1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Remote Processor Framework
4 *
5 * Copyright (C) 2011 Texas Instruments, Inc.
6 * Copyright (C) 2011 Google, Inc.
7 *
8 * Ohad Ben-Cohen <ohad@wizery.com>
9 * Brian Swetland <swetland@google.com>
10 * Mark Grosen <mgrosen@ti.com>
11 * Fernando Guzman Lugo <fernando.lugo@ti.com>
12 * Suman Anna <s-anna@ti.com>
13 * Robert Tivy <rtivy@ti.com>
14 * Armando Uribe De Leon <x0095078@ti.com>
15 */
16
17 #define pr_fmt(fmt) "%s: " fmt, __func__
18
19 #include <linux/delay.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/device.h>
23 #include <linux/panic_notifier.h>
24 #include <linux/slab.h>
25 #include <linux/mutex.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/firmware.h>
28 #include <linux/string.h>
29 #include <linux/debugfs.h>
30 #include <linux/rculist.h>
31 #include <linux/remoteproc.h>
32 #include <linux/iommu.h>
33 #include <linux/idr.h>
34 #include <linux/elf.h>
35 #include <linux/crc32.h>
36 #include <linux/of_reserved_mem.h>
37 #include <linux/virtio_ids.h>
38 #include <linux/virtio_ring.h>
39 #include <asm/byteorder.h>
40 #include <linux/platform_device.h>
41
42 #include "remoteproc_internal.h"
43
44 #define HIGH_BITS_MASK 0xFFFFFFFF00000000ULL
45
46 static DEFINE_MUTEX(rproc_list_mutex);
47 static LIST_HEAD(rproc_list);
48 static struct notifier_block rproc_panic_nb;
49
50 typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
51 void *, int offset, int avail);
52
53 static int rproc_alloc_carveout(struct rproc *rproc,
54 struct rproc_mem_entry *mem);
55 static int rproc_release_carveout(struct rproc *rproc,
56 struct rproc_mem_entry *mem);
57
58 /* Unique indices for remoteproc devices */
59 static DEFINE_IDA(rproc_dev_index);
60 static struct workqueue_struct *rproc_recovery_wq;
61
62 static const char * const rproc_crash_names[] = {
63 [RPROC_MMUFAULT] = "mmufault",
64 [RPROC_WATCHDOG] = "watchdog",
65 [RPROC_FATAL_ERROR] = "fatal error",
66 };
67
68 /* translate rproc_crash_type to string */
rproc_crash_to_string(enum rproc_crash_type type)69 static const char *rproc_crash_to_string(enum rproc_crash_type type)
70 {
71 if (type < ARRAY_SIZE(rproc_crash_names))
72 return rproc_crash_names[type];
73 return "unknown";
74 }
75
76 /*
77 * This is the IOMMU fault handler we register with the IOMMU API
78 * (when relevant; not all remote processors access memory through
79 * an IOMMU).
80 *
81 * IOMMU core will invoke this handler whenever the remote processor
82 * will try to access an unmapped device address.
83 */
rproc_iommu_fault(struct iommu_domain * domain,struct device * dev,unsigned long iova,int flags,void * token)84 static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
85 unsigned long iova, int flags, void *token)
86 {
87 struct rproc *rproc = token;
88
89 dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
90
91 rproc_report_crash(rproc, RPROC_MMUFAULT);
92
93 /*
94 * Let the iommu core know we're not really handling this fault;
95 * we just used it as a recovery trigger.
96 */
97 return -ENOSYS;
98 }
99
rproc_enable_iommu(struct rproc * rproc)100 static int rproc_enable_iommu(struct rproc *rproc)
101 {
102 struct iommu_domain *domain;
103 struct device *dev = rproc->dev.parent;
104 int ret;
105
106 if (!rproc->has_iommu) {
107 dev_dbg(dev, "iommu not present\n");
108 return 0;
109 }
110
111 domain = iommu_domain_alloc(dev->bus);
112 if (!domain) {
113 dev_err(dev, "can't alloc iommu domain\n");
114 return -ENOMEM;
115 }
116
117 iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
118
119 ret = iommu_attach_device(domain, dev);
120 if (ret) {
121 dev_err(dev, "can't attach iommu device: %d\n", ret);
122 goto free_domain;
123 }
124
125 rproc->domain = domain;
126
127 return 0;
128
129 free_domain:
130 iommu_domain_free(domain);
131 return ret;
132 }
133
rproc_disable_iommu(struct rproc * rproc)134 static void rproc_disable_iommu(struct rproc *rproc)
135 {
136 struct iommu_domain *domain = rproc->domain;
137 struct device *dev = rproc->dev.parent;
138
139 if (!domain)
140 return;
141
142 iommu_detach_device(domain, dev);
143 iommu_domain_free(domain);
144 }
145
rproc_va_to_pa(void * cpu_addr)146 phys_addr_t rproc_va_to_pa(void *cpu_addr)
147 {
148 /*
149 * Return physical address according to virtual address location
150 * - in vmalloc: if region ioremapped or defined as dma_alloc_coherent
151 * - in kernel: if region allocated in generic dma memory pool
152 */
153 if (is_vmalloc_addr(cpu_addr)) {
154 return page_to_phys(vmalloc_to_page(cpu_addr)) +
155 offset_in_page(cpu_addr);
156 }
157
158 WARN_ON(!virt_addr_valid(cpu_addr));
159 return virt_to_phys(cpu_addr);
160 }
161 EXPORT_SYMBOL(rproc_va_to_pa);
162
163 /**
164 * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
165 * @rproc: handle of a remote processor
166 * @da: remoteproc device address to translate
167 * @len: length of the memory region @da is pointing to
168 * @is_iomem: optional pointer filled in to indicate if @da is iomapped memory
169 *
170 * Some remote processors will ask us to allocate them physically contiguous
171 * memory regions (which we call "carveouts"), and map them to specific
172 * device addresses (which are hardcoded in the firmware). They may also have
173 * dedicated memory regions internal to the processors, and use them either
174 * exclusively or alongside carveouts.
175 *
176 * They may then ask us to copy objects into specific device addresses (e.g.
177 * code/data sections) or expose us certain symbols in other device address
178 * (e.g. their trace buffer).
179 *
180 * This function is a helper function with which we can go over the allocated
181 * carveouts and translate specific device addresses to kernel virtual addresses
182 * so we can access the referenced memory. This function also allows to perform
183 * translations on the internal remoteproc memory regions through a platform
184 * implementation specific da_to_va ops, if present.
185 *
186 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
187 * but only on kernel direct mapped RAM memory. Instead, we're just using
188 * here the output of the DMA API for the carveouts, which should be more
189 * correct.
190 *
191 * Return: a valid kernel address on success or NULL on failure
192 */
rproc_da_to_va(struct rproc * rproc,u64 da,size_t len,bool * is_iomem)193 void *rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
194 {
195 struct rproc_mem_entry *carveout;
196 void *ptr = NULL;
197
198 if (rproc->ops->da_to_va) {
199 ptr = rproc->ops->da_to_va(rproc, da, len, is_iomem);
200 if (ptr)
201 goto out;
202 }
203
204 list_for_each_entry(carveout, &rproc->carveouts, node) {
205 int offset = da - carveout->da;
206
207 /* Verify that carveout is allocated */
208 if (!carveout->va)
209 continue;
210
211 /* try next carveout if da is too small */
212 if (offset < 0)
213 continue;
214
215 /* try next carveout if da is too large */
216 if (offset + len > carveout->len)
217 continue;
218
219 ptr = carveout->va + offset;
220
221 if (is_iomem)
222 *is_iomem = carveout->is_iomem;
223
224 break;
225 }
226
227 out:
228 return ptr;
229 }
230 EXPORT_SYMBOL(rproc_da_to_va);
231
232 /**
233 * rproc_find_carveout_by_name() - lookup the carveout region by a name
234 * @rproc: handle of a remote processor
235 * @name: carveout name to find (format string)
236 * @...: optional parameters matching @name string
237 *
238 * Platform driver has the capability to register some pre-allacoted carveout
239 * (physically contiguous memory regions) before rproc firmware loading and
240 * associated resource table analysis. These regions may be dedicated memory
241 * regions internal to the coprocessor or specified DDR region with specific
242 * attributes
243 *
244 * This function is a helper function with which we can go over the
245 * allocated carveouts and return associated region characteristics like
246 * coprocessor address, length or processor virtual address.
247 *
248 * Return: a valid pointer on carveout entry on success or NULL on failure.
249 */
250 __printf(2, 3)
251 struct rproc_mem_entry *
rproc_find_carveout_by_name(struct rproc * rproc,const char * name,...)252 rproc_find_carveout_by_name(struct rproc *rproc, const char *name, ...)
253 {
254 va_list args;
255 char _name[32];
256 struct rproc_mem_entry *carveout, *mem = NULL;
257
258 if (!name)
259 return NULL;
260
261 va_start(args, name);
262 vsnprintf(_name, sizeof(_name), name, args);
263 va_end(args);
264
265 list_for_each_entry(carveout, &rproc->carveouts, node) {
266 /* Compare carveout and requested names */
267 if (!strcmp(carveout->name, _name)) {
268 mem = carveout;
269 break;
270 }
271 }
272
273 return mem;
274 }
275
276 /**
277 * rproc_check_carveout_da() - Check specified carveout da configuration
278 * @rproc: handle of a remote processor
279 * @mem: pointer on carveout to check
280 * @da: area device address
281 * @len: associated area size
282 *
283 * This function is a helper function to verify requested device area (couple
284 * da, len) is part of specified carveout.
285 * If da is not set (defined as FW_RSC_ADDR_ANY), only requested length is
286 * checked.
287 *
288 * Return: 0 if carveout matches request else error
289 */
rproc_check_carveout_da(struct rproc * rproc,struct rproc_mem_entry * mem,u32 da,u32 len)290 static int rproc_check_carveout_da(struct rproc *rproc,
291 struct rproc_mem_entry *mem, u32 da, u32 len)
292 {
293 struct device *dev = &rproc->dev;
294 int delta;
295
296 /* Check requested resource length */
297 if (len > mem->len) {
298 dev_err(dev, "Registered carveout doesn't fit len request\n");
299 return -EINVAL;
300 }
301
302 if (da != FW_RSC_ADDR_ANY && mem->da == FW_RSC_ADDR_ANY) {
303 /* Address doesn't match registered carveout configuration */
304 return -EINVAL;
305 } else if (da != FW_RSC_ADDR_ANY && mem->da != FW_RSC_ADDR_ANY) {
306 delta = da - mem->da;
307
308 /* Check requested resource belongs to registered carveout */
309 if (delta < 0) {
310 dev_err(dev,
311 "Registered carveout doesn't fit da request\n");
312 return -EINVAL;
313 }
314
315 if (delta + len > mem->len) {
316 dev_err(dev,
317 "Registered carveout doesn't fit len request\n");
318 return -EINVAL;
319 }
320 }
321
322 return 0;
323 }
324
rproc_alloc_vring(struct rproc_vdev * rvdev,int i)325 int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
326 {
327 struct rproc *rproc = rvdev->rproc;
328 struct device *dev = &rproc->dev;
329 struct rproc_vring *rvring = &rvdev->vring[i];
330 struct fw_rsc_vdev *rsc;
331 int ret, notifyid;
332 struct rproc_mem_entry *mem;
333 size_t size;
334
335 /* actual size of vring (in bytes) */
336 size = PAGE_ALIGN(vring_size(rvring->num, rvring->align));
337
338 rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
339
340 /* Search for pre-registered carveout */
341 mem = rproc_find_carveout_by_name(rproc, "vdev%dvring%d", rvdev->index,
342 i);
343 if (mem) {
344 if (rproc_check_carveout_da(rproc, mem, rsc->vring[i].da, size))
345 return -ENOMEM;
346 } else {
347 /* Register carveout in list */
348 mem = rproc_mem_entry_init(dev, NULL, 0,
349 size, rsc->vring[i].da,
350 rproc_alloc_carveout,
351 rproc_release_carveout,
352 "vdev%dvring%d",
353 rvdev->index, i);
354 if (!mem) {
355 dev_err(dev, "Can't allocate memory entry structure\n");
356 return -ENOMEM;
357 }
358
359 rproc_add_carveout(rproc, mem);
360 }
361
362 /*
363 * Assign an rproc-wide unique index for this vring
364 * TODO: assign a notifyid for rvdev updates as well
365 * TODO: support predefined notifyids (via resource table)
366 */
367 ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
368 if (ret < 0) {
369 dev_err(dev, "idr_alloc failed: %d\n", ret);
370 return ret;
371 }
372 notifyid = ret;
373
374 /* Potentially bump max_notifyid */
375 if (notifyid > rproc->max_notifyid)
376 rproc->max_notifyid = notifyid;
377
378 rvring->notifyid = notifyid;
379
380 /* Let the rproc know the notifyid of this vring.*/
381 rsc->vring[i].notifyid = notifyid;
382 return 0;
383 }
384
385 int
rproc_parse_vring(struct rproc_vdev * rvdev,struct fw_rsc_vdev * rsc,int i)386 rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
387 {
388 struct rproc *rproc = rvdev->rproc;
389 struct device *dev = &rproc->dev;
390 struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
391 struct rproc_vring *rvring = &rvdev->vring[i];
392
393 dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n",
394 i, vring->da, vring->num, vring->align);
395
396 /* verify queue size and vring alignment are sane */
397 if (!vring->num || !vring->align) {
398 dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
399 vring->num, vring->align);
400 return -EINVAL;
401 }
402
403 rvring->num = vring->num;
404 rvring->align = vring->align;
405 rvring->rvdev = rvdev;
406
407 return 0;
408 }
409
rproc_free_vring(struct rproc_vring * rvring)410 void rproc_free_vring(struct rproc_vring *rvring)
411 {
412 struct rproc *rproc = rvring->rvdev->rproc;
413 int idx = rvring - rvring->rvdev->vring;
414 struct fw_rsc_vdev *rsc;
415
416 idr_remove(&rproc->notifyids, rvring->notifyid);
417
418 /*
419 * At this point rproc_stop() has been called and the installed resource
420 * table in the remote processor memory may no longer be accessible. As
421 * such and as per rproc_stop(), rproc->table_ptr points to the cached
422 * resource table (rproc->cached_table). The cached resource table is
423 * only available when a remote processor has been booted by the
424 * remoteproc core, otherwise it is NULL.
425 *
426 * Based on the above, reset the virtio device section in the cached
427 * resource table only if there is one to work with.
428 */
429 if (rproc->table_ptr) {
430 rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
431 rsc->vring[idx].da = 0;
432 rsc->vring[idx].notifyid = -1;
433 }
434 }
435
rproc_add_rvdev(struct rproc * rproc,struct rproc_vdev * rvdev)436 void rproc_add_rvdev(struct rproc *rproc, struct rproc_vdev *rvdev)
437 {
438 if (rvdev && rproc)
439 list_add_tail(&rvdev->node, &rproc->rvdevs);
440 }
441
rproc_remove_rvdev(struct rproc_vdev * rvdev)442 void rproc_remove_rvdev(struct rproc_vdev *rvdev)
443 {
444 if (rvdev)
445 list_del(&rvdev->node);
446 }
447 /**
448 * rproc_handle_vdev() - handle a vdev fw resource
449 * @rproc: the remote processor
450 * @ptr: the vring resource descriptor
451 * @offset: offset of the resource entry
452 * @avail: size of available data (for sanity checking the image)
453 *
454 * This resource entry requests the host to statically register a virtio
455 * device (vdev), and setup everything needed to support it. It contains
456 * everything needed to make it possible: the virtio device id, virtio
457 * device features, vrings information, virtio config space, etc...
458 *
459 * Before registering the vdev, the vrings are allocated from non-cacheable
460 * physically contiguous memory. Currently we only support two vrings per
461 * remote processor (temporary limitation). We might also want to consider
462 * doing the vring allocation only later when ->find_vqs() is invoked, and
463 * then release them upon ->del_vqs().
464 *
465 * Note: @da is currently not really handled correctly: we dynamically
466 * allocate it using the DMA API, ignoring requested hard coded addresses,
467 * and we don't take care of any required IOMMU programming. This is all
468 * going to be taken care of when the generic iommu-based DMA API will be
469 * merged. Meanwhile, statically-addressed iommu-based firmware images should
470 * use RSC_DEVMEM resource entries to map their required @da to the physical
471 * address of their base CMA region (ouch, hacky!).
472 *
473 * Return: 0 on success, or an appropriate error code otherwise
474 */
rproc_handle_vdev(struct rproc * rproc,void * ptr,int offset,int avail)475 static int rproc_handle_vdev(struct rproc *rproc, void *ptr,
476 int offset, int avail)
477 {
478 struct fw_rsc_vdev *rsc = ptr;
479 struct device *dev = &rproc->dev;
480 struct rproc_vdev *rvdev;
481 size_t rsc_size;
482 struct rproc_vdev_data rvdev_data;
483 struct platform_device *pdev;
484
485 /* make sure resource isn't truncated */
486 rsc_size = struct_size(rsc, vring, rsc->num_of_vrings);
487 if (size_add(rsc_size, rsc->config_len) > avail) {
488 dev_err(dev, "vdev rsc is truncated\n");
489 return -EINVAL;
490 }
491
492 /* make sure reserved bytes are zeroes */
493 if (rsc->reserved[0] || rsc->reserved[1]) {
494 dev_err(dev, "vdev rsc has non zero reserved bytes\n");
495 return -EINVAL;
496 }
497
498 dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n",
499 rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
500
501 /* we currently support only two vrings per rvdev */
502 if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
503 dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
504 return -EINVAL;
505 }
506
507 rvdev_data.id = rsc->id;
508 rvdev_data.index = rproc->nb_vdev++;
509 rvdev_data.rsc_offset = offset;
510 rvdev_data.rsc = rsc;
511
512 pdev = platform_device_register_data(dev, "rproc-virtio", rvdev_data.index, &rvdev_data,
513 sizeof(rvdev_data));
514 if (IS_ERR(pdev)) {
515 dev_err(dev, "failed to create rproc-virtio device\n");
516 return PTR_ERR(pdev);
517 }
518
519 return 0;
520 }
521
522 /**
523 * rproc_handle_trace() - handle a shared trace buffer resource
524 * @rproc: the remote processor
525 * @ptr: the trace resource descriptor
526 * @offset: offset of the resource entry
527 * @avail: size of available data (for sanity checking the image)
528 *
529 * In case the remote processor dumps trace logs into memory,
530 * export it via debugfs.
531 *
532 * Currently, the 'da' member of @rsc should contain the device address
533 * where the remote processor is dumping the traces. Later we could also
534 * support dynamically allocating this address using the generic
535 * DMA API (but currently there isn't a use case for that).
536 *
537 * Return: 0 on success, or an appropriate error code otherwise
538 */
rproc_handle_trace(struct rproc * rproc,void * ptr,int offset,int avail)539 static int rproc_handle_trace(struct rproc *rproc, void *ptr,
540 int offset, int avail)
541 {
542 struct fw_rsc_trace *rsc = ptr;
543 struct rproc_debug_trace *trace;
544 struct device *dev = &rproc->dev;
545 char name[15];
546
547 if (sizeof(*rsc) > avail) {
548 dev_err(dev, "trace rsc is truncated\n");
549 return -EINVAL;
550 }
551
552 /* make sure reserved bytes are zeroes */
553 if (rsc->reserved) {
554 dev_err(dev, "trace rsc has non zero reserved bytes\n");
555 return -EINVAL;
556 }
557
558 trace = kzalloc(sizeof(*trace), GFP_KERNEL);
559 if (!trace)
560 return -ENOMEM;
561
562 /* set the trace buffer dma properties */
563 trace->trace_mem.len = rsc->len;
564 trace->trace_mem.da = rsc->da;
565
566 /* set pointer on rproc device */
567 trace->rproc = rproc;
568
569 /* make sure snprintf always null terminates, even if truncating */
570 snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
571
572 /* create the debugfs entry */
573 trace->tfile = rproc_create_trace_file(name, rproc, trace);
574
575 list_add_tail(&trace->node, &rproc->traces);
576
577 rproc->num_traces++;
578
579 dev_dbg(dev, "%s added: da 0x%x, len 0x%x\n",
580 name, rsc->da, rsc->len);
581
582 return 0;
583 }
584
585 /**
586 * rproc_handle_devmem() - handle devmem resource entry
587 * @rproc: remote processor handle
588 * @ptr: the devmem resource entry
589 * @offset: offset of the resource entry
590 * @avail: size of available data (for sanity checking the image)
591 *
592 * Remote processors commonly need to access certain on-chip peripherals.
593 *
594 * Some of these remote processors access memory via an iommu device,
595 * and might require us to configure their iommu before they can access
596 * the on-chip peripherals they need.
597 *
598 * This resource entry is a request to map such a peripheral device.
599 *
600 * These devmem entries will contain the physical address of the device in
601 * the 'pa' member. If a specific device address is expected, then 'da' will
602 * contain it (currently this is the only use case supported). 'len' will
603 * contain the size of the physical region we need to map.
604 *
605 * Currently we just "trust" those devmem entries to contain valid physical
606 * addresses, but this is going to change: we want the implementations to
607 * tell us ranges of physical addresses the firmware is allowed to request,
608 * and not allow firmwares to request access to physical addresses that
609 * are outside those ranges.
610 *
611 * Return: 0 on success, or an appropriate error code otherwise
612 */
rproc_handle_devmem(struct rproc * rproc,void * ptr,int offset,int avail)613 static int rproc_handle_devmem(struct rproc *rproc, void *ptr,
614 int offset, int avail)
615 {
616 struct fw_rsc_devmem *rsc = ptr;
617 struct rproc_mem_entry *mapping;
618 struct device *dev = &rproc->dev;
619 int ret;
620
621 /* no point in handling this resource without a valid iommu domain */
622 if (!rproc->domain)
623 return -EINVAL;
624
625 if (sizeof(*rsc) > avail) {
626 dev_err(dev, "devmem rsc is truncated\n");
627 return -EINVAL;
628 }
629
630 /* make sure reserved bytes are zeroes */
631 if (rsc->reserved) {
632 dev_err(dev, "devmem rsc has non zero reserved bytes\n");
633 return -EINVAL;
634 }
635
636 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
637 if (!mapping)
638 return -ENOMEM;
639
640 ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
641 if (ret) {
642 dev_err(dev, "failed to map devmem: %d\n", ret);
643 goto out;
644 }
645
646 /*
647 * We'll need this info later when we'll want to unmap everything
648 * (e.g. on shutdown).
649 *
650 * We can't trust the remote processor not to change the resource
651 * table, so we must maintain this info independently.
652 */
653 mapping->da = rsc->da;
654 mapping->len = rsc->len;
655 list_add_tail(&mapping->node, &rproc->mappings);
656
657 dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
658 rsc->pa, rsc->da, rsc->len);
659
660 return 0;
661
662 out:
663 kfree(mapping);
664 return ret;
665 }
666
667 /**
668 * rproc_alloc_carveout() - allocated specified carveout
669 * @rproc: rproc handle
670 * @mem: the memory entry to allocate
671 *
672 * This function allocate specified memory entry @mem using
673 * dma_alloc_coherent() as default allocator
674 *
675 * Return: 0 on success, or an appropriate error code otherwise
676 */
rproc_alloc_carveout(struct rproc * rproc,struct rproc_mem_entry * mem)677 static int rproc_alloc_carveout(struct rproc *rproc,
678 struct rproc_mem_entry *mem)
679 {
680 struct rproc_mem_entry *mapping = NULL;
681 struct device *dev = &rproc->dev;
682 dma_addr_t dma;
683 void *va;
684 int ret;
685
686 va = dma_alloc_coherent(dev->parent, mem->len, &dma, GFP_KERNEL);
687 if (!va) {
688 dev_err(dev->parent,
689 "failed to allocate dma memory: len 0x%zx\n",
690 mem->len);
691 return -ENOMEM;
692 }
693
694 dev_dbg(dev, "carveout va %pK, dma %pad, len 0x%zx\n",
695 va, &dma, mem->len);
696
697 if (mem->da != FW_RSC_ADDR_ANY && !rproc->domain) {
698 /*
699 * Check requested da is equal to dma address
700 * and print a warn message in case of missalignment.
701 * Don't stop rproc_start sequence as coprocessor may
702 * build pa to da translation on its side.
703 */
704 if (mem->da != (u32)dma)
705 dev_warn(dev->parent,
706 "Allocated carveout doesn't fit device address request\n");
707 }
708
709 /*
710 * Ok, this is non-standard.
711 *
712 * Sometimes we can't rely on the generic iommu-based DMA API
713 * to dynamically allocate the device address and then set the IOMMU
714 * tables accordingly, because some remote processors might
715 * _require_ us to use hard coded device addresses that their
716 * firmware was compiled with.
717 *
718 * In this case, we must use the IOMMU API directly and map
719 * the memory to the device address as expected by the remote
720 * processor.
721 *
722 * Obviously such remote processor devices should not be configured
723 * to use the iommu-based DMA API: we expect 'dma' to contain the
724 * physical address in this case.
725 */
726 if (mem->da != FW_RSC_ADDR_ANY && rproc->domain) {
727 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
728 if (!mapping) {
729 ret = -ENOMEM;
730 goto dma_free;
731 }
732
733 ret = iommu_map(rproc->domain, mem->da, dma, mem->len,
734 mem->flags);
735 if (ret) {
736 dev_err(dev, "iommu_map failed: %d\n", ret);
737 goto free_mapping;
738 }
739
740 /*
741 * We'll need this info later when we'll want to unmap
742 * everything (e.g. on shutdown).
743 *
744 * We can't trust the remote processor not to change the
745 * resource table, so we must maintain this info independently.
746 */
747 mapping->da = mem->da;
748 mapping->len = mem->len;
749 list_add_tail(&mapping->node, &rproc->mappings);
750
751 dev_dbg(dev, "carveout mapped 0x%x to %pad\n",
752 mem->da, &dma);
753 }
754
755 if (mem->da == FW_RSC_ADDR_ANY) {
756 /* Update device address as undefined by requester */
757 if ((u64)dma & HIGH_BITS_MASK)
758 dev_warn(dev, "DMA address cast in 32bit to fit resource table format\n");
759
760 mem->da = (u32)dma;
761 }
762
763 mem->dma = dma;
764 mem->va = va;
765
766 return 0;
767
768 free_mapping:
769 kfree(mapping);
770 dma_free:
771 dma_free_coherent(dev->parent, mem->len, va, dma);
772 return ret;
773 }
774
775 /**
776 * rproc_release_carveout() - release acquired carveout
777 * @rproc: rproc handle
778 * @mem: the memory entry to release
779 *
780 * This function releases specified memory entry @mem allocated via
781 * rproc_alloc_carveout() function by @rproc.
782 *
783 * Return: 0 on success, or an appropriate error code otherwise
784 */
rproc_release_carveout(struct rproc * rproc,struct rproc_mem_entry * mem)785 static int rproc_release_carveout(struct rproc *rproc,
786 struct rproc_mem_entry *mem)
787 {
788 struct device *dev = &rproc->dev;
789
790 /* clean up carveout allocations */
791 dma_free_coherent(dev->parent, mem->len, mem->va, mem->dma);
792 return 0;
793 }
794
795 /**
796 * rproc_handle_carveout() - handle phys contig memory allocation requests
797 * @rproc: rproc handle
798 * @ptr: the resource entry
799 * @offset: offset of the resource entry
800 * @avail: size of available data (for image validation)
801 *
802 * This function will handle firmware requests for allocation of physically
803 * contiguous memory regions.
804 *
805 * These request entries should come first in the firmware's resource table,
806 * as other firmware entries might request placing other data objects inside
807 * these memory regions (e.g. data/code segments, trace resource entries, ...).
808 *
809 * Allocating memory this way helps utilizing the reserved physical memory
810 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
811 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
812 * pressure is important; it may have a substantial impact on performance.
813 *
814 * Return: 0 on success, or an appropriate error code otherwise
815 */
rproc_handle_carveout(struct rproc * rproc,void * ptr,int offset,int avail)816 static int rproc_handle_carveout(struct rproc *rproc,
817 void *ptr, int offset, int avail)
818 {
819 struct fw_rsc_carveout *rsc = ptr;
820 struct rproc_mem_entry *carveout;
821 struct device *dev = &rproc->dev;
822
823 if (sizeof(*rsc) > avail) {
824 dev_err(dev, "carveout rsc is truncated\n");
825 return -EINVAL;
826 }
827
828 /* make sure reserved bytes are zeroes */
829 if (rsc->reserved) {
830 dev_err(dev, "carveout rsc has non zero reserved bytes\n");
831 return -EINVAL;
832 }
833
834 dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n",
835 rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags);
836
837 /*
838 * Check carveout rsc already part of a registered carveout,
839 * Search by name, then check the da and length
840 */
841 carveout = rproc_find_carveout_by_name(rproc, rsc->name);
842
843 if (carveout) {
844 if (carveout->rsc_offset != FW_RSC_ADDR_ANY) {
845 dev_err(dev,
846 "Carveout already associated to resource table\n");
847 return -ENOMEM;
848 }
849
850 if (rproc_check_carveout_da(rproc, carveout, rsc->da, rsc->len))
851 return -ENOMEM;
852
853 /* Update memory carveout with resource table info */
854 carveout->rsc_offset = offset;
855 carveout->flags = rsc->flags;
856
857 return 0;
858 }
859
860 /* Register carveout in list */
861 carveout = rproc_mem_entry_init(dev, NULL, 0, rsc->len, rsc->da,
862 rproc_alloc_carveout,
863 rproc_release_carveout, rsc->name);
864 if (!carveout) {
865 dev_err(dev, "Can't allocate memory entry structure\n");
866 return -ENOMEM;
867 }
868
869 carveout->flags = rsc->flags;
870 carveout->rsc_offset = offset;
871 rproc_add_carveout(rproc, carveout);
872
873 return 0;
874 }
875
876 /**
877 * rproc_add_carveout() - register an allocated carveout region
878 * @rproc: rproc handle
879 * @mem: memory entry to register
880 *
881 * This function registers specified memory entry in @rproc carveouts list.
882 * Specified carveout should have been allocated before registering.
883 */
rproc_add_carveout(struct rproc * rproc,struct rproc_mem_entry * mem)884 void rproc_add_carveout(struct rproc *rproc, struct rproc_mem_entry *mem)
885 {
886 list_add_tail(&mem->node, &rproc->carveouts);
887 }
888 EXPORT_SYMBOL(rproc_add_carveout);
889
890 /**
891 * rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct
892 * @dev: pointer on device struct
893 * @va: virtual address
894 * @dma: dma address
895 * @len: memory carveout length
896 * @da: device address
897 * @alloc: memory carveout allocation function
898 * @release: memory carveout release function
899 * @name: carveout name
900 *
901 * This function allocates a rproc_mem_entry struct and fill it with parameters
902 * provided by client.
903 *
904 * Return: a valid pointer on success, or NULL on failure
905 */
906 __printf(8, 9)
907 struct rproc_mem_entry *
rproc_mem_entry_init(struct device * dev,void * va,dma_addr_t dma,size_t len,u32 da,int (* alloc)(struct rproc *,struct rproc_mem_entry *),int (* release)(struct rproc *,struct rproc_mem_entry *),const char * name,...)908 rproc_mem_entry_init(struct device *dev,
909 void *va, dma_addr_t dma, size_t len, u32 da,
910 int (*alloc)(struct rproc *, struct rproc_mem_entry *),
911 int (*release)(struct rproc *, struct rproc_mem_entry *),
912 const char *name, ...)
913 {
914 struct rproc_mem_entry *mem;
915 va_list args;
916
917 mem = kzalloc(sizeof(*mem), GFP_KERNEL);
918 if (!mem)
919 return mem;
920
921 mem->va = va;
922 mem->dma = dma;
923 mem->da = da;
924 mem->len = len;
925 mem->alloc = alloc;
926 mem->release = release;
927 mem->rsc_offset = FW_RSC_ADDR_ANY;
928 mem->of_resm_idx = -1;
929
930 va_start(args, name);
931 vsnprintf(mem->name, sizeof(mem->name), name, args);
932 va_end(args);
933
934 return mem;
935 }
936 EXPORT_SYMBOL(rproc_mem_entry_init);
937
938 /**
939 * rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct
940 * from a reserved memory phandle
941 * @dev: pointer on device struct
942 * @of_resm_idx: reserved memory phandle index in "memory-region"
943 * @len: memory carveout length
944 * @da: device address
945 * @name: carveout name
946 *
947 * This function allocates a rproc_mem_entry struct and fill it with parameters
948 * provided by client.
949 *
950 * Return: a valid pointer on success, or NULL on failure
951 */
952 __printf(5, 6)
953 struct rproc_mem_entry *
rproc_of_resm_mem_entry_init(struct device * dev,u32 of_resm_idx,size_t len,u32 da,const char * name,...)954 rproc_of_resm_mem_entry_init(struct device *dev, u32 of_resm_idx, size_t len,
955 u32 da, const char *name, ...)
956 {
957 struct rproc_mem_entry *mem;
958 va_list args;
959
960 mem = kzalloc(sizeof(*mem), GFP_KERNEL);
961 if (!mem)
962 return mem;
963
964 mem->da = da;
965 mem->len = len;
966 mem->rsc_offset = FW_RSC_ADDR_ANY;
967 mem->of_resm_idx = of_resm_idx;
968
969 va_start(args, name);
970 vsnprintf(mem->name, sizeof(mem->name), name, args);
971 va_end(args);
972
973 return mem;
974 }
975 EXPORT_SYMBOL(rproc_of_resm_mem_entry_init);
976
977 /**
978 * rproc_of_parse_firmware() - parse and return the firmware-name
979 * @dev: pointer on device struct representing a rproc
980 * @index: index to use for the firmware-name retrieval
981 * @fw_name: pointer to a character string, in which the firmware
982 * name is returned on success and unmodified otherwise.
983 *
984 * This is an OF helper function that parses a device's DT node for
985 * the "firmware-name" property and returns the firmware name pointer
986 * in @fw_name on success.
987 *
988 * Return: 0 on success, or an appropriate failure.
989 */
rproc_of_parse_firmware(struct device * dev,int index,const char ** fw_name)990 int rproc_of_parse_firmware(struct device *dev, int index, const char **fw_name)
991 {
992 int ret;
993
994 ret = of_property_read_string_index(dev->of_node, "firmware-name",
995 index, fw_name);
996 return ret ? ret : 0;
997 }
998 EXPORT_SYMBOL(rproc_of_parse_firmware);
999
1000 /*
1001 * A lookup table for resource handlers. The indices are defined in
1002 * enum fw_resource_type.
1003 */
1004 static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
1005 [RSC_CARVEOUT] = rproc_handle_carveout,
1006 [RSC_DEVMEM] = rproc_handle_devmem,
1007 [RSC_TRACE] = rproc_handle_trace,
1008 [RSC_VDEV] = rproc_handle_vdev,
1009 };
1010
1011 /* handle firmware resource entries before booting the remote processor */
rproc_handle_resources(struct rproc * rproc,rproc_handle_resource_t handlers[RSC_LAST])1012 static int rproc_handle_resources(struct rproc *rproc,
1013 rproc_handle_resource_t handlers[RSC_LAST])
1014 {
1015 struct device *dev = &rproc->dev;
1016 rproc_handle_resource_t handler;
1017 int ret = 0, i;
1018
1019 if (!rproc->table_ptr)
1020 return 0;
1021
1022 for (i = 0; i < rproc->table_ptr->num; i++) {
1023 int offset = rproc->table_ptr->offset[i];
1024 struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
1025 int avail = rproc->table_sz - offset - sizeof(*hdr);
1026 void *rsc = (void *)hdr + sizeof(*hdr);
1027
1028 /* make sure table isn't truncated */
1029 if (avail < 0) {
1030 dev_err(dev, "rsc table is truncated\n");
1031 return -EINVAL;
1032 }
1033
1034 dev_dbg(dev, "rsc: type %d\n", hdr->type);
1035
1036 if (hdr->type >= RSC_VENDOR_START &&
1037 hdr->type <= RSC_VENDOR_END) {
1038 ret = rproc_handle_rsc(rproc, hdr->type, rsc,
1039 offset + sizeof(*hdr), avail);
1040 if (ret == RSC_HANDLED)
1041 continue;
1042 else if (ret < 0)
1043 break;
1044
1045 dev_warn(dev, "unsupported vendor resource %d\n",
1046 hdr->type);
1047 continue;
1048 }
1049
1050 if (hdr->type >= RSC_LAST) {
1051 dev_warn(dev, "unsupported resource %d\n", hdr->type);
1052 continue;
1053 }
1054
1055 handler = handlers[hdr->type];
1056 if (!handler)
1057 continue;
1058
1059 ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
1060 if (ret)
1061 break;
1062 }
1063
1064 return ret;
1065 }
1066
rproc_prepare_subdevices(struct rproc * rproc)1067 static int rproc_prepare_subdevices(struct rproc *rproc)
1068 {
1069 struct rproc_subdev *subdev;
1070 int ret;
1071
1072 list_for_each_entry(subdev, &rproc->subdevs, node) {
1073 if (subdev->prepare) {
1074 ret = subdev->prepare(subdev);
1075 if (ret)
1076 goto unroll_preparation;
1077 }
1078 }
1079
1080 return 0;
1081
1082 unroll_preparation:
1083 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1084 if (subdev->unprepare)
1085 subdev->unprepare(subdev);
1086 }
1087
1088 return ret;
1089 }
1090
rproc_start_subdevices(struct rproc * rproc)1091 static int rproc_start_subdevices(struct rproc *rproc)
1092 {
1093 struct rproc_subdev *subdev;
1094 int ret;
1095
1096 list_for_each_entry(subdev, &rproc->subdevs, node) {
1097 if (subdev->start) {
1098 ret = subdev->start(subdev);
1099 if (ret)
1100 goto unroll_registration;
1101 }
1102 }
1103
1104 return 0;
1105
1106 unroll_registration:
1107 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1108 if (subdev->stop)
1109 subdev->stop(subdev, true);
1110 }
1111
1112 return ret;
1113 }
1114
rproc_stop_subdevices(struct rproc * rproc,bool crashed)1115 static void rproc_stop_subdevices(struct rproc *rproc, bool crashed)
1116 {
1117 struct rproc_subdev *subdev;
1118
1119 list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1120 if (subdev->stop)
1121 subdev->stop(subdev, crashed);
1122 }
1123 }
1124
rproc_unprepare_subdevices(struct rproc * rproc)1125 static void rproc_unprepare_subdevices(struct rproc *rproc)
1126 {
1127 struct rproc_subdev *subdev;
1128
1129 list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1130 if (subdev->unprepare)
1131 subdev->unprepare(subdev);
1132 }
1133 }
1134
1135 /**
1136 * rproc_alloc_registered_carveouts() - allocate all carveouts registered
1137 * in the list
1138 * @rproc: the remote processor handle
1139 *
1140 * This function parses registered carveout list, performs allocation
1141 * if alloc() ops registered and updates resource table information
1142 * if rsc_offset set.
1143 *
1144 * Return: 0 on success
1145 */
rproc_alloc_registered_carveouts(struct rproc * rproc)1146 static int rproc_alloc_registered_carveouts(struct rproc *rproc)
1147 {
1148 struct rproc_mem_entry *entry, *tmp;
1149 struct fw_rsc_carveout *rsc;
1150 struct device *dev = &rproc->dev;
1151 u64 pa;
1152 int ret;
1153
1154 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1155 if (entry->alloc) {
1156 ret = entry->alloc(rproc, entry);
1157 if (ret) {
1158 dev_err(dev, "Unable to allocate carveout %s: %d\n",
1159 entry->name, ret);
1160 return -ENOMEM;
1161 }
1162 }
1163
1164 if (entry->rsc_offset != FW_RSC_ADDR_ANY) {
1165 /* update resource table */
1166 rsc = (void *)rproc->table_ptr + entry->rsc_offset;
1167
1168 /*
1169 * Some remote processors might need to know the pa
1170 * even though they are behind an IOMMU. E.g., OMAP4's
1171 * remote M3 processor needs this so it can control
1172 * on-chip hardware accelerators that are not behind
1173 * the IOMMU, and therefor must know the pa.
1174 *
1175 * Generally we don't want to expose physical addresses
1176 * if we don't have to (remote processors are generally
1177 * _not_ trusted), so we might want to do this only for
1178 * remote processor that _must_ have this (e.g. OMAP4's
1179 * dual M3 subsystem).
1180 *
1181 * Non-IOMMU processors might also want to have this info.
1182 * In this case, the device address and the physical address
1183 * are the same.
1184 */
1185
1186 /* Use va if defined else dma to generate pa */
1187 if (entry->va)
1188 pa = (u64)rproc_va_to_pa(entry->va);
1189 else
1190 pa = (u64)entry->dma;
1191
1192 if (((u64)pa) & HIGH_BITS_MASK)
1193 dev_warn(dev,
1194 "Physical address cast in 32bit to fit resource table format\n");
1195
1196 rsc->pa = (u32)pa;
1197 rsc->da = entry->da;
1198 rsc->len = entry->len;
1199 }
1200 }
1201
1202 return 0;
1203 }
1204
1205
1206 /**
1207 * rproc_resource_cleanup() - clean up and free all acquired resources
1208 * @rproc: rproc handle
1209 *
1210 * This function will free all resources acquired for @rproc, and it
1211 * is called whenever @rproc either shuts down or fails to boot.
1212 */
rproc_resource_cleanup(struct rproc * rproc)1213 void rproc_resource_cleanup(struct rproc *rproc)
1214 {
1215 struct rproc_mem_entry *entry, *tmp;
1216 struct rproc_debug_trace *trace, *ttmp;
1217 struct rproc_vdev *rvdev, *rvtmp;
1218 struct device *dev = &rproc->dev;
1219
1220 /* clean up debugfs trace entries */
1221 list_for_each_entry_safe(trace, ttmp, &rproc->traces, node) {
1222 rproc_remove_trace_file(trace->tfile);
1223 rproc->num_traces--;
1224 list_del(&trace->node);
1225 kfree(trace);
1226 }
1227
1228 /* clean up iommu mapping entries */
1229 list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
1230 size_t unmapped;
1231
1232 unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
1233 if (unmapped != entry->len) {
1234 /* nothing much to do besides complaining */
1235 dev_err(dev, "failed to unmap %zx/%zu\n", entry->len,
1236 unmapped);
1237 }
1238
1239 list_del(&entry->node);
1240 kfree(entry);
1241 }
1242
1243 /* clean up carveout allocations */
1244 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1245 if (entry->release)
1246 entry->release(rproc, entry);
1247 list_del(&entry->node);
1248 kfree(entry);
1249 }
1250
1251 /* clean up remote vdev entries */
1252 list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
1253 platform_device_unregister(rvdev->pdev);
1254
1255 rproc_coredump_cleanup(rproc);
1256 }
1257 EXPORT_SYMBOL(rproc_resource_cleanup);
1258
rproc_start(struct rproc * rproc,const struct firmware * fw)1259 static int rproc_start(struct rproc *rproc, const struct firmware *fw)
1260 {
1261 struct resource_table *loaded_table;
1262 struct device *dev = &rproc->dev;
1263 int ret;
1264
1265 /* load the ELF segments to memory */
1266 ret = rproc_load_segments(rproc, fw);
1267 if (ret) {
1268 dev_err(dev, "Failed to load program segments: %d\n", ret);
1269 return ret;
1270 }
1271
1272 /*
1273 * The starting device has been given the rproc->cached_table as the
1274 * resource table. The address of the vring along with the other
1275 * allocated resources (carveouts etc) is stored in cached_table.
1276 * In order to pass this information to the remote device we must copy
1277 * this information to device memory. We also update the table_ptr so
1278 * that any subsequent changes will be applied to the loaded version.
1279 */
1280 loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
1281 if (loaded_table) {
1282 memcpy(loaded_table, rproc->cached_table, rproc->table_sz);
1283 rproc->table_ptr = loaded_table;
1284 }
1285
1286 ret = rproc_prepare_subdevices(rproc);
1287 if (ret) {
1288 dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1289 rproc->name, ret);
1290 goto reset_table_ptr;
1291 }
1292
1293 /* power up the remote processor */
1294 ret = rproc->ops->start(rproc);
1295 if (ret) {
1296 dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
1297 goto unprepare_subdevices;
1298 }
1299
1300 /* Start any subdevices for the remote processor */
1301 ret = rproc_start_subdevices(rproc);
1302 if (ret) {
1303 dev_err(dev, "failed to probe subdevices for %s: %d\n",
1304 rproc->name, ret);
1305 goto stop_rproc;
1306 }
1307
1308 rproc->state = RPROC_RUNNING;
1309
1310 dev_info(dev, "remote processor %s is now up\n", rproc->name);
1311
1312 return 0;
1313
1314 stop_rproc:
1315 rproc->ops->stop(rproc);
1316 unprepare_subdevices:
1317 rproc_unprepare_subdevices(rproc);
1318 reset_table_ptr:
1319 rproc->table_ptr = rproc->cached_table;
1320
1321 return ret;
1322 }
1323
__rproc_attach(struct rproc * rproc)1324 static int __rproc_attach(struct rproc *rproc)
1325 {
1326 struct device *dev = &rproc->dev;
1327 int ret;
1328
1329 ret = rproc_prepare_subdevices(rproc);
1330 if (ret) {
1331 dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1332 rproc->name, ret);
1333 goto out;
1334 }
1335
1336 /* Attach to the remote processor */
1337 ret = rproc_attach_device(rproc);
1338 if (ret) {
1339 dev_err(dev, "can't attach to rproc %s: %d\n",
1340 rproc->name, ret);
1341 goto unprepare_subdevices;
1342 }
1343
1344 /* Start any subdevices for the remote processor */
1345 ret = rproc_start_subdevices(rproc);
1346 if (ret) {
1347 dev_err(dev, "failed to probe subdevices for %s: %d\n",
1348 rproc->name, ret);
1349 goto stop_rproc;
1350 }
1351
1352 rproc->state = RPROC_ATTACHED;
1353
1354 dev_info(dev, "remote processor %s is now attached\n", rproc->name);
1355
1356 return 0;
1357
1358 stop_rproc:
1359 rproc->ops->stop(rproc);
1360 unprepare_subdevices:
1361 rproc_unprepare_subdevices(rproc);
1362 out:
1363 return ret;
1364 }
1365
1366 /*
1367 * take a firmware and boot a remote processor with it.
1368 */
rproc_fw_boot(struct rproc * rproc,const struct firmware * fw)1369 static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
1370 {
1371 struct device *dev = &rproc->dev;
1372 const char *name = rproc->firmware;
1373 int ret;
1374
1375 ret = rproc_fw_sanity_check(rproc, fw);
1376 if (ret)
1377 return ret;
1378
1379 dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
1380
1381 /*
1382 * if enabling an IOMMU isn't relevant for this rproc, this is
1383 * just a nop
1384 */
1385 ret = rproc_enable_iommu(rproc);
1386 if (ret) {
1387 dev_err(dev, "can't enable iommu: %d\n", ret);
1388 return ret;
1389 }
1390
1391 /* Prepare rproc for firmware loading if needed */
1392 ret = rproc_prepare_device(rproc);
1393 if (ret) {
1394 dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret);
1395 goto disable_iommu;
1396 }
1397
1398 rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
1399
1400 /* Load resource table, core dump segment list etc from the firmware */
1401 ret = rproc_parse_fw(rproc, fw);
1402 if (ret)
1403 goto unprepare_rproc;
1404
1405 /* reset max_notifyid */
1406 rproc->max_notifyid = -1;
1407
1408 /* reset handled vdev */
1409 rproc->nb_vdev = 0;
1410
1411 /* handle fw resources which are required to boot rproc */
1412 ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1413 if (ret) {
1414 dev_err(dev, "Failed to process resources: %d\n", ret);
1415 goto clean_up_resources;
1416 }
1417
1418 /* Allocate carveout resources associated to rproc */
1419 ret = rproc_alloc_registered_carveouts(rproc);
1420 if (ret) {
1421 dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1422 ret);
1423 goto clean_up_resources;
1424 }
1425
1426 ret = rproc_start(rproc, fw);
1427 if (ret)
1428 goto clean_up_resources;
1429
1430 return 0;
1431
1432 clean_up_resources:
1433 rproc_resource_cleanup(rproc);
1434 kfree(rproc->cached_table);
1435 rproc->cached_table = NULL;
1436 rproc->table_ptr = NULL;
1437 unprepare_rproc:
1438 /* release HW resources if needed */
1439 rproc_unprepare_device(rproc);
1440 disable_iommu:
1441 rproc_disable_iommu(rproc);
1442 return ret;
1443 }
1444
rproc_set_rsc_table(struct rproc * rproc)1445 static int rproc_set_rsc_table(struct rproc *rproc)
1446 {
1447 struct resource_table *table_ptr;
1448 struct device *dev = &rproc->dev;
1449 size_t table_sz;
1450 int ret;
1451
1452 table_ptr = rproc_get_loaded_rsc_table(rproc, &table_sz);
1453 if (!table_ptr) {
1454 /* Not having a resource table is acceptable */
1455 return 0;
1456 }
1457
1458 if (IS_ERR(table_ptr)) {
1459 ret = PTR_ERR(table_ptr);
1460 dev_err(dev, "can't load resource table: %d\n", ret);
1461 return ret;
1462 }
1463
1464 /*
1465 * If it is possible to detach the remote processor, keep an untouched
1466 * copy of the resource table. That way we can start fresh again when
1467 * the remote processor is re-attached, that is:
1468 *
1469 * DETACHED -> ATTACHED -> DETACHED -> ATTACHED
1470 *
1471 * Free'd in rproc_reset_rsc_table_on_detach() and
1472 * rproc_reset_rsc_table_on_stop().
1473 */
1474 if (rproc->ops->detach) {
1475 rproc->clean_table = kmemdup(table_ptr, table_sz, GFP_KERNEL);
1476 if (!rproc->clean_table)
1477 return -ENOMEM;
1478 } else {
1479 rproc->clean_table = NULL;
1480 }
1481
1482 rproc->cached_table = NULL;
1483 rproc->table_ptr = table_ptr;
1484 rproc->table_sz = table_sz;
1485
1486 return 0;
1487 }
1488
rproc_reset_rsc_table_on_detach(struct rproc * rproc)1489 static int rproc_reset_rsc_table_on_detach(struct rproc *rproc)
1490 {
1491 struct resource_table *table_ptr;
1492
1493 /* A resource table was never retrieved, nothing to do here */
1494 if (!rproc->table_ptr)
1495 return 0;
1496
1497 /*
1498 * If we made it to this point a clean_table _must_ have been
1499 * allocated in rproc_set_rsc_table(). If one isn't present
1500 * something went really wrong and we must complain.
1501 */
1502 if (WARN_ON(!rproc->clean_table))
1503 return -EINVAL;
1504
1505 /* Remember where the external entity installed the resource table */
1506 table_ptr = rproc->table_ptr;
1507
1508 /*
1509 * If we made it here the remote processor was started by another
1510 * entity and a cache table doesn't exist. As such make a copy of
1511 * the resource table currently used by the remote processor and
1512 * use that for the rest of the shutdown process. The memory
1513 * allocated here is free'd in rproc_detach().
1514 */
1515 rproc->cached_table = kmemdup(rproc->table_ptr,
1516 rproc->table_sz, GFP_KERNEL);
1517 if (!rproc->cached_table)
1518 return -ENOMEM;
1519
1520 /*
1521 * Use a copy of the resource table for the remainder of the
1522 * shutdown process.
1523 */
1524 rproc->table_ptr = rproc->cached_table;
1525
1526 /*
1527 * Reset the memory area where the firmware loaded the resource table
1528 * to its original value. That way when we re-attach the remote
1529 * processor the resource table is clean and ready to be used again.
1530 */
1531 memcpy(table_ptr, rproc->clean_table, rproc->table_sz);
1532
1533 /*
1534 * The clean resource table is no longer needed. Allocated in
1535 * rproc_set_rsc_table().
1536 */
1537 kfree(rproc->clean_table);
1538
1539 return 0;
1540 }
1541
rproc_reset_rsc_table_on_stop(struct rproc * rproc)1542 static int rproc_reset_rsc_table_on_stop(struct rproc *rproc)
1543 {
1544 /* A resource table was never retrieved, nothing to do here */
1545 if (!rproc->table_ptr)
1546 return 0;
1547
1548 /*
1549 * If a cache table exists the remote processor was started by
1550 * the remoteproc core. That cache table should be used for
1551 * the rest of the shutdown process.
1552 */
1553 if (rproc->cached_table)
1554 goto out;
1555
1556 /*
1557 * If we made it here the remote processor was started by another
1558 * entity and a cache table doesn't exist. As such make a copy of
1559 * the resource table currently used by the remote processor and
1560 * use that for the rest of the shutdown process. The memory
1561 * allocated here is free'd in rproc_shutdown().
1562 */
1563 rproc->cached_table = kmemdup(rproc->table_ptr,
1564 rproc->table_sz, GFP_KERNEL);
1565 if (!rproc->cached_table)
1566 return -ENOMEM;
1567
1568 /*
1569 * Since the remote processor is being switched off the clean table
1570 * won't be needed. Allocated in rproc_set_rsc_table().
1571 */
1572 kfree(rproc->clean_table);
1573
1574 out:
1575 /*
1576 * Use a copy of the resource table for the remainder of the
1577 * shutdown process.
1578 */
1579 rproc->table_ptr = rproc->cached_table;
1580 return 0;
1581 }
1582
1583 /*
1584 * Attach to remote processor - similar to rproc_fw_boot() but without
1585 * the steps that deal with the firmware image.
1586 */
rproc_attach(struct rproc * rproc)1587 static int rproc_attach(struct rproc *rproc)
1588 {
1589 struct device *dev = &rproc->dev;
1590 int ret;
1591
1592 /*
1593 * if enabling an IOMMU isn't relevant for this rproc, this is
1594 * just a nop
1595 */
1596 ret = rproc_enable_iommu(rproc);
1597 if (ret) {
1598 dev_err(dev, "can't enable iommu: %d\n", ret);
1599 return ret;
1600 }
1601
1602 /* Do anything that is needed to boot the remote processor */
1603 ret = rproc_prepare_device(rproc);
1604 if (ret) {
1605 dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret);
1606 goto disable_iommu;
1607 }
1608
1609 ret = rproc_set_rsc_table(rproc);
1610 if (ret) {
1611 dev_err(dev, "can't load resource table: %d\n", ret);
1612 goto unprepare_device;
1613 }
1614
1615 /* reset max_notifyid */
1616 rproc->max_notifyid = -1;
1617
1618 /* reset handled vdev */
1619 rproc->nb_vdev = 0;
1620
1621 /*
1622 * Handle firmware resources required to attach to a remote processor.
1623 * Because we are attaching rather than booting the remote processor,
1624 * we expect the platform driver to properly set rproc->table_ptr.
1625 */
1626 ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1627 if (ret) {
1628 dev_err(dev, "Failed to process resources: %d\n", ret);
1629 goto unprepare_device;
1630 }
1631
1632 /* Allocate carveout resources associated to rproc */
1633 ret = rproc_alloc_registered_carveouts(rproc);
1634 if (ret) {
1635 dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1636 ret);
1637 goto clean_up_resources;
1638 }
1639
1640 ret = __rproc_attach(rproc);
1641 if (ret)
1642 goto clean_up_resources;
1643
1644 return 0;
1645
1646 clean_up_resources:
1647 rproc_resource_cleanup(rproc);
1648 unprepare_device:
1649 /* release HW resources if needed */
1650 rproc_unprepare_device(rproc);
1651 disable_iommu:
1652 rproc_disable_iommu(rproc);
1653 return ret;
1654 }
1655
1656 /*
1657 * take a firmware and boot it up.
1658 *
1659 * Note: this function is called asynchronously upon registration of the
1660 * remote processor (so we must wait until it completes before we try
1661 * to unregister the device. one other option is just to use kref here,
1662 * that might be cleaner).
1663 */
rproc_auto_boot_callback(const struct firmware * fw,void * context)1664 static void rproc_auto_boot_callback(const struct firmware *fw, void *context)
1665 {
1666 struct rproc *rproc = context;
1667
1668 rproc_boot(rproc);
1669
1670 release_firmware(fw);
1671 }
1672
rproc_trigger_auto_boot(struct rproc * rproc)1673 static int rproc_trigger_auto_boot(struct rproc *rproc)
1674 {
1675 int ret;
1676
1677 /*
1678 * Since the remote processor is in a detached state, it has already
1679 * been booted by another entity. As such there is no point in waiting
1680 * for a firmware image to be loaded, we can simply initiate the process
1681 * of attaching to it immediately.
1682 */
1683 if (rproc->state == RPROC_DETACHED)
1684 return rproc_boot(rproc);
1685
1686 /*
1687 * We're initiating an asynchronous firmware loading, so we can
1688 * be built-in kernel code, without hanging the boot process.
1689 */
1690 ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_UEVENT,
1691 rproc->firmware, &rproc->dev, GFP_KERNEL,
1692 rproc, rproc_auto_boot_callback);
1693 if (ret < 0)
1694 dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
1695
1696 return ret;
1697 }
1698
rproc_stop(struct rproc * rproc,bool crashed)1699 static int rproc_stop(struct rproc *rproc, bool crashed)
1700 {
1701 struct device *dev = &rproc->dev;
1702 int ret;
1703
1704 /* No need to continue if a stop() operation has not been provided */
1705 if (!rproc->ops->stop)
1706 return -EINVAL;
1707
1708 /* Stop any subdevices for the remote processor */
1709 rproc_stop_subdevices(rproc, crashed);
1710
1711 /* the installed resource table is no longer accessible */
1712 ret = rproc_reset_rsc_table_on_stop(rproc);
1713 if (ret) {
1714 dev_err(dev, "can't reset resource table: %d\n", ret);
1715 return ret;
1716 }
1717
1718
1719 /* power off the remote processor */
1720 ret = rproc->ops->stop(rproc);
1721 if (ret) {
1722 dev_err(dev, "can't stop rproc: %d\n", ret);
1723 return ret;
1724 }
1725
1726 rproc_unprepare_subdevices(rproc);
1727
1728 rproc->state = RPROC_OFFLINE;
1729
1730 dev_info(dev, "stopped remote processor %s\n", rproc->name);
1731
1732 return 0;
1733 }
1734
1735 /*
1736 * __rproc_detach(): Does the opposite of __rproc_attach()
1737 */
__rproc_detach(struct rproc * rproc)1738 static int __rproc_detach(struct rproc *rproc)
1739 {
1740 struct device *dev = &rproc->dev;
1741 int ret;
1742
1743 /* No need to continue if a detach() operation has not been provided */
1744 if (!rproc->ops->detach)
1745 return -EINVAL;
1746
1747 /* Stop any subdevices for the remote processor */
1748 rproc_stop_subdevices(rproc, false);
1749
1750 /* the installed resource table is no longer accessible */
1751 ret = rproc_reset_rsc_table_on_detach(rproc);
1752 if (ret) {
1753 dev_err(dev, "can't reset resource table: %d\n", ret);
1754 return ret;
1755 }
1756
1757 /* Tell the remote processor the core isn't available anymore */
1758 ret = rproc->ops->detach(rproc);
1759 if (ret) {
1760 dev_err(dev, "can't detach from rproc: %d\n", ret);
1761 return ret;
1762 }
1763
1764 rproc_unprepare_subdevices(rproc);
1765
1766 rproc->state = RPROC_DETACHED;
1767
1768 dev_info(dev, "detached remote processor %s\n", rproc->name);
1769
1770 return 0;
1771 }
1772
rproc_attach_recovery(struct rproc * rproc)1773 static int rproc_attach_recovery(struct rproc *rproc)
1774 {
1775 int ret;
1776
1777 ret = __rproc_detach(rproc);
1778 if (ret)
1779 return ret;
1780
1781 return __rproc_attach(rproc);
1782 }
1783
rproc_boot_recovery(struct rproc * rproc)1784 static int rproc_boot_recovery(struct rproc *rproc)
1785 {
1786 const struct firmware *firmware_p;
1787 struct device *dev = &rproc->dev;
1788 int ret;
1789
1790 ret = rproc_stop(rproc, true);
1791 if (ret)
1792 return ret;
1793
1794 /* generate coredump */
1795 rproc->ops->coredump(rproc);
1796
1797 /* load firmware */
1798 ret = request_firmware(&firmware_p, rproc->firmware, dev);
1799 if (ret < 0) {
1800 dev_err(dev, "request_firmware failed: %d\n", ret);
1801 return ret;
1802 }
1803
1804 /* boot the remote processor up again */
1805 ret = rproc_start(rproc, firmware_p);
1806
1807 release_firmware(firmware_p);
1808
1809 return ret;
1810 }
1811
1812 /**
1813 * rproc_trigger_recovery() - recover a remoteproc
1814 * @rproc: the remote processor
1815 *
1816 * The recovery is done by resetting all the virtio devices, that way all the
1817 * rpmsg drivers will be reseted along with the remote processor making the
1818 * remoteproc functional again.
1819 *
1820 * This function can sleep, so it cannot be called from atomic context.
1821 *
1822 * Return: 0 on success or a negative value upon failure
1823 */
rproc_trigger_recovery(struct rproc * rproc)1824 int rproc_trigger_recovery(struct rproc *rproc)
1825 {
1826 struct device *dev = &rproc->dev;
1827 int ret;
1828
1829 ret = mutex_lock_interruptible(&rproc->lock);
1830 if (ret)
1831 return ret;
1832
1833 /* State could have changed before we got the mutex */
1834 if (rproc->state != RPROC_CRASHED)
1835 goto unlock_mutex;
1836
1837 dev_err(dev, "recovering %s\n", rproc->name);
1838
1839 if (rproc_has_feature(rproc, RPROC_FEAT_ATTACH_ON_RECOVERY))
1840 ret = rproc_attach_recovery(rproc);
1841 else
1842 ret = rproc_boot_recovery(rproc);
1843
1844 unlock_mutex:
1845 mutex_unlock(&rproc->lock);
1846 return ret;
1847 }
1848
1849 /**
1850 * rproc_crash_handler_work() - handle a crash
1851 * @work: work treating the crash
1852 *
1853 * This function needs to handle everything related to a crash, like cpu
1854 * registers and stack dump, information to help to debug the fatal error, etc.
1855 */
rproc_crash_handler_work(struct work_struct * work)1856 static void rproc_crash_handler_work(struct work_struct *work)
1857 {
1858 struct rproc *rproc = container_of(work, struct rproc, crash_handler);
1859 struct device *dev = &rproc->dev;
1860
1861 dev_dbg(dev, "enter %s\n", __func__);
1862
1863 mutex_lock(&rproc->lock);
1864
1865 if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) {
1866 /* handle only the first crash detected */
1867 mutex_unlock(&rproc->lock);
1868 return;
1869 }
1870
1871 rproc->state = RPROC_CRASHED;
1872 dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
1873 rproc->name);
1874
1875 mutex_unlock(&rproc->lock);
1876
1877 if (!rproc->recovery_disabled)
1878 rproc_trigger_recovery(rproc);
1879
1880 pm_relax(rproc->dev.parent);
1881 }
1882
1883 /**
1884 * rproc_boot() - boot a remote processor
1885 * @rproc: handle of a remote processor
1886 *
1887 * Boot a remote processor (i.e. load its firmware, power it on, ...).
1888 *
1889 * If the remote processor is already powered on, this function immediately
1890 * returns (successfully).
1891 *
1892 * Return: 0 on success, and an appropriate error value otherwise
1893 */
rproc_boot(struct rproc * rproc)1894 int rproc_boot(struct rproc *rproc)
1895 {
1896 const struct firmware *firmware_p;
1897 struct device *dev;
1898 int ret;
1899
1900 if (!rproc) {
1901 pr_err("invalid rproc handle\n");
1902 return -EINVAL;
1903 }
1904
1905 dev = &rproc->dev;
1906
1907 ret = mutex_lock_interruptible(&rproc->lock);
1908 if (ret) {
1909 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1910 return ret;
1911 }
1912
1913 if (rproc->state == RPROC_DELETED) {
1914 ret = -ENODEV;
1915 dev_err(dev, "can't boot deleted rproc %s\n", rproc->name);
1916 goto unlock_mutex;
1917 }
1918
1919 /* skip the boot or attach process if rproc is already powered up */
1920 if (atomic_inc_return(&rproc->power) > 1) {
1921 ret = 0;
1922 goto unlock_mutex;
1923 }
1924
1925 if (rproc->state == RPROC_DETACHED) {
1926 dev_info(dev, "attaching to %s\n", rproc->name);
1927
1928 ret = rproc_attach(rproc);
1929 } else {
1930 dev_info(dev, "powering up %s\n", rproc->name);
1931
1932 /* load firmware */
1933 ret = request_firmware(&firmware_p, rproc->firmware, dev);
1934 if (ret < 0) {
1935 dev_err(dev, "request_firmware failed: %d\n", ret);
1936 goto downref_rproc;
1937 }
1938
1939 ret = rproc_fw_boot(rproc, firmware_p);
1940
1941 release_firmware(firmware_p);
1942 }
1943
1944 downref_rproc:
1945 if (ret)
1946 atomic_dec(&rproc->power);
1947 unlock_mutex:
1948 mutex_unlock(&rproc->lock);
1949 return ret;
1950 }
1951 EXPORT_SYMBOL(rproc_boot);
1952
1953 /**
1954 * rproc_shutdown() - power off the remote processor
1955 * @rproc: the remote processor
1956 *
1957 * Power off a remote processor (previously booted with rproc_boot()).
1958 *
1959 * In case @rproc is still being used by an additional user(s), then
1960 * this function will just decrement the power refcount and exit,
1961 * without really powering off the device.
1962 *
1963 * Every call to rproc_boot() must (eventually) be accompanied by a call
1964 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1965 *
1966 * Notes:
1967 * - we're not decrementing the rproc's refcount, only the power refcount.
1968 * which means that the @rproc handle stays valid even after rproc_shutdown()
1969 * returns, and users can still use it with a subsequent rproc_boot(), if
1970 * needed.
1971 *
1972 * Return: 0 on success, and an appropriate error value otherwise
1973 */
rproc_shutdown(struct rproc * rproc)1974 int rproc_shutdown(struct rproc *rproc)
1975 {
1976 struct device *dev = &rproc->dev;
1977 int ret = 0;
1978
1979 ret = mutex_lock_interruptible(&rproc->lock);
1980 if (ret) {
1981 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1982 return ret;
1983 }
1984
1985 if (rproc->state != RPROC_RUNNING &&
1986 rproc->state != RPROC_ATTACHED) {
1987 ret = -EINVAL;
1988 goto out;
1989 }
1990
1991 /* if the remote proc is still needed, bail out */
1992 if (!atomic_dec_and_test(&rproc->power))
1993 goto out;
1994
1995 ret = rproc_stop(rproc, false);
1996 if (ret) {
1997 atomic_inc(&rproc->power);
1998 goto out;
1999 }
2000
2001 /* clean up all acquired resources */
2002 rproc_resource_cleanup(rproc);
2003
2004 /* release HW resources if needed */
2005 rproc_unprepare_device(rproc);
2006
2007 rproc_disable_iommu(rproc);
2008
2009 /* Free the copy of the resource table */
2010 kfree(rproc->cached_table);
2011 rproc->cached_table = NULL;
2012 rproc->table_ptr = NULL;
2013 out:
2014 mutex_unlock(&rproc->lock);
2015 return ret;
2016 }
2017 EXPORT_SYMBOL(rproc_shutdown);
2018
2019 /**
2020 * rproc_detach() - Detach the remote processor from the
2021 * remoteproc core
2022 *
2023 * @rproc: the remote processor
2024 *
2025 * Detach a remote processor (previously attached to with rproc_attach()).
2026 *
2027 * In case @rproc is still being used by an additional user(s), then
2028 * this function will just decrement the power refcount and exit,
2029 * without disconnecting the device.
2030 *
2031 * Function rproc_detach() calls __rproc_detach() in order to let a remote
2032 * processor know that services provided by the application processor are
2033 * no longer available. From there it should be possible to remove the
2034 * platform driver and even power cycle the application processor (if the HW
2035 * supports it) without needing to switch off the remote processor.
2036 *
2037 * Return: 0 on success, and an appropriate error value otherwise
2038 */
rproc_detach(struct rproc * rproc)2039 int rproc_detach(struct rproc *rproc)
2040 {
2041 struct device *dev = &rproc->dev;
2042 int ret;
2043
2044 ret = mutex_lock_interruptible(&rproc->lock);
2045 if (ret) {
2046 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
2047 return ret;
2048 }
2049
2050 if (rproc->state != RPROC_ATTACHED) {
2051 ret = -EINVAL;
2052 goto out;
2053 }
2054
2055 /* if the remote proc is still needed, bail out */
2056 if (!atomic_dec_and_test(&rproc->power)) {
2057 ret = 0;
2058 goto out;
2059 }
2060
2061 ret = __rproc_detach(rproc);
2062 if (ret) {
2063 atomic_inc(&rproc->power);
2064 goto out;
2065 }
2066
2067 /* clean up all acquired resources */
2068 rproc_resource_cleanup(rproc);
2069
2070 /* release HW resources if needed */
2071 rproc_unprepare_device(rproc);
2072
2073 rproc_disable_iommu(rproc);
2074
2075 /* Free the copy of the resource table */
2076 kfree(rproc->cached_table);
2077 rproc->cached_table = NULL;
2078 rproc->table_ptr = NULL;
2079 out:
2080 mutex_unlock(&rproc->lock);
2081 return ret;
2082 }
2083 EXPORT_SYMBOL(rproc_detach);
2084
2085 /**
2086 * rproc_get_by_phandle() - find a remote processor by phandle
2087 * @phandle: phandle to the rproc
2088 *
2089 * Finds an rproc handle using the remote processor's phandle, and then
2090 * return a handle to the rproc.
2091 *
2092 * This function increments the remote processor's refcount, so always
2093 * use rproc_put() to decrement it back once rproc isn't needed anymore.
2094 *
2095 * Return: rproc handle on success, and NULL on failure
2096 */
2097 #ifdef CONFIG_OF
rproc_get_by_phandle(phandle phandle)2098 struct rproc *rproc_get_by_phandle(phandle phandle)
2099 {
2100 struct rproc *rproc = NULL, *r;
2101 struct device_node *np;
2102
2103 np = of_find_node_by_phandle(phandle);
2104 if (!np)
2105 return NULL;
2106
2107 rcu_read_lock();
2108 list_for_each_entry_rcu(r, &rproc_list, node) {
2109 if (r->dev.parent && r->dev.parent->of_node == np) {
2110 /* prevent underlying implementation from being removed */
2111 if (!try_module_get(r->dev.parent->driver->owner)) {
2112 dev_err(&r->dev, "can't get owner\n");
2113 break;
2114 }
2115
2116 rproc = r;
2117 get_device(&rproc->dev);
2118 break;
2119 }
2120 }
2121 rcu_read_unlock();
2122
2123 of_node_put(np);
2124
2125 return rproc;
2126 }
2127 #else
rproc_get_by_phandle(phandle phandle)2128 struct rproc *rproc_get_by_phandle(phandle phandle)
2129 {
2130 return NULL;
2131 }
2132 #endif
2133 EXPORT_SYMBOL(rproc_get_by_phandle);
2134
2135 /**
2136 * rproc_set_firmware() - assign a new firmware
2137 * @rproc: rproc handle to which the new firmware is being assigned
2138 * @fw_name: new firmware name to be assigned
2139 *
2140 * This function allows remoteproc drivers or clients to configure a custom
2141 * firmware name that is different from the default name used during remoteproc
2142 * registration. The function does not trigger a remote processor boot,
2143 * only sets the firmware name used for a subsequent boot. This function
2144 * should also be called only when the remote processor is offline.
2145 *
2146 * This allows either the userspace to configure a different name through
2147 * sysfs or a kernel-level remoteproc or a remoteproc client driver to set
2148 * a specific firmware when it is controlling the boot and shutdown of the
2149 * remote processor.
2150 *
2151 * Return: 0 on success or a negative value upon failure
2152 */
rproc_set_firmware(struct rproc * rproc,const char * fw_name)2153 int rproc_set_firmware(struct rproc *rproc, const char *fw_name)
2154 {
2155 struct device *dev;
2156 int ret, len;
2157 char *p;
2158
2159 if (!rproc || !fw_name)
2160 return -EINVAL;
2161
2162 dev = rproc->dev.parent;
2163
2164 ret = mutex_lock_interruptible(&rproc->lock);
2165 if (ret) {
2166 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
2167 return -EINVAL;
2168 }
2169
2170 if (rproc->state != RPROC_OFFLINE) {
2171 dev_err(dev, "can't change firmware while running\n");
2172 ret = -EBUSY;
2173 goto out;
2174 }
2175
2176 len = strcspn(fw_name, "\n");
2177 if (!len) {
2178 dev_err(dev, "can't provide empty string for firmware name\n");
2179 ret = -EINVAL;
2180 goto out;
2181 }
2182
2183 p = kstrndup(fw_name, len, GFP_KERNEL);
2184 if (!p) {
2185 ret = -ENOMEM;
2186 goto out;
2187 }
2188
2189 kfree_const(rproc->firmware);
2190 rproc->firmware = p;
2191
2192 out:
2193 mutex_unlock(&rproc->lock);
2194 return ret;
2195 }
2196 EXPORT_SYMBOL(rproc_set_firmware);
2197
rproc_validate(struct rproc * rproc)2198 static int rproc_validate(struct rproc *rproc)
2199 {
2200 switch (rproc->state) {
2201 case RPROC_OFFLINE:
2202 /*
2203 * An offline processor without a start()
2204 * function makes no sense.
2205 */
2206 if (!rproc->ops->start)
2207 return -EINVAL;
2208 break;
2209 case RPROC_DETACHED:
2210 /*
2211 * A remote processor in a detached state without an
2212 * attach() function makes not sense.
2213 */
2214 if (!rproc->ops->attach)
2215 return -EINVAL;
2216 /*
2217 * When attaching to a remote processor the device memory
2218 * is already available and as such there is no need to have a
2219 * cached table.
2220 */
2221 if (rproc->cached_table)
2222 return -EINVAL;
2223 break;
2224 default:
2225 /*
2226 * When adding a remote processor, the state of the device
2227 * can be offline or detached, nothing else.
2228 */
2229 return -EINVAL;
2230 }
2231
2232 return 0;
2233 }
2234
2235 /**
2236 * rproc_add() - register a remote processor
2237 * @rproc: the remote processor handle to register
2238 *
2239 * Registers @rproc with the remoteproc framework, after it has been
2240 * allocated with rproc_alloc().
2241 *
2242 * This is called by the platform-specific rproc implementation, whenever
2243 * a new remote processor device is probed.
2244 *
2245 * Note: this function initiates an asynchronous firmware loading
2246 * context, which will look for virtio devices supported by the rproc's
2247 * firmware.
2248 *
2249 * If found, those virtio devices will be created and added, so as a result
2250 * of registering this remote processor, additional virtio drivers might be
2251 * probed.
2252 *
2253 * Return: 0 on success and an appropriate error code otherwise
2254 */
rproc_add(struct rproc * rproc)2255 int rproc_add(struct rproc *rproc)
2256 {
2257 struct device *dev = &rproc->dev;
2258 int ret;
2259
2260 ret = rproc_validate(rproc);
2261 if (ret < 0)
2262 return ret;
2263
2264 /* add char device for this remoteproc */
2265 ret = rproc_char_device_add(rproc);
2266 if (ret < 0)
2267 return ret;
2268
2269 ret = device_add(dev);
2270 if (ret < 0) {
2271 put_device(dev);
2272 goto rproc_remove_cdev;
2273 }
2274
2275 dev_info(dev, "%s is available\n", rproc->name);
2276
2277 /* create debugfs entries */
2278 rproc_create_debug_dir(rproc);
2279
2280 /* if rproc is marked always-on, request it to boot */
2281 if (rproc->auto_boot) {
2282 ret = rproc_trigger_auto_boot(rproc);
2283 if (ret < 0)
2284 goto rproc_remove_dev;
2285 }
2286
2287 /* expose to rproc_get_by_phandle users */
2288 mutex_lock(&rproc_list_mutex);
2289 list_add_rcu(&rproc->node, &rproc_list);
2290 mutex_unlock(&rproc_list_mutex);
2291
2292 return 0;
2293
2294 rproc_remove_dev:
2295 rproc_delete_debug_dir(rproc);
2296 device_del(dev);
2297 rproc_remove_cdev:
2298 rproc_char_device_remove(rproc);
2299 return ret;
2300 }
2301 EXPORT_SYMBOL(rproc_add);
2302
devm_rproc_remove(void * rproc)2303 static void devm_rproc_remove(void *rproc)
2304 {
2305 rproc_del(rproc);
2306 }
2307
2308 /**
2309 * devm_rproc_add() - resource managed rproc_add()
2310 * @dev: the underlying device
2311 * @rproc: the remote processor handle to register
2312 *
2313 * This function performs like rproc_add() but the registered rproc device will
2314 * automatically be removed on driver detach.
2315 *
2316 * Return: 0 on success, negative errno on failure
2317 */
devm_rproc_add(struct device * dev,struct rproc * rproc)2318 int devm_rproc_add(struct device *dev, struct rproc *rproc)
2319 {
2320 int err;
2321
2322 err = rproc_add(rproc);
2323 if (err)
2324 return err;
2325
2326 return devm_add_action_or_reset(dev, devm_rproc_remove, rproc);
2327 }
2328 EXPORT_SYMBOL(devm_rproc_add);
2329
2330 /**
2331 * rproc_type_release() - release a remote processor instance
2332 * @dev: the rproc's device
2333 *
2334 * This function should _never_ be called directly.
2335 *
2336 * It will be called by the driver core when no one holds a valid pointer
2337 * to @dev anymore.
2338 */
rproc_type_release(struct device * dev)2339 static void rproc_type_release(struct device *dev)
2340 {
2341 struct rproc *rproc = container_of(dev, struct rproc, dev);
2342
2343 dev_info(&rproc->dev, "releasing %s\n", rproc->name);
2344
2345 idr_destroy(&rproc->notifyids);
2346
2347 if (rproc->index >= 0)
2348 ida_free(&rproc_dev_index, rproc->index);
2349
2350 kfree_const(rproc->firmware);
2351 kfree_const(rproc->name);
2352 kfree(rproc->ops);
2353 kfree(rproc);
2354 }
2355
2356 static const struct device_type rproc_type = {
2357 .name = "remoteproc",
2358 .release = rproc_type_release,
2359 };
2360
rproc_alloc_firmware(struct rproc * rproc,const char * name,const char * firmware)2361 static int rproc_alloc_firmware(struct rproc *rproc,
2362 const char *name, const char *firmware)
2363 {
2364 const char *p;
2365
2366 /*
2367 * Allocate a firmware name if the caller gave us one to work
2368 * with. Otherwise construct a new one using a default pattern.
2369 */
2370 if (firmware)
2371 p = kstrdup_const(firmware, GFP_KERNEL);
2372 else
2373 p = kasprintf(GFP_KERNEL, "rproc-%s-fw", name);
2374
2375 if (!p)
2376 return -ENOMEM;
2377
2378 rproc->firmware = p;
2379
2380 return 0;
2381 }
2382
rproc_alloc_ops(struct rproc * rproc,const struct rproc_ops * ops)2383 static int rproc_alloc_ops(struct rproc *rproc, const struct rproc_ops *ops)
2384 {
2385 rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL);
2386 if (!rproc->ops)
2387 return -ENOMEM;
2388
2389 /* Default to rproc_coredump if no coredump function is specified */
2390 if (!rproc->ops->coredump)
2391 rproc->ops->coredump = rproc_coredump;
2392
2393 if (rproc->ops->load)
2394 return 0;
2395
2396 /* Default to ELF loader if no load function is specified */
2397 rproc->ops->load = rproc_elf_load_segments;
2398 rproc->ops->parse_fw = rproc_elf_load_rsc_table;
2399 rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table;
2400 rproc->ops->sanity_check = rproc_elf_sanity_check;
2401 rproc->ops->get_boot_addr = rproc_elf_get_boot_addr;
2402
2403 return 0;
2404 }
2405
2406 /**
2407 * rproc_alloc() - allocate a remote processor handle
2408 * @dev: the underlying device
2409 * @name: name of this remote processor
2410 * @ops: platform-specific handlers (mainly start/stop)
2411 * @firmware: name of firmware file to load, can be NULL
2412 * @len: length of private data needed by the rproc driver (in bytes)
2413 *
2414 * Allocates a new remote processor handle, but does not register
2415 * it yet. if @firmware is NULL, a default name is used.
2416 *
2417 * This function should be used by rproc implementations during initialization
2418 * of the remote processor.
2419 *
2420 * After creating an rproc handle using this function, and when ready,
2421 * implementations should then call rproc_add() to complete
2422 * the registration of the remote processor.
2423 *
2424 * Note: _never_ directly deallocate @rproc, even if it was not registered
2425 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free().
2426 *
2427 * Return: new rproc pointer on success, and NULL on failure
2428 */
rproc_alloc(struct device * dev,const char * name,const struct rproc_ops * ops,const char * firmware,int len)2429 struct rproc *rproc_alloc(struct device *dev, const char *name,
2430 const struct rproc_ops *ops,
2431 const char *firmware, int len)
2432 {
2433 struct rproc *rproc;
2434
2435 if (!dev || !name || !ops)
2436 return NULL;
2437
2438 rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
2439 if (!rproc)
2440 return NULL;
2441
2442 rproc->priv = &rproc[1];
2443 rproc->auto_boot = true;
2444 rproc->elf_class = ELFCLASSNONE;
2445 rproc->elf_machine = EM_NONE;
2446
2447 device_initialize(&rproc->dev);
2448 rproc->dev.parent = dev;
2449 rproc->dev.type = &rproc_type;
2450 rproc->dev.class = &rproc_class;
2451 rproc->dev.driver_data = rproc;
2452 idr_init(&rproc->notifyids);
2453
2454 rproc->name = kstrdup_const(name, GFP_KERNEL);
2455 if (!rproc->name)
2456 goto put_device;
2457
2458 if (rproc_alloc_firmware(rproc, name, firmware))
2459 goto put_device;
2460
2461 if (rproc_alloc_ops(rproc, ops))
2462 goto put_device;
2463
2464 /* Assign a unique device index and name */
2465 rproc->index = ida_alloc(&rproc_dev_index, GFP_KERNEL);
2466 if (rproc->index < 0) {
2467 dev_err(dev, "ida_alloc failed: %d\n", rproc->index);
2468 goto put_device;
2469 }
2470
2471 dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
2472
2473 atomic_set(&rproc->power, 0);
2474
2475 mutex_init(&rproc->lock);
2476
2477 INIT_LIST_HEAD(&rproc->carveouts);
2478 INIT_LIST_HEAD(&rproc->mappings);
2479 INIT_LIST_HEAD(&rproc->traces);
2480 INIT_LIST_HEAD(&rproc->rvdevs);
2481 INIT_LIST_HEAD(&rproc->subdevs);
2482 INIT_LIST_HEAD(&rproc->dump_segments);
2483
2484 INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
2485
2486 rproc->state = RPROC_OFFLINE;
2487
2488 return rproc;
2489
2490 put_device:
2491 put_device(&rproc->dev);
2492 return NULL;
2493 }
2494 EXPORT_SYMBOL(rproc_alloc);
2495
2496 /**
2497 * rproc_free() - unroll rproc_alloc()
2498 * @rproc: the remote processor handle
2499 *
2500 * This function decrements the rproc dev refcount.
2501 *
2502 * If no one holds any reference to rproc anymore, then its refcount would
2503 * now drop to zero, and it would be freed.
2504 */
rproc_free(struct rproc * rproc)2505 void rproc_free(struct rproc *rproc)
2506 {
2507 put_device(&rproc->dev);
2508 }
2509 EXPORT_SYMBOL(rproc_free);
2510
2511 /**
2512 * rproc_put() - release rproc reference
2513 * @rproc: the remote processor handle
2514 *
2515 * This function decrements the rproc dev refcount.
2516 *
2517 * If no one holds any reference to rproc anymore, then its refcount would
2518 * now drop to zero, and it would be freed.
2519 */
rproc_put(struct rproc * rproc)2520 void rproc_put(struct rproc *rproc)
2521 {
2522 module_put(rproc->dev.parent->driver->owner);
2523 put_device(&rproc->dev);
2524 }
2525 EXPORT_SYMBOL(rproc_put);
2526
2527 /**
2528 * rproc_del() - unregister a remote processor
2529 * @rproc: rproc handle to unregister
2530 *
2531 * This function should be called when the platform specific rproc
2532 * implementation decides to remove the rproc device. it should
2533 * _only_ be called if a previous invocation of rproc_add()
2534 * has completed successfully.
2535 *
2536 * After rproc_del() returns, @rproc isn't freed yet, because
2537 * of the outstanding reference created by rproc_alloc. To decrement that
2538 * one last refcount, one still needs to call rproc_free().
2539 *
2540 * Return: 0 on success and -EINVAL if @rproc isn't valid
2541 */
rproc_del(struct rproc * rproc)2542 int rproc_del(struct rproc *rproc)
2543 {
2544 if (!rproc)
2545 return -EINVAL;
2546
2547 /* TODO: make sure this works with rproc->power > 1 */
2548 rproc_shutdown(rproc);
2549
2550 mutex_lock(&rproc->lock);
2551 rproc->state = RPROC_DELETED;
2552 mutex_unlock(&rproc->lock);
2553
2554 rproc_delete_debug_dir(rproc);
2555
2556 /* the rproc is downref'ed as soon as it's removed from the klist */
2557 mutex_lock(&rproc_list_mutex);
2558 list_del_rcu(&rproc->node);
2559 mutex_unlock(&rproc_list_mutex);
2560
2561 /* Ensure that no readers of rproc_list are still active */
2562 synchronize_rcu();
2563
2564 device_del(&rproc->dev);
2565 rproc_char_device_remove(rproc);
2566
2567 return 0;
2568 }
2569 EXPORT_SYMBOL(rproc_del);
2570
devm_rproc_free(struct device * dev,void * res)2571 static void devm_rproc_free(struct device *dev, void *res)
2572 {
2573 rproc_free(*(struct rproc **)res);
2574 }
2575
2576 /**
2577 * devm_rproc_alloc() - resource managed rproc_alloc()
2578 * @dev: the underlying device
2579 * @name: name of this remote processor
2580 * @ops: platform-specific handlers (mainly start/stop)
2581 * @firmware: name of firmware file to load, can be NULL
2582 * @len: length of private data needed by the rproc driver (in bytes)
2583 *
2584 * This function performs like rproc_alloc() but the acquired rproc device will
2585 * automatically be released on driver detach.
2586 *
2587 * Return: new rproc instance, or NULL on failure
2588 */
devm_rproc_alloc(struct device * dev,const char * name,const struct rproc_ops * ops,const char * firmware,int len)2589 struct rproc *devm_rproc_alloc(struct device *dev, const char *name,
2590 const struct rproc_ops *ops,
2591 const char *firmware, int len)
2592 {
2593 struct rproc **ptr, *rproc;
2594
2595 ptr = devres_alloc(devm_rproc_free, sizeof(*ptr), GFP_KERNEL);
2596 if (!ptr)
2597 return NULL;
2598
2599 rproc = rproc_alloc(dev, name, ops, firmware, len);
2600 if (rproc) {
2601 *ptr = rproc;
2602 devres_add(dev, ptr);
2603 } else {
2604 devres_free(ptr);
2605 }
2606
2607 return rproc;
2608 }
2609 EXPORT_SYMBOL(devm_rproc_alloc);
2610
2611 /**
2612 * rproc_add_subdev() - add a subdevice to a remoteproc
2613 * @rproc: rproc handle to add the subdevice to
2614 * @subdev: subdev handle to register
2615 *
2616 * Caller is responsible for populating optional subdevice function pointers.
2617 */
rproc_add_subdev(struct rproc * rproc,struct rproc_subdev * subdev)2618 void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2619 {
2620 list_add_tail(&subdev->node, &rproc->subdevs);
2621 }
2622 EXPORT_SYMBOL(rproc_add_subdev);
2623
2624 /**
2625 * rproc_remove_subdev() - remove a subdevice from a remoteproc
2626 * @rproc: rproc handle to remove the subdevice from
2627 * @subdev: subdev handle, previously registered with rproc_add_subdev()
2628 */
rproc_remove_subdev(struct rproc * rproc,struct rproc_subdev * subdev)2629 void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2630 {
2631 list_del(&subdev->node);
2632 }
2633 EXPORT_SYMBOL(rproc_remove_subdev);
2634
2635 /**
2636 * rproc_get_by_child() - acquire rproc handle of @dev's ancestor
2637 * @dev: child device to find ancestor of
2638 *
2639 * Return: the ancestor rproc instance, or NULL if not found
2640 */
rproc_get_by_child(struct device * dev)2641 struct rproc *rproc_get_by_child(struct device *dev)
2642 {
2643 for (dev = dev->parent; dev; dev = dev->parent) {
2644 if (dev->type == &rproc_type)
2645 return dev->driver_data;
2646 }
2647
2648 return NULL;
2649 }
2650 EXPORT_SYMBOL(rproc_get_by_child);
2651
2652 /**
2653 * rproc_report_crash() - rproc crash reporter function
2654 * @rproc: remote processor
2655 * @type: crash type
2656 *
2657 * This function must be called every time a crash is detected by the low-level
2658 * drivers implementing a specific remoteproc. This should not be called from a
2659 * non-remoteproc driver.
2660 *
2661 * This function can be called from atomic/interrupt context.
2662 */
rproc_report_crash(struct rproc * rproc,enum rproc_crash_type type)2663 void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
2664 {
2665 if (!rproc) {
2666 pr_err("NULL rproc pointer\n");
2667 return;
2668 }
2669
2670 /* Prevent suspend while the remoteproc is being recovered */
2671 pm_stay_awake(rproc->dev.parent);
2672
2673 dev_err(&rproc->dev, "crash detected in %s: type %s\n",
2674 rproc->name, rproc_crash_to_string(type));
2675
2676 queue_work(rproc_recovery_wq, &rproc->crash_handler);
2677 }
2678 EXPORT_SYMBOL(rproc_report_crash);
2679
rproc_panic_handler(struct notifier_block * nb,unsigned long event,void * ptr)2680 static int rproc_panic_handler(struct notifier_block *nb, unsigned long event,
2681 void *ptr)
2682 {
2683 unsigned int longest = 0;
2684 struct rproc *rproc;
2685 unsigned int d;
2686
2687 rcu_read_lock();
2688 list_for_each_entry_rcu(rproc, &rproc_list, node) {
2689 if (!rproc->ops->panic)
2690 continue;
2691
2692 if (rproc->state != RPROC_RUNNING &&
2693 rproc->state != RPROC_ATTACHED)
2694 continue;
2695
2696 d = rproc->ops->panic(rproc);
2697 longest = max(longest, d);
2698 }
2699 rcu_read_unlock();
2700
2701 /*
2702 * Delay for the longest requested duration before returning. This can
2703 * be used by the remoteproc drivers to give the remote processor time
2704 * to perform any requested operations (such as flush caches), when
2705 * it's not possible to signal the Linux side due to the panic.
2706 */
2707 mdelay(longest);
2708
2709 return NOTIFY_DONE;
2710 }
2711
rproc_init_panic(void)2712 static void __init rproc_init_panic(void)
2713 {
2714 rproc_panic_nb.notifier_call = rproc_panic_handler;
2715 atomic_notifier_chain_register(&panic_notifier_list, &rproc_panic_nb);
2716 }
2717
rproc_exit_panic(void)2718 static void __exit rproc_exit_panic(void)
2719 {
2720 atomic_notifier_chain_unregister(&panic_notifier_list, &rproc_panic_nb);
2721 }
2722
remoteproc_init(void)2723 static int __init remoteproc_init(void)
2724 {
2725 rproc_recovery_wq = alloc_workqueue("rproc_recovery_wq",
2726 WQ_UNBOUND | WQ_FREEZABLE, 0);
2727 if (!rproc_recovery_wq) {
2728 pr_err("remoteproc: creation of rproc_recovery_wq failed\n");
2729 return -ENOMEM;
2730 }
2731
2732 rproc_init_sysfs();
2733 rproc_init_debugfs();
2734 rproc_init_cdev();
2735 rproc_init_panic();
2736
2737 return 0;
2738 }
2739 subsys_initcall(remoteproc_init);
2740
remoteproc_exit(void)2741 static void __exit remoteproc_exit(void)
2742 {
2743 ida_destroy(&rproc_dev_index);
2744
2745 if (!rproc_recovery_wq)
2746 return;
2747
2748 rproc_exit_panic();
2749 rproc_exit_debugfs();
2750 rproc_exit_sysfs();
2751 destroy_workqueue(rproc_recovery_wq);
2752 }
2753 module_exit(remoteproc_exit);
2754
2755 MODULE_LICENSE("GPL v2");
2756 MODULE_DESCRIPTION("Generic Remote Processor Framework");
2757