1 /*
2 * Copyright (c) 2011-2016 Synaptics Incorporated
3 * Copyright (c) 2011 Unixphere
4 *
5 * This driver provides the core support for a single RMI4-based device.
6 *
7 * The RMI4 specification can be found here (URL split for line length):
8 *
9 * http://www.synaptics.com/sites/default/files/
10 * 511-000136-01-Rev-E-RMI4-Interfacing-Guide.pdf
11 *
12 * This program is free software; you can redistribute it and/or modify it
13 * under the terms of the GNU General Public License version 2 as published by
14 * the Free Software Foundation.
15 */
16
17 #include <linux/bitmap.h>
18 #include <linux/delay.h>
19 #include <linux/fs.h>
20 #include <linux/irq.h>
21 #include <linux/pm.h>
22 #include <linux/slab.h>
23 #include <linux/of.h>
24 #include <linux/irqdomain.h>
25 #include <uapi/linux/input.h>
26 #include <linux/rmi.h>
27 #include "rmi_bus.h"
28 #include "rmi_driver.h"
29
30 #define HAS_NONSTANDARD_PDT_MASK 0x40
31 #define RMI4_MAX_PAGE 0xff
32 #define RMI4_PAGE_SIZE 0x100
33 #define RMI4_PAGE_MASK 0xFF00
34
35 #define RMI_DEVICE_RESET_CMD 0x01
36 #define DEFAULT_RESET_DELAY_MS 100
37
rmi_free_function_list(struct rmi_device * rmi_dev)38 void rmi_free_function_list(struct rmi_device *rmi_dev)
39 {
40 struct rmi_function *fn, *tmp;
41 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
42
43 rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev, "Freeing function list\n");
44
45 /* Doing it in the reverse order so F01 will be removed last */
46 list_for_each_entry_safe_reverse(fn, tmp,
47 &data->function_list, node) {
48 list_del(&fn->node);
49 rmi_unregister_function(fn);
50 }
51
52 devm_kfree(&rmi_dev->dev, data->irq_memory);
53 data->irq_memory = NULL;
54 data->irq_status = NULL;
55 data->fn_irq_bits = NULL;
56 data->current_irq_mask = NULL;
57 data->new_irq_mask = NULL;
58
59 data->f01_container = NULL;
60 data->f34_container = NULL;
61 }
62
reset_one_function(struct rmi_function * fn)63 static int reset_one_function(struct rmi_function *fn)
64 {
65 struct rmi_function_handler *fh;
66 int retval = 0;
67
68 if (!fn || !fn->dev.driver)
69 return 0;
70
71 fh = to_rmi_function_handler(fn->dev.driver);
72 if (fh->reset) {
73 retval = fh->reset(fn);
74 if (retval < 0)
75 dev_err(&fn->dev, "Reset failed with code %d.\n",
76 retval);
77 }
78
79 return retval;
80 }
81
configure_one_function(struct rmi_function * fn)82 static int configure_one_function(struct rmi_function *fn)
83 {
84 struct rmi_function_handler *fh;
85 int retval = 0;
86
87 if (!fn || !fn->dev.driver)
88 return 0;
89
90 fh = to_rmi_function_handler(fn->dev.driver);
91 if (fh->config) {
92 retval = fh->config(fn);
93 if (retval < 0)
94 dev_err(&fn->dev, "Config failed with code %d.\n",
95 retval);
96 }
97
98 return retval;
99 }
100
rmi_driver_process_reset_requests(struct rmi_device * rmi_dev)101 static int rmi_driver_process_reset_requests(struct rmi_device *rmi_dev)
102 {
103 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
104 struct rmi_function *entry;
105 int retval;
106
107 list_for_each_entry(entry, &data->function_list, node) {
108 retval = reset_one_function(entry);
109 if (retval < 0)
110 return retval;
111 }
112
113 return 0;
114 }
115
rmi_driver_process_config_requests(struct rmi_device * rmi_dev)116 static int rmi_driver_process_config_requests(struct rmi_device *rmi_dev)
117 {
118 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
119 struct rmi_function *entry;
120 int retval;
121
122 list_for_each_entry(entry, &data->function_list, node) {
123 retval = configure_one_function(entry);
124 if (retval < 0)
125 return retval;
126 }
127
128 return 0;
129 }
130
rmi_process_interrupt_requests(struct rmi_device * rmi_dev)131 static int rmi_process_interrupt_requests(struct rmi_device *rmi_dev)
132 {
133 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
134 struct device *dev = &rmi_dev->dev;
135 int i;
136 int error;
137
138 if (!data)
139 return 0;
140
141 if (!data->attn_data.data) {
142 error = rmi_read_block(rmi_dev,
143 data->f01_container->fd.data_base_addr + 1,
144 data->irq_status, data->num_of_irq_regs);
145 if (error < 0) {
146 dev_err(dev, "Failed to read irqs, code=%d\n", error);
147 return error;
148 }
149 }
150
151 mutex_lock(&data->irq_mutex);
152 bitmap_and(data->irq_status, data->irq_status, data->current_irq_mask,
153 data->irq_count);
154 /*
155 * At this point, irq_status has all bits that are set in the
156 * interrupt status register and are enabled.
157 */
158 mutex_unlock(&data->irq_mutex);
159
160 for_each_set_bit(i, data->irq_status, data->irq_count)
161 handle_nested_irq(irq_find_mapping(data->irqdomain, i));
162
163 if (data->input)
164 input_sync(data->input);
165
166 return 0;
167 }
168
rmi_set_attn_data(struct rmi_device * rmi_dev,unsigned long irq_status,void * data,size_t size)169 void rmi_set_attn_data(struct rmi_device *rmi_dev, unsigned long irq_status,
170 void *data, size_t size)
171 {
172 struct rmi_driver_data *drvdata = dev_get_drvdata(&rmi_dev->dev);
173 struct rmi4_attn_data attn_data;
174 void *fifo_data;
175
176 if (!drvdata->enabled)
177 return;
178
179 fifo_data = kmemdup(data, size, GFP_ATOMIC);
180 if (!fifo_data)
181 return;
182
183 attn_data.irq_status = irq_status;
184 attn_data.size = size;
185 attn_data.data = fifo_data;
186
187 kfifo_put(&drvdata->attn_fifo, attn_data);
188 }
189 EXPORT_SYMBOL_GPL(rmi_set_attn_data);
190
rmi_irq_fn(int irq,void * dev_id)191 static irqreturn_t rmi_irq_fn(int irq, void *dev_id)
192 {
193 struct rmi_device *rmi_dev = dev_id;
194 struct rmi_driver_data *drvdata = dev_get_drvdata(&rmi_dev->dev);
195 struct rmi4_attn_data attn_data = {0};
196 int ret, count;
197
198 count = kfifo_get(&drvdata->attn_fifo, &attn_data);
199 if (count) {
200 *(drvdata->irq_status) = attn_data.irq_status;
201 drvdata->attn_data = attn_data;
202 }
203
204 ret = rmi_process_interrupt_requests(rmi_dev);
205 if (ret)
206 rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev,
207 "Failed to process interrupt request: %d\n", ret);
208
209 if (count) {
210 kfree(attn_data.data);
211 attn_data.data = NULL;
212 }
213
214 if (!kfifo_is_empty(&drvdata->attn_fifo))
215 return rmi_irq_fn(irq, dev_id);
216
217 return IRQ_HANDLED;
218 }
219
rmi_irq_init(struct rmi_device * rmi_dev)220 static int rmi_irq_init(struct rmi_device *rmi_dev)
221 {
222 struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
223 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
224 int irq_flags = irq_get_trigger_type(pdata->irq);
225 int ret;
226
227 if (!irq_flags)
228 irq_flags = IRQF_TRIGGER_LOW;
229
230 ret = devm_request_threaded_irq(&rmi_dev->dev, pdata->irq, NULL,
231 rmi_irq_fn, irq_flags | IRQF_ONESHOT,
232 dev_driver_string(rmi_dev->xport->dev),
233 rmi_dev);
234 if (ret < 0) {
235 dev_err(&rmi_dev->dev, "Failed to register interrupt %d\n",
236 pdata->irq);
237
238 return ret;
239 }
240
241 data->enabled = true;
242
243 return 0;
244 }
245
rmi_find_function(struct rmi_device * rmi_dev,u8 number)246 struct rmi_function *rmi_find_function(struct rmi_device *rmi_dev, u8 number)
247 {
248 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
249 struct rmi_function *entry;
250
251 list_for_each_entry(entry, &data->function_list, node) {
252 if (entry->fd.function_number == number)
253 return entry;
254 }
255
256 return NULL;
257 }
258
suspend_one_function(struct rmi_function * fn)259 static int suspend_one_function(struct rmi_function *fn)
260 {
261 struct rmi_function_handler *fh;
262 int retval = 0;
263
264 if (!fn || !fn->dev.driver)
265 return 0;
266
267 fh = to_rmi_function_handler(fn->dev.driver);
268 if (fh->suspend) {
269 retval = fh->suspend(fn);
270 if (retval < 0)
271 dev_err(&fn->dev, "Suspend failed with code %d.\n",
272 retval);
273 }
274
275 return retval;
276 }
277
rmi_suspend_functions(struct rmi_device * rmi_dev)278 static int rmi_suspend_functions(struct rmi_device *rmi_dev)
279 {
280 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
281 struct rmi_function *entry;
282 int retval;
283
284 list_for_each_entry(entry, &data->function_list, node) {
285 retval = suspend_one_function(entry);
286 if (retval < 0)
287 return retval;
288 }
289
290 return 0;
291 }
292
resume_one_function(struct rmi_function * fn)293 static int resume_one_function(struct rmi_function *fn)
294 {
295 struct rmi_function_handler *fh;
296 int retval = 0;
297
298 if (!fn || !fn->dev.driver)
299 return 0;
300
301 fh = to_rmi_function_handler(fn->dev.driver);
302 if (fh->resume) {
303 retval = fh->resume(fn);
304 if (retval < 0)
305 dev_err(&fn->dev, "Resume failed with code %d.\n",
306 retval);
307 }
308
309 return retval;
310 }
311
rmi_resume_functions(struct rmi_device * rmi_dev)312 static int rmi_resume_functions(struct rmi_device *rmi_dev)
313 {
314 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
315 struct rmi_function *entry;
316 int retval;
317
318 list_for_each_entry(entry, &data->function_list, node) {
319 retval = resume_one_function(entry);
320 if (retval < 0)
321 return retval;
322 }
323
324 return 0;
325 }
326
rmi_enable_sensor(struct rmi_device * rmi_dev)327 int rmi_enable_sensor(struct rmi_device *rmi_dev)
328 {
329 int retval = 0;
330
331 retval = rmi_driver_process_config_requests(rmi_dev);
332 if (retval < 0)
333 return retval;
334
335 return rmi_process_interrupt_requests(rmi_dev);
336 }
337
338 /**
339 * rmi_driver_set_input_params - set input device id and other data.
340 *
341 * @rmi_dev: Pointer to an RMI device
342 * @input: Pointer to input device
343 *
344 */
rmi_driver_set_input_params(struct rmi_device * rmi_dev,struct input_dev * input)345 static int rmi_driver_set_input_params(struct rmi_device *rmi_dev,
346 struct input_dev *input)
347 {
348 input->name = SYNAPTICS_INPUT_DEVICE_NAME;
349 input->id.vendor = SYNAPTICS_VENDOR_ID;
350 input->id.bustype = BUS_RMI;
351 return 0;
352 }
353
rmi_driver_set_input_name(struct rmi_device * rmi_dev,struct input_dev * input)354 static void rmi_driver_set_input_name(struct rmi_device *rmi_dev,
355 struct input_dev *input)
356 {
357 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
358 const char *device_name = rmi_f01_get_product_ID(data->f01_container);
359 char *name;
360
361 name = devm_kasprintf(&rmi_dev->dev, GFP_KERNEL,
362 "Synaptics %s", device_name);
363 if (!name)
364 return;
365
366 input->name = name;
367 }
368
rmi_driver_set_irq_bits(struct rmi_device * rmi_dev,unsigned long * mask)369 static int rmi_driver_set_irq_bits(struct rmi_device *rmi_dev,
370 unsigned long *mask)
371 {
372 int error = 0;
373 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
374 struct device *dev = &rmi_dev->dev;
375
376 mutex_lock(&data->irq_mutex);
377 bitmap_or(data->new_irq_mask,
378 data->current_irq_mask, mask, data->irq_count);
379
380 error = rmi_write_block(rmi_dev,
381 data->f01_container->fd.control_base_addr + 1,
382 data->new_irq_mask, data->num_of_irq_regs);
383 if (error < 0) {
384 dev_err(dev, "%s: Failed to change enabled interrupts!",
385 __func__);
386 goto error_unlock;
387 }
388 bitmap_copy(data->current_irq_mask, data->new_irq_mask,
389 data->num_of_irq_regs);
390
391 error_unlock:
392 mutex_unlock(&data->irq_mutex);
393 return error;
394 }
395
rmi_driver_clear_irq_bits(struct rmi_device * rmi_dev,unsigned long * mask)396 static int rmi_driver_clear_irq_bits(struct rmi_device *rmi_dev,
397 unsigned long *mask)
398 {
399 int error = 0;
400 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
401 struct device *dev = &rmi_dev->dev;
402
403 mutex_lock(&data->irq_mutex);
404 bitmap_andnot(data->new_irq_mask,
405 data->current_irq_mask, mask, data->irq_count);
406
407 error = rmi_write_block(rmi_dev,
408 data->f01_container->fd.control_base_addr + 1,
409 data->new_irq_mask, data->num_of_irq_regs);
410 if (error < 0) {
411 dev_err(dev, "%s: Failed to change enabled interrupts!",
412 __func__);
413 goto error_unlock;
414 }
415 bitmap_copy(data->current_irq_mask, data->new_irq_mask,
416 data->num_of_irq_regs);
417
418 error_unlock:
419 mutex_unlock(&data->irq_mutex);
420 return error;
421 }
422
rmi_driver_reset_handler(struct rmi_device * rmi_dev)423 static int rmi_driver_reset_handler(struct rmi_device *rmi_dev)
424 {
425 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
426 int error;
427
428 /*
429 * Can get called before the driver is fully ready to deal with
430 * this situation.
431 */
432 if (!data || !data->f01_container) {
433 dev_warn(&rmi_dev->dev,
434 "Not ready to handle reset yet!\n");
435 return 0;
436 }
437
438 error = rmi_read_block(rmi_dev,
439 data->f01_container->fd.control_base_addr + 1,
440 data->current_irq_mask, data->num_of_irq_regs);
441 if (error < 0) {
442 dev_err(&rmi_dev->dev, "%s: Failed to read current IRQ mask.\n",
443 __func__);
444 return error;
445 }
446
447 error = rmi_driver_process_reset_requests(rmi_dev);
448 if (error < 0)
449 return error;
450
451 error = rmi_driver_process_config_requests(rmi_dev);
452 if (error < 0)
453 return error;
454
455 return 0;
456 }
457
rmi_read_pdt_entry(struct rmi_device * rmi_dev,struct pdt_entry * entry,u16 pdt_address)458 static int rmi_read_pdt_entry(struct rmi_device *rmi_dev,
459 struct pdt_entry *entry, u16 pdt_address)
460 {
461 u8 buf[RMI_PDT_ENTRY_SIZE];
462 int error;
463
464 error = rmi_read_block(rmi_dev, pdt_address, buf, RMI_PDT_ENTRY_SIZE);
465 if (error) {
466 dev_err(&rmi_dev->dev, "Read PDT entry at %#06x failed, code: %d.\n",
467 pdt_address, error);
468 return error;
469 }
470
471 entry->page_start = pdt_address & RMI4_PAGE_MASK;
472 entry->query_base_addr = buf[0];
473 entry->command_base_addr = buf[1];
474 entry->control_base_addr = buf[2];
475 entry->data_base_addr = buf[3];
476 entry->interrupt_source_count = buf[4] & RMI_PDT_INT_SOURCE_COUNT_MASK;
477 entry->function_version = (buf[4] & RMI_PDT_FUNCTION_VERSION_MASK) >> 5;
478 entry->function_number = buf[5];
479
480 return 0;
481 }
482
rmi_driver_copy_pdt_to_fd(const struct pdt_entry * pdt,struct rmi_function_descriptor * fd)483 static void rmi_driver_copy_pdt_to_fd(const struct pdt_entry *pdt,
484 struct rmi_function_descriptor *fd)
485 {
486 fd->query_base_addr = pdt->query_base_addr + pdt->page_start;
487 fd->command_base_addr = pdt->command_base_addr + pdt->page_start;
488 fd->control_base_addr = pdt->control_base_addr + pdt->page_start;
489 fd->data_base_addr = pdt->data_base_addr + pdt->page_start;
490 fd->function_number = pdt->function_number;
491 fd->interrupt_source_count = pdt->interrupt_source_count;
492 fd->function_version = pdt->function_version;
493 }
494
495 #define RMI_SCAN_CONTINUE 0
496 #define RMI_SCAN_DONE 1
497
rmi_scan_pdt_page(struct rmi_device * rmi_dev,int page,int * empty_pages,void * ctx,int (* callback)(struct rmi_device * rmi_dev,void * ctx,const struct pdt_entry * entry))498 static int rmi_scan_pdt_page(struct rmi_device *rmi_dev,
499 int page,
500 int *empty_pages,
501 void *ctx,
502 int (*callback)(struct rmi_device *rmi_dev,
503 void *ctx,
504 const struct pdt_entry *entry))
505 {
506 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
507 struct pdt_entry pdt_entry;
508 u16 page_start = RMI4_PAGE_SIZE * page;
509 u16 pdt_start = page_start + PDT_START_SCAN_LOCATION;
510 u16 pdt_end = page_start + PDT_END_SCAN_LOCATION;
511 u16 addr;
512 int error;
513 int retval;
514
515 for (addr = pdt_start; addr >= pdt_end; addr -= RMI_PDT_ENTRY_SIZE) {
516 error = rmi_read_pdt_entry(rmi_dev, &pdt_entry, addr);
517 if (error)
518 return error;
519
520 if (RMI4_END_OF_PDT(pdt_entry.function_number))
521 break;
522
523 retval = callback(rmi_dev, ctx, &pdt_entry);
524 if (retval != RMI_SCAN_CONTINUE)
525 return retval;
526 }
527
528 /*
529 * Count number of empty PDT pages. If a gap of two pages
530 * or more is found, stop scanning.
531 */
532 if (addr == pdt_start)
533 ++*empty_pages;
534 else
535 *empty_pages = 0;
536
537 return (data->bootloader_mode || *empty_pages >= 2) ?
538 RMI_SCAN_DONE : RMI_SCAN_CONTINUE;
539 }
540
rmi_scan_pdt(struct rmi_device * rmi_dev,void * ctx,int (* callback)(struct rmi_device * rmi_dev,void * ctx,const struct pdt_entry * entry))541 int rmi_scan_pdt(struct rmi_device *rmi_dev, void *ctx,
542 int (*callback)(struct rmi_device *rmi_dev,
543 void *ctx, const struct pdt_entry *entry))
544 {
545 int page;
546 int empty_pages = 0;
547 int retval = RMI_SCAN_DONE;
548
549 for (page = 0; page <= RMI4_MAX_PAGE; page++) {
550 retval = rmi_scan_pdt_page(rmi_dev, page, &empty_pages,
551 ctx, callback);
552 if (retval != RMI_SCAN_CONTINUE)
553 break;
554 }
555
556 return retval < 0 ? retval : 0;
557 }
558
rmi_read_register_desc(struct rmi_device * d,u16 addr,struct rmi_register_descriptor * rdesc)559 int rmi_read_register_desc(struct rmi_device *d, u16 addr,
560 struct rmi_register_descriptor *rdesc)
561 {
562 int ret;
563 u8 size_presence_reg;
564 u8 buf[35];
565 int presense_offset = 1;
566 u8 *struct_buf;
567 int reg;
568 int offset = 0;
569 int map_offset = 0;
570 int i;
571 int b;
572
573 /*
574 * The first register of the register descriptor is the size of
575 * the register descriptor's presense register.
576 */
577 ret = rmi_read(d, addr, &size_presence_reg);
578 if (ret)
579 return ret;
580 ++addr;
581
582 if (size_presence_reg < 0 || size_presence_reg > 35)
583 return -EIO;
584
585 memset(buf, 0, sizeof(buf));
586
587 /*
588 * The presence register contains the size of the register structure
589 * and a bitmap which identified which packet registers are present
590 * for this particular register type (ie query, control, or data).
591 */
592 ret = rmi_read_block(d, addr, buf, size_presence_reg);
593 if (ret)
594 return ret;
595 ++addr;
596
597 if (buf[0] == 0) {
598 presense_offset = 3;
599 rdesc->struct_size = buf[1] | (buf[2] << 8);
600 } else {
601 rdesc->struct_size = buf[0];
602 }
603
604 for (i = presense_offset; i < size_presence_reg; i++) {
605 for (b = 0; b < 8; b++) {
606 if (buf[i] & (0x1 << b))
607 bitmap_set(rdesc->presense_map, map_offset, 1);
608 ++map_offset;
609 }
610 }
611
612 rdesc->num_registers = bitmap_weight(rdesc->presense_map,
613 RMI_REG_DESC_PRESENSE_BITS);
614
615 rdesc->registers = devm_kcalloc(&d->dev,
616 rdesc->num_registers,
617 sizeof(struct rmi_register_desc_item),
618 GFP_KERNEL);
619 if (!rdesc->registers)
620 return -ENOMEM;
621
622 /*
623 * Allocate a temporary buffer to hold the register structure.
624 * I'm not using devm_kzalloc here since it will not be retained
625 * after exiting this function
626 */
627 struct_buf = kzalloc(rdesc->struct_size, GFP_KERNEL);
628 if (!struct_buf)
629 return -ENOMEM;
630
631 /*
632 * The register structure contains information about every packet
633 * register of this type. This includes the size of the packet
634 * register and a bitmap of all subpackets contained in the packet
635 * register.
636 */
637 ret = rmi_read_block(d, addr, struct_buf, rdesc->struct_size);
638 if (ret)
639 goto free_struct_buff;
640
641 reg = find_first_bit(rdesc->presense_map, RMI_REG_DESC_PRESENSE_BITS);
642 for (i = 0; i < rdesc->num_registers; i++) {
643 struct rmi_register_desc_item *item = &rdesc->registers[i];
644 int reg_size = struct_buf[offset];
645
646 ++offset;
647 if (reg_size == 0) {
648 reg_size = struct_buf[offset] |
649 (struct_buf[offset + 1] << 8);
650 offset += 2;
651 }
652
653 if (reg_size == 0) {
654 reg_size = struct_buf[offset] |
655 (struct_buf[offset + 1] << 8) |
656 (struct_buf[offset + 2] << 16) |
657 (struct_buf[offset + 3] << 24);
658 offset += 4;
659 }
660
661 item->reg = reg;
662 item->reg_size = reg_size;
663
664 map_offset = 0;
665
666 do {
667 for (b = 0; b < 7; b++) {
668 if (struct_buf[offset] & (0x1 << b))
669 bitmap_set(item->subpacket_map,
670 map_offset, 1);
671 ++map_offset;
672 }
673 } while (struct_buf[offset++] & 0x80);
674
675 item->num_subpackets = bitmap_weight(item->subpacket_map,
676 RMI_REG_DESC_SUBPACKET_BITS);
677
678 rmi_dbg(RMI_DEBUG_CORE, &d->dev,
679 "%s: reg: %d reg size: %ld subpackets: %d\n", __func__,
680 item->reg, item->reg_size, item->num_subpackets);
681
682 reg = find_next_bit(rdesc->presense_map,
683 RMI_REG_DESC_PRESENSE_BITS, reg + 1);
684 }
685
686 free_struct_buff:
687 kfree(struct_buf);
688 return ret;
689 }
690
rmi_get_register_desc_item(struct rmi_register_descriptor * rdesc,u16 reg)691 const struct rmi_register_desc_item *rmi_get_register_desc_item(
692 struct rmi_register_descriptor *rdesc, u16 reg)
693 {
694 const struct rmi_register_desc_item *item;
695 int i;
696
697 for (i = 0; i < rdesc->num_registers; i++) {
698 item = &rdesc->registers[i];
699 if (item->reg == reg)
700 return item;
701 }
702
703 return NULL;
704 }
705
rmi_register_desc_calc_size(struct rmi_register_descriptor * rdesc)706 size_t rmi_register_desc_calc_size(struct rmi_register_descriptor *rdesc)
707 {
708 const struct rmi_register_desc_item *item;
709 int i;
710 size_t size = 0;
711
712 for (i = 0; i < rdesc->num_registers; i++) {
713 item = &rdesc->registers[i];
714 size += item->reg_size;
715 }
716 return size;
717 }
718
719 /* Compute the register offset relative to the base address */
rmi_register_desc_calc_reg_offset(struct rmi_register_descriptor * rdesc,u16 reg)720 int rmi_register_desc_calc_reg_offset(
721 struct rmi_register_descriptor *rdesc, u16 reg)
722 {
723 const struct rmi_register_desc_item *item;
724 int offset = 0;
725 int i;
726
727 for (i = 0; i < rdesc->num_registers; i++) {
728 item = &rdesc->registers[i];
729 if (item->reg == reg)
730 return offset;
731 ++offset;
732 }
733 return -1;
734 }
735
rmi_register_desc_has_subpacket(const struct rmi_register_desc_item * item,u8 subpacket)736 bool rmi_register_desc_has_subpacket(const struct rmi_register_desc_item *item,
737 u8 subpacket)
738 {
739 return find_next_bit(item->subpacket_map, RMI_REG_DESC_PRESENSE_BITS,
740 subpacket) == subpacket;
741 }
742
rmi_check_bootloader_mode(struct rmi_device * rmi_dev,const struct pdt_entry * pdt)743 static int rmi_check_bootloader_mode(struct rmi_device *rmi_dev,
744 const struct pdt_entry *pdt)
745 {
746 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
747 int ret;
748 u8 status;
749
750 if (pdt->function_number == 0x34 && pdt->function_version > 1) {
751 ret = rmi_read(rmi_dev, pdt->data_base_addr, &status);
752 if (ret) {
753 dev_err(&rmi_dev->dev,
754 "Failed to read F34 status: %d.\n", ret);
755 return ret;
756 }
757
758 if (status & BIT(7))
759 data->bootloader_mode = true;
760 } else if (pdt->function_number == 0x01) {
761 ret = rmi_read(rmi_dev, pdt->data_base_addr, &status);
762 if (ret) {
763 dev_err(&rmi_dev->dev,
764 "Failed to read F01 status: %d.\n", ret);
765 return ret;
766 }
767
768 if (status & BIT(6))
769 data->bootloader_mode = true;
770 }
771
772 return 0;
773 }
774
rmi_count_irqs(struct rmi_device * rmi_dev,void * ctx,const struct pdt_entry * pdt)775 static int rmi_count_irqs(struct rmi_device *rmi_dev,
776 void *ctx, const struct pdt_entry *pdt)
777 {
778 int *irq_count = ctx;
779 int ret;
780
781 *irq_count += pdt->interrupt_source_count;
782
783 ret = rmi_check_bootloader_mode(rmi_dev, pdt);
784 if (ret < 0)
785 return ret;
786
787 return RMI_SCAN_CONTINUE;
788 }
789
rmi_initial_reset(struct rmi_device * rmi_dev,void * ctx,const struct pdt_entry * pdt)790 int rmi_initial_reset(struct rmi_device *rmi_dev, void *ctx,
791 const struct pdt_entry *pdt)
792 {
793 int error;
794
795 if (pdt->function_number == 0x01) {
796 u16 cmd_addr = pdt->page_start + pdt->command_base_addr;
797 u8 cmd_buf = RMI_DEVICE_RESET_CMD;
798 const struct rmi_device_platform_data *pdata =
799 rmi_get_platform_data(rmi_dev);
800
801 if (rmi_dev->xport->ops->reset) {
802 error = rmi_dev->xport->ops->reset(rmi_dev->xport,
803 cmd_addr);
804 if (error)
805 return error;
806
807 return RMI_SCAN_DONE;
808 }
809
810 rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev, "Sending reset\n");
811 error = rmi_write_block(rmi_dev, cmd_addr, &cmd_buf, 1);
812 if (error) {
813 dev_err(&rmi_dev->dev,
814 "Initial reset failed. Code = %d.\n", error);
815 return error;
816 }
817
818 mdelay(pdata->reset_delay_ms ?: DEFAULT_RESET_DELAY_MS);
819
820 return RMI_SCAN_DONE;
821 }
822
823 /* F01 should always be on page 0. If we don't find it there, fail. */
824 return pdt->page_start == 0 ? RMI_SCAN_CONTINUE : -ENODEV;
825 }
826
rmi_create_function(struct rmi_device * rmi_dev,void * ctx,const struct pdt_entry * pdt)827 static int rmi_create_function(struct rmi_device *rmi_dev,
828 void *ctx, const struct pdt_entry *pdt)
829 {
830 struct device *dev = &rmi_dev->dev;
831 struct rmi_driver_data *data = dev_get_drvdata(dev);
832 int *current_irq_count = ctx;
833 struct rmi_function *fn;
834 int i;
835 int error;
836
837 rmi_dbg(RMI_DEBUG_CORE, dev, "Initializing F%02X.\n",
838 pdt->function_number);
839
840 fn = kzalloc(sizeof(struct rmi_function) +
841 BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long),
842 GFP_KERNEL);
843 if (!fn) {
844 dev_err(dev, "Failed to allocate memory for F%02X\n",
845 pdt->function_number);
846 return -ENOMEM;
847 }
848
849 INIT_LIST_HEAD(&fn->node);
850 rmi_driver_copy_pdt_to_fd(pdt, &fn->fd);
851
852 fn->rmi_dev = rmi_dev;
853
854 fn->num_of_irqs = pdt->interrupt_source_count;
855 fn->irq_pos = *current_irq_count;
856 *current_irq_count += fn->num_of_irqs;
857
858 for (i = 0; i < fn->num_of_irqs; i++)
859 set_bit(fn->irq_pos + i, fn->irq_mask);
860
861 error = rmi_register_function(fn);
862 if (error)
863 goto err_put_fn;
864
865 if (pdt->function_number == 0x01)
866 data->f01_container = fn;
867 else if (pdt->function_number == 0x34)
868 data->f34_container = fn;
869
870 list_add_tail(&fn->node, &data->function_list);
871
872 return RMI_SCAN_CONTINUE;
873
874 err_put_fn:
875 put_device(&fn->dev);
876 return error;
877 }
878
rmi_enable_irq(struct rmi_device * rmi_dev,bool clear_wake)879 void rmi_enable_irq(struct rmi_device *rmi_dev, bool clear_wake)
880 {
881 struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
882 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
883 int irq = pdata->irq;
884 int irq_flags;
885 int retval;
886
887 mutex_lock(&data->enabled_mutex);
888
889 if (data->enabled)
890 goto out;
891
892 enable_irq(irq);
893 data->enabled = true;
894 if (clear_wake && device_may_wakeup(rmi_dev->xport->dev)) {
895 retval = disable_irq_wake(irq);
896 if (retval)
897 dev_warn(&rmi_dev->dev,
898 "Failed to disable irq for wake: %d\n",
899 retval);
900 }
901
902 /*
903 * Call rmi_process_interrupt_requests() after enabling irq,
904 * otherwise we may lose interrupt on edge-triggered systems.
905 */
906 irq_flags = irq_get_trigger_type(pdata->irq);
907 if (irq_flags & IRQ_TYPE_EDGE_BOTH)
908 rmi_process_interrupt_requests(rmi_dev);
909
910 out:
911 mutex_unlock(&data->enabled_mutex);
912 }
913
rmi_disable_irq(struct rmi_device * rmi_dev,bool enable_wake)914 void rmi_disable_irq(struct rmi_device *rmi_dev, bool enable_wake)
915 {
916 struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
917 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
918 struct rmi4_attn_data attn_data = {0};
919 int irq = pdata->irq;
920 int retval, count;
921
922 mutex_lock(&data->enabled_mutex);
923
924 if (!data->enabled)
925 goto out;
926
927 data->enabled = false;
928 disable_irq(irq);
929 if (enable_wake && device_may_wakeup(rmi_dev->xport->dev)) {
930 retval = enable_irq_wake(irq);
931 if (retval)
932 dev_warn(&rmi_dev->dev,
933 "Failed to enable irq for wake: %d\n",
934 retval);
935 }
936
937 /* make sure the fifo is clean */
938 while (!kfifo_is_empty(&data->attn_fifo)) {
939 count = kfifo_get(&data->attn_fifo, &attn_data);
940 if (count)
941 kfree(attn_data.data);
942 }
943
944 out:
945 mutex_unlock(&data->enabled_mutex);
946 }
947
rmi_driver_suspend(struct rmi_device * rmi_dev,bool enable_wake)948 int rmi_driver_suspend(struct rmi_device *rmi_dev, bool enable_wake)
949 {
950 int retval;
951
952 retval = rmi_suspend_functions(rmi_dev);
953 if (retval)
954 dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n",
955 retval);
956
957 rmi_disable_irq(rmi_dev, enable_wake);
958 return retval;
959 }
960 EXPORT_SYMBOL_GPL(rmi_driver_suspend);
961
rmi_driver_resume(struct rmi_device * rmi_dev,bool clear_wake)962 int rmi_driver_resume(struct rmi_device *rmi_dev, bool clear_wake)
963 {
964 int retval;
965
966 rmi_enable_irq(rmi_dev, clear_wake);
967
968 retval = rmi_resume_functions(rmi_dev);
969 if (retval)
970 dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n",
971 retval);
972
973 return retval;
974 }
975 EXPORT_SYMBOL_GPL(rmi_driver_resume);
976
rmi_driver_remove(struct device * dev)977 static int rmi_driver_remove(struct device *dev)
978 {
979 struct rmi_device *rmi_dev = to_rmi_device(dev);
980 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
981
982 rmi_disable_irq(rmi_dev, false);
983
984 irq_domain_remove(data->irqdomain);
985 data->irqdomain = NULL;
986
987 rmi_f34_remove_sysfs(rmi_dev);
988 rmi_free_function_list(rmi_dev);
989
990 return 0;
991 }
992
993 #ifdef CONFIG_OF
rmi_driver_of_probe(struct device * dev,struct rmi_device_platform_data * pdata)994 static int rmi_driver_of_probe(struct device *dev,
995 struct rmi_device_platform_data *pdata)
996 {
997 int retval;
998
999 retval = rmi_of_property_read_u32(dev, &pdata->reset_delay_ms,
1000 "syna,reset-delay-ms", 1);
1001 if (retval)
1002 return retval;
1003
1004 return 0;
1005 }
1006 #else
rmi_driver_of_probe(struct device * dev,struct rmi_device_platform_data * pdata)1007 static inline int rmi_driver_of_probe(struct device *dev,
1008 struct rmi_device_platform_data *pdata)
1009 {
1010 return -ENODEV;
1011 }
1012 #endif
1013
rmi_probe_interrupts(struct rmi_driver_data * data)1014 int rmi_probe_interrupts(struct rmi_driver_data *data)
1015 {
1016 struct rmi_device *rmi_dev = data->rmi_dev;
1017 struct device *dev = &rmi_dev->dev;
1018 struct fwnode_handle *fwnode = rmi_dev->xport->dev->fwnode;
1019 int irq_count = 0;
1020 size_t size;
1021 int retval;
1022
1023 /*
1024 * We need to count the IRQs and allocate their storage before scanning
1025 * the PDT and creating the function entries, because adding a new
1026 * function can trigger events that result in the IRQ related storage
1027 * being accessed.
1028 */
1029 rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Counting IRQs.\n", __func__);
1030 data->bootloader_mode = false;
1031
1032 retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_count_irqs);
1033 if (retval < 0) {
1034 dev_err(dev, "IRQ counting failed with code %d.\n", retval);
1035 return retval;
1036 }
1037
1038 if (data->bootloader_mode)
1039 dev_warn(dev, "Device in bootloader mode.\n");
1040
1041 /* Allocate and register a linear revmap irq_domain */
1042 data->irqdomain = irq_domain_create_linear(fwnode, irq_count,
1043 &irq_domain_simple_ops,
1044 data);
1045 if (!data->irqdomain) {
1046 dev_err(&rmi_dev->dev, "Failed to create IRQ domain\n");
1047 return -ENOMEM;
1048 }
1049
1050 data->irq_count = irq_count;
1051 data->num_of_irq_regs = (data->irq_count + 7) / 8;
1052
1053 size = BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long);
1054 data->irq_memory = devm_kcalloc(dev, size, 4, GFP_KERNEL);
1055 if (!data->irq_memory) {
1056 dev_err(dev, "Failed to allocate memory for irq masks.\n");
1057 return -ENOMEM;
1058 }
1059
1060 data->irq_status = data->irq_memory + size * 0;
1061 data->fn_irq_bits = data->irq_memory + size * 1;
1062 data->current_irq_mask = data->irq_memory + size * 2;
1063 data->new_irq_mask = data->irq_memory + size * 3;
1064
1065 return retval;
1066 }
1067
rmi_init_functions(struct rmi_driver_data * data)1068 int rmi_init_functions(struct rmi_driver_data *data)
1069 {
1070 struct rmi_device *rmi_dev = data->rmi_dev;
1071 struct device *dev = &rmi_dev->dev;
1072 int irq_count = 0;
1073 int retval;
1074
1075 rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Creating functions.\n", __func__);
1076 retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_create_function);
1077 if (retval < 0) {
1078 dev_err(dev, "Function creation failed with code %d.\n",
1079 retval);
1080 goto err_destroy_functions;
1081 }
1082
1083 if (!data->f01_container) {
1084 dev_err(dev, "Missing F01 container!\n");
1085 retval = -EINVAL;
1086 goto err_destroy_functions;
1087 }
1088
1089 retval = rmi_read_block(rmi_dev,
1090 data->f01_container->fd.control_base_addr + 1,
1091 data->current_irq_mask, data->num_of_irq_regs);
1092 if (retval < 0) {
1093 dev_err(dev, "%s: Failed to read current IRQ mask.\n",
1094 __func__);
1095 goto err_destroy_functions;
1096 }
1097
1098 return 0;
1099
1100 err_destroy_functions:
1101 rmi_free_function_list(rmi_dev);
1102 return retval;
1103 }
1104
rmi_driver_probe(struct device * dev)1105 static int rmi_driver_probe(struct device *dev)
1106 {
1107 struct rmi_driver *rmi_driver;
1108 struct rmi_driver_data *data;
1109 struct rmi_device_platform_data *pdata;
1110 struct rmi_device *rmi_dev;
1111 int retval;
1112
1113 rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Starting probe.\n",
1114 __func__);
1115
1116 if (!rmi_is_physical_device(dev)) {
1117 rmi_dbg(RMI_DEBUG_CORE, dev, "Not a physical device.\n");
1118 return -ENODEV;
1119 }
1120
1121 rmi_dev = to_rmi_device(dev);
1122 rmi_driver = to_rmi_driver(dev->driver);
1123 rmi_dev->driver = rmi_driver;
1124
1125 pdata = rmi_get_platform_data(rmi_dev);
1126
1127 if (rmi_dev->xport->dev->of_node) {
1128 retval = rmi_driver_of_probe(rmi_dev->xport->dev, pdata);
1129 if (retval)
1130 return retval;
1131 }
1132
1133 data = devm_kzalloc(dev, sizeof(struct rmi_driver_data), GFP_KERNEL);
1134 if (!data)
1135 return -ENOMEM;
1136
1137 INIT_LIST_HEAD(&data->function_list);
1138 data->rmi_dev = rmi_dev;
1139 dev_set_drvdata(&rmi_dev->dev, data);
1140
1141 /*
1142 * Right before a warm boot, the sensor might be in some unusual state,
1143 * such as F54 diagnostics, or F34 bootloader mode after a firmware
1144 * or configuration update. In order to clear the sensor to a known
1145 * state and/or apply any updates, we issue a initial reset to clear any
1146 * previous settings and force it into normal operation.
1147 *
1148 * We have to do this before actually building the PDT because
1149 * the reflash updates (if any) might cause various registers to move
1150 * around.
1151 *
1152 * For a number of reasons, this initial reset may fail to return
1153 * within the specified time, but we'll still be able to bring up the
1154 * driver normally after that failure. This occurs most commonly in
1155 * a cold boot situation (where then firmware takes longer to come up
1156 * than from a warm boot) and the reset_delay_ms in the platform data
1157 * has been set too short to accommodate that. Since the sensor will
1158 * eventually come up and be usable, we don't want to just fail here
1159 * and leave the customer's device unusable. So we warn them, and
1160 * continue processing.
1161 */
1162 retval = rmi_scan_pdt(rmi_dev, NULL, rmi_initial_reset);
1163 if (retval < 0)
1164 dev_warn(dev, "RMI initial reset failed! Continuing in spite of this.\n");
1165
1166 retval = rmi_read(rmi_dev, PDT_PROPERTIES_LOCATION, &data->pdt_props);
1167 if (retval < 0) {
1168 /*
1169 * we'll print out a warning and continue since
1170 * failure to get the PDT properties is not a cause to fail
1171 */
1172 dev_warn(dev, "Could not read PDT properties from %#06x (code %d). Assuming 0x00.\n",
1173 PDT_PROPERTIES_LOCATION, retval);
1174 }
1175
1176 mutex_init(&data->irq_mutex);
1177 mutex_init(&data->enabled_mutex);
1178
1179 retval = rmi_probe_interrupts(data);
1180 if (retval)
1181 goto err;
1182
1183 if (rmi_dev->xport->input) {
1184 /*
1185 * The transport driver already has an input device.
1186 * In some cases it is preferable to reuse the transport
1187 * devices input device instead of creating a new one here.
1188 * One example is some HID touchpads report "pass-through"
1189 * button events are not reported by rmi registers.
1190 */
1191 data->input = rmi_dev->xport->input;
1192 } else {
1193 data->input = devm_input_allocate_device(dev);
1194 if (!data->input) {
1195 dev_err(dev, "%s: Failed to allocate input device.\n",
1196 __func__);
1197 retval = -ENOMEM;
1198 goto err;
1199 }
1200 rmi_driver_set_input_params(rmi_dev, data->input);
1201 data->input->phys = devm_kasprintf(dev, GFP_KERNEL,
1202 "%s/input0", dev_name(dev));
1203 }
1204
1205 retval = rmi_init_functions(data);
1206 if (retval)
1207 goto err;
1208
1209 retval = rmi_f34_create_sysfs(rmi_dev);
1210 if (retval)
1211 goto err;
1212
1213 if (data->input) {
1214 rmi_driver_set_input_name(rmi_dev, data->input);
1215 if (!rmi_dev->xport->input) {
1216 if (input_register_device(data->input)) {
1217 dev_err(dev, "%s: Failed to register input device.\n",
1218 __func__);
1219 goto err_destroy_functions;
1220 }
1221 }
1222 }
1223
1224 retval = rmi_irq_init(rmi_dev);
1225 if (retval < 0)
1226 goto err_destroy_functions;
1227
1228 if (data->f01_container->dev.driver) {
1229 /* Driver already bound, so enable ATTN now. */
1230 retval = rmi_enable_sensor(rmi_dev);
1231 if (retval)
1232 goto err_disable_irq;
1233 }
1234
1235 return 0;
1236
1237 err_disable_irq:
1238 rmi_disable_irq(rmi_dev, false);
1239 err_destroy_functions:
1240 rmi_free_function_list(rmi_dev);
1241 err:
1242 return retval;
1243 }
1244
1245 static struct rmi_driver rmi_physical_driver = {
1246 .driver = {
1247 .owner = THIS_MODULE,
1248 .name = "rmi4_physical",
1249 .bus = &rmi_bus_type,
1250 .probe = rmi_driver_probe,
1251 .remove = rmi_driver_remove,
1252 },
1253 .reset_handler = rmi_driver_reset_handler,
1254 .clear_irq_bits = rmi_driver_clear_irq_bits,
1255 .set_irq_bits = rmi_driver_set_irq_bits,
1256 .set_input_params = rmi_driver_set_input_params,
1257 };
1258
rmi_is_physical_driver(struct device_driver * drv)1259 bool rmi_is_physical_driver(struct device_driver *drv)
1260 {
1261 return drv == &rmi_physical_driver.driver;
1262 }
1263
rmi_register_physical_driver(void)1264 int __init rmi_register_physical_driver(void)
1265 {
1266 int error;
1267
1268 error = driver_register(&rmi_physical_driver.driver);
1269 if (error) {
1270 pr_err("%s: driver register failed, code=%d.\n", __func__,
1271 error);
1272 return error;
1273 }
1274
1275 return 0;
1276 }
1277
rmi_unregister_physical_driver(void)1278 void __exit rmi_unregister_physical_driver(void)
1279 {
1280 driver_unregister(&rmi_physical_driver.driver);
1281 }
1282