1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3 * Copyright (c) 2014-2017 Oracle. All rights reserved.
4 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the BSD-type
10 * license below:
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 *
16 * Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 *
19 * Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials provided
22 * with the distribution.
23 *
24 * Neither the name of the Network Appliance, Inc. nor the names of
25 * its contributors may be used to endorse or promote products
26 * derived from this software without specific prior written
27 * permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 */
41
42 /*
43 * verbs.c
44 *
45 * Encapsulates the major functions managing:
46 * o adapters
47 * o endpoints
48 * o connections
49 * o buffer memory
50 */
51
52 #include <linux/interrupt.h>
53 #include <linux/slab.h>
54 #include <linux/sunrpc/addr.h>
55 #include <linux/sunrpc/svc_rdma.h>
56 #include <linux/log2.h>
57
58 #include <asm-generic/barrier.h>
59 #include <asm/bitops.h>
60
61 #include <rdma/ib_cm.h>
62
63 #include "xprt_rdma.h"
64 #include <trace/events/rpcrdma.h>
65
66 /*
67 * Globals/Macros
68 */
69
70 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
71 # define RPCDBG_FACILITY RPCDBG_TRANS
72 #endif
73
74 /*
75 * internal functions
76 */
77 static int rpcrdma_sendctxs_create(struct rpcrdma_xprt *r_xprt);
78 static void rpcrdma_sendctxs_destroy(struct rpcrdma_xprt *r_xprt);
79 static void rpcrdma_sendctx_put_locked(struct rpcrdma_xprt *r_xprt,
80 struct rpcrdma_sendctx *sc);
81 static int rpcrdma_reqs_setup(struct rpcrdma_xprt *r_xprt);
82 static void rpcrdma_reqs_reset(struct rpcrdma_xprt *r_xprt);
83 static void rpcrdma_rep_destroy(struct rpcrdma_rep *rep);
84 static void rpcrdma_reps_unmap(struct rpcrdma_xprt *r_xprt);
85 static void rpcrdma_mrs_create(struct rpcrdma_xprt *r_xprt);
86 static void rpcrdma_mrs_destroy(struct rpcrdma_xprt *r_xprt);
87 static void rpcrdma_ep_get(struct rpcrdma_ep *ep);
88 static int rpcrdma_ep_put(struct rpcrdma_ep *ep);
89 static struct rpcrdma_regbuf *
90 rpcrdma_regbuf_alloc(size_t size, enum dma_data_direction direction,
91 gfp_t flags);
92 static void rpcrdma_regbuf_dma_unmap(struct rpcrdma_regbuf *rb);
93 static void rpcrdma_regbuf_free(struct rpcrdma_regbuf *rb);
94
95 /* Wait for outstanding transport work to finish. ib_drain_qp
96 * handles the drains in the wrong order for us, so open code
97 * them here.
98 */
rpcrdma_xprt_drain(struct rpcrdma_xprt * r_xprt)99 static void rpcrdma_xprt_drain(struct rpcrdma_xprt *r_xprt)
100 {
101 struct rpcrdma_ep *ep = r_xprt->rx_ep;
102 struct rdma_cm_id *id = ep->re_id;
103
104 /* Flush Receives, then wait for deferred Reply work
105 * to complete.
106 */
107 ib_drain_rq(id->qp);
108
109 /* Deferred Reply processing might have scheduled
110 * local invalidations.
111 */
112 ib_drain_sq(id->qp);
113
114 rpcrdma_ep_put(ep);
115 }
116
117 /**
118 * rpcrdma_qp_event_handler - Handle one QP event (error notification)
119 * @event: details of the event
120 * @context: ep that owns QP where event occurred
121 *
122 * Called from the RDMA provider (device driver) possibly in an interrupt
123 * context. The QP is always destroyed before the ID, so the ID will be
124 * reliably available when this handler is invoked.
125 */
rpcrdma_qp_event_handler(struct ib_event * event,void * context)126 static void rpcrdma_qp_event_handler(struct ib_event *event, void *context)
127 {
128 struct rpcrdma_ep *ep = context;
129
130 trace_xprtrdma_qp_event(ep, event);
131 }
132
133 /* Ensure xprt_force_disconnect() is invoked exactly once when a
134 * connection is closed or lost. (The important thing is it needs
135 * to be invoked "at least" once).
136 */
rpcrdma_force_disconnect(struct rpcrdma_ep * ep)137 static void rpcrdma_force_disconnect(struct rpcrdma_ep *ep)
138 {
139 if (atomic_add_unless(&ep->re_force_disconnect, 1, 1))
140 xprt_force_disconnect(ep->re_xprt);
141 }
142
143 /**
144 * rpcrdma_flush_disconnect - Disconnect on flushed completion
145 * @r_xprt: transport to disconnect
146 * @wc: work completion entry
147 *
148 * Must be called in process context.
149 */
rpcrdma_flush_disconnect(struct rpcrdma_xprt * r_xprt,struct ib_wc * wc)150 void rpcrdma_flush_disconnect(struct rpcrdma_xprt *r_xprt, struct ib_wc *wc)
151 {
152 if (wc->status != IB_WC_SUCCESS)
153 rpcrdma_force_disconnect(r_xprt->rx_ep);
154 }
155
156 /**
157 * rpcrdma_wc_send - Invoked by RDMA provider for each polled Send WC
158 * @cq: completion queue
159 * @wc: WCE for a completed Send WR
160 *
161 */
rpcrdma_wc_send(struct ib_cq * cq,struct ib_wc * wc)162 static void rpcrdma_wc_send(struct ib_cq *cq, struct ib_wc *wc)
163 {
164 struct ib_cqe *cqe = wc->wr_cqe;
165 struct rpcrdma_sendctx *sc =
166 container_of(cqe, struct rpcrdma_sendctx, sc_cqe);
167 struct rpcrdma_xprt *r_xprt = cq->cq_context;
168
169 /* WARNING: Only wr_cqe and status are reliable at this point */
170 trace_xprtrdma_wc_send(sc, wc);
171 rpcrdma_sendctx_put_locked(r_xprt, sc);
172 rpcrdma_flush_disconnect(r_xprt, wc);
173 }
174
175 /**
176 * rpcrdma_wc_receive - Invoked by RDMA provider for each polled Receive WC
177 * @cq: completion queue
178 * @wc: WCE for a completed Receive WR
179 *
180 */
rpcrdma_wc_receive(struct ib_cq * cq,struct ib_wc * wc)181 static void rpcrdma_wc_receive(struct ib_cq *cq, struct ib_wc *wc)
182 {
183 struct ib_cqe *cqe = wc->wr_cqe;
184 struct rpcrdma_rep *rep = container_of(cqe, struct rpcrdma_rep,
185 rr_cqe);
186 struct rpcrdma_xprt *r_xprt = cq->cq_context;
187
188 /* WARNING: Only wr_cqe and status are reliable at this point */
189 trace_xprtrdma_wc_receive(wc);
190 --r_xprt->rx_ep->re_receive_count;
191 if (wc->status != IB_WC_SUCCESS)
192 goto out_flushed;
193
194 /* status == SUCCESS means all fields in wc are trustworthy */
195 rpcrdma_set_xdrlen(&rep->rr_hdrbuf, wc->byte_len);
196 rep->rr_wc_flags = wc->wc_flags;
197 rep->rr_inv_rkey = wc->ex.invalidate_rkey;
198
199 ib_dma_sync_single_for_cpu(rdmab_device(rep->rr_rdmabuf),
200 rdmab_addr(rep->rr_rdmabuf),
201 wc->byte_len, DMA_FROM_DEVICE);
202
203 rpcrdma_reply_handler(rep);
204 return;
205
206 out_flushed:
207 rpcrdma_flush_disconnect(r_xprt, wc);
208 rpcrdma_rep_destroy(rep);
209 }
210
rpcrdma_update_cm_private(struct rpcrdma_ep * ep,struct rdma_conn_param * param)211 static void rpcrdma_update_cm_private(struct rpcrdma_ep *ep,
212 struct rdma_conn_param *param)
213 {
214 const struct rpcrdma_connect_private *pmsg = param->private_data;
215 unsigned int rsize, wsize;
216
217 /* Default settings for RPC-over-RDMA Version One */
218 ep->re_implicit_roundup = xprt_rdma_pad_optimize;
219 rsize = RPCRDMA_V1_DEF_INLINE_SIZE;
220 wsize = RPCRDMA_V1_DEF_INLINE_SIZE;
221
222 if (pmsg &&
223 pmsg->cp_magic == rpcrdma_cmp_magic &&
224 pmsg->cp_version == RPCRDMA_CMP_VERSION) {
225 ep->re_implicit_roundup = true;
226 rsize = rpcrdma_decode_buffer_size(pmsg->cp_send_size);
227 wsize = rpcrdma_decode_buffer_size(pmsg->cp_recv_size);
228 }
229
230 if (rsize < ep->re_inline_recv)
231 ep->re_inline_recv = rsize;
232 if (wsize < ep->re_inline_send)
233 ep->re_inline_send = wsize;
234
235 rpcrdma_set_max_header_sizes(ep);
236 }
237
238 /**
239 * rpcrdma_cm_event_handler - Handle RDMA CM events
240 * @id: rdma_cm_id on which an event has occurred
241 * @event: details of the event
242 *
243 * Called with @id's mutex held. Returns 1 if caller should
244 * destroy @id, otherwise 0.
245 */
246 static int
rpcrdma_cm_event_handler(struct rdma_cm_id * id,struct rdma_cm_event * event)247 rpcrdma_cm_event_handler(struct rdma_cm_id *id, struct rdma_cm_event *event)
248 {
249 struct sockaddr *sap = (struct sockaddr *)&id->route.addr.dst_addr;
250 struct rpcrdma_ep *ep = id->context;
251
252 might_sleep();
253
254 switch (event->event) {
255 case RDMA_CM_EVENT_ADDR_RESOLVED:
256 case RDMA_CM_EVENT_ROUTE_RESOLVED:
257 ep->re_async_rc = 0;
258 complete(&ep->re_done);
259 return 0;
260 case RDMA_CM_EVENT_ADDR_ERROR:
261 ep->re_async_rc = -EPROTO;
262 complete(&ep->re_done);
263 return 0;
264 case RDMA_CM_EVENT_ROUTE_ERROR:
265 ep->re_async_rc = -ENETUNREACH;
266 complete(&ep->re_done);
267 return 0;
268 case RDMA_CM_EVENT_DEVICE_REMOVAL:
269 pr_info("rpcrdma: removing device %s for %pISpc\n",
270 ep->re_id->device->name, sap);
271 fallthrough;
272 case RDMA_CM_EVENT_ADDR_CHANGE:
273 ep->re_connect_status = -ENODEV;
274 goto disconnected;
275 case RDMA_CM_EVENT_ESTABLISHED:
276 rpcrdma_ep_get(ep);
277 ep->re_connect_status = 1;
278 rpcrdma_update_cm_private(ep, &event->param.conn);
279 trace_xprtrdma_inline_thresh(ep);
280 wake_up_all(&ep->re_connect_wait);
281 break;
282 case RDMA_CM_EVENT_CONNECT_ERROR:
283 ep->re_connect_status = -ENOTCONN;
284 goto wake_connect_worker;
285 case RDMA_CM_EVENT_UNREACHABLE:
286 ep->re_connect_status = -ENETUNREACH;
287 goto wake_connect_worker;
288 case RDMA_CM_EVENT_REJECTED:
289 dprintk("rpcrdma: connection to %pISpc rejected: %s\n",
290 sap, rdma_reject_msg(id, event->status));
291 ep->re_connect_status = -ECONNREFUSED;
292 if (event->status == IB_CM_REJ_STALE_CONN)
293 ep->re_connect_status = -ENOTCONN;
294 wake_connect_worker:
295 wake_up_all(&ep->re_connect_wait);
296 return 0;
297 case RDMA_CM_EVENT_DISCONNECTED:
298 ep->re_connect_status = -ECONNABORTED;
299 disconnected:
300 rpcrdma_force_disconnect(ep);
301 return rpcrdma_ep_put(ep);
302 default:
303 break;
304 }
305
306 dprintk("RPC: %s: %pISpc on %s/frwr: %s\n", __func__, sap,
307 ep->re_id->device->name, rdma_event_msg(event->event));
308 return 0;
309 }
310
rpcrdma_create_id(struct rpcrdma_xprt * r_xprt,struct rpcrdma_ep * ep)311 static struct rdma_cm_id *rpcrdma_create_id(struct rpcrdma_xprt *r_xprt,
312 struct rpcrdma_ep *ep)
313 {
314 unsigned long wtimeout = msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT) + 1;
315 struct rpc_xprt *xprt = &r_xprt->rx_xprt;
316 struct rdma_cm_id *id;
317 int rc;
318
319 init_completion(&ep->re_done);
320
321 id = rdma_create_id(xprt->xprt_net, rpcrdma_cm_event_handler, ep,
322 RDMA_PS_TCP, IB_QPT_RC);
323 if (IS_ERR(id))
324 return id;
325
326 ep->re_async_rc = -ETIMEDOUT;
327 rc = rdma_resolve_addr(id, NULL, (struct sockaddr *)&xprt->addr,
328 RDMA_RESOLVE_TIMEOUT);
329 if (rc)
330 goto out;
331 rc = wait_for_completion_interruptible_timeout(&ep->re_done, wtimeout);
332 if (rc < 0)
333 goto out;
334
335 rc = ep->re_async_rc;
336 if (rc)
337 goto out;
338
339 ep->re_async_rc = -ETIMEDOUT;
340 rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT);
341 if (rc)
342 goto out;
343 rc = wait_for_completion_interruptible_timeout(&ep->re_done, wtimeout);
344 if (rc < 0)
345 goto out;
346 rc = ep->re_async_rc;
347 if (rc)
348 goto out;
349
350 return id;
351
352 out:
353 rdma_destroy_id(id);
354 return ERR_PTR(rc);
355 }
356
rpcrdma_ep_destroy(struct kref * kref)357 static void rpcrdma_ep_destroy(struct kref *kref)
358 {
359 struct rpcrdma_ep *ep = container_of(kref, struct rpcrdma_ep, re_kref);
360
361 if (ep->re_id->qp) {
362 rdma_destroy_qp(ep->re_id);
363 ep->re_id->qp = NULL;
364 }
365
366 if (ep->re_attr.recv_cq)
367 ib_free_cq(ep->re_attr.recv_cq);
368 ep->re_attr.recv_cq = NULL;
369 if (ep->re_attr.send_cq)
370 ib_free_cq(ep->re_attr.send_cq);
371 ep->re_attr.send_cq = NULL;
372
373 if (ep->re_pd)
374 ib_dealloc_pd(ep->re_pd);
375 ep->re_pd = NULL;
376
377 kfree(ep);
378 module_put(THIS_MODULE);
379 }
380
rpcrdma_ep_get(struct rpcrdma_ep * ep)381 static noinline void rpcrdma_ep_get(struct rpcrdma_ep *ep)
382 {
383 kref_get(&ep->re_kref);
384 }
385
386 /* Returns:
387 * %0 if @ep still has a positive kref count, or
388 * %1 if @ep was destroyed successfully.
389 */
rpcrdma_ep_put(struct rpcrdma_ep * ep)390 static noinline int rpcrdma_ep_put(struct rpcrdma_ep *ep)
391 {
392 return kref_put(&ep->re_kref, rpcrdma_ep_destroy);
393 }
394
rpcrdma_ep_create(struct rpcrdma_xprt * r_xprt)395 static int rpcrdma_ep_create(struct rpcrdma_xprt *r_xprt)
396 {
397 struct rpcrdma_connect_private *pmsg;
398 struct ib_device *device;
399 struct rdma_cm_id *id;
400 struct rpcrdma_ep *ep;
401 int rc;
402
403 ep = kzalloc(sizeof(*ep), GFP_NOFS);
404 if (!ep)
405 return -ENOTCONN;
406 ep->re_xprt = &r_xprt->rx_xprt;
407 kref_init(&ep->re_kref);
408
409 id = rpcrdma_create_id(r_xprt, ep);
410 if (IS_ERR(id)) {
411 kfree(ep);
412 return PTR_ERR(id);
413 }
414 __module_get(THIS_MODULE);
415 device = id->device;
416 ep->re_id = id;
417
418 ep->re_max_requests = r_xprt->rx_xprt.max_reqs;
419 ep->re_inline_send = xprt_rdma_max_inline_write;
420 ep->re_inline_recv = xprt_rdma_max_inline_read;
421 rc = frwr_query_device(ep, device);
422 if (rc)
423 goto out_destroy;
424
425 r_xprt->rx_buf.rb_max_requests = cpu_to_be32(ep->re_max_requests);
426
427 ep->re_attr.event_handler = rpcrdma_qp_event_handler;
428 ep->re_attr.qp_context = ep;
429 ep->re_attr.srq = NULL;
430 ep->re_attr.cap.max_inline_data = 0;
431 ep->re_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
432 ep->re_attr.qp_type = IB_QPT_RC;
433 ep->re_attr.port_num = ~0;
434
435 dprintk("RPC: %s: requested max: dtos: send %d recv %d; "
436 "iovs: send %d recv %d\n",
437 __func__,
438 ep->re_attr.cap.max_send_wr,
439 ep->re_attr.cap.max_recv_wr,
440 ep->re_attr.cap.max_send_sge,
441 ep->re_attr.cap.max_recv_sge);
442
443 ep->re_send_batch = ep->re_max_requests >> 3;
444 ep->re_send_count = ep->re_send_batch;
445 init_waitqueue_head(&ep->re_connect_wait);
446
447 ep->re_attr.send_cq = ib_alloc_cq_any(device, r_xprt,
448 ep->re_attr.cap.max_send_wr,
449 IB_POLL_WORKQUEUE);
450 if (IS_ERR(ep->re_attr.send_cq)) {
451 rc = PTR_ERR(ep->re_attr.send_cq);
452 goto out_destroy;
453 }
454
455 ep->re_attr.recv_cq = ib_alloc_cq_any(device, r_xprt,
456 ep->re_attr.cap.max_recv_wr,
457 IB_POLL_WORKQUEUE);
458 if (IS_ERR(ep->re_attr.recv_cq)) {
459 rc = PTR_ERR(ep->re_attr.recv_cq);
460 goto out_destroy;
461 }
462 ep->re_receive_count = 0;
463
464 /* Initialize cma parameters */
465 memset(&ep->re_remote_cma, 0, sizeof(ep->re_remote_cma));
466
467 /* Prepare RDMA-CM private message */
468 pmsg = &ep->re_cm_private;
469 pmsg->cp_magic = rpcrdma_cmp_magic;
470 pmsg->cp_version = RPCRDMA_CMP_VERSION;
471 pmsg->cp_flags |= RPCRDMA_CMP_F_SND_W_INV_OK;
472 pmsg->cp_send_size = rpcrdma_encode_buffer_size(ep->re_inline_send);
473 pmsg->cp_recv_size = rpcrdma_encode_buffer_size(ep->re_inline_recv);
474 ep->re_remote_cma.private_data = pmsg;
475 ep->re_remote_cma.private_data_len = sizeof(*pmsg);
476
477 /* Client offers RDMA Read but does not initiate */
478 ep->re_remote_cma.initiator_depth = 0;
479 ep->re_remote_cma.responder_resources =
480 min_t(int, U8_MAX, device->attrs.max_qp_rd_atom);
481
482 /* Limit transport retries so client can detect server
483 * GID changes quickly. RPC layer handles re-establishing
484 * transport connection and retransmission.
485 */
486 ep->re_remote_cma.retry_count = 6;
487
488 /* RPC-over-RDMA handles its own flow control. In addition,
489 * make all RNR NAKs visible so we know that RPC-over-RDMA
490 * flow control is working correctly (no NAKs should be seen).
491 */
492 ep->re_remote_cma.flow_control = 0;
493 ep->re_remote_cma.rnr_retry_count = 0;
494
495 ep->re_pd = ib_alloc_pd(device, 0);
496 if (IS_ERR(ep->re_pd)) {
497 rc = PTR_ERR(ep->re_pd);
498 goto out_destroy;
499 }
500
501 rc = rdma_create_qp(id, ep->re_pd, &ep->re_attr);
502 if (rc)
503 goto out_destroy;
504
505 r_xprt->rx_ep = ep;
506 return 0;
507
508 out_destroy:
509 rpcrdma_ep_put(ep);
510 rdma_destroy_id(id);
511 return rc;
512 }
513
514 /**
515 * rpcrdma_xprt_connect - Connect an unconnected transport
516 * @r_xprt: controlling transport instance
517 *
518 * Returns 0 on success or a negative errno.
519 */
rpcrdma_xprt_connect(struct rpcrdma_xprt * r_xprt)520 int rpcrdma_xprt_connect(struct rpcrdma_xprt *r_xprt)
521 {
522 struct rpc_xprt *xprt = &r_xprt->rx_xprt;
523 struct rpcrdma_ep *ep;
524 int rc;
525
526 rc = rpcrdma_ep_create(r_xprt);
527 if (rc)
528 return rc;
529 ep = r_xprt->rx_ep;
530
531 xprt_clear_connected(xprt);
532 rpcrdma_reset_cwnd(r_xprt);
533
534 /* Bump the ep's reference count while there are
535 * outstanding Receives.
536 */
537 rpcrdma_ep_get(ep);
538 rpcrdma_post_recvs(r_xprt, true);
539
540 rc = rdma_connect(ep->re_id, &ep->re_remote_cma);
541 if (rc)
542 goto out;
543
544 if (xprt->reestablish_timeout < RPCRDMA_INIT_REEST_TO)
545 xprt->reestablish_timeout = RPCRDMA_INIT_REEST_TO;
546 wait_event_interruptible(ep->re_connect_wait,
547 ep->re_connect_status != 0);
548 if (ep->re_connect_status <= 0) {
549 rc = ep->re_connect_status;
550 goto out;
551 }
552
553 rc = rpcrdma_sendctxs_create(r_xprt);
554 if (rc) {
555 rc = -ENOTCONN;
556 goto out;
557 }
558
559 rc = rpcrdma_reqs_setup(r_xprt);
560 if (rc) {
561 rc = -ENOTCONN;
562 goto out;
563 }
564 rpcrdma_mrs_create(r_xprt);
565
566 out:
567 trace_xprtrdma_connect(r_xprt, rc);
568 return rc;
569 }
570
571 /**
572 * rpcrdma_xprt_disconnect - Disconnect underlying transport
573 * @r_xprt: controlling transport instance
574 *
575 * Caller serializes. Either the transport send lock is held,
576 * or we're being called to destroy the transport.
577 *
578 * On return, @r_xprt is completely divested of all hardware
579 * resources and prepared for the next ->connect operation.
580 */
rpcrdma_xprt_disconnect(struct rpcrdma_xprt * r_xprt)581 void rpcrdma_xprt_disconnect(struct rpcrdma_xprt *r_xprt)
582 {
583 struct rpcrdma_ep *ep = r_xprt->rx_ep;
584 struct rdma_cm_id *id;
585 int rc;
586
587 if (!ep)
588 return;
589
590 id = ep->re_id;
591 rc = rdma_disconnect(id);
592 trace_xprtrdma_disconnect(r_xprt, rc);
593
594 rpcrdma_xprt_drain(r_xprt);
595 rpcrdma_reps_unmap(r_xprt);
596 rpcrdma_reqs_reset(r_xprt);
597 rpcrdma_mrs_destroy(r_xprt);
598 rpcrdma_sendctxs_destroy(r_xprt);
599
600 if (rpcrdma_ep_put(ep))
601 rdma_destroy_id(id);
602
603 r_xprt->rx_ep = NULL;
604 }
605
606 /* Fixed-size circular FIFO queue. This implementation is wait-free and
607 * lock-free.
608 *
609 * Consumer is the code path that posts Sends. This path dequeues a
610 * sendctx for use by a Send operation. Multiple consumer threads
611 * are serialized by the RPC transport lock, which allows only one
612 * ->send_request call at a time.
613 *
614 * Producer is the code path that handles Send completions. This path
615 * enqueues a sendctx that has been completed. Multiple producer
616 * threads are serialized by the ib_poll_cq() function.
617 */
618
619 /* rpcrdma_sendctxs_destroy() assumes caller has already quiesced
620 * queue activity, and rpcrdma_xprt_drain has flushed all remaining
621 * Send requests.
622 */
rpcrdma_sendctxs_destroy(struct rpcrdma_xprt * r_xprt)623 static void rpcrdma_sendctxs_destroy(struct rpcrdma_xprt *r_xprt)
624 {
625 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
626 unsigned long i;
627
628 if (!buf->rb_sc_ctxs)
629 return;
630 for (i = 0; i <= buf->rb_sc_last; i++)
631 kfree(buf->rb_sc_ctxs[i]);
632 kfree(buf->rb_sc_ctxs);
633 buf->rb_sc_ctxs = NULL;
634 }
635
rpcrdma_sendctx_create(struct rpcrdma_ep * ep)636 static struct rpcrdma_sendctx *rpcrdma_sendctx_create(struct rpcrdma_ep *ep)
637 {
638 struct rpcrdma_sendctx *sc;
639
640 sc = kzalloc(struct_size(sc, sc_sges, ep->re_attr.cap.max_send_sge),
641 GFP_KERNEL);
642 if (!sc)
643 return NULL;
644
645 sc->sc_cqe.done = rpcrdma_wc_send;
646 return sc;
647 }
648
rpcrdma_sendctxs_create(struct rpcrdma_xprt * r_xprt)649 static int rpcrdma_sendctxs_create(struct rpcrdma_xprt *r_xprt)
650 {
651 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
652 struct rpcrdma_sendctx *sc;
653 unsigned long i;
654
655 /* Maximum number of concurrent outstanding Send WRs. Capping
656 * the circular queue size stops Send Queue overflow by causing
657 * the ->send_request call to fail temporarily before too many
658 * Sends are posted.
659 */
660 i = r_xprt->rx_ep->re_max_requests + RPCRDMA_MAX_BC_REQUESTS;
661 buf->rb_sc_ctxs = kcalloc(i, sizeof(sc), GFP_KERNEL);
662 if (!buf->rb_sc_ctxs)
663 return -ENOMEM;
664
665 buf->rb_sc_last = i - 1;
666 for (i = 0; i <= buf->rb_sc_last; i++) {
667 sc = rpcrdma_sendctx_create(r_xprt->rx_ep);
668 if (!sc)
669 return -ENOMEM;
670
671 buf->rb_sc_ctxs[i] = sc;
672 }
673
674 buf->rb_sc_head = 0;
675 buf->rb_sc_tail = 0;
676 return 0;
677 }
678
679 /* The sendctx queue is not guaranteed to have a size that is a
680 * power of two, thus the helpers in circ_buf.h cannot be used.
681 * The other option is to use modulus (%), which can be expensive.
682 */
rpcrdma_sendctx_next(struct rpcrdma_buffer * buf,unsigned long item)683 static unsigned long rpcrdma_sendctx_next(struct rpcrdma_buffer *buf,
684 unsigned long item)
685 {
686 return likely(item < buf->rb_sc_last) ? item + 1 : 0;
687 }
688
689 /**
690 * rpcrdma_sendctx_get_locked - Acquire a send context
691 * @r_xprt: controlling transport instance
692 *
693 * Returns pointer to a free send completion context; or NULL if
694 * the queue is empty.
695 *
696 * Usage: Called to acquire an SGE array before preparing a Send WR.
697 *
698 * The caller serializes calls to this function (per transport), and
699 * provides an effective memory barrier that flushes the new value
700 * of rb_sc_head.
701 */
rpcrdma_sendctx_get_locked(struct rpcrdma_xprt * r_xprt)702 struct rpcrdma_sendctx *rpcrdma_sendctx_get_locked(struct rpcrdma_xprt *r_xprt)
703 {
704 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
705 struct rpcrdma_sendctx *sc;
706 unsigned long next_head;
707
708 next_head = rpcrdma_sendctx_next(buf, buf->rb_sc_head);
709
710 if (next_head == READ_ONCE(buf->rb_sc_tail))
711 goto out_emptyq;
712
713 /* ORDER: item must be accessed _before_ head is updated */
714 sc = buf->rb_sc_ctxs[next_head];
715
716 /* Releasing the lock in the caller acts as a memory
717 * barrier that flushes rb_sc_head.
718 */
719 buf->rb_sc_head = next_head;
720
721 return sc;
722
723 out_emptyq:
724 /* The queue is "empty" if there have not been enough Send
725 * completions recently. This is a sign the Send Queue is
726 * backing up. Cause the caller to pause and try again.
727 */
728 xprt_wait_for_buffer_space(&r_xprt->rx_xprt);
729 r_xprt->rx_stats.empty_sendctx_q++;
730 return NULL;
731 }
732
733 /**
734 * rpcrdma_sendctx_put_locked - Release a send context
735 * @r_xprt: controlling transport instance
736 * @sc: send context to release
737 *
738 * Usage: Called from Send completion to return a sendctxt
739 * to the queue.
740 *
741 * The caller serializes calls to this function (per transport).
742 */
rpcrdma_sendctx_put_locked(struct rpcrdma_xprt * r_xprt,struct rpcrdma_sendctx * sc)743 static void rpcrdma_sendctx_put_locked(struct rpcrdma_xprt *r_xprt,
744 struct rpcrdma_sendctx *sc)
745 {
746 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
747 unsigned long next_tail;
748
749 /* Unmap SGEs of previously completed but unsignaled
750 * Sends by walking up the queue until @sc is found.
751 */
752 next_tail = buf->rb_sc_tail;
753 do {
754 next_tail = rpcrdma_sendctx_next(buf, next_tail);
755
756 /* ORDER: item must be accessed _before_ tail is updated */
757 rpcrdma_sendctx_unmap(buf->rb_sc_ctxs[next_tail]);
758
759 } while (buf->rb_sc_ctxs[next_tail] != sc);
760
761 /* Paired with READ_ONCE */
762 smp_store_release(&buf->rb_sc_tail, next_tail);
763
764 xprt_write_space(&r_xprt->rx_xprt);
765 }
766
767 static void
rpcrdma_mrs_create(struct rpcrdma_xprt * r_xprt)768 rpcrdma_mrs_create(struct rpcrdma_xprt *r_xprt)
769 {
770 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
771 struct rpcrdma_ep *ep = r_xprt->rx_ep;
772 unsigned int count;
773
774 for (count = 0; count < ep->re_max_rdma_segs; count++) {
775 struct rpcrdma_mr *mr;
776 int rc;
777
778 mr = kzalloc(sizeof(*mr), GFP_NOFS);
779 if (!mr)
780 break;
781
782 rc = frwr_mr_init(r_xprt, mr);
783 if (rc) {
784 kfree(mr);
785 break;
786 }
787
788 spin_lock(&buf->rb_lock);
789 rpcrdma_mr_push(mr, &buf->rb_mrs);
790 list_add(&mr->mr_all, &buf->rb_all_mrs);
791 spin_unlock(&buf->rb_lock);
792 }
793
794 r_xprt->rx_stats.mrs_allocated += count;
795 trace_xprtrdma_createmrs(r_xprt, count);
796 }
797
798 static void
rpcrdma_mr_refresh_worker(struct work_struct * work)799 rpcrdma_mr_refresh_worker(struct work_struct *work)
800 {
801 struct rpcrdma_buffer *buf = container_of(work, struct rpcrdma_buffer,
802 rb_refresh_worker);
803 struct rpcrdma_xprt *r_xprt = container_of(buf, struct rpcrdma_xprt,
804 rx_buf);
805
806 rpcrdma_mrs_create(r_xprt);
807 xprt_write_space(&r_xprt->rx_xprt);
808 }
809
810 /**
811 * rpcrdma_mrs_refresh - Wake the MR refresh worker
812 * @r_xprt: controlling transport instance
813 *
814 */
rpcrdma_mrs_refresh(struct rpcrdma_xprt * r_xprt)815 void rpcrdma_mrs_refresh(struct rpcrdma_xprt *r_xprt)
816 {
817 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
818 struct rpcrdma_ep *ep = r_xprt->rx_ep;
819
820 /* If there is no underlying connection, it's no use
821 * to wake the refresh worker.
822 */
823 if (ep->re_connect_status == 1) {
824 /* The work is scheduled on a WQ_MEM_RECLAIM
825 * workqueue in order to prevent MR allocation
826 * from recursing into NFS during direct reclaim.
827 */
828 queue_work(xprtiod_workqueue, &buf->rb_refresh_worker);
829 }
830 }
831
832 /**
833 * rpcrdma_req_create - Allocate an rpcrdma_req object
834 * @r_xprt: controlling r_xprt
835 * @size: initial size, in bytes, of send and receive buffers
836 * @flags: GFP flags passed to memory allocators
837 *
838 * Returns an allocated and fully initialized rpcrdma_req or NULL.
839 */
rpcrdma_req_create(struct rpcrdma_xprt * r_xprt,size_t size,gfp_t flags)840 struct rpcrdma_req *rpcrdma_req_create(struct rpcrdma_xprt *r_xprt, size_t size,
841 gfp_t flags)
842 {
843 struct rpcrdma_buffer *buffer = &r_xprt->rx_buf;
844 struct rpcrdma_req *req;
845
846 req = kzalloc(sizeof(*req), flags);
847 if (req == NULL)
848 goto out1;
849
850 req->rl_sendbuf = rpcrdma_regbuf_alloc(size, DMA_TO_DEVICE, flags);
851 if (!req->rl_sendbuf)
852 goto out2;
853
854 req->rl_recvbuf = rpcrdma_regbuf_alloc(size, DMA_NONE, flags);
855 if (!req->rl_recvbuf)
856 goto out3;
857
858 INIT_LIST_HEAD(&req->rl_free_mrs);
859 INIT_LIST_HEAD(&req->rl_registered);
860 spin_lock(&buffer->rb_lock);
861 list_add(&req->rl_all, &buffer->rb_allreqs);
862 spin_unlock(&buffer->rb_lock);
863 return req;
864
865 out3:
866 kfree(req->rl_sendbuf);
867 out2:
868 kfree(req);
869 out1:
870 return NULL;
871 }
872
873 /**
874 * rpcrdma_req_setup - Per-connection instance setup of an rpcrdma_req object
875 * @r_xprt: controlling transport instance
876 * @req: rpcrdma_req object to set up
877 *
878 * Returns zero on success, and a negative errno on failure.
879 */
rpcrdma_req_setup(struct rpcrdma_xprt * r_xprt,struct rpcrdma_req * req)880 int rpcrdma_req_setup(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
881 {
882 struct rpcrdma_regbuf *rb;
883 size_t maxhdrsize;
884
885 /* Compute maximum header buffer size in bytes */
886 maxhdrsize = rpcrdma_fixed_maxsz + 3 +
887 r_xprt->rx_ep->re_max_rdma_segs * rpcrdma_readchunk_maxsz;
888 maxhdrsize *= sizeof(__be32);
889 rb = rpcrdma_regbuf_alloc(__roundup_pow_of_two(maxhdrsize),
890 DMA_TO_DEVICE, GFP_KERNEL);
891 if (!rb)
892 goto out;
893
894 if (!__rpcrdma_regbuf_dma_map(r_xprt, rb))
895 goto out_free;
896
897 req->rl_rdmabuf = rb;
898 xdr_buf_init(&req->rl_hdrbuf, rdmab_data(rb), rdmab_length(rb));
899 return 0;
900
901 out_free:
902 rpcrdma_regbuf_free(rb);
903 out:
904 return -ENOMEM;
905 }
906
907 /* ASSUMPTION: the rb_allreqs list is stable for the duration,
908 * and thus can be walked without holding rb_lock. Eg. the
909 * caller is holding the transport send lock to exclude
910 * device removal or disconnection.
911 */
rpcrdma_reqs_setup(struct rpcrdma_xprt * r_xprt)912 static int rpcrdma_reqs_setup(struct rpcrdma_xprt *r_xprt)
913 {
914 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
915 struct rpcrdma_req *req;
916 int rc;
917
918 list_for_each_entry(req, &buf->rb_allreqs, rl_all) {
919 rc = rpcrdma_req_setup(r_xprt, req);
920 if (rc)
921 return rc;
922 }
923 return 0;
924 }
925
rpcrdma_req_reset(struct rpcrdma_req * req)926 static void rpcrdma_req_reset(struct rpcrdma_req *req)
927 {
928 /* Credits are valid for only one connection */
929 req->rl_slot.rq_cong = 0;
930
931 rpcrdma_regbuf_free(req->rl_rdmabuf);
932 req->rl_rdmabuf = NULL;
933
934 rpcrdma_regbuf_dma_unmap(req->rl_sendbuf);
935 rpcrdma_regbuf_dma_unmap(req->rl_recvbuf);
936
937 frwr_reset(req);
938 }
939
940 /* ASSUMPTION: the rb_allreqs list is stable for the duration,
941 * and thus can be walked without holding rb_lock. Eg. the
942 * caller is holding the transport send lock to exclude
943 * device removal or disconnection.
944 */
rpcrdma_reqs_reset(struct rpcrdma_xprt * r_xprt)945 static void rpcrdma_reqs_reset(struct rpcrdma_xprt *r_xprt)
946 {
947 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
948 struct rpcrdma_req *req;
949
950 list_for_each_entry(req, &buf->rb_allreqs, rl_all)
951 rpcrdma_req_reset(req);
952 }
953
954 /* No locking needed here. This function is called only by the
955 * Receive completion handler.
956 */
957 static noinline
rpcrdma_rep_create(struct rpcrdma_xprt * r_xprt,bool temp)958 struct rpcrdma_rep *rpcrdma_rep_create(struct rpcrdma_xprt *r_xprt,
959 bool temp)
960 {
961 struct rpcrdma_rep *rep;
962
963 rep = kzalloc(sizeof(*rep), GFP_KERNEL);
964 if (rep == NULL)
965 goto out;
966
967 rep->rr_rdmabuf = rpcrdma_regbuf_alloc(r_xprt->rx_ep->re_inline_recv,
968 DMA_FROM_DEVICE, GFP_KERNEL);
969 if (!rep->rr_rdmabuf)
970 goto out_free;
971
972 if (!rpcrdma_regbuf_dma_map(r_xprt, rep->rr_rdmabuf))
973 goto out_free_regbuf;
974
975 xdr_buf_init(&rep->rr_hdrbuf, rdmab_data(rep->rr_rdmabuf),
976 rdmab_length(rep->rr_rdmabuf));
977 rep->rr_cqe.done = rpcrdma_wc_receive;
978 rep->rr_rxprt = r_xprt;
979 rep->rr_recv_wr.next = NULL;
980 rep->rr_recv_wr.wr_cqe = &rep->rr_cqe;
981 rep->rr_recv_wr.sg_list = &rep->rr_rdmabuf->rg_iov;
982 rep->rr_recv_wr.num_sge = 1;
983 rep->rr_temp = temp;
984 list_add(&rep->rr_all, &r_xprt->rx_buf.rb_all_reps);
985 return rep;
986
987 out_free_regbuf:
988 rpcrdma_regbuf_free(rep->rr_rdmabuf);
989 out_free:
990 kfree(rep);
991 out:
992 return NULL;
993 }
994
995 /* No locking needed here. This function is invoked only by the
996 * Receive completion handler, or during transport shutdown.
997 */
rpcrdma_rep_destroy(struct rpcrdma_rep * rep)998 static void rpcrdma_rep_destroy(struct rpcrdma_rep *rep)
999 {
1000 list_del(&rep->rr_all);
1001 rpcrdma_regbuf_free(rep->rr_rdmabuf);
1002 kfree(rep);
1003 }
1004
rpcrdma_rep_get_locked(struct rpcrdma_buffer * buf)1005 static struct rpcrdma_rep *rpcrdma_rep_get_locked(struct rpcrdma_buffer *buf)
1006 {
1007 struct llist_node *node;
1008
1009 /* Calls to llist_del_first are required to be serialized */
1010 node = llist_del_first(&buf->rb_free_reps);
1011 if (!node)
1012 return NULL;
1013 return llist_entry(node, struct rpcrdma_rep, rr_node);
1014 }
1015
rpcrdma_rep_put(struct rpcrdma_buffer * buf,struct rpcrdma_rep * rep)1016 static void rpcrdma_rep_put(struct rpcrdma_buffer *buf,
1017 struct rpcrdma_rep *rep)
1018 {
1019 llist_add(&rep->rr_node, &buf->rb_free_reps);
1020 }
1021
rpcrdma_reps_unmap(struct rpcrdma_xprt * r_xprt)1022 static void rpcrdma_reps_unmap(struct rpcrdma_xprt *r_xprt)
1023 {
1024 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1025 struct rpcrdma_rep *rep;
1026
1027 list_for_each_entry(rep, &buf->rb_all_reps, rr_all) {
1028 rpcrdma_regbuf_dma_unmap(rep->rr_rdmabuf);
1029 rep->rr_temp = true;
1030 }
1031 }
1032
rpcrdma_reps_destroy(struct rpcrdma_buffer * buf)1033 static void rpcrdma_reps_destroy(struct rpcrdma_buffer *buf)
1034 {
1035 struct rpcrdma_rep *rep;
1036
1037 while ((rep = rpcrdma_rep_get_locked(buf)) != NULL)
1038 rpcrdma_rep_destroy(rep);
1039 }
1040
1041 /**
1042 * rpcrdma_buffer_create - Create initial set of req/rep objects
1043 * @r_xprt: transport instance to (re)initialize
1044 *
1045 * Returns zero on success, otherwise a negative errno.
1046 */
rpcrdma_buffer_create(struct rpcrdma_xprt * r_xprt)1047 int rpcrdma_buffer_create(struct rpcrdma_xprt *r_xprt)
1048 {
1049 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1050 int i, rc;
1051
1052 buf->rb_bc_srv_max_requests = 0;
1053 spin_lock_init(&buf->rb_lock);
1054 INIT_LIST_HEAD(&buf->rb_mrs);
1055 INIT_LIST_HEAD(&buf->rb_all_mrs);
1056 INIT_WORK(&buf->rb_refresh_worker, rpcrdma_mr_refresh_worker);
1057
1058 INIT_LIST_HEAD(&buf->rb_send_bufs);
1059 INIT_LIST_HEAD(&buf->rb_allreqs);
1060 INIT_LIST_HEAD(&buf->rb_all_reps);
1061
1062 rc = -ENOMEM;
1063 for (i = 0; i < r_xprt->rx_xprt.max_reqs; i++) {
1064 struct rpcrdma_req *req;
1065
1066 req = rpcrdma_req_create(r_xprt, RPCRDMA_V1_DEF_INLINE_SIZE * 2,
1067 GFP_KERNEL);
1068 if (!req)
1069 goto out;
1070 list_add(&req->rl_list, &buf->rb_send_bufs);
1071 }
1072
1073 init_llist_head(&buf->rb_free_reps);
1074
1075 return 0;
1076 out:
1077 rpcrdma_buffer_destroy(buf);
1078 return rc;
1079 }
1080
1081 /**
1082 * rpcrdma_req_destroy - Destroy an rpcrdma_req object
1083 * @req: unused object to be destroyed
1084 *
1085 * Relies on caller holding the transport send lock to protect
1086 * removing req->rl_all from buf->rb_all_reqs safely.
1087 */
rpcrdma_req_destroy(struct rpcrdma_req * req)1088 void rpcrdma_req_destroy(struct rpcrdma_req *req)
1089 {
1090 struct rpcrdma_mr *mr;
1091
1092 list_del(&req->rl_all);
1093
1094 while ((mr = rpcrdma_mr_pop(&req->rl_free_mrs))) {
1095 struct rpcrdma_buffer *buf = &mr->mr_xprt->rx_buf;
1096
1097 spin_lock(&buf->rb_lock);
1098 list_del(&mr->mr_all);
1099 spin_unlock(&buf->rb_lock);
1100
1101 frwr_release_mr(mr);
1102 }
1103
1104 rpcrdma_regbuf_free(req->rl_recvbuf);
1105 rpcrdma_regbuf_free(req->rl_sendbuf);
1106 rpcrdma_regbuf_free(req->rl_rdmabuf);
1107 kfree(req);
1108 }
1109
1110 /**
1111 * rpcrdma_mrs_destroy - Release all of a transport's MRs
1112 * @r_xprt: controlling transport instance
1113 *
1114 * Relies on caller holding the transport send lock to protect
1115 * removing mr->mr_list from req->rl_free_mrs safely.
1116 */
rpcrdma_mrs_destroy(struct rpcrdma_xprt * r_xprt)1117 static void rpcrdma_mrs_destroy(struct rpcrdma_xprt *r_xprt)
1118 {
1119 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1120 struct rpcrdma_mr *mr;
1121
1122 cancel_work_sync(&buf->rb_refresh_worker);
1123
1124 spin_lock(&buf->rb_lock);
1125 while ((mr = list_first_entry_or_null(&buf->rb_all_mrs,
1126 struct rpcrdma_mr,
1127 mr_all)) != NULL) {
1128 list_del(&mr->mr_list);
1129 list_del(&mr->mr_all);
1130 spin_unlock(&buf->rb_lock);
1131
1132 frwr_release_mr(mr);
1133
1134 spin_lock(&buf->rb_lock);
1135 }
1136 spin_unlock(&buf->rb_lock);
1137 }
1138
1139 /**
1140 * rpcrdma_buffer_destroy - Release all hw resources
1141 * @buf: root control block for resources
1142 *
1143 * ORDERING: relies on a prior rpcrdma_xprt_drain :
1144 * - No more Send or Receive completions can occur
1145 * - All MRs, reps, and reqs are returned to their free lists
1146 */
1147 void
rpcrdma_buffer_destroy(struct rpcrdma_buffer * buf)1148 rpcrdma_buffer_destroy(struct rpcrdma_buffer *buf)
1149 {
1150 rpcrdma_reps_destroy(buf);
1151
1152 while (!list_empty(&buf->rb_send_bufs)) {
1153 struct rpcrdma_req *req;
1154
1155 req = list_first_entry(&buf->rb_send_bufs,
1156 struct rpcrdma_req, rl_list);
1157 list_del(&req->rl_list);
1158 rpcrdma_req_destroy(req);
1159 }
1160 }
1161
1162 /**
1163 * rpcrdma_mr_get - Allocate an rpcrdma_mr object
1164 * @r_xprt: controlling transport
1165 *
1166 * Returns an initialized rpcrdma_mr or NULL if no free
1167 * rpcrdma_mr objects are available.
1168 */
1169 struct rpcrdma_mr *
rpcrdma_mr_get(struct rpcrdma_xprt * r_xprt)1170 rpcrdma_mr_get(struct rpcrdma_xprt *r_xprt)
1171 {
1172 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1173 struct rpcrdma_mr *mr;
1174
1175 spin_lock(&buf->rb_lock);
1176 mr = rpcrdma_mr_pop(&buf->rb_mrs);
1177 spin_unlock(&buf->rb_lock);
1178 return mr;
1179 }
1180
1181 /**
1182 * rpcrdma_mr_put - DMA unmap an MR and release it
1183 * @mr: MR to release
1184 *
1185 */
rpcrdma_mr_put(struct rpcrdma_mr * mr)1186 void rpcrdma_mr_put(struct rpcrdma_mr *mr)
1187 {
1188 struct rpcrdma_xprt *r_xprt = mr->mr_xprt;
1189
1190 if (mr->mr_dir != DMA_NONE) {
1191 trace_xprtrdma_mr_unmap(mr);
1192 ib_dma_unmap_sg(r_xprt->rx_ep->re_id->device,
1193 mr->mr_sg, mr->mr_nents, mr->mr_dir);
1194 mr->mr_dir = DMA_NONE;
1195 }
1196
1197 rpcrdma_mr_push(mr, &mr->mr_req->rl_free_mrs);
1198 }
1199
1200 /**
1201 * rpcrdma_buffer_get - Get a request buffer
1202 * @buffers: Buffer pool from which to obtain a buffer
1203 *
1204 * Returns a fresh rpcrdma_req, or NULL if none are available.
1205 */
1206 struct rpcrdma_req *
rpcrdma_buffer_get(struct rpcrdma_buffer * buffers)1207 rpcrdma_buffer_get(struct rpcrdma_buffer *buffers)
1208 {
1209 struct rpcrdma_req *req;
1210
1211 spin_lock(&buffers->rb_lock);
1212 req = list_first_entry_or_null(&buffers->rb_send_bufs,
1213 struct rpcrdma_req, rl_list);
1214 if (req)
1215 list_del_init(&req->rl_list);
1216 spin_unlock(&buffers->rb_lock);
1217 return req;
1218 }
1219
1220 /**
1221 * rpcrdma_buffer_put - Put request/reply buffers back into pool
1222 * @buffers: buffer pool
1223 * @req: object to return
1224 *
1225 */
rpcrdma_buffer_put(struct rpcrdma_buffer * buffers,struct rpcrdma_req * req)1226 void rpcrdma_buffer_put(struct rpcrdma_buffer *buffers, struct rpcrdma_req *req)
1227 {
1228 if (req->rl_reply)
1229 rpcrdma_rep_put(buffers, req->rl_reply);
1230 req->rl_reply = NULL;
1231
1232 spin_lock(&buffers->rb_lock);
1233 list_add(&req->rl_list, &buffers->rb_send_bufs);
1234 spin_unlock(&buffers->rb_lock);
1235 }
1236
1237 /**
1238 * rpcrdma_recv_buffer_put - Release rpcrdma_rep back to free list
1239 * @rep: rep to release
1240 *
1241 * Used after error conditions.
1242 */
rpcrdma_recv_buffer_put(struct rpcrdma_rep * rep)1243 void rpcrdma_recv_buffer_put(struct rpcrdma_rep *rep)
1244 {
1245 rpcrdma_rep_put(&rep->rr_rxprt->rx_buf, rep);
1246 }
1247
1248 /* Returns a pointer to a rpcrdma_regbuf object, or NULL.
1249 *
1250 * xprtrdma uses a regbuf for posting an outgoing RDMA SEND, or for
1251 * receiving the payload of RDMA RECV operations. During Long Calls
1252 * or Replies they may be registered externally via frwr_map.
1253 */
1254 static struct rpcrdma_regbuf *
rpcrdma_regbuf_alloc(size_t size,enum dma_data_direction direction,gfp_t flags)1255 rpcrdma_regbuf_alloc(size_t size, enum dma_data_direction direction,
1256 gfp_t flags)
1257 {
1258 struct rpcrdma_regbuf *rb;
1259
1260 rb = kmalloc(sizeof(*rb), flags);
1261 if (!rb)
1262 return NULL;
1263 rb->rg_data = kmalloc(size, flags);
1264 if (!rb->rg_data) {
1265 kfree(rb);
1266 return NULL;
1267 }
1268
1269 rb->rg_device = NULL;
1270 rb->rg_direction = direction;
1271 rb->rg_iov.length = size;
1272 return rb;
1273 }
1274
1275 /**
1276 * rpcrdma_regbuf_realloc - re-allocate a SEND/RECV buffer
1277 * @rb: regbuf to reallocate
1278 * @size: size of buffer to be allocated, in bytes
1279 * @flags: GFP flags
1280 *
1281 * Returns true if reallocation was successful. If false is
1282 * returned, @rb is left untouched.
1283 */
rpcrdma_regbuf_realloc(struct rpcrdma_regbuf * rb,size_t size,gfp_t flags)1284 bool rpcrdma_regbuf_realloc(struct rpcrdma_regbuf *rb, size_t size, gfp_t flags)
1285 {
1286 void *buf;
1287
1288 buf = kmalloc(size, flags);
1289 if (!buf)
1290 return false;
1291
1292 rpcrdma_regbuf_dma_unmap(rb);
1293 kfree(rb->rg_data);
1294
1295 rb->rg_data = buf;
1296 rb->rg_iov.length = size;
1297 return true;
1298 }
1299
1300 /**
1301 * __rpcrdma_regbuf_dma_map - DMA-map a regbuf
1302 * @r_xprt: controlling transport instance
1303 * @rb: regbuf to be mapped
1304 *
1305 * Returns true if the buffer is now DMA mapped to @r_xprt's device
1306 */
__rpcrdma_regbuf_dma_map(struct rpcrdma_xprt * r_xprt,struct rpcrdma_regbuf * rb)1307 bool __rpcrdma_regbuf_dma_map(struct rpcrdma_xprt *r_xprt,
1308 struct rpcrdma_regbuf *rb)
1309 {
1310 struct ib_device *device = r_xprt->rx_ep->re_id->device;
1311
1312 if (rb->rg_direction == DMA_NONE)
1313 return false;
1314
1315 rb->rg_iov.addr = ib_dma_map_single(device, rdmab_data(rb),
1316 rdmab_length(rb), rb->rg_direction);
1317 if (ib_dma_mapping_error(device, rdmab_addr(rb))) {
1318 trace_xprtrdma_dma_maperr(rdmab_addr(rb));
1319 return false;
1320 }
1321
1322 rb->rg_device = device;
1323 rb->rg_iov.lkey = r_xprt->rx_ep->re_pd->local_dma_lkey;
1324 return true;
1325 }
1326
rpcrdma_regbuf_dma_unmap(struct rpcrdma_regbuf * rb)1327 static void rpcrdma_regbuf_dma_unmap(struct rpcrdma_regbuf *rb)
1328 {
1329 if (!rb)
1330 return;
1331
1332 if (!rpcrdma_regbuf_is_mapped(rb))
1333 return;
1334
1335 ib_dma_unmap_single(rb->rg_device, rdmab_addr(rb), rdmab_length(rb),
1336 rb->rg_direction);
1337 rb->rg_device = NULL;
1338 }
1339
rpcrdma_regbuf_free(struct rpcrdma_regbuf * rb)1340 static void rpcrdma_regbuf_free(struct rpcrdma_regbuf *rb)
1341 {
1342 rpcrdma_regbuf_dma_unmap(rb);
1343 if (rb)
1344 kfree(rb->rg_data);
1345 kfree(rb);
1346 }
1347
1348 /**
1349 * rpcrdma_post_sends - Post WRs to a transport's Send Queue
1350 * @r_xprt: controlling transport instance
1351 * @req: rpcrdma_req containing the Send WR to post
1352 *
1353 * Returns 0 if the post was successful, otherwise -ENOTCONN
1354 * is returned.
1355 */
rpcrdma_post_sends(struct rpcrdma_xprt * r_xprt,struct rpcrdma_req * req)1356 int rpcrdma_post_sends(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
1357 {
1358 struct ib_send_wr *send_wr = &req->rl_wr;
1359 struct rpcrdma_ep *ep = r_xprt->rx_ep;
1360 int rc;
1361
1362 if (!ep->re_send_count || kref_read(&req->rl_kref) > 1) {
1363 send_wr->send_flags |= IB_SEND_SIGNALED;
1364 ep->re_send_count = ep->re_send_batch;
1365 } else {
1366 send_wr->send_flags &= ~IB_SEND_SIGNALED;
1367 --ep->re_send_count;
1368 }
1369
1370 trace_xprtrdma_post_send(req);
1371 rc = frwr_send(r_xprt, req);
1372 if (rc)
1373 return -ENOTCONN;
1374 return 0;
1375 }
1376
1377 /**
1378 * rpcrdma_post_recvs - Refill the Receive Queue
1379 * @r_xprt: controlling transport instance
1380 * @temp: mark Receive buffers to be deleted after use
1381 *
1382 */
rpcrdma_post_recvs(struct rpcrdma_xprt * r_xprt,bool temp)1383 void rpcrdma_post_recvs(struct rpcrdma_xprt *r_xprt, bool temp)
1384 {
1385 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1386 struct rpcrdma_ep *ep = r_xprt->rx_ep;
1387 struct ib_recv_wr *wr, *bad_wr;
1388 struct rpcrdma_rep *rep;
1389 int needed, count, rc;
1390
1391 rc = 0;
1392 count = 0;
1393
1394 needed = buf->rb_credits + (buf->rb_bc_srv_max_requests << 1);
1395 if (likely(ep->re_receive_count > needed))
1396 goto out;
1397 needed -= ep->re_receive_count;
1398 if (!temp)
1399 needed += RPCRDMA_MAX_RECV_BATCH;
1400
1401 /* fast path: all needed reps can be found on the free list */
1402 wr = NULL;
1403 while (needed) {
1404 rep = rpcrdma_rep_get_locked(buf);
1405 if (rep && rep->rr_temp) {
1406 rpcrdma_rep_destroy(rep);
1407 continue;
1408 }
1409 if (!rep)
1410 rep = rpcrdma_rep_create(r_xprt, temp);
1411 if (!rep)
1412 break;
1413
1414 trace_xprtrdma_post_recv(rep);
1415 rep->rr_recv_wr.next = wr;
1416 wr = &rep->rr_recv_wr;
1417 --needed;
1418 ++count;
1419 }
1420 if (!wr)
1421 goto out;
1422
1423 rc = ib_post_recv(ep->re_id->qp, wr,
1424 (const struct ib_recv_wr **)&bad_wr);
1425 out:
1426 trace_xprtrdma_post_recvs(r_xprt, count, rc);
1427 if (rc) {
1428 for (wr = bad_wr; wr;) {
1429 struct rpcrdma_rep *rep;
1430
1431 rep = container_of(wr, struct rpcrdma_rep, rr_recv_wr);
1432 wr = wr->next;
1433 rpcrdma_recv_buffer_put(rep);
1434 --count;
1435 }
1436 }
1437 ep->re_receive_count += count;
1438 return;
1439 }
1440