1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/net/sunrpc/sched.c
4 *
5 * Scheduling for synchronous and asynchronous RPC requests.
6 *
7 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
8 *
9 * TCP NFS related read + write fixes
10 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
11 */
12
13 #include <linux/module.h>
14
15 #include <linux/sched.h>
16 #include <linux/interrupt.h>
17 #include <linux/slab.h>
18 #include <linux/mempool.h>
19 #include <linux/smp.h>
20 #include <linux/spinlock.h>
21 #include <linux/mutex.h>
22 #include <linux/freezer.h>
23 #include <linux/sched/mm.h>
24
25 #include <linux/sunrpc/clnt.h>
26 #include <linux/sunrpc/metrics.h>
27
28 #include "sunrpc.h"
29
30 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
31 #define RPCDBG_FACILITY RPCDBG_SCHED
32 #endif
33
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/sunrpc.h>
36
37 /*
38 * RPC slabs and memory pools
39 */
40 #define RPC_BUFFER_MAXSIZE (2048)
41 #define RPC_BUFFER_POOLSIZE (8)
42 #define RPC_TASK_POOLSIZE (8)
43 static struct kmem_cache *rpc_task_slabp __read_mostly;
44 static struct kmem_cache *rpc_buffer_slabp __read_mostly;
45 static mempool_t *rpc_task_mempool __read_mostly;
46 static mempool_t *rpc_buffer_mempool __read_mostly;
47
48 static void rpc_async_schedule(struct work_struct *);
49 static void rpc_release_task(struct rpc_task *task);
50 static void __rpc_queue_timer_fn(struct work_struct *);
51
52 /*
53 * RPC tasks sit here while waiting for conditions to improve.
54 */
55 static struct rpc_wait_queue delay_queue;
56
57 /*
58 * rpciod-related stuff
59 */
60 struct workqueue_struct *rpciod_workqueue __read_mostly;
61 struct workqueue_struct *xprtiod_workqueue __read_mostly;
62 EXPORT_SYMBOL_GPL(xprtiod_workqueue);
63
64 unsigned long
rpc_task_timeout(const struct rpc_task * task)65 rpc_task_timeout(const struct rpc_task *task)
66 {
67 unsigned long timeout = READ_ONCE(task->tk_timeout);
68
69 if (timeout != 0) {
70 unsigned long now = jiffies;
71 if (time_before(now, timeout))
72 return timeout - now;
73 }
74 return 0;
75 }
76 EXPORT_SYMBOL_GPL(rpc_task_timeout);
77
78 /*
79 * Disable the timer for a given RPC task. Should be called with
80 * queue->lock and bh_disabled in order to avoid races within
81 * rpc_run_timer().
82 */
83 static void
__rpc_disable_timer(struct rpc_wait_queue * queue,struct rpc_task * task)84 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
85 {
86 if (list_empty(&task->u.tk_wait.timer_list))
87 return;
88 dprintk("RPC: %5u disabling timer\n", task->tk_pid);
89 task->tk_timeout = 0;
90 list_del(&task->u.tk_wait.timer_list);
91 if (list_empty(&queue->timer_list.list))
92 cancel_delayed_work(&queue->timer_list.dwork);
93 }
94
95 static void
rpc_set_queue_timer(struct rpc_wait_queue * queue,unsigned long expires)96 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
97 {
98 unsigned long now = jiffies;
99 queue->timer_list.expires = expires;
100 if (time_before_eq(expires, now))
101 expires = 0;
102 else
103 expires -= now;
104 mod_delayed_work(rpciod_workqueue, &queue->timer_list.dwork, expires);
105 }
106
107 /*
108 * Set up a timer for the current task.
109 */
110 static void
__rpc_add_timer(struct rpc_wait_queue * queue,struct rpc_task * task,unsigned long timeout)111 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task,
112 unsigned long timeout)
113 {
114 dprintk("RPC: %5u setting alarm for %u ms\n",
115 task->tk_pid, jiffies_to_msecs(timeout - jiffies));
116
117 task->tk_timeout = timeout;
118 if (list_empty(&queue->timer_list.list) || time_before(timeout, queue->timer_list.expires))
119 rpc_set_queue_timer(queue, timeout);
120 list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
121 }
122
rpc_set_waitqueue_priority(struct rpc_wait_queue * queue,int priority)123 static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
124 {
125 if (queue->priority != priority) {
126 queue->priority = priority;
127 queue->nr = 1U << priority;
128 }
129 }
130
rpc_reset_waitqueue_priority(struct rpc_wait_queue * queue)131 static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
132 {
133 rpc_set_waitqueue_priority(queue, queue->maxpriority);
134 }
135
136 /*
137 * Add a request to a queue list
138 */
139 static void
__rpc_list_enqueue_task(struct list_head * q,struct rpc_task * task)140 __rpc_list_enqueue_task(struct list_head *q, struct rpc_task *task)
141 {
142 struct rpc_task *t;
143
144 list_for_each_entry(t, q, u.tk_wait.list) {
145 if (t->tk_owner == task->tk_owner) {
146 list_add_tail(&task->u.tk_wait.links,
147 &t->u.tk_wait.links);
148 /* Cache the queue head in task->u.tk_wait.list */
149 task->u.tk_wait.list.next = q;
150 task->u.tk_wait.list.prev = NULL;
151 return;
152 }
153 }
154 INIT_LIST_HEAD(&task->u.tk_wait.links);
155 list_add_tail(&task->u.tk_wait.list, q);
156 }
157
158 /*
159 * Remove request from a queue list
160 */
161 static void
__rpc_list_dequeue_task(struct rpc_task * task)162 __rpc_list_dequeue_task(struct rpc_task *task)
163 {
164 struct list_head *q;
165 struct rpc_task *t;
166
167 if (task->u.tk_wait.list.prev == NULL) {
168 list_del(&task->u.tk_wait.links);
169 return;
170 }
171 if (!list_empty(&task->u.tk_wait.links)) {
172 t = list_first_entry(&task->u.tk_wait.links,
173 struct rpc_task,
174 u.tk_wait.links);
175 /* Assume __rpc_list_enqueue_task() cached the queue head */
176 q = t->u.tk_wait.list.next;
177 list_add_tail(&t->u.tk_wait.list, q);
178 list_del(&task->u.tk_wait.links);
179 }
180 list_del(&task->u.tk_wait.list);
181 }
182
183 /*
184 * Add new request to a priority queue.
185 */
__rpc_add_wait_queue_priority(struct rpc_wait_queue * queue,struct rpc_task * task,unsigned char queue_priority)186 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
187 struct rpc_task *task,
188 unsigned char queue_priority)
189 {
190 if (unlikely(queue_priority > queue->maxpriority))
191 queue_priority = queue->maxpriority;
192 __rpc_list_enqueue_task(&queue->tasks[queue_priority], task);
193 }
194
195 /*
196 * Add new request to wait queue.
197 *
198 * Swapper tasks always get inserted at the head of the queue.
199 * This should avoid many nasty memory deadlocks and hopefully
200 * improve overall performance.
201 * Everyone else gets appended to the queue to ensure proper FIFO behavior.
202 */
__rpc_add_wait_queue(struct rpc_wait_queue * queue,struct rpc_task * task,unsigned char queue_priority)203 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
204 struct rpc_task *task,
205 unsigned char queue_priority)
206 {
207 WARN_ON_ONCE(RPC_IS_QUEUED(task));
208 if (RPC_IS_QUEUED(task))
209 return;
210
211 INIT_LIST_HEAD(&task->u.tk_wait.timer_list);
212 if (RPC_IS_PRIORITY(queue))
213 __rpc_add_wait_queue_priority(queue, task, queue_priority);
214 else if (RPC_IS_SWAPPER(task))
215 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
216 else
217 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
218 task->tk_waitqueue = queue;
219 queue->qlen++;
220 /* barrier matches the read in rpc_wake_up_task_queue_locked() */
221 smp_wmb();
222 rpc_set_queued(task);
223
224 dprintk("RPC: %5u added to queue %p \"%s\"\n",
225 task->tk_pid, queue, rpc_qname(queue));
226 }
227
228 /*
229 * Remove request from a priority queue.
230 */
__rpc_remove_wait_queue_priority(struct rpc_task * task)231 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
232 {
233 __rpc_list_dequeue_task(task);
234 }
235
236 /*
237 * Remove request from queue.
238 * Note: must be called with spin lock held.
239 */
__rpc_remove_wait_queue(struct rpc_wait_queue * queue,struct rpc_task * task)240 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
241 {
242 __rpc_disable_timer(queue, task);
243 if (RPC_IS_PRIORITY(queue))
244 __rpc_remove_wait_queue_priority(task);
245 else
246 list_del(&task->u.tk_wait.list);
247 queue->qlen--;
248 dprintk("RPC: %5u removed from queue %p \"%s\"\n",
249 task->tk_pid, queue, rpc_qname(queue));
250 }
251
__rpc_init_priority_wait_queue(struct rpc_wait_queue * queue,const char * qname,unsigned char nr_queues)252 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
253 {
254 int i;
255
256 spin_lock_init(&queue->lock);
257 for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
258 INIT_LIST_HEAD(&queue->tasks[i]);
259 queue->maxpriority = nr_queues - 1;
260 rpc_reset_waitqueue_priority(queue);
261 queue->qlen = 0;
262 queue->timer_list.expires = 0;
263 INIT_DEFERRABLE_WORK(&queue->timer_list.dwork, __rpc_queue_timer_fn);
264 INIT_LIST_HEAD(&queue->timer_list.list);
265 rpc_assign_waitqueue_name(queue, qname);
266 }
267
rpc_init_priority_wait_queue(struct rpc_wait_queue * queue,const char * qname)268 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
269 {
270 __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
271 }
272 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
273
rpc_init_wait_queue(struct rpc_wait_queue * queue,const char * qname)274 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
275 {
276 __rpc_init_priority_wait_queue(queue, qname, 1);
277 }
278 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
279
rpc_destroy_wait_queue(struct rpc_wait_queue * queue)280 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
281 {
282 cancel_delayed_work_sync(&queue->timer_list.dwork);
283 }
284 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
285
rpc_wait_bit_killable(struct wait_bit_key * key,int mode)286 static int rpc_wait_bit_killable(struct wait_bit_key *key, int mode)
287 {
288 freezable_schedule_unsafe();
289 if (signal_pending_state(mode, current))
290 return -ERESTARTSYS;
291 return 0;
292 }
293
294 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) || IS_ENABLED(CONFIG_TRACEPOINTS)
rpc_task_set_debuginfo(struct rpc_task * task)295 static void rpc_task_set_debuginfo(struct rpc_task *task)
296 {
297 static atomic_t rpc_pid;
298
299 task->tk_pid = atomic_inc_return(&rpc_pid);
300 }
301 #else
rpc_task_set_debuginfo(struct rpc_task * task)302 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
303 {
304 }
305 #endif
306
rpc_set_active(struct rpc_task * task)307 static void rpc_set_active(struct rpc_task *task)
308 {
309 rpc_task_set_debuginfo(task);
310 set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
311 trace_rpc_task_begin(task, NULL);
312 }
313
314 /*
315 * Mark an RPC call as having completed by clearing the 'active' bit
316 * and then waking up all tasks that were sleeping.
317 */
rpc_complete_task(struct rpc_task * task)318 static int rpc_complete_task(struct rpc_task *task)
319 {
320 void *m = &task->tk_runstate;
321 wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
322 struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
323 unsigned long flags;
324 int ret;
325
326 trace_rpc_task_complete(task, NULL);
327
328 spin_lock_irqsave(&wq->lock, flags);
329 clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
330 ret = atomic_dec_and_test(&task->tk_count);
331 if (waitqueue_active(wq))
332 __wake_up_locked_key(wq, TASK_NORMAL, &k);
333 spin_unlock_irqrestore(&wq->lock, flags);
334 return ret;
335 }
336
337 /*
338 * Allow callers to wait for completion of an RPC call
339 *
340 * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
341 * to enforce taking of the wq->lock and hence avoid races with
342 * rpc_complete_task().
343 */
__rpc_wait_for_completion_task(struct rpc_task * task,wait_bit_action_f * action)344 int __rpc_wait_for_completion_task(struct rpc_task *task, wait_bit_action_f *action)
345 {
346 if (action == NULL)
347 action = rpc_wait_bit_killable;
348 return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
349 action, TASK_KILLABLE);
350 }
351 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
352
353 /*
354 * Make an RPC task runnable.
355 *
356 * Note: If the task is ASYNC, and is being made runnable after sitting on an
357 * rpc_wait_queue, this must be called with the queue spinlock held to protect
358 * the wait queue operation.
359 * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(),
360 * which is needed to ensure that __rpc_execute() doesn't loop (due to the
361 * lockless RPC_IS_QUEUED() test) before we've had a chance to test
362 * the RPC_TASK_RUNNING flag.
363 */
rpc_make_runnable(struct workqueue_struct * wq,struct rpc_task * task)364 static void rpc_make_runnable(struct workqueue_struct *wq,
365 struct rpc_task *task)
366 {
367 bool need_wakeup = !rpc_test_and_set_running(task);
368
369 rpc_clear_queued(task);
370 if (!need_wakeup)
371 return;
372 if (RPC_IS_ASYNC(task)) {
373 INIT_WORK(&task->u.tk_work, rpc_async_schedule);
374 queue_work(wq, &task->u.tk_work);
375 } else
376 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
377 }
378
379 /*
380 * Prepare for sleeping on a wait queue.
381 * By always appending tasks to the list we ensure FIFO behavior.
382 * NB: An RPC task will only receive interrupt-driven events as long
383 * as it's on a wait queue.
384 */
__rpc_sleep_on_priority(struct rpc_wait_queue * q,struct rpc_task * task,unsigned char queue_priority)385 static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
386 struct rpc_task *task,
387 unsigned char queue_priority)
388 {
389 dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
390 task->tk_pid, rpc_qname(q), jiffies);
391
392 trace_rpc_task_sleep(task, q);
393
394 __rpc_add_wait_queue(q, task, queue_priority);
395
396 }
397
__rpc_sleep_on_priority_timeout(struct rpc_wait_queue * q,struct rpc_task * task,unsigned long timeout,unsigned char queue_priority)398 static void __rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
399 struct rpc_task *task, unsigned long timeout,
400 unsigned char queue_priority)
401 {
402 if (time_is_after_jiffies(timeout)) {
403 __rpc_sleep_on_priority(q, task, queue_priority);
404 __rpc_add_timer(q, task, timeout);
405 } else
406 task->tk_status = -ETIMEDOUT;
407 }
408
rpc_set_tk_callback(struct rpc_task * task,rpc_action action)409 static void rpc_set_tk_callback(struct rpc_task *task, rpc_action action)
410 {
411 if (action && !WARN_ON_ONCE(task->tk_callback != NULL))
412 task->tk_callback = action;
413 }
414
rpc_sleep_check_activated(struct rpc_task * task)415 static bool rpc_sleep_check_activated(struct rpc_task *task)
416 {
417 /* We shouldn't ever put an inactive task to sleep */
418 if (WARN_ON_ONCE(!RPC_IS_ACTIVATED(task))) {
419 task->tk_status = -EIO;
420 rpc_put_task_async(task);
421 return false;
422 }
423 return true;
424 }
425
rpc_sleep_on_timeout(struct rpc_wait_queue * q,struct rpc_task * task,rpc_action action,unsigned long timeout)426 void rpc_sleep_on_timeout(struct rpc_wait_queue *q, struct rpc_task *task,
427 rpc_action action, unsigned long timeout)
428 {
429 if (!rpc_sleep_check_activated(task))
430 return;
431
432 rpc_set_tk_callback(task, action);
433
434 /*
435 * Protect the queue operations.
436 */
437 spin_lock(&q->lock);
438 __rpc_sleep_on_priority_timeout(q, task, timeout, task->tk_priority);
439 spin_unlock(&q->lock);
440 }
441 EXPORT_SYMBOL_GPL(rpc_sleep_on_timeout);
442
rpc_sleep_on(struct rpc_wait_queue * q,struct rpc_task * task,rpc_action action)443 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
444 rpc_action action)
445 {
446 if (!rpc_sleep_check_activated(task))
447 return;
448
449 rpc_set_tk_callback(task, action);
450
451 WARN_ON_ONCE(task->tk_timeout != 0);
452 /*
453 * Protect the queue operations.
454 */
455 spin_lock(&q->lock);
456 __rpc_sleep_on_priority(q, task, task->tk_priority);
457 spin_unlock(&q->lock);
458 }
459 EXPORT_SYMBOL_GPL(rpc_sleep_on);
460
rpc_sleep_on_priority_timeout(struct rpc_wait_queue * q,struct rpc_task * task,unsigned long timeout,int priority)461 void rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
462 struct rpc_task *task, unsigned long timeout, int priority)
463 {
464 if (!rpc_sleep_check_activated(task))
465 return;
466
467 priority -= RPC_PRIORITY_LOW;
468 /*
469 * Protect the queue operations.
470 */
471 spin_lock(&q->lock);
472 __rpc_sleep_on_priority_timeout(q, task, timeout, priority);
473 spin_unlock(&q->lock);
474 }
475 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority_timeout);
476
rpc_sleep_on_priority(struct rpc_wait_queue * q,struct rpc_task * task,int priority)477 void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
478 int priority)
479 {
480 if (!rpc_sleep_check_activated(task))
481 return;
482
483 WARN_ON_ONCE(task->tk_timeout != 0);
484 priority -= RPC_PRIORITY_LOW;
485 /*
486 * Protect the queue operations.
487 */
488 spin_lock(&q->lock);
489 __rpc_sleep_on_priority(q, task, priority);
490 spin_unlock(&q->lock);
491 }
492 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority);
493
494 /**
495 * __rpc_do_wake_up_task_on_wq - wake up a single rpc_task
496 * @wq: workqueue on which to run task
497 * @queue: wait queue
498 * @task: task to be woken up
499 *
500 * Caller must hold queue->lock, and have cleared the task queued flag.
501 */
__rpc_do_wake_up_task_on_wq(struct workqueue_struct * wq,struct rpc_wait_queue * queue,struct rpc_task * task)502 static void __rpc_do_wake_up_task_on_wq(struct workqueue_struct *wq,
503 struct rpc_wait_queue *queue,
504 struct rpc_task *task)
505 {
506 dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
507 task->tk_pid, jiffies);
508
509 /* Has the task been executed yet? If not, we cannot wake it up! */
510 if (!RPC_IS_ACTIVATED(task)) {
511 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
512 return;
513 }
514
515 trace_rpc_task_wakeup(task, queue);
516
517 __rpc_remove_wait_queue(queue, task);
518
519 rpc_make_runnable(wq, task);
520
521 dprintk("RPC: __rpc_wake_up_task done\n");
522 }
523
524 /*
525 * Wake up a queued task while the queue lock is being held
526 */
527 static struct rpc_task *
rpc_wake_up_task_on_wq_queue_action_locked(struct workqueue_struct * wq,struct rpc_wait_queue * queue,struct rpc_task * task,bool (* action)(struct rpc_task *,void *),void * data)528 rpc_wake_up_task_on_wq_queue_action_locked(struct workqueue_struct *wq,
529 struct rpc_wait_queue *queue, struct rpc_task *task,
530 bool (*action)(struct rpc_task *, void *), void *data)
531 {
532 if (RPC_IS_QUEUED(task)) {
533 smp_rmb();
534 if (task->tk_waitqueue == queue) {
535 if (action == NULL || action(task, data)) {
536 __rpc_do_wake_up_task_on_wq(wq, queue, task);
537 return task;
538 }
539 }
540 }
541 return NULL;
542 }
543
544 /*
545 * Wake up a queued task while the queue lock is being held
546 */
rpc_wake_up_task_queue_locked(struct rpc_wait_queue * queue,struct rpc_task * task)547 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue,
548 struct rpc_task *task)
549 {
550 rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue,
551 task, NULL, NULL);
552 }
553
554 /*
555 * Wake up a task on a specific queue
556 */
rpc_wake_up_queued_task(struct rpc_wait_queue * queue,struct rpc_task * task)557 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
558 {
559 if (!RPC_IS_QUEUED(task))
560 return;
561 spin_lock(&queue->lock);
562 rpc_wake_up_task_queue_locked(queue, task);
563 spin_unlock(&queue->lock);
564 }
565 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
566
rpc_task_action_set_status(struct rpc_task * task,void * status)567 static bool rpc_task_action_set_status(struct rpc_task *task, void *status)
568 {
569 task->tk_status = *(int *)status;
570 return true;
571 }
572
573 static void
rpc_wake_up_task_queue_set_status_locked(struct rpc_wait_queue * queue,struct rpc_task * task,int status)574 rpc_wake_up_task_queue_set_status_locked(struct rpc_wait_queue *queue,
575 struct rpc_task *task, int status)
576 {
577 rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue,
578 task, rpc_task_action_set_status, &status);
579 }
580
581 /**
582 * rpc_wake_up_queued_task_set_status - wake up a task and set task->tk_status
583 * @queue: pointer to rpc_wait_queue
584 * @task: pointer to rpc_task
585 * @status: integer error value
586 *
587 * If @task is queued on @queue, then it is woken up, and @task->tk_status is
588 * set to the value of @status.
589 */
590 void
rpc_wake_up_queued_task_set_status(struct rpc_wait_queue * queue,struct rpc_task * task,int status)591 rpc_wake_up_queued_task_set_status(struct rpc_wait_queue *queue,
592 struct rpc_task *task, int status)
593 {
594 if (!RPC_IS_QUEUED(task))
595 return;
596 spin_lock(&queue->lock);
597 rpc_wake_up_task_queue_set_status_locked(queue, task, status);
598 spin_unlock(&queue->lock);
599 }
600
601 /*
602 * Wake up the next task on a priority queue.
603 */
__rpc_find_next_queued_priority(struct rpc_wait_queue * queue)604 static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue)
605 {
606 struct list_head *q;
607 struct rpc_task *task;
608
609 /*
610 * Service a batch of tasks from a single owner.
611 */
612 q = &queue->tasks[queue->priority];
613 if (!list_empty(q) && --queue->nr) {
614 task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
615 goto out;
616 }
617
618 /*
619 * Service the next queue.
620 */
621 do {
622 if (q == &queue->tasks[0])
623 q = &queue->tasks[queue->maxpriority];
624 else
625 q = q - 1;
626 if (!list_empty(q)) {
627 task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
628 goto new_queue;
629 }
630 } while (q != &queue->tasks[queue->priority]);
631
632 rpc_reset_waitqueue_priority(queue);
633 return NULL;
634
635 new_queue:
636 rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
637 out:
638 return task;
639 }
640
__rpc_find_next_queued(struct rpc_wait_queue * queue)641 static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue)
642 {
643 if (RPC_IS_PRIORITY(queue))
644 return __rpc_find_next_queued_priority(queue);
645 if (!list_empty(&queue->tasks[0]))
646 return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list);
647 return NULL;
648 }
649
650 /*
651 * Wake up the first task on the wait queue.
652 */
rpc_wake_up_first_on_wq(struct workqueue_struct * wq,struct rpc_wait_queue * queue,bool (* func)(struct rpc_task *,void *),void * data)653 struct rpc_task *rpc_wake_up_first_on_wq(struct workqueue_struct *wq,
654 struct rpc_wait_queue *queue,
655 bool (*func)(struct rpc_task *, void *), void *data)
656 {
657 struct rpc_task *task = NULL;
658
659 dprintk("RPC: wake_up_first(%p \"%s\")\n",
660 queue, rpc_qname(queue));
661 spin_lock(&queue->lock);
662 task = __rpc_find_next_queued(queue);
663 if (task != NULL)
664 task = rpc_wake_up_task_on_wq_queue_action_locked(wq, queue,
665 task, func, data);
666 spin_unlock(&queue->lock);
667
668 return task;
669 }
670
671 /*
672 * Wake up the first task on the wait queue.
673 */
rpc_wake_up_first(struct rpc_wait_queue * queue,bool (* func)(struct rpc_task *,void *),void * data)674 struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue,
675 bool (*func)(struct rpc_task *, void *), void *data)
676 {
677 return rpc_wake_up_first_on_wq(rpciod_workqueue, queue, func, data);
678 }
679 EXPORT_SYMBOL_GPL(rpc_wake_up_first);
680
rpc_wake_up_next_func(struct rpc_task * task,void * data)681 static bool rpc_wake_up_next_func(struct rpc_task *task, void *data)
682 {
683 return true;
684 }
685
686 /*
687 * Wake up the next task on the wait queue.
688 */
rpc_wake_up_next(struct rpc_wait_queue * queue)689 struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue)
690 {
691 return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL);
692 }
693 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
694
695 /**
696 * rpc_wake_up - wake up all rpc_tasks
697 * @queue: rpc_wait_queue on which the tasks are sleeping
698 *
699 * Grabs queue->lock
700 */
rpc_wake_up(struct rpc_wait_queue * queue)701 void rpc_wake_up(struct rpc_wait_queue *queue)
702 {
703 struct list_head *head;
704
705 spin_lock(&queue->lock);
706 head = &queue->tasks[queue->maxpriority];
707 for (;;) {
708 while (!list_empty(head)) {
709 struct rpc_task *task;
710 task = list_first_entry(head,
711 struct rpc_task,
712 u.tk_wait.list);
713 rpc_wake_up_task_queue_locked(queue, task);
714 }
715 if (head == &queue->tasks[0])
716 break;
717 head--;
718 }
719 spin_unlock(&queue->lock);
720 }
721 EXPORT_SYMBOL_GPL(rpc_wake_up);
722
723 /**
724 * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
725 * @queue: rpc_wait_queue on which the tasks are sleeping
726 * @status: status value to set
727 *
728 * Grabs queue->lock
729 */
rpc_wake_up_status(struct rpc_wait_queue * queue,int status)730 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
731 {
732 struct list_head *head;
733
734 spin_lock(&queue->lock);
735 head = &queue->tasks[queue->maxpriority];
736 for (;;) {
737 while (!list_empty(head)) {
738 struct rpc_task *task;
739 task = list_first_entry(head,
740 struct rpc_task,
741 u.tk_wait.list);
742 task->tk_status = status;
743 rpc_wake_up_task_queue_locked(queue, task);
744 }
745 if (head == &queue->tasks[0])
746 break;
747 head--;
748 }
749 spin_unlock(&queue->lock);
750 }
751 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
752
__rpc_queue_timer_fn(struct work_struct * work)753 static void __rpc_queue_timer_fn(struct work_struct *work)
754 {
755 struct rpc_wait_queue *queue = container_of(work,
756 struct rpc_wait_queue,
757 timer_list.dwork.work);
758 struct rpc_task *task, *n;
759 unsigned long expires, now, timeo;
760
761 spin_lock(&queue->lock);
762 expires = now = jiffies;
763 list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
764 timeo = task->tk_timeout;
765 if (time_after_eq(now, timeo)) {
766 dprintk("RPC: %5u timeout\n", task->tk_pid);
767 task->tk_status = -ETIMEDOUT;
768 rpc_wake_up_task_queue_locked(queue, task);
769 continue;
770 }
771 if (expires == now || time_after(expires, timeo))
772 expires = timeo;
773 }
774 if (!list_empty(&queue->timer_list.list))
775 rpc_set_queue_timer(queue, expires);
776 spin_unlock(&queue->lock);
777 }
778
__rpc_atrun(struct rpc_task * task)779 static void __rpc_atrun(struct rpc_task *task)
780 {
781 if (task->tk_status == -ETIMEDOUT)
782 task->tk_status = 0;
783 }
784
785 /*
786 * Run a task at a later time
787 */
rpc_delay(struct rpc_task * task,unsigned long delay)788 void rpc_delay(struct rpc_task *task, unsigned long delay)
789 {
790 rpc_sleep_on_timeout(&delay_queue, task, __rpc_atrun, jiffies + delay);
791 }
792 EXPORT_SYMBOL_GPL(rpc_delay);
793
794 /*
795 * Helper to call task->tk_ops->rpc_call_prepare
796 */
rpc_prepare_task(struct rpc_task * task)797 void rpc_prepare_task(struct rpc_task *task)
798 {
799 task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
800 }
801
802 static void
rpc_init_task_statistics(struct rpc_task * task)803 rpc_init_task_statistics(struct rpc_task *task)
804 {
805 /* Initialize retry counters */
806 task->tk_garb_retry = 2;
807 task->tk_cred_retry = 2;
808 task->tk_rebind_retry = 2;
809
810 /* starting timestamp */
811 task->tk_start = ktime_get();
812 }
813
814 static void
rpc_reset_task_statistics(struct rpc_task * task)815 rpc_reset_task_statistics(struct rpc_task *task)
816 {
817 task->tk_timeouts = 0;
818 task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_SENT);
819 rpc_init_task_statistics(task);
820 }
821
822 /*
823 * Helper that calls task->tk_ops->rpc_call_done if it exists
824 */
rpc_exit_task(struct rpc_task * task)825 void rpc_exit_task(struct rpc_task *task)
826 {
827 task->tk_action = NULL;
828 if (task->tk_ops->rpc_count_stats)
829 task->tk_ops->rpc_count_stats(task, task->tk_calldata);
830 else if (task->tk_client)
831 rpc_count_iostats(task, task->tk_client->cl_metrics);
832 if (task->tk_ops->rpc_call_done != NULL) {
833 task->tk_ops->rpc_call_done(task, task->tk_calldata);
834 if (task->tk_action != NULL) {
835 /* Always release the RPC slot and buffer memory */
836 xprt_release(task);
837 rpc_reset_task_statistics(task);
838 }
839 }
840 }
841
rpc_signal_task(struct rpc_task * task)842 void rpc_signal_task(struct rpc_task *task)
843 {
844 struct rpc_wait_queue *queue;
845
846 if (!RPC_IS_ACTIVATED(task))
847 return;
848 set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate);
849 smp_mb__after_atomic();
850 queue = READ_ONCE(task->tk_waitqueue);
851 if (queue)
852 rpc_wake_up_queued_task_set_status(queue, task, -ERESTARTSYS);
853 }
854
rpc_exit(struct rpc_task * task,int status)855 void rpc_exit(struct rpc_task *task, int status)
856 {
857 task->tk_status = status;
858 task->tk_action = rpc_exit_task;
859 rpc_wake_up_queued_task(task->tk_waitqueue, task);
860 }
861 EXPORT_SYMBOL_GPL(rpc_exit);
862
rpc_release_calldata(const struct rpc_call_ops * ops,void * calldata)863 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
864 {
865 if (ops->rpc_release != NULL)
866 ops->rpc_release(calldata);
867 }
868
869 /*
870 * This is the RPC `scheduler' (or rather, the finite state machine).
871 */
__rpc_execute(struct rpc_task * task)872 static void __rpc_execute(struct rpc_task *task)
873 {
874 struct rpc_wait_queue *queue;
875 int task_is_async = RPC_IS_ASYNC(task);
876 int status = 0;
877
878 dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
879 task->tk_pid, task->tk_flags);
880
881 WARN_ON_ONCE(RPC_IS_QUEUED(task));
882 if (RPC_IS_QUEUED(task))
883 return;
884
885 for (;;) {
886 void (*do_action)(struct rpc_task *);
887
888 /*
889 * Perform the next FSM step or a pending callback.
890 *
891 * tk_action may be NULL if the task has been killed.
892 * In particular, note that rpc_killall_tasks may
893 * do this at any time, so beware when dereferencing.
894 */
895 do_action = task->tk_action;
896 if (task->tk_callback) {
897 do_action = task->tk_callback;
898 task->tk_callback = NULL;
899 }
900 if (!do_action)
901 break;
902 trace_rpc_task_run_action(task, do_action);
903 do_action(task);
904
905 /*
906 * Lockless check for whether task is sleeping or not.
907 */
908 if (!RPC_IS_QUEUED(task))
909 continue;
910
911 /*
912 * Signalled tasks should exit rather than sleep.
913 */
914 if (RPC_SIGNALLED(task)) {
915 task->tk_rpc_status = -ERESTARTSYS;
916 rpc_exit(task, -ERESTARTSYS);
917 }
918
919 /*
920 * The queue->lock protects against races with
921 * rpc_make_runnable().
922 *
923 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
924 * rpc_task, rpc_make_runnable() can assign it to a
925 * different workqueue. We therefore cannot assume that the
926 * rpc_task pointer may still be dereferenced.
927 */
928 queue = task->tk_waitqueue;
929 spin_lock(&queue->lock);
930 if (!RPC_IS_QUEUED(task)) {
931 spin_unlock(&queue->lock);
932 continue;
933 }
934 rpc_clear_running(task);
935 spin_unlock(&queue->lock);
936 if (task_is_async)
937 return;
938
939 /* sync task: sleep here */
940 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
941 status = out_of_line_wait_on_bit(&task->tk_runstate,
942 RPC_TASK_QUEUED, rpc_wait_bit_killable,
943 TASK_KILLABLE);
944 if (status < 0) {
945 /*
946 * When a sync task receives a signal, it exits with
947 * -ERESTARTSYS. In order to catch any callbacks that
948 * clean up after sleeping on some queue, we don't
949 * break the loop here, but go around once more.
950 */
951 dprintk("RPC: %5u got signal\n", task->tk_pid);
952 set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate);
953 task->tk_rpc_status = -ERESTARTSYS;
954 rpc_exit(task, -ERESTARTSYS);
955 }
956 dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
957 }
958
959 dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
960 task->tk_status);
961 /* Release all resources associated with the task */
962 rpc_release_task(task);
963 }
964
965 /*
966 * User-visible entry point to the scheduler.
967 *
968 * This may be called recursively if e.g. an async NFS task updates
969 * the attributes and finds that dirty pages must be flushed.
970 * NOTE: Upon exit of this function the task is guaranteed to be
971 * released. In particular note that tk_release() will have
972 * been called, so your task memory may have been freed.
973 */
rpc_execute(struct rpc_task * task)974 void rpc_execute(struct rpc_task *task)
975 {
976 bool is_async = RPC_IS_ASYNC(task);
977
978 rpc_set_active(task);
979 rpc_make_runnable(rpciod_workqueue, task);
980 if (!is_async)
981 __rpc_execute(task);
982 }
983
rpc_async_schedule(struct work_struct * work)984 static void rpc_async_schedule(struct work_struct *work)
985 {
986 unsigned int pflags = memalloc_nofs_save();
987
988 __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
989 memalloc_nofs_restore(pflags);
990 }
991
992 /**
993 * rpc_malloc - allocate RPC buffer resources
994 * @task: RPC task
995 *
996 * A single memory region is allocated, which is split between the
997 * RPC call and RPC reply that this task is being used for. When
998 * this RPC is retired, the memory is released by calling rpc_free.
999 *
1000 * To prevent rpciod from hanging, this allocator never sleeps,
1001 * returning -ENOMEM and suppressing warning if the request cannot
1002 * be serviced immediately. The caller can arrange to sleep in a
1003 * way that is safe for rpciod.
1004 *
1005 * Most requests are 'small' (under 2KiB) and can be serviced from a
1006 * mempool, ensuring that NFS reads and writes can always proceed,
1007 * and that there is good locality of reference for these buffers.
1008 */
rpc_malloc(struct rpc_task * task)1009 int rpc_malloc(struct rpc_task *task)
1010 {
1011 struct rpc_rqst *rqst = task->tk_rqstp;
1012 size_t size = rqst->rq_callsize + rqst->rq_rcvsize;
1013 struct rpc_buffer *buf;
1014 gfp_t gfp = GFP_NOFS;
1015
1016 if (RPC_IS_SWAPPER(task))
1017 gfp = __GFP_MEMALLOC | GFP_NOWAIT | __GFP_NOWARN;
1018
1019 size += sizeof(struct rpc_buffer);
1020 if (size <= RPC_BUFFER_MAXSIZE)
1021 buf = mempool_alloc(rpc_buffer_mempool, gfp);
1022 else
1023 buf = kmalloc(size, gfp);
1024
1025 if (!buf)
1026 return -ENOMEM;
1027
1028 buf->len = size;
1029 dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
1030 task->tk_pid, size, buf);
1031 rqst->rq_buffer = buf->data;
1032 rqst->rq_rbuffer = (char *)rqst->rq_buffer + rqst->rq_callsize;
1033 return 0;
1034 }
1035 EXPORT_SYMBOL_GPL(rpc_malloc);
1036
1037 /**
1038 * rpc_free - free RPC buffer resources allocated via rpc_malloc
1039 * @task: RPC task
1040 *
1041 */
rpc_free(struct rpc_task * task)1042 void rpc_free(struct rpc_task *task)
1043 {
1044 void *buffer = task->tk_rqstp->rq_buffer;
1045 size_t size;
1046 struct rpc_buffer *buf;
1047
1048 buf = container_of(buffer, struct rpc_buffer, data);
1049 size = buf->len;
1050
1051 dprintk("RPC: freeing buffer of size %zu at %p\n",
1052 size, buf);
1053
1054 if (size <= RPC_BUFFER_MAXSIZE)
1055 mempool_free(buf, rpc_buffer_mempool);
1056 else
1057 kfree(buf);
1058 }
1059 EXPORT_SYMBOL_GPL(rpc_free);
1060
1061 /*
1062 * Creation and deletion of RPC task structures
1063 */
rpc_init_task(struct rpc_task * task,const struct rpc_task_setup * task_setup_data)1064 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
1065 {
1066 memset(task, 0, sizeof(*task));
1067 atomic_set(&task->tk_count, 1);
1068 task->tk_flags = task_setup_data->flags;
1069 task->tk_ops = task_setup_data->callback_ops;
1070 task->tk_calldata = task_setup_data->callback_data;
1071 INIT_LIST_HEAD(&task->tk_task);
1072
1073 task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
1074 task->tk_owner = current->tgid;
1075
1076 /* Initialize workqueue for async tasks */
1077 task->tk_workqueue = task_setup_data->workqueue;
1078
1079 task->tk_xprt = rpc_task_get_xprt(task_setup_data->rpc_client,
1080 xprt_get(task_setup_data->rpc_xprt));
1081
1082 task->tk_op_cred = get_rpccred(task_setup_data->rpc_op_cred);
1083
1084 if (task->tk_ops->rpc_call_prepare != NULL)
1085 task->tk_action = rpc_prepare_task;
1086
1087 rpc_init_task_statistics(task);
1088
1089 dprintk("RPC: new task initialized, procpid %u\n",
1090 task_pid_nr(current));
1091 }
1092
1093 static struct rpc_task *
rpc_alloc_task(void)1094 rpc_alloc_task(void)
1095 {
1096 return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
1097 }
1098
1099 /*
1100 * Create a new task for the specified client.
1101 */
rpc_new_task(const struct rpc_task_setup * setup_data)1102 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
1103 {
1104 struct rpc_task *task = setup_data->task;
1105 unsigned short flags = 0;
1106
1107 if (task == NULL) {
1108 task = rpc_alloc_task();
1109 flags = RPC_TASK_DYNAMIC;
1110 }
1111
1112 rpc_init_task(task, setup_data);
1113 task->tk_flags |= flags;
1114 dprintk("RPC: allocated task %p\n", task);
1115 return task;
1116 }
1117
1118 /*
1119 * rpc_free_task - release rpc task and perform cleanups
1120 *
1121 * Note that we free up the rpc_task _after_ rpc_release_calldata()
1122 * in order to work around a workqueue dependency issue.
1123 *
1124 * Tejun Heo states:
1125 * "Workqueue currently considers two work items to be the same if they're
1126 * on the same address and won't execute them concurrently - ie. it
1127 * makes a work item which is queued again while being executed wait
1128 * for the previous execution to complete.
1129 *
1130 * If a work function frees the work item, and then waits for an event
1131 * which should be performed by another work item and *that* work item
1132 * recycles the freed work item, it can create a false dependency loop.
1133 * There really is no reliable way to detect this short of verifying
1134 * every memory free."
1135 *
1136 */
rpc_free_task(struct rpc_task * task)1137 static void rpc_free_task(struct rpc_task *task)
1138 {
1139 unsigned short tk_flags = task->tk_flags;
1140
1141 put_rpccred(task->tk_op_cred);
1142 rpc_release_calldata(task->tk_ops, task->tk_calldata);
1143
1144 if (tk_flags & RPC_TASK_DYNAMIC) {
1145 dprintk("RPC: %5u freeing task\n", task->tk_pid);
1146 mempool_free(task, rpc_task_mempool);
1147 }
1148 }
1149
rpc_async_release(struct work_struct * work)1150 static void rpc_async_release(struct work_struct *work)
1151 {
1152 unsigned int pflags = memalloc_nofs_save();
1153
1154 rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
1155 memalloc_nofs_restore(pflags);
1156 }
1157
rpc_release_resources_task(struct rpc_task * task)1158 static void rpc_release_resources_task(struct rpc_task *task)
1159 {
1160 xprt_release(task);
1161 if (task->tk_msg.rpc_cred) {
1162 put_cred(task->tk_msg.rpc_cred);
1163 task->tk_msg.rpc_cred = NULL;
1164 }
1165 rpc_task_release_client(task);
1166 }
1167
rpc_final_put_task(struct rpc_task * task,struct workqueue_struct * q)1168 static void rpc_final_put_task(struct rpc_task *task,
1169 struct workqueue_struct *q)
1170 {
1171 if (q != NULL) {
1172 INIT_WORK(&task->u.tk_work, rpc_async_release);
1173 queue_work(q, &task->u.tk_work);
1174 } else
1175 rpc_free_task(task);
1176 }
1177
rpc_do_put_task(struct rpc_task * task,struct workqueue_struct * q)1178 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
1179 {
1180 if (atomic_dec_and_test(&task->tk_count)) {
1181 rpc_release_resources_task(task);
1182 rpc_final_put_task(task, q);
1183 }
1184 }
1185
rpc_put_task(struct rpc_task * task)1186 void rpc_put_task(struct rpc_task *task)
1187 {
1188 rpc_do_put_task(task, NULL);
1189 }
1190 EXPORT_SYMBOL_GPL(rpc_put_task);
1191
rpc_put_task_async(struct rpc_task * task)1192 void rpc_put_task_async(struct rpc_task *task)
1193 {
1194 rpc_do_put_task(task, task->tk_workqueue);
1195 }
1196 EXPORT_SYMBOL_GPL(rpc_put_task_async);
1197
rpc_release_task(struct rpc_task * task)1198 static void rpc_release_task(struct rpc_task *task)
1199 {
1200 dprintk("RPC: %5u release task\n", task->tk_pid);
1201
1202 WARN_ON_ONCE(RPC_IS_QUEUED(task));
1203
1204 rpc_release_resources_task(task);
1205
1206 /*
1207 * Note: at this point we have been removed from rpc_clnt->cl_tasks,
1208 * so it should be safe to use task->tk_count as a test for whether
1209 * or not any other processes still hold references to our rpc_task.
1210 */
1211 if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
1212 /* Wake up anyone who may be waiting for task completion */
1213 if (!rpc_complete_task(task))
1214 return;
1215 } else {
1216 if (!atomic_dec_and_test(&task->tk_count))
1217 return;
1218 }
1219 rpc_final_put_task(task, task->tk_workqueue);
1220 }
1221
rpciod_up(void)1222 int rpciod_up(void)
1223 {
1224 return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
1225 }
1226
rpciod_down(void)1227 void rpciod_down(void)
1228 {
1229 module_put(THIS_MODULE);
1230 }
1231
1232 /*
1233 * Start up the rpciod workqueue.
1234 */
rpciod_start(void)1235 static int rpciod_start(void)
1236 {
1237 struct workqueue_struct *wq;
1238
1239 /*
1240 * Create the rpciod thread and wait for it to start.
1241 */
1242 dprintk("RPC: creating workqueue rpciod\n");
1243 wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM | WQ_UNBOUND, 0);
1244 if (!wq)
1245 goto out_failed;
1246 rpciod_workqueue = wq;
1247 /* Note: highpri because network receive is latency sensitive */
1248 wq = alloc_workqueue("xprtiod", WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_HIGHPRI, 0);
1249 if (!wq)
1250 goto free_rpciod;
1251 xprtiod_workqueue = wq;
1252 return 1;
1253 free_rpciod:
1254 wq = rpciod_workqueue;
1255 rpciod_workqueue = NULL;
1256 destroy_workqueue(wq);
1257 out_failed:
1258 return 0;
1259 }
1260
rpciod_stop(void)1261 static void rpciod_stop(void)
1262 {
1263 struct workqueue_struct *wq = NULL;
1264
1265 if (rpciod_workqueue == NULL)
1266 return;
1267 dprintk("RPC: destroying workqueue rpciod\n");
1268
1269 wq = rpciod_workqueue;
1270 rpciod_workqueue = NULL;
1271 destroy_workqueue(wq);
1272 wq = xprtiod_workqueue;
1273 xprtiod_workqueue = NULL;
1274 destroy_workqueue(wq);
1275 }
1276
1277 void
rpc_destroy_mempool(void)1278 rpc_destroy_mempool(void)
1279 {
1280 rpciod_stop();
1281 mempool_destroy(rpc_buffer_mempool);
1282 mempool_destroy(rpc_task_mempool);
1283 kmem_cache_destroy(rpc_task_slabp);
1284 kmem_cache_destroy(rpc_buffer_slabp);
1285 rpc_destroy_wait_queue(&delay_queue);
1286 }
1287
1288 int
rpc_init_mempool(void)1289 rpc_init_mempool(void)
1290 {
1291 /*
1292 * The following is not strictly a mempool initialisation,
1293 * but there is no harm in doing it here
1294 */
1295 rpc_init_wait_queue(&delay_queue, "delayq");
1296 if (!rpciod_start())
1297 goto err_nomem;
1298
1299 rpc_task_slabp = kmem_cache_create("rpc_tasks",
1300 sizeof(struct rpc_task),
1301 0, SLAB_HWCACHE_ALIGN,
1302 NULL);
1303 if (!rpc_task_slabp)
1304 goto err_nomem;
1305 rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1306 RPC_BUFFER_MAXSIZE,
1307 0, SLAB_HWCACHE_ALIGN,
1308 NULL);
1309 if (!rpc_buffer_slabp)
1310 goto err_nomem;
1311 rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1312 rpc_task_slabp);
1313 if (!rpc_task_mempool)
1314 goto err_nomem;
1315 rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1316 rpc_buffer_slabp);
1317 if (!rpc_buffer_mempool)
1318 goto err_nomem;
1319 return 0;
1320 err_nomem:
1321 rpc_destroy_mempool();
1322 return -ENOMEM;
1323 }
1324