1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Generic ring buffer
4 *
5 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6 */
7 #include <linux/trace_events.h>
8 #include <linux/ring_buffer.h>
9 #include <linux/trace_clock.h>
10 #include <linux/sched/clock.h>
11 #include <linux/trace_seq.h>
12 #include <linux/spinlock.h>
13 #include <linux/irq_work.h>
14 #include <linux/uaccess.h>
15 #include <linux/hardirq.h>
16 #include <linux/kthread.h> /* for self test */
17 #include <linux/module.h>
18 #include <linux/percpu.h>
19 #include <linux/mutex.h>
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/hash.h>
24 #include <linux/list.h>
25 #include <linux/cpu.h>
26 #include <linux/oom.h>
27
28 #include <asm/local.h>
29
30 static void update_pages_handler(struct work_struct *work);
31
32 /*
33 * The ring buffer header is special. We must manually up keep it.
34 */
ring_buffer_print_entry_header(struct trace_seq * s)35 int ring_buffer_print_entry_header(struct trace_seq *s)
36 {
37 trace_seq_puts(s, "# compressed entry header\n");
38 trace_seq_puts(s, "\ttype_len : 5 bits\n");
39 trace_seq_puts(s, "\ttime_delta : 27 bits\n");
40 trace_seq_puts(s, "\tarray : 32 bits\n");
41 trace_seq_putc(s, '\n');
42 trace_seq_printf(s, "\tpadding : type == %d\n",
43 RINGBUF_TYPE_PADDING);
44 trace_seq_printf(s, "\ttime_extend : type == %d\n",
45 RINGBUF_TYPE_TIME_EXTEND);
46 trace_seq_printf(s, "\ttime_stamp : type == %d\n",
47 RINGBUF_TYPE_TIME_STAMP);
48 trace_seq_printf(s, "\tdata max type_len == %d\n",
49 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
50
51 return !trace_seq_has_overflowed(s);
52 }
53
54 /*
55 * The ring buffer is made up of a list of pages. A separate list of pages is
56 * allocated for each CPU. A writer may only write to a buffer that is
57 * associated with the CPU it is currently executing on. A reader may read
58 * from any per cpu buffer.
59 *
60 * The reader is special. For each per cpu buffer, the reader has its own
61 * reader page. When a reader has read the entire reader page, this reader
62 * page is swapped with another page in the ring buffer.
63 *
64 * Now, as long as the writer is off the reader page, the reader can do what
65 * ever it wants with that page. The writer will never write to that page
66 * again (as long as it is out of the ring buffer).
67 *
68 * Here's some silly ASCII art.
69 *
70 * +------+
71 * |reader| RING BUFFER
72 * |page |
73 * +------+ +---+ +---+ +---+
74 * | |-->| |-->| |
75 * +---+ +---+ +---+
76 * ^ |
77 * | |
78 * +---------------+
79 *
80 *
81 * +------+
82 * |reader| RING BUFFER
83 * |page |------------------v
84 * +------+ +---+ +---+ +---+
85 * | |-->| |-->| |
86 * +---+ +---+ +---+
87 * ^ |
88 * | |
89 * +---------------+
90 *
91 *
92 * +------+
93 * |reader| RING BUFFER
94 * |page |------------------v
95 * +------+ +---+ +---+ +---+
96 * ^ | |-->| |-->| |
97 * | +---+ +---+ +---+
98 * | |
99 * | |
100 * +------------------------------+
101 *
102 *
103 * +------+
104 * |buffer| RING BUFFER
105 * |page |------------------v
106 * +------+ +---+ +---+ +---+
107 * ^ | | | |-->| |
108 * | New +---+ +---+ +---+
109 * | Reader------^ |
110 * | page |
111 * +------------------------------+
112 *
113 *
114 * After we make this swap, the reader can hand this page off to the splice
115 * code and be done with it. It can even allocate a new page if it needs to
116 * and swap that into the ring buffer.
117 *
118 * We will be using cmpxchg soon to make all this lockless.
119 *
120 */
121
122 /* Used for individual buffers (after the counter) */
123 #define RB_BUFFER_OFF (1 << 20)
124
125 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
126
127 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
128 #define RB_ALIGNMENT 4U
129 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
130 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
131
132 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
133 # define RB_FORCE_8BYTE_ALIGNMENT 0
134 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT
135 #else
136 # define RB_FORCE_8BYTE_ALIGNMENT 1
137 # define RB_ARCH_ALIGNMENT 8U
138 #endif
139
140 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
141
142 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
143 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
144
145 enum {
146 RB_LEN_TIME_EXTEND = 8,
147 RB_LEN_TIME_STAMP = 8,
148 };
149
150 #define skip_time_extend(event) \
151 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
152
153 #define extended_time(event) \
154 (event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
155
rb_null_event(struct ring_buffer_event * event)156 static inline int rb_null_event(struct ring_buffer_event *event)
157 {
158 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
159 }
160
rb_event_set_padding(struct ring_buffer_event * event)161 static void rb_event_set_padding(struct ring_buffer_event *event)
162 {
163 /* padding has a NULL time_delta */
164 event->type_len = RINGBUF_TYPE_PADDING;
165 event->time_delta = 0;
166 }
167
168 static unsigned
rb_event_data_length(struct ring_buffer_event * event)169 rb_event_data_length(struct ring_buffer_event *event)
170 {
171 unsigned length;
172
173 if (event->type_len)
174 length = event->type_len * RB_ALIGNMENT;
175 else
176 length = event->array[0];
177 return length + RB_EVNT_HDR_SIZE;
178 }
179
180 /*
181 * Return the length of the given event. Will return
182 * the length of the time extend if the event is a
183 * time extend.
184 */
185 static inline unsigned
rb_event_length(struct ring_buffer_event * event)186 rb_event_length(struct ring_buffer_event *event)
187 {
188 switch (event->type_len) {
189 case RINGBUF_TYPE_PADDING:
190 if (rb_null_event(event))
191 /* undefined */
192 return -1;
193 return event->array[0] + RB_EVNT_HDR_SIZE;
194
195 case RINGBUF_TYPE_TIME_EXTEND:
196 return RB_LEN_TIME_EXTEND;
197
198 case RINGBUF_TYPE_TIME_STAMP:
199 return RB_LEN_TIME_STAMP;
200
201 case RINGBUF_TYPE_DATA:
202 return rb_event_data_length(event);
203 default:
204 BUG();
205 }
206 /* not hit */
207 return 0;
208 }
209
210 /*
211 * Return total length of time extend and data,
212 * or just the event length for all other events.
213 */
214 static inline unsigned
rb_event_ts_length(struct ring_buffer_event * event)215 rb_event_ts_length(struct ring_buffer_event *event)
216 {
217 unsigned len = 0;
218
219 if (extended_time(event)) {
220 /* time extends include the data event after it */
221 len = RB_LEN_TIME_EXTEND;
222 event = skip_time_extend(event);
223 }
224 return len + rb_event_length(event);
225 }
226
227 /**
228 * ring_buffer_event_length - return the length of the event
229 * @event: the event to get the length of
230 *
231 * Returns the size of the data load of a data event.
232 * If the event is something other than a data event, it
233 * returns the size of the event itself. With the exception
234 * of a TIME EXTEND, where it still returns the size of the
235 * data load of the data event after it.
236 */
ring_buffer_event_length(struct ring_buffer_event * event)237 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
238 {
239 unsigned length;
240
241 if (extended_time(event))
242 event = skip_time_extend(event);
243
244 length = rb_event_length(event);
245 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
246 return length;
247 length -= RB_EVNT_HDR_SIZE;
248 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
249 length -= sizeof(event->array[0]);
250 return length;
251 }
252 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
253
254 /* inline for ring buffer fast paths */
255 static __always_inline void *
rb_event_data(struct ring_buffer_event * event)256 rb_event_data(struct ring_buffer_event *event)
257 {
258 if (extended_time(event))
259 event = skip_time_extend(event);
260 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
261 /* If length is in len field, then array[0] has the data */
262 if (event->type_len)
263 return (void *)&event->array[0];
264 /* Otherwise length is in array[0] and array[1] has the data */
265 return (void *)&event->array[1];
266 }
267
268 /**
269 * ring_buffer_event_data - return the data of the event
270 * @event: the event to get the data from
271 */
ring_buffer_event_data(struct ring_buffer_event * event)272 void *ring_buffer_event_data(struct ring_buffer_event *event)
273 {
274 return rb_event_data(event);
275 }
276 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
277
278 #define for_each_buffer_cpu(buffer, cpu) \
279 for_each_cpu(cpu, buffer->cpumask)
280
281 #define TS_SHIFT 27
282 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
283 #define TS_DELTA_TEST (~TS_MASK)
284
285 /**
286 * ring_buffer_event_time_stamp - return the event's extended timestamp
287 * @event: the event to get the timestamp of
288 *
289 * Returns the extended timestamp associated with a data event.
290 * An extended time_stamp is a 64-bit timestamp represented
291 * internally in a special way that makes the best use of space
292 * contained within a ring buffer event. This function decodes
293 * it and maps it to a straight u64 value.
294 */
ring_buffer_event_time_stamp(struct ring_buffer_event * event)295 u64 ring_buffer_event_time_stamp(struct ring_buffer_event *event)
296 {
297 u64 ts;
298
299 ts = event->array[0];
300 ts <<= TS_SHIFT;
301 ts += event->time_delta;
302
303 return ts;
304 }
305
306 /* Flag when events were overwritten */
307 #define RB_MISSED_EVENTS (1 << 31)
308 /* Missed count stored at end */
309 #define RB_MISSED_STORED (1 << 30)
310
311 #define RB_MISSED_FLAGS (RB_MISSED_EVENTS|RB_MISSED_STORED)
312
313 struct buffer_data_page {
314 u64 time_stamp; /* page time stamp */
315 local_t commit; /* write committed index */
316 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
317 };
318
319 /*
320 * Note, the buffer_page list must be first. The buffer pages
321 * are allocated in cache lines, which means that each buffer
322 * page will be at the beginning of a cache line, and thus
323 * the least significant bits will be zero. We use this to
324 * add flags in the list struct pointers, to make the ring buffer
325 * lockless.
326 */
327 struct buffer_page {
328 struct list_head list; /* list of buffer pages */
329 local_t write; /* index for next write */
330 unsigned read; /* index for next read */
331 local_t entries; /* entries on this page */
332 unsigned long real_end; /* real end of data */
333 struct buffer_data_page *page; /* Actual data page */
334 };
335
336 /*
337 * The buffer page counters, write and entries, must be reset
338 * atomically when crossing page boundaries. To synchronize this
339 * update, two counters are inserted into the number. One is
340 * the actual counter for the write position or count on the page.
341 *
342 * The other is a counter of updaters. Before an update happens
343 * the update partition of the counter is incremented. This will
344 * allow the updater to update the counter atomically.
345 *
346 * The counter is 20 bits, and the state data is 12.
347 */
348 #define RB_WRITE_MASK 0xfffff
349 #define RB_WRITE_INTCNT (1 << 20)
350
rb_init_page(struct buffer_data_page * bpage)351 static void rb_init_page(struct buffer_data_page *bpage)
352 {
353 local_set(&bpage->commit, 0);
354 }
355
356 /**
357 * ring_buffer_page_len - the size of data on the page.
358 * @page: The page to read
359 *
360 * Returns the amount of data on the page, including buffer page header.
361 */
ring_buffer_page_len(void * page)362 size_t ring_buffer_page_len(void *page)
363 {
364 struct buffer_data_page *bpage = page;
365
366 return (local_read(&bpage->commit) & ~RB_MISSED_FLAGS)
367 + BUF_PAGE_HDR_SIZE;
368 }
369
370 /*
371 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
372 * this issue out.
373 */
free_buffer_page(struct buffer_page * bpage)374 static void free_buffer_page(struct buffer_page *bpage)
375 {
376 free_page((unsigned long)bpage->page);
377 kfree(bpage);
378 }
379
380 /*
381 * We need to fit the time_stamp delta into 27 bits.
382 */
test_time_stamp(u64 delta)383 static inline int test_time_stamp(u64 delta)
384 {
385 if (delta & TS_DELTA_TEST)
386 return 1;
387 return 0;
388 }
389
390 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
391
392 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
393 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
394
ring_buffer_print_page_header(struct trace_seq * s)395 int ring_buffer_print_page_header(struct trace_seq *s)
396 {
397 struct buffer_data_page field;
398
399 trace_seq_printf(s, "\tfield: u64 timestamp;\t"
400 "offset:0;\tsize:%u;\tsigned:%u;\n",
401 (unsigned int)sizeof(field.time_stamp),
402 (unsigned int)is_signed_type(u64));
403
404 trace_seq_printf(s, "\tfield: local_t commit;\t"
405 "offset:%u;\tsize:%u;\tsigned:%u;\n",
406 (unsigned int)offsetof(typeof(field), commit),
407 (unsigned int)sizeof(field.commit),
408 (unsigned int)is_signed_type(long));
409
410 trace_seq_printf(s, "\tfield: int overwrite;\t"
411 "offset:%u;\tsize:%u;\tsigned:%u;\n",
412 (unsigned int)offsetof(typeof(field), commit),
413 1,
414 (unsigned int)is_signed_type(long));
415
416 trace_seq_printf(s, "\tfield: char data;\t"
417 "offset:%u;\tsize:%u;\tsigned:%u;\n",
418 (unsigned int)offsetof(typeof(field), data),
419 (unsigned int)BUF_PAGE_SIZE,
420 (unsigned int)is_signed_type(char));
421
422 return !trace_seq_has_overflowed(s);
423 }
424
425 struct rb_irq_work {
426 struct irq_work work;
427 wait_queue_head_t waiters;
428 wait_queue_head_t full_waiters;
429 bool waiters_pending;
430 bool full_waiters_pending;
431 bool wakeup_full;
432 };
433
434 /*
435 * Structure to hold event state and handle nested events.
436 */
437 struct rb_event_info {
438 u64 ts;
439 u64 delta;
440 unsigned long length;
441 struct buffer_page *tail_page;
442 int add_timestamp;
443 };
444
445 /*
446 * Used for which event context the event is in.
447 * NMI = 0
448 * IRQ = 1
449 * SOFTIRQ = 2
450 * NORMAL = 3
451 *
452 * See trace_recursive_lock() comment below for more details.
453 */
454 enum {
455 RB_CTX_NMI,
456 RB_CTX_IRQ,
457 RB_CTX_SOFTIRQ,
458 RB_CTX_NORMAL,
459 RB_CTX_MAX
460 };
461
462 /*
463 * head_page == tail_page && head == tail then buffer is empty.
464 */
465 struct ring_buffer_per_cpu {
466 int cpu;
467 atomic_t record_disabled;
468 struct ring_buffer *buffer;
469 raw_spinlock_t reader_lock; /* serialize readers */
470 arch_spinlock_t lock;
471 struct lock_class_key lock_key;
472 struct buffer_data_page *free_page;
473 unsigned long nr_pages;
474 unsigned int current_context;
475 struct list_head *pages;
476 struct buffer_page *head_page; /* read from head */
477 struct buffer_page *tail_page; /* write to tail */
478 struct buffer_page *commit_page; /* committed pages */
479 struct buffer_page *reader_page;
480 unsigned long lost_events;
481 unsigned long last_overrun;
482 unsigned long nest;
483 local_t entries_bytes;
484 local_t entries;
485 local_t overrun;
486 local_t commit_overrun;
487 local_t dropped_events;
488 local_t committing;
489 local_t commits;
490 unsigned long read;
491 unsigned long read_bytes;
492 u64 write_stamp;
493 u64 read_stamp;
494 /* ring buffer pages to update, > 0 to add, < 0 to remove */
495 long nr_pages_to_update;
496 struct list_head new_pages; /* new pages to add */
497 struct work_struct update_pages_work;
498 struct completion update_done;
499
500 struct rb_irq_work irq_work;
501 };
502
503 struct ring_buffer {
504 unsigned flags;
505 int cpus;
506 atomic_t record_disabled;
507 atomic_t resize_disabled;
508 cpumask_var_t cpumask;
509
510 struct lock_class_key *reader_lock_key;
511
512 struct mutex mutex;
513
514 struct ring_buffer_per_cpu **buffers;
515
516 struct hlist_node node;
517 u64 (*clock)(void);
518
519 struct rb_irq_work irq_work;
520 bool time_stamp_abs;
521 };
522
523 struct ring_buffer_iter {
524 struct ring_buffer_per_cpu *cpu_buffer;
525 unsigned long head;
526 struct buffer_page *head_page;
527 struct buffer_page *cache_reader_page;
528 unsigned long cache_read;
529 u64 read_stamp;
530 };
531
532 /*
533 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
534 *
535 * Schedules a delayed work to wake up any task that is blocked on the
536 * ring buffer waiters queue.
537 */
rb_wake_up_waiters(struct irq_work * work)538 static void rb_wake_up_waiters(struct irq_work *work)
539 {
540 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
541
542 wake_up_all(&rbwork->waiters);
543 if (rbwork->wakeup_full) {
544 rbwork->wakeup_full = false;
545 wake_up_all(&rbwork->full_waiters);
546 }
547 }
548
549 /**
550 * ring_buffer_wait - wait for input to the ring buffer
551 * @buffer: buffer to wait on
552 * @cpu: the cpu buffer to wait on
553 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
554 *
555 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
556 * as data is added to any of the @buffer's cpu buffers. Otherwise
557 * it will wait for data to be added to a specific cpu buffer.
558 */
ring_buffer_wait(struct ring_buffer * buffer,int cpu,bool full)559 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
560 {
561 struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
562 DEFINE_WAIT(wait);
563 struct rb_irq_work *work;
564 int ret = 0;
565
566 /*
567 * Depending on what the caller is waiting for, either any
568 * data in any cpu buffer, or a specific buffer, put the
569 * caller on the appropriate wait queue.
570 */
571 if (cpu == RING_BUFFER_ALL_CPUS) {
572 work = &buffer->irq_work;
573 /* Full only makes sense on per cpu reads */
574 full = false;
575 } else {
576 if (!cpumask_test_cpu(cpu, buffer->cpumask))
577 return -ENODEV;
578 cpu_buffer = buffer->buffers[cpu];
579 work = &cpu_buffer->irq_work;
580 }
581
582
583 while (true) {
584 if (full)
585 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
586 else
587 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
588
589 /*
590 * The events can happen in critical sections where
591 * checking a work queue can cause deadlocks.
592 * After adding a task to the queue, this flag is set
593 * only to notify events to try to wake up the queue
594 * using irq_work.
595 *
596 * We don't clear it even if the buffer is no longer
597 * empty. The flag only causes the next event to run
598 * irq_work to do the work queue wake up. The worse
599 * that can happen if we race with !trace_empty() is that
600 * an event will cause an irq_work to try to wake up
601 * an empty queue.
602 *
603 * There's no reason to protect this flag either, as
604 * the work queue and irq_work logic will do the necessary
605 * synchronization for the wake ups. The only thing
606 * that is necessary is that the wake up happens after
607 * a task has been queued. It's OK for spurious wake ups.
608 */
609 if (full)
610 work->full_waiters_pending = true;
611 else
612 work->waiters_pending = true;
613
614 if (signal_pending(current)) {
615 ret = -EINTR;
616 break;
617 }
618
619 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
620 break;
621
622 if (cpu != RING_BUFFER_ALL_CPUS &&
623 !ring_buffer_empty_cpu(buffer, cpu)) {
624 unsigned long flags;
625 bool pagebusy;
626
627 if (!full)
628 break;
629
630 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
631 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
632 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
633
634 if (!pagebusy)
635 break;
636 }
637
638 schedule();
639 }
640
641 if (full)
642 finish_wait(&work->full_waiters, &wait);
643 else
644 finish_wait(&work->waiters, &wait);
645
646 return ret;
647 }
648
649 /**
650 * ring_buffer_poll_wait - poll on buffer input
651 * @buffer: buffer to wait on
652 * @cpu: the cpu buffer to wait on
653 * @filp: the file descriptor
654 * @poll_table: The poll descriptor
655 *
656 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
657 * as data is added to any of the @buffer's cpu buffers. Otherwise
658 * it will wait for data to be added to a specific cpu buffer.
659 *
660 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
661 * zero otherwise.
662 */
ring_buffer_poll_wait(struct ring_buffer * buffer,int cpu,struct file * filp,poll_table * poll_table)663 __poll_t ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
664 struct file *filp, poll_table *poll_table)
665 {
666 struct ring_buffer_per_cpu *cpu_buffer;
667 struct rb_irq_work *work;
668
669 if (cpu == RING_BUFFER_ALL_CPUS)
670 work = &buffer->irq_work;
671 else {
672 if (!cpumask_test_cpu(cpu, buffer->cpumask))
673 return -EINVAL;
674
675 cpu_buffer = buffer->buffers[cpu];
676 work = &cpu_buffer->irq_work;
677 }
678
679 poll_wait(filp, &work->waiters, poll_table);
680 work->waiters_pending = true;
681 /*
682 * There's a tight race between setting the waiters_pending and
683 * checking if the ring buffer is empty. Once the waiters_pending bit
684 * is set, the next event will wake the task up, but we can get stuck
685 * if there's only a single event in.
686 *
687 * FIXME: Ideally, we need a memory barrier on the writer side as well,
688 * but adding a memory barrier to all events will cause too much of a
689 * performance hit in the fast path. We only need a memory barrier when
690 * the buffer goes from empty to having content. But as this race is
691 * extremely small, and it's not a problem if another event comes in, we
692 * will fix it later.
693 */
694 smp_mb();
695
696 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
697 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
698 return EPOLLIN | EPOLLRDNORM;
699 return 0;
700 }
701
702 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
703 #define RB_WARN_ON(b, cond) \
704 ({ \
705 int _____ret = unlikely(cond); \
706 if (_____ret) { \
707 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
708 struct ring_buffer_per_cpu *__b = \
709 (void *)b; \
710 atomic_inc(&__b->buffer->record_disabled); \
711 } else \
712 atomic_inc(&b->record_disabled); \
713 WARN_ON(1); \
714 } \
715 _____ret; \
716 })
717
718 /* Up this if you want to test the TIME_EXTENTS and normalization */
719 #define DEBUG_SHIFT 0
720
rb_time_stamp(struct ring_buffer * buffer)721 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
722 {
723 /* shift to debug/test normalization and TIME_EXTENTS */
724 return buffer->clock() << DEBUG_SHIFT;
725 }
726
ring_buffer_time_stamp(struct ring_buffer * buffer,int cpu)727 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
728 {
729 u64 time;
730
731 preempt_disable_notrace();
732 time = rb_time_stamp(buffer);
733 preempt_enable_no_resched_notrace();
734
735 return time;
736 }
737 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
738
ring_buffer_normalize_time_stamp(struct ring_buffer * buffer,int cpu,u64 * ts)739 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
740 int cpu, u64 *ts)
741 {
742 /* Just stupid testing the normalize function and deltas */
743 *ts >>= DEBUG_SHIFT;
744 }
745 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
746
747 /*
748 * Making the ring buffer lockless makes things tricky.
749 * Although writes only happen on the CPU that they are on,
750 * and they only need to worry about interrupts. Reads can
751 * happen on any CPU.
752 *
753 * The reader page is always off the ring buffer, but when the
754 * reader finishes with a page, it needs to swap its page with
755 * a new one from the buffer. The reader needs to take from
756 * the head (writes go to the tail). But if a writer is in overwrite
757 * mode and wraps, it must push the head page forward.
758 *
759 * Here lies the problem.
760 *
761 * The reader must be careful to replace only the head page, and
762 * not another one. As described at the top of the file in the
763 * ASCII art, the reader sets its old page to point to the next
764 * page after head. It then sets the page after head to point to
765 * the old reader page. But if the writer moves the head page
766 * during this operation, the reader could end up with the tail.
767 *
768 * We use cmpxchg to help prevent this race. We also do something
769 * special with the page before head. We set the LSB to 1.
770 *
771 * When the writer must push the page forward, it will clear the
772 * bit that points to the head page, move the head, and then set
773 * the bit that points to the new head page.
774 *
775 * We also don't want an interrupt coming in and moving the head
776 * page on another writer. Thus we use the second LSB to catch
777 * that too. Thus:
778 *
779 * head->list->prev->next bit 1 bit 0
780 * ------- -------
781 * Normal page 0 0
782 * Points to head page 0 1
783 * New head page 1 0
784 *
785 * Note we can not trust the prev pointer of the head page, because:
786 *
787 * +----+ +-----+ +-----+
788 * | |------>| T |---X--->| N |
789 * | |<------| | | |
790 * +----+ +-----+ +-----+
791 * ^ ^ |
792 * | +-----+ | |
793 * +----------| R |----------+ |
794 * | |<-----------+
795 * +-----+
796 *
797 * Key: ---X--> HEAD flag set in pointer
798 * T Tail page
799 * R Reader page
800 * N Next page
801 *
802 * (see __rb_reserve_next() to see where this happens)
803 *
804 * What the above shows is that the reader just swapped out
805 * the reader page with a page in the buffer, but before it
806 * could make the new header point back to the new page added
807 * it was preempted by a writer. The writer moved forward onto
808 * the new page added by the reader and is about to move forward
809 * again.
810 *
811 * You can see, it is legitimate for the previous pointer of
812 * the head (or any page) not to point back to itself. But only
813 * temporarily.
814 */
815
816 #define RB_PAGE_NORMAL 0UL
817 #define RB_PAGE_HEAD 1UL
818 #define RB_PAGE_UPDATE 2UL
819
820
821 #define RB_FLAG_MASK 3UL
822
823 /* PAGE_MOVED is not part of the mask */
824 #define RB_PAGE_MOVED 4UL
825
826 /*
827 * rb_list_head - remove any bit
828 */
rb_list_head(struct list_head * list)829 static struct list_head *rb_list_head(struct list_head *list)
830 {
831 unsigned long val = (unsigned long)list;
832
833 return (struct list_head *)(val & ~RB_FLAG_MASK);
834 }
835
836 /*
837 * rb_is_head_page - test if the given page is the head page
838 *
839 * Because the reader may move the head_page pointer, we can
840 * not trust what the head page is (it may be pointing to
841 * the reader page). But if the next page is a header page,
842 * its flags will be non zero.
843 */
844 static inline int
rb_is_head_page(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * page,struct list_head * list)845 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
846 struct buffer_page *page, struct list_head *list)
847 {
848 unsigned long val;
849
850 val = (unsigned long)list->next;
851
852 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
853 return RB_PAGE_MOVED;
854
855 return val & RB_FLAG_MASK;
856 }
857
858 /*
859 * rb_is_reader_page
860 *
861 * The unique thing about the reader page, is that, if the
862 * writer is ever on it, the previous pointer never points
863 * back to the reader page.
864 */
rb_is_reader_page(struct buffer_page * page)865 static bool rb_is_reader_page(struct buffer_page *page)
866 {
867 struct list_head *list = page->list.prev;
868
869 return rb_list_head(list->next) != &page->list;
870 }
871
872 /*
873 * rb_set_list_to_head - set a list_head to be pointing to head.
874 */
rb_set_list_to_head(struct ring_buffer_per_cpu * cpu_buffer,struct list_head * list)875 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
876 struct list_head *list)
877 {
878 unsigned long *ptr;
879
880 ptr = (unsigned long *)&list->next;
881 *ptr |= RB_PAGE_HEAD;
882 *ptr &= ~RB_PAGE_UPDATE;
883 }
884
885 /*
886 * rb_head_page_activate - sets up head page
887 */
rb_head_page_activate(struct ring_buffer_per_cpu * cpu_buffer)888 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
889 {
890 struct buffer_page *head;
891
892 head = cpu_buffer->head_page;
893 if (!head)
894 return;
895
896 /*
897 * Set the previous list pointer to have the HEAD flag.
898 */
899 rb_set_list_to_head(cpu_buffer, head->list.prev);
900 }
901
rb_list_head_clear(struct list_head * list)902 static void rb_list_head_clear(struct list_head *list)
903 {
904 unsigned long *ptr = (unsigned long *)&list->next;
905
906 *ptr &= ~RB_FLAG_MASK;
907 }
908
909 /*
910 * rb_head_page_deactivate - clears head page ptr (for free list)
911 */
912 static void
rb_head_page_deactivate(struct ring_buffer_per_cpu * cpu_buffer)913 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
914 {
915 struct list_head *hd;
916
917 /* Go through the whole list and clear any pointers found. */
918 rb_list_head_clear(cpu_buffer->pages);
919
920 list_for_each(hd, cpu_buffer->pages)
921 rb_list_head_clear(hd);
922 }
923
rb_head_page_set(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag,int new_flag)924 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
925 struct buffer_page *head,
926 struct buffer_page *prev,
927 int old_flag, int new_flag)
928 {
929 struct list_head *list;
930 unsigned long val = (unsigned long)&head->list;
931 unsigned long ret;
932
933 list = &prev->list;
934
935 val &= ~RB_FLAG_MASK;
936
937 ret = cmpxchg((unsigned long *)&list->next,
938 val | old_flag, val | new_flag);
939
940 /* check if the reader took the page */
941 if ((ret & ~RB_FLAG_MASK) != val)
942 return RB_PAGE_MOVED;
943
944 return ret & RB_FLAG_MASK;
945 }
946
rb_head_page_set_update(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)947 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
948 struct buffer_page *head,
949 struct buffer_page *prev,
950 int old_flag)
951 {
952 return rb_head_page_set(cpu_buffer, head, prev,
953 old_flag, RB_PAGE_UPDATE);
954 }
955
rb_head_page_set_head(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)956 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
957 struct buffer_page *head,
958 struct buffer_page *prev,
959 int old_flag)
960 {
961 return rb_head_page_set(cpu_buffer, head, prev,
962 old_flag, RB_PAGE_HEAD);
963 }
964
rb_head_page_set_normal(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)965 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
966 struct buffer_page *head,
967 struct buffer_page *prev,
968 int old_flag)
969 {
970 return rb_head_page_set(cpu_buffer, head, prev,
971 old_flag, RB_PAGE_NORMAL);
972 }
973
rb_inc_page(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page ** bpage)974 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
975 struct buffer_page **bpage)
976 {
977 struct list_head *p = rb_list_head((*bpage)->list.next);
978
979 *bpage = list_entry(p, struct buffer_page, list);
980 }
981
982 static struct buffer_page *
rb_set_head_page(struct ring_buffer_per_cpu * cpu_buffer)983 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
984 {
985 struct buffer_page *head;
986 struct buffer_page *page;
987 struct list_head *list;
988 int i;
989
990 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
991 return NULL;
992
993 /* sanity check */
994 list = cpu_buffer->pages;
995 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
996 return NULL;
997
998 page = head = cpu_buffer->head_page;
999 /*
1000 * It is possible that the writer moves the header behind
1001 * where we started, and we miss in one loop.
1002 * A second loop should grab the header, but we'll do
1003 * three loops just because I'm paranoid.
1004 */
1005 for (i = 0; i < 3; i++) {
1006 do {
1007 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
1008 cpu_buffer->head_page = page;
1009 return page;
1010 }
1011 rb_inc_page(cpu_buffer, &page);
1012 } while (page != head);
1013 }
1014
1015 RB_WARN_ON(cpu_buffer, 1);
1016
1017 return NULL;
1018 }
1019
rb_head_page_replace(struct buffer_page * old,struct buffer_page * new)1020 static int rb_head_page_replace(struct buffer_page *old,
1021 struct buffer_page *new)
1022 {
1023 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1024 unsigned long val;
1025 unsigned long ret;
1026
1027 val = *ptr & ~RB_FLAG_MASK;
1028 val |= RB_PAGE_HEAD;
1029
1030 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1031
1032 return ret == val;
1033 }
1034
1035 /*
1036 * rb_tail_page_update - move the tail page forward
1037 */
rb_tail_page_update(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * tail_page,struct buffer_page * next_page)1038 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1039 struct buffer_page *tail_page,
1040 struct buffer_page *next_page)
1041 {
1042 unsigned long old_entries;
1043 unsigned long old_write;
1044
1045 /*
1046 * The tail page now needs to be moved forward.
1047 *
1048 * We need to reset the tail page, but without messing
1049 * with possible erasing of data brought in by interrupts
1050 * that have moved the tail page and are currently on it.
1051 *
1052 * We add a counter to the write field to denote this.
1053 */
1054 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1055 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1056
1057 /*
1058 * Just make sure we have seen our old_write and synchronize
1059 * with any interrupts that come in.
1060 */
1061 barrier();
1062
1063 /*
1064 * If the tail page is still the same as what we think
1065 * it is, then it is up to us to update the tail
1066 * pointer.
1067 */
1068 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1069 /* Zero the write counter */
1070 unsigned long val = old_write & ~RB_WRITE_MASK;
1071 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1072
1073 /*
1074 * This will only succeed if an interrupt did
1075 * not come in and change it. In which case, we
1076 * do not want to modify it.
1077 *
1078 * We add (void) to let the compiler know that we do not care
1079 * about the return value of these functions. We use the
1080 * cmpxchg to only update if an interrupt did not already
1081 * do it for us. If the cmpxchg fails, we don't care.
1082 */
1083 (void)local_cmpxchg(&next_page->write, old_write, val);
1084 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1085
1086 /*
1087 * No need to worry about races with clearing out the commit.
1088 * it only can increment when a commit takes place. But that
1089 * only happens in the outer most nested commit.
1090 */
1091 local_set(&next_page->page->commit, 0);
1092
1093 /* Again, either we update tail_page or an interrupt does */
1094 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1095 }
1096 }
1097
rb_check_bpage(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * bpage)1098 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1099 struct buffer_page *bpage)
1100 {
1101 unsigned long val = (unsigned long)bpage;
1102
1103 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1104 return 1;
1105
1106 return 0;
1107 }
1108
1109 /**
1110 * rb_check_list - make sure a pointer to a list has the last bits zero
1111 */
rb_check_list(struct ring_buffer_per_cpu * cpu_buffer,struct list_head * list)1112 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1113 struct list_head *list)
1114 {
1115 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1116 return 1;
1117 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1118 return 1;
1119 return 0;
1120 }
1121
1122 /**
1123 * rb_check_pages - integrity check of buffer pages
1124 * @cpu_buffer: CPU buffer with pages to test
1125 *
1126 * As a safety measure we check to make sure the data pages have not
1127 * been corrupted.
1128 */
rb_check_pages(struct ring_buffer_per_cpu * cpu_buffer)1129 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1130 {
1131 struct list_head *head = cpu_buffer->pages;
1132 struct buffer_page *bpage, *tmp;
1133
1134 /* Reset the head page if it exists */
1135 if (cpu_buffer->head_page)
1136 rb_set_head_page(cpu_buffer);
1137
1138 rb_head_page_deactivate(cpu_buffer);
1139
1140 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1141 return -1;
1142 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1143 return -1;
1144
1145 if (rb_check_list(cpu_buffer, head))
1146 return -1;
1147
1148 list_for_each_entry_safe(bpage, tmp, head, list) {
1149 if (RB_WARN_ON(cpu_buffer,
1150 bpage->list.next->prev != &bpage->list))
1151 return -1;
1152 if (RB_WARN_ON(cpu_buffer,
1153 bpage->list.prev->next != &bpage->list))
1154 return -1;
1155 if (rb_check_list(cpu_buffer, &bpage->list))
1156 return -1;
1157 }
1158
1159 rb_head_page_activate(cpu_buffer);
1160
1161 return 0;
1162 }
1163
__rb_allocate_pages(long nr_pages,struct list_head * pages,int cpu)1164 static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
1165 {
1166 struct buffer_page *bpage, *tmp;
1167 bool user_thread = current->mm != NULL;
1168 gfp_t mflags;
1169 long i;
1170
1171 /*
1172 * Check if the available memory is there first.
1173 * Note, si_mem_available() only gives us a rough estimate of available
1174 * memory. It may not be accurate. But we don't care, we just want
1175 * to prevent doing any allocation when it is obvious that it is
1176 * not going to succeed.
1177 */
1178 i = si_mem_available();
1179 if (i < nr_pages)
1180 return -ENOMEM;
1181
1182 /*
1183 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1184 * gracefully without invoking oom-killer and the system is not
1185 * destabilized.
1186 */
1187 mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1188
1189 /*
1190 * If a user thread allocates too much, and si_mem_available()
1191 * reports there's enough memory, even though there is not.
1192 * Make sure the OOM killer kills this thread. This can happen
1193 * even with RETRY_MAYFAIL because another task may be doing
1194 * an allocation after this task has taken all memory.
1195 * This is the task the OOM killer needs to take out during this
1196 * loop, even if it was triggered by an allocation somewhere else.
1197 */
1198 if (user_thread)
1199 set_current_oom_origin();
1200 for (i = 0; i < nr_pages; i++) {
1201 struct page *page;
1202
1203 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1204 mflags, cpu_to_node(cpu));
1205 if (!bpage)
1206 goto free_pages;
1207
1208 list_add(&bpage->list, pages);
1209
1210 page = alloc_pages_node(cpu_to_node(cpu), mflags, 0);
1211 if (!page)
1212 goto free_pages;
1213 bpage->page = page_address(page);
1214 rb_init_page(bpage->page);
1215
1216 if (user_thread && fatal_signal_pending(current))
1217 goto free_pages;
1218 }
1219 if (user_thread)
1220 clear_current_oom_origin();
1221
1222 return 0;
1223
1224 free_pages:
1225 list_for_each_entry_safe(bpage, tmp, pages, list) {
1226 list_del_init(&bpage->list);
1227 free_buffer_page(bpage);
1228 }
1229 if (user_thread)
1230 clear_current_oom_origin();
1231
1232 return -ENOMEM;
1233 }
1234
rb_allocate_pages(struct ring_buffer_per_cpu * cpu_buffer,unsigned long nr_pages)1235 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1236 unsigned long nr_pages)
1237 {
1238 LIST_HEAD(pages);
1239
1240 WARN_ON(!nr_pages);
1241
1242 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1243 return -ENOMEM;
1244
1245 /*
1246 * The ring buffer page list is a circular list that does not
1247 * start and end with a list head. All page list items point to
1248 * other pages.
1249 */
1250 cpu_buffer->pages = pages.next;
1251 list_del(&pages);
1252
1253 cpu_buffer->nr_pages = nr_pages;
1254
1255 rb_check_pages(cpu_buffer);
1256
1257 return 0;
1258 }
1259
1260 static struct ring_buffer_per_cpu *
rb_allocate_cpu_buffer(struct ring_buffer * buffer,long nr_pages,int cpu)1261 rb_allocate_cpu_buffer(struct ring_buffer *buffer, long nr_pages, int cpu)
1262 {
1263 struct ring_buffer_per_cpu *cpu_buffer;
1264 struct buffer_page *bpage;
1265 struct page *page;
1266 int ret;
1267
1268 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1269 GFP_KERNEL, cpu_to_node(cpu));
1270 if (!cpu_buffer)
1271 return NULL;
1272
1273 cpu_buffer->cpu = cpu;
1274 cpu_buffer->buffer = buffer;
1275 raw_spin_lock_init(&cpu_buffer->reader_lock);
1276 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1277 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1278 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1279 init_completion(&cpu_buffer->update_done);
1280 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1281 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1282 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1283
1284 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1285 GFP_KERNEL, cpu_to_node(cpu));
1286 if (!bpage)
1287 goto fail_free_buffer;
1288
1289 rb_check_bpage(cpu_buffer, bpage);
1290
1291 cpu_buffer->reader_page = bpage;
1292 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1293 if (!page)
1294 goto fail_free_reader;
1295 bpage->page = page_address(page);
1296 rb_init_page(bpage->page);
1297
1298 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1299 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1300
1301 ret = rb_allocate_pages(cpu_buffer, nr_pages);
1302 if (ret < 0)
1303 goto fail_free_reader;
1304
1305 cpu_buffer->head_page
1306 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1307 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1308
1309 rb_head_page_activate(cpu_buffer);
1310
1311 return cpu_buffer;
1312
1313 fail_free_reader:
1314 free_buffer_page(cpu_buffer->reader_page);
1315
1316 fail_free_buffer:
1317 kfree(cpu_buffer);
1318 return NULL;
1319 }
1320
rb_free_cpu_buffer(struct ring_buffer_per_cpu * cpu_buffer)1321 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1322 {
1323 struct list_head *head = cpu_buffer->pages;
1324 struct buffer_page *bpage, *tmp;
1325
1326 free_buffer_page(cpu_buffer->reader_page);
1327
1328 rb_head_page_deactivate(cpu_buffer);
1329
1330 if (head) {
1331 list_for_each_entry_safe(bpage, tmp, head, list) {
1332 list_del_init(&bpage->list);
1333 free_buffer_page(bpage);
1334 }
1335 bpage = list_entry(head, struct buffer_page, list);
1336 free_buffer_page(bpage);
1337 }
1338
1339 kfree(cpu_buffer);
1340 }
1341
1342 /**
1343 * __ring_buffer_alloc - allocate a new ring_buffer
1344 * @size: the size in bytes per cpu that is needed.
1345 * @flags: attributes to set for the ring buffer.
1346 *
1347 * Currently the only flag that is available is the RB_FL_OVERWRITE
1348 * flag. This flag means that the buffer will overwrite old data
1349 * when the buffer wraps. If this flag is not set, the buffer will
1350 * drop data when the tail hits the head.
1351 */
__ring_buffer_alloc(unsigned long size,unsigned flags,struct lock_class_key * key)1352 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1353 struct lock_class_key *key)
1354 {
1355 struct ring_buffer *buffer;
1356 long nr_pages;
1357 int bsize;
1358 int cpu;
1359 int ret;
1360
1361 /* keep it in its own cache line */
1362 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1363 GFP_KERNEL);
1364 if (!buffer)
1365 return NULL;
1366
1367 if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1368 goto fail_free_buffer;
1369
1370 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1371 buffer->flags = flags;
1372 buffer->clock = trace_clock_local;
1373 buffer->reader_lock_key = key;
1374
1375 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1376 init_waitqueue_head(&buffer->irq_work.waiters);
1377
1378 /* need at least two pages */
1379 if (nr_pages < 2)
1380 nr_pages = 2;
1381
1382 buffer->cpus = nr_cpu_ids;
1383
1384 bsize = sizeof(void *) * nr_cpu_ids;
1385 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1386 GFP_KERNEL);
1387 if (!buffer->buffers)
1388 goto fail_free_cpumask;
1389
1390 cpu = raw_smp_processor_id();
1391 cpumask_set_cpu(cpu, buffer->cpumask);
1392 buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1393 if (!buffer->buffers[cpu])
1394 goto fail_free_buffers;
1395
1396 ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1397 if (ret < 0)
1398 goto fail_free_buffers;
1399
1400 mutex_init(&buffer->mutex);
1401
1402 return buffer;
1403
1404 fail_free_buffers:
1405 for_each_buffer_cpu(buffer, cpu) {
1406 if (buffer->buffers[cpu])
1407 rb_free_cpu_buffer(buffer->buffers[cpu]);
1408 }
1409 kfree(buffer->buffers);
1410
1411 fail_free_cpumask:
1412 free_cpumask_var(buffer->cpumask);
1413
1414 fail_free_buffer:
1415 kfree(buffer);
1416 return NULL;
1417 }
1418 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1419
1420 /**
1421 * ring_buffer_free - free a ring buffer.
1422 * @buffer: the buffer to free.
1423 */
1424 void
ring_buffer_free(struct ring_buffer * buffer)1425 ring_buffer_free(struct ring_buffer *buffer)
1426 {
1427 int cpu;
1428
1429 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1430
1431 for_each_buffer_cpu(buffer, cpu)
1432 rb_free_cpu_buffer(buffer->buffers[cpu]);
1433
1434 kfree(buffer->buffers);
1435 free_cpumask_var(buffer->cpumask);
1436
1437 kfree(buffer);
1438 }
1439 EXPORT_SYMBOL_GPL(ring_buffer_free);
1440
ring_buffer_set_clock(struct ring_buffer * buffer,u64 (* clock)(void))1441 void ring_buffer_set_clock(struct ring_buffer *buffer,
1442 u64 (*clock)(void))
1443 {
1444 buffer->clock = clock;
1445 }
1446
ring_buffer_set_time_stamp_abs(struct ring_buffer * buffer,bool abs)1447 void ring_buffer_set_time_stamp_abs(struct ring_buffer *buffer, bool abs)
1448 {
1449 buffer->time_stamp_abs = abs;
1450 }
1451
ring_buffer_time_stamp_abs(struct ring_buffer * buffer)1452 bool ring_buffer_time_stamp_abs(struct ring_buffer *buffer)
1453 {
1454 return buffer->time_stamp_abs;
1455 }
1456
1457 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1458
rb_page_entries(struct buffer_page * bpage)1459 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1460 {
1461 return local_read(&bpage->entries) & RB_WRITE_MASK;
1462 }
1463
rb_page_write(struct buffer_page * bpage)1464 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1465 {
1466 return local_read(&bpage->write) & RB_WRITE_MASK;
1467 }
1468
1469 static int
rb_remove_pages(struct ring_buffer_per_cpu * cpu_buffer,unsigned long nr_pages)1470 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1471 {
1472 struct list_head *tail_page, *to_remove, *next_page;
1473 struct buffer_page *to_remove_page, *tmp_iter_page;
1474 struct buffer_page *last_page, *first_page;
1475 unsigned long nr_removed;
1476 unsigned long head_bit;
1477 int page_entries;
1478
1479 head_bit = 0;
1480
1481 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1482 atomic_inc(&cpu_buffer->record_disabled);
1483 /*
1484 * We don't race with the readers since we have acquired the reader
1485 * lock. We also don't race with writers after disabling recording.
1486 * This makes it easy to figure out the first and the last page to be
1487 * removed from the list. We unlink all the pages in between including
1488 * the first and last pages. This is done in a busy loop so that we
1489 * lose the least number of traces.
1490 * The pages are freed after we restart recording and unlock readers.
1491 */
1492 tail_page = &cpu_buffer->tail_page->list;
1493
1494 /*
1495 * tail page might be on reader page, we remove the next page
1496 * from the ring buffer
1497 */
1498 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1499 tail_page = rb_list_head(tail_page->next);
1500 to_remove = tail_page;
1501
1502 /* start of pages to remove */
1503 first_page = list_entry(rb_list_head(to_remove->next),
1504 struct buffer_page, list);
1505
1506 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1507 to_remove = rb_list_head(to_remove)->next;
1508 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1509 }
1510
1511 next_page = rb_list_head(to_remove)->next;
1512
1513 /*
1514 * Now we remove all pages between tail_page and next_page.
1515 * Make sure that we have head_bit value preserved for the
1516 * next page
1517 */
1518 tail_page->next = (struct list_head *)((unsigned long)next_page |
1519 head_bit);
1520 next_page = rb_list_head(next_page);
1521 next_page->prev = tail_page;
1522
1523 /* make sure pages points to a valid page in the ring buffer */
1524 cpu_buffer->pages = next_page;
1525
1526 /* update head page */
1527 if (head_bit)
1528 cpu_buffer->head_page = list_entry(next_page,
1529 struct buffer_page, list);
1530
1531 /*
1532 * change read pointer to make sure any read iterators reset
1533 * themselves
1534 */
1535 cpu_buffer->read = 0;
1536
1537 /* pages are removed, resume tracing and then free the pages */
1538 atomic_dec(&cpu_buffer->record_disabled);
1539 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1540
1541 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1542
1543 /* last buffer page to remove */
1544 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1545 list);
1546 tmp_iter_page = first_page;
1547
1548 do {
1549 cond_resched();
1550
1551 to_remove_page = tmp_iter_page;
1552 rb_inc_page(cpu_buffer, &tmp_iter_page);
1553
1554 /* update the counters */
1555 page_entries = rb_page_entries(to_remove_page);
1556 if (page_entries) {
1557 /*
1558 * If something was added to this page, it was full
1559 * since it is not the tail page. So we deduct the
1560 * bytes consumed in ring buffer from here.
1561 * Increment overrun to account for the lost events.
1562 */
1563 local_add(page_entries, &cpu_buffer->overrun);
1564 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1565 }
1566
1567 /*
1568 * We have already removed references to this list item, just
1569 * free up the buffer_page and its page
1570 */
1571 free_buffer_page(to_remove_page);
1572 nr_removed--;
1573
1574 } while (to_remove_page != last_page);
1575
1576 RB_WARN_ON(cpu_buffer, nr_removed);
1577
1578 return nr_removed == 0;
1579 }
1580
1581 static int
rb_insert_pages(struct ring_buffer_per_cpu * cpu_buffer)1582 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1583 {
1584 struct list_head *pages = &cpu_buffer->new_pages;
1585 int retries, success;
1586
1587 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1588 /*
1589 * We are holding the reader lock, so the reader page won't be swapped
1590 * in the ring buffer. Now we are racing with the writer trying to
1591 * move head page and the tail page.
1592 * We are going to adapt the reader page update process where:
1593 * 1. We first splice the start and end of list of new pages between
1594 * the head page and its previous page.
1595 * 2. We cmpxchg the prev_page->next to point from head page to the
1596 * start of new pages list.
1597 * 3. Finally, we update the head->prev to the end of new list.
1598 *
1599 * We will try this process 10 times, to make sure that we don't keep
1600 * spinning.
1601 */
1602 retries = 10;
1603 success = 0;
1604 while (retries--) {
1605 struct list_head *head_page, *prev_page, *r;
1606 struct list_head *last_page, *first_page;
1607 struct list_head *head_page_with_bit;
1608
1609 head_page = &rb_set_head_page(cpu_buffer)->list;
1610 if (!head_page)
1611 break;
1612 prev_page = head_page->prev;
1613
1614 first_page = pages->next;
1615 last_page = pages->prev;
1616
1617 head_page_with_bit = (struct list_head *)
1618 ((unsigned long)head_page | RB_PAGE_HEAD);
1619
1620 last_page->next = head_page_with_bit;
1621 first_page->prev = prev_page;
1622
1623 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1624
1625 if (r == head_page_with_bit) {
1626 /*
1627 * yay, we replaced the page pointer to our new list,
1628 * now, we just have to update to head page's prev
1629 * pointer to point to end of list
1630 */
1631 head_page->prev = last_page;
1632 success = 1;
1633 break;
1634 }
1635 }
1636
1637 if (success)
1638 INIT_LIST_HEAD(pages);
1639 /*
1640 * If we weren't successful in adding in new pages, warn and stop
1641 * tracing
1642 */
1643 RB_WARN_ON(cpu_buffer, !success);
1644 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1645
1646 /* free pages if they weren't inserted */
1647 if (!success) {
1648 struct buffer_page *bpage, *tmp;
1649 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1650 list) {
1651 list_del_init(&bpage->list);
1652 free_buffer_page(bpage);
1653 }
1654 }
1655 return success;
1656 }
1657
rb_update_pages(struct ring_buffer_per_cpu * cpu_buffer)1658 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1659 {
1660 int success;
1661
1662 if (cpu_buffer->nr_pages_to_update > 0)
1663 success = rb_insert_pages(cpu_buffer);
1664 else
1665 success = rb_remove_pages(cpu_buffer,
1666 -cpu_buffer->nr_pages_to_update);
1667
1668 if (success)
1669 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1670 }
1671
update_pages_handler(struct work_struct * work)1672 static void update_pages_handler(struct work_struct *work)
1673 {
1674 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1675 struct ring_buffer_per_cpu, update_pages_work);
1676 rb_update_pages(cpu_buffer);
1677 complete(&cpu_buffer->update_done);
1678 }
1679
1680 /**
1681 * ring_buffer_resize - resize the ring buffer
1682 * @buffer: the buffer to resize.
1683 * @size: the new size.
1684 * @cpu_id: the cpu buffer to resize
1685 *
1686 * Minimum size is 2 * BUF_PAGE_SIZE.
1687 *
1688 * Returns 0 on success and < 0 on failure.
1689 */
ring_buffer_resize(struct ring_buffer * buffer,unsigned long size,int cpu_id)1690 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1691 int cpu_id)
1692 {
1693 struct ring_buffer_per_cpu *cpu_buffer;
1694 unsigned long nr_pages;
1695 int cpu, err = 0;
1696
1697 /*
1698 * Always succeed at resizing a non-existent buffer:
1699 */
1700 if (!buffer)
1701 return size;
1702
1703 /* Make sure the requested buffer exists */
1704 if (cpu_id != RING_BUFFER_ALL_CPUS &&
1705 !cpumask_test_cpu(cpu_id, buffer->cpumask))
1706 return size;
1707
1708 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1709
1710 /* we need a minimum of two pages */
1711 if (nr_pages < 2)
1712 nr_pages = 2;
1713
1714 size = nr_pages * BUF_PAGE_SIZE;
1715
1716 /*
1717 * Don't succeed if resizing is disabled, as a reader might be
1718 * manipulating the ring buffer and is expecting a sane state while
1719 * this is true.
1720 */
1721 if (atomic_read(&buffer->resize_disabled))
1722 return -EBUSY;
1723
1724 /* prevent another thread from changing buffer sizes */
1725 mutex_lock(&buffer->mutex);
1726
1727 if (cpu_id == RING_BUFFER_ALL_CPUS) {
1728 /* calculate the pages to update */
1729 for_each_buffer_cpu(buffer, cpu) {
1730 cpu_buffer = buffer->buffers[cpu];
1731
1732 cpu_buffer->nr_pages_to_update = nr_pages -
1733 cpu_buffer->nr_pages;
1734 /*
1735 * nothing more to do for removing pages or no update
1736 */
1737 if (cpu_buffer->nr_pages_to_update <= 0)
1738 continue;
1739 /*
1740 * to add pages, make sure all new pages can be
1741 * allocated without receiving ENOMEM
1742 */
1743 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1744 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1745 &cpu_buffer->new_pages, cpu)) {
1746 /* not enough memory for new pages */
1747 err = -ENOMEM;
1748 goto out_err;
1749 }
1750 }
1751
1752 get_online_cpus();
1753 /*
1754 * Fire off all the required work handlers
1755 * We can't schedule on offline CPUs, but it's not necessary
1756 * since we can change their buffer sizes without any race.
1757 */
1758 for_each_buffer_cpu(buffer, cpu) {
1759 cpu_buffer = buffer->buffers[cpu];
1760 if (!cpu_buffer->nr_pages_to_update)
1761 continue;
1762
1763 /* Can't run something on an offline CPU. */
1764 if (!cpu_online(cpu)) {
1765 rb_update_pages(cpu_buffer);
1766 cpu_buffer->nr_pages_to_update = 0;
1767 } else {
1768 schedule_work_on(cpu,
1769 &cpu_buffer->update_pages_work);
1770 }
1771 }
1772
1773 /* wait for all the updates to complete */
1774 for_each_buffer_cpu(buffer, cpu) {
1775 cpu_buffer = buffer->buffers[cpu];
1776 if (!cpu_buffer->nr_pages_to_update)
1777 continue;
1778
1779 if (cpu_online(cpu))
1780 wait_for_completion(&cpu_buffer->update_done);
1781 cpu_buffer->nr_pages_to_update = 0;
1782 }
1783
1784 put_online_cpus();
1785 } else {
1786 /* Make sure this CPU has been initialized */
1787 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1788 goto out;
1789
1790 cpu_buffer = buffer->buffers[cpu_id];
1791
1792 if (nr_pages == cpu_buffer->nr_pages)
1793 goto out;
1794
1795 cpu_buffer->nr_pages_to_update = nr_pages -
1796 cpu_buffer->nr_pages;
1797
1798 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1799 if (cpu_buffer->nr_pages_to_update > 0 &&
1800 __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1801 &cpu_buffer->new_pages, cpu_id)) {
1802 err = -ENOMEM;
1803 goto out_err;
1804 }
1805
1806 get_online_cpus();
1807
1808 /* Can't run something on an offline CPU. */
1809 if (!cpu_online(cpu_id))
1810 rb_update_pages(cpu_buffer);
1811 else {
1812 schedule_work_on(cpu_id,
1813 &cpu_buffer->update_pages_work);
1814 wait_for_completion(&cpu_buffer->update_done);
1815 }
1816
1817 cpu_buffer->nr_pages_to_update = 0;
1818 put_online_cpus();
1819 }
1820
1821 out:
1822 /*
1823 * The ring buffer resize can happen with the ring buffer
1824 * enabled, so that the update disturbs the tracing as little
1825 * as possible. But if the buffer is disabled, we do not need
1826 * to worry about that, and we can take the time to verify
1827 * that the buffer is not corrupt.
1828 */
1829 if (atomic_read(&buffer->record_disabled)) {
1830 atomic_inc(&buffer->record_disabled);
1831 /*
1832 * Even though the buffer was disabled, we must make sure
1833 * that it is truly disabled before calling rb_check_pages.
1834 * There could have been a race between checking
1835 * record_disable and incrementing it.
1836 */
1837 synchronize_sched();
1838 for_each_buffer_cpu(buffer, cpu) {
1839 cpu_buffer = buffer->buffers[cpu];
1840 rb_check_pages(cpu_buffer);
1841 }
1842 atomic_dec(&buffer->record_disabled);
1843 }
1844
1845 mutex_unlock(&buffer->mutex);
1846 return size;
1847
1848 out_err:
1849 for_each_buffer_cpu(buffer, cpu) {
1850 struct buffer_page *bpage, *tmp;
1851
1852 cpu_buffer = buffer->buffers[cpu];
1853 cpu_buffer->nr_pages_to_update = 0;
1854
1855 if (list_empty(&cpu_buffer->new_pages))
1856 continue;
1857
1858 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1859 list) {
1860 list_del_init(&bpage->list);
1861 free_buffer_page(bpage);
1862 }
1863 }
1864 mutex_unlock(&buffer->mutex);
1865 return err;
1866 }
1867 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1868
ring_buffer_change_overwrite(struct ring_buffer * buffer,int val)1869 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1870 {
1871 mutex_lock(&buffer->mutex);
1872 if (val)
1873 buffer->flags |= RB_FL_OVERWRITE;
1874 else
1875 buffer->flags &= ~RB_FL_OVERWRITE;
1876 mutex_unlock(&buffer->mutex);
1877 }
1878 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1879
__rb_page_index(struct buffer_page * bpage,unsigned index)1880 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1881 {
1882 return bpage->page->data + index;
1883 }
1884
1885 static __always_inline struct ring_buffer_event *
rb_reader_event(struct ring_buffer_per_cpu * cpu_buffer)1886 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1887 {
1888 return __rb_page_index(cpu_buffer->reader_page,
1889 cpu_buffer->reader_page->read);
1890 }
1891
1892 static __always_inline struct ring_buffer_event *
rb_iter_head_event(struct ring_buffer_iter * iter)1893 rb_iter_head_event(struct ring_buffer_iter *iter)
1894 {
1895 return __rb_page_index(iter->head_page, iter->head);
1896 }
1897
rb_page_commit(struct buffer_page * bpage)1898 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
1899 {
1900 return local_read(&bpage->page->commit);
1901 }
1902
1903 /* Size is determined by what has been committed */
rb_page_size(struct buffer_page * bpage)1904 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
1905 {
1906 return rb_page_commit(bpage);
1907 }
1908
1909 static __always_inline unsigned
rb_commit_index(struct ring_buffer_per_cpu * cpu_buffer)1910 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1911 {
1912 return rb_page_commit(cpu_buffer->commit_page);
1913 }
1914
1915 static __always_inline unsigned
rb_event_index(struct ring_buffer_event * event)1916 rb_event_index(struct ring_buffer_event *event)
1917 {
1918 unsigned long addr = (unsigned long)event;
1919
1920 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1921 }
1922
rb_inc_iter(struct ring_buffer_iter * iter)1923 static void rb_inc_iter(struct ring_buffer_iter *iter)
1924 {
1925 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1926
1927 /*
1928 * The iterator could be on the reader page (it starts there).
1929 * But the head could have moved, since the reader was
1930 * found. Check for this case and assign the iterator
1931 * to the head page instead of next.
1932 */
1933 if (iter->head_page == cpu_buffer->reader_page)
1934 iter->head_page = rb_set_head_page(cpu_buffer);
1935 else
1936 rb_inc_page(cpu_buffer, &iter->head_page);
1937
1938 iter->read_stamp = iter->head_page->page->time_stamp;
1939 iter->head = 0;
1940 }
1941
1942 /*
1943 * rb_handle_head_page - writer hit the head page
1944 *
1945 * Returns: +1 to retry page
1946 * 0 to continue
1947 * -1 on error
1948 */
1949 static int
rb_handle_head_page(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * tail_page,struct buffer_page * next_page)1950 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1951 struct buffer_page *tail_page,
1952 struct buffer_page *next_page)
1953 {
1954 struct buffer_page *new_head;
1955 int entries;
1956 int type;
1957 int ret;
1958
1959 entries = rb_page_entries(next_page);
1960
1961 /*
1962 * The hard part is here. We need to move the head
1963 * forward, and protect against both readers on
1964 * other CPUs and writers coming in via interrupts.
1965 */
1966 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1967 RB_PAGE_HEAD);
1968
1969 /*
1970 * type can be one of four:
1971 * NORMAL - an interrupt already moved it for us
1972 * HEAD - we are the first to get here.
1973 * UPDATE - we are the interrupt interrupting
1974 * a current move.
1975 * MOVED - a reader on another CPU moved the next
1976 * pointer to its reader page. Give up
1977 * and try again.
1978 */
1979
1980 switch (type) {
1981 case RB_PAGE_HEAD:
1982 /*
1983 * We changed the head to UPDATE, thus
1984 * it is our responsibility to update
1985 * the counters.
1986 */
1987 local_add(entries, &cpu_buffer->overrun);
1988 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1989
1990 /*
1991 * The entries will be zeroed out when we move the
1992 * tail page.
1993 */
1994
1995 /* still more to do */
1996 break;
1997
1998 case RB_PAGE_UPDATE:
1999 /*
2000 * This is an interrupt that interrupt the
2001 * previous update. Still more to do.
2002 */
2003 break;
2004 case RB_PAGE_NORMAL:
2005 /*
2006 * An interrupt came in before the update
2007 * and processed this for us.
2008 * Nothing left to do.
2009 */
2010 return 1;
2011 case RB_PAGE_MOVED:
2012 /*
2013 * The reader is on another CPU and just did
2014 * a swap with our next_page.
2015 * Try again.
2016 */
2017 return 1;
2018 default:
2019 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2020 return -1;
2021 }
2022
2023 /*
2024 * Now that we are here, the old head pointer is
2025 * set to UPDATE. This will keep the reader from
2026 * swapping the head page with the reader page.
2027 * The reader (on another CPU) will spin till
2028 * we are finished.
2029 *
2030 * We just need to protect against interrupts
2031 * doing the job. We will set the next pointer
2032 * to HEAD. After that, we set the old pointer
2033 * to NORMAL, but only if it was HEAD before.
2034 * otherwise we are an interrupt, and only
2035 * want the outer most commit to reset it.
2036 */
2037 new_head = next_page;
2038 rb_inc_page(cpu_buffer, &new_head);
2039
2040 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2041 RB_PAGE_NORMAL);
2042
2043 /*
2044 * Valid returns are:
2045 * HEAD - an interrupt came in and already set it.
2046 * NORMAL - One of two things:
2047 * 1) We really set it.
2048 * 2) A bunch of interrupts came in and moved
2049 * the page forward again.
2050 */
2051 switch (ret) {
2052 case RB_PAGE_HEAD:
2053 case RB_PAGE_NORMAL:
2054 /* OK */
2055 break;
2056 default:
2057 RB_WARN_ON(cpu_buffer, 1);
2058 return -1;
2059 }
2060
2061 /*
2062 * It is possible that an interrupt came in,
2063 * set the head up, then more interrupts came in
2064 * and moved it again. When we get back here,
2065 * the page would have been set to NORMAL but we
2066 * just set it back to HEAD.
2067 *
2068 * How do you detect this? Well, if that happened
2069 * the tail page would have moved.
2070 */
2071 if (ret == RB_PAGE_NORMAL) {
2072 struct buffer_page *buffer_tail_page;
2073
2074 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2075 /*
2076 * If the tail had moved passed next, then we need
2077 * to reset the pointer.
2078 */
2079 if (buffer_tail_page != tail_page &&
2080 buffer_tail_page != next_page)
2081 rb_head_page_set_normal(cpu_buffer, new_head,
2082 next_page,
2083 RB_PAGE_HEAD);
2084 }
2085
2086 /*
2087 * If this was the outer most commit (the one that
2088 * changed the original pointer from HEAD to UPDATE),
2089 * then it is up to us to reset it to NORMAL.
2090 */
2091 if (type == RB_PAGE_HEAD) {
2092 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2093 tail_page,
2094 RB_PAGE_UPDATE);
2095 if (RB_WARN_ON(cpu_buffer,
2096 ret != RB_PAGE_UPDATE))
2097 return -1;
2098 }
2099
2100 return 0;
2101 }
2102
2103 static inline void
rb_reset_tail(struct ring_buffer_per_cpu * cpu_buffer,unsigned long tail,struct rb_event_info * info)2104 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2105 unsigned long tail, struct rb_event_info *info)
2106 {
2107 struct buffer_page *tail_page = info->tail_page;
2108 struct ring_buffer_event *event;
2109 unsigned long length = info->length;
2110
2111 /*
2112 * Only the event that crossed the page boundary
2113 * must fill the old tail_page with padding.
2114 */
2115 if (tail >= BUF_PAGE_SIZE) {
2116 /*
2117 * If the page was filled, then we still need
2118 * to update the real_end. Reset it to zero
2119 * and the reader will ignore it.
2120 */
2121 if (tail == BUF_PAGE_SIZE)
2122 tail_page->real_end = 0;
2123
2124 local_sub(length, &tail_page->write);
2125 return;
2126 }
2127
2128 event = __rb_page_index(tail_page, tail);
2129
2130 /* account for padding bytes */
2131 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2132
2133 /*
2134 * Save the original length to the meta data.
2135 * This will be used by the reader to add lost event
2136 * counter.
2137 */
2138 tail_page->real_end = tail;
2139
2140 /*
2141 * If this event is bigger than the minimum size, then
2142 * we need to be careful that we don't subtract the
2143 * write counter enough to allow another writer to slip
2144 * in on this page.
2145 * We put in a discarded commit instead, to make sure
2146 * that this space is not used again.
2147 *
2148 * If we are less than the minimum size, we don't need to
2149 * worry about it.
2150 */
2151 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2152 /* No room for any events */
2153
2154 /* Mark the rest of the page with padding */
2155 rb_event_set_padding(event);
2156
2157 /* Set the write back to the previous setting */
2158 local_sub(length, &tail_page->write);
2159 return;
2160 }
2161
2162 /* Put in a discarded event */
2163 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2164 event->type_len = RINGBUF_TYPE_PADDING;
2165 /* time delta must be non zero */
2166 event->time_delta = 1;
2167
2168 /* Set write to end of buffer */
2169 length = (tail + length) - BUF_PAGE_SIZE;
2170 local_sub(length, &tail_page->write);
2171 }
2172
2173 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2174
2175 /*
2176 * This is the slow path, force gcc not to inline it.
2177 */
2178 static noinline struct ring_buffer_event *
rb_move_tail(struct ring_buffer_per_cpu * cpu_buffer,unsigned long tail,struct rb_event_info * info)2179 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2180 unsigned long tail, struct rb_event_info *info)
2181 {
2182 struct buffer_page *tail_page = info->tail_page;
2183 struct buffer_page *commit_page = cpu_buffer->commit_page;
2184 struct ring_buffer *buffer = cpu_buffer->buffer;
2185 struct buffer_page *next_page;
2186 int ret;
2187
2188 next_page = tail_page;
2189
2190 rb_inc_page(cpu_buffer, &next_page);
2191
2192 /*
2193 * If for some reason, we had an interrupt storm that made
2194 * it all the way around the buffer, bail, and warn
2195 * about it.
2196 */
2197 if (unlikely(next_page == commit_page)) {
2198 local_inc(&cpu_buffer->commit_overrun);
2199 goto out_reset;
2200 }
2201
2202 /*
2203 * This is where the fun begins!
2204 *
2205 * We are fighting against races between a reader that
2206 * could be on another CPU trying to swap its reader
2207 * page with the buffer head.
2208 *
2209 * We are also fighting against interrupts coming in and
2210 * moving the head or tail on us as well.
2211 *
2212 * If the next page is the head page then we have filled
2213 * the buffer, unless the commit page is still on the
2214 * reader page.
2215 */
2216 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2217
2218 /*
2219 * If the commit is not on the reader page, then
2220 * move the header page.
2221 */
2222 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2223 /*
2224 * If we are not in overwrite mode,
2225 * this is easy, just stop here.
2226 */
2227 if (!(buffer->flags & RB_FL_OVERWRITE)) {
2228 local_inc(&cpu_buffer->dropped_events);
2229 goto out_reset;
2230 }
2231
2232 ret = rb_handle_head_page(cpu_buffer,
2233 tail_page,
2234 next_page);
2235 if (ret < 0)
2236 goto out_reset;
2237 if (ret)
2238 goto out_again;
2239 } else {
2240 /*
2241 * We need to be careful here too. The
2242 * commit page could still be on the reader
2243 * page. We could have a small buffer, and
2244 * have filled up the buffer with events
2245 * from interrupts and such, and wrapped.
2246 *
2247 * Note, if the tail page is also the on the
2248 * reader_page, we let it move out.
2249 */
2250 if (unlikely((cpu_buffer->commit_page !=
2251 cpu_buffer->tail_page) &&
2252 (cpu_buffer->commit_page ==
2253 cpu_buffer->reader_page))) {
2254 local_inc(&cpu_buffer->commit_overrun);
2255 goto out_reset;
2256 }
2257 }
2258 }
2259
2260 rb_tail_page_update(cpu_buffer, tail_page, next_page);
2261
2262 out_again:
2263
2264 rb_reset_tail(cpu_buffer, tail, info);
2265
2266 /* Commit what we have for now. */
2267 rb_end_commit(cpu_buffer);
2268 /* rb_end_commit() decs committing */
2269 local_inc(&cpu_buffer->committing);
2270
2271 /* fail and let the caller try again */
2272 return ERR_PTR(-EAGAIN);
2273
2274 out_reset:
2275 /* reset write */
2276 rb_reset_tail(cpu_buffer, tail, info);
2277
2278 return NULL;
2279 }
2280
2281 /* Slow path, do not inline */
2282 static noinline struct ring_buffer_event *
rb_add_time_stamp(struct ring_buffer_event * event,u64 delta,bool abs)2283 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs)
2284 {
2285 if (abs)
2286 event->type_len = RINGBUF_TYPE_TIME_STAMP;
2287 else
2288 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2289
2290 /* Not the first event on the page, or not delta? */
2291 if (abs || rb_event_index(event)) {
2292 event->time_delta = delta & TS_MASK;
2293 event->array[0] = delta >> TS_SHIFT;
2294 } else {
2295 /* nope, just zero it */
2296 event->time_delta = 0;
2297 event->array[0] = 0;
2298 }
2299
2300 return skip_time_extend(event);
2301 }
2302
2303 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2304 struct ring_buffer_event *event);
2305
2306 /**
2307 * rb_update_event - update event type and data
2308 * @event: the event to update
2309 * @type: the type of event
2310 * @length: the size of the event field in the ring buffer
2311 *
2312 * Update the type and data fields of the event. The length
2313 * is the actual size that is written to the ring buffer,
2314 * and with this, we can determine what to place into the
2315 * data field.
2316 */
2317 static void
rb_update_event(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event,struct rb_event_info * info)2318 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2319 struct ring_buffer_event *event,
2320 struct rb_event_info *info)
2321 {
2322 unsigned length = info->length;
2323 u64 delta = info->delta;
2324
2325 /* Only a commit updates the timestamp */
2326 if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2327 delta = 0;
2328
2329 /*
2330 * If we need to add a timestamp, then we
2331 * add it to the start of the reserved space.
2332 */
2333 if (unlikely(info->add_timestamp)) {
2334 bool abs = ring_buffer_time_stamp_abs(cpu_buffer->buffer);
2335
2336 event = rb_add_time_stamp(event, info->delta, abs);
2337 length -= RB_LEN_TIME_EXTEND;
2338 delta = 0;
2339 }
2340
2341 event->time_delta = delta;
2342 length -= RB_EVNT_HDR_SIZE;
2343 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2344 event->type_len = 0;
2345 event->array[0] = length;
2346 } else
2347 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2348 }
2349
rb_calculate_event_length(unsigned length)2350 static unsigned rb_calculate_event_length(unsigned length)
2351 {
2352 struct ring_buffer_event event; /* Used only for sizeof array */
2353
2354 /* zero length can cause confusions */
2355 if (!length)
2356 length++;
2357
2358 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2359 length += sizeof(event.array[0]);
2360
2361 length += RB_EVNT_HDR_SIZE;
2362 length = ALIGN(length, RB_ARCH_ALIGNMENT);
2363
2364 /*
2365 * In case the time delta is larger than the 27 bits for it
2366 * in the header, we need to add a timestamp. If another
2367 * event comes in when trying to discard this one to increase
2368 * the length, then the timestamp will be added in the allocated
2369 * space of this event. If length is bigger than the size needed
2370 * for the TIME_EXTEND, then padding has to be used. The events
2371 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2372 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2373 * As length is a multiple of 4, we only need to worry if it
2374 * is 12 (RB_LEN_TIME_EXTEND + 4).
2375 */
2376 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2377 length += RB_ALIGNMENT;
2378
2379 return length;
2380 }
2381
2382 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
sched_clock_stable(void)2383 static inline bool sched_clock_stable(void)
2384 {
2385 return true;
2386 }
2387 #endif
2388
2389 static inline int
rb_try_to_discard(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)2390 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2391 struct ring_buffer_event *event)
2392 {
2393 unsigned long new_index, old_index;
2394 struct buffer_page *bpage;
2395 unsigned long index;
2396 unsigned long addr;
2397
2398 new_index = rb_event_index(event);
2399 old_index = new_index + rb_event_ts_length(event);
2400 addr = (unsigned long)event;
2401 addr &= PAGE_MASK;
2402
2403 bpage = READ_ONCE(cpu_buffer->tail_page);
2404
2405 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2406 unsigned long write_mask =
2407 local_read(&bpage->write) & ~RB_WRITE_MASK;
2408 unsigned long event_length = rb_event_length(event);
2409 /*
2410 * This is on the tail page. It is possible that
2411 * a write could come in and move the tail page
2412 * and write to the next page. That is fine
2413 * because we just shorten what is on this page.
2414 */
2415 old_index += write_mask;
2416 new_index += write_mask;
2417 index = local_cmpxchg(&bpage->write, old_index, new_index);
2418 if (index == old_index) {
2419 /* update counters */
2420 local_sub(event_length, &cpu_buffer->entries_bytes);
2421 return 1;
2422 }
2423 }
2424
2425 /* could not discard */
2426 return 0;
2427 }
2428
rb_start_commit(struct ring_buffer_per_cpu * cpu_buffer)2429 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2430 {
2431 local_inc(&cpu_buffer->committing);
2432 local_inc(&cpu_buffer->commits);
2433 }
2434
2435 static __always_inline void
rb_set_commit_to_write(struct ring_buffer_per_cpu * cpu_buffer)2436 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2437 {
2438 unsigned long max_count;
2439
2440 /*
2441 * We only race with interrupts and NMIs on this CPU.
2442 * If we own the commit event, then we can commit
2443 * all others that interrupted us, since the interruptions
2444 * are in stack format (they finish before they come
2445 * back to us). This allows us to do a simple loop to
2446 * assign the commit to the tail.
2447 */
2448 again:
2449 max_count = cpu_buffer->nr_pages * 100;
2450
2451 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2452 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2453 return;
2454 if (RB_WARN_ON(cpu_buffer,
2455 rb_is_reader_page(cpu_buffer->tail_page)))
2456 return;
2457 local_set(&cpu_buffer->commit_page->page->commit,
2458 rb_page_write(cpu_buffer->commit_page));
2459 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2460 /* Only update the write stamp if the page has an event */
2461 if (rb_page_write(cpu_buffer->commit_page))
2462 cpu_buffer->write_stamp =
2463 cpu_buffer->commit_page->page->time_stamp;
2464 /* add barrier to keep gcc from optimizing too much */
2465 barrier();
2466 }
2467 while (rb_commit_index(cpu_buffer) !=
2468 rb_page_write(cpu_buffer->commit_page)) {
2469
2470 local_set(&cpu_buffer->commit_page->page->commit,
2471 rb_page_write(cpu_buffer->commit_page));
2472 RB_WARN_ON(cpu_buffer,
2473 local_read(&cpu_buffer->commit_page->page->commit) &
2474 ~RB_WRITE_MASK);
2475 barrier();
2476 }
2477
2478 /* again, keep gcc from optimizing */
2479 barrier();
2480
2481 /*
2482 * If an interrupt came in just after the first while loop
2483 * and pushed the tail page forward, we will be left with
2484 * a dangling commit that will never go forward.
2485 */
2486 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2487 goto again;
2488 }
2489
rb_end_commit(struct ring_buffer_per_cpu * cpu_buffer)2490 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2491 {
2492 unsigned long commits;
2493
2494 if (RB_WARN_ON(cpu_buffer,
2495 !local_read(&cpu_buffer->committing)))
2496 return;
2497
2498 again:
2499 commits = local_read(&cpu_buffer->commits);
2500 /* synchronize with interrupts */
2501 barrier();
2502 if (local_read(&cpu_buffer->committing) == 1)
2503 rb_set_commit_to_write(cpu_buffer);
2504
2505 local_dec(&cpu_buffer->committing);
2506
2507 /* synchronize with interrupts */
2508 barrier();
2509
2510 /*
2511 * Need to account for interrupts coming in between the
2512 * updating of the commit page and the clearing of the
2513 * committing counter.
2514 */
2515 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2516 !local_read(&cpu_buffer->committing)) {
2517 local_inc(&cpu_buffer->committing);
2518 goto again;
2519 }
2520 }
2521
rb_event_discard(struct ring_buffer_event * event)2522 static inline void rb_event_discard(struct ring_buffer_event *event)
2523 {
2524 if (extended_time(event))
2525 event = skip_time_extend(event);
2526
2527 /* array[0] holds the actual length for the discarded event */
2528 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2529 event->type_len = RINGBUF_TYPE_PADDING;
2530 /* time delta must be non zero */
2531 if (!event->time_delta)
2532 event->time_delta = 1;
2533 }
2534
2535 static __always_inline bool
rb_event_is_commit(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)2536 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2537 struct ring_buffer_event *event)
2538 {
2539 unsigned long addr = (unsigned long)event;
2540 unsigned long index;
2541
2542 index = rb_event_index(event);
2543 addr &= PAGE_MASK;
2544
2545 return cpu_buffer->commit_page->page == (void *)addr &&
2546 rb_commit_index(cpu_buffer) == index;
2547 }
2548
2549 static __always_inline void
rb_update_write_stamp(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)2550 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2551 struct ring_buffer_event *event)
2552 {
2553 u64 delta;
2554
2555 /*
2556 * The event first in the commit queue updates the
2557 * time stamp.
2558 */
2559 if (rb_event_is_commit(cpu_buffer, event)) {
2560 /*
2561 * A commit event that is first on a page
2562 * updates the write timestamp with the page stamp
2563 */
2564 if (!rb_event_index(event))
2565 cpu_buffer->write_stamp =
2566 cpu_buffer->commit_page->page->time_stamp;
2567 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2568 delta = ring_buffer_event_time_stamp(event);
2569 cpu_buffer->write_stamp += delta;
2570 } else if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
2571 delta = ring_buffer_event_time_stamp(event);
2572 cpu_buffer->write_stamp = delta;
2573 } else
2574 cpu_buffer->write_stamp += event->time_delta;
2575 }
2576 }
2577
rb_commit(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)2578 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2579 struct ring_buffer_event *event)
2580 {
2581 local_inc(&cpu_buffer->entries);
2582 rb_update_write_stamp(cpu_buffer, event);
2583 rb_end_commit(cpu_buffer);
2584 }
2585
2586 static __always_inline void
rb_wakeups(struct ring_buffer * buffer,struct ring_buffer_per_cpu * cpu_buffer)2587 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2588 {
2589 bool pagebusy;
2590
2591 if (buffer->irq_work.waiters_pending) {
2592 buffer->irq_work.waiters_pending = false;
2593 /* irq_work_queue() supplies it's own memory barriers */
2594 irq_work_queue(&buffer->irq_work.work);
2595 }
2596
2597 if (cpu_buffer->irq_work.waiters_pending) {
2598 cpu_buffer->irq_work.waiters_pending = false;
2599 /* irq_work_queue() supplies it's own memory barriers */
2600 irq_work_queue(&cpu_buffer->irq_work.work);
2601 }
2602
2603 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
2604
2605 if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
2606 cpu_buffer->irq_work.wakeup_full = true;
2607 cpu_buffer->irq_work.full_waiters_pending = false;
2608 /* irq_work_queue() supplies it's own memory barriers */
2609 irq_work_queue(&cpu_buffer->irq_work.work);
2610 }
2611 }
2612
2613 /*
2614 * The lock and unlock are done within a preempt disable section.
2615 * The current_context per_cpu variable can only be modified
2616 * by the current task between lock and unlock. But it can
2617 * be modified more than once via an interrupt. To pass this
2618 * information from the lock to the unlock without having to
2619 * access the 'in_interrupt()' functions again (which do show
2620 * a bit of overhead in something as critical as function tracing,
2621 * we use a bitmask trick.
2622 *
2623 * bit 0 = NMI context
2624 * bit 1 = IRQ context
2625 * bit 2 = SoftIRQ context
2626 * bit 3 = normal context.
2627 *
2628 * This works because this is the order of contexts that can
2629 * preempt other contexts. A SoftIRQ never preempts an IRQ
2630 * context.
2631 *
2632 * When the context is determined, the corresponding bit is
2633 * checked and set (if it was set, then a recursion of that context
2634 * happened).
2635 *
2636 * On unlock, we need to clear this bit. To do so, just subtract
2637 * 1 from the current_context and AND it to itself.
2638 *
2639 * (binary)
2640 * 101 - 1 = 100
2641 * 101 & 100 = 100 (clearing bit zero)
2642 *
2643 * 1010 - 1 = 1001
2644 * 1010 & 1001 = 1000 (clearing bit 1)
2645 *
2646 * The least significant bit can be cleared this way, and it
2647 * just so happens that it is the same bit corresponding to
2648 * the current context.
2649 */
2650
2651 static __always_inline int
trace_recursive_lock(struct ring_buffer_per_cpu * cpu_buffer)2652 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2653 {
2654 unsigned int val = cpu_buffer->current_context;
2655 unsigned long pc = preempt_count();
2656 int bit;
2657
2658 if (!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET)))
2659 bit = RB_CTX_NORMAL;
2660 else
2661 bit = pc & NMI_MASK ? RB_CTX_NMI :
2662 pc & HARDIRQ_MASK ? RB_CTX_IRQ : RB_CTX_SOFTIRQ;
2663
2664 if (unlikely(val & (1 << (bit + cpu_buffer->nest))))
2665 return 1;
2666
2667 val |= (1 << (bit + cpu_buffer->nest));
2668 cpu_buffer->current_context = val;
2669
2670 return 0;
2671 }
2672
2673 static __always_inline void
trace_recursive_unlock(struct ring_buffer_per_cpu * cpu_buffer)2674 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2675 {
2676 cpu_buffer->current_context &=
2677 cpu_buffer->current_context - (1 << cpu_buffer->nest);
2678 }
2679
2680 /* The recursive locking above uses 4 bits */
2681 #define NESTED_BITS 4
2682
2683 /**
2684 * ring_buffer_nest_start - Allow to trace while nested
2685 * @buffer: The ring buffer to modify
2686 *
2687 * The ring buffer has a safety mechanism to prevent recursion.
2688 * But there may be a case where a trace needs to be done while
2689 * tracing something else. In this case, calling this function
2690 * will allow this function to nest within a currently active
2691 * ring_buffer_lock_reserve().
2692 *
2693 * Call this function before calling another ring_buffer_lock_reserve() and
2694 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
2695 */
ring_buffer_nest_start(struct ring_buffer * buffer)2696 void ring_buffer_nest_start(struct ring_buffer *buffer)
2697 {
2698 struct ring_buffer_per_cpu *cpu_buffer;
2699 int cpu;
2700
2701 /* Enabled by ring_buffer_nest_end() */
2702 preempt_disable_notrace();
2703 cpu = raw_smp_processor_id();
2704 cpu_buffer = buffer->buffers[cpu];
2705 /* This is the shift value for the above recursive locking */
2706 cpu_buffer->nest += NESTED_BITS;
2707 }
2708
2709 /**
2710 * ring_buffer_nest_end - Allow to trace while nested
2711 * @buffer: The ring buffer to modify
2712 *
2713 * Must be called after ring_buffer_nest_start() and after the
2714 * ring_buffer_unlock_commit().
2715 */
ring_buffer_nest_end(struct ring_buffer * buffer)2716 void ring_buffer_nest_end(struct ring_buffer *buffer)
2717 {
2718 struct ring_buffer_per_cpu *cpu_buffer;
2719 int cpu;
2720
2721 /* disabled by ring_buffer_nest_start() */
2722 cpu = raw_smp_processor_id();
2723 cpu_buffer = buffer->buffers[cpu];
2724 /* This is the shift value for the above recursive locking */
2725 cpu_buffer->nest -= NESTED_BITS;
2726 preempt_enable_notrace();
2727 }
2728
2729 /**
2730 * ring_buffer_unlock_commit - commit a reserved
2731 * @buffer: The buffer to commit to
2732 * @event: The event pointer to commit.
2733 *
2734 * This commits the data to the ring buffer, and releases any locks held.
2735 *
2736 * Must be paired with ring_buffer_lock_reserve.
2737 */
ring_buffer_unlock_commit(struct ring_buffer * buffer,struct ring_buffer_event * event)2738 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2739 struct ring_buffer_event *event)
2740 {
2741 struct ring_buffer_per_cpu *cpu_buffer;
2742 int cpu = raw_smp_processor_id();
2743
2744 cpu_buffer = buffer->buffers[cpu];
2745
2746 rb_commit(cpu_buffer, event);
2747
2748 rb_wakeups(buffer, cpu_buffer);
2749
2750 trace_recursive_unlock(cpu_buffer);
2751
2752 preempt_enable_notrace();
2753
2754 return 0;
2755 }
2756 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2757
2758 static noinline void
rb_handle_timestamp(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info)2759 rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2760 struct rb_event_info *info)
2761 {
2762 WARN_ONCE(info->delta > (1ULL << 59),
2763 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2764 (unsigned long long)info->delta,
2765 (unsigned long long)info->ts,
2766 (unsigned long long)cpu_buffer->write_stamp,
2767 sched_clock_stable() ? "" :
2768 "If you just came from a suspend/resume,\n"
2769 "please switch to the trace global clock:\n"
2770 " echo global > /sys/kernel/debug/tracing/trace_clock\n"
2771 "or add trace_clock=global to the kernel command line\n");
2772 info->add_timestamp = 1;
2773 }
2774
2775 static struct ring_buffer_event *
__rb_reserve_next(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info)2776 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2777 struct rb_event_info *info)
2778 {
2779 struct ring_buffer_event *event;
2780 struct buffer_page *tail_page;
2781 unsigned long tail, write;
2782
2783 /*
2784 * If the time delta since the last event is too big to
2785 * hold in the time field of the event, then we append a
2786 * TIME EXTEND event ahead of the data event.
2787 */
2788 if (unlikely(info->add_timestamp))
2789 info->length += RB_LEN_TIME_EXTEND;
2790
2791 /* Don't let the compiler play games with cpu_buffer->tail_page */
2792 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
2793 write = local_add_return(info->length, &tail_page->write);
2794
2795 /* set write to only the index of the write */
2796 write &= RB_WRITE_MASK;
2797 tail = write - info->length;
2798
2799 /*
2800 * If this is the first commit on the page, then it has the same
2801 * timestamp as the page itself.
2802 */
2803 if (!tail && !ring_buffer_time_stamp_abs(cpu_buffer->buffer))
2804 info->delta = 0;
2805
2806 /* See if we shot pass the end of this buffer page */
2807 if (unlikely(write > BUF_PAGE_SIZE))
2808 return rb_move_tail(cpu_buffer, tail, info);
2809
2810 /* We reserved something on the buffer */
2811
2812 event = __rb_page_index(tail_page, tail);
2813 rb_update_event(cpu_buffer, event, info);
2814
2815 local_inc(&tail_page->entries);
2816
2817 /*
2818 * If this is the first commit on the page, then update
2819 * its timestamp.
2820 */
2821 if (!tail)
2822 tail_page->page->time_stamp = info->ts;
2823
2824 /* account for these added bytes */
2825 local_add(info->length, &cpu_buffer->entries_bytes);
2826
2827 return event;
2828 }
2829
2830 static __always_inline struct ring_buffer_event *
rb_reserve_next_event(struct ring_buffer * buffer,struct ring_buffer_per_cpu * cpu_buffer,unsigned long length)2831 rb_reserve_next_event(struct ring_buffer *buffer,
2832 struct ring_buffer_per_cpu *cpu_buffer,
2833 unsigned long length)
2834 {
2835 struct ring_buffer_event *event;
2836 struct rb_event_info info;
2837 int nr_loops = 0;
2838 u64 diff;
2839
2840 rb_start_commit(cpu_buffer);
2841
2842 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2843 /*
2844 * Due to the ability to swap a cpu buffer from a buffer
2845 * it is possible it was swapped before we committed.
2846 * (committing stops a swap). We check for it here and
2847 * if it happened, we have to fail the write.
2848 */
2849 barrier();
2850 if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
2851 local_dec(&cpu_buffer->committing);
2852 local_dec(&cpu_buffer->commits);
2853 return NULL;
2854 }
2855 #endif
2856
2857 info.length = rb_calculate_event_length(length);
2858 again:
2859 info.add_timestamp = 0;
2860 info.delta = 0;
2861
2862 /*
2863 * We allow for interrupts to reenter here and do a trace.
2864 * If one does, it will cause this original code to loop
2865 * back here. Even with heavy interrupts happening, this
2866 * should only happen a few times in a row. If this happens
2867 * 1000 times in a row, there must be either an interrupt
2868 * storm or we have something buggy.
2869 * Bail!
2870 */
2871 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2872 goto out_fail;
2873
2874 info.ts = rb_time_stamp(cpu_buffer->buffer);
2875 diff = info.ts - cpu_buffer->write_stamp;
2876
2877 /* make sure this diff is calculated here */
2878 barrier();
2879
2880 if (ring_buffer_time_stamp_abs(buffer)) {
2881 info.delta = info.ts;
2882 rb_handle_timestamp(cpu_buffer, &info);
2883 } else /* Did the write stamp get updated already? */
2884 if (likely(info.ts >= cpu_buffer->write_stamp)) {
2885 info.delta = diff;
2886 if (unlikely(test_time_stamp(info.delta)))
2887 rb_handle_timestamp(cpu_buffer, &info);
2888 }
2889
2890 event = __rb_reserve_next(cpu_buffer, &info);
2891
2892 if (unlikely(PTR_ERR(event) == -EAGAIN)) {
2893 if (info.add_timestamp)
2894 info.length -= RB_LEN_TIME_EXTEND;
2895 goto again;
2896 }
2897
2898 if (!event)
2899 goto out_fail;
2900
2901 return event;
2902
2903 out_fail:
2904 rb_end_commit(cpu_buffer);
2905 return NULL;
2906 }
2907
2908 /**
2909 * ring_buffer_lock_reserve - reserve a part of the buffer
2910 * @buffer: the ring buffer to reserve from
2911 * @length: the length of the data to reserve (excluding event header)
2912 *
2913 * Returns a reserved event on the ring buffer to copy directly to.
2914 * The user of this interface will need to get the body to write into
2915 * and can use the ring_buffer_event_data() interface.
2916 *
2917 * The length is the length of the data needed, not the event length
2918 * which also includes the event header.
2919 *
2920 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2921 * If NULL is returned, then nothing has been allocated or locked.
2922 */
2923 struct ring_buffer_event *
ring_buffer_lock_reserve(struct ring_buffer * buffer,unsigned long length)2924 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2925 {
2926 struct ring_buffer_per_cpu *cpu_buffer;
2927 struct ring_buffer_event *event;
2928 int cpu;
2929
2930 /* If we are tracing schedule, we don't want to recurse */
2931 preempt_disable_notrace();
2932
2933 if (unlikely(atomic_read(&buffer->record_disabled)))
2934 goto out;
2935
2936 cpu = raw_smp_processor_id();
2937
2938 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
2939 goto out;
2940
2941 cpu_buffer = buffer->buffers[cpu];
2942
2943 if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
2944 goto out;
2945
2946 if (unlikely(length > BUF_MAX_DATA_SIZE))
2947 goto out;
2948
2949 if (unlikely(trace_recursive_lock(cpu_buffer)))
2950 goto out;
2951
2952 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2953 if (!event)
2954 goto out_unlock;
2955
2956 return event;
2957
2958 out_unlock:
2959 trace_recursive_unlock(cpu_buffer);
2960 out:
2961 preempt_enable_notrace();
2962 return NULL;
2963 }
2964 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2965
2966 /*
2967 * Decrement the entries to the page that an event is on.
2968 * The event does not even need to exist, only the pointer
2969 * to the page it is on. This may only be called before the commit
2970 * takes place.
2971 */
2972 static inline void
rb_decrement_entry(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)2973 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2974 struct ring_buffer_event *event)
2975 {
2976 unsigned long addr = (unsigned long)event;
2977 struct buffer_page *bpage = cpu_buffer->commit_page;
2978 struct buffer_page *start;
2979
2980 addr &= PAGE_MASK;
2981
2982 /* Do the likely case first */
2983 if (likely(bpage->page == (void *)addr)) {
2984 local_dec(&bpage->entries);
2985 return;
2986 }
2987
2988 /*
2989 * Because the commit page may be on the reader page we
2990 * start with the next page and check the end loop there.
2991 */
2992 rb_inc_page(cpu_buffer, &bpage);
2993 start = bpage;
2994 do {
2995 if (bpage->page == (void *)addr) {
2996 local_dec(&bpage->entries);
2997 return;
2998 }
2999 rb_inc_page(cpu_buffer, &bpage);
3000 } while (bpage != start);
3001
3002 /* commit not part of this buffer?? */
3003 RB_WARN_ON(cpu_buffer, 1);
3004 }
3005
3006 /**
3007 * ring_buffer_commit_discard - discard an event that has not been committed
3008 * @buffer: the ring buffer
3009 * @event: non committed event to discard
3010 *
3011 * Sometimes an event that is in the ring buffer needs to be ignored.
3012 * This function lets the user discard an event in the ring buffer
3013 * and then that event will not be read later.
3014 *
3015 * This function only works if it is called before the item has been
3016 * committed. It will try to free the event from the ring buffer
3017 * if another event has not been added behind it.
3018 *
3019 * If another event has been added behind it, it will set the event
3020 * up as discarded, and perform the commit.
3021 *
3022 * If this function is called, do not call ring_buffer_unlock_commit on
3023 * the event.
3024 */
ring_buffer_discard_commit(struct ring_buffer * buffer,struct ring_buffer_event * event)3025 void ring_buffer_discard_commit(struct ring_buffer *buffer,
3026 struct ring_buffer_event *event)
3027 {
3028 struct ring_buffer_per_cpu *cpu_buffer;
3029 int cpu;
3030
3031 /* The event is discarded regardless */
3032 rb_event_discard(event);
3033
3034 cpu = smp_processor_id();
3035 cpu_buffer = buffer->buffers[cpu];
3036
3037 /*
3038 * This must only be called if the event has not been
3039 * committed yet. Thus we can assume that preemption
3040 * is still disabled.
3041 */
3042 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3043
3044 rb_decrement_entry(cpu_buffer, event);
3045 if (rb_try_to_discard(cpu_buffer, event))
3046 goto out;
3047
3048 /*
3049 * The commit is still visible by the reader, so we
3050 * must still update the timestamp.
3051 */
3052 rb_update_write_stamp(cpu_buffer, event);
3053 out:
3054 rb_end_commit(cpu_buffer);
3055
3056 trace_recursive_unlock(cpu_buffer);
3057
3058 preempt_enable_notrace();
3059
3060 }
3061 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3062
3063 /**
3064 * ring_buffer_write - write data to the buffer without reserving
3065 * @buffer: The ring buffer to write to.
3066 * @length: The length of the data being written (excluding the event header)
3067 * @data: The data to write to the buffer.
3068 *
3069 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3070 * one function. If you already have the data to write to the buffer, it
3071 * may be easier to simply call this function.
3072 *
3073 * Note, like ring_buffer_lock_reserve, the length is the length of the data
3074 * and not the length of the event which would hold the header.
3075 */
ring_buffer_write(struct ring_buffer * buffer,unsigned long length,void * data)3076 int ring_buffer_write(struct ring_buffer *buffer,
3077 unsigned long length,
3078 void *data)
3079 {
3080 struct ring_buffer_per_cpu *cpu_buffer;
3081 struct ring_buffer_event *event;
3082 void *body;
3083 int ret = -EBUSY;
3084 int cpu;
3085
3086 preempt_disable_notrace();
3087
3088 if (atomic_read(&buffer->record_disabled))
3089 goto out;
3090
3091 cpu = raw_smp_processor_id();
3092
3093 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3094 goto out;
3095
3096 cpu_buffer = buffer->buffers[cpu];
3097
3098 if (atomic_read(&cpu_buffer->record_disabled))
3099 goto out;
3100
3101 if (length > BUF_MAX_DATA_SIZE)
3102 goto out;
3103
3104 if (unlikely(trace_recursive_lock(cpu_buffer)))
3105 goto out;
3106
3107 event = rb_reserve_next_event(buffer, cpu_buffer, length);
3108 if (!event)
3109 goto out_unlock;
3110
3111 body = rb_event_data(event);
3112
3113 memcpy(body, data, length);
3114
3115 rb_commit(cpu_buffer, event);
3116
3117 rb_wakeups(buffer, cpu_buffer);
3118
3119 ret = 0;
3120
3121 out_unlock:
3122 trace_recursive_unlock(cpu_buffer);
3123
3124 out:
3125 preempt_enable_notrace();
3126
3127 return ret;
3128 }
3129 EXPORT_SYMBOL_GPL(ring_buffer_write);
3130
rb_per_cpu_empty(struct ring_buffer_per_cpu * cpu_buffer)3131 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3132 {
3133 struct buffer_page *reader = cpu_buffer->reader_page;
3134 struct buffer_page *head = rb_set_head_page(cpu_buffer);
3135 struct buffer_page *commit = cpu_buffer->commit_page;
3136
3137 /* In case of error, head will be NULL */
3138 if (unlikely(!head))
3139 return true;
3140
3141 return reader->read == rb_page_commit(reader) &&
3142 (commit == reader ||
3143 (commit == head &&
3144 head->read == rb_page_commit(commit)));
3145 }
3146
3147 /**
3148 * ring_buffer_record_disable - stop all writes into the buffer
3149 * @buffer: The ring buffer to stop writes to.
3150 *
3151 * This prevents all writes to the buffer. Any attempt to write
3152 * to the buffer after this will fail and return NULL.
3153 *
3154 * The caller should call synchronize_sched() after this.
3155 */
ring_buffer_record_disable(struct ring_buffer * buffer)3156 void ring_buffer_record_disable(struct ring_buffer *buffer)
3157 {
3158 atomic_inc(&buffer->record_disabled);
3159 }
3160 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3161
3162 /**
3163 * ring_buffer_record_enable - enable writes to the buffer
3164 * @buffer: The ring buffer to enable writes
3165 *
3166 * Note, multiple disables will need the same number of enables
3167 * to truly enable the writing (much like preempt_disable).
3168 */
ring_buffer_record_enable(struct ring_buffer * buffer)3169 void ring_buffer_record_enable(struct ring_buffer *buffer)
3170 {
3171 atomic_dec(&buffer->record_disabled);
3172 }
3173 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3174
3175 /**
3176 * ring_buffer_record_off - stop all writes into the buffer
3177 * @buffer: The ring buffer to stop writes to.
3178 *
3179 * This prevents all writes to the buffer. Any attempt to write
3180 * to the buffer after this will fail and return NULL.
3181 *
3182 * This is different than ring_buffer_record_disable() as
3183 * it works like an on/off switch, where as the disable() version
3184 * must be paired with a enable().
3185 */
ring_buffer_record_off(struct ring_buffer * buffer)3186 void ring_buffer_record_off(struct ring_buffer *buffer)
3187 {
3188 unsigned int rd;
3189 unsigned int new_rd;
3190
3191 do {
3192 rd = atomic_read(&buffer->record_disabled);
3193 new_rd = rd | RB_BUFFER_OFF;
3194 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3195 }
3196 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3197
3198 /**
3199 * ring_buffer_record_on - restart writes into the buffer
3200 * @buffer: The ring buffer to start writes to.
3201 *
3202 * This enables all writes to the buffer that was disabled by
3203 * ring_buffer_record_off().
3204 *
3205 * This is different than ring_buffer_record_enable() as
3206 * it works like an on/off switch, where as the enable() version
3207 * must be paired with a disable().
3208 */
ring_buffer_record_on(struct ring_buffer * buffer)3209 void ring_buffer_record_on(struct ring_buffer *buffer)
3210 {
3211 unsigned int rd;
3212 unsigned int new_rd;
3213
3214 do {
3215 rd = atomic_read(&buffer->record_disabled);
3216 new_rd = rd & ~RB_BUFFER_OFF;
3217 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3218 }
3219 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3220
3221 /**
3222 * ring_buffer_record_is_on - return true if the ring buffer can write
3223 * @buffer: The ring buffer to see if write is enabled
3224 *
3225 * Returns true if the ring buffer is in a state that it accepts writes.
3226 */
ring_buffer_record_is_on(struct ring_buffer * buffer)3227 bool ring_buffer_record_is_on(struct ring_buffer *buffer)
3228 {
3229 return !atomic_read(&buffer->record_disabled);
3230 }
3231
3232 /**
3233 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
3234 * @buffer: The ring buffer to see if write is set enabled
3235 *
3236 * Returns true if the ring buffer is set writable by ring_buffer_record_on().
3237 * Note that this does NOT mean it is in a writable state.
3238 *
3239 * It may return true when the ring buffer has been disabled by
3240 * ring_buffer_record_disable(), as that is a temporary disabling of
3241 * the ring buffer.
3242 */
ring_buffer_record_is_set_on(struct ring_buffer * buffer)3243 bool ring_buffer_record_is_set_on(struct ring_buffer *buffer)
3244 {
3245 return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
3246 }
3247
3248 /**
3249 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3250 * @buffer: The ring buffer to stop writes to.
3251 * @cpu: The CPU buffer to stop
3252 *
3253 * This prevents all writes to the buffer. Any attempt to write
3254 * to the buffer after this will fail and return NULL.
3255 *
3256 * The caller should call synchronize_sched() after this.
3257 */
ring_buffer_record_disable_cpu(struct ring_buffer * buffer,int cpu)3258 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3259 {
3260 struct ring_buffer_per_cpu *cpu_buffer;
3261
3262 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3263 return;
3264
3265 cpu_buffer = buffer->buffers[cpu];
3266 atomic_inc(&cpu_buffer->record_disabled);
3267 }
3268 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3269
3270 /**
3271 * ring_buffer_record_enable_cpu - enable writes to the buffer
3272 * @buffer: The ring buffer to enable writes
3273 * @cpu: The CPU to enable.
3274 *
3275 * Note, multiple disables will need the same number of enables
3276 * to truly enable the writing (much like preempt_disable).
3277 */
ring_buffer_record_enable_cpu(struct ring_buffer * buffer,int cpu)3278 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3279 {
3280 struct ring_buffer_per_cpu *cpu_buffer;
3281
3282 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3283 return;
3284
3285 cpu_buffer = buffer->buffers[cpu];
3286 atomic_dec(&cpu_buffer->record_disabled);
3287 }
3288 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3289
3290 /*
3291 * The total entries in the ring buffer is the running counter
3292 * of entries entered into the ring buffer, minus the sum of
3293 * the entries read from the ring buffer and the number of
3294 * entries that were overwritten.
3295 */
3296 static inline unsigned long
rb_num_of_entries(struct ring_buffer_per_cpu * cpu_buffer)3297 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3298 {
3299 return local_read(&cpu_buffer->entries) -
3300 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3301 }
3302
3303 /**
3304 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3305 * @buffer: The ring buffer
3306 * @cpu: The per CPU buffer to read from.
3307 */
ring_buffer_oldest_event_ts(struct ring_buffer * buffer,int cpu)3308 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3309 {
3310 unsigned long flags;
3311 struct ring_buffer_per_cpu *cpu_buffer;
3312 struct buffer_page *bpage;
3313 u64 ret = 0;
3314
3315 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3316 return 0;
3317
3318 cpu_buffer = buffer->buffers[cpu];
3319 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3320 /*
3321 * if the tail is on reader_page, oldest time stamp is on the reader
3322 * page
3323 */
3324 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3325 bpage = cpu_buffer->reader_page;
3326 else
3327 bpage = rb_set_head_page(cpu_buffer);
3328 if (bpage)
3329 ret = bpage->page->time_stamp;
3330 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3331
3332 return ret;
3333 }
3334 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3335
3336 /**
3337 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3338 * @buffer: The ring buffer
3339 * @cpu: The per CPU buffer to read from.
3340 */
ring_buffer_bytes_cpu(struct ring_buffer * buffer,int cpu)3341 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3342 {
3343 struct ring_buffer_per_cpu *cpu_buffer;
3344 unsigned long ret;
3345
3346 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3347 return 0;
3348
3349 cpu_buffer = buffer->buffers[cpu];
3350 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3351
3352 return ret;
3353 }
3354 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3355
3356 /**
3357 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3358 * @buffer: The ring buffer
3359 * @cpu: The per CPU buffer to get the entries from.
3360 */
ring_buffer_entries_cpu(struct ring_buffer * buffer,int cpu)3361 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3362 {
3363 struct ring_buffer_per_cpu *cpu_buffer;
3364
3365 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3366 return 0;
3367
3368 cpu_buffer = buffer->buffers[cpu];
3369
3370 return rb_num_of_entries(cpu_buffer);
3371 }
3372 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3373
3374 /**
3375 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3376 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3377 * @buffer: The ring buffer
3378 * @cpu: The per CPU buffer to get the number of overruns from
3379 */
ring_buffer_overrun_cpu(struct ring_buffer * buffer,int cpu)3380 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3381 {
3382 struct ring_buffer_per_cpu *cpu_buffer;
3383 unsigned long ret;
3384
3385 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3386 return 0;
3387
3388 cpu_buffer = buffer->buffers[cpu];
3389 ret = local_read(&cpu_buffer->overrun);
3390
3391 return ret;
3392 }
3393 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3394
3395 /**
3396 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3397 * commits failing due to the buffer wrapping around while there are uncommitted
3398 * events, such as during an interrupt storm.
3399 * @buffer: The ring buffer
3400 * @cpu: The per CPU buffer to get the number of overruns from
3401 */
3402 unsigned long
ring_buffer_commit_overrun_cpu(struct ring_buffer * buffer,int cpu)3403 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3404 {
3405 struct ring_buffer_per_cpu *cpu_buffer;
3406 unsigned long ret;
3407
3408 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3409 return 0;
3410
3411 cpu_buffer = buffer->buffers[cpu];
3412 ret = local_read(&cpu_buffer->commit_overrun);
3413
3414 return ret;
3415 }
3416 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3417
3418 /**
3419 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3420 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3421 * @buffer: The ring buffer
3422 * @cpu: The per CPU buffer to get the number of overruns from
3423 */
3424 unsigned long
ring_buffer_dropped_events_cpu(struct ring_buffer * buffer,int cpu)3425 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3426 {
3427 struct ring_buffer_per_cpu *cpu_buffer;
3428 unsigned long ret;
3429
3430 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3431 return 0;
3432
3433 cpu_buffer = buffer->buffers[cpu];
3434 ret = local_read(&cpu_buffer->dropped_events);
3435
3436 return ret;
3437 }
3438 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3439
3440 /**
3441 * ring_buffer_read_events_cpu - get the number of events successfully read
3442 * @buffer: The ring buffer
3443 * @cpu: The per CPU buffer to get the number of events read
3444 */
3445 unsigned long
ring_buffer_read_events_cpu(struct ring_buffer * buffer,int cpu)3446 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3447 {
3448 struct ring_buffer_per_cpu *cpu_buffer;
3449
3450 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3451 return 0;
3452
3453 cpu_buffer = buffer->buffers[cpu];
3454 return cpu_buffer->read;
3455 }
3456 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3457
3458 /**
3459 * ring_buffer_entries - get the number of entries in a buffer
3460 * @buffer: The ring buffer
3461 *
3462 * Returns the total number of entries in the ring buffer
3463 * (all CPU entries)
3464 */
ring_buffer_entries(struct ring_buffer * buffer)3465 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3466 {
3467 struct ring_buffer_per_cpu *cpu_buffer;
3468 unsigned long entries = 0;
3469 int cpu;
3470
3471 /* if you care about this being correct, lock the buffer */
3472 for_each_buffer_cpu(buffer, cpu) {
3473 cpu_buffer = buffer->buffers[cpu];
3474 entries += rb_num_of_entries(cpu_buffer);
3475 }
3476
3477 return entries;
3478 }
3479 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3480
3481 /**
3482 * ring_buffer_overruns - get the number of overruns in buffer
3483 * @buffer: The ring buffer
3484 *
3485 * Returns the total number of overruns in the ring buffer
3486 * (all CPU entries)
3487 */
ring_buffer_overruns(struct ring_buffer * buffer)3488 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3489 {
3490 struct ring_buffer_per_cpu *cpu_buffer;
3491 unsigned long overruns = 0;
3492 int cpu;
3493
3494 /* if you care about this being correct, lock the buffer */
3495 for_each_buffer_cpu(buffer, cpu) {
3496 cpu_buffer = buffer->buffers[cpu];
3497 overruns += local_read(&cpu_buffer->overrun);
3498 }
3499
3500 return overruns;
3501 }
3502 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3503
rb_iter_reset(struct ring_buffer_iter * iter)3504 static void rb_iter_reset(struct ring_buffer_iter *iter)
3505 {
3506 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3507
3508 /* Iterator usage is expected to have record disabled */
3509 iter->head_page = cpu_buffer->reader_page;
3510 iter->head = cpu_buffer->reader_page->read;
3511
3512 iter->cache_reader_page = iter->head_page;
3513 iter->cache_read = cpu_buffer->read;
3514
3515 if (iter->head)
3516 iter->read_stamp = cpu_buffer->read_stamp;
3517 else
3518 iter->read_stamp = iter->head_page->page->time_stamp;
3519 }
3520
3521 /**
3522 * ring_buffer_iter_reset - reset an iterator
3523 * @iter: The iterator to reset
3524 *
3525 * Resets the iterator, so that it will start from the beginning
3526 * again.
3527 */
ring_buffer_iter_reset(struct ring_buffer_iter * iter)3528 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3529 {
3530 struct ring_buffer_per_cpu *cpu_buffer;
3531 unsigned long flags;
3532
3533 if (!iter)
3534 return;
3535
3536 cpu_buffer = iter->cpu_buffer;
3537
3538 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3539 rb_iter_reset(iter);
3540 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3541 }
3542 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3543
3544 /**
3545 * ring_buffer_iter_empty - check if an iterator has no more to read
3546 * @iter: The iterator to check
3547 */
ring_buffer_iter_empty(struct ring_buffer_iter * iter)3548 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3549 {
3550 struct ring_buffer_per_cpu *cpu_buffer;
3551 struct buffer_page *reader;
3552 struct buffer_page *head_page;
3553 struct buffer_page *commit_page;
3554 unsigned commit;
3555
3556 cpu_buffer = iter->cpu_buffer;
3557
3558 /* Remember, trace recording is off when iterator is in use */
3559 reader = cpu_buffer->reader_page;
3560 head_page = cpu_buffer->head_page;
3561 commit_page = cpu_buffer->commit_page;
3562 commit = rb_page_commit(commit_page);
3563
3564 return ((iter->head_page == commit_page && iter->head == commit) ||
3565 (iter->head_page == reader && commit_page == head_page &&
3566 head_page->read == commit &&
3567 iter->head == rb_page_commit(cpu_buffer->reader_page)));
3568 }
3569 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3570
3571 static void
rb_update_read_stamp(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)3572 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3573 struct ring_buffer_event *event)
3574 {
3575 u64 delta;
3576
3577 switch (event->type_len) {
3578 case RINGBUF_TYPE_PADDING:
3579 return;
3580
3581 case RINGBUF_TYPE_TIME_EXTEND:
3582 delta = ring_buffer_event_time_stamp(event);
3583 cpu_buffer->read_stamp += delta;
3584 return;
3585
3586 case RINGBUF_TYPE_TIME_STAMP:
3587 delta = ring_buffer_event_time_stamp(event);
3588 cpu_buffer->read_stamp = delta;
3589 return;
3590
3591 case RINGBUF_TYPE_DATA:
3592 cpu_buffer->read_stamp += event->time_delta;
3593 return;
3594
3595 default:
3596 BUG();
3597 }
3598 return;
3599 }
3600
3601 static void
rb_update_iter_read_stamp(struct ring_buffer_iter * iter,struct ring_buffer_event * event)3602 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3603 struct ring_buffer_event *event)
3604 {
3605 u64 delta;
3606
3607 switch (event->type_len) {
3608 case RINGBUF_TYPE_PADDING:
3609 return;
3610
3611 case RINGBUF_TYPE_TIME_EXTEND:
3612 delta = ring_buffer_event_time_stamp(event);
3613 iter->read_stamp += delta;
3614 return;
3615
3616 case RINGBUF_TYPE_TIME_STAMP:
3617 delta = ring_buffer_event_time_stamp(event);
3618 iter->read_stamp = delta;
3619 return;
3620
3621 case RINGBUF_TYPE_DATA:
3622 iter->read_stamp += event->time_delta;
3623 return;
3624
3625 default:
3626 BUG();
3627 }
3628 return;
3629 }
3630
3631 static struct buffer_page *
rb_get_reader_page(struct ring_buffer_per_cpu * cpu_buffer)3632 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3633 {
3634 struct buffer_page *reader = NULL;
3635 unsigned long overwrite;
3636 unsigned long flags;
3637 int nr_loops = 0;
3638 int ret;
3639
3640 local_irq_save(flags);
3641 arch_spin_lock(&cpu_buffer->lock);
3642
3643 again:
3644 /*
3645 * This should normally only loop twice. But because the
3646 * start of the reader inserts an empty page, it causes
3647 * a case where we will loop three times. There should be no
3648 * reason to loop four times (that I know of).
3649 */
3650 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3651 reader = NULL;
3652 goto out;
3653 }
3654
3655 reader = cpu_buffer->reader_page;
3656
3657 /* If there's more to read, return this page */
3658 if (cpu_buffer->reader_page->read < rb_page_size(reader))
3659 goto out;
3660
3661 /* Never should we have an index greater than the size */
3662 if (RB_WARN_ON(cpu_buffer,
3663 cpu_buffer->reader_page->read > rb_page_size(reader)))
3664 goto out;
3665
3666 /* check if we caught up to the tail */
3667 reader = NULL;
3668 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3669 goto out;
3670
3671 /* Don't bother swapping if the ring buffer is empty */
3672 if (rb_num_of_entries(cpu_buffer) == 0)
3673 goto out;
3674
3675 /*
3676 * Reset the reader page to size zero.
3677 */
3678 local_set(&cpu_buffer->reader_page->write, 0);
3679 local_set(&cpu_buffer->reader_page->entries, 0);
3680 local_set(&cpu_buffer->reader_page->page->commit, 0);
3681 cpu_buffer->reader_page->real_end = 0;
3682
3683 spin:
3684 /*
3685 * Splice the empty reader page into the list around the head.
3686 */
3687 reader = rb_set_head_page(cpu_buffer);
3688 if (!reader)
3689 goto out;
3690 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3691 cpu_buffer->reader_page->list.prev = reader->list.prev;
3692
3693 /*
3694 * cpu_buffer->pages just needs to point to the buffer, it
3695 * has no specific buffer page to point to. Lets move it out
3696 * of our way so we don't accidentally swap it.
3697 */
3698 cpu_buffer->pages = reader->list.prev;
3699
3700 /* The reader page will be pointing to the new head */
3701 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3702
3703 /*
3704 * We want to make sure we read the overruns after we set up our
3705 * pointers to the next object. The writer side does a
3706 * cmpxchg to cross pages which acts as the mb on the writer
3707 * side. Note, the reader will constantly fail the swap
3708 * while the writer is updating the pointers, so this
3709 * guarantees that the overwrite recorded here is the one we
3710 * want to compare with the last_overrun.
3711 */
3712 smp_mb();
3713 overwrite = local_read(&(cpu_buffer->overrun));
3714
3715 /*
3716 * Here's the tricky part.
3717 *
3718 * We need to move the pointer past the header page.
3719 * But we can only do that if a writer is not currently
3720 * moving it. The page before the header page has the
3721 * flag bit '1' set if it is pointing to the page we want.
3722 * but if the writer is in the process of moving it
3723 * than it will be '2' or already moved '0'.
3724 */
3725
3726 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3727
3728 /*
3729 * If we did not convert it, then we must try again.
3730 */
3731 if (!ret)
3732 goto spin;
3733
3734 /*
3735 * Yeah! We succeeded in replacing the page.
3736 *
3737 * Now make the new head point back to the reader page.
3738 */
3739 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3740 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3741
3742 /* Finally update the reader page to the new head */
3743 cpu_buffer->reader_page = reader;
3744 cpu_buffer->reader_page->read = 0;
3745
3746 if (overwrite != cpu_buffer->last_overrun) {
3747 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3748 cpu_buffer->last_overrun = overwrite;
3749 }
3750
3751 goto again;
3752
3753 out:
3754 /* Update the read_stamp on the first event */
3755 if (reader && reader->read == 0)
3756 cpu_buffer->read_stamp = reader->page->time_stamp;
3757
3758 arch_spin_unlock(&cpu_buffer->lock);
3759 local_irq_restore(flags);
3760
3761 return reader;
3762 }
3763
rb_advance_reader(struct ring_buffer_per_cpu * cpu_buffer)3764 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3765 {
3766 struct ring_buffer_event *event;
3767 struct buffer_page *reader;
3768 unsigned length;
3769
3770 reader = rb_get_reader_page(cpu_buffer);
3771
3772 /* This function should not be called when buffer is empty */
3773 if (RB_WARN_ON(cpu_buffer, !reader))
3774 return;
3775
3776 event = rb_reader_event(cpu_buffer);
3777
3778 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3779 cpu_buffer->read++;
3780
3781 rb_update_read_stamp(cpu_buffer, event);
3782
3783 length = rb_event_length(event);
3784 cpu_buffer->reader_page->read += length;
3785 }
3786
rb_advance_iter(struct ring_buffer_iter * iter)3787 static void rb_advance_iter(struct ring_buffer_iter *iter)
3788 {
3789 struct ring_buffer_per_cpu *cpu_buffer;
3790 struct ring_buffer_event *event;
3791 unsigned length;
3792
3793 cpu_buffer = iter->cpu_buffer;
3794
3795 /*
3796 * Check if we are at the end of the buffer.
3797 */
3798 if (iter->head >= rb_page_size(iter->head_page)) {
3799 /* discarded commits can make the page empty */
3800 if (iter->head_page == cpu_buffer->commit_page)
3801 return;
3802 rb_inc_iter(iter);
3803 return;
3804 }
3805
3806 event = rb_iter_head_event(iter);
3807
3808 length = rb_event_length(event);
3809
3810 /*
3811 * This should not be called to advance the header if we are
3812 * at the tail of the buffer.
3813 */
3814 if (RB_WARN_ON(cpu_buffer,
3815 (iter->head_page == cpu_buffer->commit_page) &&
3816 (iter->head + length > rb_commit_index(cpu_buffer))))
3817 return;
3818
3819 rb_update_iter_read_stamp(iter, event);
3820
3821 iter->head += length;
3822
3823 /* check for end of page padding */
3824 if ((iter->head >= rb_page_size(iter->head_page)) &&
3825 (iter->head_page != cpu_buffer->commit_page))
3826 rb_inc_iter(iter);
3827 }
3828
rb_lost_events(struct ring_buffer_per_cpu * cpu_buffer)3829 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3830 {
3831 return cpu_buffer->lost_events;
3832 }
3833
3834 static struct ring_buffer_event *
rb_buffer_peek(struct ring_buffer_per_cpu * cpu_buffer,u64 * ts,unsigned long * lost_events)3835 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3836 unsigned long *lost_events)
3837 {
3838 struct ring_buffer_event *event;
3839 struct buffer_page *reader;
3840 int nr_loops = 0;
3841
3842 if (ts)
3843 *ts = 0;
3844 again:
3845 /*
3846 * We repeat when a time extend is encountered.
3847 * Since the time extend is always attached to a data event,
3848 * we should never loop more than once.
3849 * (We never hit the following condition more than twice).
3850 */
3851 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3852 return NULL;
3853
3854 reader = rb_get_reader_page(cpu_buffer);
3855 if (!reader)
3856 return NULL;
3857
3858 event = rb_reader_event(cpu_buffer);
3859
3860 switch (event->type_len) {
3861 case RINGBUF_TYPE_PADDING:
3862 if (rb_null_event(event))
3863 RB_WARN_ON(cpu_buffer, 1);
3864 /*
3865 * Because the writer could be discarding every
3866 * event it creates (which would probably be bad)
3867 * if we were to go back to "again" then we may never
3868 * catch up, and will trigger the warn on, or lock
3869 * the box. Return the padding, and we will release
3870 * the current locks, and try again.
3871 */
3872 return event;
3873
3874 case RINGBUF_TYPE_TIME_EXTEND:
3875 /* Internal data, OK to advance */
3876 rb_advance_reader(cpu_buffer);
3877 goto again;
3878
3879 case RINGBUF_TYPE_TIME_STAMP:
3880 if (ts) {
3881 *ts = ring_buffer_event_time_stamp(event);
3882 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3883 cpu_buffer->cpu, ts);
3884 }
3885 /* Internal data, OK to advance */
3886 rb_advance_reader(cpu_buffer);
3887 goto again;
3888
3889 case RINGBUF_TYPE_DATA:
3890 if (ts && !(*ts)) {
3891 *ts = cpu_buffer->read_stamp + event->time_delta;
3892 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3893 cpu_buffer->cpu, ts);
3894 }
3895 if (lost_events)
3896 *lost_events = rb_lost_events(cpu_buffer);
3897 return event;
3898
3899 default:
3900 BUG();
3901 }
3902
3903 return NULL;
3904 }
3905 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3906
3907 static struct ring_buffer_event *
rb_iter_peek(struct ring_buffer_iter * iter,u64 * ts)3908 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3909 {
3910 struct ring_buffer *buffer;
3911 struct ring_buffer_per_cpu *cpu_buffer;
3912 struct ring_buffer_event *event;
3913 int nr_loops = 0;
3914
3915 if (ts)
3916 *ts = 0;
3917
3918 cpu_buffer = iter->cpu_buffer;
3919 buffer = cpu_buffer->buffer;
3920
3921 /*
3922 * Check if someone performed a consuming read to
3923 * the buffer. A consuming read invalidates the iterator
3924 * and we need to reset the iterator in this case.
3925 */
3926 if (unlikely(iter->cache_read != cpu_buffer->read ||
3927 iter->cache_reader_page != cpu_buffer->reader_page))
3928 rb_iter_reset(iter);
3929
3930 again:
3931 if (ring_buffer_iter_empty(iter))
3932 return NULL;
3933
3934 /*
3935 * We repeat when a time extend is encountered or we hit
3936 * the end of the page. Since the time extend is always attached
3937 * to a data event, we should never loop more than three times.
3938 * Once for going to next page, once on time extend, and
3939 * finally once to get the event.
3940 * (We never hit the following condition more than thrice).
3941 */
3942 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3943 return NULL;
3944
3945 if (rb_per_cpu_empty(cpu_buffer))
3946 return NULL;
3947
3948 if (iter->head >= rb_page_size(iter->head_page)) {
3949 rb_inc_iter(iter);
3950 goto again;
3951 }
3952
3953 event = rb_iter_head_event(iter);
3954
3955 switch (event->type_len) {
3956 case RINGBUF_TYPE_PADDING:
3957 if (rb_null_event(event)) {
3958 rb_inc_iter(iter);
3959 goto again;
3960 }
3961 rb_advance_iter(iter);
3962 return event;
3963
3964 case RINGBUF_TYPE_TIME_EXTEND:
3965 /* Internal data, OK to advance */
3966 rb_advance_iter(iter);
3967 goto again;
3968
3969 case RINGBUF_TYPE_TIME_STAMP:
3970 if (ts) {
3971 *ts = ring_buffer_event_time_stamp(event);
3972 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3973 cpu_buffer->cpu, ts);
3974 }
3975 /* Internal data, OK to advance */
3976 rb_advance_iter(iter);
3977 goto again;
3978
3979 case RINGBUF_TYPE_DATA:
3980 if (ts && !(*ts)) {
3981 *ts = iter->read_stamp + event->time_delta;
3982 ring_buffer_normalize_time_stamp(buffer,
3983 cpu_buffer->cpu, ts);
3984 }
3985 return event;
3986
3987 default:
3988 BUG();
3989 }
3990
3991 return NULL;
3992 }
3993 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3994
rb_reader_lock(struct ring_buffer_per_cpu * cpu_buffer)3995 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
3996 {
3997 if (likely(!in_nmi())) {
3998 raw_spin_lock(&cpu_buffer->reader_lock);
3999 return true;
4000 }
4001
4002 /*
4003 * If an NMI die dumps out the content of the ring buffer
4004 * trylock must be used to prevent a deadlock if the NMI
4005 * preempted a task that holds the ring buffer locks. If
4006 * we get the lock then all is fine, if not, then continue
4007 * to do the read, but this can corrupt the ring buffer,
4008 * so it must be permanently disabled from future writes.
4009 * Reading from NMI is a oneshot deal.
4010 */
4011 if (raw_spin_trylock(&cpu_buffer->reader_lock))
4012 return true;
4013
4014 /* Continue without locking, but disable the ring buffer */
4015 atomic_inc(&cpu_buffer->record_disabled);
4016 return false;
4017 }
4018
4019 static inline void
rb_reader_unlock(struct ring_buffer_per_cpu * cpu_buffer,bool locked)4020 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4021 {
4022 if (likely(locked))
4023 raw_spin_unlock(&cpu_buffer->reader_lock);
4024 return;
4025 }
4026
4027 /**
4028 * ring_buffer_peek - peek at the next event to be read
4029 * @buffer: The ring buffer to read
4030 * @cpu: The cpu to peak at
4031 * @ts: The timestamp counter of this event.
4032 * @lost_events: a variable to store if events were lost (may be NULL)
4033 *
4034 * This will return the event that will be read next, but does
4035 * not consume the data.
4036 */
4037 struct ring_buffer_event *
ring_buffer_peek(struct ring_buffer * buffer,int cpu,u64 * ts,unsigned long * lost_events)4038 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
4039 unsigned long *lost_events)
4040 {
4041 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4042 struct ring_buffer_event *event;
4043 unsigned long flags;
4044 bool dolock;
4045
4046 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4047 return NULL;
4048
4049 again:
4050 local_irq_save(flags);
4051 dolock = rb_reader_lock(cpu_buffer);
4052 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4053 if (event && event->type_len == RINGBUF_TYPE_PADDING)
4054 rb_advance_reader(cpu_buffer);
4055 rb_reader_unlock(cpu_buffer, dolock);
4056 local_irq_restore(flags);
4057
4058 if (event && event->type_len == RINGBUF_TYPE_PADDING)
4059 goto again;
4060
4061 return event;
4062 }
4063
4064 /**
4065 * ring_buffer_iter_peek - peek at the next event to be read
4066 * @iter: The ring buffer iterator
4067 * @ts: The timestamp counter of this event.
4068 *
4069 * This will return the event that will be read next, but does
4070 * not increment the iterator.
4071 */
4072 struct ring_buffer_event *
ring_buffer_iter_peek(struct ring_buffer_iter * iter,u64 * ts)4073 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4074 {
4075 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4076 struct ring_buffer_event *event;
4077 unsigned long flags;
4078
4079 again:
4080 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4081 event = rb_iter_peek(iter, ts);
4082 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4083
4084 if (event && event->type_len == RINGBUF_TYPE_PADDING)
4085 goto again;
4086
4087 return event;
4088 }
4089
4090 /**
4091 * ring_buffer_consume - return an event and consume it
4092 * @buffer: The ring buffer to get the next event from
4093 * @cpu: the cpu to read the buffer from
4094 * @ts: a variable to store the timestamp (may be NULL)
4095 * @lost_events: a variable to store if events were lost (may be NULL)
4096 *
4097 * Returns the next event in the ring buffer, and that event is consumed.
4098 * Meaning, that sequential reads will keep returning a different event,
4099 * and eventually empty the ring buffer if the producer is slower.
4100 */
4101 struct ring_buffer_event *
ring_buffer_consume(struct ring_buffer * buffer,int cpu,u64 * ts,unsigned long * lost_events)4102 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
4103 unsigned long *lost_events)
4104 {
4105 struct ring_buffer_per_cpu *cpu_buffer;
4106 struct ring_buffer_event *event = NULL;
4107 unsigned long flags;
4108 bool dolock;
4109
4110 again:
4111 /* might be called in atomic */
4112 preempt_disable();
4113
4114 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4115 goto out;
4116
4117 cpu_buffer = buffer->buffers[cpu];
4118 local_irq_save(flags);
4119 dolock = rb_reader_lock(cpu_buffer);
4120
4121 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4122 if (event) {
4123 cpu_buffer->lost_events = 0;
4124 rb_advance_reader(cpu_buffer);
4125 }
4126
4127 rb_reader_unlock(cpu_buffer, dolock);
4128 local_irq_restore(flags);
4129
4130 out:
4131 preempt_enable();
4132
4133 if (event && event->type_len == RINGBUF_TYPE_PADDING)
4134 goto again;
4135
4136 return event;
4137 }
4138 EXPORT_SYMBOL_GPL(ring_buffer_consume);
4139
4140 /**
4141 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4142 * @buffer: The ring buffer to read from
4143 * @cpu: The cpu buffer to iterate over
4144 *
4145 * This performs the initial preparations necessary to iterate
4146 * through the buffer. Memory is allocated, buffer recording
4147 * is disabled, and the iterator pointer is returned to the caller.
4148 *
4149 * Disabling buffer recording prevents the reading from being
4150 * corrupted. This is not a consuming read, so a producer is not
4151 * expected.
4152 *
4153 * After a sequence of ring_buffer_read_prepare calls, the user is
4154 * expected to make at least one call to ring_buffer_read_prepare_sync.
4155 * Afterwards, ring_buffer_read_start is invoked to get things going
4156 * for real.
4157 *
4158 * This overall must be paired with ring_buffer_read_finish.
4159 */
4160 struct ring_buffer_iter *
ring_buffer_read_prepare(struct ring_buffer * buffer,int cpu)4161 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
4162 {
4163 struct ring_buffer_per_cpu *cpu_buffer;
4164 struct ring_buffer_iter *iter;
4165
4166 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4167 return NULL;
4168
4169 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
4170 if (!iter)
4171 return NULL;
4172
4173 cpu_buffer = buffer->buffers[cpu];
4174
4175 iter->cpu_buffer = cpu_buffer;
4176
4177 atomic_inc(&buffer->resize_disabled);
4178 atomic_inc(&cpu_buffer->record_disabled);
4179
4180 return iter;
4181 }
4182 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4183
4184 /**
4185 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4186 *
4187 * All previously invoked ring_buffer_read_prepare calls to prepare
4188 * iterators will be synchronized. Afterwards, read_buffer_read_start
4189 * calls on those iterators are allowed.
4190 */
4191 void
ring_buffer_read_prepare_sync(void)4192 ring_buffer_read_prepare_sync(void)
4193 {
4194 synchronize_sched();
4195 }
4196 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4197
4198 /**
4199 * ring_buffer_read_start - start a non consuming read of the buffer
4200 * @iter: The iterator returned by ring_buffer_read_prepare
4201 *
4202 * This finalizes the startup of an iteration through the buffer.
4203 * The iterator comes from a call to ring_buffer_read_prepare and
4204 * an intervening ring_buffer_read_prepare_sync must have been
4205 * performed.
4206 *
4207 * Must be paired with ring_buffer_read_finish.
4208 */
4209 void
ring_buffer_read_start(struct ring_buffer_iter * iter)4210 ring_buffer_read_start(struct ring_buffer_iter *iter)
4211 {
4212 struct ring_buffer_per_cpu *cpu_buffer;
4213 unsigned long flags;
4214
4215 if (!iter)
4216 return;
4217
4218 cpu_buffer = iter->cpu_buffer;
4219
4220 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4221 arch_spin_lock(&cpu_buffer->lock);
4222 rb_iter_reset(iter);
4223 arch_spin_unlock(&cpu_buffer->lock);
4224 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4225 }
4226 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4227
4228 /**
4229 * ring_buffer_read_finish - finish reading the iterator of the buffer
4230 * @iter: The iterator retrieved by ring_buffer_start
4231 *
4232 * This re-enables the recording to the buffer, and frees the
4233 * iterator.
4234 */
4235 void
ring_buffer_read_finish(struct ring_buffer_iter * iter)4236 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4237 {
4238 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4239 unsigned long flags;
4240
4241 /*
4242 * Ring buffer is disabled from recording, here's a good place
4243 * to check the integrity of the ring buffer.
4244 * Must prevent readers from trying to read, as the check
4245 * clears the HEAD page and readers require it.
4246 */
4247 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4248 rb_check_pages(cpu_buffer);
4249 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4250
4251 atomic_dec(&cpu_buffer->record_disabled);
4252 atomic_dec(&cpu_buffer->buffer->resize_disabled);
4253 kfree(iter);
4254 }
4255 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4256
4257 /**
4258 * ring_buffer_read - read the next item in the ring buffer by the iterator
4259 * @iter: The ring buffer iterator
4260 * @ts: The time stamp of the event read.
4261 *
4262 * This reads the next event in the ring buffer and increments the iterator.
4263 */
4264 struct ring_buffer_event *
ring_buffer_read(struct ring_buffer_iter * iter,u64 * ts)4265 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4266 {
4267 struct ring_buffer_event *event;
4268 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4269 unsigned long flags;
4270
4271 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4272 again:
4273 event = rb_iter_peek(iter, ts);
4274 if (!event)
4275 goto out;
4276
4277 if (event->type_len == RINGBUF_TYPE_PADDING)
4278 goto again;
4279
4280 rb_advance_iter(iter);
4281 out:
4282 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4283
4284 return event;
4285 }
4286 EXPORT_SYMBOL_GPL(ring_buffer_read);
4287
4288 /**
4289 * ring_buffer_size - return the size of the ring buffer (in bytes)
4290 * @buffer: The ring buffer.
4291 */
ring_buffer_size(struct ring_buffer * buffer,int cpu)4292 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4293 {
4294 /*
4295 * Earlier, this method returned
4296 * BUF_PAGE_SIZE * buffer->nr_pages
4297 * Since the nr_pages field is now removed, we have converted this to
4298 * return the per cpu buffer value.
4299 */
4300 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4301 return 0;
4302
4303 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4304 }
4305 EXPORT_SYMBOL_GPL(ring_buffer_size);
4306
4307 static void
rb_reset_cpu(struct ring_buffer_per_cpu * cpu_buffer)4308 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4309 {
4310 rb_head_page_deactivate(cpu_buffer);
4311
4312 cpu_buffer->head_page
4313 = list_entry(cpu_buffer->pages, struct buffer_page, list);
4314 local_set(&cpu_buffer->head_page->write, 0);
4315 local_set(&cpu_buffer->head_page->entries, 0);
4316 local_set(&cpu_buffer->head_page->page->commit, 0);
4317
4318 cpu_buffer->head_page->read = 0;
4319
4320 cpu_buffer->tail_page = cpu_buffer->head_page;
4321 cpu_buffer->commit_page = cpu_buffer->head_page;
4322
4323 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4324 INIT_LIST_HEAD(&cpu_buffer->new_pages);
4325 local_set(&cpu_buffer->reader_page->write, 0);
4326 local_set(&cpu_buffer->reader_page->entries, 0);
4327 local_set(&cpu_buffer->reader_page->page->commit, 0);
4328 cpu_buffer->reader_page->read = 0;
4329
4330 local_set(&cpu_buffer->entries_bytes, 0);
4331 local_set(&cpu_buffer->overrun, 0);
4332 local_set(&cpu_buffer->commit_overrun, 0);
4333 local_set(&cpu_buffer->dropped_events, 0);
4334 local_set(&cpu_buffer->entries, 0);
4335 local_set(&cpu_buffer->committing, 0);
4336 local_set(&cpu_buffer->commits, 0);
4337 cpu_buffer->read = 0;
4338 cpu_buffer->read_bytes = 0;
4339
4340 cpu_buffer->write_stamp = 0;
4341 cpu_buffer->read_stamp = 0;
4342
4343 cpu_buffer->lost_events = 0;
4344 cpu_buffer->last_overrun = 0;
4345
4346 rb_head_page_activate(cpu_buffer);
4347 }
4348
4349 /**
4350 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4351 * @buffer: The ring buffer to reset a per cpu buffer of
4352 * @cpu: The CPU buffer to be reset
4353 */
ring_buffer_reset_cpu(struct ring_buffer * buffer,int cpu)4354 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4355 {
4356 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4357 unsigned long flags;
4358
4359 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4360 return;
4361
4362 atomic_inc(&buffer->resize_disabled);
4363 atomic_inc(&cpu_buffer->record_disabled);
4364
4365 /* Make sure all commits have finished */
4366 synchronize_sched();
4367
4368 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4369
4370 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4371 goto out;
4372
4373 arch_spin_lock(&cpu_buffer->lock);
4374
4375 rb_reset_cpu(cpu_buffer);
4376
4377 arch_spin_unlock(&cpu_buffer->lock);
4378
4379 out:
4380 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4381
4382 atomic_dec(&cpu_buffer->record_disabled);
4383 atomic_dec(&buffer->resize_disabled);
4384 }
4385 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4386
4387 /**
4388 * ring_buffer_reset - reset a ring buffer
4389 * @buffer: The ring buffer to reset all cpu buffers
4390 */
ring_buffer_reset(struct ring_buffer * buffer)4391 void ring_buffer_reset(struct ring_buffer *buffer)
4392 {
4393 int cpu;
4394
4395 for_each_buffer_cpu(buffer, cpu)
4396 ring_buffer_reset_cpu(buffer, cpu);
4397 }
4398 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4399
4400 /**
4401 * rind_buffer_empty - is the ring buffer empty?
4402 * @buffer: The ring buffer to test
4403 */
ring_buffer_empty(struct ring_buffer * buffer)4404 bool ring_buffer_empty(struct ring_buffer *buffer)
4405 {
4406 struct ring_buffer_per_cpu *cpu_buffer;
4407 unsigned long flags;
4408 bool dolock;
4409 int cpu;
4410 int ret;
4411
4412 /* yes this is racy, but if you don't like the race, lock the buffer */
4413 for_each_buffer_cpu(buffer, cpu) {
4414 cpu_buffer = buffer->buffers[cpu];
4415 local_irq_save(flags);
4416 dolock = rb_reader_lock(cpu_buffer);
4417 ret = rb_per_cpu_empty(cpu_buffer);
4418 rb_reader_unlock(cpu_buffer, dolock);
4419 local_irq_restore(flags);
4420
4421 if (!ret)
4422 return false;
4423 }
4424
4425 return true;
4426 }
4427 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4428
4429 /**
4430 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4431 * @buffer: The ring buffer
4432 * @cpu: The CPU buffer to test
4433 */
ring_buffer_empty_cpu(struct ring_buffer * buffer,int cpu)4434 bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4435 {
4436 struct ring_buffer_per_cpu *cpu_buffer;
4437 unsigned long flags;
4438 bool dolock;
4439 int ret;
4440
4441 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4442 return true;
4443
4444 cpu_buffer = buffer->buffers[cpu];
4445 local_irq_save(flags);
4446 dolock = rb_reader_lock(cpu_buffer);
4447 ret = rb_per_cpu_empty(cpu_buffer);
4448 rb_reader_unlock(cpu_buffer, dolock);
4449 local_irq_restore(flags);
4450
4451 return ret;
4452 }
4453 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4454
4455 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4456 /**
4457 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4458 * @buffer_a: One buffer to swap with
4459 * @buffer_b: The other buffer to swap with
4460 *
4461 * This function is useful for tracers that want to take a "snapshot"
4462 * of a CPU buffer and has another back up buffer lying around.
4463 * it is expected that the tracer handles the cpu buffer not being
4464 * used at the moment.
4465 */
ring_buffer_swap_cpu(struct ring_buffer * buffer_a,struct ring_buffer * buffer_b,int cpu)4466 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4467 struct ring_buffer *buffer_b, int cpu)
4468 {
4469 struct ring_buffer_per_cpu *cpu_buffer_a;
4470 struct ring_buffer_per_cpu *cpu_buffer_b;
4471 int ret = -EINVAL;
4472
4473 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4474 !cpumask_test_cpu(cpu, buffer_b->cpumask))
4475 goto out;
4476
4477 cpu_buffer_a = buffer_a->buffers[cpu];
4478 cpu_buffer_b = buffer_b->buffers[cpu];
4479
4480 /* At least make sure the two buffers are somewhat the same */
4481 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4482 goto out;
4483
4484 ret = -EAGAIN;
4485
4486 if (atomic_read(&buffer_a->record_disabled))
4487 goto out;
4488
4489 if (atomic_read(&buffer_b->record_disabled))
4490 goto out;
4491
4492 if (atomic_read(&cpu_buffer_a->record_disabled))
4493 goto out;
4494
4495 if (atomic_read(&cpu_buffer_b->record_disabled))
4496 goto out;
4497
4498 /*
4499 * We can't do a synchronize_sched here because this
4500 * function can be called in atomic context.
4501 * Normally this will be called from the same CPU as cpu.
4502 * If not it's up to the caller to protect this.
4503 */
4504 atomic_inc(&cpu_buffer_a->record_disabled);
4505 atomic_inc(&cpu_buffer_b->record_disabled);
4506
4507 ret = -EBUSY;
4508 if (local_read(&cpu_buffer_a->committing))
4509 goto out_dec;
4510 if (local_read(&cpu_buffer_b->committing))
4511 goto out_dec;
4512
4513 buffer_a->buffers[cpu] = cpu_buffer_b;
4514 buffer_b->buffers[cpu] = cpu_buffer_a;
4515
4516 cpu_buffer_b->buffer = buffer_a;
4517 cpu_buffer_a->buffer = buffer_b;
4518
4519 ret = 0;
4520
4521 out_dec:
4522 atomic_dec(&cpu_buffer_a->record_disabled);
4523 atomic_dec(&cpu_buffer_b->record_disabled);
4524 out:
4525 return ret;
4526 }
4527 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4528 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4529
4530 /**
4531 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4532 * @buffer: the buffer to allocate for.
4533 * @cpu: the cpu buffer to allocate.
4534 *
4535 * This function is used in conjunction with ring_buffer_read_page.
4536 * When reading a full page from the ring buffer, these functions
4537 * can be used to speed up the process. The calling function should
4538 * allocate a few pages first with this function. Then when it
4539 * needs to get pages from the ring buffer, it passes the result
4540 * of this function into ring_buffer_read_page, which will swap
4541 * the page that was allocated, with the read page of the buffer.
4542 *
4543 * Returns:
4544 * The page allocated, or ERR_PTR
4545 */
ring_buffer_alloc_read_page(struct ring_buffer * buffer,int cpu)4546 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4547 {
4548 struct ring_buffer_per_cpu *cpu_buffer;
4549 struct buffer_data_page *bpage = NULL;
4550 unsigned long flags;
4551 struct page *page;
4552
4553 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4554 return ERR_PTR(-ENODEV);
4555
4556 cpu_buffer = buffer->buffers[cpu];
4557 local_irq_save(flags);
4558 arch_spin_lock(&cpu_buffer->lock);
4559
4560 if (cpu_buffer->free_page) {
4561 bpage = cpu_buffer->free_page;
4562 cpu_buffer->free_page = NULL;
4563 }
4564
4565 arch_spin_unlock(&cpu_buffer->lock);
4566 local_irq_restore(flags);
4567
4568 if (bpage)
4569 goto out;
4570
4571 page = alloc_pages_node(cpu_to_node(cpu),
4572 GFP_KERNEL | __GFP_NORETRY, 0);
4573 if (!page)
4574 return ERR_PTR(-ENOMEM);
4575
4576 bpage = page_address(page);
4577
4578 out:
4579 rb_init_page(bpage);
4580
4581 return bpage;
4582 }
4583 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4584
4585 /**
4586 * ring_buffer_free_read_page - free an allocated read page
4587 * @buffer: the buffer the page was allocate for
4588 * @cpu: the cpu buffer the page came from
4589 * @data: the page to free
4590 *
4591 * Free a page allocated from ring_buffer_alloc_read_page.
4592 */
ring_buffer_free_read_page(struct ring_buffer * buffer,int cpu,void * data)4593 void ring_buffer_free_read_page(struct ring_buffer *buffer, int cpu, void *data)
4594 {
4595 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4596 struct buffer_data_page *bpage = data;
4597 struct page *page = virt_to_page(bpage);
4598 unsigned long flags;
4599
4600 /* If the page is still in use someplace else, we can't reuse it */
4601 if (page_ref_count(page) > 1)
4602 goto out;
4603
4604 local_irq_save(flags);
4605 arch_spin_lock(&cpu_buffer->lock);
4606
4607 if (!cpu_buffer->free_page) {
4608 cpu_buffer->free_page = bpage;
4609 bpage = NULL;
4610 }
4611
4612 arch_spin_unlock(&cpu_buffer->lock);
4613 local_irq_restore(flags);
4614
4615 out:
4616 free_page((unsigned long)bpage);
4617 }
4618 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4619
4620 /**
4621 * ring_buffer_read_page - extract a page from the ring buffer
4622 * @buffer: buffer to extract from
4623 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4624 * @len: amount to extract
4625 * @cpu: the cpu of the buffer to extract
4626 * @full: should the extraction only happen when the page is full.
4627 *
4628 * This function will pull out a page from the ring buffer and consume it.
4629 * @data_page must be the address of the variable that was returned
4630 * from ring_buffer_alloc_read_page. This is because the page might be used
4631 * to swap with a page in the ring buffer.
4632 *
4633 * for example:
4634 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
4635 * if (IS_ERR(rpage))
4636 * return PTR_ERR(rpage);
4637 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4638 * if (ret >= 0)
4639 * process_page(rpage, ret);
4640 *
4641 * When @full is set, the function will not return true unless
4642 * the writer is off the reader page.
4643 *
4644 * Note: it is up to the calling functions to handle sleeps and wakeups.
4645 * The ring buffer can be used anywhere in the kernel and can not
4646 * blindly call wake_up. The layer that uses the ring buffer must be
4647 * responsible for that.
4648 *
4649 * Returns:
4650 * >=0 if data has been transferred, returns the offset of consumed data.
4651 * <0 if no data has been transferred.
4652 */
ring_buffer_read_page(struct ring_buffer * buffer,void ** data_page,size_t len,int cpu,int full)4653 int ring_buffer_read_page(struct ring_buffer *buffer,
4654 void **data_page, size_t len, int cpu, int full)
4655 {
4656 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4657 struct ring_buffer_event *event;
4658 struct buffer_data_page *bpage;
4659 struct buffer_page *reader;
4660 unsigned long missed_events;
4661 unsigned long flags;
4662 unsigned int commit;
4663 unsigned int read;
4664 u64 save_timestamp;
4665 int ret = -1;
4666
4667 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4668 goto out;
4669
4670 /*
4671 * If len is not big enough to hold the page header, then
4672 * we can not copy anything.
4673 */
4674 if (len <= BUF_PAGE_HDR_SIZE)
4675 goto out;
4676
4677 len -= BUF_PAGE_HDR_SIZE;
4678
4679 if (!data_page)
4680 goto out;
4681
4682 bpage = *data_page;
4683 if (!bpage)
4684 goto out;
4685
4686 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4687
4688 reader = rb_get_reader_page(cpu_buffer);
4689 if (!reader)
4690 goto out_unlock;
4691
4692 event = rb_reader_event(cpu_buffer);
4693
4694 read = reader->read;
4695 commit = rb_page_commit(reader);
4696
4697 /* Check if any events were dropped */
4698 missed_events = cpu_buffer->lost_events;
4699
4700 /*
4701 * If this page has been partially read or
4702 * if len is not big enough to read the rest of the page or
4703 * a writer is still on the page, then
4704 * we must copy the data from the page to the buffer.
4705 * Otherwise, we can simply swap the page with the one passed in.
4706 */
4707 if (read || (len < (commit - read)) ||
4708 cpu_buffer->reader_page == cpu_buffer->commit_page) {
4709 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4710 unsigned int rpos = read;
4711 unsigned int pos = 0;
4712 unsigned int size;
4713
4714 if (full)
4715 goto out_unlock;
4716
4717 if (len > (commit - read))
4718 len = (commit - read);
4719
4720 /* Always keep the time extend and data together */
4721 size = rb_event_ts_length(event);
4722
4723 if (len < size)
4724 goto out_unlock;
4725
4726 /* save the current timestamp, since the user will need it */
4727 save_timestamp = cpu_buffer->read_stamp;
4728
4729 /* Need to copy one event at a time */
4730 do {
4731 /* We need the size of one event, because
4732 * rb_advance_reader only advances by one event,
4733 * whereas rb_event_ts_length may include the size of
4734 * one or two events.
4735 * We have already ensured there's enough space if this
4736 * is a time extend. */
4737 size = rb_event_length(event);
4738 memcpy(bpage->data + pos, rpage->data + rpos, size);
4739
4740 len -= size;
4741
4742 rb_advance_reader(cpu_buffer);
4743 rpos = reader->read;
4744 pos += size;
4745
4746 if (rpos >= commit)
4747 break;
4748
4749 event = rb_reader_event(cpu_buffer);
4750 /* Always keep the time extend and data together */
4751 size = rb_event_ts_length(event);
4752 } while (len >= size);
4753
4754 /* update bpage */
4755 local_set(&bpage->commit, pos);
4756 bpage->time_stamp = save_timestamp;
4757
4758 /* we copied everything to the beginning */
4759 read = 0;
4760 } else {
4761 /* update the entry counter */
4762 cpu_buffer->read += rb_page_entries(reader);
4763 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4764
4765 /* swap the pages */
4766 rb_init_page(bpage);
4767 bpage = reader->page;
4768 reader->page = *data_page;
4769 local_set(&reader->write, 0);
4770 local_set(&reader->entries, 0);
4771 reader->read = 0;
4772 *data_page = bpage;
4773
4774 /*
4775 * Use the real_end for the data size,
4776 * This gives us a chance to store the lost events
4777 * on the page.
4778 */
4779 if (reader->real_end)
4780 local_set(&bpage->commit, reader->real_end);
4781 }
4782 ret = read;
4783
4784 cpu_buffer->lost_events = 0;
4785
4786 commit = local_read(&bpage->commit);
4787 /*
4788 * Set a flag in the commit field if we lost events
4789 */
4790 if (missed_events) {
4791 /* If there is room at the end of the page to save the
4792 * missed events, then record it there.
4793 */
4794 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4795 memcpy(&bpage->data[commit], &missed_events,
4796 sizeof(missed_events));
4797 local_add(RB_MISSED_STORED, &bpage->commit);
4798 commit += sizeof(missed_events);
4799 }
4800 local_add(RB_MISSED_EVENTS, &bpage->commit);
4801 }
4802
4803 /*
4804 * This page may be off to user land. Zero it out here.
4805 */
4806 if (commit < BUF_PAGE_SIZE)
4807 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4808
4809 out_unlock:
4810 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4811
4812 out:
4813 return ret;
4814 }
4815 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4816
4817 /*
4818 * We only allocate new buffers, never free them if the CPU goes down.
4819 * If we were to free the buffer, then the user would lose any trace that was in
4820 * the buffer.
4821 */
trace_rb_cpu_prepare(unsigned int cpu,struct hlist_node * node)4822 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
4823 {
4824 struct ring_buffer *buffer;
4825 long nr_pages_same;
4826 int cpu_i;
4827 unsigned long nr_pages;
4828
4829 buffer = container_of(node, struct ring_buffer, node);
4830 if (cpumask_test_cpu(cpu, buffer->cpumask))
4831 return 0;
4832
4833 nr_pages = 0;
4834 nr_pages_same = 1;
4835 /* check if all cpu sizes are same */
4836 for_each_buffer_cpu(buffer, cpu_i) {
4837 /* fill in the size from first enabled cpu */
4838 if (nr_pages == 0)
4839 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4840 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4841 nr_pages_same = 0;
4842 break;
4843 }
4844 }
4845 /* allocate minimum pages, user can later expand it */
4846 if (!nr_pages_same)
4847 nr_pages = 2;
4848 buffer->buffers[cpu] =
4849 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4850 if (!buffer->buffers[cpu]) {
4851 WARN(1, "failed to allocate ring buffer on CPU %u\n",
4852 cpu);
4853 return -ENOMEM;
4854 }
4855 smp_wmb();
4856 cpumask_set_cpu(cpu, buffer->cpumask);
4857 return 0;
4858 }
4859
4860 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4861 /*
4862 * This is a basic integrity check of the ring buffer.
4863 * Late in the boot cycle this test will run when configured in.
4864 * It will kick off a thread per CPU that will go into a loop
4865 * writing to the per cpu ring buffer various sizes of data.
4866 * Some of the data will be large items, some small.
4867 *
4868 * Another thread is created that goes into a spin, sending out
4869 * IPIs to the other CPUs to also write into the ring buffer.
4870 * this is to test the nesting ability of the buffer.
4871 *
4872 * Basic stats are recorded and reported. If something in the
4873 * ring buffer should happen that's not expected, a big warning
4874 * is displayed and all ring buffers are disabled.
4875 */
4876 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4877
4878 struct rb_test_data {
4879 struct ring_buffer *buffer;
4880 unsigned long events;
4881 unsigned long bytes_written;
4882 unsigned long bytes_alloc;
4883 unsigned long bytes_dropped;
4884 unsigned long events_nested;
4885 unsigned long bytes_written_nested;
4886 unsigned long bytes_alloc_nested;
4887 unsigned long bytes_dropped_nested;
4888 int min_size_nested;
4889 int max_size_nested;
4890 int max_size;
4891 int min_size;
4892 int cpu;
4893 int cnt;
4894 };
4895
4896 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4897
4898 /* 1 meg per cpu */
4899 #define RB_TEST_BUFFER_SIZE 1048576
4900
4901 static char rb_string[] __initdata =
4902 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4903 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4904 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4905
4906 static bool rb_test_started __initdata;
4907
4908 struct rb_item {
4909 int size;
4910 char str[];
4911 };
4912
rb_write_something(struct rb_test_data * data,bool nested)4913 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4914 {
4915 struct ring_buffer_event *event;
4916 struct rb_item *item;
4917 bool started;
4918 int event_len;
4919 int size;
4920 int len;
4921 int cnt;
4922
4923 /* Have nested writes different that what is written */
4924 cnt = data->cnt + (nested ? 27 : 0);
4925
4926 /* Multiply cnt by ~e, to make some unique increment */
4927 size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4928
4929 len = size + sizeof(struct rb_item);
4930
4931 started = rb_test_started;
4932 /* read rb_test_started before checking buffer enabled */
4933 smp_rmb();
4934
4935 event = ring_buffer_lock_reserve(data->buffer, len);
4936 if (!event) {
4937 /* Ignore dropped events before test starts. */
4938 if (started) {
4939 if (nested)
4940 data->bytes_dropped += len;
4941 else
4942 data->bytes_dropped_nested += len;
4943 }
4944 return len;
4945 }
4946
4947 event_len = ring_buffer_event_length(event);
4948
4949 if (RB_WARN_ON(data->buffer, event_len < len))
4950 goto out;
4951
4952 item = ring_buffer_event_data(event);
4953 item->size = size;
4954 memcpy(item->str, rb_string, size);
4955
4956 if (nested) {
4957 data->bytes_alloc_nested += event_len;
4958 data->bytes_written_nested += len;
4959 data->events_nested++;
4960 if (!data->min_size_nested || len < data->min_size_nested)
4961 data->min_size_nested = len;
4962 if (len > data->max_size_nested)
4963 data->max_size_nested = len;
4964 } else {
4965 data->bytes_alloc += event_len;
4966 data->bytes_written += len;
4967 data->events++;
4968 if (!data->min_size || len < data->min_size)
4969 data->max_size = len;
4970 if (len > data->max_size)
4971 data->max_size = len;
4972 }
4973
4974 out:
4975 ring_buffer_unlock_commit(data->buffer, event);
4976
4977 return 0;
4978 }
4979
rb_test(void * arg)4980 static __init int rb_test(void *arg)
4981 {
4982 struct rb_test_data *data = arg;
4983
4984 while (!kthread_should_stop()) {
4985 rb_write_something(data, false);
4986 data->cnt++;
4987
4988 set_current_state(TASK_INTERRUPTIBLE);
4989 /* Now sleep between a min of 100-300us and a max of 1ms */
4990 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4991 }
4992
4993 return 0;
4994 }
4995
rb_ipi(void * ignore)4996 static __init void rb_ipi(void *ignore)
4997 {
4998 struct rb_test_data *data;
4999 int cpu = smp_processor_id();
5000
5001 data = &rb_data[cpu];
5002 rb_write_something(data, true);
5003 }
5004
rb_hammer_test(void * arg)5005 static __init int rb_hammer_test(void *arg)
5006 {
5007 while (!kthread_should_stop()) {
5008
5009 /* Send an IPI to all cpus to write data! */
5010 smp_call_function(rb_ipi, NULL, 1);
5011 /* No sleep, but for non preempt, let others run */
5012 schedule();
5013 }
5014
5015 return 0;
5016 }
5017
test_ringbuffer(void)5018 static __init int test_ringbuffer(void)
5019 {
5020 struct task_struct *rb_hammer;
5021 struct ring_buffer *buffer;
5022 int cpu;
5023 int ret = 0;
5024
5025 pr_info("Running ring buffer tests...\n");
5026
5027 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
5028 if (WARN_ON(!buffer))
5029 return 0;
5030
5031 /* Disable buffer so that threads can't write to it yet */
5032 ring_buffer_record_off(buffer);
5033
5034 for_each_online_cpu(cpu) {
5035 rb_data[cpu].buffer = buffer;
5036 rb_data[cpu].cpu = cpu;
5037 rb_data[cpu].cnt = cpu;
5038 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
5039 "rbtester/%d", cpu);
5040 if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
5041 pr_cont("FAILED\n");
5042 ret = PTR_ERR(rb_threads[cpu]);
5043 goto out_free;
5044 }
5045
5046 kthread_bind(rb_threads[cpu], cpu);
5047 wake_up_process(rb_threads[cpu]);
5048 }
5049
5050 /* Now create the rb hammer! */
5051 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
5052 if (WARN_ON(IS_ERR(rb_hammer))) {
5053 pr_cont("FAILED\n");
5054 ret = PTR_ERR(rb_hammer);
5055 goto out_free;
5056 }
5057
5058 ring_buffer_record_on(buffer);
5059 /*
5060 * Show buffer is enabled before setting rb_test_started.
5061 * Yes there's a small race window where events could be
5062 * dropped and the thread wont catch it. But when a ring
5063 * buffer gets enabled, there will always be some kind of
5064 * delay before other CPUs see it. Thus, we don't care about
5065 * those dropped events. We care about events dropped after
5066 * the threads see that the buffer is active.
5067 */
5068 smp_wmb();
5069 rb_test_started = true;
5070
5071 set_current_state(TASK_INTERRUPTIBLE);
5072 /* Just run for 10 seconds */;
5073 schedule_timeout(10 * HZ);
5074
5075 kthread_stop(rb_hammer);
5076
5077 out_free:
5078 for_each_online_cpu(cpu) {
5079 if (!rb_threads[cpu])
5080 break;
5081 kthread_stop(rb_threads[cpu]);
5082 }
5083 if (ret) {
5084 ring_buffer_free(buffer);
5085 return ret;
5086 }
5087
5088 /* Report! */
5089 pr_info("finished\n");
5090 for_each_online_cpu(cpu) {
5091 struct ring_buffer_event *event;
5092 struct rb_test_data *data = &rb_data[cpu];
5093 struct rb_item *item;
5094 unsigned long total_events;
5095 unsigned long total_dropped;
5096 unsigned long total_written;
5097 unsigned long total_alloc;
5098 unsigned long total_read = 0;
5099 unsigned long total_size = 0;
5100 unsigned long total_len = 0;
5101 unsigned long total_lost = 0;
5102 unsigned long lost;
5103 int big_event_size;
5104 int small_event_size;
5105
5106 ret = -1;
5107
5108 total_events = data->events + data->events_nested;
5109 total_written = data->bytes_written + data->bytes_written_nested;
5110 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
5111 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
5112
5113 big_event_size = data->max_size + data->max_size_nested;
5114 small_event_size = data->min_size + data->min_size_nested;
5115
5116 pr_info("CPU %d:\n", cpu);
5117 pr_info(" events: %ld\n", total_events);
5118 pr_info(" dropped bytes: %ld\n", total_dropped);
5119 pr_info(" alloced bytes: %ld\n", total_alloc);
5120 pr_info(" written bytes: %ld\n", total_written);
5121 pr_info(" biggest event: %d\n", big_event_size);
5122 pr_info(" smallest event: %d\n", small_event_size);
5123
5124 if (RB_WARN_ON(buffer, total_dropped))
5125 break;
5126
5127 ret = 0;
5128
5129 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
5130 total_lost += lost;
5131 item = ring_buffer_event_data(event);
5132 total_len += ring_buffer_event_length(event);
5133 total_size += item->size + sizeof(struct rb_item);
5134 if (memcmp(&item->str[0], rb_string, item->size) != 0) {
5135 pr_info("FAILED!\n");
5136 pr_info("buffer had: %.*s\n", item->size, item->str);
5137 pr_info("expected: %.*s\n", item->size, rb_string);
5138 RB_WARN_ON(buffer, 1);
5139 ret = -1;
5140 break;
5141 }
5142 total_read++;
5143 }
5144 if (ret)
5145 break;
5146
5147 ret = -1;
5148
5149 pr_info(" read events: %ld\n", total_read);
5150 pr_info(" lost events: %ld\n", total_lost);
5151 pr_info(" total events: %ld\n", total_lost + total_read);
5152 pr_info(" recorded len bytes: %ld\n", total_len);
5153 pr_info(" recorded size bytes: %ld\n", total_size);
5154 if (total_lost)
5155 pr_info(" With dropped events, record len and size may not match\n"
5156 " alloced and written from above\n");
5157 if (!total_lost) {
5158 if (RB_WARN_ON(buffer, total_len != total_alloc ||
5159 total_size != total_written))
5160 break;
5161 }
5162 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5163 break;
5164
5165 ret = 0;
5166 }
5167 if (!ret)
5168 pr_info("Ring buffer PASSED!\n");
5169
5170 ring_buffer_free(buffer);
5171 return 0;
5172 }
5173
5174 late_initcall(test_ringbuffer);
5175 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
5176