1 /**
2 * Copyright (c) 2014 Redpine Signals Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include <linux/etherdevice.h>
18 #include <linux/timer.h>
19 #include "rsi_mgmt.h"
20 #include "rsi_common.h"
21 #include "rsi_ps.h"
22 #include "rsi_hal.h"
23
24 static struct bootup_params boot_params_20 = {
25 .magic_number = cpu_to_le16(0x5aa5),
26 .crystal_good_time = 0x0,
27 .valid = cpu_to_le32(VALID_20),
28 .reserved_for_valids = 0x0,
29 .bootup_mode_info = 0x0,
30 .digital_loop_back_params = 0x0,
31 .rtls_timestamp_en = 0x0,
32 .host_spi_intr_cfg = 0x0,
33 .device_clk_info = {{
34 .pll_config_g = {
35 .tapll_info_g = {
36 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)|
37 (TA_PLL_M_VAL_20)),
38 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20),
39 },
40 .pll960_info_g = {
41 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)|
42 (PLL960_N_VAL_20)),
43 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20),
44 .pll_reg_3 = 0x0,
45 },
46 .afepll_info_g = {
47 .pll_reg = cpu_to_le16(0x9f0),
48 }
49 },
50 .switch_clk_g = {
51 .switch_clk_info = cpu_to_le16(0xb),
52 .bbp_lmac_clk_reg_val = cpu_to_le16(0x111),
53 .umac_clock_reg_config = cpu_to_le16(0x48),
54 .qspi_uart_clock_reg_config = cpu_to_le16(0x1211)
55 }
56 },
57 {
58 .pll_config_g = {
59 .tapll_info_g = {
60 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)|
61 (TA_PLL_M_VAL_20)),
62 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20),
63 },
64 .pll960_info_g = {
65 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)|
66 (PLL960_N_VAL_20)),
67 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20),
68 .pll_reg_3 = 0x0,
69 },
70 .afepll_info_g = {
71 .pll_reg = cpu_to_le16(0x9f0),
72 }
73 },
74 .switch_clk_g = {
75 .switch_clk_info = 0x0,
76 .bbp_lmac_clk_reg_val = 0x0,
77 .umac_clock_reg_config = 0x0,
78 .qspi_uart_clock_reg_config = 0x0
79 }
80 },
81 {
82 .pll_config_g = {
83 .tapll_info_g = {
84 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)|
85 (TA_PLL_M_VAL_20)),
86 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20),
87 },
88 .pll960_info_g = {
89 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)|
90 (PLL960_N_VAL_20)),
91 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20),
92 .pll_reg_3 = 0x0,
93 },
94 .afepll_info_g = {
95 .pll_reg = cpu_to_le16(0x9f0),
96 }
97 },
98 .switch_clk_g = {
99 .switch_clk_info = 0x0,
100 .bbp_lmac_clk_reg_val = 0x0,
101 .umac_clock_reg_config = 0x0,
102 .qspi_uart_clock_reg_config = 0x0
103 }
104 } },
105 .buckboost_wakeup_cnt = 0x0,
106 .pmu_wakeup_wait = 0x0,
107 .shutdown_wait_time = 0x0,
108 .pmu_slp_clkout_sel = 0x0,
109 .wdt_prog_value = 0x0,
110 .wdt_soc_rst_delay = 0x0,
111 .dcdc_operation_mode = 0x0,
112 .soc_reset_wait_cnt = 0x0,
113 .waiting_time_at_fresh_sleep = 0x0,
114 .max_threshold_to_avoid_sleep = 0x0,
115 .beacon_resedue_alg_en = 0,
116 };
117
118 static struct bootup_params boot_params_40 = {
119 .magic_number = cpu_to_le16(0x5aa5),
120 .crystal_good_time = 0x0,
121 .valid = cpu_to_le32(VALID_40),
122 .reserved_for_valids = 0x0,
123 .bootup_mode_info = 0x0,
124 .digital_loop_back_params = 0x0,
125 .rtls_timestamp_en = 0x0,
126 .host_spi_intr_cfg = 0x0,
127 .device_clk_info = {{
128 .pll_config_g = {
129 .tapll_info_g = {
130 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)|
131 (TA_PLL_M_VAL_40)),
132 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40),
133 },
134 .pll960_info_g = {
135 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)|
136 (PLL960_N_VAL_40)),
137 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40),
138 .pll_reg_3 = 0x0,
139 },
140 .afepll_info_g = {
141 .pll_reg = cpu_to_le16(0x9f0),
142 }
143 },
144 .switch_clk_g = {
145 .switch_clk_info = cpu_to_le16(0x09),
146 .bbp_lmac_clk_reg_val = cpu_to_le16(0x1121),
147 .umac_clock_reg_config = cpu_to_le16(0x48),
148 .qspi_uart_clock_reg_config = cpu_to_le16(0x1211)
149 }
150 },
151 {
152 .pll_config_g = {
153 .tapll_info_g = {
154 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)|
155 (TA_PLL_M_VAL_40)),
156 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40),
157 },
158 .pll960_info_g = {
159 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)|
160 (PLL960_N_VAL_40)),
161 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40),
162 .pll_reg_3 = 0x0,
163 },
164 .afepll_info_g = {
165 .pll_reg = cpu_to_le16(0x9f0),
166 }
167 },
168 .switch_clk_g = {
169 .switch_clk_info = 0x0,
170 .bbp_lmac_clk_reg_val = 0x0,
171 .umac_clock_reg_config = 0x0,
172 .qspi_uart_clock_reg_config = 0x0
173 }
174 },
175 {
176 .pll_config_g = {
177 .tapll_info_g = {
178 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)|
179 (TA_PLL_M_VAL_40)),
180 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40),
181 },
182 .pll960_info_g = {
183 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)|
184 (PLL960_N_VAL_40)),
185 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40),
186 .pll_reg_3 = 0x0,
187 },
188 .afepll_info_g = {
189 .pll_reg = cpu_to_le16(0x9f0),
190 }
191 },
192 .switch_clk_g = {
193 .switch_clk_info = 0x0,
194 .bbp_lmac_clk_reg_val = 0x0,
195 .umac_clock_reg_config = 0x0,
196 .qspi_uart_clock_reg_config = 0x0
197 }
198 } },
199 .buckboost_wakeup_cnt = 0x0,
200 .pmu_wakeup_wait = 0x0,
201 .shutdown_wait_time = 0x0,
202 .pmu_slp_clkout_sel = 0x0,
203 .wdt_prog_value = 0x0,
204 .wdt_soc_rst_delay = 0x0,
205 .dcdc_operation_mode = 0x0,
206 .soc_reset_wait_cnt = 0x0,
207 .waiting_time_at_fresh_sleep = 0x0,
208 .max_threshold_to_avoid_sleep = 0x0,
209 .beacon_resedue_alg_en = 0,
210 };
211
212 static struct bootup_params_9116 boot_params_9116_20 = {
213 .magic_number = cpu_to_le16(LOADED_TOKEN),
214 .valid = cpu_to_le32(VALID_20),
215 .device_clk_info_9116 = {{
216 .pll_config_9116_g = {
217 .pll_ctrl_set_reg = cpu_to_le16(0xd518),
218 .pll_ctrl_clr_reg = cpu_to_le16(0x2ae7),
219 .pll_modem_conig_reg = cpu_to_le16(0x2000),
220 .soc_clk_config_reg = cpu_to_le16(0x0c18),
221 .adc_dac_strm1_config_reg = cpu_to_le16(0x1100),
222 .adc_dac_strm2_config_reg = cpu_to_le16(0x6600),
223 },
224 .switch_clk_9116_g = {
225 .switch_clk_info =
226 cpu_to_le32((RSI_SWITCH_TASS_CLK |
227 RSI_SWITCH_WLAN_BBP_LMAC_CLK_REG |
228 RSI_SWITCH_BBP_LMAC_CLK_REG)),
229 .tass_clock_reg = cpu_to_le32(0x083C0503),
230 .wlan_bbp_lmac_clk_reg_val = cpu_to_le32(0x01042001),
231 .zbbt_bbp_lmac_clk_reg_val = cpu_to_le32(0x02010001),
232 .bbp_lmac_clk_en_val = cpu_to_le32(0x0000003b),
233 }
234 },
235 },
236 };
237
238 static struct bootup_params_9116 boot_params_9116_40 = {
239 .magic_number = cpu_to_le16(LOADED_TOKEN),
240 .valid = cpu_to_le32(VALID_40),
241 .device_clk_info_9116 = {{
242 .pll_config_9116_g = {
243 .pll_ctrl_set_reg = cpu_to_le16(0xd518),
244 .pll_ctrl_clr_reg = cpu_to_le16(0x2ae7),
245 .pll_modem_conig_reg = cpu_to_le16(0x3000),
246 .soc_clk_config_reg = cpu_to_le16(0x0c18),
247 .adc_dac_strm1_config_reg = cpu_to_le16(0x0000),
248 .adc_dac_strm2_config_reg = cpu_to_le16(0x6600),
249 },
250 .switch_clk_9116_g = {
251 .switch_clk_info =
252 cpu_to_le32((RSI_SWITCH_TASS_CLK |
253 RSI_SWITCH_WLAN_BBP_LMAC_CLK_REG |
254 RSI_SWITCH_BBP_LMAC_CLK_REG |
255 RSI_MODEM_CLK_160MHZ)),
256 .tass_clock_reg = cpu_to_le32(0x083C0503),
257 .wlan_bbp_lmac_clk_reg_val = cpu_to_le32(0x01042002),
258 .zbbt_bbp_lmac_clk_reg_val = cpu_to_le32(0x04010002),
259 .bbp_lmac_clk_en_val = cpu_to_le32(0x0000003b),
260 }
261 },
262 },
263 };
264
265 static u16 mcs[] = {13, 26, 39, 52, 78, 104, 117, 130};
266
267 /**
268 * rsi_set_default_parameters() - This function sets default parameters.
269 * @common: Pointer to the driver private structure.
270 *
271 * Return: none
272 */
rsi_set_default_parameters(struct rsi_common * common)273 static void rsi_set_default_parameters(struct rsi_common *common)
274 {
275 common->band = NL80211_BAND_2GHZ;
276 common->channel_width = BW_20MHZ;
277 common->rts_threshold = IEEE80211_MAX_RTS_THRESHOLD;
278 common->channel = 1;
279 common->min_rate = 0xffff;
280 common->fsm_state = FSM_CARD_NOT_READY;
281 common->iface_down = true;
282 common->endpoint = EP_2GHZ_20MHZ;
283 common->driver_mode = 1; /* End to end mode */
284 common->lp_ps_handshake_mode = 0; /* Default no handShake mode*/
285 common->ulp_ps_handshake_mode = 2; /* Default PKT handShake mode*/
286 common->rf_power_val = 0; /* Default 1.9V */
287 common->wlan_rf_power_mode = 0;
288 common->obm_ant_sel_val = 2;
289 common->beacon_interval = RSI_BEACON_INTERVAL;
290 common->dtim_cnt = RSI_DTIM_COUNT;
291 common->w9116_features.pll_mode = 0x0;
292 common->w9116_features.rf_type = 1;
293 common->w9116_features.wireless_mode = 0;
294 common->w9116_features.enable_ppe = 0;
295 common->w9116_features.afe_type = 1;
296 common->w9116_features.dpd = 0;
297 common->w9116_features.sifs_tx_enable = 0;
298 common->w9116_features.ps_options = 0;
299 }
300
init_bgscan_params(struct rsi_common * common)301 void init_bgscan_params(struct rsi_common *common)
302 {
303 memset((u8 *)&common->bgscan, 0, sizeof(struct rsi_bgscan_params));
304 common->bgscan.bgscan_threshold = RSI_DEF_BGSCAN_THRLD;
305 common->bgscan.roam_threshold = RSI_DEF_ROAM_THRLD;
306 common->bgscan.bgscan_periodicity = RSI_BGSCAN_PERIODICITY;
307 common->bgscan.num_bgscan_channels = 0;
308 common->bgscan.two_probe = 1;
309 common->bgscan.active_scan_duration = RSI_ACTIVE_SCAN_TIME;
310 common->bgscan.passive_scan_duration = RSI_PASSIVE_SCAN_TIME;
311 }
312
313 /**
314 * rsi_set_contention_vals() - This function sets the contention values for the
315 * backoff procedure.
316 * @common: Pointer to the driver private structure.
317 *
318 * Return: None.
319 */
rsi_set_contention_vals(struct rsi_common * common)320 static void rsi_set_contention_vals(struct rsi_common *common)
321 {
322 u8 ii = 0;
323
324 for (; ii < NUM_EDCA_QUEUES; ii++) {
325 common->tx_qinfo[ii].wme_params =
326 (((common->edca_params[ii].cw_min / 2) +
327 (common->edca_params[ii].aifs)) *
328 WMM_SHORT_SLOT_TIME + SIFS_DURATION);
329 common->tx_qinfo[ii].weight = common->tx_qinfo[ii].wme_params;
330 common->tx_qinfo[ii].pkt_contended = 0;
331 }
332 }
333
334 /**
335 * rsi_send_internal_mgmt_frame() - This function sends management frames to
336 * firmware.Also schedules packet to queue
337 * for transmission.
338 * @common: Pointer to the driver private structure.
339 * @skb: Pointer to the socket buffer structure.
340 *
341 * Return: 0 on success, -1 on failure.
342 */
rsi_send_internal_mgmt_frame(struct rsi_common * common,struct sk_buff * skb)343 static int rsi_send_internal_mgmt_frame(struct rsi_common *common,
344 struct sk_buff *skb)
345 {
346 struct skb_info *tx_params;
347 struct rsi_cmd_desc *desc;
348
349 if (skb == NULL) {
350 rsi_dbg(ERR_ZONE, "%s: Unable to allocate skb\n", __func__);
351 return -ENOMEM;
352 }
353 desc = (struct rsi_cmd_desc *)skb->data;
354 desc->desc_dword0.len_qno |= cpu_to_le16(DESC_IMMEDIATE_WAKEUP);
355 skb->priority = MGMT_SOFT_Q;
356 tx_params = (struct skb_info *)&IEEE80211_SKB_CB(skb)->driver_data;
357 tx_params->flags |= INTERNAL_MGMT_PKT;
358 skb_queue_tail(&common->tx_queue[MGMT_SOFT_Q], skb);
359 rsi_set_event(&common->tx_thread.event);
360 return 0;
361 }
362
363 /**
364 * rsi_load_radio_caps() - This function is used to send radio capabilities
365 * values to firmware.
366 * @common: Pointer to the driver private structure.
367 *
368 * Return: 0 on success, corresponding negative error code on failure.
369 */
rsi_load_radio_caps(struct rsi_common * common)370 static int rsi_load_radio_caps(struct rsi_common *common)
371 {
372 struct rsi_radio_caps *radio_caps;
373 struct rsi_hw *adapter = common->priv;
374 u16 inx = 0;
375 u8 ii;
376 u8 radio_id = 0;
377 u16 gc[20] = {0xf0, 0xf0, 0xf0, 0xf0,
378 0xf0, 0xf0, 0xf0, 0xf0,
379 0xf0, 0xf0, 0xf0, 0xf0,
380 0xf0, 0xf0, 0xf0, 0xf0,
381 0xf0, 0xf0, 0xf0, 0xf0};
382 struct sk_buff *skb;
383 u16 frame_len = sizeof(struct rsi_radio_caps);
384
385 rsi_dbg(INFO_ZONE, "%s: Sending rate symbol req frame\n", __func__);
386
387 skb = dev_alloc_skb(frame_len);
388
389 if (!skb) {
390 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
391 __func__);
392 return -ENOMEM;
393 }
394
395 memset(skb->data, 0, frame_len);
396 radio_caps = (struct rsi_radio_caps *)skb->data;
397
398 radio_caps->desc_dword0.frame_type = RADIO_CAPABILITIES;
399 radio_caps->channel_num = common->channel;
400 radio_caps->rf_model = RSI_RF_TYPE;
401
402 radio_caps->radio_cfg_info = RSI_LMAC_CLOCK_80MHZ;
403 if (common->channel_width == BW_40MHZ) {
404 radio_caps->radio_cfg_info |= RSI_ENABLE_40MHZ;
405
406 if (common->fsm_state == FSM_MAC_INIT_DONE) {
407 struct ieee80211_hw *hw = adapter->hw;
408 struct ieee80211_conf *conf = &hw->conf;
409
410 if (conf_is_ht40_plus(conf)) {
411 radio_caps->ppe_ack_rate =
412 cpu_to_le16(LOWER_20_ENABLE |
413 (LOWER_20_ENABLE >> 12));
414 } else if (conf_is_ht40_minus(conf)) {
415 radio_caps->ppe_ack_rate =
416 cpu_to_le16(UPPER_20_ENABLE |
417 (UPPER_20_ENABLE >> 12));
418 } else {
419 radio_caps->ppe_ack_rate =
420 cpu_to_le16((BW_40MHZ << 12) |
421 FULL40M_ENABLE);
422 }
423 }
424 }
425 radio_caps->radio_info |= radio_id;
426
427 if (adapter->device_model == RSI_DEV_9116 &&
428 common->channel_width == BW_20MHZ)
429 radio_caps->radio_cfg_info &= ~0x3;
430
431 radio_caps->sifs_tx_11n = cpu_to_le16(SIFS_TX_11N_VALUE);
432 radio_caps->sifs_tx_11b = cpu_to_le16(SIFS_TX_11B_VALUE);
433 radio_caps->slot_rx_11n = cpu_to_le16(SHORT_SLOT_VALUE);
434 radio_caps->ofdm_ack_tout = cpu_to_le16(OFDM_ACK_TOUT_VALUE);
435 radio_caps->cck_ack_tout = cpu_to_le16(CCK_ACK_TOUT_VALUE);
436 radio_caps->preamble_type = cpu_to_le16(LONG_PREAMBLE);
437
438 for (ii = 0; ii < MAX_HW_QUEUES; ii++) {
439 radio_caps->qos_params[ii].cont_win_min_q = cpu_to_le16(3);
440 radio_caps->qos_params[ii].cont_win_max_q = cpu_to_le16(0x3f);
441 radio_caps->qos_params[ii].aifsn_val_q = cpu_to_le16(2);
442 radio_caps->qos_params[ii].txop_q = 0;
443 }
444
445 for (ii = 0; ii < NUM_EDCA_QUEUES; ii++) {
446 if (common->edca_params[ii].cw_max > 0) {
447 radio_caps->qos_params[ii].cont_win_min_q =
448 cpu_to_le16(common->edca_params[ii].cw_min);
449 radio_caps->qos_params[ii].cont_win_max_q =
450 cpu_to_le16(common->edca_params[ii].cw_max);
451 radio_caps->qos_params[ii].aifsn_val_q =
452 cpu_to_le16(common->edca_params[ii].aifs << 8);
453 radio_caps->qos_params[ii].txop_q =
454 cpu_to_le16(common->edca_params[ii].txop);
455 }
456 }
457
458 radio_caps->qos_params[BROADCAST_HW_Q].txop_q = cpu_to_le16(0xffff);
459 radio_caps->qos_params[MGMT_HW_Q].txop_q = 0;
460 radio_caps->qos_params[BEACON_HW_Q].txop_q = cpu_to_le16(0xffff);
461
462 memcpy(&common->rate_pwr[0], &gc[0], 40);
463 for (ii = 0; ii < 20; ii++)
464 radio_caps->gcpd_per_rate[inx++] =
465 cpu_to_le16(common->rate_pwr[ii] & 0x00FF);
466
467 rsi_set_len_qno(&radio_caps->desc_dword0.len_qno,
468 (frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q);
469
470 skb_put(skb, frame_len);
471
472 return rsi_send_internal_mgmt_frame(common, skb);
473 }
474
475 /**
476 * rsi_mgmt_pkt_to_core() - This function is the entry point for Mgmt module.
477 * @common: Pointer to the driver private structure.
478 * @msg: Pointer to received packet.
479 * @msg_len: Length of the received packet.
480 * @type: Type of received packet.
481 *
482 * Return: 0 on success, -1 on failure.
483 */
rsi_mgmt_pkt_to_core(struct rsi_common * common,u8 * msg,s32 msg_len)484 static int rsi_mgmt_pkt_to_core(struct rsi_common *common,
485 u8 *msg,
486 s32 msg_len)
487 {
488 struct rsi_hw *adapter = common->priv;
489 struct ieee80211_tx_info *info;
490 struct skb_info *rx_params;
491 u8 pad_bytes = msg[4];
492 struct sk_buff *skb;
493
494 if (!adapter->sc_nvifs)
495 return -ENOLINK;
496
497 msg_len -= pad_bytes;
498 if (msg_len <= 0) {
499 rsi_dbg(MGMT_RX_ZONE,
500 "%s: Invalid rx msg of len = %d\n",
501 __func__, msg_len);
502 return -EINVAL;
503 }
504
505 skb = dev_alloc_skb(msg_len);
506 if (!skb)
507 return -ENOMEM;
508
509 skb_put_data(skb,
510 (u8 *)(msg + FRAME_DESC_SZ + pad_bytes),
511 msg_len);
512
513 info = IEEE80211_SKB_CB(skb);
514 rx_params = (struct skb_info *)info->driver_data;
515 rx_params->rssi = rsi_get_rssi(msg);
516 rx_params->channel = rsi_get_channel(msg);
517 rsi_indicate_pkt_to_os(common, skb);
518
519 return 0;
520 }
521
522 /**
523 * rsi_hal_send_sta_notify_frame() - This function sends the station notify
524 * frame to firmware.
525 * @common: Pointer to the driver private structure.
526 * @opmode: Operating mode of device.
527 * @notify_event: Notification about station connection.
528 * @bssid: bssid.
529 * @qos_enable: Qos is enabled.
530 * @aid: Aid (unique for all STA).
531 *
532 * Return: status: 0 on success, corresponding negative error code on failure.
533 */
rsi_hal_send_sta_notify_frame(struct rsi_common * common,enum opmode opmode,u8 notify_event,const unsigned char * bssid,u8 qos_enable,u16 aid,u16 sta_id,struct ieee80211_vif * vif)534 int rsi_hal_send_sta_notify_frame(struct rsi_common *common, enum opmode opmode,
535 u8 notify_event, const unsigned char *bssid,
536 u8 qos_enable, u16 aid, u16 sta_id,
537 struct ieee80211_vif *vif)
538 {
539 struct sk_buff *skb = NULL;
540 struct rsi_peer_notify *peer_notify;
541 u16 vap_id = ((struct vif_priv *)vif->drv_priv)->vap_id;
542 int status;
543 u16 frame_len = sizeof(struct rsi_peer_notify);
544
545 rsi_dbg(MGMT_TX_ZONE, "%s: Sending sta notify frame\n", __func__);
546
547 skb = dev_alloc_skb(frame_len);
548
549 if (!skb) {
550 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
551 __func__);
552 return -ENOMEM;
553 }
554
555 memset(skb->data, 0, frame_len);
556 peer_notify = (struct rsi_peer_notify *)skb->data;
557
558 if (opmode == RSI_OPMODE_STA)
559 peer_notify->command = cpu_to_le16(PEER_TYPE_AP << 1);
560 else if (opmode == RSI_OPMODE_AP)
561 peer_notify->command = cpu_to_le16(PEER_TYPE_STA << 1);
562
563 switch (notify_event) {
564 case STA_CONNECTED:
565 peer_notify->command |= cpu_to_le16(RSI_ADD_PEER);
566 break;
567 case STA_DISCONNECTED:
568 peer_notify->command |= cpu_to_le16(RSI_DELETE_PEER);
569 break;
570 default:
571 break;
572 }
573
574 peer_notify->command |= cpu_to_le16((aid & 0xfff) << 4);
575 ether_addr_copy(peer_notify->mac_addr, bssid);
576 peer_notify->mpdu_density = cpu_to_le16(RSI_MPDU_DENSITY);
577 peer_notify->sta_flags = cpu_to_le32((qos_enable) ? 1 : 0);
578
579 rsi_set_len_qno(&peer_notify->desc.desc_dword0.len_qno,
580 (frame_len - FRAME_DESC_SZ),
581 RSI_WIFI_MGMT_Q);
582 peer_notify->desc.desc_dword0.frame_type = PEER_NOTIFY;
583 peer_notify->desc.desc_dword3.qid_tid = sta_id;
584 peer_notify->desc.desc_dword3.sta_id = vap_id;
585
586 skb_put(skb, frame_len);
587
588 status = rsi_send_internal_mgmt_frame(common, skb);
589
590 if ((vif->type == NL80211_IFTYPE_STATION) &&
591 (!status && qos_enable)) {
592 rsi_set_contention_vals(common);
593 status = rsi_load_radio_caps(common);
594 }
595 return status;
596 }
597
598 /**
599 * rsi_send_aggregation_params_frame() - This function sends the ampdu
600 * indication frame to firmware.
601 * @common: Pointer to the driver private structure.
602 * @tid: traffic identifier.
603 * @ssn: ssn.
604 * @buf_size: buffer size.
605 * @event: notification about station connection.
606 *
607 * Return: 0 on success, corresponding negative error code on failure.
608 */
rsi_send_aggregation_params_frame(struct rsi_common * common,u16 tid,u16 ssn,u8 buf_size,u8 event,u8 sta_id)609 int rsi_send_aggregation_params_frame(struct rsi_common *common,
610 u16 tid,
611 u16 ssn,
612 u8 buf_size,
613 u8 event,
614 u8 sta_id)
615 {
616 struct sk_buff *skb = NULL;
617 struct rsi_aggr_params *aggr_params;
618 u16 frame_len = sizeof(struct rsi_aggr_params);
619
620 skb = dev_alloc_skb(frame_len);
621
622 if (!skb) {
623 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
624 __func__);
625 return -ENOMEM;
626 }
627
628 memset(skb->data, 0, frame_len);
629 aggr_params = (struct rsi_aggr_params *)skb->data;
630
631 rsi_dbg(MGMT_TX_ZONE, "%s: Sending AMPDU indication frame\n", __func__);
632
633 rsi_set_len_qno(&aggr_params->desc_dword0.len_qno, 0, RSI_WIFI_MGMT_Q);
634 aggr_params->desc_dword0.frame_type = AMPDU_IND;
635
636 aggr_params->aggr_params = tid & RSI_AGGR_PARAMS_TID_MASK;
637 aggr_params->peer_id = sta_id;
638 if (event == STA_TX_ADDBA_DONE) {
639 aggr_params->seq_start = cpu_to_le16(ssn);
640 aggr_params->baw_size = cpu_to_le16(buf_size);
641 aggr_params->aggr_params |= RSI_AGGR_PARAMS_START;
642 } else if (event == STA_RX_ADDBA_DONE) {
643 aggr_params->seq_start = cpu_to_le16(ssn);
644 aggr_params->aggr_params |= (RSI_AGGR_PARAMS_START |
645 RSI_AGGR_PARAMS_RX_AGGR);
646 } else if (event == STA_RX_DELBA) {
647 aggr_params->aggr_params |= RSI_AGGR_PARAMS_RX_AGGR;
648 }
649
650 skb_put(skb, frame_len);
651
652 return rsi_send_internal_mgmt_frame(common, skb);
653 }
654
655 /**
656 * rsi_program_bb_rf() - This function starts base band and RF programming.
657 * This is called after initial configurations are done.
658 * @common: Pointer to the driver private structure.
659 *
660 * Return: 0 on success, corresponding negative error code on failure.
661 */
rsi_program_bb_rf(struct rsi_common * common)662 static int rsi_program_bb_rf(struct rsi_common *common)
663 {
664 struct sk_buff *skb;
665 struct rsi_bb_rf_prog *bb_rf_prog;
666 u16 frame_len = sizeof(struct rsi_bb_rf_prog);
667
668 rsi_dbg(MGMT_TX_ZONE, "%s: Sending program BB/RF frame\n", __func__);
669
670 skb = dev_alloc_skb(frame_len);
671 if (!skb) {
672 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
673 __func__);
674 return -ENOMEM;
675 }
676
677 memset(skb->data, 0, frame_len);
678 bb_rf_prog = (struct rsi_bb_rf_prog *)skb->data;
679
680 rsi_set_len_qno(&bb_rf_prog->desc_dword0.len_qno, 0, RSI_WIFI_MGMT_Q);
681 bb_rf_prog->desc_dword0.frame_type = BBP_PROG_IN_TA;
682 bb_rf_prog->endpoint = common->endpoint;
683 bb_rf_prog->rf_power_mode = common->wlan_rf_power_mode;
684
685 if (common->rf_reset) {
686 bb_rf_prog->flags = cpu_to_le16(RF_RESET_ENABLE);
687 rsi_dbg(MGMT_TX_ZONE, "%s: ===> RF RESET REQUEST SENT <===\n",
688 __func__);
689 common->rf_reset = 0;
690 }
691 common->bb_rf_prog_count = 1;
692 bb_rf_prog->flags |= cpu_to_le16(PUT_BBP_RESET | BBP_REG_WRITE |
693 (RSI_RF_TYPE << 4));
694 skb_put(skb, frame_len);
695
696 return rsi_send_internal_mgmt_frame(common, skb);
697 }
698
699 /**
700 * rsi_set_vap_capabilities() - This function send vap capability to firmware.
701 * @common: Pointer to the driver private structure.
702 * @opmode: Operating mode of device.
703 *
704 * Return: 0 on success, corresponding negative error code on failure.
705 */
rsi_set_vap_capabilities(struct rsi_common * common,enum opmode mode,u8 * mac_addr,u8 vap_id,u8 vap_status)706 int rsi_set_vap_capabilities(struct rsi_common *common,
707 enum opmode mode,
708 u8 *mac_addr,
709 u8 vap_id,
710 u8 vap_status)
711 {
712 struct sk_buff *skb = NULL;
713 struct rsi_vap_caps *vap_caps;
714 struct rsi_hw *adapter = common->priv;
715 struct ieee80211_hw *hw = adapter->hw;
716 struct ieee80211_conf *conf = &hw->conf;
717 u16 frame_len = sizeof(struct rsi_vap_caps);
718
719 rsi_dbg(MGMT_TX_ZONE, "%s: Sending VAP capabilities frame\n", __func__);
720
721 skb = dev_alloc_skb(frame_len);
722 if (!skb) {
723 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
724 __func__);
725 return -ENOMEM;
726 }
727
728 memset(skb->data, 0, frame_len);
729 vap_caps = (struct rsi_vap_caps *)skb->data;
730
731 rsi_set_len_qno(&vap_caps->desc_dword0.len_qno,
732 (frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q);
733 vap_caps->desc_dword0.frame_type = VAP_CAPABILITIES;
734 vap_caps->status = vap_status;
735 vap_caps->vif_type = mode;
736 vap_caps->channel_bw = common->channel_width;
737 vap_caps->vap_id = vap_id;
738 vap_caps->radioid_macid = ((common->mac_id & 0xf) << 4) |
739 (common->radio_id & 0xf);
740
741 memcpy(vap_caps->mac_addr, mac_addr, IEEE80211_ADDR_LEN);
742 vap_caps->keep_alive_period = cpu_to_le16(90);
743 vap_caps->frag_threshold = cpu_to_le16(IEEE80211_MAX_FRAG_THRESHOLD);
744
745 vap_caps->rts_threshold = cpu_to_le16(common->rts_threshold);
746
747 if (common->band == NL80211_BAND_5GHZ) {
748 vap_caps->default_ctrl_rate = cpu_to_le16(RSI_RATE_6);
749 vap_caps->default_mgmt_rate = cpu_to_le32(RSI_RATE_6);
750 } else {
751 vap_caps->default_ctrl_rate = cpu_to_le16(RSI_RATE_1);
752 vap_caps->default_mgmt_rate = cpu_to_le32(RSI_RATE_1);
753 }
754 if (conf_is_ht40(conf)) {
755 if (conf_is_ht40_minus(conf))
756 vap_caps->ctrl_rate_flags =
757 cpu_to_le16(UPPER_20_ENABLE);
758 else if (conf_is_ht40_plus(conf))
759 vap_caps->ctrl_rate_flags =
760 cpu_to_le16(LOWER_20_ENABLE);
761 else
762 vap_caps->ctrl_rate_flags =
763 cpu_to_le16(FULL40M_ENABLE);
764 }
765
766 vap_caps->default_data_rate = 0;
767 vap_caps->beacon_interval = cpu_to_le16(common->beacon_interval);
768 vap_caps->dtim_period = cpu_to_le16(common->dtim_cnt);
769
770 skb_put(skb, frame_len);
771
772 return rsi_send_internal_mgmt_frame(common, skb);
773 }
774
775 /**
776 * rsi_hal_load_key() - This function is used to load keys within the firmware.
777 * @common: Pointer to the driver private structure.
778 * @data: Pointer to the key data.
779 * @key_len: Key length to be loaded.
780 * @key_type: Type of key: GROUP/PAIRWISE.
781 * @key_id: Key index.
782 * @cipher: Type of cipher used.
783 *
784 * Return: 0 on success, -1 on failure.
785 */
rsi_hal_load_key(struct rsi_common * common,u8 * data,u16 key_len,u8 key_type,u8 key_id,u32 cipher,s16 sta_id,struct ieee80211_vif * vif)786 int rsi_hal_load_key(struct rsi_common *common,
787 u8 *data,
788 u16 key_len,
789 u8 key_type,
790 u8 key_id,
791 u32 cipher,
792 s16 sta_id,
793 struct ieee80211_vif *vif)
794 {
795 struct sk_buff *skb = NULL;
796 struct rsi_set_key *set_key;
797 u16 key_descriptor = 0;
798 u16 frame_len = sizeof(struct rsi_set_key);
799
800 rsi_dbg(MGMT_TX_ZONE, "%s: Sending load key frame\n", __func__);
801
802 skb = dev_alloc_skb(frame_len);
803 if (!skb) {
804 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
805 __func__);
806 return -ENOMEM;
807 }
808
809 memset(skb->data, 0, frame_len);
810 set_key = (struct rsi_set_key *)skb->data;
811
812 if (key_type == RSI_GROUP_KEY) {
813 key_descriptor = RSI_KEY_TYPE_BROADCAST;
814 if (vif->type == NL80211_IFTYPE_AP)
815 key_descriptor |= RSI_KEY_MODE_AP;
816 }
817 if ((cipher == WLAN_CIPHER_SUITE_WEP40) ||
818 (cipher == WLAN_CIPHER_SUITE_WEP104)) {
819 key_id = 0;
820 key_descriptor |= RSI_WEP_KEY;
821 if (key_len >= 13)
822 key_descriptor |= RSI_WEP_KEY_104;
823 } else if (cipher != KEY_TYPE_CLEAR) {
824 key_descriptor |= RSI_CIPHER_WPA;
825 if (cipher == WLAN_CIPHER_SUITE_TKIP)
826 key_descriptor |= RSI_CIPHER_TKIP;
827 }
828 key_descriptor |= RSI_PROTECT_DATA_FRAMES;
829 key_descriptor |= (key_id << RSI_KEY_ID_OFFSET);
830
831 rsi_set_len_qno(&set_key->desc_dword0.len_qno,
832 (frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q);
833 set_key->desc_dword0.frame_type = SET_KEY_REQ;
834 set_key->key_desc = cpu_to_le16(key_descriptor);
835 set_key->sta_id = sta_id;
836
837 if (data) {
838 if ((cipher == WLAN_CIPHER_SUITE_WEP40) ||
839 (cipher == WLAN_CIPHER_SUITE_WEP104)) {
840 memcpy(&set_key->key[key_id][1], data, key_len * 2);
841 } else {
842 memcpy(&set_key->key[0][0], data, key_len);
843 }
844 memcpy(set_key->tx_mic_key, &data[16], 8);
845 memcpy(set_key->rx_mic_key, &data[24], 8);
846 } else {
847 memset(&set_key[FRAME_DESC_SZ], 0, frame_len - FRAME_DESC_SZ);
848 }
849
850 skb_put(skb, frame_len);
851
852 return rsi_send_internal_mgmt_frame(common, skb);
853 }
854
855 /*
856 * This function sends the common device configuration parameters to device.
857 * This frame includes the useful information to make device works on
858 * specific operating mode.
859 */
rsi_send_common_dev_params(struct rsi_common * common)860 static int rsi_send_common_dev_params(struct rsi_common *common)
861 {
862 struct sk_buff *skb;
863 u16 frame_len;
864 struct rsi_config_vals *dev_cfgs;
865
866 frame_len = sizeof(struct rsi_config_vals);
867
868 rsi_dbg(MGMT_TX_ZONE, "Sending common device config params\n");
869 skb = dev_alloc_skb(frame_len);
870 if (!skb) {
871 rsi_dbg(ERR_ZONE, "%s: Unable to allocate skb\n", __func__);
872 return -ENOMEM;
873 }
874
875 memset(skb->data, 0, frame_len);
876
877 dev_cfgs = (struct rsi_config_vals *)skb->data;
878 memset(dev_cfgs, 0, (sizeof(struct rsi_config_vals)));
879
880 rsi_set_len_qno(&dev_cfgs->len_qno, (frame_len - FRAME_DESC_SZ),
881 RSI_COEX_Q);
882 dev_cfgs->pkt_type = COMMON_DEV_CONFIG;
883
884 dev_cfgs->lp_ps_handshake = common->lp_ps_handshake_mode;
885 dev_cfgs->ulp_ps_handshake = common->ulp_ps_handshake_mode;
886
887 dev_cfgs->unused_ulp_gpio = RSI_UNUSED_ULP_GPIO_BITMAP;
888 dev_cfgs->unused_soc_gpio_bitmap =
889 cpu_to_le32(RSI_UNUSED_SOC_GPIO_BITMAP);
890
891 dev_cfgs->opermode = common->oper_mode;
892 dev_cfgs->wlan_rf_pwr_mode = common->wlan_rf_power_mode;
893 dev_cfgs->driver_mode = common->driver_mode;
894 dev_cfgs->region_code = NL80211_DFS_FCC;
895 dev_cfgs->antenna_sel_val = common->obm_ant_sel_val;
896
897 skb_put(skb, frame_len);
898
899 return rsi_send_internal_mgmt_frame(common, skb);
900 }
901
902 /*
903 * rsi_load_bootup_params() - This function send bootup params to the firmware.
904 * @common: Pointer to the driver private structure.
905 *
906 * Return: 0 on success, corresponding error code on failure.
907 */
rsi_load_bootup_params(struct rsi_common * common)908 static int rsi_load_bootup_params(struct rsi_common *common)
909 {
910 struct sk_buff *skb;
911 struct rsi_boot_params *boot_params;
912
913 rsi_dbg(MGMT_TX_ZONE, "%s: Sending boot params frame\n", __func__);
914 skb = dev_alloc_skb(sizeof(struct rsi_boot_params));
915 if (!skb) {
916 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
917 __func__);
918 return -ENOMEM;
919 }
920
921 memset(skb->data, 0, sizeof(struct rsi_boot_params));
922 boot_params = (struct rsi_boot_params *)skb->data;
923
924 rsi_dbg(MGMT_TX_ZONE, "%s:\n", __func__);
925
926 if (common->channel_width == BW_40MHZ) {
927 memcpy(&boot_params->bootup_params,
928 &boot_params_40,
929 sizeof(struct bootup_params));
930 rsi_dbg(MGMT_TX_ZONE, "%s: Packet 40MHZ <=== %d\n", __func__,
931 UMAC_CLK_40BW);
932 boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_40BW);
933 } else {
934 memcpy(&boot_params->bootup_params,
935 &boot_params_20,
936 sizeof(struct bootup_params));
937 if (boot_params_20.valid != cpu_to_le32(VALID_20)) {
938 boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_20BW);
939 rsi_dbg(MGMT_TX_ZONE,
940 "%s: Packet 20MHZ <=== %d\n", __func__,
941 UMAC_CLK_20BW);
942 } else {
943 boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_40MHZ);
944 rsi_dbg(MGMT_TX_ZONE,
945 "%s: Packet 20MHZ <=== %d\n", __func__,
946 UMAC_CLK_40MHZ);
947 }
948 }
949
950 /**
951 * Bit{0:11} indicates length of the Packet
952 * Bit{12:15} indicates host queue number
953 */
954 boot_params->desc_word[0] = cpu_to_le16(sizeof(struct bootup_params) |
955 (RSI_WIFI_MGMT_Q << 12));
956 boot_params->desc_word[1] = cpu_to_le16(BOOTUP_PARAMS_REQUEST);
957
958 skb_put(skb, sizeof(struct rsi_boot_params));
959
960 return rsi_send_internal_mgmt_frame(common, skb);
961 }
962
rsi_load_9116_bootup_params(struct rsi_common * common)963 static int rsi_load_9116_bootup_params(struct rsi_common *common)
964 {
965 struct sk_buff *skb;
966 struct rsi_boot_params_9116 *boot_params;
967
968 rsi_dbg(MGMT_TX_ZONE, "%s: Sending boot params frame\n", __func__);
969
970 skb = dev_alloc_skb(sizeof(struct rsi_boot_params_9116));
971 if (!skb)
972 return -ENOMEM;
973 memset(skb->data, 0, sizeof(struct rsi_boot_params));
974 boot_params = (struct rsi_boot_params_9116 *)skb->data;
975
976 if (common->channel_width == BW_40MHZ) {
977 memcpy(&boot_params->bootup_params,
978 &boot_params_9116_40,
979 sizeof(struct bootup_params_9116));
980 rsi_dbg(MGMT_TX_ZONE, "%s: Packet 40MHZ <=== %d\n", __func__,
981 UMAC_CLK_40BW);
982 boot_params->umac_clk = cpu_to_le16(UMAC_CLK_40BW);
983 } else {
984 memcpy(&boot_params->bootup_params,
985 &boot_params_9116_20,
986 sizeof(struct bootup_params_9116));
987 if (boot_params_20.valid != cpu_to_le32(VALID_20)) {
988 boot_params->umac_clk = cpu_to_le16(UMAC_CLK_20BW);
989 rsi_dbg(MGMT_TX_ZONE,
990 "%s: Packet 20MHZ <=== %d\n", __func__,
991 UMAC_CLK_20BW);
992 } else {
993 boot_params->umac_clk = cpu_to_le16(UMAC_CLK_40MHZ);
994 rsi_dbg(MGMT_TX_ZONE,
995 "%s: Packet 20MHZ <=== %d\n", __func__,
996 UMAC_CLK_40MHZ);
997 }
998 }
999 rsi_set_len_qno(&boot_params->desc_dword0.len_qno,
1000 sizeof(struct bootup_params_9116), RSI_WIFI_MGMT_Q);
1001 boot_params->desc_dword0.frame_type = BOOTUP_PARAMS_REQUEST;
1002 skb_put(skb, sizeof(struct rsi_boot_params_9116));
1003
1004 return rsi_send_internal_mgmt_frame(common, skb);
1005 }
1006
1007 /**
1008 * rsi_send_reset_mac() - This function prepares reset MAC request and sends an
1009 * internal management frame to indicate it to firmware.
1010 * @common: Pointer to the driver private structure.
1011 *
1012 * Return: 0 on success, corresponding error code on failure.
1013 */
rsi_send_reset_mac(struct rsi_common * common)1014 static int rsi_send_reset_mac(struct rsi_common *common)
1015 {
1016 struct sk_buff *skb;
1017 struct rsi_mac_frame *mgmt_frame;
1018
1019 rsi_dbg(MGMT_TX_ZONE, "%s: Sending reset MAC frame\n", __func__);
1020
1021 skb = dev_alloc_skb(FRAME_DESC_SZ);
1022 if (!skb) {
1023 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1024 __func__);
1025 return -ENOMEM;
1026 }
1027
1028 memset(skb->data, 0, FRAME_DESC_SZ);
1029 mgmt_frame = (struct rsi_mac_frame *)skb->data;
1030
1031 mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
1032 mgmt_frame->desc_word[1] = cpu_to_le16(RESET_MAC_REQ);
1033 mgmt_frame->desc_word[4] = cpu_to_le16(RETRY_COUNT << 8);
1034
1035 #define RSI_9116_DEF_TA_AGGR 3
1036 if (common->priv->device_model == RSI_DEV_9116)
1037 mgmt_frame->desc_word[3] |=
1038 cpu_to_le16(RSI_9116_DEF_TA_AGGR << 8);
1039
1040 skb_put(skb, FRAME_DESC_SZ);
1041
1042 return rsi_send_internal_mgmt_frame(common, skb);
1043 }
1044
1045 /**
1046 * rsi_band_check() - This function programs the band
1047 * @common: Pointer to the driver private structure.
1048 *
1049 * Return: 0 on success, corresponding error code on failure.
1050 */
rsi_band_check(struct rsi_common * common,struct ieee80211_channel * curchan)1051 int rsi_band_check(struct rsi_common *common,
1052 struct ieee80211_channel *curchan)
1053 {
1054 struct rsi_hw *adapter = common->priv;
1055 struct ieee80211_hw *hw = adapter->hw;
1056 u8 prev_bw = common->channel_width;
1057 u8 prev_ep = common->endpoint;
1058 int status = 0;
1059
1060 if (common->band != curchan->band) {
1061 common->rf_reset = 1;
1062 common->band = curchan->band;
1063 }
1064
1065 if ((hw->conf.chandef.width == NL80211_CHAN_WIDTH_20_NOHT) ||
1066 (hw->conf.chandef.width == NL80211_CHAN_WIDTH_20))
1067 common->channel_width = BW_20MHZ;
1068 else
1069 common->channel_width = BW_40MHZ;
1070
1071 if (common->band == NL80211_BAND_2GHZ) {
1072 if (common->channel_width)
1073 common->endpoint = EP_2GHZ_40MHZ;
1074 else
1075 common->endpoint = EP_2GHZ_20MHZ;
1076 } else {
1077 if (common->channel_width)
1078 common->endpoint = EP_5GHZ_40MHZ;
1079 else
1080 common->endpoint = EP_5GHZ_20MHZ;
1081 }
1082
1083 if (common->endpoint != prev_ep) {
1084 status = rsi_program_bb_rf(common);
1085 if (status)
1086 return status;
1087 }
1088
1089 if (common->channel_width != prev_bw) {
1090 if (adapter->device_model == RSI_DEV_9116)
1091 status = rsi_load_9116_bootup_params(common);
1092 else
1093 status = rsi_load_bootup_params(common);
1094 if (status)
1095 return status;
1096
1097 status = rsi_load_radio_caps(common);
1098 if (status)
1099 return status;
1100 }
1101
1102 return status;
1103 }
1104
1105 /**
1106 * rsi_set_channel() - This function programs the channel.
1107 * @common: Pointer to the driver private structure.
1108 * @channel: Channel value to be set.
1109 *
1110 * Return: 0 on success, corresponding error code on failure.
1111 */
rsi_set_channel(struct rsi_common * common,struct ieee80211_channel * channel)1112 int rsi_set_channel(struct rsi_common *common,
1113 struct ieee80211_channel *channel)
1114 {
1115 struct sk_buff *skb = NULL;
1116 struct rsi_chan_config *chan_cfg;
1117 u16 frame_len = sizeof(struct rsi_chan_config);
1118
1119 rsi_dbg(MGMT_TX_ZONE,
1120 "%s: Sending scan req frame\n", __func__);
1121
1122 skb = dev_alloc_skb(frame_len);
1123 if (!skb) {
1124 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1125 __func__);
1126 return -ENOMEM;
1127 }
1128
1129 if (!channel) {
1130 dev_kfree_skb(skb);
1131 return 0;
1132 }
1133 memset(skb->data, 0, frame_len);
1134 chan_cfg = (struct rsi_chan_config *)skb->data;
1135
1136 rsi_set_len_qno(&chan_cfg->desc_dword0.len_qno, 0, RSI_WIFI_MGMT_Q);
1137 chan_cfg->desc_dword0.frame_type = SCAN_REQUEST;
1138 chan_cfg->channel_number = channel->hw_value;
1139 chan_cfg->antenna_gain_offset_2g = channel->max_antenna_gain;
1140 chan_cfg->antenna_gain_offset_5g = channel->max_antenna_gain;
1141 chan_cfg->region_rftype = (RSI_RF_TYPE & 0xf) << 4;
1142
1143 if ((channel->flags & IEEE80211_CHAN_NO_IR) ||
1144 (channel->flags & IEEE80211_CHAN_RADAR)) {
1145 chan_cfg->antenna_gain_offset_2g |= RSI_CHAN_RADAR;
1146 } else {
1147 if (common->tx_power < channel->max_power)
1148 chan_cfg->tx_power = cpu_to_le16(common->tx_power);
1149 else
1150 chan_cfg->tx_power = cpu_to_le16(channel->max_power);
1151 }
1152 chan_cfg->region_rftype |= (common->priv->dfs_region & 0xf);
1153
1154 if (common->channel_width == BW_40MHZ)
1155 chan_cfg->channel_width = 0x1;
1156
1157 common->channel = channel->hw_value;
1158
1159 skb_put(skb, frame_len);
1160
1161 return rsi_send_internal_mgmt_frame(common, skb);
1162 }
1163
1164 /**
1165 * rsi_send_radio_params_update() - This function sends the radio
1166 * parameters update to device
1167 * @common: Pointer to the driver private structure.
1168 * @channel: Channel value to be set.
1169 *
1170 * Return: 0 on success, corresponding error code on failure.
1171 */
rsi_send_radio_params_update(struct rsi_common * common)1172 int rsi_send_radio_params_update(struct rsi_common *common)
1173 {
1174 struct rsi_mac_frame *cmd_frame;
1175 struct sk_buff *skb = NULL;
1176
1177 rsi_dbg(MGMT_TX_ZONE,
1178 "%s: Sending Radio Params update frame\n", __func__);
1179
1180 skb = dev_alloc_skb(FRAME_DESC_SZ);
1181 if (!skb) {
1182 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1183 __func__);
1184 return -ENOMEM;
1185 }
1186
1187 memset(skb->data, 0, FRAME_DESC_SZ);
1188 cmd_frame = (struct rsi_mac_frame *)skb->data;
1189
1190 cmd_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
1191 cmd_frame->desc_word[1] = cpu_to_le16(RADIO_PARAMS_UPDATE);
1192 cmd_frame->desc_word[3] = cpu_to_le16(BIT(0));
1193
1194 cmd_frame->desc_word[3] |= cpu_to_le16(common->tx_power << 8);
1195
1196 skb_put(skb, FRAME_DESC_SZ);
1197
1198 return rsi_send_internal_mgmt_frame(common, skb);
1199 }
1200
1201 /* This function programs the threshold. */
rsi_send_vap_dynamic_update(struct rsi_common * common)1202 int rsi_send_vap_dynamic_update(struct rsi_common *common)
1203 {
1204 struct sk_buff *skb;
1205 struct rsi_dynamic_s *dynamic_frame;
1206
1207 rsi_dbg(MGMT_TX_ZONE,
1208 "%s: Sending vap update indication frame\n", __func__);
1209
1210 skb = dev_alloc_skb(sizeof(struct rsi_dynamic_s));
1211 if (!skb)
1212 return -ENOMEM;
1213
1214 memset(skb->data, 0, sizeof(struct rsi_dynamic_s));
1215 dynamic_frame = (struct rsi_dynamic_s *)skb->data;
1216 rsi_set_len_qno(&dynamic_frame->desc_dword0.len_qno,
1217 sizeof(dynamic_frame->frame_body), RSI_WIFI_MGMT_Q);
1218
1219 dynamic_frame->desc_dword0.frame_type = VAP_DYNAMIC_UPDATE;
1220 dynamic_frame->desc_dword2.pkt_info =
1221 cpu_to_le32(common->rts_threshold);
1222
1223 if (common->wow_flags & RSI_WOW_ENABLED) {
1224 /* Beacon miss threshold */
1225 dynamic_frame->desc_dword3.token =
1226 cpu_to_le16(RSI_BCN_MISS_THRESHOLD);
1227 dynamic_frame->frame_body.keep_alive_period =
1228 cpu_to_le16(RSI_WOW_KEEPALIVE);
1229 } else {
1230 dynamic_frame->frame_body.keep_alive_period =
1231 cpu_to_le16(RSI_DEF_KEEPALIVE);
1232 }
1233
1234 dynamic_frame->desc_dword3.sta_id = 0; /* vap id */
1235
1236 skb_put(skb, sizeof(struct rsi_dynamic_s));
1237
1238 return rsi_send_internal_mgmt_frame(common, skb);
1239 }
1240
1241 /**
1242 * rsi_compare() - This function is used to compare two integers
1243 * @a: pointer to the first integer
1244 * @b: pointer to the second integer
1245 *
1246 * Return: 0 if both are equal, -1 if the first is smaller, else 1
1247 */
rsi_compare(const void * a,const void * b)1248 static int rsi_compare(const void *a, const void *b)
1249 {
1250 u16 _a = *(const u16 *)(a);
1251 u16 _b = *(const u16 *)(b);
1252
1253 if (_a > _b)
1254 return -1;
1255
1256 if (_a < _b)
1257 return 1;
1258
1259 return 0;
1260 }
1261
1262 /**
1263 * rsi_map_rates() - This function is used to map selected rates to hw rates.
1264 * @rate: The standard rate to be mapped.
1265 * @offset: Offset that will be returned.
1266 *
1267 * Return: 0 if it is a mcs rate, else 1
1268 */
rsi_map_rates(u16 rate,int * offset)1269 static bool rsi_map_rates(u16 rate, int *offset)
1270 {
1271 int kk;
1272 for (kk = 0; kk < ARRAY_SIZE(rsi_mcsrates); kk++) {
1273 if (rate == mcs[kk]) {
1274 *offset = kk;
1275 return false;
1276 }
1277 }
1278
1279 for (kk = 0; kk < ARRAY_SIZE(rsi_rates); kk++) {
1280 if (rate == rsi_rates[kk].bitrate / 5) {
1281 *offset = kk;
1282 break;
1283 }
1284 }
1285 return true;
1286 }
1287
1288 /**
1289 * rsi_send_auto_rate_request() - This function is to set rates for connection
1290 * and send autorate request to firmware.
1291 * @common: Pointer to the driver private structure.
1292 *
1293 * Return: 0 on success, corresponding error code on failure.
1294 */
rsi_send_auto_rate_request(struct rsi_common * common,struct ieee80211_sta * sta,u16 sta_id,struct ieee80211_vif * vif)1295 static int rsi_send_auto_rate_request(struct rsi_common *common,
1296 struct ieee80211_sta *sta,
1297 u16 sta_id,
1298 struct ieee80211_vif *vif)
1299 {
1300 struct sk_buff *skb;
1301 struct rsi_auto_rate *auto_rate;
1302 int ii = 0, jj = 0, kk = 0;
1303 struct ieee80211_hw *hw = common->priv->hw;
1304 u8 band = hw->conf.chandef.chan->band;
1305 u8 num_supported_rates = 0;
1306 u8 rate_table_offset, rate_offset = 0;
1307 u32 rate_bitmap;
1308 u16 *selected_rates, min_rate;
1309 bool is_ht = false, is_sgi = false;
1310 u16 frame_len = sizeof(struct rsi_auto_rate);
1311
1312 rsi_dbg(MGMT_TX_ZONE,
1313 "%s: Sending auto rate request frame\n", __func__);
1314
1315 skb = dev_alloc_skb(frame_len);
1316 if (!skb) {
1317 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1318 __func__);
1319 return -ENOMEM;
1320 }
1321
1322 memset(skb->data, 0, frame_len);
1323 selected_rates = kzalloc(2 * RSI_TBL_SZ, GFP_KERNEL);
1324 if (!selected_rates) {
1325 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of mem\n",
1326 __func__);
1327 dev_kfree_skb(skb);
1328 return -ENOMEM;
1329 }
1330
1331 auto_rate = (struct rsi_auto_rate *)skb->data;
1332
1333 auto_rate->aarf_rssi = cpu_to_le16(((u16)3 << 6) | (u16)(18 & 0x3f));
1334 auto_rate->collision_tolerance = cpu_to_le16(3);
1335 auto_rate->failure_limit = cpu_to_le16(3);
1336 auto_rate->initial_boundary = cpu_to_le16(3);
1337 auto_rate->max_threshold_limt = cpu_to_le16(27);
1338
1339 auto_rate->desc.desc_dword0.frame_type = AUTO_RATE_IND;
1340
1341 if (common->channel_width == BW_40MHZ)
1342 auto_rate->desc.desc_dword3.qid_tid = BW_40MHZ;
1343 auto_rate->desc.desc_dword3.sta_id = sta_id;
1344
1345 if (vif->type == NL80211_IFTYPE_STATION) {
1346 rate_bitmap = common->bitrate_mask[band];
1347 is_ht = common->vif_info[0].is_ht;
1348 is_sgi = common->vif_info[0].sgi;
1349 } else {
1350 rate_bitmap = sta->supp_rates[band];
1351 is_ht = sta->ht_cap.ht_supported;
1352 if ((sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ||
1353 (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40))
1354 is_sgi = true;
1355 }
1356
1357 if (band == NL80211_BAND_2GHZ) {
1358 if ((rate_bitmap == 0) && (is_ht))
1359 min_rate = RSI_RATE_MCS0;
1360 else
1361 min_rate = RSI_RATE_1;
1362 rate_table_offset = 0;
1363 } else {
1364 if ((rate_bitmap == 0) && (is_ht))
1365 min_rate = RSI_RATE_MCS0;
1366 else
1367 min_rate = RSI_RATE_6;
1368 rate_table_offset = 4;
1369 }
1370
1371 for (ii = 0, jj = 0;
1372 ii < (ARRAY_SIZE(rsi_rates) - rate_table_offset); ii++) {
1373 if (rate_bitmap & BIT(ii)) {
1374 selected_rates[jj++] =
1375 (rsi_rates[ii + rate_table_offset].bitrate / 5);
1376 rate_offset++;
1377 }
1378 }
1379 num_supported_rates = jj;
1380
1381 if (is_ht) {
1382 for (ii = 0; ii < ARRAY_SIZE(mcs); ii++)
1383 selected_rates[jj++] = mcs[ii];
1384 num_supported_rates += ARRAY_SIZE(mcs);
1385 rate_offset += ARRAY_SIZE(mcs);
1386 }
1387
1388 sort(selected_rates, jj, sizeof(u16), &rsi_compare, NULL);
1389
1390 /* mapping the rates to RSI rates */
1391 for (ii = 0; ii < jj; ii++) {
1392 if (rsi_map_rates(selected_rates[ii], &kk)) {
1393 auto_rate->supported_rates[ii] =
1394 cpu_to_le16(rsi_rates[kk].hw_value);
1395 } else {
1396 auto_rate->supported_rates[ii] =
1397 cpu_to_le16(rsi_mcsrates[kk]);
1398 }
1399 }
1400
1401 /* loading HT rates in the bottom half of the auto rate table */
1402 if (is_ht) {
1403 for (ii = rate_offset, kk = ARRAY_SIZE(rsi_mcsrates) - 1;
1404 ii < rate_offset + 2 * ARRAY_SIZE(rsi_mcsrates); ii++) {
1405 if (is_sgi || conf_is_ht40(&common->priv->hw->conf))
1406 auto_rate->supported_rates[ii++] =
1407 cpu_to_le16(rsi_mcsrates[kk] | BIT(9));
1408 else
1409 auto_rate->supported_rates[ii++] =
1410 cpu_to_le16(rsi_mcsrates[kk]);
1411 auto_rate->supported_rates[ii] =
1412 cpu_to_le16(rsi_mcsrates[kk--]);
1413 }
1414
1415 for (; ii < (RSI_TBL_SZ - 1); ii++) {
1416 auto_rate->supported_rates[ii] =
1417 cpu_to_le16(rsi_mcsrates[0]);
1418 }
1419 }
1420
1421 for (; ii < RSI_TBL_SZ; ii++)
1422 auto_rate->supported_rates[ii] = cpu_to_le16(min_rate);
1423
1424 auto_rate->num_supported_rates = cpu_to_le16(num_supported_rates * 2);
1425 auto_rate->moderate_rate_inx = cpu_to_le16(num_supported_rates / 2);
1426 num_supported_rates *= 2;
1427
1428 rsi_set_len_qno(&auto_rate->desc.desc_dword0.len_qno,
1429 (frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q);
1430
1431 skb_put(skb, frame_len);
1432 kfree(selected_rates);
1433
1434 return rsi_send_internal_mgmt_frame(common, skb);
1435 }
1436
1437 /**
1438 * rsi_inform_bss_status() - This function informs about bss status with the
1439 * help of sta notify params by sending an internal
1440 * management frame to firmware.
1441 * @common: Pointer to the driver private structure.
1442 * @status: Bss status type.
1443 * @bssid: Bssid.
1444 * @qos_enable: Qos is enabled.
1445 * @aid: Aid (unique for all STAs).
1446 *
1447 * Return: None.
1448 */
rsi_inform_bss_status(struct rsi_common * common,enum opmode opmode,u8 status,const u8 * addr,u8 qos_enable,u16 aid,struct ieee80211_sta * sta,u16 sta_id,u16 assoc_cap,struct ieee80211_vif * vif)1449 void rsi_inform_bss_status(struct rsi_common *common,
1450 enum opmode opmode,
1451 u8 status,
1452 const u8 *addr,
1453 u8 qos_enable,
1454 u16 aid,
1455 struct ieee80211_sta *sta,
1456 u16 sta_id,
1457 u16 assoc_cap,
1458 struct ieee80211_vif *vif)
1459 {
1460 if (status) {
1461 if (opmode == RSI_OPMODE_STA)
1462 common->hw_data_qs_blocked = true;
1463 rsi_hal_send_sta_notify_frame(common,
1464 opmode,
1465 STA_CONNECTED,
1466 addr,
1467 qos_enable,
1468 aid, sta_id,
1469 vif);
1470 if (common->min_rate == 0xffff)
1471 rsi_send_auto_rate_request(common, sta, sta_id, vif);
1472 if (opmode == RSI_OPMODE_STA &&
1473 !(assoc_cap & WLAN_CAPABILITY_PRIVACY) &&
1474 !rsi_send_block_unblock_frame(common, false))
1475 common->hw_data_qs_blocked = false;
1476 } else {
1477 if (opmode == RSI_OPMODE_STA)
1478 common->hw_data_qs_blocked = true;
1479
1480 if (!(common->wow_flags & RSI_WOW_ENABLED))
1481 rsi_hal_send_sta_notify_frame(common, opmode,
1482 STA_DISCONNECTED, addr,
1483 qos_enable, aid, sta_id,
1484 vif);
1485 if (opmode == RSI_OPMODE_STA)
1486 rsi_send_block_unblock_frame(common, true);
1487 }
1488 }
1489
1490 /**
1491 * rsi_eeprom_read() - This function sends a frame to read the mac address
1492 * from the eeprom.
1493 * @common: Pointer to the driver private structure.
1494 *
1495 * Return: 0 on success, -1 on failure.
1496 */
rsi_eeprom_read(struct rsi_common * common)1497 static int rsi_eeprom_read(struct rsi_common *common)
1498 {
1499 struct rsi_eeprom_read_frame *mgmt_frame;
1500 struct rsi_hw *adapter = common->priv;
1501 struct sk_buff *skb;
1502
1503 rsi_dbg(MGMT_TX_ZONE, "%s: Sending EEPROM read req frame\n", __func__);
1504
1505 skb = dev_alloc_skb(FRAME_DESC_SZ);
1506 if (!skb) {
1507 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1508 __func__);
1509 return -ENOMEM;
1510 }
1511
1512 memset(skb->data, 0, FRAME_DESC_SZ);
1513 mgmt_frame = (struct rsi_eeprom_read_frame *)skb->data;
1514
1515 /* FrameType */
1516 rsi_set_len_qno(&mgmt_frame->len_qno, 0, RSI_WIFI_MGMT_Q);
1517 mgmt_frame->pkt_type = EEPROM_READ;
1518
1519 /* Number of bytes to read */
1520 mgmt_frame->pkt_info =
1521 cpu_to_le32((adapter->eeprom.length << RSI_EEPROM_LEN_OFFSET) &
1522 RSI_EEPROM_LEN_MASK);
1523 mgmt_frame->pkt_info |= cpu_to_le32((3 << RSI_EEPROM_HDR_SIZE_OFFSET) &
1524 RSI_EEPROM_HDR_SIZE_MASK);
1525
1526 /* Address to read */
1527 mgmt_frame->eeprom_offset = cpu_to_le32(adapter->eeprom.offset);
1528
1529 skb_put(skb, FRAME_DESC_SZ);
1530
1531 return rsi_send_internal_mgmt_frame(common, skb);
1532 }
1533
1534 /**
1535 * This function sends a frame to block/unblock
1536 * data queues in the firmware
1537 *
1538 * @param common Pointer to the driver private structure.
1539 * @param block event - block if true, unblock if false
1540 * @return 0 on success, -1 on failure.
1541 */
rsi_send_block_unblock_frame(struct rsi_common * common,bool block_event)1542 int rsi_send_block_unblock_frame(struct rsi_common *common, bool block_event)
1543 {
1544 struct rsi_block_unblock_data *mgmt_frame;
1545 struct sk_buff *skb;
1546
1547 rsi_dbg(MGMT_TX_ZONE, "%s: Sending block/unblock frame\n", __func__);
1548
1549 skb = dev_alloc_skb(FRAME_DESC_SZ);
1550 if (!skb) {
1551 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1552 __func__);
1553 return -ENOMEM;
1554 }
1555
1556 memset(skb->data, 0, FRAME_DESC_SZ);
1557 mgmt_frame = (struct rsi_block_unblock_data *)skb->data;
1558
1559 rsi_set_len_qno(&mgmt_frame->desc_dword0.len_qno, 0, RSI_WIFI_MGMT_Q);
1560 mgmt_frame->desc_dword0.frame_type = BLOCK_HW_QUEUE;
1561 mgmt_frame->host_quiet_info = QUIET_INFO_VALID;
1562
1563 if (block_event) {
1564 rsi_dbg(INFO_ZONE, "blocking the data qs\n");
1565 mgmt_frame->block_q_bitmap = cpu_to_le16(0xf);
1566 mgmt_frame->block_q_bitmap |= cpu_to_le16(0xf << 4);
1567 } else {
1568 rsi_dbg(INFO_ZONE, "unblocking the data qs\n");
1569 mgmt_frame->unblock_q_bitmap = cpu_to_le16(0xf);
1570 mgmt_frame->unblock_q_bitmap |= cpu_to_le16(0xf << 4);
1571 }
1572
1573 skb_put(skb, FRAME_DESC_SZ);
1574
1575 return rsi_send_internal_mgmt_frame(common, skb);
1576 }
1577
1578 /**
1579 * rsi_send_rx_filter_frame() - Sends a frame to filter the RX packets
1580 *
1581 * @common: Pointer to the driver private structure.
1582 * @rx_filter_word: Flags of filter packets
1583 *
1584 * @Return: 0 on success, -1 on failure.
1585 */
rsi_send_rx_filter_frame(struct rsi_common * common,u16 rx_filter_word)1586 int rsi_send_rx_filter_frame(struct rsi_common *common, u16 rx_filter_word)
1587 {
1588 struct rsi_mac_frame *cmd_frame;
1589 struct sk_buff *skb;
1590
1591 rsi_dbg(MGMT_TX_ZONE, "Sending RX filter frame\n");
1592
1593 skb = dev_alloc_skb(FRAME_DESC_SZ);
1594 if (!skb) {
1595 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1596 __func__);
1597 return -ENOMEM;
1598 }
1599
1600 memset(skb->data, 0, FRAME_DESC_SZ);
1601 cmd_frame = (struct rsi_mac_frame *)skb->data;
1602
1603 cmd_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
1604 cmd_frame->desc_word[1] = cpu_to_le16(SET_RX_FILTER);
1605 cmd_frame->desc_word[4] = cpu_to_le16(rx_filter_word);
1606
1607 skb_put(skb, FRAME_DESC_SZ);
1608
1609 return rsi_send_internal_mgmt_frame(common, skb);
1610 }
1611
rsi_send_ps_request(struct rsi_hw * adapter,bool enable,struct ieee80211_vif * vif)1612 int rsi_send_ps_request(struct rsi_hw *adapter, bool enable,
1613 struct ieee80211_vif *vif)
1614 {
1615 struct rsi_common *common = adapter->priv;
1616 struct ieee80211_bss_conf *bss = &vif->bss_conf;
1617 struct rsi_request_ps *ps;
1618 struct rsi_ps_info *ps_info;
1619 struct sk_buff *skb;
1620 int frame_len = sizeof(*ps);
1621
1622 skb = dev_alloc_skb(frame_len);
1623 if (!skb)
1624 return -ENOMEM;
1625 memset(skb->data, 0, frame_len);
1626
1627 ps = (struct rsi_request_ps *)skb->data;
1628 ps_info = &adapter->ps_info;
1629
1630 rsi_set_len_qno(&ps->desc.desc_dword0.len_qno,
1631 (frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q);
1632 ps->desc.desc_dword0.frame_type = WAKEUP_SLEEP_REQUEST;
1633 if (enable) {
1634 ps->ps_sleep.enable = RSI_PS_ENABLE;
1635 ps->desc.desc_dword3.token = cpu_to_le16(RSI_SLEEP_REQUEST);
1636 } else {
1637 ps->ps_sleep.enable = RSI_PS_DISABLE;
1638 ps->desc.desc_dword0.len_qno |= cpu_to_le16(RSI_PS_DISABLE_IND);
1639 ps->desc.desc_dword3.token = cpu_to_le16(RSI_WAKEUP_REQUEST);
1640 }
1641
1642 ps->ps_uapsd_acs = common->uapsd_bitmap;
1643
1644 ps->ps_sleep.sleep_type = ps_info->sleep_type;
1645 ps->ps_sleep.num_bcns_per_lis_int =
1646 cpu_to_le16(ps_info->num_bcns_per_lis_int);
1647 ps->ps_sleep.sleep_duration =
1648 cpu_to_le32(ps_info->deep_sleep_wakeup_period);
1649
1650 if (bss->assoc)
1651 ps->ps_sleep.connected_sleep = RSI_CONNECTED_SLEEP;
1652 else
1653 ps->ps_sleep.connected_sleep = RSI_DEEP_SLEEP;
1654
1655 ps->ps_listen_interval = cpu_to_le32(ps_info->listen_interval);
1656 ps->ps_dtim_interval_duration =
1657 cpu_to_le32(ps_info->dtim_interval_duration);
1658
1659 if (ps_info->listen_interval > ps_info->dtim_interval_duration)
1660 ps->ps_listen_interval = cpu_to_le32(RSI_PS_DISABLE);
1661
1662 ps->ps_num_dtim_intervals = cpu_to_le16(ps_info->num_dtims_per_sleep);
1663 skb_put(skb, frame_len);
1664
1665 return rsi_send_internal_mgmt_frame(common, skb);
1666 }
1667
rsi_send_w9116_features(struct rsi_common * common)1668 static int rsi_send_w9116_features(struct rsi_common *common)
1669 {
1670 struct rsi_wlan_9116_features *w9116_features;
1671 u16 frame_len = sizeof(struct rsi_wlan_9116_features);
1672 struct sk_buff *skb;
1673
1674 rsi_dbg(MGMT_TX_ZONE,
1675 "%s: Sending wlan 9116 features\n", __func__);
1676
1677 skb = dev_alloc_skb(frame_len);
1678 if (!skb)
1679 return -ENOMEM;
1680 memset(skb->data, 0, frame_len);
1681
1682 w9116_features = (struct rsi_wlan_9116_features *)skb->data;
1683
1684 w9116_features->pll_mode = common->w9116_features.pll_mode;
1685 w9116_features->rf_type = common->w9116_features.rf_type;
1686 w9116_features->wireless_mode = common->w9116_features.wireless_mode;
1687 w9116_features->enable_ppe = common->w9116_features.enable_ppe;
1688 w9116_features->afe_type = common->w9116_features.afe_type;
1689 if (common->w9116_features.dpd)
1690 w9116_features->feature_enable |= cpu_to_le32(RSI_DPD);
1691 if (common->w9116_features.sifs_tx_enable)
1692 w9116_features->feature_enable |=
1693 cpu_to_le32(RSI_SIFS_TX_ENABLE);
1694 if (common->w9116_features.ps_options & RSI_DUTY_CYCLING)
1695 w9116_features->feature_enable |= cpu_to_le32(RSI_DUTY_CYCLING);
1696 if (common->w9116_features.ps_options & RSI_END_OF_FRAME)
1697 w9116_features->feature_enable |= cpu_to_le32(RSI_END_OF_FRAME);
1698 w9116_features->feature_enable |=
1699 cpu_to_le32((common->w9116_features.ps_options & ~0x3) << 2);
1700
1701 rsi_set_len_qno(&w9116_features->desc.desc_dword0.len_qno,
1702 frame_len - FRAME_DESC_SZ, RSI_WIFI_MGMT_Q);
1703 w9116_features->desc.desc_dword0.frame_type = FEATURES_ENABLE;
1704 skb_put(skb, frame_len);
1705
1706 return rsi_send_internal_mgmt_frame(common, skb);
1707 }
1708
1709 /**
1710 * rsi_set_antenna() - This function send antenna configuration request
1711 * to device
1712 *
1713 * @common: Pointer to the driver private structure.
1714 * @antenna: bitmap for tx antenna selection
1715 *
1716 * Return: 0 on Success, negative error code on failure
1717 */
rsi_set_antenna(struct rsi_common * common,u8 antenna)1718 int rsi_set_antenna(struct rsi_common *common, u8 antenna)
1719 {
1720 struct rsi_ant_sel_frame *ant_sel_frame;
1721 struct sk_buff *skb;
1722
1723 skb = dev_alloc_skb(FRAME_DESC_SZ);
1724 if (!skb) {
1725 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1726 __func__);
1727 return -ENOMEM;
1728 }
1729
1730 memset(skb->data, 0, FRAME_DESC_SZ);
1731
1732 ant_sel_frame = (struct rsi_ant_sel_frame *)skb->data;
1733 ant_sel_frame->desc_dword0.frame_type = ANT_SEL_FRAME;
1734 ant_sel_frame->sub_frame_type = ANTENNA_SEL_TYPE;
1735 ant_sel_frame->ant_value = cpu_to_le16(antenna & ANTENNA_MASK_VALUE);
1736 rsi_set_len_qno(&ant_sel_frame->desc_dword0.len_qno,
1737 0, RSI_WIFI_MGMT_Q);
1738 skb_put(skb, FRAME_DESC_SZ);
1739
1740 return rsi_send_internal_mgmt_frame(common, skb);
1741 }
1742
rsi_send_beacon(struct rsi_common * common)1743 static int rsi_send_beacon(struct rsi_common *common)
1744 {
1745 struct sk_buff *skb = NULL;
1746 u8 dword_align_bytes = 0;
1747
1748 skb = dev_alloc_skb(MAX_MGMT_PKT_SIZE);
1749 if (!skb)
1750 return -ENOMEM;
1751
1752 memset(skb->data, 0, MAX_MGMT_PKT_SIZE);
1753
1754 dword_align_bytes = ((unsigned long)skb->data & 0x3f);
1755 if (dword_align_bytes)
1756 skb_pull(skb, (64 - dword_align_bytes));
1757 if (rsi_prepare_beacon(common, skb)) {
1758 rsi_dbg(ERR_ZONE, "Failed to prepare beacon\n");
1759 return -EINVAL;
1760 }
1761 skb_queue_tail(&common->tx_queue[MGMT_BEACON_Q], skb);
1762 rsi_set_event(&common->tx_thread.event);
1763 rsi_dbg(DATA_TX_ZONE, "%s: Added to beacon queue\n", __func__);
1764
1765 return 0;
1766 }
1767
1768 #ifdef CONFIG_PM
rsi_send_wowlan_request(struct rsi_common * common,u16 flags,u16 sleep_status)1769 int rsi_send_wowlan_request(struct rsi_common *common, u16 flags,
1770 u16 sleep_status)
1771 {
1772 struct rsi_wowlan_req *cmd_frame;
1773 struct sk_buff *skb;
1774 u8 length;
1775
1776 rsi_dbg(ERR_ZONE, "%s: Sending wowlan request frame\n", __func__);
1777
1778 length = sizeof(*cmd_frame);
1779 skb = dev_alloc_skb(length);
1780 if (!skb)
1781 return -ENOMEM;
1782 memset(skb->data, 0, length);
1783 cmd_frame = (struct rsi_wowlan_req *)skb->data;
1784
1785 rsi_set_len_qno(&cmd_frame->desc.desc_dword0.len_qno,
1786 (length - FRAME_DESC_SZ),
1787 RSI_WIFI_MGMT_Q);
1788 cmd_frame->desc.desc_dword0.frame_type = WOWLAN_CONFIG_PARAMS;
1789 cmd_frame->host_sleep_status = sleep_status;
1790 if (common->secinfo.security_enable &&
1791 common->secinfo.gtk_cipher)
1792 flags |= RSI_WOW_GTK_REKEY;
1793 if (sleep_status)
1794 cmd_frame->wow_flags = flags;
1795 rsi_dbg(INFO_ZONE, "Host_Sleep_Status : %d Flags : %d\n",
1796 cmd_frame->host_sleep_status, cmd_frame->wow_flags);
1797
1798 skb_put(skb, length);
1799
1800 return rsi_send_internal_mgmt_frame(common, skb);
1801 }
1802 #endif
1803
rsi_send_bgscan_params(struct rsi_common * common,int enable)1804 int rsi_send_bgscan_params(struct rsi_common *common, int enable)
1805 {
1806 struct rsi_bgscan_params *params = &common->bgscan;
1807 struct cfg80211_scan_request *scan_req = common->hwscan;
1808 struct rsi_bgscan_config *bgscan;
1809 struct sk_buff *skb;
1810 u16 frame_len = sizeof(*bgscan);
1811 u8 i;
1812
1813 rsi_dbg(MGMT_TX_ZONE, "%s: Sending bgscan params frame\n", __func__);
1814
1815 skb = dev_alloc_skb(frame_len);
1816 if (!skb)
1817 return -ENOMEM;
1818 memset(skb->data, 0, frame_len);
1819
1820 bgscan = (struct rsi_bgscan_config *)skb->data;
1821 rsi_set_len_qno(&bgscan->desc_dword0.len_qno,
1822 (frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q);
1823 bgscan->desc_dword0.frame_type = BG_SCAN_PARAMS;
1824 bgscan->bgscan_threshold = cpu_to_le16(params->bgscan_threshold);
1825 bgscan->roam_threshold = cpu_to_le16(params->roam_threshold);
1826 if (enable)
1827 bgscan->bgscan_periodicity =
1828 cpu_to_le16(params->bgscan_periodicity);
1829 bgscan->active_scan_duration =
1830 cpu_to_le16(params->active_scan_duration);
1831 bgscan->passive_scan_duration =
1832 cpu_to_le16(params->passive_scan_duration);
1833 bgscan->two_probe = params->two_probe;
1834
1835 bgscan->num_bgscan_channels = scan_req->n_channels;
1836 for (i = 0; i < bgscan->num_bgscan_channels; i++)
1837 bgscan->channels2scan[i] =
1838 cpu_to_le16(scan_req->channels[i]->hw_value);
1839
1840 skb_put(skb, frame_len);
1841
1842 return rsi_send_internal_mgmt_frame(common, skb);
1843 }
1844
1845 /* This function sends the probe request to be used by firmware in
1846 * background scan
1847 */
rsi_send_bgscan_probe_req(struct rsi_common * common,struct ieee80211_vif * vif)1848 int rsi_send_bgscan_probe_req(struct rsi_common *common,
1849 struct ieee80211_vif *vif)
1850 {
1851 struct cfg80211_scan_request *scan_req = common->hwscan;
1852 struct rsi_bgscan_probe *bgscan;
1853 struct sk_buff *skb;
1854 struct sk_buff *probereq_skb;
1855 u16 frame_len = sizeof(*bgscan);
1856 size_t ssid_len = 0;
1857 u8 *ssid = NULL;
1858
1859 rsi_dbg(MGMT_TX_ZONE,
1860 "%s: Sending bgscan probe req frame\n", __func__);
1861
1862 if (common->priv->sc_nvifs <= 0)
1863 return -ENODEV;
1864
1865 if (scan_req->n_ssids) {
1866 ssid = scan_req->ssids[0].ssid;
1867 ssid_len = scan_req->ssids[0].ssid_len;
1868 }
1869
1870 skb = dev_alloc_skb(frame_len + MAX_BGSCAN_PROBE_REQ_LEN);
1871 if (!skb)
1872 return -ENOMEM;
1873 memset(skb->data, 0, frame_len + MAX_BGSCAN_PROBE_REQ_LEN);
1874
1875 bgscan = (struct rsi_bgscan_probe *)skb->data;
1876 bgscan->desc_dword0.frame_type = BG_SCAN_PROBE_REQ;
1877 bgscan->flags = cpu_to_le16(HOST_BG_SCAN_TRIG);
1878 if (common->band == NL80211_BAND_5GHZ) {
1879 bgscan->mgmt_rate = cpu_to_le16(RSI_RATE_6);
1880 bgscan->def_chan = cpu_to_le16(40);
1881 } else {
1882 bgscan->mgmt_rate = cpu_to_le16(RSI_RATE_1);
1883 bgscan->def_chan = cpu_to_le16(11);
1884 }
1885 bgscan->channel_scan_time = cpu_to_le16(RSI_CHANNEL_SCAN_TIME);
1886
1887 probereq_skb = ieee80211_probereq_get(common->priv->hw, vif->addr, ssid,
1888 ssid_len, scan_req->ie_len);
1889 if (!probereq_skb) {
1890 dev_kfree_skb(skb);
1891 return -ENOMEM;
1892 }
1893
1894 memcpy(&skb->data[frame_len], probereq_skb->data, probereq_skb->len);
1895
1896 bgscan->probe_req_length = cpu_to_le16(probereq_skb->len);
1897
1898 rsi_set_len_qno(&bgscan->desc_dword0.len_qno,
1899 (frame_len - FRAME_DESC_SZ + probereq_skb->len),
1900 RSI_WIFI_MGMT_Q);
1901
1902 skb_put(skb, frame_len + probereq_skb->len);
1903
1904 dev_kfree_skb(probereq_skb);
1905
1906 return rsi_send_internal_mgmt_frame(common, skb);
1907 }
1908
1909 /**
1910 * rsi_handle_ta_confirm_type() - This function handles the confirm frames.
1911 * @common: Pointer to the driver private structure.
1912 * @msg: Pointer to received packet.
1913 *
1914 * Return: 0 on success, -1 on failure.
1915 */
rsi_handle_ta_confirm_type(struct rsi_common * common,u8 * msg)1916 static int rsi_handle_ta_confirm_type(struct rsi_common *common,
1917 u8 *msg)
1918 {
1919 struct rsi_hw *adapter = common->priv;
1920 u8 sub_type = (msg[15] & 0xff);
1921 u16 msg_len = ((u16 *)msg)[0] & 0xfff;
1922 u8 offset;
1923
1924 switch (sub_type) {
1925 case BOOTUP_PARAMS_REQUEST:
1926 rsi_dbg(FSM_ZONE, "%s: Boot up params confirm received\n",
1927 __func__);
1928 if (common->fsm_state == FSM_BOOT_PARAMS_SENT) {
1929 if (adapter->device_model == RSI_DEV_9116) {
1930 common->band = NL80211_BAND_5GHZ;
1931 common->num_supp_bands = 2;
1932
1933 if (rsi_send_reset_mac(common))
1934 goto out;
1935 else
1936 common->fsm_state = FSM_RESET_MAC_SENT;
1937 } else {
1938 adapter->eeprom.length =
1939 (IEEE80211_ADDR_LEN +
1940 WLAN_MAC_MAGIC_WORD_LEN +
1941 WLAN_HOST_MODE_LEN);
1942 adapter->eeprom.offset = WLAN_MAC_EEPROM_ADDR;
1943 if (rsi_eeprom_read(common)) {
1944 common->fsm_state = FSM_CARD_NOT_READY;
1945 goto out;
1946 }
1947 common->fsm_state = FSM_EEPROM_READ_MAC_ADDR;
1948 }
1949 } else {
1950 rsi_dbg(INFO_ZONE,
1951 "%s: Received bootup params cfm in %d state\n",
1952 __func__, common->fsm_state);
1953 return 0;
1954 }
1955 break;
1956
1957 case EEPROM_READ:
1958 rsi_dbg(FSM_ZONE, "EEPROM READ confirm received\n");
1959 if (msg_len <= 0) {
1960 rsi_dbg(FSM_ZONE,
1961 "%s: [EEPROM_READ] Invalid len %d\n",
1962 __func__, msg_len);
1963 goto out;
1964 }
1965 if (msg[16] != MAGIC_WORD) {
1966 rsi_dbg(FSM_ZONE,
1967 "%s: [EEPROM_READ] Invalid token\n", __func__);
1968 common->fsm_state = FSM_CARD_NOT_READY;
1969 goto out;
1970 }
1971 if (common->fsm_state == FSM_EEPROM_READ_MAC_ADDR) {
1972 offset = (FRAME_DESC_SZ + WLAN_HOST_MODE_LEN +
1973 WLAN_MAC_MAGIC_WORD_LEN);
1974 memcpy(common->mac_addr, &msg[offset], ETH_ALEN);
1975 adapter->eeprom.length =
1976 ((WLAN_MAC_MAGIC_WORD_LEN + 3) & (~3));
1977 adapter->eeprom.offset = WLAN_EEPROM_RFTYPE_ADDR;
1978 if (rsi_eeprom_read(common)) {
1979 rsi_dbg(ERR_ZONE,
1980 "%s: Failed reading RF band\n",
1981 __func__);
1982 common->fsm_state = FSM_CARD_NOT_READY;
1983 goto out;
1984 }
1985 common->fsm_state = FSM_EEPROM_READ_RF_TYPE;
1986 } else if (common->fsm_state == FSM_EEPROM_READ_RF_TYPE) {
1987 if ((msg[17] & 0x3) == 0x3) {
1988 rsi_dbg(INIT_ZONE, "Dual band supported\n");
1989 common->band = NL80211_BAND_5GHZ;
1990 common->num_supp_bands = 2;
1991 } else if ((msg[17] & 0x3) == 0x1) {
1992 rsi_dbg(INIT_ZONE,
1993 "Only 2.4Ghz band supported\n");
1994 common->band = NL80211_BAND_2GHZ;
1995 common->num_supp_bands = 1;
1996 }
1997 if (rsi_send_reset_mac(common))
1998 goto out;
1999 common->fsm_state = FSM_RESET_MAC_SENT;
2000 } else {
2001 rsi_dbg(ERR_ZONE, "%s: Invalid EEPROM read type\n",
2002 __func__);
2003 return 0;
2004 }
2005 break;
2006
2007 case RESET_MAC_REQ:
2008 if (common->fsm_state == FSM_RESET_MAC_SENT) {
2009 rsi_dbg(FSM_ZONE, "%s: Reset MAC cfm received\n",
2010 __func__);
2011
2012 if (rsi_load_radio_caps(common))
2013 goto out;
2014 else
2015 common->fsm_state = FSM_RADIO_CAPS_SENT;
2016 } else {
2017 rsi_dbg(ERR_ZONE,
2018 "%s: Received reset mac cfm in %d state\n",
2019 __func__, common->fsm_state);
2020 return 0;
2021 }
2022 break;
2023
2024 case RADIO_CAPABILITIES:
2025 if (common->fsm_state == FSM_RADIO_CAPS_SENT) {
2026 common->rf_reset = 1;
2027 if (adapter->device_model == RSI_DEV_9116 &&
2028 rsi_send_w9116_features(common)) {
2029 rsi_dbg(ERR_ZONE,
2030 "Failed to send 9116 features\n");
2031 goto out;
2032 }
2033 if (rsi_program_bb_rf(common)) {
2034 goto out;
2035 } else {
2036 common->fsm_state = FSM_BB_RF_PROG_SENT;
2037 rsi_dbg(FSM_ZONE, "%s: Radio cap cfm received\n",
2038 __func__);
2039 }
2040 } else {
2041 rsi_dbg(INFO_ZONE,
2042 "%s: Received radio caps cfm in %d state\n",
2043 __func__, common->fsm_state);
2044 return 0;
2045 }
2046 break;
2047
2048 case BB_PROG_VALUES_REQUEST:
2049 case RF_PROG_VALUES_REQUEST:
2050 case BBP_PROG_IN_TA:
2051 rsi_dbg(FSM_ZONE, "%s: BB/RF cfm received\n", __func__);
2052 if (common->fsm_state == FSM_BB_RF_PROG_SENT) {
2053 common->bb_rf_prog_count--;
2054 if (!common->bb_rf_prog_count) {
2055 common->fsm_state = FSM_MAC_INIT_DONE;
2056 if (common->reinit_hw) {
2057 complete(&common->wlan_init_completion);
2058 } else {
2059 return rsi_mac80211_attach(common);
2060 }
2061 }
2062 } else {
2063 rsi_dbg(INFO_ZONE,
2064 "%s: Received bbb_rf cfm in %d state\n",
2065 __func__, common->fsm_state);
2066 return 0;
2067 }
2068 break;
2069
2070 case SCAN_REQUEST:
2071 rsi_dbg(INFO_ZONE, "Set channel confirm\n");
2072 break;
2073
2074 case WAKEUP_SLEEP_REQUEST:
2075 rsi_dbg(INFO_ZONE, "Wakeup/Sleep confirmation.\n");
2076 return rsi_handle_ps_confirm(adapter, msg);
2077
2078 case BG_SCAN_PROBE_REQ:
2079 rsi_dbg(INFO_ZONE, "BG scan complete event\n");
2080 if (common->bgscan_en) {
2081 struct cfg80211_scan_info info;
2082
2083 if (!rsi_send_bgscan_params(common, RSI_STOP_BGSCAN))
2084 common->bgscan_en = 0;
2085 info.aborted = false;
2086 ieee80211_scan_completed(adapter->hw, &info);
2087 }
2088 rsi_dbg(INFO_ZONE, "Background scan completed\n");
2089 break;
2090
2091 default:
2092 rsi_dbg(INFO_ZONE, "%s: Invalid TA confirm pkt received\n",
2093 __func__);
2094 break;
2095 }
2096 return 0;
2097 out:
2098 rsi_dbg(ERR_ZONE, "%s: Unable to send pkt/Invalid frame received\n",
2099 __func__);
2100 return -EINVAL;
2101 }
2102
rsi_handle_card_ready(struct rsi_common * common,u8 * msg)2103 int rsi_handle_card_ready(struct rsi_common *common, u8 *msg)
2104 {
2105 int status;
2106
2107 switch (common->fsm_state) {
2108 case FSM_CARD_NOT_READY:
2109 rsi_dbg(INIT_ZONE, "Card ready indication from Common HAL\n");
2110 rsi_set_default_parameters(common);
2111 if (rsi_send_common_dev_params(common) < 0)
2112 return -EINVAL;
2113 common->fsm_state = FSM_COMMON_DEV_PARAMS_SENT;
2114 break;
2115 case FSM_COMMON_DEV_PARAMS_SENT:
2116 rsi_dbg(INIT_ZONE, "Card ready indication from WLAN HAL\n");
2117
2118 if (common->priv->device_model == RSI_DEV_9116) {
2119 if (msg[16] != MAGIC_WORD) {
2120 rsi_dbg(FSM_ZONE,
2121 "%s: [EEPROM_READ] Invalid token\n",
2122 __func__);
2123 common->fsm_state = FSM_CARD_NOT_READY;
2124 return -EINVAL;
2125 }
2126 memcpy(common->mac_addr, &msg[20], ETH_ALEN);
2127 rsi_dbg(INIT_ZONE, "MAC Addr %pM", common->mac_addr);
2128 }
2129 /* Get usb buffer status register address */
2130 common->priv->usb_buffer_status_reg = *(u32 *)&msg[8];
2131 rsi_dbg(INFO_ZONE, "USB buffer status register = %x\n",
2132 common->priv->usb_buffer_status_reg);
2133
2134 if (common->priv->device_model == RSI_DEV_9116)
2135 status = rsi_load_9116_bootup_params(common);
2136 else
2137 status = rsi_load_bootup_params(common);
2138 if (status < 0) {
2139 common->fsm_state = FSM_CARD_NOT_READY;
2140 return status;
2141 }
2142 common->fsm_state = FSM_BOOT_PARAMS_SENT;
2143 break;
2144 default:
2145 rsi_dbg(ERR_ZONE,
2146 "%s: card ready indication in invalid state %d.\n",
2147 __func__, common->fsm_state);
2148 return -EINVAL;
2149 }
2150
2151 return 0;
2152 }
2153
2154 /**
2155 * rsi_mgmt_pkt_recv() - This function processes the management packets
2156 * received from the hardware.
2157 * @common: Pointer to the driver private structure.
2158 * @msg: Pointer to the received packet.
2159 *
2160 * Return: 0 on success, -1 on failure.
2161 */
rsi_mgmt_pkt_recv(struct rsi_common * common,u8 * msg)2162 int rsi_mgmt_pkt_recv(struct rsi_common *common, u8 *msg)
2163 {
2164 s32 msg_len = (le16_to_cpu(*(__le16 *)&msg[0]) & 0x0fff);
2165 u16 msg_type = (msg[2]);
2166
2167 rsi_dbg(FSM_ZONE, "%s: Msg Len: %d, Msg Type: %4x\n",
2168 __func__, msg_len, msg_type);
2169
2170 switch (msg_type) {
2171 case TA_CONFIRM_TYPE:
2172 return rsi_handle_ta_confirm_type(common, msg);
2173 case CARD_READY_IND:
2174 common->hibernate_resume = false;
2175 rsi_dbg(FSM_ZONE, "%s: Card ready indication received\n",
2176 __func__);
2177 return rsi_handle_card_ready(common, msg);
2178 case TX_STATUS_IND:
2179 switch (msg[RSI_TX_STATUS_TYPE]) {
2180 case PROBEREQ_CONFIRM:
2181 common->mgmt_q_block = false;
2182 rsi_dbg(FSM_ZONE, "%s: Probe confirm received\n",
2183 __func__);
2184 break;
2185 case EAPOL4_CONFIRM:
2186 if (msg[RSI_TX_STATUS]) {
2187 common->eapol4_confirm = true;
2188 if (!rsi_send_block_unblock_frame(common,
2189 false))
2190 common->hw_data_qs_blocked = false;
2191 }
2192 }
2193 break;
2194 case BEACON_EVENT_IND:
2195 rsi_dbg(INFO_ZONE, "Beacon event\n");
2196 if (common->fsm_state != FSM_MAC_INIT_DONE)
2197 return -1;
2198 if (common->iface_down)
2199 return -1;
2200 if (!common->beacon_enabled)
2201 return -1;
2202 rsi_send_beacon(common);
2203 break;
2204 case WOWLAN_WAKEUP_REASON:
2205 rsi_dbg(ERR_ZONE, "\n\nWakeup Type: %x\n", msg[15]);
2206 switch (msg[15]) {
2207 case RSI_UNICAST_MAGIC_PKT:
2208 rsi_dbg(ERR_ZONE,
2209 "*** Wakeup for Unicast magic packet ***\n");
2210 break;
2211 case RSI_BROADCAST_MAGICPKT:
2212 rsi_dbg(ERR_ZONE,
2213 "*** Wakeup for Broadcast magic packet ***\n");
2214 break;
2215 case RSI_EAPOL_PKT:
2216 rsi_dbg(ERR_ZONE,
2217 "*** Wakeup for GTK renewal ***\n");
2218 break;
2219 case RSI_DISCONNECT_PKT:
2220 rsi_dbg(ERR_ZONE,
2221 "*** Wakeup for Disconnect ***\n");
2222 break;
2223 case RSI_HW_BMISS_PKT:
2224 rsi_dbg(ERR_ZONE,
2225 "*** Wakeup for HW Beacon miss ***\n");
2226 break;
2227 default:
2228 rsi_dbg(ERR_ZONE,
2229 "##### Un-intentional Wakeup #####\n");
2230 break;
2231 }
2232 break;
2233 case RX_DOT11_MGMT:
2234 return rsi_mgmt_pkt_to_core(common, msg, msg_len);
2235 default:
2236 rsi_dbg(INFO_ZONE, "Received packet type: 0x%x\n", msg_type);
2237 }
2238 return 0;
2239 }
2240