1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Remote Processor Framework
4 *
5 * Copyright (C) 2011 Texas Instruments, Inc.
6 * Copyright (C) 2011 Google, Inc.
7 *
8 * Ohad Ben-Cohen <ohad@wizery.com>
9 * Brian Swetland <swetland@google.com>
10 * Mark Grosen <mgrosen@ti.com>
11 * Fernando Guzman Lugo <fernando.lugo@ti.com>
12 * Suman Anna <s-anna@ti.com>
13 * Robert Tivy <rtivy@ti.com>
14 * Armando Uribe De Leon <x0095078@ti.com>
15 */
16
17 #define pr_fmt(fmt) "%s: " fmt, __func__
18
19 #include <linux/delay.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/device.h>
23 #include <linux/slab.h>
24 #include <linux/mutex.h>
25 #include <linux/dma-map-ops.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/dma-direct.h> /* XXX: pokes into bus_dma_range */
28 #include <linux/firmware.h>
29 #include <linux/string.h>
30 #include <linux/debugfs.h>
31 #include <linux/rculist.h>
32 #include <linux/remoteproc.h>
33 #include <linux/iommu.h>
34 #include <linux/idr.h>
35 #include <linux/elf.h>
36 #include <linux/crc32.h>
37 #include <linux/of_reserved_mem.h>
38 #include <linux/virtio_ids.h>
39 #include <linux/virtio_ring.h>
40 #include <asm/byteorder.h>
41 #include <linux/platform_device.h>
42
43 #include "remoteproc_internal.h"
44
45 #define HIGH_BITS_MASK 0xFFFFFFFF00000000ULL
46
47 static DEFINE_MUTEX(rproc_list_mutex);
48 static LIST_HEAD(rproc_list);
49 static struct notifier_block rproc_panic_nb;
50
51 typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
52 void *, int offset, int avail);
53
54 static int rproc_alloc_carveout(struct rproc *rproc,
55 struct rproc_mem_entry *mem);
56 static int rproc_release_carveout(struct rproc *rproc,
57 struct rproc_mem_entry *mem);
58
59 /* Unique indices for remoteproc devices */
60 static DEFINE_IDA(rproc_dev_index);
61
62 static const char * const rproc_crash_names[] = {
63 [RPROC_MMUFAULT] = "mmufault",
64 [RPROC_WATCHDOG] = "watchdog",
65 [RPROC_FATAL_ERROR] = "fatal error",
66 };
67
68 /* translate rproc_crash_type to string */
rproc_crash_to_string(enum rproc_crash_type type)69 static const char *rproc_crash_to_string(enum rproc_crash_type type)
70 {
71 if (type < ARRAY_SIZE(rproc_crash_names))
72 return rproc_crash_names[type];
73 return "unknown";
74 }
75
76 /*
77 * This is the IOMMU fault handler we register with the IOMMU API
78 * (when relevant; not all remote processors access memory through
79 * an IOMMU).
80 *
81 * IOMMU core will invoke this handler whenever the remote processor
82 * will try to access an unmapped device address.
83 */
rproc_iommu_fault(struct iommu_domain * domain,struct device * dev,unsigned long iova,int flags,void * token)84 static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
85 unsigned long iova, int flags, void *token)
86 {
87 struct rproc *rproc = token;
88
89 dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
90
91 rproc_report_crash(rproc, RPROC_MMUFAULT);
92
93 /*
94 * Let the iommu core know we're not really handling this fault;
95 * we just used it as a recovery trigger.
96 */
97 return -ENOSYS;
98 }
99
rproc_enable_iommu(struct rproc * rproc)100 static int rproc_enable_iommu(struct rproc *rproc)
101 {
102 struct iommu_domain *domain;
103 struct device *dev = rproc->dev.parent;
104 int ret;
105
106 if (!rproc->has_iommu) {
107 dev_dbg(dev, "iommu not present\n");
108 return 0;
109 }
110
111 domain = iommu_domain_alloc(dev->bus);
112 if (!domain) {
113 dev_err(dev, "can't alloc iommu domain\n");
114 return -ENOMEM;
115 }
116
117 iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
118
119 ret = iommu_attach_device(domain, dev);
120 if (ret) {
121 dev_err(dev, "can't attach iommu device: %d\n", ret);
122 goto free_domain;
123 }
124
125 rproc->domain = domain;
126
127 return 0;
128
129 free_domain:
130 iommu_domain_free(domain);
131 return ret;
132 }
133
rproc_disable_iommu(struct rproc * rproc)134 static void rproc_disable_iommu(struct rproc *rproc)
135 {
136 struct iommu_domain *domain = rproc->domain;
137 struct device *dev = rproc->dev.parent;
138
139 if (!domain)
140 return;
141
142 iommu_detach_device(domain, dev);
143 iommu_domain_free(domain);
144 }
145
rproc_va_to_pa(void * cpu_addr)146 phys_addr_t rproc_va_to_pa(void *cpu_addr)
147 {
148 /*
149 * Return physical address according to virtual address location
150 * - in vmalloc: if region ioremapped or defined as dma_alloc_coherent
151 * - in kernel: if region allocated in generic dma memory pool
152 */
153 if (is_vmalloc_addr(cpu_addr)) {
154 return page_to_phys(vmalloc_to_page(cpu_addr)) +
155 offset_in_page(cpu_addr);
156 }
157
158 WARN_ON(!virt_addr_valid(cpu_addr));
159 return virt_to_phys(cpu_addr);
160 }
161 EXPORT_SYMBOL(rproc_va_to_pa);
162
163 /**
164 * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
165 * @rproc: handle of a remote processor
166 * @da: remoteproc device address to translate
167 * @len: length of the memory region @da is pointing to
168 *
169 * Some remote processors will ask us to allocate them physically contiguous
170 * memory regions (which we call "carveouts"), and map them to specific
171 * device addresses (which are hardcoded in the firmware). They may also have
172 * dedicated memory regions internal to the processors, and use them either
173 * exclusively or alongside carveouts.
174 *
175 * They may then ask us to copy objects into specific device addresses (e.g.
176 * code/data sections) or expose us certain symbols in other device address
177 * (e.g. their trace buffer).
178 *
179 * This function is a helper function with which we can go over the allocated
180 * carveouts and translate specific device addresses to kernel virtual addresses
181 * so we can access the referenced memory. This function also allows to perform
182 * translations on the internal remoteproc memory regions through a platform
183 * implementation specific da_to_va ops, if present.
184 *
185 * The function returns a valid kernel address on success or NULL on failure.
186 *
187 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
188 * but only on kernel direct mapped RAM memory. Instead, we're just using
189 * here the output of the DMA API for the carveouts, which should be more
190 * correct.
191 */
rproc_da_to_va(struct rproc * rproc,u64 da,size_t len)192 void *rproc_da_to_va(struct rproc *rproc, u64 da, size_t len)
193 {
194 struct rproc_mem_entry *carveout;
195 void *ptr = NULL;
196
197 if (rproc->ops->da_to_va) {
198 ptr = rproc->ops->da_to_va(rproc, da, len);
199 if (ptr)
200 goto out;
201 }
202
203 list_for_each_entry(carveout, &rproc->carveouts, node) {
204 int offset = da - carveout->da;
205
206 /* Verify that carveout is allocated */
207 if (!carveout->va)
208 continue;
209
210 /* try next carveout if da is too small */
211 if (offset < 0)
212 continue;
213
214 /* try next carveout if da is too large */
215 if (offset + len > carveout->len)
216 continue;
217
218 ptr = carveout->va + offset;
219
220 break;
221 }
222
223 out:
224 return ptr;
225 }
226 EXPORT_SYMBOL(rproc_da_to_va);
227
228 /**
229 * rproc_find_carveout_by_name() - lookup the carveout region by a name
230 * @rproc: handle of a remote processor
231 * @name: carveout name to find (format string)
232 * @...: optional parameters matching @name string
233 *
234 * Platform driver has the capability to register some pre-allacoted carveout
235 * (physically contiguous memory regions) before rproc firmware loading and
236 * associated resource table analysis. These regions may be dedicated memory
237 * regions internal to the coprocessor or specified DDR region with specific
238 * attributes
239 *
240 * This function is a helper function with which we can go over the
241 * allocated carveouts and return associated region characteristics like
242 * coprocessor address, length or processor virtual address.
243 *
244 * Return: a valid pointer on carveout entry on success or NULL on failure.
245 */
246 __printf(2, 3)
247 struct rproc_mem_entry *
rproc_find_carveout_by_name(struct rproc * rproc,const char * name,...)248 rproc_find_carveout_by_name(struct rproc *rproc, const char *name, ...)
249 {
250 va_list args;
251 char _name[32];
252 struct rproc_mem_entry *carveout, *mem = NULL;
253
254 if (!name)
255 return NULL;
256
257 va_start(args, name);
258 vsnprintf(_name, sizeof(_name), name, args);
259 va_end(args);
260
261 list_for_each_entry(carveout, &rproc->carveouts, node) {
262 /* Compare carveout and requested names */
263 if (!strcmp(carveout->name, _name)) {
264 mem = carveout;
265 break;
266 }
267 }
268
269 return mem;
270 }
271
272 /**
273 * rproc_check_carveout_da() - Check specified carveout da configuration
274 * @rproc: handle of a remote processor
275 * @mem: pointer on carveout to check
276 * @da: area device address
277 * @len: associated area size
278 *
279 * This function is a helper function to verify requested device area (couple
280 * da, len) is part of specified carveout.
281 * If da is not set (defined as FW_RSC_ADDR_ANY), only requested length is
282 * checked.
283 *
284 * Return: 0 if carveout matches request else error
285 */
rproc_check_carveout_da(struct rproc * rproc,struct rproc_mem_entry * mem,u32 da,u32 len)286 static int rproc_check_carveout_da(struct rproc *rproc,
287 struct rproc_mem_entry *mem, u32 da, u32 len)
288 {
289 struct device *dev = &rproc->dev;
290 int delta;
291
292 /* Check requested resource length */
293 if (len > mem->len) {
294 dev_err(dev, "Registered carveout doesn't fit len request\n");
295 return -EINVAL;
296 }
297
298 if (da != FW_RSC_ADDR_ANY && mem->da == FW_RSC_ADDR_ANY) {
299 /* Address doesn't match registered carveout configuration */
300 return -EINVAL;
301 } else if (da != FW_RSC_ADDR_ANY && mem->da != FW_RSC_ADDR_ANY) {
302 delta = da - mem->da;
303
304 /* Check requested resource belongs to registered carveout */
305 if (delta < 0) {
306 dev_err(dev,
307 "Registered carveout doesn't fit da request\n");
308 return -EINVAL;
309 }
310
311 if (delta + len > mem->len) {
312 dev_err(dev,
313 "Registered carveout doesn't fit len request\n");
314 return -EINVAL;
315 }
316 }
317
318 return 0;
319 }
320
rproc_alloc_vring(struct rproc_vdev * rvdev,int i)321 int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
322 {
323 struct rproc *rproc = rvdev->rproc;
324 struct device *dev = &rproc->dev;
325 struct rproc_vring *rvring = &rvdev->vring[i];
326 struct fw_rsc_vdev *rsc;
327 int ret, notifyid;
328 struct rproc_mem_entry *mem;
329 size_t size;
330
331 /* actual size of vring (in bytes) */
332 size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
333
334 rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
335
336 /* Search for pre-registered carveout */
337 mem = rproc_find_carveout_by_name(rproc, "vdev%dvring%d", rvdev->index,
338 i);
339 if (mem) {
340 if (rproc_check_carveout_da(rproc, mem, rsc->vring[i].da, size))
341 return -ENOMEM;
342 } else {
343 /* Register carveout in in list */
344 mem = rproc_mem_entry_init(dev, NULL, 0,
345 size, rsc->vring[i].da,
346 rproc_alloc_carveout,
347 rproc_release_carveout,
348 "vdev%dvring%d",
349 rvdev->index, i);
350 if (!mem) {
351 dev_err(dev, "Can't allocate memory entry structure\n");
352 return -ENOMEM;
353 }
354
355 rproc_add_carveout(rproc, mem);
356 }
357
358 /*
359 * Assign an rproc-wide unique index for this vring
360 * TODO: assign a notifyid for rvdev updates as well
361 * TODO: support predefined notifyids (via resource table)
362 */
363 ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
364 if (ret < 0) {
365 dev_err(dev, "idr_alloc failed: %d\n", ret);
366 return ret;
367 }
368 notifyid = ret;
369
370 /* Potentially bump max_notifyid */
371 if (notifyid > rproc->max_notifyid)
372 rproc->max_notifyid = notifyid;
373
374 rvring->notifyid = notifyid;
375
376 /* Let the rproc know the notifyid of this vring.*/
377 rsc->vring[i].notifyid = notifyid;
378 return 0;
379 }
380
381 static int
rproc_parse_vring(struct rproc_vdev * rvdev,struct fw_rsc_vdev * rsc,int i)382 rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
383 {
384 struct rproc *rproc = rvdev->rproc;
385 struct device *dev = &rproc->dev;
386 struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
387 struct rproc_vring *rvring = &rvdev->vring[i];
388
389 dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n",
390 i, vring->da, vring->num, vring->align);
391
392 /* verify queue size and vring alignment are sane */
393 if (!vring->num || !vring->align) {
394 dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
395 vring->num, vring->align);
396 return -EINVAL;
397 }
398
399 rvring->len = vring->num;
400 rvring->align = vring->align;
401 rvring->rvdev = rvdev;
402
403 return 0;
404 }
405
rproc_free_vring(struct rproc_vring * rvring)406 void rproc_free_vring(struct rproc_vring *rvring)
407 {
408 struct rproc *rproc = rvring->rvdev->rproc;
409 int idx = rvring - rvring->rvdev->vring;
410 struct fw_rsc_vdev *rsc;
411
412 idr_remove(&rproc->notifyids, rvring->notifyid);
413
414 /*
415 * At this point rproc_stop() has been called and the installed resource
416 * table in the remote processor memory may no longer be accessible. As
417 * such and as per rproc_stop(), rproc->table_ptr points to the cached
418 * resource table (rproc->cached_table). The cached resource table is
419 * only available when a remote processor has been booted by the
420 * remoteproc core, otherwise it is NULL.
421 *
422 * Based on the above, reset the virtio device section in the cached
423 * resource table only if there is one to work with.
424 */
425 if (rproc->table_ptr) {
426 rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
427 rsc->vring[idx].da = 0;
428 rsc->vring[idx].notifyid = -1;
429 }
430 }
431
rproc_vdev_do_start(struct rproc_subdev * subdev)432 static int rproc_vdev_do_start(struct rproc_subdev *subdev)
433 {
434 struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
435
436 return rproc_add_virtio_dev(rvdev, rvdev->id);
437 }
438
rproc_vdev_do_stop(struct rproc_subdev * subdev,bool crashed)439 static void rproc_vdev_do_stop(struct rproc_subdev *subdev, bool crashed)
440 {
441 struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
442 int ret;
443
444 ret = device_for_each_child(&rvdev->dev, NULL, rproc_remove_virtio_dev);
445 if (ret)
446 dev_warn(&rvdev->dev, "can't remove vdev child device: %d\n", ret);
447 }
448
449 /**
450 * rproc_rvdev_release() - release the existence of a rvdev
451 *
452 * @dev: the subdevice's dev
453 */
rproc_rvdev_release(struct device * dev)454 static void rproc_rvdev_release(struct device *dev)
455 {
456 struct rproc_vdev *rvdev = container_of(dev, struct rproc_vdev, dev);
457
458 of_reserved_mem_device_release(dev);
459
460 kfree(rvdev);
461 }
462
copy_dma_range_map(struct device * to,struct device * from)463 static int copy_dma_range_map(struct device *to, struct device *from)
464 {
465 const struct bus_dma_region *map = from->dma_range_map, *new_map, *r;
466 int num_ranges = 0;
467
468 if (!map)
469 return 0;
470
471 for (r = map; r->size; r++)
472 num_ranges++;
473
474 new_map = kmemdup(map, array_size(num_ranges + 1, sizeof(*map)),
475 GFP_KERNEL);
476 if (!new_map)
477 return -ENOMEM;
478 to->dma_range_map = new_map;
479 return 0;
480 }
481
482 /**
483 * rproc_handle_vdev() - handle a vdev fw resource
484 * @rproc: the remote processor
485 * @rsc: the vring resource descriptor
486 * @offset: offset of the resource entry
487 * @avail: size of available data (for sanity checking the image)
488 *
489 * This resource entry requests the host to statically register a virtio
490 * device (vdev), and setup everything needed to support it. It contains
491 * everything needed to make it possible: the virtio device id, virtio
492 * device features, vrings information, virtio config space, etc...
493 *
494 * Before registering the vdev, the vrings are allocated from non-cacheable
495 * physically contiguous memory. Currently we only support two vrings per
496 * remote processor (temporary limitation). We might also want to consider
497 * doing the vring allocation only later when ->find_vqs() is invoked, and
498 * then release them upon ->del_vqs().
499 *
500 * Note: @da is currently not really handled correctly: we dynamically
501 * allocate it using the DMA API, ignoring requested hard coded addresses,
502 * and we don't take care of any required IOMMU programming. This is all
503 * going to be taken care of when the generic iommu-based DMA API will be
504 * merged. Meanwhile, statically-addressed iommu-based firmware images should
505 * use RSC_DEVMEM resource entries to map their required @da to the physical
506 * address of their base CMA region (ouch, hacky!).
507 *
508 * Returns 0 on success, or an appropriate error code otherwise
509 */
rproc_handle_vdev(struct rproc * rproc,struct fw_rsc_vdev * rsc,int offset,int avail)510 static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
511 int offset, int avail)
512 {
513 struct device *dev = &rproc->dev;
514 struct rproc_vdev *rvdev;
515 int i, ret;
516 char name[16];
517
518 /* make sure resource isn't truncated */
519 if (struct_size(rsc, vring, rsc->num_of_vrings) + rsc->config_len >
520 avail) {
521 dev_err(dev, "vdev rsc is truncated\n");
522 return -EINVAL;
523 }
524
525 /* make sure reserved bytes are zeroes */
526 if (rsc->reserved[0] || rsc->reserved[1]) {
527 dev_err(dev, "vdev rsc has non zero reserved bytes\n");
528 return -EINVAL;
529 }
530
531 dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n",
532 rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
533
534 /* we currently support only two vrings per rvdev */
535 if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
536 dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
537 return -EINVAL;
538 }
539
540 rvdev = kzalloc(sizeof(*rvdev), GFP_KERNEL);
541 if (!rvdev)
542 return -ENOMEM;
543
544 kref_init(&rvdev->refcount);
545
546 rvdev->id = rsc->id;
547 rvdev->rproc = rproc;
548 rvdev->index = rproc->nb_vdev++;
549
550 /* Initialise vdev subdevice */
551 snprintf(name, sizeof(name), "vdev%dbuffer", rvdev->index);
552 rvdev->dev.parent = &rproc->dev;
553 ret = copy_dma_range_map(&rvdev->dev, rproc->dev.parent);
554 if (ret)
555 return ret;
556 rvdev->dev.release = rproc_rvdev_release;
557 dev_set_name(&rvdev->dev, "%s#%s", dev_name(rvdev->dev.parent), name);
558 dev_set_drvdata(&rvdev->dev, rvdev);
559
560 ret = device_register(&rvdev->dev);
561 if (ret) {
562 put_device(&rvdev->dev);
563 return ret;
564 }
565 /* Make device dma capable by inheriting from parent's capabilities */
566 set_dma_ops(&rvdev->dev, get_dma_ops(rproc->dev.parent));
567
568 ret = dma_coerce_mask_and_coherent(&rvdev->dev,
569 dma_get_mask(rproc->dev.parent));
570 if (ret) {
571 dev_warn(dev,
572 "Failed to set DMA mask %llx. Trying to continue... %x\n",
573 dma_get_mask(rproc->dev.parent), ret);
574 }
575
576 /* parse the vrings */
577 for (i = 0; i < rsc->num_of_vrings; i++) {
578 ret = rproc_parse_vring(rvdev, rsc, i);
579 if (ret)
580 goto free_rvdev;
581 }
582
583 /* remember the resource offset*/
584 rvdev->rsc_offset = offset;
585
586 /* allocate the vring resources */
587 for (i = 0; i < rsc->num_of_vrings; i++) {
588 ret = rproc_alloc_vring(rvdev, i);
589 if (ret)
590 goto unwind_vring_allocations;
591 }
592
593 list_add_tail(&rvdev->node, &rproc->rvdevs);
594
595 rvdev->subdev.start = rproc_vdev_do_start;
596 rvdev->subdev.stop = rproc_vdev_do_stop;
597
598 rproc_add_subdev(rproc, &rvdev->subdev);
599
600 return 0;
601
602 unwind_vring_allocations:
603 for (i--; i >= 0; i--)
604 rproc_free_vring(&rvdev->vring[i]);
605 free_rvdev:
606 device_unregister(&rvdev->dev);
607 return ret;
608 }
609
rproc_vdev_release(struct kref * ref)610 void rproc_vdev_release(struct kref *ref)
611 {
612 struct rproc_vdev *rvdev = container_of(ref, struct rproc_vdev, refcount);
613 struct rproc_vring *rvring;
614 struct rproc *rproc = rvdev->rproc;
615 int id;
616
617 for (id = 0; id < ARRAY_SIZE(rvdev->vring); id++) {
618 rvring = &rvdev->vring[id];
619 rproc_free_vring(rvring);
620 }
621
622 rproc_remove_subdev(rproc, &rvdev->subdev);
623 list_del(&rvdev->node);
624 device_unregister(&rvdev->dev);
625 }
626
627 /**
628 * rproc_handle_trace() - handle a shared trace buffer resource
629 * @rproc: the remote processor
630 * @rsc: the trace resource descriptor
631 * @offset: offset of the resource entry
632 * @avail: size of available data (for sanity checking the image)
633 *
634 * In case the remote processor dumps trace logs into memory,
635 * export it via debugfs.
636 *
637 * Currently, the 'da' member of @rsc should contain the device address
638 * where the remote processor is dumping the traces. Later we could also
639 * support dynamically allocating this address using the generic
640 * DMA API (but currently there isn't a use case for that).
641 *
642 * Returns 0 on success, or an appropriate error code otherwise
643 */
rproc_handle_trace(struct rproc * rproc,struct fw_rsc_trace * rsc,int offset,int avail)644 static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
645 int offset, int avail)
646 {
647 struct rproc_debug_trace *trace;
648 struct device *dev = &rproc->dev;
649 char name[15];
650
651 if (sizeof(*rsc) > avail) {
652 dev_err(dev, "trace rsc is truncated\n");
653 return -EINVAL;
654 }
655
656 /* make sure reserved bytes are zeroes */
657 if (rsc->reserved) {
658 dev_err(dev, "trace rsc has non zero reserved bytes\n");
659 return -EINVAL;
660 }
661
662 trace = kzalloc(sizeof(*trace), GFP_KERNEL);
663 if (!trace)
664 return -ENOMEM;
665
666 /* set the trace buffer dma properties */
667 trace->trace_mem.len = rsc->len;
668 trace->trace_mem.da = rsc->da;
669
670 /* set pointer on rproc device */
671 trace->rproc = rproc;
672
673 /* make sure snprintf always null terminates, even if truncating */
674 snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
675
676 /* create the debugfs entry */
677 trace->tfile = rproc_create_trace_file(name, rproc, trace);
678 if (!trace->tfile) {
679 kfree(trace);
680 return -EINVAL;
681 }
682
683 list_add_tail(&trace->node, &rproc->traces);
684
685 rproc->num_traces++;
686
687 dev_dbg(dev, "%s added: da 0x%x, len 0x%x\n",
688 name, rsc->da, rsc->len);
689
690 return 0;
691 }
692
693 /**
694 * rproc_handle_devmem() - handle devmem resource entry
695 * @rproc: remote processor handle
696 * @rsc: the devmem resource entry
697 * @offset: offset of the resource entry
698 * @avail: size of available data (for sanity checking the image)
699 *
700 * Remote processors commonly need to access certain on-chip peripherals.
701 *
702 * Some of these remote processors access memory via an iommu device,
703 * and might require us to configure their iommu before they can access
704 * the on-chip peripherals they need.
705 *
706 * This resource entry is a request to map such a peripheral device.
707 *
708 * These devmem entries will contain the physical address of the device in
709 * the 'pa' member. If a specific device address is expected, then 'da' will
710 * contain it (currently this is the only use case supported). 'len' will
711 * contain the size of the physical region we need to map.
712 *
713 * Currently we just "trust" those devmem entries to contain valid physical
714 * addresses, but this is going to change: we want the implementations to
715 * tell us ranges of physical addresses the firmware is allowed to request,
716 * and not allow firmwares to request access to physical addresses that
717 * are outside those ranges.
718 */
rproc_handle_devmem(struct rproc * rproc,struct fw_rsc_devmem * rsc,int offset,int avail)719 static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
720 int offset, int avail)
721 {
722 struct rproc_mem_entry *mapping;
723 struct device *dev = &rproc->dev;
724 int ret;
725
726 /* no point in handling this resource without a valid iommu domain */
727 if (!rproc->domain)
728 return -EINVAL;
729
730 if (sizeof(*rsc) > avail) {
731 dev_err(dev, "devmem rsc is truncated\n");
732 return -EINVAL;
733 }
734
735 /* make sure reserved bytes are zeroes */
736 if (rsc->reserved) {
737 dev_err(dev, "devmem rsc has non zero reserved bytes\n");
738 return -EINVAL;
739 }
740
741 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
742 if (!mapping)
743 return -ENOMEM;
744
745 ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
746 if (ret) {
747 dev_err(dev, "failed to map devmem: %d\n", ret);
748 goto out;
749 }
750
751 /*
752 * We'll need this info later when we'll want to unmap everything
753 * (e.g. on shutdown).
754 *
755 * We can't trust the remote processor not to change the resource
756 * table, so we must maintain this info independently.
757 */
758 mapping->da = rsc->da;
759 mapping->len = rsc->len;
760 list_add_tail(&mapping->node, &rproc->mappings);
761
762 dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
763 rsc->pa, rsc->da, rsc->len);
764
765 return 0;
766
767 out:
768 kfree(mapping);
769 return ret;
770 }
771
772 /**
773 * rproc_alloc_carveout() - allocated specified carveout
774 * @rproc: rproc handle
775 * @mem: the memory entry to allocate
776 *
777 * This function allocate specified memory entry @mem using
778 * dma_alloc_coherent() as default allocator
779 */
rproc_alloc_carveout(struct rproc * rproc,struct rproc_mem_entry * mem)780 static int rproc_alloc_carveout(struct rproc *rproc,
781 struct rproc_mem_entry *mem)
782 {
783 struct rproc_mem_entry *mapping = NULL;
784 struct device *dev = &rproc->dev;
785 dma_addr_t dma;
786 void *va;
787 int ret;
788
789 va = dma_alloc_coherent(dev->parent, mem->len, &dma, GFP_KERNEL);
790 if (!va) {
791 dev_err(dev->parent,
792 "failed to allocate dma memory: len 0x%zx\n",
793 mem->len);
794 return -ENOMEM;
795 }
796
797 dev_dbg(dev, "carveout va %pK, dma %pad, len 0x%zx\n",
798 va, &dma, mem->len);
799
800 if (mem->da != FW_RSC_ADDR_ANY && !rproc->domain) {
801 /*
802 * Check requested da is equal to dma address
803 * and print a warn message in case of missalignment.
804 * Don't stop rproc_start sequence as coprocessor may
805 * build pa to da translation on its side.
806 */
807 if (mem->da != (u32)dma)
808 dev_warn(dev->parent,
809 "Allocated carveout doesn't fit device address request\n");
810 }
811
812 /*
813 * Ok, this is non-standard.
814 *
815 * Sometimes we can't rely on the generic iommu-based DMA API
816 * to dynamically allocate the device address and then set the IOMMU
817 * tables accordingly, because some remote processors might
818 * _require_ us to use hard coded device addresses that their
819 * firmware was compiled with.
820 *
821 * In this case, we must use the IOMMU API directly and map
822 * the memory to the device address as expected by the remote
823 * processor.
824 *
825 * Obviously such remote processor devices should not be configured
826 * to use the iommu-based DMA API: we expect 'dma' to contain the
827 * physical address in this case.
828 */
829 if (mem->da != FW_RSC_ADDR_ANY && rproc->domain) {
830 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
831 if (!mapping) {
832 ret = -ENOMEM;
833 goto dma_free;
834 }
835
836 ret = iommu_map(rproc->domain, mem->da, dma, mem->len,
837 mem->flags);
838 if (ret) {
839 dev_err(dev, "iommu_map failed: %d\n", ret);
840 goto free_mapping;
841 }
842
843 /*
844 * We'll need this info later when we'll want to unmap
845 * everything (e.g. on shutdown).
846 *
847 * We can't trust the remote processor not to change the
848 * resource table, so we must maintain this info independently.
849 */
850 mapping->da = mem->da;
851 mapping->len = mem->len;
852 list_add_tail(&mapping->node, &rproc->mappings);
853
854 dev_dbg(dev, "carveout mapped 0x%x to %pad\n",
855 mem->da, &dma);
856 }
857
858 if (mem->da == FW_RSC_ADDR_ANY) {
859 /* Update device address as undefined by requester */
860 if ((u64)dma & HIGH_BITS_MASK)
861 dev_warn(dev, "DMA address cast in 32bit to fit resource table format\n");
862
863 mem->da = (u32)dma;
864 }
865
866 mem->dma = dma;
867 mem->va = va;
868
869 return 0;
870
871 free_mapping:
872 kfree(mapping);
873 dma_free:
874 dma_free_coherent(dev->parent, mem->len, va, dma);
875 return ret;
876 }
877
878 /**
879 * rproc_release_carveout() - release acquired carveout
880 * @rproc: rproc handle
881 * @mem: the memory entry to release
882 *
883 * This function releases specified memory entry @mem allocated via
884 * rproc_alloc_carveout() function by @rproc.
885 */
rproc_release_carveout(struct rproc * rproc,struct rproc_mem_entry * mem)886 static int rproc_release_carveout(struct rproc *rproc,
887 struct rproc_mem_entry *mem)
888 {
889 struct device *dev = &rproc->dev;
890
891 /* clean up carveout allocations */
892 dma_free_coherent(dev->parent, mem->len, mem->va, mem->dma);
893 return 0;
894 }
895
896 /**
897 * rproc_handle_carveout() - handle phys contig memory allocation requests
898 * @rproc: rproc handle
899 * @rsc: the resource entry
900 * @offset: offset of the resource entry
901 * @avail: size of available data (for image validation)
902 *
903 * This function will handle firmware requests for allocation of physically
904 * contiguous memory regions.
905 *
906 * These request entries should come first in the firmware's resource table,
907 * as other firmware entries might request placing other data objects inside
908 * these memory regions (e.g. data/code segments, trace resource entries, ...).
909 *
910 * Allocating memory this way helps utilizing the reserved physical memory
911 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
912 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
913 * pressure is important; it may have a substantial impact on performance.
914 */
rproc_handle_carveout(struct rproc * rproc,struct fw_rsc_carveout * rsc,int offset,int avail)915 static int rproc_handle_carveout(struct rproc *rproc,
916 struct fw_rsc_carveout *rsc,
917 int offset, int avail)
918 {
919 struct rproc_mem_entry *carveout;
920 struct device *dev = &rproc->dev;
921
922 if (sizeof(*rsc) > avail) {
923 dev_err(dev, "carveout rsc is truncated\n");
924 return -EINVAL;
925 }
926
927 /* make sure reserved bytes are zeroes */
928 if (rsc->reserved) {
929 dev_err(dev, "carveout rsc has non zero reserved bytes\n");
930 return -EINVAL;
931 }
932
933 dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n",
934 rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags);
935
936 /*
937 * Check carveout rsc already part of a registered carveout,
938 * Search by name, then check the da and length
939 */
940 carveout = rproc_find_carveout_by_name(rproc, rsc->name);
941
942 if (carveout) {
943 if (carveout->rsc_offset != FW_RSC_ADDR_ANY) {
944 dev_err(dev,
945 "Carveout already associated to resource table\n");
946 return -ENOMEM;
947 }
948
949 if (rproc_check_carveout_da(rproc, carveout, rsc->da, rsc->len))
950 return -ENOMEM;
951
952 /* Update memory carveout with resource table info */
953 carveout->rsc_offset = offset;
954 carveout->flags = rsc->flags;
955
956 return 0;
957 }
958
959 /* Register carveout in in list */
960 carveout = rproc_mem_entry_init(dev, NULL, 0, rsc->len, rsc->da,
961 rproc_alloc_carveout,
962 rproc_release_carveout, rsc->name);
963 if (!carveout) {
964 dev_err(dev, "Can't allocate memory entry structure\n");
965 return -ENOMEM;
966 }
967
968 carveout->flags = rsc->flags;
969 carveout->rsc_offset = offset;
970 rproc_add_carveout(rproc, carveout);
971
972 return 0;
973 }
974
975 /**
976 * rproc_add_carveout() - register an allocated carveout region
977 * @rproc: rproc handle
978 * @mem: memory entry to register
979 *
980 * This function registers specified memory entry in @rproc carveouts list.
981 * Specified carveout should have been allocated before registering.
982 */
rproc_add_carveout(struct rproc * rproc,struct rproc_mem_entry * mem)983 void rproc_add_carveout(struct rproc *rproc, struct rproc_mem_entry *mem)
984 {
985 list_add_tail(&mem->node, &rproc->carveouts);
986 }
987 EXPORT_SYMBOL(rproc_add_carveout);
988
989 /**
990 * rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct
991 * @dev: pointer on device struct
992 * @va: virtual address
993 * @dma: dma address
994 * @len: memory carveout length
995 * @da: device address
996 * @alloc: memory carveout allocation function
997 * @release: memory carveout release function
998 * @name: carveout name
999 *
1000 * This function allocates a rproc_mem_entry struct and fill it with parameters
1001 * provided by client.
1002 */
1003 __printf(8, 9)
1004 struct rproc_mem_entry *
rproc_mem_entry_init(struct device * dev,void * va,dma_addr_t dma,size_t len,u32 da,int (* alloc)(struct rproc *,struct rproc_mem_entry *),int (* release)(struct rproc *,struct rproc_mem_entry *),const char * name,...)1005 rproc_mem_entry_init(struct device *dev,
1006 void *va, dma_addr_t dma, size_t len, u32 da,
1007 int (*alloc)(struct rproc *, struct rproc_mem_entry *),
1008 int (*release)(struct rproc *, struct rproc_mem_entry *),
1009 const char *name, ...)
1010 {
1011 struct rproc_mem_entry *mem;
1012 va_list args;
1013
1014 mem = kzalloc(sizeof(*mem), GFP_KERNEL);
1015 if (!mem)
1016 return mem;
1017
1018 mem->va = va;
1019 mem->dma = dma;
1020 mem->da = da;
1021 mem->len = len;
1022 mem->alloc = alloc;
1023 mem->release = release;
1024 mem->rsc_offset = FW_RSC_ADDR_ANY;
1025 mem->of_resm_idx = -1;
1026
1027 va_start(args, name);
1028 vsnprintf(mem->name, sizeof(mem->name), name, args);
1029 va_end(args);
1030
1031 return mem;
1032 }
1033 EXPORT_SYMBOL(rproc_mem_entry_init);
1034
1035 /**
1036 * rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct
1037 * from a reserved memory phandle
1038 * @dev: pointer on device struct
1039 * @of_resm_idx: reserved memory phandle index in "memory-region"
1040 * @len: memory carveout length
1041 * @da: device address
1042 * @name: carveout name
1043 *
1044 * This function allocates a rproc_mem_entry struct and fill it with parameters
1045 * provided by client.
1046 */
1047 __printf(5, 6)
1048 struct rproc_mem_entry *
rproc_of_resm_mem_entry_init(struct device * dev,u32 of_resm_idx,size_t len,u32 da,const char * name,...)1049 rproc_of_resm_mem_entry_init(struct device *dev, u32 of_resm_idx, size_t len,
1050 u32 da, const char *name, ...)
1051 {
1052 struct rproc_mem_entry *mem;
1053 va_list args;
1054
1055 mem = kzalloc(sizeof(*mem), GFP_KERNEL);
1056 if (!mem)
1057 return mem;
1058
1059 mem->da = da;
1060 mem->len = len;
1061 mem->rsc_offset = FW_RSC_ADDR_ANY;
1062 mem->of_resm_idx = of_resm_idx;
1063
1064 va_start(args, name);
1065 vsnprintf(mem->name, sizeof(mem->name), name, args);
1066 va_end(args);
1067
1068 return mem;
1069 }
1070 EXPORT_SYMBOL(rproc_of_resm_mem_entry_init);
1071
1072 /**
1073 * rproc_of_parse_firmware() - parse and return the firmware-name
1074 * @dev: pointer on device struct representing a rproc
1075 * @index: index to use for the firmware-name retrieval
1076 * @fw_name: pointer to a character string, in which the firmware
1077 * name is returned on success and unmodified otherwise.
1078 *
1079 * This is an OF helper function that parses a device's DT node for
1080 * the "firmware-name" property and returns the firmware name pointer
1081 * in @fw_name on success.
1082 *
1083 * Return: 0 on success, or an appropriate failure.
1084 */
rproc_of_parse_firmware(struct device * dev,int index,const char ** fw_name)1085 int rproc_of_parse_firmware(struct device *dev, int index, const char **fw_name)
1086 {
1087 int ret;
1088
1089 ret = of_property_read_string_index(dev->of_node, "firmware-name",
1090 index, fw_name);
1091 return ret ? ret : 0;
1092 }
1093 EXPORT_SYMBOL(rproc_of_parse_firmware);
1094
1095 /*
1096 * A lookup table for resource handlers. The indices are defined in
1097 * enum fw_resource_type.
1098 */
1099 static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
1100 [RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
1101 [RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
1102 [RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
1103 [RSC_VDEV] = (rproc_handle_resource_t)rproc_handle_vdev,
1104 };
1105
1106 /* handle firmware resource entries before booting the remote processor */
rproc_handle_resources(struct rproc * rproc,rproc_handle_resource_t handlers[RSC_LAST])1107 static int rproc_handle_resources(struct rproc *rproc,
1108 rproc_handle_resource_t handlers[RSC_LAST])
1109 {
1110 struct device *dev = &rproc->dev;
1111 rproc_handle_resource_t handler;
1112 int ret = 0, i;
1113
1114 if (!rproc->table_ptr)
1115 return 0;
1116
1117 for (i = 0; i < rproc->table_ptr->num; i++) {
1118 int offset = rproc->table_ptr->offset[i];
1119 struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
1120 int avail = rproc->table_sz - offset - sizeof(*hdr);
1121 void *rsc = (void *)hdr + sizeof(*hdr);
1122
1123 /* make sure table isn't truncated */
1124 if (avail < 0) {
1125 dev_err(dev, "rsc table is truncated\n");
1126 return -EINVAL;
1127 }
1128
1129 dev_dbg(dev, "rsc: type %d\n", hdr->type);
1130
1131 if (hdr->type >= RSC_VENDOR_START &&
1132 hdr->type <= RSC_VENDOR_END) {
1133 ret = rproc_handle_rsc(rproc, hdr->type, rsc,
1134 offset + sizeof(*hdr), avail);
1135 if (ret == RSC_HANDLED)
1136 continue;
1137 else if (ret < 0)
1138 break;
1139
1140 dev_warn(dev, "unsupported vendor resource %d\n",
1141 hdr->type);
1142 continue;
1143 }
1144
1145 if (hdr->type >= RSC_LAST) {
1146 dev_warn(dev, "unsupported resource %d\n", hdr->type);
1147 continue;
1148 }
1149
1150 handler = handlers[hdr->type];
1151 if (!handler)
1152 continue;
1153
1154 ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
1155 if (ret)
1156 break;
1157 }
1158
1159 return ret;
1160 }
1161
rproc_prepare_subdevices(struct rproc * rproc)1162 static int rproc_prepare_subdevices(struct rproc *rproc)
1163 {
1164 struct rproc_subdev *subdev;
1165 int ret;
1166
1167 list_for_each_entry(subdev, &rproc->subdevs, node) {
1168 if (subdev->prepare) {
1169 ret = subdev->prepare(subdev);
1170 if (ret)
1171 goto unroll_preparation;
1172 }
1173 }
1174
1175 return 0;
1176
1177 unroll_preparation:
1178 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1179 if (subdev->unprepare)
1180 subdev->unprepare(subdev);
1181 }
1182
1183 return ret;
1184 }
1185
rproc_start_subdevices(struct rproc * rproc)1186 static int rproc_start_subdevices(struct rproc *rproc)
1187 {
1188 struct rproc_subdev *subdev;
1189 int ret;
1190
1191 list_for_each_entry(subdev, &rproc->subdevs, node) {
1192 if (subdev->start) {
1193 ret = subdev->start(subdev);
1194 if (ret)
1195 goto unroll_registration;
1196 }
1197 }
1198
1199 return 0;
1200
1201 unroll_registration:
1202 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1203 if (subdev->stop)
1204 subdev->stop(subdev, true);
1205 }
1206
1207 return ret;
1208 }
1209
rproc_stop_subdevices(struct rproc * rproc,bool crashed)1210 static void rproc_stop_subdevices(struct rproc *rproc, bool crashed)
1211 {
1212 struct rproc_subdev *subdev;
1213
1214 list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1215 if (subdev->stop)
1216 subdev->stop(subdev, crashed);
1217 }
1218 }
1219
rproc_unprepare_subdevices(struct rproc * rproc)1220 static void rproc_unprepare_subdevices(struct rproc *rproc)
1221 {
1222 struct rproc_subdev *subdev;
1223
1224 list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1225 if (subdev->unprepare)
1226 subdev->unprepare(subdev);
1227 }
1228 }
1229
1230 /**
1231 * rproc_alloc_registered_carveouts() - allocate all carveouts registered
1232 * in the list
1233 * @rproc: the remote processor handle
1234 *
1235 * This function parses registered carveout list, performs allocation
1236 * if alloc() ops registered and updates resource table information
1237 * if rsc_offset set.
1238 *
1239 * Return: 0 on success
1240 */
rproc_alloc_registered_carveouts(struct rproc * rproc)1241 static int rproc_alloc_registered_carveouts(struct rproc *rproc)
1242 {
1243 struct rproc_mem_entry *entry, *tmp;
1244 struct fw_rsc_carveout *rsc;
1245 struct device *dev = &rproc->dev;
1246 u64 pa;
1247 int ret;
1248
1249 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1250 if (entry->alloc) {
1251 ret = entry->alloc(rproc, entry);
1252 if (ret) {
1253 dev_err(dev, "Unable to allocate carveout %s: %d\n",
1254 entry->name, ret);
1255 return -ENOMEM;
1256 }
1257 }
1258
1259 if (entry->rsc_offset != FW_RSC_ADDR_ANY) {
1260 /* update resource table */
1261 rsc = (void *)rproc->table_ptr + entry->rsc_offset;
1262
1263 /*
1264 * Some remote processors might need to know the pa
1265 * even though they are behind an IOMMU. E.g., OMAP4's
1266 * remote M3 processor needs this so it can control
1267 * on-chip hardware accelerators that are not behind
1268 * the IOMMU, and therefor must know the pa.
1269 *
1270 * Generally we don't want to expose physical addresses
1271 * if we don't have to (remote processors are generally
1272 * _not_ trusted), so we might want to do this only for
1273 * remote processor that _must_ have this (e.g. OMAP4's
1274 * dual M3 subsystem).
1275 *
1276 * Non-IOMMU processors might also want to have this info.
1277 * In this case, the device address and the physical address
1278 * are the same.
1279 */
1280
1281 /* Use va if defined else dma to generate pa */
1282 if (entry->va)
1283 pa = (u64)rproc_va_to_pa(entry->va);
1284 else
1285 pa = (u64)entry->dma;
1286
1287 if (((u64)pa) & HIGH_BITS_MASK)
1288 dev_warn(dev,
1289 "Physical address cast in 32bit to fit resource table format\n");
1290
1291 rsc->pa = (u32)pa;
1292 rsc->da = entry->da;
1293 rsc->len = entry->len;
1294 }
1295 }
1296
1297 return 0;
1298 }
1299
1300
1301 /**
1302 * rproc_resource_cleanup() - clean up and free all acquired resources
1303 * @rproc: rproc handle
1304 *
1305 * This function will free all resources acquired for @rproc, and it
1306 * is called whenever @rproc either shuts down or fails to boot.
1307 */
rproc_resource_cleanup(struct rproc * rproc)1308 void rproc_resource_cleanup(struct rproc *rproc)
1309 {
1310 struct rproc_mem_entry *entry, *tmp;
1311 struct rproc_debug_trace *trace, *ttmp;
1312 struct rproc_vdev *rvdev, *rvtmp;
1313 struct device *dev = &rproc->dev;
1314
1315 /* clean up debugfs trace entries */
1316 list_for_each_entry_safe(trace, ttmp, &rproc->traces, node) {
1317 rproc_remove_trace_file(trace->tfile);
1318 rproc->num_traces--;
1319 list_del(&trace->node);
1320 kfree(trace);
1321 }
1322
1323 /* clean up iommu mapping entries */
1324 list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
1325 size_t unmapped;
1326
1327 unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
1328 if (unmapped != entry->len) {
1329 /* nothing much to do besides complaining */
1330 dev_err(dev, "failed to unmap %zx/%zu\n", entry->len,
1331 unmapped);
1332 }
1333
1334 list_del(&entry->node);
1335 kfree(entry);
1336 }
1337
1338 /* clean up carveout allocations */
1339 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1340 if (entry->release)
1341 entry->release(rproc, entry);
1342 list_del(&entry->node);
1343 kfree(entry);
1344 }
1345
1346 /* clean up remote vdev entries */
1347 list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
1348 kref_put(&rvdev->refcount, rproc_vdev_release);
1349
1350 rproc_coredump_cleanup(rproc);
1351 }
1352 EXPORT_SYMBOL(rproc_resource_cleanup);
1353
rproc_start(struct rproc * rproc,const struct firmware * fw)1354 static int rproc_start(struct rproc *rproc, const struct firmware *fw)
1355 {
1356 struct resource_table *loaded_table;
1357 struct device *dev = &rproc->dev;
1358 int ret;
1359
1360 /* load the ELF segments to memory */
1361 ret = rproc_load_segments(rproc, fw);
1362 if (ret) {
1363 dev_err(dev, "Failed to load program segments: %d\n", ret);
1364 return ret;
1365 }
1366
1367 /*
1368 * The starting device has been given the rproc->cached_table as the
1369 * resource table. The address of the vring along with the other
1370 * allocated resources (carveouts etc) is stored in cached_table.
1371 * In order to pass this information to the remote device we must copy
1372 * this information to device memory. We also update the table_ptr so
1373 * that any subsequent changes will be applied to the loaded version.
1374 */
1375 loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
1376 if (loaded_table) {
1377 memcpy(loaded_table, rproc->cached_table, rproc->table_sz);
1378 rproc->table_ptr = loaded_table;
1379 }
1380
1381 ret = rproc_prepare_subdevices(rproc);
1382 if (ret) {
1383 dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1384 rproc->name, ret);
1385 goto reset_table_ptr;
1386 }
1387
1388 /* power up the remote processor */
1389 ret = rproc->ops->start(rproc);
1390 if (ret) {
1391 dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
1392 goto unprepare_subdevices;
1393 }
1394
1395 /* Start any subdevices for the remote processor */
1396 ret = rproc_start_subdevices(rproc);
1397 if (ret) {
1398 dev_err(dev, "failed to probe subdevices for %s: %d\n",
1399 rproc->name, ret);
1400 goto stop_rproc;
1401 }
1402
1403 rproc->state = RPROC_RUNNING;
1404
1405 dev_info(dev, "remote processor %s is now up\n", rproc->name);
1406
1407 return 0;
1408
1409 stop_rproc:
1410 rproc->ops->stop(rproc);
1411 unprepare_subdevices:
1412 rproc_unprepare_subdevices(rproc);
1413 reset_table_ptr:
1414 rproc->table_ptr = rproc->cached_table;
1415
1416 return ret;
1417 }
1418
rproc_attach(struct rproc * rproc)1419 static int rproc_attach(struct rproc *rproc)
1420 {
1421 struct device *dev = &rproc->dev;
1422 int ret;
1423
1424 ret = rproc_prepare_subdevices(rproc);
1425 if (ret) {
1426 dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1427 rproc->name, ret);
1428 goto out;
1429 }
1430
1431 /* Attach to the remote processor */
1432 ret = rproc_attach_device(rproc);
1433 if (ret) {
1434 dev_err(dev, "can't attach to rproc %s: %d\n",
1435 rproc->name, ret);
1436 goto unprepare_subdevices;
1437 }
1438
1439 /* Start any subdevices for the remote processor */
1440 ret = rproc_start_subdevices(rproc);
1441 if (ret) {
1442 dev_err(dev, "failed to probe subdevices for %s: %d\n",
1443 rproc->name, ret);
1444 goto stop_rproc;
1445 }
1446
1447 rproc->state = RPROC_RUNNING;
1448
1449 dev_info(dev, "remote processor %s is now attached\n", rproc->name);
1450
1451 return 0;
1452
1453 stop_rproc:
1454 rproc->ops->stop(rproc);
1455 unprepare_subdevices:
1456 rproc_unprepare_subdevices(rproc);
1457 out:
1458 return ret;
1459 }
1460
1461 /*
1462 * take a firmware and boot a remote processor with it.
1463 */
rproc_fw_boot(struct rproc * rproc,const struct firmware * fw)1464 static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
1465 {
1466 struct device *dev = &rproc->dev;
1467 const char *name = rproc->firmware;
1468 int ret;
1469
1470 ret = rproc_fw_sanity_check(rproc, fw);
1471 if (ret)
1472 return ret;
1473
1474 dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
1475
1476 /*
1477 * if enabling an IOMMU isn't relevant for this rproc, this is
1478 * just a nop
1479 */
1480 ret = rproc_enable_iommu(rproc);
1481 if (ret) {
1482 dev_err(dev, "can't enable iommu: %d\n", ret);
1483 return ret;
1484 }
1485
1486 /* Prepare rproc for firmware loading if needed */
1487 ret = rproc_prepare_device(rproc);
1488 if (ret) {
1489 dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret);
1490 goto disable_iommu;
1491 }
1492
1493 rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
1494
1495 /* Load resource table, core dump segment list etc from the firmware */
1496 ret = rproc_parse_fw(rproc, fw);
1497 if (ret)
1498 goto unprepare_rproc;
1499
1500 /* reset max_notifyid */
1501 rproc->max_notifyid = -1;
1502
1503 /* reset handled vdev */
1504 rproc->nb_vdev = 0;
1505
1506 /* handle fw resources which are required to boot rproc */
1507 ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1508 if (ret) {
1509 dev_err(dev, "Failed to process resources: %d\n", ret);
1510 goto clean_up_resources;
1511 }
1512
1513 /* Allocate carveout resources associated to rproc */
1514 ret = rproc_alloc_registered_carveouts(rproc);
1515 if (ret) {
1516 dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1517 ret);
1518 goto clean_up_resources;
1519 }
1520
1521 ret = rproc_start(rproc, fw);
1522 if (ret)
1523 goto clean_up_resources;
1524
1525 return 0;
1526
1527 clean_up_resources:
1528 rproc_resource_cleanup(rproc);
1529 kfree(rproc->cached_table);
1530 rproc->cached_table = NULL;
1531 rproc->table_ptr = NULL;
1532 unprepare_rproc:
1533 /* release HW resources if needed */
1534 rproc_unprepare_device(rproc);
1535 disable_iommu:
1536 rproc_disable_iommu(rproc);
1537 return ret;
1538 }
1539
1540 /*
1541 * Attach to remote processor - similar to rproc_fw_boot() but without
1542 * the steps that deal with the firmware image.
1543 */
rproc_actuate(struct rproc * rproc)1544 static int rproc_actuate(struct rproc *rproc)
1545 {
1546 struct device *dev = &rproc->dev;
1547 int ret;
1548
1549 /*
1550 * if enabling an IOMMU isn't relevant for this rproc, this is
1551 * just a nop
1552 */
1553 ret = rproc_enable_iommu(rproc);
1554 if (ret) {
1555 dev_err(dev, "can't enable iommu: %d\n", ret);
1556 return ret;
1557 }
1558
1559 /* reset max_notifyid */
1560 rproc->max_notifyid = -1;
1561
1562 /* reset handled vdev */
1563 rproc->nb_vdev = 0;
1564
1565 /*
1566 * Handle firmware resources required to attach to a remote processor.
1567 * Because we are attaching rather than booting the remote processor,
1568 * we expect the platform driver to properly set rproc->table_ptr.
1569 */
1570 ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1571 if (ret) {
1572 dev_err(dev, "Failed to process resources: %d\n", ret);
1573 goto disable_iommu;
1574 }
1575
1576 /* Allocate carveout resources associated to rproc */
1577 ret = rproc_alloc_registered_carveouts(rproc);
1578 if (ret) {
1579 dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1580 ret);
1581 goto clean_up_resources;
1582 }
1583
1584 ret = rproc_attach(rproc);
1585 if (ret)
1586 goto clean_up_resources;
1587
1588 return 0;
1589
1590 clean_up_resources:
1591 rproc_resource_cleanup(rproc);
1592 disable_iommu:
1593 rproc_disable_iommu(rproc);
1594 return ret;
1595 }
1596
1597 /*
1598 * take a firmware and boot it up.
1599 *
1600 * Note: this function is called asynchronously upon registration of the
1601 * remote processor (so we must wait until it completes before we try
1602 * to unregister the device. one other option is just to use kref here,
1603 * that might be cleaner).
1604 */
rproc_auto_boot_callback(const struct firmware * fw,void * context)1605 static void rproc_auto_boot_callback(const struct firmware *fw, void *context)
1606 {
1607 struct rproc *rproc = context;
1608
1609 rproc_boot(rproc);
1610
1611 release_firmware(fw);
1612 }
1613
rproc_trigger_auto_boot(struct rproc * rproc)1614 static int rproc_trigger_auto_boot(struct rproc *rproc)
1615 {
1616 int ret;
1617
1618 /*
1619 * Since the remote processor is in a detached state, it has already
1620 * been booted by another entity. As such there is no point in waiting
1621 * for a firmware image to be loaded, we can simply initiate the process
1622 * of attaching to it immediately.
1623 */
1624 if (rproc->state == RPROC_DETACHED)
1625 return rproc_boot(rproc);
1626
1627 /*
1628 * We're initiating an asynchronous firmware loading, so we can
1629 * be built-in kernel code, without hanging the boot process.
1630 */
1631 ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
1632 rproc->firmware, &rproc->dev, GFP_KERNEL,
1633 rproc, rproc_auto_boot_callback);
1634 if (ret < 0)
1635 dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
1636
1637 return ret;
1638 }
1639
rproc_stop(struct rproc * rproc,bool crashed)1640 static int rproc_stop(struct rproc *rproc, bool crashed)
1641 {
1642 struct device *dev = &rproc->dev;
1643 int ret;
1644
1645 /* Stop any subdevices for the remote processor */
1646 rproc_stop_subdevices(rproc, crashed);
1647
1648 /* the installed resource table is no longer accessible */
1649 rproc->table_ptr = rproc->cached_table;
1650
1651 /* power off the remote processor */
1652 ret = rproc->ops->stop(rproc);
1653 if (ret) {
1654 dev_err(dev, "can't stop rproc: %d\n", ret);
1655 return ret;
1656 }
1657
1658 rproc_unprepare_subdevices(rproc);
1659
1660 rproc->state = RPROC_OFFLINE;
1661
1662 /*
1663 * The remote processor has been stopped and is now offline, which means
1664 * that the next time it is brought back online the remoteproc core will
1665 * be responsible to load its firmware. As such it is no longer
1666 * autonomous.
1667 */
1668 rproc->autonomous = false;
1669
1670 dev_info(dev, "stopped remote processor %s\n", rproc->name);
1671
1672 return 0;
1673 }
1674
1675
1676 /**
1677 * rproc_trigger_recovery() - recover a remoteproc
1678 * @rproc: the remote processor
1679 *
1680 * The recovery is done by resetting all the virtio devices, that way all the
1681 * rpmsg drivers will be reseted along with the remote processor making the
1682 * remoteproc functional again.
1683 *
1684 * This function can sleep, so it cannot be called from atomic context.
1685 */
rproc_trigger_recovery(struct rproc * rproc)1686 int rproc_trigger_recovery(struct rproc *rproc)
1687 {
1688 const struct firmware *firmware_p;
1689 struct device *dev = &rproc->dev;
1690 int ret;
1691
1692 ret = mutex_lock_interruptible(&rproc->lock);
1693 if (ret)
1694 return ret;
1695
1696 /* State could have changed before we got the mutex */
1697 if (rproc->state != RPROC_CRASHED)
1698 goto unlock_mutex;
1699
1700 dev_err(dev, "recovering %s\n", rproc->name);
1701
1702 ret = rproc_stop(rproc, true);
1703 if (ret)
1704 goto unlock_mutex;
1705
1706 /* generate coredump */
1707 rproc_coredump(rproc);
1708
1709 /* load firmware */
1710 ret = request_firmware(&firmware_p, rproc->firmware, dev);
1711 if (ret < 0) {
1712 dev_err(dev, "request_firmware failed: %d\n", ret);
1713 goto unlock_mutex;
1714 }
1715
1716 /* boot the remote processor up again */
1717 ret = rproc_start(rproc, firmware_p);
1718
1719 release_firmware(firmware_p);
1720
1721 unlock_mutex:
1722 mutex_unlock(&rproc->lock);
1723 return ret;
1724 }
1725
1726 /**
1727 * rproc_crash_handler_work() - handle a crash
1728 * @work: work treating the crash
1729 *
1730 * This function needs to handle everything related to a crash, like cpu
1731 * registers and stack dump, information to help to debug the fatal error, etc.
1732 */
rproc_crash_handler_work(struct work_struct * work)1733 static void rproc_crash_handler_work(struct work_struct *work)
1734 {
1735 struct rproc *rproc = container_of(work, struct rproc, crash_handler);
1736 struct device *dev = &rproc->dev;
1737
1738 dev_dbg(dev, "enter %s\n", __func__);
1739
1740 mutex_lock(&rproc->lock);
1741
1742 if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) {
1743 /* handle only the first crash detected */
1744 mutex_unlock(&rproc->lock);
1745 return;
1746 }
1747
1748 rproc->state = RPROC_CRASHED;
1749 dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
1750 rproc->name);
1751
1752 mutex_unlock(&rproc->lock);
1753
1754 if (!rproc->recovery_disabled)
1755 rproc_trigger_recovery(rproc);
1756
1757 pm_relax(rproc->dev.parent);
1758 }
1759
1760 /**
1761 * rproc_boot() - boot a remote processor
1762 * @rproc: handle of a remote processor
1763 *
1764 * Boot a remote processor (i.e. load its firmware, power it on, ...).
1765 *
1766 * If the remote processor is already powered on, this function immediately
1767 * returns (successfully).
1768 *
1769 * Returns 0 on success, and an appropriate error value otherwise.
1770 */
rproc_boot(struct rproc * rproc)1771 int rproc_boot(struct rproc *rproc)
1772 {
1773 const struct firmware *firmware_p;
1774 struct device *dev;
1775 int ret;
1776
1777 if (!rproc) {
1778 pr_err("invalid rproc handle\n");
1779 return -EINVAL;
1780 }
1781
1782 dev = &rproc->dev;
1783
1784 ret = mutex_lock_interruptible(&rproc->lock);
1785 if (ret) {
1786 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1787 return ret;
1788 }
1789
1790 if (rproc->state == RPROC_DELETED) {
1791 ret = -ENODEV;
1792 dev_err(dev, "can't boot deleted rproc %s\n", rproc->name);
1793 goto unlock_mutex;
1794 }
1795
1796 /* skip the boot or attach process if rproc is already powered up */
1797 if (atomic_inc_return(&rproc->power) > 1) {
1798 ret = 0;
1799 goto unlock_mutex;
1800 }
1801
1802 if (rproc->state == RPROC_DETACHED) {
1803 dev_info(dev, "attaching to %s\n", rproc->name);
1804
1805 ret = rproc_actuate(rproc);
1806 } else {
1807 dev_info(dev, "powering up %s\n", rproc->name);
1808
1809 /* load firmware */
1810 ret = request_firmware(&firmware_p, rproc->firmware, dev);
1811 if (ret < 0) {
1812 dev_err(dev, "request_firmware failed: %d\n", ret);
1813 goto downref_rproc;
1814 }
1815
1816 ret = rproc_fw_boot(rproc, firmware_p);
1817
1818 release_firmware(firmware_p);
1819 }
1820
1821 downref_rproc:
1822 if (ret)
1823 atomic_dec(&rproc->power);
1824 unlock_mutex:
1825 mutex_unlock(&rproc->lock);
1826 return ret;
1827 }
1828 EXPORT_SYMBOL(rproc_boot);
1829
1830 /**
1831 * rproc_shutdown() - power off the remote processor
1832 * @rproc: the remote processor
1833 *
1834 * Power off a remote processor (previously booted with rproc_boot()).
1835 *
1836 * In case @rproc is still being used by an additional user(s), then
1837 * this function will just decrement the power refcount and exit,
1838 * without really powering off the device.
1839 *
1840 * Every call to rproc_boot() must (eventually) be accompanied by a call
1841 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1842 *
1843 * Notes:
1844 * - we're not decrementing the rproc's refcount, only the power refcount.
1845 * which means that the @rproc handle stays valid even after rproc_shutdown()
1846 * returns, and users can still use it with a subsequent rproc_boot(), if
1847 * needed.
1848 */
rproc_shutdown(struct rproc * rproc)1849 void rproc_shutdown(struct rproc *rproc)
1850 {
1851 struct device *dev = &rproc->dev;
1852 int ret;
1853
1854 ret = mutex_lock_interruptible(&rproc->lock);
1855 if (ret) {
1856 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1857 return;
1858 }
1859
1860 /* if the remote proc is still needed, bail out */
1861 if (!atomic_dec_and_test(&rproc->power))
1862 goto out;
1863
1864 ret = rproc_stop(rproc, false);
1865 if (ret) {
1866 atomic_inc(&rproc->power);
1867 goto out;
1868 }
1869
1870 /* clean up all acquired resources */
1871 rproc_resource_cleanup(rproc);
1872
1873 /* release HW resources if needed */
1874 rproc_unprepare_device(rproc);
1875
1876 rproc_disable_iommu(rproc);
1877
1878 /* Free the copy of the resource table */
1879 kfree(rproc->cached_table);
1880 rproc->cached_table = NULL;
1881 rproc->table_ptr = NULL;
1882 out:
1883 mutex_unlock(&rproc->lock);
1884 }
1885 EXPORT_SYMBOL(rproc_shutdown);
1886
1887 /**
1888 * rproc_get_by_phandle() - find a remote processor by phandle
1889 * @phandle: phandle to the rproc
1890 *
1891 * Finds an rproc handle using the remote processor's phandle, and then
1892 * return a handle to the rproc.
1893 *
1894 * This function increments the remote processor's refcount, so always
1895 * use rproc_put() to decrement it back once rproc isn't needed anymore.
1896 *
1897 * Returns the rproc handle on success, and NULL on failure.
1898 */
1899 #ifdef CONFIG_OF
rproc_get_by_phandle(phandle phandle)1900 struct rproc *rproc_get_by_phandle(phandle phandle)
1901 {
1902 struct rproc *rproc = NULL, *r;
1903 struct device_node *np;
1904
1905 np = of_find_node_by_phandle(phandle);
1906 if (!np)
1907 return NULL;
1908
1909 rcu_read_lock();
1910 list_for_each_entry_rcu(r, &rproc_list, node) {
1911 if (r->dev.parent && r->dev.parent->of_node == np) {
1912 /* prevent underlying implementation from being removed */
1913 if (!try_module_get(r->dev.parent->driver->owner)) {
1914 dev_err(&r->dev, "can't get owner\n");
1915 break;
1916 }
1917
1918 rproc = r;
1919 get_device(&rproc->dev);
1920 break;
1921 }
1922 }
1923 rcu_read_unlock();
1924
1925 of_node_put(np);
1926
1927 return rproc;
1928 }
1929 #else
rproc_get_by_phandle(phandle phandle)1930 struct rproc *rproc_get_by_phandle(phandle phandle)
1931 {
1932 return NULL;
1933 }
1934 #endif
1935 EXPORT_SYMBOL(rproc_get_by_phandle);
1936
rproc_validate(struct rproc * rproc)1937 static int rproc_validate(struct rproc *rproc)
1938 {
1939 switch (rproc->state) {
1940 case RPROC_OFFLINE:
1941 /*
1942 * An offline processor without a start()
1943 * function makes no sense.
1944 */
1945 if (!rproc->ops->start)
1946 return -EINVAL;
1947 break;
1948 case RPROC_DETACHED:
1949 /*
1950 * A remote processor in a detached state without an
1951 * attach() function makes not sense.
1952 */
1953 if (!rproc->ops->attach)
1954 return -EINVAL;
1955 /*
1956 * When attaching to a remote processor the device memory
1957 * is already available and as such there is no need to have a
1958 * cached table.
1959 */
1960 if (rproc->cached_table)
1961 return -EINVAL;
1962 break;
1963 default:
1964 /*
1965 * When adding a remote processor, the state of the device
1966 * can be offline or detached, nothing else.
1967 */
1968 return -EINVAL;
1969 }
1970
1971 return 0;
1972 }
1973
1974 /**
1975 * rproc_add() - register a remote processor
1976 * @rproc: the remote processor handle to register
1977 *
1978 * Registers @rproc with the remoteproc framework, after it has been
1979 * allocated with rproc_alloc().
1980 *
1981 * This is called by the platform-specific rproc implementation, whenever
1982 * a new remote processor device is probed.
1983 *
1984 * Returns 0 on success and an appropriate error code otherwise.
1985 *
1986 * Note: this function initiates an asynchronous firmware loading
1987 * context, which will look for virtio devices supported by the rproc's
1988 * firmware.
1989 *
1990 * If found, those virtio devices will be created and added, so as a result
1991 * of registering this remote processor, additional virtio drivers might be
1992 * probed.
1993 */
rproc_add(struct rproc * rproc)1994 int rproc_add(struct rproc *rproc)
1995 {
1996 struct device *dev = &rproc->dev;
1997 int ret;
1998
1999 ret = device_add(dev);
2000 if (ret < 0)
2001 return ret;
2002
2003 ret = rproc_validate(rproc);
2004 if (ret < 0)
2005 return ret;
2006
2007 dev_info(dev, "%s is available\n", rproc->name);
2008
2009 /* create debugfs entries */
2010 rproc_create_debug_dir(rproc);
2011
2012 /* add char device for this remoteproc */
2013 ret = rproc_char_device_add(rproc);
2014 if (ret < 0)
2015 return ret;
2016
2017 /*
2018 * Remind ourselves the remote processor has been attached to rather
2019 * than booted by the remoteproc core. This is important because the
2020 * RPROC_DETACHED state will be lost as soon as the remote processor
2021 * has been attached to. Used in firmware_show() and reset in
2022 * rproc_stop().
2023 */
2024 if (rproc->state == RPROC_DETACHED)
2025 rproc->autonomous = true;
2026
2027 /* if rproc is marked always-on, request it to boot */
2028 if (rproc->auto_boot) {
2029 ret = rproc_trigger_auto_boot(rproc);
2030 if (ret < 0)
2031 return ret;
2032 }
2033
2034 /* expose to rproc_get_by_phandle users */
2035 mutex_lock(&rproc_list_mutex);
2036 list_add_rcu(&rproc->node, &rproc_list);
2037 mutex_unlock(&rproc_list_mutex);
2038
2039 return 0;
2040 }
2041 EXPORT_SYMBOL(rproc_add);
2042
devm_rproc_remove(void * rproc)2043 static void devm_rproc_remove(void *rproc)
2044 {
2045 rproc_del(rproc);
2046 }
2047
2048 /**
2049 * devm_rproc_add() - resource managed rproc_add()
2050 * @dev: the underlying device
2051 * @rproc: the remote processor handle to register
2052 *
2053 * This function performs like rproc_add() but the registered rproc device will
2054 * automatically be removed on driver detach.
2055 *
2056 * Returns: 0 on success, negative errno on failure
2057 */
devm_rproc_add(struct device * dev,struct rproc * rproc)2058 int devm_rproc_add(struct device *dev, struct rproc *rproc)
2059 {
2060 int err;
2061
2062 err = rproc_add(rproc);
2063 if (err)
2064 return err;
2065
2066 return devm_add_action_or_reset(dev, devm_rproc_remove, rproc);
2067 }
2068 EXPORT_SYMBOL(devm_rproc_add);
2069
2070 /**
2071 * rproc_type_release() - release a remote processor instance
2072 * @dev: the rproc's device
2073 *
2074 * This function should _never_ be called directly.
2075 *
2076 * It will be called by the driver core when no one holds a valid pointer
2077 * to @dev anymore.
2078 */
rproc_type_release(struct device * dev)2079 static void rproc_type_release(struct device *dev)
2080 {
2081 struct rproc *rproc = container_of(dev, struct rproc, dev);
2082
2083 dev_info(&rproc->dev, "releasing %s\n", rproc->name);
2084
2085 idr_destroy(&rproc->notifyids);
2086
2087 if (rproc->index >= 0)
2088 ida_simple_remove(&rproc_dev_index, rproc->index);
2089
2090 kfree_const(rproc->firmware);
2091 kfree_const(rproc->name);
2092 kfree(rproc->ops);
2093 kfree(rproc);
2094 }
2095
2096 static const struct device_type rproc_type = {
2097 .name = "remoteproc",
2098 .release = rproc_type_release,
2099 };
2100
rproc_alloc_firmware(struct rproc * rproc,const char * name,const char * firmware)2101 static int rproc_alloc_firmware(struct rproc *rproc,
2102 const char *name, const char *firmware)
2103 {
2104 const char *p;
2105
2106 /*
2107 * Allocate a firmware name if the caller gave us one to work
2108 * with. Otherwise construct a new one using a default pattern.
2109 */
2110 if (firmware)
2111 p = kstrdup_const(firmware, GFP_KERNEL);
2112 else
2113 p = kasprintf(GFP_KERNEL, "rproc-%s-fw", name);
2114
2115 if (!p)
2116 return -ENOMEM;
2117
2118 rproc->firmware = p;
2119
2120 return 0;
2121 }
2122
rproc_alloc_ops(struct rproc * rproc,const struct rproc_ops * ops)2123 static int rproc_alloc_ops(struct rproc *rproc, const struct rproc_ops *ops)
2124 {
2125 rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL);
2126 if (!rproc->ops)
2127 return -ENOMEM;
2128
2129 if (rproc->ops->load)
2130 return 0;
2131
2132 /* Default to ELF loader if no load function is specified */
2133 rproc->ops->load = rproc_elf_load_segments;
2134 rproc->ops->parse_fw = rproc_elf_load_rsc_table;
2135 rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table;
2136 rproc->ops->sanity_check = rproc_elf_sanity_check;
2137 rproc->ops->get_boot_addr = rproc_elf_get_boot_addr;
2138
2139 return 0;
2140 }
2141
2142 /**
2143 * rproc_alloc() - allocate a remote processor handle
2144 * @dev: the underlying device
2145 * @name: name of this remote processor
2146 * @ops: platform-specific handlers (mainly start/stop)
2147 * @firmware: name of firmware file to load, can be NULL
2148 * @len: length of private data needed by the rproc driver (in bytes)
2149 *
2150 * Allocates a new remote processor handle, but does not register
2151 * it yet. if @firmware is NULL, a default name is used.
2152 *
2153 * This function should be used by rproc implementations during initialization
2154 * of the remote processor.
2155 *
2156 * After creating an rproc handle using this function, and when ready,
2157 * implementations should then call rproc_add() to complete
2158 * the registration of the remote processor.
2159 *
2160 * On success the new rproc is returned, and on failure, NULL.
2161 *
2162 * Note: _never_ directly deallocate @rproc, even if it was not registered
2163 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free().
2164 */
rproc_alloc(struct device * dev,const char * name,const struct rproc_ops * ops,const char * firmware,int len)2165 struct rproc *rproc_alloc(struct device *dev, const char *name,
2166 const struct rproc_ops *ops,
2167 const char *firmware, int len)
2168 {
2169 struct rproc *rproc;
2170
2171 if (!dev || !name || !ops)
2172 return NULL;
2173
2174 rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
2175 if (!rproc)
2176 return NULL;
2177
2178 rproc->priv = &rproc[1];
2179 rproc->auto_boot = true;
2180 rproc->elf_class = ELFCLASSNONE;
2181 rproc->elf_machine = EM_NONE;
2182
2183 device_initialize(&rproc->dev);
2184 rproc->dev.parent = dev;
2185 rproc->dev.type = &rproc_type;
2186 rproc->dev.class = &rproc_class;
2187 rproc->dev.driver_data = rproc;
2188 idr_init(&rproc->notifyids);
2189
2190 rproc->name = kstrdup_const(name, GFP_KERNEL);
2191 if (!rproc->name)
2192 goto put_device;
2193
2194 if (rproc_alloc_firmware(rproc, name, firmware))
2195 goto put_device;
2196
2197 if (rproc_alloc_ops(rproc, ops))
2198 goto put_device;
2199
2200 /* Assign a unique device index and name */
2201 rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
2202 if (rproc->index < 0) {
2203 dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
2204 goto put_device;
2205 }
2206
2207 dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
2208
2209 atomic_set(&rproc->power, 0);
2210
2211 mutex_init(&rproc->lock);
2212
2213 INIT_LIST_HEAD(&rproc->carveouts);
2214 INIT_LIST_HEAD(&rproc->mappings);
2215 INIT_LIST_HEAD(&rproc->traces);
2216 INIT_LIST_HEAD(&rproc->rvdevs);
2217 INIT_LIST_HEAD(&rproc->subdevs);
2218 INIT_LIST_HEAD(&rproc->dump_segments);
2219
2220 INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
2221
2222 rproc->state = RPROC_OFFLINE;
2223
2224 return rproc;
2225
2226 put_device:
2227 put_device(&rproc->dev);
2228 return NULL;
2229 }
2230 EXPORT_SYMBOL(rproc_alloc);
2231
2232 /**
2233 * rproc_free() - unroll rproc_alloc()
2234 * @rproc: the remote processor handle
2235 *
2236 * This function decrements the rproc dev refcount.
2237 *
2238 * If no one holds any reference to rproc anymore, then its refcount would
2239 * now drop to zero, and it would be freed.
2240 */
rproc_free(struct rproc * rproc)2241 void rproc_free(struct rproc *rproc)
2242 {
2243 put_device(&rproc->dev);
2244 }
2245 EXPORT_SYMBOL(rproc_free);
2246
2247 /**
2248 * rproc_put() - release rproc reference
2249 * @rproc: the remote processor handle
2250 *
2251 * This function decrements the rproc dev refcount.
2252 *
2253 * If no one holds any reference to rproc anymore, then its refcount would
2254 * now drop to zero, and it would be freed.
2255 */
rproc_put(struct rproc * rproc)2256 void rproc_put(struct rproc *rproc)
2257 {
2258 module_put(rproc->dev.parent->driver->owner);
2259 put_device(&rproc->dev);
2260 }
2261 EXPORT_SYMBOL(rproc_put);
2262
2263 /**
2264 * rproc_del() - unregister a remote processor
2265 * @rproc: rproc handle to unregister
2266 *
2267 * This function should be called when the platform specific rproc
2268 * implementation decides to remove the rproc device. it should
2269 * _only_ be called if a previous invocation of rproc_add()
2270 * has completed successfully.
2271 *
2272 * After rproc_del() returns, @rproc isn't freed yet, because
2273 * of the outstanding reference created by rproc_alloc. To decrement that
2274 * one last refcount, one still needs to call rproc_free().
2275 *
2276 * Returns 0 on success and -EINVAL if @rproc isn't valid.
2277 */
rproc_del(struct rproc * rproc)2278 int rproc_del(struct rproc *rproc)
2279 {
2280 if (!rproc)
2281 return -EINVAL;
2282
2283 /* if rproc is marked always-on, rproc_add() booted it */
2284 /* TODO: make sure this works with rproc->power > 1 */
2285 if (rproc->auto_boot)
2286 rproc_shutdown(rproc);
2287
2288 mutex_lock(&rproc->lock);
2289 rproc->state = RPROC_DELETED;
2290 mutex_unlock(&rproc->lock);
2291
2292 rproc_delete_debug_dir(rproc);
2293 rproc_char_device_remove(rproc);
2294
2295 /* the rproc is downref'ed as soon as it's removed from the klist */
2296 mutex_lock(&rproc_list_mutex);
2297 list_del_rcu(&rproc->node);
2298 mutex_unlock(&rproc_list_mutex);
2299
2300 /* Ensure that no readers of rproc_list are still active */
2301 synchronize_rcu();
2302
2303 device_del(&rproc->dev);
2304
2305 return 0;
2306 }
2307 EXPORT_SYMBOL(rproc_del);
2308
devm_rproc_free(struct device * dev,void * res)2309 static void devm_rproc_free(struct device *dev, void *res)
2310 {
2311 rproc_free(*(struct rproc **)res);
2312 }
2313
2314 /**
2315 * devm_rproc_alloc() - resource managed rproc_alloc()
2316 * @dev: the underlying device
2317 * @name: name of this remote processor
2318 * @ops: platform-specific handlers (mainly start/stop)
2319 * @firmware: name of firmware file to load, can be NULL
2320 * @len: length of private data needed by the rproc driver (in bytes)
2321 *
2322 * This function performs like rproc_alloc() but the acquired rproc device will
2323 * automatically be released on driver detach.
2324 *
2325 * Returns: new rproc instance, or NULL on failure
2326 */
devm_rproc_alloc(struct device * dev,const char * name,const struct rproc_ops * ops,const char * firmware,int len)2327 struct rproc *devm_rproc_alloc(struct device *dev, const char *name,
2328 const struct rproc_ops *ops,
2329 const char *firmware, int len)
2330 {
2331 struct rproc **ptr, *rproc;
2332
2333 ptr = devres_alloc(devm_rproc_free, sizeof(*ptr), GFP_KERNEL);
2334 if (!ptr)
2335 return NULL;
2336
2337 rproc = rproc_alloc(dev, name, ops, firmware, len);
2338 if (rproc) {
2339 *ptr = rproc;
2340 devres_add(dev, ptr);
2341 } else {
2342 devres_free(ptr);
2343 }
2344
2345 return rproc;
2346 }
2347 EXPORT_SYMBOL(devm_rproc_alloc);
2348
2349 /**
2350 * rproc_add_subdev() - add a subdevice to a remoteproc
2351 * @rproc: rproc handle to add the subdevice to
2352 * @subdev: subdev handle to register
2353 *
2354 * Caller is responsible for populating optional subdevice function pointers.
2355 */
rproc_add_subdev(struct rproc * rproc,struct rproc_subdev * subdev)2356 void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2357 {
2358 list_add_tail(&subdev->node, &rproc->subdevs);
2359 }
2360 EXPORT_SYMBOL(rproc_add_subdev);
2361
2362 /**
2363 * rproc_remove_subdev() - remove a subdevice from a remoteproc
2364 * @rproc: rproc handle to remove the subdevice from
2365 * @subdev: subdev handle, previously registered with rproc_add_subdev()
2366 */
rproc_remove_subdev(struct rproc * rproc,struct rproc_subdev * subdev)2367 void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2368 {
2369 list_del(&subdev->node);
2370 }
2371 EXPORT_SYMBOL(rproc_remove_subdev);
2372
2373 /**
2374 * rproc_get_by_child() - acquire rproc handle of @dev's ancestor
2375 * @dev: child device to find ancestor of
2376 *
2377 * Returns the ancestor rproc instance, or NULL if not found.
2378 */
rproc_get_by_child(struct device * dev)2379 struct rproc *rproc_get_by_child(struct device *dev)
2380 {
2381 for (dev = dev->parent; dev; dev = dev->parent) {
2382 if (dev->type == &rproc_type)
2383 return dev->driver_data;
2384 }
2385
2386 return NULL;
2387 }
2388 EXPORT_SYMBOL(rproc_get_by_child);
2389
2390 /**
2391 * rproc_report_crash() - rproc crash reporter function
2392 * @rproc: remote processor
2393 * @type: crash type
2394 *
2395 * This function must be called every time a crash is detected by the low-level
2396 * drivers implementing a specific remoteproc. This should not be called from a
2397 * non-remoteproc driver.
2398 *
2399 * This function can be called from atomic/interrupt context.
2400 */
rproc_report_crash(struct rproc * rproc,enum rproc_crash_type type)2401 void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
2402 {
2403 if (!rproc) {
2404 pr_err("NULL rproc pointer\n");
2405 return;
2406 }
2407
2408 /* Prevent suspend while the remoteproc is being recovered */
2409 pm_stay_awake(rproc->dev.parent);
2410
2411 dev_err(&rproc->dev, "crash detected in %s: type %s\n",
2412 rproc->name, rproc_crash_to_string(type));
2413
2414 /* create a new task to handle the error */
2415 schedule_work(&rproc->crash_handler);
2416 }
2417 EXPORT_SYMBOL(rproc_report_crash);
2418
rproc_panic_handler(struct notifier_block * nb,unsigned long event,void * ptr)2419 static int rproc_panic_handler(struct notifier_block *nb, unsigned long event,
2420 void *ptr)
2421 {
2422 unsigned int longest = 0;
2423 struct rproc *rproc;
2424 unsigned int d;
2425
2426 rcu_read_lock();
2427 list_for_each_entry_rcu(rproc, &rproc_list, node) {
2428 if (!rproc->ops->panic || rproc->state != RPROC_RUNNING)
2429 continue;
2430
2431 d = rproc->ops->panic(rproc);
2432 longest = max(longest, d);
2433 }
2434 rcu_read_unlock();
2435
2436 /*
2437 * Delay for the longest requested duration before returning. This can
2438 * be used by the remoteproc drivers to give the remote processor time
2439 * to perform any requested operations (such as flush caches), when
2440 * it's not possible to signal the Linux side due to the panic.
2441 */
2442 mdelay(longest);
2443
2444 return NOTIFY_DONE;
2445 }
2446
rproc_init_panic(void)2447 static void __init rproc_init_panic(void)
2448 {
2449 rproc_panic_nb.notifier_call = rproc_panic_handler;
2450 atomic_notifier_chain_register(&panic_notifier_list, &rproc_panic_nb);
2451 }
2452
rproc_exit_panic(void)2453 static void __exit rproc_exit_panic(void)
2454 {
2455 atomic_notifier_chain_unregister(&panic_notifier_list, &rproc_panic_nb);
2456 }
2457
remoteproc_init(void)2458 static int __init remoteproc_init(void)
2459 {
2460 rproc_init_sysfs();
2461 rproc_init_debugfs();
2462 rproc_init_cdev();
2463 rproc_init_panic();
2464
2465 return 0;
2466 }
2467 subsys_initcall(remoteproc_init);
2468
remoteproc_exit(void)2469 static void __exit remoteproc_exit(void)
2470 {
2471 ida_destroy(&rproc_dev_index);
2472
2473 rproc_exit_panic();
2474 rproc_exit_debugfs();
2475 rproc_exit_sysfs();
2476 }
2477 module_exit(remoteproc_exit);
2478
2479 MODULE_LICENSE("GPL v2");
2480 MODULE_DESCRIPTION("Generic Remote Processor Framework");
2481