb;
1517
1518 rsi_dbg(MGMT_TX_ZONE, "%s: Sending EEPROM read req frame\n", __func__);
1519
1520 skb = dev_alloc_skb(FRAME_DESC_SZ);
1521 if (!skb) {
1522 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1523 __func__);
1524 return -ENOMEM;
1525 }
1526
1527 memset(skb->data, 0, FRAME_DESC_SZ);
1528 mgmt_frame = (struct rsi_eeprom_read_frame *)skb->data;
1529
1530 /* FrameType */
1531 rsi_set_len_qno(&mgmt_frame->len_qno, 0, RSI_WIFI_MGMT_Q);
1532 mgmt_frame->pkt_type = EEPROM_READ;
1533
1534 /* Number of bytes to read */
1535 mgmt_frame->pkt_info =
1536 cpu_to_le32((adapter->eeprom.length << RSI_EEPROM_LEN_OFFSET) &
1537 RSI_EEPROM_LEN_MASK);
1538 mgmt_frame->pkt_info |= cpu_to_le32((3 << RSI_EEPROM_HDR_SIZE_OFFSET) &
1539 RSI_EEPROM_HDR_SIZE_MASK);
1540
1541 /* Address to read */
1542 mgmt_frame->eeprom_offset = cpu_to_le32(adapter->eeprom.offset);
1543
1544 skb_put(skb, FRAME_DESC_SZ);
1545
1546 return rsi_send_internal_mgmt_frame(common, skb);
1547 }
1548
1549 /**
1550 * This function sends a frame to block/unblock
1551 * data queues in the firmware
1552 *
1553 * @common: Pointer to the driver private structure.
1554 * @block_event: Event block if true, unblock if false
1555 * returns 0 on success, -1 on failure.
1556 */
rsi_send_block_unblock_frame(struct rsi_common * common,bool block_event)1557 int rsi_send_block_unblock_frame(struct rsi_common *common, bool block_event)
1558 {
1559 struct rsi_block_unblock_data *mgmt_frame;
1560 struct sk_buff *skb;
1561
1562 rsi_dbg(MGMT_TX_ZONE, "%s: Sending block/unblock frame\n", __func__);
1563
1564 skb = dev_alloc_skb(FRAME_DESC_SZ);
1565 if (!skb) {
1566 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1567 __func__);
1568 return -ENOMEM;
1569 }
1570
1571 memset(skb->data, 0, FRAME_DESC_SZ);
1572 mgmt_frame = (struct rsi_block_unblock_data *)skb->data;
1573
1574 rsi_set_len_qno(&mgmt_frame->desc_dword0.len_qno, 0, RSI_WIFI_MGMT_Q);
1575 mgmt_frame->desc_dword0.frame_type = BLOCK_HW_QUEUE;
1576 mgmt_frame->host_quiet_info = QUIET_INFO_VALID;
1577
1578 if (block_event) {
1579 rsi_dbg(INFO_ZONE, "blocking the data qs\n");
1580 mgmt_frame->block_q_bitmap = cpu_to_le16(0xf);
1581 mgmt_frame->block_q_bitmap |= cpu_to_le16(0xf << 4);
1582 } else {
1583 rsi_dbg(INFO_ZONE, "unblocking the data qs\n");
1584 mgmt_frame->unblock_q_bitmap = cpu_to_le16(0xf);
1585 mgmt_frame->unblock_q_bitmap |= cpu_to_le16(0xf << 4);
1586 }
1587
1588 skb_put(skb, FRAME_DESC_SZ);
1589
1590 return rsi_send_internal_mgmt_frame(common, skb);
1591 }
1592
1593 /**
1594 * rsi_send_rx_filter_frame() - Sends a frame to filter the RX packets
1595 *
1596 * @common: Pointer to the driver private structure.
1597 * @rx_filter_word: Flags of filter packets
1598 *
1599 * Returns 0 on success, -1 on failure.
1600 */
rsi_send_rx_filter_frame(struct rsi_common * common,u16 rx_filter_word)1601 int rsi_send_rx_filter_frame(struct rsi_common *common, u16 rx_filter_word)
1602 {
1603 struct rsi_mac_frame *cmd_frame;
1604 struct sk_buff *skb;
1605
1606 rsi_dbg(MGMT_TX_ZONE, "Sending RX filter frame\n");
1607
1608 skb = dev_alloc_skb(FRAME_DESC_SZ);
1609 if (!skb) {
1610 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1611 __func__);
1612 return -ENOMEM;
1613 }
1614
1615 memset(skb->data, 0, FRAME_DESC_SZ);
1616 cmd_frame = (struct rsi_mac_frame *)skb->data;
1617
1618 cmd_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
1619 cmd_frame->desc_word[1] = cpu_to_le16(SET_RX_FILTER);
1620 cmd_frame->desc_word[4] = cpu_to_le16(rx_filter_word);
1621
1622 skb_put(skb, FRAME_DESC_SZ);
1623
1624 return rsi_send_internal_mgmt_frame(common, skb);
1625 }
1626
rsi_send_ps_request(struct rsi_hw * adapter,bool enable,struct ieee80211_vif * vif)1627 int rsi_send_ps_request(struct rsi_hw *adapter, bool enable,
1628 struct ieee80211_vif *vif)
1629 {
1630 struct rsi_common *common = adapter->priv;
1631 struct ieee80211_bss_conf *bss = &vif->bss_conf;
1632 struct rsi_request_ps *ps;
1633 struct rsi_ps_info *ps_info;
1634 struct sk_buff *skb;
1635 int frame_len = sizeof(*ps);
1636
1637 skb = dev_alloc_skb(frame_len);
1638 if (!skb)
1639 return -ENOMEM;
1640 memset(skb->data, 0, frame_len);
1641
1642 ps = (struct rsi_request_ps *)skb->data;
1643 ps_info = &adapter->ps_info;
1644
1645 rsi_set_len_qno(&ps->desc.desc_dword0.len_qno,
1646 (frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q);
1647 ps->desc.desc_dword0.frame_type = WAKEUP_SLEEP_REQUEST;
1648 if (enable) {
1649 ps->ps_sleep.enable = RSI_PS_ENABLE;
1650 ps->desc.desc_dword3.token = cpu_to_le16(RSI_SLEEP_REQUEST);
1651 } else {
1652 ps->ps_sleep.enable = RSI_PS_DISABLE;
1653 ps->desc.desc_dword0.len_qno |= cpu_to_le16(RSI_PS_DISABLE_IND);
1654 ps->desc.desc_dword3.token = cpu_to_le16(RSI_WAKEUP_REQUEST);
1655 }
1656
1657 ps->ps_uapsd_acs = common->uapsd_bitmap;
1658
1659 ps->ps_sleep.sleep_type = ps_info->sleep_type;
1660 ps->ps_sleep.num_bcns_per_lis_int =
1661 cpu_to_le16(ps_info->num_bcns_per_lis_int);
1662 ps->ps_sleep.sleep_duration =
1663 cpu_to_le32(ps_info->deep_sleep_wakeup_period);
1664
1665 if (bss->assoc)
1666 ps->ps_sleep.connected_sleep = RSI_CONNECTED_SLEEP;
1667 else
1668 ps->ps_sleep.connected_sleep = RSI_DEEP_SLEEP;
1669
1670 ps->ps_listen_interval = cpu_to_le32(ps_info->listen_interval);
1671 ps->ps_dtim_interval_duration =
1672 cpu_to_le32(ps_info->dtim_interval_duration);
1673
1674 if (ps_info->listen_interval > ps_info->dtim_interval_duration)
1675 ps->ps_listen_interval = cpu_to_le32(RSI_PS_DISABLE);
1676
1677 ps->ps_num_dtim_intervals = cpu_to_le16(ps_info->num_dtims_per_sleep);
1678 skb_put(skb, frame_len);
1679
1680 return rsi_send_internal_mgmt_frame(common, skb);
1681 }
1682
rsi_send_w9116_features(struct rsi_common * common)1683 static int rsi_send_w9116_features(struct rsi_common *common)
1684 {
1685 struct rsi_wlan_9116_features *w9116_features;
1686 u16 frame_len = sizeof(struct rsi_wlan_9116_features);
1687 struct sk_buff *skb;
1688
1689 rsi_dbg(MGMT_TX_ZONE,
1690 "%s: Sending wlan 9116 features\n", __func__);
1691
1692 skb = dev_alloc_skb(frame_len);
1693 if (!skb)
1694 return -ENOMEM;
1695 memset(skb->data, 0, frame_len);
1696
1697 w9116_features = (struct rsi_wlan_9116_features *)skb->data;
1698
1699 w9116_features->pll_mode = common->w9116_features.pll_mode;
1700 w9116_features->rf_type = common->w9116_features.rf_type;
1701 w9116_features->wireless_mode = common->w9116_features.wireless_mode;
1702 w9116_features->enable_ppe = common->w9116_features.enable_ppe;
1703 w9116_features->afe_type = common->w9116_features.afe_type;
1704 if (common->w9116_features.dpd)
1705 w9116_features->feature_enable |= cpu_to_le32(RSI_DPD);
1706 if (common->w9116_features.sifs_tx_enable)
1707 w9116_features->feature_enable |=
1708 cpu_to_le32(RSI_SIFS_TX_ENABLE);
1709 if (common->w9116_features.ps_options & RSI_DUTY_CYCLING)
1710 w9116_features->feature_enable |= cpu_to_le32(RSI_DUTY_CYCLING);
1711 if (common->w9116_features.ps_options & RSI_END_OF_FRAME)
1712 w9116_features->feature_enable |= cpu_to_le32(RSI_END_OF_FRAME);
1713 w9116_features->feature_enable |=
1714 cpu_to_le32((common->w9116_features.ps_options & ~0x3) << 2);
1715
1716 rsi_set_len_qno(&w9116_features->desc.desc_dword0.len_qno,
1717 frame_len - FRAME_DESC_SZ, RSI_WIFI_MGMT_Q);
1718 w9116_features->desc.desc_dword0.frame_type = FEATURES_ENABLE;
1719 skb_put(skb, frame_len);
1720
1721 return rsi_send_internal_mgmt_frame(common, skb);
1722 }
1723
1724 /**
1725 * rsi_set_antenna() - This function send antenna configuration request
1726 * to device
1727 *
1728 * @common: Pointer to the driver private structure.
1729 * @antenna: bitmap for tx antenna selection
1730 *
1731 * Return: 0 on Success, negative error code on failure
1732 */
rsi_set_antenna(struct rsi_common * common,u8 antenna)1733 int rsi_set_antenna(struct rsi_common *common, u8 antenna)
1734 {
1735 struct rsi_ant_sel_frame *ant_sel_frame;
1736 struct sk_buff *skb;
1737
1738 skb = dev_alloc_skb(FRAME_DESC_SZ);
1739 if (!skb) {
1740 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1741 __func__);
1742 return -ENOMEM;
1743 }
1744
1745 memset(skb->data, 0, FRAME_DESC_SZ);
1746
1747 ant_sel_frame = (struct rsi_ant_sel_frame *)skb->data;
1748 ant_sel_frame->desc_dword0.frame_type = ANT_SEL_FRAME;
1749 ant_sel_frame->sub_frame_type = ANTENNA_SEL_TYPE;
1750 ant_sel_frame->ant_value = cpu_to_le16(antenna & ANTENNA_MASK_VALUE);
1751 rsi_set_len_qno(&ant_sel_frame->desc_dword0.len_qno,
1752 0, RSI_WIFI_MGMT_Q);
1753 skb_put(skb, FRAME_DESC_SZ);
1754
1755 return rsi_send_internal_mgmt_frame(common, skb);
1756 }
1757
rsi_send_beacon(struct rsi_common * common)1758 static int rsi_send_beacon(struct rsi_common *common)
1759 {
1760 struct sk_buff *skb = NULL;
1761 u8 dword_align_bytes = 0;
1762
1763 skb = dev_alloc_skb(MAX_MGMT_PKT_SIZE);
1764 if (!skb)
1765 return -ENOMEM;
1766
1767 memset(skb->data, 0, MAX_MGMT_PKT_SIZE);
1768
1769 dword_align_bytes = ((unsigned long)skb->data & 0x3f);
1770 if (dword_align_bytes)
1771 skb_pull(skb, (64 - dword_align_bytes));
1772 if (rsi_prepare_beacon(common, skb)) {
1773 rsi_dbg(ERR_ZONE, "Failed to prepare beacon\n");
1774 dev_kfree_skb(skb);
1775 return -EINVAL;
1776 }
1777 skb_queue_tail(&common->tx_queue[MGMT_BEACON_Q], skb);
1778 rsi_set_event(&common->tx_thread.event);
1779 rsi_dbg(DATA_TX_ZONE, "%s: Added to beacon queue\n", __func__);
1780
1781 return 0;
1782 }
1783
1784 #ifdef CONFIG_PM
rsi_send_wowlan_request(struct rsi_common * common,u16 flags,u16 sleep_status)1785 int rsi_send_wowlan_request(struct rsi_common *common, u16 flags,
1786 u16 sleep_status)
1787 {
1788 struct rsi_wowlan_req *cmd_frame;
1789 struct sk_buff *skb;
1790 u8 length;
1791
1792 rsi_dbg(ERR_ZONE, "%s: Sending wowlan request frame\n", __func__);
1793
1794 length = sizeof(*cmd_frame);
1795 skb = dev_alloc_skb(length);
1796 if (!skb)
1797 return -ENOMEM;
1798 memset(skb->data, 0, length);
1799 cmd_frame = (struct rsi_wowlan_req *)skb->data;
1800
1801 rsi_set_len_qno(&cmd_frame->desc.desc_dword0.len_qno,
1802 (length - FRAME_DESC_SZ),
1803 RSI_WIFI_MGMT_Q);
1804 cmd_frame->desc.desc_dword0.frame_type = WOWLAN_CONFIG_PARAMS;
1805 cmd_frame->host_sleep_status = sleep_status;
1806 if (common->secinfo.security_enable &&
1807 common->secinfo.gtk_cipher)
1808 flags |= RSI_WOW_GTK_REKEY;
1809 if (sleep_status)
1810 cmd_frame->wow_flags = flags;
1811 rsi_dbg(INFO_ZONE, "Host_Sleep_Status : %d Flags : %d\n",
1812 cmd_frame->host_sleep_status, cmd_frame->wow_flags);
1813
1814 skb_put(skb, length);
1815
1816 return rsi_send_internal_mgmt_frame(common, skb);
1817 }
1818 #endif
1819
rsi_send_bgscan_params(struct rsi_common * common,int enable)1820 int rsi_send_bgscan_params(struct rsi_common *common, int enable)
1821 {
1822 struct rsi_bgscan_params *params = &common->bgscan;
1823 struct cfg80211_scan_request *scan_req = common->hwscan;
1824 struct rsi_bgscan_config *bgscan;
1825 struct sk_buff *skb;
1826 u16 frame_len = sizeof(*bgscan);
1827 u8 i;
1828
1829 rsi_dbg(MGMT_TX_ZONE, "%s: Sending bgscan params frame\n", __func__);
1830
1831 skb = dev_alloc_skb(frame_len);
1832 if (!skb)
1833 return -ENOMEM;
1834 memset(skb->data, 0, frame_len);
1835
1836 bgscan = (struct rsi_bgscan_config *)skb->data;
1837 rsi_set_len_qno(&bgscan->desc_dword0.len_qno,
1838 (frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q);
1839 bgscan->desc_dword0.frame_type = BG_SCAN_PARAMS;
1840 bgscan->bgscan_threshold = cpu_to_le16(params->bgscan_threshold);
1841 bgscan->roam_threshold = cpu_to_le16(params->roam_threshold);
1842 if (enable)
1843 bgscan->bgscan_periodicity =
1844 cpu_to_le16(params->bgscan_periodicity);
1845 bgscan->active_scan_duration =
1846 cpu_to_le16(params->active_scan_duration);
1847 bgscan->passive_scan_duration =
1848 cpu_to_le16(params->passive_scan_duration);
1849 bgscan->two_probe = params->two_probe;
1850
1851 bgscan->num_bgscan_channels = scan_req->n_channels;
1852 for (i = 0; i < bgscan->num_bgscan_channels; i++)
1853 bgscan->channels2scan[i] =
1854 cpu_to_le16(scan_req->channels[i]->hw_value);
1855
1856 skb_put(skb, frame_len);
1857
1858 return rsi_send_internal_mgmt_frame(common, skb);
1859 }
1860
1861 /* This function sends the probe request to be used by firmware in
1862 * background scan
1863 */
rsi_send_bgscan_probe_req(struct rsi_common * common,struct ieee80211_vif * vif)1864 int rsi_send_bgscan_probe_req(struct rsi_common *common,
1865 struct ieee80211_vif *vif)
1866 {
1867 struct cfg80211_scan_request *scan_req = common->hwscan;
1868 struct rsi_bgscan_probe *bgscan;
1869 struct sk_buff *skb;
1870 struct sk_buff *probereq_skb;
1871 u16 frame_len = sizeof(*bgscan);
1872 size_t ssid_len = 0;
1873 u8 *ssid = NULL;
1874
1875 rsi_dbg(MGMT_TX_ZONE,
1876 "%s: Sending bgscan probe req frame\n", __func__);
1877
1878 if (common->priv->sc_nvifs <= 0)
1879 return -ENODEV;
1880
1881 if (scan_req->n_ssids) {
1882 ssid = scan_req->ssids[0].ssid;
1883 ssid_len = scan_req->ssids[0].ssid_len;
1884 }
1885
1886 skb = dev_alloc_skb(frame_len + MAX_BGSCAN_PROBE_REQ_LEN);
1887 if (!skb)
1888 return -ENOMEM;
1889 memset(skb->data, 0, frame_len + MAX_BGSCAN_PROBE_REQ_LEN);
1890
1891 bgscan = (struct rsi_bgscan_probe *)skb->data;
1892 bgscan->desc_dword0.frame_type = BG_SCAN_PROBE_REQ;
1893 bgscan->flags = cpu_to_le16(HOST_BG_SCAN_TRIG);
1894 if (common->band == NL80211_BAND_5GHZ) {
1895 bgscan->mgmt_rate = cpu_to_le16(RSI_RATE_6);
1896 bgscan->def_chan = cpu_to_le16(40);
1897 } else {
1898 bgscan->mgmt_rate = cpu_to_le16(RSI_RATE_1);
1899 bgscan->def_chan = cpu_to_le16(11);
1900 }
1901 bgscan->channel_scan_time = cpu_to_le16(RSI_CHANNEL_SCAN_TIME);
1902
1903 probereq_skb = ieee80211_probereq_get(common->priv->hw, vif->addr, ssid,
1904 ssid_len, scan_req->ie_len);
1905 if (!probereq_skb) {
1906 dev_kfree_skb(skb);
1907 return -ENOMEM;
1908 }
1909
1910 memcpy(&skb->data[frame_len], probereq_skb->data, probereq_skb->len);
1911
1912 bgscan->probe_req_length = cpu_to_le16(probereq_skb->len);
1913
1914 rsi_set_len_qno(&bgscan->desc_dword0.len_qno,
1915 (frame_len - FRAME_DESC_SZ + probereq_skb->len),
1916 RSI_WIFI_MGMT_Q);
1917
1918 skb_put(skb, frame_len + probereq_skb->len);
1919
1920 dev_kfree_skb(probereq_skb);
1921
1922 return rsi_send_internal_mgmt_frame(common, skb);
1923 }
1924
1925 /**
1926 * rsi_handle_ta_confirm_type() - This function handles the confirm frames.
1927 * @common: Pointer to the driver private structure.
1928 * @msg: Pointer to received packet.
1929 *
1930 * Return: 0 on success, -1 on failure.
1931 */
rsi_handle_ta_confirm_type(struct rsi_common * common,u8 * msg)1932 static int rsi_handle_ta_confirm_type(struct rsi_common *common,
1933 u8 *msg)
1934 {
1935 struct rsi_hw *adapter = common->priv;
1936 u8 sub_type = (msg[15] & 0xff);
1937 u16 msg_len = ((u16 *)msg)[0] & 0xfff;
1938 u8 offset;
1939
1940 switch (sub_type) {
1941 case BOOTUP_PARAMS_REQUEST:
1942 rsi_dbg(FSM_ZONE, "%s: Boot up params confirm received\n",
1943 __func__);
1944 if (common->fsm_state == FSM_BOOT_PARAMS_SENT) {
1945 if (adapter->device_model == RSI_DEV_9116) {
1946 common->band = NL80211_BAND_5GHZ;
1947 common->num_supp_bands = 2;
1948
1949 if (rsi_send_reset_mac(common))
1950 goto out;
1951 else
1952 common->fsm_state = FSM_RESET_MAC_SENT;
1953 } else {
1954 adapter->eeprom.length =
1955 (IEEE80211_ADDR_LEN +
1956 WLAN_MAC_MAGIC_WORD_LEN +
1957 WLAN_HOST_MODE_LEN);
1958 adapter->eeprom.offset = WLAN_MAC_EEPROM_ADDR;
1959 if (rsi_eeprom_read(common)) {
1960 common->fsm_state = FSM_CARD_NOT_READY;
1961 goto out;
1962 }
1963 common->fsm_state = FSM_EEPROM_READ_MAC_ADDR;
1964 }
1965 } else {
1966 rsi_dbg(INFO_ZONE,
1967 "%s: Received bootup params cfm in %d state\n",
1968 __func__, common->fsm_state);
1969 return 0;
1970 }
1971 break;
1972
1973 case EEPROM_READ:
1974 rsi_dbg(FSM_ZONE, "EEPROM READ confirm received\n");
1975 if (msg_len <= 0) {
1976 rsi_dbg(FSM_ZONE,
1977 "%s: [EEPROM_READ] Invalid len %d\n",
1978 __func__, msg_len);
1979 goto out;
1980 }
1981 if (msg[16] != MAGIC_WORD) {
1982 rsi_dbg(FSM_ZONE,
1983 "%s: [EEPROM_READ] Invalid token\n", __func__);
1984 common->fsm_state = FSM_CARD_NOT_READY;
1985 goto out;
1986 }
1987 if (common->fsm_state == FSM_EEPROM_READ_MAC_ADDR) {
1988 offset = (FRAME_DESC_SZ + WLAN_HOST_MODE_LEN +
1989 WLAN_MAC_MAGIC_WORD_LEN);
1990 memcpy(common->mac_addr, &msg[offset], ETH_ALEN);
1991 adapter->eeprom.length =
1992 ((WLAN_MAC_MAGIC_WORD_LEN + 3) & (~3));
1993 adapter->eeprom.offset = WLAN_EEPROM_RFTYPE_ADDR;
1994 if (rsi_eeprom_read(common)) {
1995 rsi_dbg(ERR_ZONE,
1996 "%s: Failed reading RF band\n",
1997 __func__);
1998 common->fsm_state = FSM_CARD_NOT_READY;
1999 goto out;
2000 }
2001 common->fsm_state = FSM_EEPROM_READ_RF_TYPE;
2002 } else if (common->fsm_state == FSM_EEPROM_READ_RF_TYPE) {
2003 if ((msg[17] & 0x3) == 0x3) {
2004 rsi_dbg(INIT_ZONE, "Dual band supported\n");
2005 common->band = NL80211_BAND_5GHZ;
2006 common->num_supp_bands = 2;
2007 } else if ((msg[17] & 0x3) == 0x1) {
2008 rsi_dbg(INIT_ZONE,
2009 "Only 2.4Ghz band supported\n");
2010 common->band = NL80211_BAND_2GHZ;
2011 common->num_supp_bands = 1;
2012 }
2013 if (rsi_send_reset_mac(common))
2014 goto out;
2015 common->fsm_state = FSM_RESET_MAC_SENT;
2016 } else {
2017 rsi_dbg(ERR_ZONE, "%s: Invalid EEPROM read type\n",
2018 __func__);
2019 return 0;
2020 }
2021 break;
2022
2023 case RESET_MAC_REQ:
2024 if (common->fsm_state == FSM_RESET_MAC_SENT) {
2025 rsi_dbg(FSM_ZONE, "%s: Reset MAC cfm received\n",
2026 __func__);
2027
2028 if (rsi_load_radio_caps(common))
2029 goto out;
2030 else
2031 common->fsm_state = FSM_RADIO_CAPS_SENT;
2032 } else {
2033 rsi_dbg(ERR_ZONE,
2034 "%s: Received reset mac cfm in %d state\n",
2035 __func__, common->fsm_state);
2036 return 0;
2037 }
2038 break;
2039
2040 case RADIO_CAPABILITIES:
2041 if (common->fsm_state == FSM_RADIO_CAPS_SENT) {
2042 common->rf_reset = 1;
2043 if (adapter->device_model == RSI_DEV_9116 &&
2044 rsi_send_w9116_features(common)) {
2045 rsi_dbg(ERR_ZONE,
2046 "Failed to send 9116 features\n");
2047 goto out;
2048 }
2049 if (rsi_program_bb_rf(common)) {
2050 goto out;
2051 } else {
2052 common->fsm_state = FSM_BB_RF_PROG_SENT;
2053 rsi_dbg(FSM_ZONE, "%s: Radio cap cfm received\n",
2054 __func__);
2055 }
2056 } else {
2057 rsi_dbg(INFO_ZONE,
2058 "%s: Received radio caps cfm in %d state\n",
2059 __func__, common->fsm_state);
2060 return 0;
2061 }
2062 break;
2063
2064 case BB_PROG_VALUES_REQUEST:
2065 case RF_PROG_VALUES_REQUEST:
2066 case BBP_PROG_IN_TA:
2067 rsi_dbg(FSM_ZONE, "%s: BB/RF cfm received\n", __func__);
2068 if (common->fsm_state == FSM_BB_RF_PROG_SENT) {
2069 common->bb_rf_prog_count--;
2070 if (!common->bb_rf_prog_count) {
2071 common->fsm_state = FSM_MAC_INIT_DONE;
2072 if (common->reinit_hw) {
2073 complete(&common->wlan_init_completion);
2074 } else {
2075 return rsi_mac80211_attach(common);
2076 }
2077 }
2078 } else {
2079 rsi_dbg(INFO_ZONE,
2080 "%s: Received bbb_rf cfm in %d state\n",
2081 __func__, common->fsm_state);
2082 return 0;
2083 }
2084 break;
2085
2086 case SCAN_REQUEST:
2087 rsi_dbg(INFO_ZONE, "Set channel confirm\n");
2088 break;
2089
2090 case WAKEUP_SLEEP_REQUEST:
2091 rsi_dbg(INFO_ZONE, "Wakeup/Sleep confirmation.\n");
2092 return rsi_handle_ps_confirm(adapter, msg);
2093
2094 case BG_SCAN_PROBE_REQ:
2095 rsi_dbg(INFO_ZONE, "BG scan complete event\n");
2096 if (common->bgscan_en) {
2097 struct cfg80211_scan_info info;
2098
2099 if (!rsi_send_bgscan_params(common, RSI_STOP_BGSCAN))
2100 common->bgscan_en = 0;
2101 info.aborted = false;
2102 ieee80211_scan_completed(adapter->hw, &info);
2103 }
2104 rsi_dbg(INFO_ZONE, "Background scan completed\n");
2105 break;
2106
2107 default:
2108 rsi_dbg(INFO_ZONE, "%s: Invalid TA confirm pkt received\n",
2109 __func__);
2110 break;
2111 }
2112 return 0;
2113 out:
2114 rsi_dbg(ERR_ZONE, "%s: Unable to send pkt/Invalid frame received\n",
2115 __func__);
2116 return -EINVAL;
2117 }
2118
rsi_handle_card_ready(struct rsi_common * common,u8 * msg)2119 int rsi_handle_card_ready(struct rsi_common *common, u8 *msg)
2120 {
2121 int status;
2122
2123 switch (common->fsm_state) {
2124 case FSM_CARD_NOT_READY:
2125 rsi_dbg(INIT_ZONE, "Card ready indication from Common HAL\n");
2126 rsi_set_default_parameters(common);
2127 if (rsi_send_common_dev_params(common) < 0)
2128 return -EINVAL;
2129 common->fsm_state = FSM_COMMON_DEV_PARAMS_SENT;
2130 break;
2131 case FSM_COMMON_DEV_PARAMS_SENT:
2132 rsi_dbg(INIT_ZONE, "Card ready indication from WLAN HAL\n");
2133
2134 if (common->priv->device_model == RSI_DEV_9116) {
2135 if (msg[16] != MAGIC_WORD) {
2136 rsi_dbg(FSM_ZONE,
2137 "%s: [EEPROM_READ] Invalid token\n",
2138 __func__);
2139 common->fsm_state = FSM_CARD_NOT_READY;
2140 return -EINVAL;
2141 }
2142 memcpy(common->mac_addr, &msg[20], ETH_ALEN);
2143 rsi_dbg(INIT_ZONE, "MAC Addr %pM", common->mac_addr);
2144 }
2145 /* Get usb buffer status register address */
2146 common->priv->usb_buffer_status_reg = *(u32 *)&msg[8];
2147 rsi_dbg(INFO_ZONE, "USB buffer status register = %x\n",
2148 common->priv->usb_buffer_status_reg);
2149
2150 if (common->priv->device_model == RSI_DEV_9116)
2151 status = rsi_load_9116_bootup_params(common);
2152 else
2153 status = rsi_load_bootup_params(common);
2154 if (status < 0) {
2155 common->fsm_state = FSM_CARD_NOT_READY;
2156 return status;
2157 }
2158 common->fsm_state = FSM_BOOT_PARAMS_SENT;
2159 break;
2160 default:
2161 rsi_dbg(ERR_ZONE,
2162 "%s: card ready indication in invalid state %d.\n",
2163 __func__, common->fsm_state);
2164 return -EINVAL;
2165 }
2166
2167 return 0;
2168 }
2169
2170 /**
2171 * rsi_mgmt_pkt_recv() - This function processes the management packets
2172 * received from the hardware.
2173 * @common: Pointer to the driver private structure.
2174 * @msg: Pointer to the received packet.
2175 *
2176 * Return: 0 on success, -1 on failure.
2177 */
rsi_mgmt_pkt_recv(struct rsi_common * common,u8 * msg)2178 int rsi_mgmt_pkt_recv(struct rsi_common *common, u8 *msg)
2179 {
2180 s32 msg_len = (le16_to_cpu(*(__le16 *)&msg[0]) & 0x0fff);
2181 u16 msg_type = (msg[2]);
2182
2183 rsi_dbg(FSM_ZONE, "%s: Msg Len: %d, Msg Type: %4x\n",
2184 __func__, msg_len, msg_type);
2185
2186 switch (msg_type) {
2187 case TA_CONFIRM_TYPE:
2188 return rsi_handle_ta_confirm_type(common, msg);
2189 case CARD_READY_IND:
2190 common->hibernate_resume = false;
2191 rsi_dbg(FSM_ZONE, "%s: Card ready indication received\n",
2192 __func__);
2193 return rsi_handle_card_ready(common, msg);
2194 case TX_STATUS_IND:
2195 switch (msg[RSI_TX_STATUS_TYPE]) {
2196 case PROBEREQ_CONFIRM:
2197 common->mgmt_q_block = false;
2198 rsi_dbg(FSM_ZONE, "%s: Probe confirm received\n",
2199 __func__);
2200 break;
2201 case EAPOL4_CONFIRM:
2202 if (msg[RSI_TX_STATUS]) {
2203 common->eapol4_confirm = true;
2204 if (!rsi_send_block_unblock_frame(common,
2205 false))
2206 common->hw_data_qs_blocked = false;
2207 }
2208 }
2209 break;
2210 case BEACON_EVENT_IND:
2211 rsi_dbg(INFO_ZONE, "Beacon event\n");
2212 if (common->fsm_state != FSM_MAC_INIT_DONE)
2213 return -1;
2214 if (common->iface_down)
2215 return -1;
2216 if (!common->beacon_enabled)
2217 return -1;
2218 rsi_send_beacon(common);
2219 break;
2220 case WOWLAN_WAKEUP_REASON:
2221 rsi_dbg(ERR_ZONE, "\n\nWakeup Type: %x\n", msg[15]);
2222 switch (msg[15]) {
2223 case RSI_UNICAST_MAGIC_PKT:
2224 rsi_dbg(ERR_ZONE,
2225 "*** Wakeup for Unicast magic packet ***\n");
2226 break;
2227 case RSI_BROADCAST_MAGICPKT:
2228 rsi_dbg(ERR_ZONE,
2229 "*** Wakeup for Broadcast magic packet ***\n");
2230 break;
2231 case RSI_EAPOL_PKT:
2232 rsi_dbg(ERR_ZONE,
2233 "*** Wakeup for GTK renewal ***\n");
2234 break;
2235 case RSI_DISCONNECT_PKT:
2236 rsi_dbg(ERR_ZONE,
2237 "*** Wakeup for Disconnect ***\n");
2238 break;
2239 case RSI_HW_BMISS_PKT:
2240 rsi_dbg(ERR_ZONE,
2241 "*** Wakeup for HW Beacon miss ***\n");
2242 break;
2243 default:
2244 rsi_dbg(ERR_ZONE,
2245 "##### Un-intentional Wakeup #####\n");
2246 break;
2247 }
2248 break;
2249 case RX_DOT11_MGMT:
2250 return rsi_mgmt_pkt_to_core(common, msg, msg_len);
2251 default:
2252 rsi_dbg(INFO_ZONE, "Received packet type: 0x%x\n", msg_type);
2253 }
2254 return 0;
2255 }
2256