1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Remote Processor Framework
4 *
5 * Copyright (C) 2011 Texas Instruments, Inc.
6 * Copyright (C) 2011 Google, Inc.
7 *
8 * Ohad Ben-Cohen <ohad@wizery.com>
9 * Brian Swetland <swetland@google.com>
10 * Mark Grosen <mgrosen@ti.com>
11 * Fernando Guzman Lugo <fernando.lugo@ti.com>
12 * Suman Anna <s-anna@ti.com>
13 * Robert Tivy <rtivy@ti.com>
14 * Armando Uribe De Leon <x0095078@ti.com>
15 */
16
17 #define pr_fmt(fmt) "%s: " fmt, __func__
18
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/device.h>
22 #include <linux/slab.h>
23 #include <linux/mutex.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/firmware.h>
26 #include <linux/string.h>
27 #include <linux/debugfs.h>
28 #include <linux/devcoredump.h>
29 #include <linux/remoteproc.h>
30 #include <linux/iommu.h>
31 #include <linux/idr.h>
32 #include <linux/elf.h>
33 #include <linux/crc32.h>
34 #include <linux/of_reserved_mem.h>
35 #include <linux/virtio_ids.h>
36 #include <linux/virtio_ring.h>
37 #include <asm/byteorder.h>
38 #include <linux/platform_device.h>
39
40 #include "remoteproc_internal.h"
41
42 #define HIGH_BITS_MASK 0xFFFFFFFF00000000ULL
43
44 static DEFINE_MUTEX(rproc_list_mutex);
45 static LIST_HEAD(rproc_list);
46
47 typedef int (*rproc_handle_resources_t)(struct rproc *rproc,
48 struct resource_table *table, int len);
49 typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
50 void *, int offset, int avail);
51
52 static int rproc_alloc_carveout(struct rproc *rproc,
53 struct rproc_mem_entry *mem);
54 static int rproc_release_carveout(struct rproc *rproc,
55 struct rproc_mem_entry *mem);
56
57 /* Unique indices for remoteproc devices */
58 static DEFINE_IDA(rproc_dev_index);
59
60 static const char * const rproc_crash_names[] = {
61 [RPROC_MMUFAULT] = "mmufault",
62 [RPROC_WATCHDOG] = "watchdog",
63 [RPROC_FATAL_ERROR] = "fatal error",
64 };
65
66 /* translate rproc_crash_type to string */
rproc_crash_to_string(enum rproc_crash_type type)67 static const char *rproc_crash_to_string(enum rproc_crash_type type)
68 {
69 if (type < ARRAY_SIZE(rproc_crash_names))
70 return rproc_crash_names[type];
71 return "unknown";
72 }
73
74 /*
75 * This is the IOMMU fault handler we register with the IOMMU API
76 * (when relevant; not all remote processors access memory through
77 * an IOMMU).
78 *
79 * IOMMU core will invoke this handler whenever the remote processor
80 * will try to access an unmapped device address.
81 */
rproc_iommu_fault(struct iommu_domain * domain,struct device * dev,unsigned long iova,int flags,void * token)82 static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
83 unsigned long iova, int flags, void *token)
84 {
85 struct rproc *rproc = token;
86
87 dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
88
89 rproc_report_crash(rproc, RPROC_MMUFAULT);
90
91 /*
92 * Let the iommu core know we're not really handling this fault;
93 * we just used it as a recovery trigger.
94 */
95 return -ENOSYS;
96 }
97
rproc_enable_iommu(struct rproc * rproc)98 static int rproc_enable_iommu(struct rproc *rproc)
99 {
100 struct iommu_domain *domain;
101 struct device *dev = rproc->dev.parent;
102 int ret;
103
104 if (!rproc->has_iommu) {
105 dev_dbg(dev, "iommu not present\n");
106 return 0;
107 }
108
109 domain = iommu_domain_alloc(dev->bus);
110 if (!domain) {
111 dev_err(dev, "can't alloc iommu domain\n");
112 return -ENOMEM;
113 }
114
115 iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
116
117 ret = iommu_attach_device(domain, dev);
118 if (ret) {
119 dev_err(dev, "can't attach iommu device: %d\n", ret);
120 goto free_domain;
121 }
122
123 rproc->domain = domain;
124
125 return 0;
126
127 free_domain:
128 iommu_domain_free(domain);
129 return ret;
130 }
131
rproc_disable_iommu(struct rproc * rproc)132 static void rproc_disable_iommu(struct rproc *rproc)
133 {
134 struct iommu_domain *domain = rproc->domain;
135 struct device *dev = rproc->dev.parent;
136
137 if (!domain)
138 return;
139
140 iommu_detach_device(domain, dev);
141 iommu_domain_free(domain);
142 }
143
rproc_va_to_pa(void * cpu_addr)144 phys_addr_t rproc_va_to_pa(void *cpu_addr)
145 {
146 /*
147 * Return physical address according to virtual address location
148 * - in vmalloc: if region ioremapped or defined as dma_alloc_coherent
149 * - in kernel: if region allocated in generic dma memory pool
150 */
151 if (is_vmalloc_addr(cpu_addr)) {
152 return page_to_phys(vmalloc_to_page(cpu_addr)) +
153 offset_in_page(cpu_addr);
154 }
155
156 WARN_ON(!virt_addr_valid(cpu_addr));
157 return virt_to_phys(cpu_addr);
158 }
159 EXPORT_SYMBOL(rproc_va_to_pa);
160
161 /**
162 * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
163 * @rproc: handle of a remote processor
164 * @da: remoteproc device address to translate
165 * @len: length of the memory region @da is pointing to
166 *
167 * Some remote processors will ask us to allocate them physically contiguous
168 * memory regions (which we call "carveouts"), and map them to specific
169 * device addresses (which are hardcoded in the firmware). They may also have
170 * dedicated memory regions internal to the processors, and use them either
171 * exclusively or alongside carveouts.
172 *
173 * They may then ask us to copy objects into specific device addresses (e.g.
174 * code/data sections) or expose us certain symbols in other device address
175 * (e.g. their trace buffer).
176 *
177 * This function is a helper function with which we can go over the allocated
178 * carveouts and translate specific device addresses to kernel virtual addresses
179 * so we can access the referenced memory. This function also allows to perform
180 * translations on the internal remoteproc memory regions through a platform
181 * implementation specific da_to_va ops, if present.
182 *
183 * The function returns a valid kernel address on success or NULL on failure.
184 *
185 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
186 * but only on kernel direct mapped RAM memory. Instead, we're just using
187 * here the output of the DMA API for the carveouts, which should be more
188 * correct.
189 */
rproc_da_to_va(struct rproc * rproc,u64 da,int len)190 void *rproc_da_to_va(struct rproc *rproc, u64 da, int len)
191 {
192 struct rproc_mem_entry *carveout;
193 void *ptr = NULL;
194
195 if (rproc->ops->da_to_va) {
196 ptr = rproc->ops->da_to_va(rproc, da, len);
197 if (ptr)
198 goto out;
199 }
200
201 list_for_each_entry(carveout, &rproc->carveouts, node) {
202 int offset = da - carveout->da;
203
204 /* Verify that carveout is allocated */
205 if (!carveout->va)
206 continue;
207
208 /* try next carveout if da is too small */
209 if (offset < 0)
210 continue;
211
212 /* try next carveout if da is too large */
213 if (offset + len > carveout->len)
214 continue;
215
216 ptr = carveout->va + offset;
217
218 break;
219 }
220
221 out:
222 return ptr;
223 }
224 EXPORT_SYMBOL(rproc_da_to_va);
225
226 /**
227 * rproc_find_carveout_by_name() - lookup the carveout region by a name
228 * @rproc: handle of a remote processor
229 * @name,..: carveout name to find (standard printf format)
230 *
231 * Platform driver has the capability to register some pre-allacoted carveout
232 * (physically contiguous memory regions) before rproc firmware loading and
233 * associated resource table analysis. These regions may be dedicated memory
234 * regions internal to the coprocessor or specified DDR region with specific
235 * attributes
236 *
237 * This function is a helper function with which we can go over the
238 * allocated carveouts and return associated region characteristics like
239 * coprocessor address, length or processor virtual address.
240 *
241 * Return: a valid pointer on carveout entry on success or NULL on failure.
242 */
243 struct rproc_mem_entry *
rproc_find_carveout_by_name(struct rproc * rproc,const char * name,...)244 rproc_find_carveout_by_name(struct rproc *rproc, const char *name, ...)
245 {
246 va_list args;
247 char _name[32];
248 struct rproc_mem_entry *carveout, *mem = NULL;
249
250 if (!name)
251 return NULL;
252
253 va_start(args, name);
254 vsnprintf(_name, sizeof(_name), name, args);
255 va_end(args);
256
257 list_for_each_entry(carveout, &rproc->carveouts, node) {
258 /* Compare carveout and requested names */
259 if (!strcmp(carveout->name, _name)) {
260 mem = carveout;
261 break;
262 }
263 }
264
265 return mem;
266 }
267
268 /**
269 * rproc_check_carveout_da() - Check specified carveout da configuration
270 * @rproc: handle of a remote processor
271 * @mem: pointer on carveout to check
272 * @da: area device address
273 * @len: associated area size
274 *
275 * This function is a helper function to verify requested device area (couple
276 * da, len) is part of specified carveout.
277 * If da is not set (defined as FW_RSC_ADDR_ANY), only requested length is
278 * checked.
279 *
280 * Return: 0 if carveout matches request else error
281 */
rproc_check_carveout_da(struct rproc * rproc,struct rproc_mem_entry * mem,u32 da,u32 len)282 static int rproc_check_carveout_da(struct rproc *rproc,
283 struct rproc_mem_entry *mem, u32 da, u32 len)
284 {
285 struct device *dev = &rproc->dev;
286 int delta;
287
288 /* Check requested resource length */
289 if (len > mem->len) {
290 dev_err(dev, "Registered carveout doesn't fit len request\n");
291 return -EINVAL;
292 }
293
294 if (da != FW_RSC_ADDR_ANY && mem->da == FW_RSC_ADDR_ANY) {
295 /* Address doesn't match registered carveout configuration */
296 return -EINVAL;
297 } else if (da != FW_RSC_ADDR_ANY && mem->da != FW_RSC_ADDR_ANY) {
298 delta = da - mem->da;
299
300 /* Check requested resource belongs to registered carveout */
301 if (delta < 0) {
302 dev_err(dev,
303 "Registered carveout doesn't fit da request\n");
304 return -EINVAL;
305 }
306
307 if (delta + len > mem->len) {
308 dev_err(dev,
309 "Registered carveout doesn't fit len request\n");
310 return -EINVAL;
311 }
312 }
313
314 return 0;
315 }
316
rproc_alloc_vring(struct rproc_vdev * rvdev,int i)317 int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
318 {
319 struct rproc *rproc = rvdev->rproc;
320 struct device *dev = &rproc->dev;
321 struct rproc_vring *rvring = &rvdev->vring[i];
322 struct fw_rsc_vdev *rsc;
323 int ret, size, notifyid;
324 struct rproc_mem_entry *mem;
325
326 /* actual size of vring (in bytes) */
327 size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
328
329 rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
330
331 /* Search for pre-registered carveout */
332 mem = rproc_find_carveout_by_name(rproc, "vdev%dvring%d", rvdev->index,
333 i);
334 if (mem) {
335 if (rproc_check_carveout_da(rproc, mem, rsc->vring[i].da, size))
336 return -ENOMEM;
337 } else {
338 /* Register carveout in in list */
339 mem = rproc_mem_entry_init(dev, 0, 0, size, rsc->vring[i].da,
340 rproc_alloc_carveout,
341 rproc_release_carveout,
342 "vdev%dvring%d",
343 rvdev->index, i);
344 if (!mem) {
345 dev_err(dev, "Can't allocate memory entry structure\n");
346 return -ENOMEM;
347 }
348
349 rproc_add_carveout(rproc, mem);
350 }
351
352 /*
353 * Assign an rproc-wide unique index for this vring
354 * TODO: assign a notifyid for rvdev updates as well
355 * TODO: support predefined notifyids (via resource table)
356 */
357 ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
358 if (ret < 0) {
359 dev_err(dev, "idr_alloc failed: %d\n", ret);
360 return ret;
361 }
362 notifyid = ret;
363
364 /* Potentially bump max_notifyid */
365 if (notifyid > rproc->max_notifyid)
366 rproc->max_notifyid = notifyid;
367
368 rvring->notifyid = notifyid;
369
370 /* Let the rproc know the notifyid of this vring.*/
371 rsc->vring[i].notifyid = notifyid;
372 return 0;
373 }
374
375 static int
rproc_parse_vring(struct rproc_vdev * rvdev,struct fw_rsc_vdev * rsc,int i)376 rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
377 {
378 struct rproc *rproc = rvdev->rproc;
379 struct device *dev = &rproc->dev;
380 struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
381 struct rproc_vring *rvring = &rvdev->vring[i];
382
383 dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n",
384 i, vring->da, vring->num, vring->align);
385
386 /* verify queue size and vring alignment are sane */
387 if (!vring->num || !vring->align) {
388 dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
389 vring->num, vring->align);
390 return -EINVAL;
391 }
392
393 rvring->len = vring->num;
394 rvring->align = vring->align;
395 rvring->rvdev = rvdev;
396
397 return 0;
398 }
399
rproc_free_vring(struct rproc_vring * rvring)400 void rproc_free_vring(struct rproc_vring *rvring)
401 {
402 struct rproc *rproc = rvring->rvdev->rproc;
403 int idx = rvring->rvdev->vring - rvring;
404 struct fw_rsc_vdev *rsc;
405
406 idr_remove(&rproc->notifyids, rvring->notifyid);
407
408 /* reset resource entry info */
409 rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
410 rsc->vring[idx].da = 0;
411 rsc->vring[idx].notifyid = -1;
412 }
413
rproc_vdev_do_start(struct rproc_subdev * subdev)414 static int rproc_vdev_do_start(struct rproc_subdev *subdev)
415 {
416 struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
417
418 return rproc_add_virtio_dev(rvdev, rvdev->id);
419 }
420
rproc_vdev_do_stop(struct rproc_subdev * subdev,bool crashed)421 static void rproc_vdev_do_stop(struct rproc_subdev *subdev, bool crashed)
422 {
423 struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
424 int ret;
425
426 ret = device_for_each_child(&rvdev->dev, NULL, rproc_remove_virtio_dev);
427 if (ret)
428 dev_warn(&rvdev->dev, "can't remove vdev child device: %d\n", ret);
429 }
430
431 /**
432 * rproc_rvdev_release() - release the existence of a rvdev
433 *
434 * @dev: the subdevice's dev
435 */
rproc_rvdev_release(struct device * dev)436 static void rproc_rvdev_release(struct device *dev)
437 {
438 struct rproc_vdev *rvdev = container_of(dev, struct rproc_vdev, dev);
439
440 of_reserved_mem_device_release(dev);
441
442 kfree(rvdev);
443 }
444
445 /**
446 * rproc_handle_vdev() - handle a vdev fw resource
447 * @rproc: the remote processor
448 * @rsc: the vring resource descriptor
449 * @avail: size of available data (for sanity checking the image)
450 *
451 * This resource entry requests the host to statically register a virtio
452 * device (vdev), and setup everything needed to support it. It contains
453 * everything needed to make it possible: the virtio device id, virtio
454 * device features, vrings information, virtio config space, etc...
455 *
456 * Before registering the vdev, the vrings are allocated from non-cacheable
457 * physically contiguous memory. Currently we only support two vrings per
458 * remote processor (temporary limitation). We might also want to consider
459 * doing the vring allocation only later when ->find_vqs() is invoked, and
460 * then release them upon ->del_vqs().
461 *
462 * Note: @da is currently not really handled correctly: we dynamically
463 * allocate it using the DMA API, ignoring requested hard coded addresses,
464 * and we don't take care of any required IOMMU programming. This is all
465 * going to be taken care of when the generic iommu-based DMA API will be
466 * merged. Meanwhile, statically-addressed iommu-based firmware images should
467 * use RSC_DEVMEM resource entries to map their required @da to the physical
468 * address of their base CMA region (ouch, hacky!).
469 *
470 * Returns 0 on success, or an appropriate error code otherwise
471 */
rproc_handle_vdev(struct rproc * rproc,struct fw_rsc_vdev * rsc,int offset,int avail)472 static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
473 int offset, int avail)
474 {
475 struct device *dev = &rproc->dev;
476 struct rproc_vdev *rvdev;
477 int i, ret;
478 char name[16];
479
480 /* make sure resource isn't truncated */
481 if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring)
482 + rsc->config_len > avail) {
483 dev_err(dev, "vdev rsc is truncated\n");
484 return -EINVAL;
485 }
486
487 /* make sure reserved bytes are zeroes */
488 if (rsc->reserved[0] || rsc->reserved[1]) {
489 dev_err(dev, "vdev rsc has non zero reserved bytes\n");
490 return -EINVAL;
491 }
492
493 dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n",
494 rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
495
496 /* we currently support only two vrings per rvdev */
497 if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
498 dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
499 return -EINVAL;
500 }
501
502 rvdev = kzalloc(sizeof(*rvdev), GFP_KERNEL);
503 if (!rvdev)
504 return -ENOMEM;
505
506 kref_init(&rvdev->refcount);
507
508 rvdev->id = rsc->id;
509 rvdev->rproc = rproc;
510 rvdev->index = rproc->nb_vdev++;
511
512 /* Initialise vdev subdevice */
513 snprintf(name, sizeof(name), "vdev%dbuffer", rvdev->index);
514 rvdev->dev.parent = rproc->dev.parent;
515 rvdev->dev.dma_pfn_offset = rproc->dev.parent->dma_pfn_offset;
516 rvdev->dev.release = rproc_rvdev_release;
517 dev_set_name(&rvdev->dev, "%s#%s", dev_name(rvdev->dev.parent), name);
518 dev_set_drvdata(&rvdev->dev, rvdev);
519
520 ret = device_register(&rvdev->dev);
521 if (ret) {
522 put_device(&rvdev->dev);
523 return ret;
524 }
525 /* Make device dma capable by inheriting from parent's capabilities */
526 set_dma_ops(&rvdev->dev, get_dma_ops(rproc->dev.parent));
527
528 ret = dma_coerce_mask_and_coherent(&rvdev->dev,
529 dma_get_mask(rproc->dev.parent));
530 if (ret) {
531 dev_warn(dev,
532 "Failed to set DMA mask %llx. Trying to continue... %x\n",
533 dma_get_mask(rproc->dev.parent), ret);
534 }
535
536 /* parse the vrings */
537 for (i = 0; i < rsc->num_of_vrings; i++) {
538 ret = rproc_parse_vring(rvdev, rsc, i);
539 if (ret)
540 goto free_rvdev;
541 }
542
543 /* remember the resource offset*/
544 rvdev->rsc_offset = offset;
545
546 /* allocate the vring resources */
547 for (i = 0; i < rsc->num_of_vrings; i++) {
548 ret = rproc_alloc_vring(rvdev, i);
549 if (ret)
550 goto unwind_vring_allocations;
551 }
552
553 list_add_tail(&rvdev->node, &rproc->rvdevs);
554
555 rvdev->subdev.start = rproc_vdev_do_start;
556 rvdev->subdev.stop = rproc_vdev_do_stop;
557
558 rproc_add_subdev(rproc, &rvdev->subdev);
559
560 return 0;
561
562 unwind_vring_allocations:
563 for (i--; i >= 0; i--)
564 rproc_free_vring(&rvdev->vring[i]);
565 free_rvdev:
566 device_unregister(&rvdev->dev);
567 return ret;
568 }
569
rproc_vdev_release(struct kref * ref)570 void rproc_vdev_release(struct kref *ref)
571 {
572 struct rproc_vdev *rvdev = container_of(ref, struct rproc_vdev, refcount);
573 struct rproc_vring *rvring;
574 struct rproc *rproc = rvdev->rproc;
575 int id;
576
577 for (id = 0; id < ARRAY_SIZE(rvdev->vring); id++) {
578 rvring = &rvdev->vring[id];
579 rproc_free_vring(rvring);
580 }
581
582 rproc_remove_subdev(rproc, &rvdev->subdev);
583 list_del(&rvdev->node);
584 device_unregister(&rvdev->dev);
585 }
586
587 /**
588 * rproc_handle_trace() - handle a shared trace buffer resource
589 * @rproc: the remote processor
590 * @rsc: the trace resource descriptor
591 * @avail: size of available data (for sanity checking the image)
592 *
593 * In case the remote processor dumps trace logs into memory,
594 * export it via debugfs.
595 *
596 * Currently, the 'da' member of @rsc should contain the device address
597 * where the remote processor is dumping the traces. Later we could also
598 * support dynamically allocating this address using the generic
599 * DMA API (but currently there isn't a use case for that).
600 *
601 * Returns 0 on success, or an appropriate error code otherwise
602 */
rproc_handle_trace(struct rproc * rproc,struct fw_rsc_trace * rsc,int offset,int avail)603 static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
604 int offset, int avail)
605 {
606 struct rproc_debug_trace *trace;
607 struct device *dev = &rproc->dev;
608 char name[15];
609
610 if (sizeof(*rsc) > avail) {
611 dev_err(dev, "trace rsc is truncated\n");
612 return -EINVAL;
613 }
614
615 /* make sure reserved bytes are zeroes */
616 if (rsc->reserved) {
617 dev_err(dev, "trace rsc has non zero reserved bytes\n");
618 return -EINVAL;
619 }
620
621 trace = kzalloc(sizeof(*trace), GFP_KERNEL);
622 if (!trace)
623 return -ENOMEM;
624
625 /* set the trace buffer dma properties */
626 trace->trace_mem.len = rsc->len;
627 trace->trace_mem.da = rsc->da;
628
629 /* set pointer on rproc device */
630 trace->rproc = rproc;
631
632 /* make sure snprintf always null terminates, even if truncating */
633 snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
634
635 /* create the debugfs entry */
636 trace->tfile = rproc_create_trace_file(name, rproc, trace);
637 if (!trace->tfile) {
638 kfree(trace);
639 return -EINVAL;
640 }
641
642 list_add_tail(&trace->node, &rproc->traces);
643
644 rproc->num_traces++;
645
646 dev_dbg(dev, "%s added: da 0x%x, len 0x%x\n",
647 name, rsc->da, rsc->len);
648
649 return 0;
650 }
651
652 /**
653 * rproc_handle_devmem() - handle devmem resource entry
654 * @rproc: remote processor handle
655 * @rsc: the devmem resource entry
656 * @avail: size of available data (for sanity checking the image)
657 *
658 * Remote processors commonly need to access certain on-chip peripherals.
659 *
660 * Some of these remote processors access memory via an iommu device,
661 * and might require us to configure their iommu before they can access
662 * the on-chip peripherals they need.
663 *
664 * This resource entry is a request to map such a peripheral device.
665 *
666 * These devmem entries will contain the physical address of the device in
667 * the 'pa' member. If a specific device address is expected, then 'da' will
668 * contain it (currently this is the only use case supported). 'len' will
669 * contain the size of the physical region we need to map.
670 *
671 * Currently we just "trust" those devmem entries to contain valid physical
672 * addresses, but this is going to change: we want the implementations to
673 * tell us ranges of physical addresses the firmware is allowed to request,
674 * and not allow firmwares to request access to physical addresses that
675 * are outside those ranges.
676 */
rproc_handle_devmem(struct rproc * rproc,struct fw_rsc_devmem * rsc,int offset,int avail)677 static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
678 int offset, int avail)
679 {
680 struct rproc_mem_entry *mapping;
681 struct device *dev = &rproc->dev;
682 int ret;
683
684 /* no point in handling this resource without a valid iommu domain */
685 if (!rproc->domain)
686 return -EINVAL;
687
688 if (sizeof(*rsc) > avail) {
689 dev_err(dev, "devmem rsc is truncated\n");
690 return -EINVAL;
691 }
692
693 /* make sure reserved bytes are zeroes */
694 if (rsc->reserved) {
695 dev_err(dev, "devmem rsc has non zero reserved bytes\n");
696 return -EINVAL;
697 }
698
699 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
700 if (!mapping)
701 return -ENOMEM;
702
703 ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
704 if (ret) {
705 dev_err(dev, "failed to map devmem: %d\n", ret);
706 goto out;
707 }
708
709 /*
710 * We'll need this info later when we'll want to unmap everything
711 * (e.g. on shutdown).
712 *
713 * We can't trust the remote processor not to change the resource
714 * table, so we must maintain this info independently.
715 */
716 mapping->da = rsc->da;
717 mapping->len = rsc->len;
718 list_add_tail(&mapping->node, &rproc->mappings);
719
720 dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
721 rsc->pa, rsc->da, rsc->len);
722
723 return 0;
724
725 out:
726 kfree(mapping);
727 return ret;
728 }
729
730 /**
731 * rproc_alloc_carveout() - allocated specified carveout
732 * @rproc: rproc handle
733 * @mem: the memory entry to allocate
734 *
735 * This function allocate specified memory entry @mem using
736 * dma_alloc_coherent() as default allocator
737 */
rproc_alloc_carveout(struct rproc * rproc,struct rproc_mem_entry * mem)738 static int rproc_alloc_carveout(struct rproc *rproc,
739 struct rproc_mem_entry *mem)
740 {
741 struct rproc_mem_entry *mapping = NULL;
742 struct device *dev = &rproc->dev;
743 dma_addr_t dma;
744 void *va;
745 int ret;
746
747 va = dma_alloc_coherent(dev->parent, mem->len, &dma, GFP_KERNEL);
748 if (!va) {
749 dev_err(dev->parent,
750 "failed to allocate dma memory: len 0x%x\n", mem->len);
751 return -ENOMEM;
752 }
753
754 dev_dbg(dev, "carveout va %pK, dma %pad, len 0x%x\n",
755 va, &dma, mem->len);
756
757 if (mem->da != FW_RSC_ADDR_ANY && !rproc->domain) {
758 /*
759 * Check requested da is equal to dma address
760 * and print a warn message in case of missalignment.
761 * Don't stop rproc_start sequence as coprocessor may
762 * build pa to da translation on its side.
763 */
764 if (mem->da != (u32)dma)
765 dev_warn(dev->parent,
766 "Allocated carveout doesn't fit device address request\n");
767 }
768
769 /*
770 * Ok, this is non-standard.
771 *
772 * Sometimes we can't rely on the generic iommu-based DMA API
773 * to dynamically allocate the device address and then set the IOMMU
774 * tables accordingly, because some remote processors might
775 * _require_ us to use hard coded device addresses that their
776 * firmware was compiled with.
777 *
778 * In this case, we must use the IOMMU API directly and map
779 * the memory to the device address as expected by the remote
780 * processor.
781 *
782 * Obviously such remote processor devices should not be configured
783 * to use the iommu-based DMA API: we expect 'dma' to contain the
784 * physical address in this case.
785 */
786 if (mem->da != FW_RSC_ADDR_ANY && rproc->domain) {
787 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
788 if (!mapping) {
789 ret = -ENOMEM;
790 goto dma_free;
791 }
792
793 ret = iommu_map(rproc->domain, mem->da, dma, mem->len,
794 mem->flags);
795 if (ret) {
796 dev_err(dev, "iommu_map failed: %d\n", ret);
797 goto free_mapping;
798 }
799
800 /*
801 * We'll need this info later when we'll want to unmap
802 * everything (e.g. on shutdown).
803 *
804 * We can't trust the remote processor not to change the
805 * resource table, so we must maintain this info independently.
806 */
807 mapping->da = mem->da;
808 mapping->len = mem->len;
809 list_add_tail(&mapping->node, &rproc->mappings);
810
811 dev_dbg(dev, "carveout mapped 0x%x to %pad\n",
812 mem->da, &dma);
813 }
814
815 if (mem->da == FW_RSC_ADDR_ANY) {
816 /* Update device address as undefined by requester */
817 if ((u64)dma & HIGH_BITS_MASK)
818 dev_warn(dev, "DMA address cast in 32bit to fit resource table format\n");
819
820 mem->da = (u32)dma;
821 }
822
823 mem->dma = dma;
824 mem->va = va;
825
826 return 0;
827
828 free_mapping:
829 kfree(mapping);
830 dma_free:
831 dma_free_coherent(dev->parent, mem->len, va, dma);
832 return ret;
833 }
834
835 /**
836 * rproc_release_carveout() - release acquired carveout
837 * @rproc: rproc handle
838 * @mem: the memory entry to release
839 *
840 * This function releases specified memory entry @mem allocated via
841 * rproc_alloc_carveout() function by @rproc.
842 */
rproc_release_carveout(struct rproc * rproc,struct rproc_mem_entry * mem)843 static int rproc_release_carveout(struct rproc *rproc,
844 struct rproc_mem_entry *mem)
845 {
846 struct device *dev = &rproc->dev;
847
848 /* clean up carveout allocations */
849 dma_free_coherent(dev->parent, mem->len, mem->va, mem->dma);
850 return 0;
851 }
852
853 /**
854 * rproc_handle_carveout() - handle phys contig memory allocation requests
855 * @rproc: rproc handle
856 * @rsc: the resource entry
857 * @avail: size of available data (for image validation)
858 *
859 * This function will handle firmware requests for allocation of physically
860 * contiguous memory regions.
861 *
862 * These request entries should come first in the firmware's resource table,
863 * as other firmware entries might request placing other data objects inside
864 * these memory regions (e.g. data/code segments, trace resource entries, ...).
865 *
866 * Allocating memory this way helps utilizing the reserved physical memory
867 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
868 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
869 * pressure is important; it may have a substantial impact on performance.
870 */
rproc_handle_carveout(struct rproc * rproc,struct fw_rsc_carveout * rsc,int offset,int avail)871 static int rproc_handle_carveout(struct rproc *rproc,
872 struct fw_rsc_carveout *rsc,
873 int offset, int avail)
874 {
875 struct rproc_mem_entry *carveout;
876 struct device *dev = &rproc->dev;
877
878 if (sizeof(*rsc) > avail) {
879 dev_err(dev, "carveout rsc is truncated\n");
880 return -EINVAL;
881 }
882
883 /* make sure reserved bytes are zeroes */
884 if (rsc->reserved) {
885 dev_err(dev, "carveout rsc has non zero reserved bytes\n");
886 return -EINVAL;
887 }
888
889 dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n",
890 rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags);
891
892 /*
893 * Check carveout rsc already part of a registered carveout,
894 * Search by name, then check the da and length
895 */
896 carveout = rproc_find_carveout_by_name(rproc, rsc->name);
897
898 if (carveout) {
899 if (carveout->rsc_offset != FW_RSC_ADDR_ANY) {
900 dev_err(dev,
901 "Carveout already associated to resource table\n");
902 return -ENOMEM;
903 }
904
905 if (rproc_check_carveout_da(rproc, carveout, rsc->da, rsc->len))
906 return -ENOMEM;
907
908 /* Update memory carveout with resource table info */
909 carveout->rsc_offset = offset;
910 carveout->flags = rsc->flags;
911
912 return 0;
913 }
914
915 /* Register carveout in in list */
916 carveout = rproc_mem_entry_init(dev, 0, 0, rsc->len, rsc->da,
917 rproc_alloc_carveout,
918 rproc_release_carveout, rsc->name);
919 if (!carveout) {
920 dev_err(dev, "Can't allocate memory entry structure\n");
921 return -ENOMEM;
922 }
923
924 carveout->flags = rsc->flags;
925 carveout->rsc_offset = offset;
926 rproc_add_carveout(rproc, carveout);
927
928 return 0;
929 }
930
931 /**
932 * rproc_add_carveout() - register an allocated carveout region
933 * @rproc: rproc handle
934 * @mem: memory entry to register
935 *
936 * This function registers specified memory entry in @rproc carveouts list.
937 * Specified carveout should have been allocated before registering.
938 */
rproc_add_carveout(struct rproc * rproc,struct rproc_mem_entry * mem)939 void rproc_add_carveout(struct rproc *rproc, struct rproc_mem_entry *mem)
940 {
941 list_add_tail(&mem->node, &rproc->carveouts);
942 }
943 EXPORT_SYMBOL(rproc_add_carveout);
944
945 /**
946 * rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct
947 * @dev: pointer on device struct
948 * @va: virtual address
949 * @dma: dma address
950 * @len: memory carveout length
951 * @da: device address
952 * @alloc: memory carveout allocation function
953 * @release: memory carveout release function
954 * @name: carveout name
955 *
956 * This function allocates a rproc_mem_entry struct and fill it with parameters
957 * provided by client.
958 */
959 struct rproc_mem_entry *
rproc_mem_entry_init(struct device * dev,void * va,dma_addr_t dma,int len,u32 da,int (* alloc)(struct rproc *,struct rproc_mem_entry *),int (* release)(struct rproc *,struct rproc_mem_entry *),const char * name,...)960 rproc_mem_entry_init(struct device *dev,
961 void *va, dma_addr_t dma, int len, u32 da,
962 int (*alloc)(struct rproc *, struct rproc_mem_entry *),
963 int (*release)(struct rproc *, struct rproc_mem_entry *),
964 const char *name, ...)
965 {
966 struct rproc_mem_entry *mem;
967 va_list args;
968
969 mem = kzalloc(sizeof(*mem), GFP_KERNEL);
970 if (!mem)
971 return mem;
972
973 mem->va = va;
974 mem->dma = dma;
975 mem->da = da;
976 mem->len = len;
977 mem->alloc = alloc;
978 mem->release = release;
979 mem->rsc_offset = FW_RSC_ADDR_ANY;
980 mem->of_resm_idx = -1;
981
982 va_start(args, name);
983 vsnprintf(mem->name, sizeof(mem->name), name, args);
984 va_end(args);
985
986 return mem;
987 }
988 EXPORT_SYMBOL(rproc_mem_entry_init);
989
990 /**
991 * rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct
992 * from a reserved memory phandle
993 * @dev: pointer on device struct
994 * @of_resm_idx: reserved memory phandle index in "memory-region"
995 * @len: memory carveout length
996 * @da: device address
997 * @name: carveout name
998 *
999 * This function allocates a rproc_mem_entry struct and fill it with parameters
1000 * provided by client.
1001 */
1002 struct rproc_mem_entry *
rproc_of_resm_mem_entry_init(struct device * dev,u32 of_resm_idx,int len,u32 da,const char * name,...)1003 rproc_of_resm_mem_entry_init(struct device *dev, u32 of_resm_idx, int len,
1004 u32 da, const char *name, ...)
1005 {
1006 struct rproc_mem_entry *mem;
1007 va_list args;
1008
1009 mem = kzalloc(sizeof(*mem), GFP_KERNEL);
1010 if (!mem)
1011 return mem;
1012
1013 mem->da = da;
1014 mem->len = len;
1015 mem->rsc_offset = FW_RSC_ADDR_ANY;
1016 mem->of_resm_idx = of_resm_idx;
1017
1018 va_start(args, name);
1019 vsnprintf(mem->name, sizeof(mem->name), name, args);
1020 va_end(args);
1021
1022 return mem;
1023 }
1024 EXPORT_SYMBOL(rproc_of_resm_mem_entry_init);
1025
1026 /**
1027 * A lookup table for resource handlers. The indices are defined in
1028 * enum fw_resource_type.
1029 */
1030 static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
1031 [RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
1032 [RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
1033 [RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
1034 [RSC_VDEV] = (rproc_handle_resource_t)rproc_handle_vdev,
1035 };
1036
1037 /* handle firmware resource entries before booting the remote processor */
rproc_handle_resources(struct rproc * rproc,rproc_handle_resource_t handlers[RSC_LAST])1038 static int rproc_handle_resources(struct rproc *rproc,
1039 rproc_handle_resource_t handlers[RSC_LAST])
1040 {
1041 struct device *dev = &rproc->dev;
1042 rproc_handle_resource_t handler;
1043 int ret = 0, i;
1044
1045 if (!rproc->table_ptr)
1046 return 0;
1047
1048 for (i = 0; i < rproc->table_ptr->num; i++) {
1049 int offset = rproc->table_ptr->offset[i];
1050 struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
1051 int avail = rproc->table_sz - offset - sizeof(*hdr);
1052 void *rsc = (void *)hdr + sizeof(*hdr);
1053
1054 /* make sure table isn't truncated */
1055 if (avail < 0) {
1056 dev_err(dev, "rsc table is truncated\n");
1057 return -EINVAL;
1058 }
1059
1060 dev_dbg(dev, "rsc: type %d\n", hdr->type);
1061
1062 if (hdr->type >= RSC_VENDOR_START &&
1063 hdr->type <= RSC_VENDOR_END) {
1064 ret = rproc_handle_rsc(rproc, hdr->type, rsc,
1065 offset + sizeof(*hdr), avail);
1066 if (ret == RSC_HANDLED)
1067 continue;
1068 else if (ret < 0)
1069 break;
1070
1071 dev_warn(dev, "unsupported vendor resource %d\n",
1072 hdr->type);
1073 continue;
1074 }
1075
1076 if (hdr->type >= RSC_LAST) {
1077 dev_warn(dev, "unsupported resource %d\n", hdr->type);
1078 continue;
1079 }
1080
1081 handler = handlers[hdr->type];
1082 if (!handler)
1083 continue;
1084
1085 ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
1086 if (ret)
1087 break;
1088 }
1089
1090 return ret;
1091 }
1092
rproc_prepare_subdevices(struct rproc * rproc)1093 static int rproc_prepare_subdevices(struct rproc *rproc)
1094 {
1095 struct rproc_subdev *subdev;
1096 int ret;
1097
1098 list_for_each_entry(subdev, &rproc->subdevs, node) {
1099 if (subdev->prepare) {
1100 ret = subdev->prepare(subdev);
1101 if (ret)
1102 goto unroll_preparation;
1103 }
1104 }
1105
1106 return 0;
1107
1108 unroll_preparation:
1109 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1110 if (subdev->unprepare)
1111 subdev->unprepare(subdev);
1112 }
1113
1114 return ret;
1115 }
1116
rproc_start_subdevices(struct rproc * rproc)1117 static int rproc_start_subdevices(struct rproc *rproc)
1118 {
1119 struct rproc_subdev *subdev;
1120 int ret;
1121
1122 list_for_each_entry(subdev, &rproc->subdevs, node) {
1123 if (subdev->start) {
1124 ret = subdev->start(subdev);
1125 if (ret)
1126 goto unroll_registration;
1127 }
1128 }
1129
1130 return 0;
1131
1132 unroll_registration:
1133 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1134 if (subdev->stop)
1135 subdev->stop(subdev, true);
1136 }
1137
1138 return ret;
1139 }
1140
rproc_stop_subdevices(struct rproc * rproc,bool crashed)1141 static void rproc_stop_subdevices(struct rproc *rproc, bool crashed)
1142 {
1143 struct rproc_subdev *subdev;
1144
1145 list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1146 if (subdev->stop)
1147 subdev->stop(subdev, crashed);
1148 }
1149 }
1150
rproc_unprepare_subdevices(struct rproc * rproc)1151 static void rproc_unprepare_subdevices(struct rproc *rproc)
1152 {
1153 struct rproc_subdev *subdev;
1154
1155 list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1156 if (subdev->unprepare)
1157 subdev->unprepare(subdev);
1158 }
1159 }
1160
1161 /**
1162 * rproc_alloc_registered_carveouts() - allocate all carveouts registered
1163 * in the list
1164 * @rproc: the remote processor handle
1165 *
1166 * This function parses registered carveout list, performs allocation
1167 * if alloc() ops registered and updates resource table information
1168 * if rsc_offset set.
1169 *
1170 * Return: 0 on success
1171 */
rproc_alloc_registered_carveouts(struct rproc * rproc)1172 static int rproc_alloc_registered_carveouts(struct rproc *rproc)
1173 {
1174 struct rproc_mem_entry *entry, *tmp;
1175 struct fw_rsc_carveout *rsc;
1176 struct device *dev = &rproc->dev;
1177 u64 pa;
1178 int ret;
1179
1180 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1181 if (entry->alloc) {
1182 ret = entry->alloc(rproc, entry);
1183 if (ret) {
1184 dev_err(dev, "Unable to allocate carveout %s: %d\n",
1185 entry->name, ret);
1186 return -ENOMEM;
1187 }
1188 }
1189
1190 if (entry->rsc_offset != FW_RSC_ADDR_ANY) {
1191 /* update resource table */
1192 rsc = (void *)rproc->table_ptr + entry->rsc_offset;
1193
1194 /*
1195 * Some remote processors might need to know the pa
1196 * even though they are behind an IOMMU. E.g., OMAP4's
1197 * remote M3 processor needs this so it can control
1198 * on-chip hardware accelerators that are not behind
1199 * the IOMMU, and therefor must know the pa.
1200 *
1201 * Generally we don't want to expose physical addresses
1202 * if we don't have to (remote processors are generally
1203 * _not_ trusted), so we might want to do this only for
1204 * remote processor that _must_ have this (e.g. OMAP4's
1205 * dual M3 subsystem).
1206 *
1207 * Non-IOMMU processors might also want to have this info.
1208 * In this case, the device address and the physical address
1209 * are the same.
1210 */
1211
1212 /* Use va if defined else dma to generate pa */
1213 if (entry->va)
1214 pa = (u64)rproc_va_to_pa(entry->va);
1215 else
1216 pa = (u64)entry->dma;
1217
1218 if (((u64)pa) & HIGH_BITS_MASK)
1219 dev_warn(dev,
1220 "Physical address cast in 32bit to fit resource table format\n");
1221
1222 rsc->pa = (u32)pa;
1223 rsc->da = entry->da;
1224 rsc->len = entry->len;
1225 }
1226 }
1227
1228 return 0;
1229 }
1230
1231 /**
1232 * rproc_coredump_cleanup() - clean up dump_segments list
1233 * @rproc: the remote processor handle
1234 */
rproc_coredump_cleanup(struct rproc * rproc)1235 static void rproc_coredump_cleanup(struct rproc *rproc)
1236 {
1237 struct rproc_dump_segment *entry, *tmp;
1238
1239 list_for_each_entry_safe(entry, tmp, &rproc->dump_segments, node) {
1240 list_del(&entry->node);
1241 kfree(entry);
1242 }
1243 }
1244
1245 /**
1246 * rproc_resource_cleanup() - clean up and free all acquired resources
1247 * @rproc: rproc handle
1248 *
1249 * This function will free all resources acquired for @rproc, and it
1250 * is called whenever @rproc either shuts down or fails to boot.
1251 */
rproc_resource_cleanup(struct rproc * rproc)1252 static void rproc_resource_cleanup(struct rproc *rproc)
1253 {
1254 struct rproc_mem_entry *entry, *tmp;
1255 struct rproc_debug_trace *trace, *ttmp;
1256 struct rproc_vdev *rvdev, *rvtmp;
1257 struct device *dev = &rproc->dev;
1258
1259 /* clean up debugfs trace entries */
1260 list_for_each_entry_safe(trace, ttmp, &rproc->traces, node) {
1261 rproc_remove_trace_file(trace->tfile);
1262 rproc->num_traces--;
1263 list_del(&trace->node);
1264 kfree(trace);
1265 }
1266
1267 /* clean up iommu mapping entries */
1268 list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
1269 size_t unmapped;
1270
1271 unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
1272 if (unmapped != entry->len) {
1273 /* nothing much to do besides complaining */
1274 dev_err(dev, "failed to unmap %u/%zu\n", entry->len,
1275 unmapped);
1276 }
1277
1278 list_del(&entry->node);
1279 kfree(entry);
1280 }
1281
1282 /* clean up carveout allocations */
1283 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1284 if (entry->release)
1285 entry->release(rproc, entry);
1286 list_del(&entry->node);
1287 kfree(entry);
1288 }
1289
1290 /* clean up remote vdev entries */
1291 list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
1292 kref_put(&rvdev->refcount, rproc_vdev_release);
1293
1294 rproc_coredump_cleanup(rproc);
1295 }
1296
rproc_start(struct rproc * rproc,const struct firmware * fw)1297 static int rproc_start(struct rproc *rproc, const struct firmware *fw)
1298 {
1299 struct resource_table *loaded_table;
1300 struct device *dev = &rproc->dev;
1301 int ret;
1302
1303 /* load the ELF segments to memory */
1304 ret = rproc_load_segments(rproc, fw);
1305 if (ret) {
1306 dev_err(dev, "Failed to load program segments: %d\n", ret);
1307 return ret;
1308 }
1309
1310 /*
1311 * The starting device has been given the rproc->cached_table as the
1312 * resource table. The address of the vring along with the other
1313 * allocated resources (carveouts etc) is stored in cached_table.
1314 * In order to pass this information to the remote device we must copy
1315 * this information to device memory. We also update the table_ptr so
1316 * that any subsequent changes will be applied to the loaded version.
1317 */
1318 loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
1319 if (loaded_table) {
1320 memcpy(loaded_table, rproc->cached_table, rproc->table_sz);
1321 rproc->table_ptr = loaded_table;
1322 }
1323
1324 ret = rproc_prepare_subdevices(rproc);
1325 if (ret) {
1326 dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1327 rproc->name, ret);
1328 goto reset_table_ptr;
1329 }
1330
1331 /* power up the remote processor */
1332 ret = rproc->ops->start(rproc);
1333 if (ret) {
1334 dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
1335 goto unprepare_subdevices;
1336 }
1337
1338 /* Start any subdevices for the remote processor */
1339 ret = rproc_start_subdevices(rproc);
1340 if (ret) {
1341 dev_err(dev, "failed to probe subdevices for %s: %d\n",
1342 rproc->name, ret);
1343 goto stop_rproc;
1344 }
1345
1346 rproc->state = RPROC_RUNNING;
1347
1348 dev_info(dev, "remote processor %s is now up\n", rproc->name);
1349
1350 return 0;
1351
1352 stop_rproc:
1353 rproc->ops->stop(rproc);
1354 unprepare_subdevices:
1355 rproc_unprepare_subdevices(rproc);
1356 reset_table_ptr:
1357 rproc->table_ptr = rproc->cached_table;
1358
1359 return ret;
1360 }
1361
1362 /*
1363 * take a firmware and boot a remote processor with it.
1364 */
rproc_fw_boot(struct rproc * rproc,const struct firmware * fw)1365 static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
1366 {
1367 struct device *dev = &rproc->dev;
1368 const char *name = rproc->firmware;
1369 int ret;
1370
1371 ret = rproc_fw_sanity_check(rproc, fw);
1372 if (ret)
1373 return ret;
1374
1375 dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
1376
1377 /*
1378 * if enabling an IOMMU isn't relevant for this rproc, this is
1379 * just a nop
1380 */
1381 ret = rproc_enable_iommu(rproc);
1382 if (ret) {
1383 dev_err(dev, "can't enable iommu: %d\n", ret);
1384 return ret;
1385 }
1386
1387 rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
1388
1389 /* Load resource table, core dump segment list etc from the firmware */
1390 ret = rproc_parse_fw(rproc, fw);
1391 if (ret)
1392 goto disable_iommu;
1393
1394 /* reset max_notifyid */
1395 rproc->max_notifyid = -1;
1396
1397 /* reset handled vdev */
1398 rproc->nb_vdev = 0;
1399
1400 /* handle fw resources which are required to boot rproc */
1401 ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1402 if (ret) {
1403 dev_err(dev, "Failed to process resources: %d\n", ret);
1404 goto clean_up_resources;
1405 }
1406
1407 /* Allocate carveout resources associated to rproc */
1408 ret = rproc_alloc_registered_carveouts(rproc);
1409 if (ret) {
1410 dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1411 ret);
1412 goto clean_up_resources;
1413 }
1414
1415 ret = rproc_start(rproc, fw);
1416 if (ret)
1417 goto clean_up_resources;
1418
1419 return 0;
1420
1421 clean_up_resources:
1422 rproc_resource_cleanup(rproc);
1423 kfree(rproc->cached_table);
1424 rproc->cached_table = NULL;
1425 rproc->table_ptr = NULL;
1426 disable_iommu:
1427 rproc_disable_iommu(rproc);
1428 return ret;
1429 }
1430
1431 /*
1432 * take a firmware and boot it up.
1433 *
1434 * Note: this function is called asynchronously upon registration of the
1435 * remote processor (so we must wait until it completes before we try
1436 * to unregister the device. one other option is just to use kref here,
1437 * that might be cleaner).
1438 */
rproc_auto_boot_callback(const struct firmware * fw,void * context)1439 static void rproc_auto_boot_callback(const struct firmware *fw, void *context)
1440 {
1441 struct rproc *rproc = context;
1442
1443 rproc_boot(rproc);
1444
1445 release_firmware(fw);
1446 }
1447
rproc_trigger_auto_boot(struct rproc * rproc)1448 static int rproc_trigger_auto_boot(struct rproc *rproc)
1449 {
1450 int ret;
1451
1452 /*
1453 * We're initiating an asynchronous firmware loading, so we can
1454 * be built-in kernel code, without hanging the boot process.
1455 */
1456 ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
1457 rproc->firmware, &rproc->dev, GFP_KERNEL,
1458 rproc, rproc_auto_boot_callback);
1459 if (ret < 0)
1460 dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
1461
1462 return ret;
1463 }
1464
rproc_stop(struct rproc * rproc,bool crashed)1465 static int rproc_stop(struct rproc *rproc, bool crashed)
1466 {
1467 struct device *dev = &rproc->dev;
1468 int ret;
1469
1470 /* Stop any subdevices for the remote processor */
1471 rproc_stop_subdevices(rproc, crashed);
1472
1473 /* the installed resource table is no longer accessible */
1474 rproc->table_ptr = rproc->cached_table;
1475
1476 /* power off the remote processor */
1477 ret = rproc->ops->stop(rproc);
1478 if (ret) {
1479 dev_err(dev, "can't stop rproc: %d\n", ret);
1480 return ret;
1481 }
1482
1483 rproc_unprepare_subdevices(rproc);
1484
1485 rproc->state = RPROC_OFFLINE;
1486
1487 dev_info(dev, "stopped remote processor %s\n", rproc->name);
1488
1489 return 0;
1490 }
1491
1492 /**
1493 * rproc_coredump_add_segment() - add segment of device memory to coredump
1494 * @rproc: handle of a remote processor
1495 * @da: device address
1496 * @size: size of segment
1497 *
1498 * Add device memory to the list of segments to be included in a coredump for
1499 * the remoteproc.
1500 *
1501 * Return: 0 on success, negative errno on error.
1502 */
rproc_coredump_add_segment(struct rproc * rproc,dma_addr_t da,size_t size)1503 int rproc_coredump_add_segment(struct rproc *rproc, dma_addr_t da, size_t size)
1504 {
1505 struct rproc_dump_segment *segment;
1506
1507 segment = kzalloc(sizeof(*segment), GFP_KERNEL);
1508 if (!segment)
1509 return -ENOMEM;
1510
1511 segment->da = da;
1512 segment->size = size;
1513
1514 list_add_tail(&segment->node, &rproc->dump_segments);
1515
1516 return 0;
1517 }
1518 EXPORT_SYMBOL(rproc_coredump_add_segment);
1519
1520 /**
1521 * rproc_coredump_add_custom_segment() - add custom coredump segment
1522 * @rproc: handle of a remote processor
1523 * @da: device address
1524 * @size: size of segment
1525 * @dumpfn: custom dump function called for each segment during coredump
1526 * @priv: private data
1527 *
1528 * Add device memory to the list of segments to be included in the coredump
1529 * and associate the segment with the given custom dump function and private
1530 * data.
1531 *
1532 * Return: 0 on success, negative errno on error.
1533 */
rproc_coredump_add_custom_segment(struct rproc * rproc,dma_addr_t da,size_t size,void (* dumpfn)(struct rproc * rproc,struct rproc_dump_segment * segment,void * dest),void * priv)1534 int rproc_coredump_add_custom_segment(struct rproc *rproc,
1535 dma_addr_t da, size_t size,
1536 void (*dumpfn)(struct rproc *rproc,
1537 struct rproc_dump_segment *segment,
1538 void *dest),
1539 void *priv)
1540 {
1541 struct rproc_dump_segment *segment;
1542
1543 segment = kzalloc(sizeof(*segment), GFP_KERNEL);
1544 if (!segment)
1545 return -ENOMEM;
1546
1547 segment->da = da;
1548 segment->size = size;
1549 segment->priv = priv;
1550 segment->dump = dumpfn;
1551
1552 list_add_tail(&segment->node, &rproc->dump_segments);
1553
1554 return 0;
1555 }
1556 EXPORT_SYMBOL(rproc_coredump_add_custom_segment);
1557
1558 /**
1559 * rproc_coredump() - perform coredump
1560 * @rproc: rproc handle
1561 *
1562 * This function will generate an ELF header for the registered segments
1563 * and create a devcoredump device associated with rproc.
1564 */
rproc_coredump(struct rproc * rproc)1565 static void rproc_coredump(struct rproc *rproc)
1566 {
1567 struct rproc_dump_segment *segment;
1568 struct elf32_phdr *phdr;
1569 struct elf32_hdr *ehdr;
1570 size_t data_size;
1571 size_t offset;
1572 void *data;
1573 void *ptr;
1574 int phnum = 0;
1575
1576 if (list_empty(&rproc->dump_segments))
1577 return;
1578
1579 data_size = sizeof(*ehdr);
1580 list_for_each_entry(segment, &rproc->dump_segments, node) {
1581 data_size += sizeof(*phdr) + segment->size;
1582
1583 phnum++;
1584 }
1585
1586 data = vmalloc(data_size);
1587 if (!data)
1588 return;
1589
1590 ehdr = data;
1591
1592 memset(ehdr, 0, sizeof(*ehdr));
1593 memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
1594 ehdr->e_ident[EI_CLASS] = ELFCLASS32;
1595 ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1596 ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1597 ehdr->e_ident[EI_OSABI] = ELFOSABI_NONE;
1598 ehdr->e_type = ET_CORE;
1599 ehdr->e_machine = EM_NONE;
1600 ehdr->e_version = EV_CURRENT;
1601 ehdr->e_entry = rproc->bootaddr;
1602 ehdr->e_phoff = sizeof(*ehdr);
1603 ehdr->e_ehsize = sizeof(*ehdr);
1604 ehdr->e_phentsize = sizeof(*phdr);
1605 ehdr->e_phnum = phnum;
1606
1607 phdr = data + ehdr->e_phoff;
1608 offset = ehdr->e_phoff + sizeof(*phdr) * ehdr->e_phnum;
1609 list_for_each_entry(segment, &rproc->dump_segments, node) {
1610 memset(phdr, 0, sizeof(*phdr));
1611 phdr->p_type = PT_LOAD;
1612 phdr->p_offset = offset;
1613 phdr->p_vaddr = segment->da;
1614 phdr->p_paddr = segment->da;
1615 phdr->p_filesz = segment->size;
1616 phdr->p_memsz = segment->size;
1617 phdr->p_flags = PF_R | PF_W | PF_X;
1618 phdr->p_align = 0;
1619
1620 if (segment->dump) {
1621 segment->dump(rproc, segment, data + offset);
1622 } else {
1623 ptr = rproc_da_to_va(rproc, segment->da, segment->size);
1624 if (!ptr) {
1625 dev_err(&rproc->dev,
1626 "invalid coredump segment (%pad, %zu)\n",
1627 &segment->da, segment->size);
1628 memset(data + offset, 0xff, segment->size);
1629 } else {
1630 memcpy(data + offset, ptr, segment->size);
1631 }
1632 }
1633
1634 offset += phdr->p_filesz;
1635 phdr++;
1636 }
1637
1638 dev_coredumpv(&rproc->dev, data, data_size, GFP_KERNEL);
1639 }
1640
1641 /**
1642 * rproc_trigger_recovery() - recover a remoteproc
1643 * @rproc: the remote processor
1644 *
1645 * The recovery is done by resetting all the virtio devices, that way all the
1646 * rpmsg drivers will be reseted along with the remote processor making the
1647 * remoteproc functional again.
1648 *
1649 * This function can sleep, so it cannot be called from atomic context.
1650 */
rproc_trigger_recovery(struct rproc * rproc)1651 int rproc_trigger_recovery(struct rproc *rproc)
1652 {
1653 const struct firmware *firmware_p;
1654 struct device *dev = &rproc->dev;
1655 int ret;
1656
1657 dev_err(dev, "recovering %s\n", rproc->name);
1658
1659 ret = mutex_lock_interruptible(&rproc->lock);
1660 if (ret)
1661 return ret;
1662
1663 ret = rproc_stop(rproc, true);
1664 if (ret)
1665 goto unlock_mutex;
1666
1667 /* generate coredump */
1668 rproc_coredump(rproc);
1669
1670 /* load firmware */
1671 ret = request_firmware(&firmware_p, rproc->firmware, dev);
1672 if (ret < 0) {
1673 dev_err(dev, "request_firmware failed: %d\n", ret);
1674 goto unlock_mutex;
1675 }
1676
1677 /* boot the remote processor up again */
1678 ret = rproc_start(rproc, firmware_p);
1679
1680 release_firmware(firmware_p);
1681
1682 unlock_mutex:
1683 mutex_unlock(&rproc->lock);
1684 return ret;
1685 }
1686
1687 /**
1688 * rproc_crash_handler_work() - handle a crash
1689 *
1690 * This function needs to handle everything related to a crash, like cpu
1691 * registers and stack dump, information to help to debug the fatal error, etc.
1692 */
rproc_crash_handler_work(struct work_struct * work)1693 static void rproc_crash_handler_work(struct work_struct *work)
1694 {
1695 struct rproc *rproc = container_of(work, struct rproc, crash_handler);
1696 struct device *dev = &rproc->dev;
1697
1698 dev_dbg(dev, "enter %s\n", __func__);
1699
1700 mutex_lock(&rproc->lock);
1701
1702 if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) {
1703 /* handle only the first crash detected */
1704 mutex_unlock(&rproc->lock);
1705 return;
1706 }
1707
1708 rproc->state = RPROC_CRASHED;
1709 dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
1710 rproc->name);
1711
1712 mutex_unlock(&rproc->lock);
1713
1714 if (!rproc->recovery_disabled)
1715 rproc_trigger_recovery(rproc);
1716 }
1717
1718 /**
1719 * rproc_boot() - boot a remote processor
1720 * @rproc: handle of a remote processor
1721 *
1722 * Boot a remote processor (i.e. load its firmware, power it on, ...).
1723 *
1724 * If the remote processor is already powered on, this function immediately
1725 * returns (successfully).
1726 *
1727 * Returns 0 on success, and an appropriate error value otherwise.
1728 */
rproc_boot(struct rproc * rproc)1729 int rproc_boot(struct rproc *rproc)
1730 {
1731 const struct firmware *firmware_p;
1732 struct device *dev;
1733 int ret;
1734
1735 if (!rproc) {
1736 pr_err("invalid rproc handle\n");
1737 return -EINVAL;
1738 }
1739
1740 dev = &rproc->dev;
1741
1742 ret = mutex_lock_interruptible(&rproc->lock);
1743 if (ret) {
1744 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1745 return ret;
1746 }
1747
1748 if (rproc->state == RPROC_DELETED) {
1749 ret = -ENODEV;
1750 dev_err(dev, "can't boot deleted rproc %s\n", rproc->name);
1751 goto unlock_mutex;
1752 }
1753
1754 /* skip the boot process if rproc is already powered up */
1755 if (atomic_inc_return(&rproc->power) > 1) {
1756 ret = 0;
1757 goto unlock_mutex;
1758 }
1759
1760 dev_info(dev, "powering up %s\n", rproc->name);
1761
1762 /* load firmware */
1763 ret = request_firmware(&firmware_p, rproc->firmware, dev);
1764 if (ret < 0) {
1765 dev_err(dev, "request_firmware failed: %d\n", ret);
1766 goto downref_rproc;
1767 }
1768
1769 ret = rproc_fw_boot(rproc, firmware_p);
1770
1771 release_firmware(firmware_p);
1772
1773 downref_rproc:
1774 if (ret)
1775 atomic_dec(&rproc->power);
1776 unlock_mutex:
1777 mutex_unlock(&rproc->lock);
1778 return ret;
1779 }
1780 EXPORT_SYMBOL(rproc_boot);
1781
1782 /**
1783 * rproc_shutdown() - power off the remote processor
1784 * @rproc: the remote processor
1785 *
1786 * Power off a remote processor (previously booted with rproc_boot()).
1787 *
1788 * In case @rproc is still being used by an additional user(s), then
1789 * this function will just decrement the power refcount and exit,
1790 * without really powering off the device.
1791 *
1792 * Every call to rproc_boot() must (eventually) be accompanied by a call
1793 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1794 *
1795 * Notes:
1796 * - we're not decrementing the rproc's refcount, only the power refcount.
1797 * which means that the @rproc handle stays valid even after rproc_shutdown()
1798 * returns, and users can still use it with a subsequent rproc_boot(), if
1799 * needed.
1800 */
rproc_shutdown(struct rproc * rproc)1801 void rproc_shutdown(struct rproc *rproc)
1802 {
1803 struct device *dev = &rproc->dev;
1804 int ret;
1805
1806 ret = mutex_lock_interruptible(&rproc->lock);
1807 if (ret) {
1808 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1809 return;
1810 }
1811
1812 /* if the remote proc is still needed, bail out */
1813 if (!atomic_dec_and_test(&rproc->power))
1814 goto out;
1815
1816 ret = rproc_stop(rproc, false);
1817 if (ret) {
1818 atomic_inc(&rproc->power);
1819 goto out;
1820 }
1821
1822 /* clean up all acquired resources */
1823 rproc_resource_cleanup(rproc);
1824
1825 rproc_disable_iommu(rproc);
1826
1827 /* Free the copy of the resource table */
1828 kfree(rproc->cached_table);
1829 rproc->cached_table = NULL;
1830 rproc->table_ptr = NULL;
1831 out:
1832 mutex_unlock(&rproc->lock);
1833 }
1834 EXPORT_SYMBOL(rproc_shutdown);
1835
1836 /**
1837 * rproc_get_by_phandle() - find a remote processor by phandle
1838 * @phandle: phandle to the rproc
1839 *
1840 * Finds an rproc handle using the remote processor's phandle, and then
1841 * return a handle to the rproc.
1842 *
1843 * This function increments the remote processor's refcount, so always
1844 * use rproc_put() to decrement it back once rproc isn't needed anymore.
1845 *
1846 * Returns the rproc handle on success, and NULL on failure.
1847 */
1848 #ifdef CONFIG_OF
rproc_get_by_phandle(phandle phandle)1849 struct rproc *rproc_get_by_phandle(phandle phandle)
1850 {
1851 struct rproc *rproc = NULL, *r;
1852 struct device_node *np;
1853
1854 np = of_find_node_by_phandle(phandle);
1855 if (!np)
1856 return NULL;
1857
1858 mutex_lock(&rproc_list_mutex);
1859 list_for_each_entry(r, &rproc_list, node) {
1860 if (r->dev.parent && r->dev.parent->of_node == np) {
1861 /* prevent underlying implementation from being removed */
1862 if (!try_module_get(r->dev.parent->driver->owner)) {
1863 dev_err(&r->dev, "can't get owner\n");
1864 break;
1865 }
1866
1867 rproc = r;
1868 get_device(&rproc->dev);
1869 break;
1870 }
1871 }
1872 mutex_unlock(&rproc_list_mutex);
1873
1874 of_node_put(np);
1875
1876 return rproc;
1877 }
1878 #else
rproc_get_by_phandle(phandle phandle)1879 struct rproc *rproc_get_by_phandle(phandle phandle)
1880 {
1881 return NULL;
1882 }
1883 #endif
1884 EXPORT_SYMBOL(rproc_get_by_phandle);
1885
1886 /**
1887 * rproc_add() - register a remote processor
1888 * @rproc: the remote processor handle to register
1889 *
1890 * Registers @rproc with the remoteproc framework, after it has been
1891 * allocated with rproc_alloc().
1892 *
1893 * This is called by the platform-specific rproc implementation, whenever
1894 * a new remote processor device is probed.
1895 *
1896 * Returns 0 on success and an appropriate error code otherwise.
1897 *
1898 * Note: this function initiates an asynchronous firmware loading
1899 * context, which will look for virtio devices supported by the rproc's
1900 * firmware.
1901 *
1902 * If found, those virtio devices will be created and added, so as a result
1903 * of registering this remote processor, additional virtio drivers might be
1904 * probed.
1905 */
rproc_add(struct rproc * rproc)1906 int rproc_add(struct rproc *rproc)
1907 {
1908 struct device *dev = &rproc->dev;
1909 int ret;
1910
1911 ret = device_add(dev);
1912 if (ret < 0)
1913 return ret;
1914
1915 dev_info(dev, "%s is available\n", rproc->name);
1916
1917 /* create debugfs entries */
1918 rproc_create_debug_dir(rproc);
1919
1920 /* if rproc is marked always-on, request it to boot */
1921 if (rproc->auto_boot) {
1922 ret = rproc_trigger_auto_boot(rproc);
1923 if (ret < 0)
1924 return ret;
1925 }
1926
1927 /* expose to rproc_get_by_phandle users */
1928 mutex_lock(&rproc_list_mutex);
1929 list_add(&rproc->node, &rproc_list);
1930 mutex_unlock(&rproc_list_mutex);
1931
1932 return 0;
1933 }
1934 EXPORT_SYMBOL(rproc_add);
1935
1936 /**
1937 * rproc_type_release() - release a remote processor instance
1938 * @dev: the rproc's device
1939 *
1940 * This function should _never_ be called directly.
1941 *
1942 * It will be called by the driver core when no one holds a valid pointer
1943 * to @dev anymore.
1944 */
rproc_type_release(struct device * dev)1945 static void rproc_type_release(struct device *dev)
1946 {
1947 struct rproc *rproc = container_of(dev, struct rproc, dev);
1948
1949 dev_info(&rproc->dev, "releasing %s\n", rproc->name);
1950
1951 idr_destroy(&rproc->notifyids);
1952
1953 if (rproc->index >= 0)
1954 ida_simple_remove(&rproc_dev_index, rproc->index);
1955
1956 kfree(rproc->firmware);
1957 kfree(rproc->ops);
1958 kfree(rproc);
1959 }
1960
1961 static const struct device_type rproc_type = {
1962 .name = "remoteproc",
1963 .release = rproc_type_release,
1964 };
1965
1966 /**
1967 * rproc_alloc() - allocate a remote processor handle
1968 * @dev: the underlying device
1969 * @name: name of this remote processor
1970 * @ops: platform-specific handlers (mainly start/stop)
1971 * @firmware: name of firmware file to load, can be NULL
1972 * @len: length of private data needed by the rproc driver (in bytes)
1973 *
1974 * Allocates a new remote processor handle, but does not register
1975 * it yet. if @firmware is NULL, a default name is used.
1976 *
1977 * This function should be used by rproc implementations during initialization
1978 * of the remote processor.
1979 *
1980 * After creating an rproc handle using this function, and when ready,
1981 * implementations should then call rproc_add() to complete
1982 * the registration of the remote processor.
1983 *
1984 * On success the new rproc is returned, and on failure, NULL.
1985 *
1986 * Note: _never_ directly deallocate @rproc, even if it was not registered
1987 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free().
1988 */
rproc_alloc(struct device * dev,const char * name,const struct rproc_ops * ops,const char * firmware,int len)1989 struct rproc *rproc_alloc(struct device *dev, const char *name,
1990 const struct rproc_ops *ops,
1991 const char *firmware, int len)
1992 {
1993 struct rproc *rproc;
1994 char *p, *template = "rproc-%s-fw";
1995 int name_len;
1996
1997 if (!dev || !name || !ops)
1998 return NULL;
1999
2000 if (!firmware) {
2001 /*
2002 * If the caller didn't pass in a firmware name then
2003 * construct a default name.
2004 */
2005 name_len = strlen(name) + strlen(template) - 2 + 1;
2006 p = kmalloc(name_len, GFP_KERNEL);
2007 if (!p)
2008 return NULL;
2009 snprintf(p, name_len, template, name);
2010 } else {
2011 p = kstrdup(firmware, GFP_KERNEL);
2012 if (!p)
2013 return NULL;
2014 }
2015
2016 rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
2017 if (!rproc) {
2018 kfree(p);
2019 return NULL;
2020 }
2021
2022 rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL);
2023 if (!rproc->ops) {
2024 kfree(p);
2025 kfree(rproc);
2026 return NULL;
2027 }
2028
2029 rproc->firmware = p;
2030 rproc->name = name;
2031 rproc->priv = &rproc[1];
2032 rproc->auto_boot = true;
2033
2034 device_initialize(&rproc->dev);
2035 rproc->dev.parent = dev;
2036 rproc->dev.type = &rproc_type;
2037 rproc->dev.class = &rproc_class;
2038 rproc->dev.driver_data = rproc;
2039
2040 /* Assign a unique device index and name */
2041 rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
2042 if (rproc->index < 0) {
2043 dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
2044 put_device(&rproc->dev);
2045 return NULL;
2046 }
2047
2048 dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
2049
2050 atomic_set(&rproc->power, 0);
2051
2052 /* Default to ELF loader if no load function is specified */
2053 if (!rproc->ops->load) {
2054 rproc->ops->load = rproc_elf_load_segments;
2055 rproc->ops->parse_fw = rproc_elf_load_rsc_table;
2056 rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table;
2057 rproc->ops->sanity_check = rproc_elf_sanity_check;
2058 rproc->ops->get_boot_addr = rproc_elf_get_boot_addr;
2059 }
2060
2061 mutex_init(&rproc->lock);
2062
2063 idr_init(&rproc->notifyids);
2064
2065 INIT_LIST_HEAD(&rproc->carveouts);
2066 INIT_LIST_HEAD(&rproc->mappings);
2067 INIT_LIST_HEAD(&rproc->traces);
2068 INIT_LIST_HEAD(&rproc->rvdevs);
2069 INIT_LIST_HEAD(&rproc->subdevs);
2070 INIT_LIST_HEAD(&rproc->dump_segments);
2071
2072 INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
2073
2074 rproc->state = RPROC_OFFLINE;
2075
2076 return rproc;
2077 }
2078 EXPORT_SYMBOL(rproc_alloc);
2079
2080 /**
2081 * rproc_free() - unroll rproc_alloc()
2082 * @rproc: the remote processor handle
2083 *
2084 * This function decrements the rproc dev refcount.
2085 *
2086 * If no one holds any reference to rproc anymore, then its refcount would
2087 * now drop to zero, and it would be freed.
2088 */
rproc_free(struct rproc * rproc)2089 void rproc_free(struct rproc *rproc)
2090 {
2091 put_device(&rproc->dev);
2092 }
2093 EXPORT_SYMBOL(rproc_free);
2094
2095 /**
2096 * rproc_put() - release rproc reference
2097 * @rproc: the remote processor handle
2098 *
2099 * This function decrements the rproc dev refcount.
2100 *
2101 * If no one holds any reference to rproc anymore, then its refcount would
2102 * now drop to zero, and it would be freed.
2103 */
rproc_put(struct rproc * rproc)2104 void rproc_put(struct rproc *rproc)
2105 {
2106 module_put(rproc->dev.parent->driver->owner);
2107 put_device(&rproc->dev);
2108 }
2109 EXPORT_SYMBOL(rproc_put);
2110
2111 /**
2112 * rproc_del() - unregister a remote processor
2113 * @rproc: rproc handle to unregister
2114 *
2115 * This function should be called when the platform specific rproc
2116 * implementation decides to remove the rproc device. it should
2117 * _only_ be called if a previous invocation of rproc_add()
2118 * has completed successfully.
2119 *
2120 * After rproc_del() returns, @rproc isn't freed yet, because
2121 * of the outstanding reference created by rproc_alloc. To decrement that
2122 * one last refcount, one still needs to call rproc_free().
2123 *
2124 * Returns 0 on success and -EINVAL if @rproc isn't valid.
2125 */
rproc_del(struct rproc * rproc)2126 int rproc_del(struct rproc *rproc)
2127 {
2128 if (!rproc)
2129 return -EINVAL;
2130
2131 /* if rproc is marked always-on, rproc_add() booted it */
2132 /* TODO: make sure this works with rproc->power > 1 */
2133 if (rproc->auto_boot)
2134 rproc_shutdown(rproc);
2135
2136 mutex_lock(&rproc->lock);
2137 rproc->state = RPROC_DELETED;
2138 mutex_unlock(&rproc->lock);
2139
2140 rproc_delete_debug_dir(rproc);
2141
2142 /* the rproc is downref'ed as soon as it's removed from the klist */
2143 mutex_lock(&rproc_list_mutex);
2144 list_del(&rproc->node);
2145 mutex_unlock(&rproc_list_mutex);
2146
2147 device_del(&rproc->dev);
2148
2149 return 0;
2150 }
2151 EXPORT_SYMBOL(rproc_del);
2152
2153 /**
2154 * rproc_add_subdev() - add a subdevice to a remoteproc
2155 * @rproc: rproc handle to add the subdevice to
2156 * @subdev: subdev handle to register
2157 *
2158 * Caller is responsible for populating optional subdevice function pointers.
2159 */
rproc_add_subdev(struct rproc * rproc,struct rproc_subdev * subdev)2160 void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2161 {
2162 list_add_tail(&subdev->node, &rproc->subdevs);
2163 }
2164 EXPORT_SYMBOL(rproc_add_subdev);
2165
2166 /**
2167 * rproc_remove_subdev() - remove a subdevice from a remoteproc
2168 * @rproc: rproc handle to remove the subdevice from
2169 * @subdev: subdev handle, previously registered with rproc_add_subdev()
2170 */
rproc_remove_subdev(struct rproc * rproc,struct rproc_subdev * subdev)2171 void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2172 {
2173 list_del(&subdev->node);
2174 }
2175 EXPORT_SYMBOL(rproc_remove_subdev);
2176
2177 /**
2178 * rproc_get_by_child() - acquire rproc handle of @dev's ancestor
2179 * @dev: child device to find ancestor of
2180 *
2181 * Returns the ancestor rproc instance, or NULL if not found.
2182 */
rproc_get_by_child(struct device * dev)2183 struct rproc *rproc_get_by_child(struct device *dev)
2184 {
2185 for (dev = dev->parent; dev; dev = dev->parent) {
2186 if (dev->type == &rproc_type)
2187 return dev->driver_data;
2188 }
2189
2190 return NULL;
2191 }
2192 EXPORT_SYMBOL(rproc_get_by_child);
2193
2194 /**
2195 * rproc_report_crash() - rproc crash reporter function
2196 * @rproc: remote processor
2197 * @type: crash type
2198 *
2199 * This function must be called every time a crash is detected by the low-level
2200 * drivers implementing a specific remoteproc. This should not be called from a
2201 * non-remoteproc driver.
2202 *
2203 * This function can be called from atomic/interrupt context.
2204 */
rproc_report_crash(struct rproc * rproc,enum rproc_crash_type type)2205 void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
2206 {
2207 if (!rproc) {
2208 pr_err("NULL rproc pointer\n");
2209 return;
2210 }
2211
2212 dev_err(&rproc->dev, "crash detected in %s: type %s\n",
2213 rproc->name, rproc_crash_to_string(type));
2214
2215 /* create a new task to handle the error */
2216 schedule_work(&rproc->crash_handler);
2217 }
2218 EXPORT_SYMBOL(rproc_report_crash);
2219
remoteproc_init(void)2220 static int __init remoteproc_init(void)
2221 {
2222 rproc_init_sysfs();
2223 rproc_init_debugfs();
2224
2225 return 0;
2226 }
2227 module_init(remoteproc_init);
2228
remoteproc_exit(void)2229 static void __exit remoteproc_exit(void)
2230 {
2231 ida_destroy(&rproc_dev_index);
2232
2233 rproc_exit_debugfs();
2234 rproc_exit_sysfs();
2235 }
2236 module_exit(remoteproc_exit);
2237
2238 MODULE_LICENSE("GPL v2");
2239 MODULE_DESCRIPTION("Generic Remote Processor Framework");
2240