1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Generic ring buffer
4  *
5  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6  */
7 #include <linux/trace_events.h>
8 #include <linux/ring_buffer.h>
9 #include <linux/trace_clock.h>
10 #include <linux/sched/clock.h>
11 #include <linux/trace_seq.h>
12 #include <linux/spinlock.h>
13 #include <linux/irq_work.h>
14 #include <linux/security.h>
15 #include <linux/uaccess.h>
16 #include <linux/hardirq.h>
17 #include <linux/kthread.h>	/* for self test */
18 #include <linux/module.h>
19 #include <linux/percpu.h>
20 #include <linux/mutex.h>
21 #include <linux/delay.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/list.h>
26 #include <linux/cpu.h>
27 #include <linux/oom.h>
28 
29 #include <asm/local.h>
30 
31 static void update_pages_handler(struct work_struct *work);
32 
33 /*
34  * The ring buffer header is special. We must manually up keep it.
35  */
ring_buffer_print_entry_header(struct trace_seq * s)36 int ring_buffer_print_entry_header(struct trace_seq *s)
37 {
38 	trace_seq_puts(s, "# compressed entry header\n");
39 	trace_seq_puts(s, "\ttype_len    :    5 bits\n");
40 	trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
41 	trace_seq_puts(s, "\tarray       :   32 bits\n");
42 	trace_seq_putc(s, '\n');
43 	trace_seq_printf(s, "\tpadding     : type == %d\n",
44 			 RINGBUF_TYPE_PADDING);
45 	trace_seq_printf(s, "\ttime_extend : type == %d\n",
46 			 RINGBUF_TYPE_TIME_EXTEND);
47 	trace_seq_printf(s, "\ttime_stamp : type == %d\n",
48 			 RINGBUF_TYPE_TIME_STAMP);
49 	trace_seq_printf(s, "\tdata max type_len  == %d\n",
50 			 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
51 
52 	return !trace_seq_has_overflowed(s);
53 }
54 
55 /*
56  * The ring buffer is made up of a list of pages. A separate list of pages is
57  * allocated for each CPU. A writer may only write to a buffer that is
58  * associated with the CPU it is currently executing on.  A reader may read
59  * from any per cpu buffer.
60  *
61  * The reader is special. For each per cpu buffer, the reader has its own
62  * reader page. When a reader has read the entire reader page, this reader
63  * page is swapped with another page in the ring buffer.
64  *
65  * Now, as long as the writer is off the reader page, the reader can do what
66  * ever it wants with that page. The writer will never write to that page
67  * again (as long as it is out of the ring buffer).
68  *
69  * Here's some silly ASCII art.
70  *
71  *   +------+
72  *   |reader|          RING BUFFER
73  *   |page  |
74  *   +------+        +---+   +---+   +---+
75  *                   |   |-->|   |-->|   |
76  *                   +---+   +---+   +---+
77  *                     ^               |
78  *                     |               |
79  *                     +---------------+
80  *
81  *
82  *   +------+
83  *   |reader|          RING BUFFER
84  *   |page  |------------------v
85  *   +------+        +---+   +---+   +---+
86  *                   |   |-->|   |-->|   |
87  *                   +---+   +---+   +---+
88  *                     ^               |
89  *                     |               |
90  *                     +---------------+
91  *
92  *
93  *   +------+
94  *   |reader|          RING BUFFER
95  *   |page  |------------------v
96  *   +------+        +---+   +---+   +---+
97  *      ^            |   |-->|   |-->|   |
98  *      |            +---+   +---+   +---+
99  *      |                              |
100  *      |                              |
101  *      +------------------------------+
102  *
103  *
104  *   +------+
105  *   |buffer|          RING BUFFER
106  *   |page  |------------------v
107  *   +------+        +---+   +---+   +---+
108  *      ^            |   |   |   |-->|   |
109  *      |   New      +---+   +---+   +---+
110  *      |  Reader------^               |
111  *      |   page                       |
112  *      +------------------------------+
113  *
114  *
115  * After we make this swap, the reader can hand this page off to the splice
116  * code and be done with it. It can even allocate a new page if it needs to
117  * and swap that into the ring buffer.
118  *
119  * We will be using cmpxchg soon to make all this lockless.
120  *
121  */
122 
123 /* Used for individual buffers (after the counter) */
124 #define RB_BUFFER_OFF		(1 << 20)
125 
126 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
127 
128 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
129 #define RB_ALIGNMENT		4U
130 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
131 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
132 #define RB_ALIGN_DATA		__aligned(RB_ALIGNMENT)
133 
134 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
135 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
136 
137 enum {
138 	RB_LEN_TIME_EXTEND = 8,
139 	RB_LEN_TIME_STAMP =  8,
140 };
141 
142 #define skip_time_extend(event) \
143 	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
144 
145 #define extended_time(event) \
146 	(event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
147 
rb_null_event(struct ring_buffer_event * event)148 static inline int rb_null_event(struct ring_buffer_event *event)
149 {
150 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
151 }
152 
rb_event_set_padding(struct ring_buffer_event * event)153 static void rb_event_set_padding(struct ring_buffer_event *event)
154 {
155 	/* padding has a NULL time_delta */
156 	event->type_len = RINGBUF_TYPE_PADDING;
157 	event->time_delta = 0;
158 }
159 
160 static unsigned
rb_event_data_length(struct ring_buffer_event * event)161 rb_event_data_length(struct ring_buffer_event *event)
162 {
163 	unsigned length;
164 
165 	if (event->type_len)
166 		length = event->type_len * RB_ALIGNMENT;
167 	else
168 		length = event->array[0];
169 	return length + RB_EVNT_HDR_SIZE;
170 }
171 
172 /*
173  * Return the length of the given event. Will return
174  * the length of the time extend if the event is a
175  * time extend.
176  */
177 static inline unsigned
rb_event_length(struct ring_buffer_event * event)178 rb_event_length(struct ring_buffer_event *event)
179 {
180 	switch (event->type_len) {
181 	case RINGBUF_TYPE_PADDING:
182 		if (rb_null_event(event))
183 			/* undefined */
184 			return -1;
185 		return  event->array[0] + RB_EVNT_HDR_SIZE;
186 
187 	case RINGBUF_TYPE_TIME_EXTEND:
188 		return RB_LEN_TIME_EXTEND;
189 
190 	case RINGBUF_TYPE_TIME_STAMP:
191 		return RB_LEN_TIME_STAMP;
192 
193 	case RINGBUF_TYPE_DATA:
194 		return rb_event_data_length(event);
195 	default:
196 		WARN_ON_ONCE(1);
197 	}
198 	/* not hit */
199 	return 0;
200 }
201 
202 /*
203  * Return total length of time extend and data,
204  *   or just the event length for all other events.
205  */
206 static inline unsigned
rb_event_ts_length(struct ring_buffer_event * event)207 rb_event_ts_length(struct ring_buffer_event *event)
208 {
209 	unsigned len = 0;
210 
211 	if (extended_time(event)) {
212 		/* time extends include the data event after it */
213 		len = RB_LEN_TIME_EXTEND;
214 		event = skip_time_extend(event);
215 	}
216 	return len + rb_event_length(event);
217 }
218 
219 /**
220  * ring_buffer_event_length - return the length of the event
221  * @event: the event to get the length of
222  *
223  * Returns the size of the data load of a data event.
224  * If the event is something other than a data event, it
225  * returns the size of the event itself. With the exception
226  * of a TIME EXTEND, where it still returns the size of the
227  * data load of the data event after it.
228  */
ring_buffer_event_length(struct ring_buffer_event * event)229 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
230 {
231 	unsigned length;
232 
233 	if (extended_time(event))
234 		event = skip_time_extend(event);
235 
236 	length = rb_event_length(event);
237 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
238 		return length;
239 	length -= RB_EVNT_HDR_SIZE;
240 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
241                 length -= sizeof(event->array[0]);
242 	return length;
243 }
244 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
245 
246 /* inline for ring buffer fast paths */
247 static __always_inline void *
rb_event_data(struct ring_buffer_event * event)248 rb_event_data(struct ring_buffer_event *event)
249 {
250 	if (extended_time(event))
251 		event = skip_time_extend(event);
252 	WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
253 	/* If length is in len field, then array[0] has the data */
254 	if (event->type_len)
255 		return (void *)&event->array[0];
256 	/* Otherwise length is in array[0] and array[1] has the data */
257 	return (void *)&event->array[1];
258 }
259 
260 /**
261  * ring_buffer_event_data - return the data of the event
262  * @event: the event to get the data from
263  */
ring_buffer_event_data(struct ring_buffer_event * event)264 void *ring_buffer_event_data(struct ring_buffer_event *event)
265 {
266 	return rb_event_data(event);
267 }
268 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
269 
270 #define for_each_buffer_cpu(buffer, cpu)		\
271 	for_each_cpu(cpu, buffer->cpumask)
272 
273 #define for_each_online_buffer_cpu(buffer, cpu)		\
274 	for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
275 
276 #define TS_SHIFT	27
277 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
278 #define TS_DELTA_TEST	(~TS_MASK)
279 
280 /**
281  * ring_buffer_event_time_stamp - return the event's extended timestamp
282  * @event: the event to get the timestamp of
283  *
284  * Returns the extended timestamp associated with a data event.
285  * An extended time_stamp is a 64-bit timestamp represented
286  * internally in a special way that makes the best use of space
287  * contained within a ring buffer event.  This function decodes
288  * it and maps it to a straight u64 value.
289  */
ring_buffer_event_time_stamp(struct ring_buffer_event * event)290 u64 ring_buffer_event_time_stamp(struct ring_buffer_event *event)
291 {
292 	u64 ts;
293 
294 	ts = event->array[0];
295 	ts <<= TS_SHIFT;
296 	ts += event->time_delta;
297 
298 	return ts;
299 }
300 
301 /* Flag when events were overwritten */
302 #define RB_MISSED_EVENTS	(1 << 31)
303 /* Missed count stored at end */
304 #define RB_MISSED_STORED	(1 << 30)
305 
306 struct buffer_data_page {
307 	u64		 time_stamp;	/* page time stamp */
308 	local_t		 commit;	/* write committed index */
309 	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
310 };
311 
312 /*
313  * Note, the buffer_page list must be first. The buffer pages
314  * are allocated in cache lines, which means that each buffer
315  * page will be at the beginning of a cache line, and thus
316  * the least significant bits will be zero. We use this to
317  * add flags in the list struct pointers, to make the ring buffer
318  * lockless.
319  */
320 struct buffer_page {
321 	struct list_head list;		/* list of buffer pages */
322 	local_t		 write;		/* index for next write */
323 	unsigned	 read;		/* index for next read */
324 	local_t		 entries;	/* entries on this page */
325 	unsigned long	 real_end;	/* real end of data */
326 	struct buffer_data_page *page;	/* Actual data page */
327 };
328 
329 /*
330  * The buffer page counters, write and entries, must be reset
331  * atomically when crossing page boundaries. To synchronize this
332  * update, two counters are inserted into the number. One is
333  * the actual counter for the write position or count on the page.
334  *
335  * The other is a counter of updaters. Before an update happens
336  * the update partition of the counter is incremented. This will
337  * allow the updater to update the counter atomically.
338  *
339  * The counter is 20 bits, and the state data is 12.
340  */
341 #define RB_WRITE_MASK		0xfffff
342 #define RB_WRITE_INTCNT		(1 << 20)
343 
rb_init_page(struct buffer_data_page * bpage)344 static void rb_init_page(struct buffer_data_page *bpage)
345 {
346 	local_set(&bpage->commit, 0);
347 }
348 
349 /*
350  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
351  * this issue out.
352  */
free_buffer_page(struct buffer_page * bpage)353 static void free_buffer_page(struct buffer_page *bpage)
354 {
355 	free_page((unsigned long)bpage->page);
356 	kfree(bpage);
357 }
358 
359 /*
360  * We need to fit the time_stamp delta into 27 bits.
361  */
test_time_stamp(u64 delta)362 static inline int test_time_stamp(u64 delta)
363 {
364 	if (delta & TS_DELTA_TEST)
365 		return 1;
366 	return 0;
367 }
368 
369 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
370 
371 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
372 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
373 
ring_buffer_print_page_header(struct trace_seq * s)374 int ring_buffer_print_page_header(struct trace_seq *s)
375 {
376 	struct buffer_data_page field;
377 
378 	trace_seq_printf(s, "\tfield: u64 timestamp;\t"
379 			 "offset:0;\tsize:%u;\tsigned:%u;\n",
380 			 (unsigned int)sizeof(field.time_stamp),
381 			 (unsigned int)is_signed_type(u64));
382 
383 	trace_seq_printf(s, "\tfield: local_t commit;\t"
384 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
385 			 (unsigned int)offsetof(typeof(field), commit),
386 			 (unsigned int)sizeof(field.commit),
387 			 (unsigned int)is_signed_type(long));
388 
389 	trace_seq_printf(s, "\tfield: int overwrite;\t"
390 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
391 			 (unsigned int)offsetof(typeof(field), commit),
392 			 1,
393 			 (unsigned int)is_signed_type(long));
394 
395 	trace_seq_printf(s, "\tfield: char data;\t"
396 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
397 			 (unsigned int)offsetof(typeof(field), data),
398 			 (unsigned int)BUF_PAGE_SIZE,
399 			 (unsigned int)is_signed_type(char));
400 
401 	return !trace_seq_has_overflowed(s);
402 }
403 
404 struct rb_irq_work {
405 	struct irq_work			work;
406 	wait_queue_head_t		waiters;
407 	wait_queue_head_t		full_waiters;
408 	bool				waiters_pending;
409 	bool				full_waiters_pending;
410 	bool				wakeup_full;
411 };
412 
413 /*
414  * Structure to hold event state and handle nested events.
415  */
416 struct rb_event_info {
417 	u64			ts;
418 	u64			delta;
419 	u64			before;
420 	u64			after;
421 	unsigned long		length;
422 	struct buffer_page	*tail_page;
423 	int			add_timestamp;
424 };
425 
426 /*
427  * Used for the add_timestamp
428  *  NONE
429  *  EXTEND - wants a time extend
430  *  ABSOLUTE - the buffer requests all events to have absolute time stamps
431  *  FORCE - force a full time stamp.
432  */
433 enum {
434 	RB_ADD_STAMP_NONE		= 0,
435 	RB_ADD_STAMP_EXTEND		= BIT(1),
436 	RB_ADD_STAMP_ABSOLUTE		= BIT(2),
437 	RB_ADD_STAMP_FORCE		= BIT(3)
438 };
439 /*
440  * Used for which event context the event is in.
441  *  TRANSITION = 0
442  *  NMI     = 1
443  *  IRQ     = 2
444  *  SOFTIRQ = 3
445  *  NORMAL  = 4
446  *
447  * See trace_recursive_lock() comment below for more details.
448  */
449 enum {
450 	RB_CTX_TRANSITION,
451 	RB_CTX_NMI,
452 	RB_CTX_IRQ,
453 	RB_CTX_SOFTIRQ,
454 	RB_CTX_NORMAL,
455 	RB_CTX_MAX
456 };
457 
458 #if BITS_PER_LONG == 32
459 #define RB_TIME_32
460 #endif
461 
462 /* To test on 64 bit machines */
463 //#define RB_TIME_32
464 
465 #ifdef RB_TIME_32
466 
467 struct rb_time_struct {
468 	local_t		cnt;
469 	local_t		top;
470 	local_t		bottom;
471 };
472 #else
473 #include <asm/local64.h>
474 struct rb_time_struct {
475 	local64_t	time;
476 };
477 #endif
478 typedef struct rb_time_struct rb_time_t;
479 
480 /*
481  * head_page == tail_page && head == tail then buffer is empty.
482  */
483 struct ring_buffer_per_cpu {
484 	int				cpu;
485 	atomic_t			record_disabled;
486 	atomic_t			resize_disabled;
487 	struct trace_buffer	*buffer;
488 	raw_spinlock_t			reader_lock;	/* serialize readers */
489 	arch_spinlock_t			lock;
490 	struct lock_class_key		lock_key;
491 	struct buffer_data_page		*free_page;
492 	unsigned long			nr_pages;
493 	unsigned int			current_context;
494 	struct list_head		*pages;
495 	struct buffer_page		*head_page;	/* read from head */
496 	struct buffer_page		*tail_page;	/* write to tail */
497 	struct buffer_page		*commit_page;	/* committed pages */
498 	struct buffer_page		*reader_page;
499 	unsigned long			lost_events;
500 	unsigned long			last_overrun;
501 	unsigned long			nest;
502 	local_t				entries_bytes;
503 	local_t				entries;
504 	local_t				overrun;
505 	local_t				commit_overrun;
506 	local_t				dropped_events;
507 	local_t				committing;
508 	local_t				commits;
509 	local_t				pages_touched;
510 	local_t				pages_read;
511 	long				last_pages_touch;
512 	size_t				shortest_full;
513 	unsigned long			read;
514 	unsigned long			read_bytes;
515 	rb_time_t			write_stamp;
516 	rb_time_t			before_stamp;
517 	u64				read_stamp;
518 	/* ring buffer pages to update, > 0 to add, < 0 to remove */
519 	long				nr_pages_to_update;
520 	struct list_head		new_pages; /* new pages to add */
521 	struct work_struct		update_pages_work;
522 	struct completion		update_done;
523 
524 	struct rb_irq_work		irq_work;
525 };
526 
527 struct trace_buffer {
528 	unsigned			flags;
529 	int				cpus;
530 	atomic_t			record_disabled;
531 	cpumask_var_t			cpumask;
532 
533 	struct lock_class_key		*reader_lock_key;
534 
535 	struct mutex			mutex;
536 
537 	struct ring_buffer_per_cpu	**buffers;
538 
539 	struct hlist_node		node;
540 	u64				(*clock)(void);
541 
542 	struct rb_irq_work		irq_work;
543 	bool				time_stamp_abs;
544 };
545 
546 struct ring_buffer_iter {
547 	struct ring_buffer_per_cpu	*cpu_buffer;
548 	unsigned long			head;
549 	unsigned long			next_event;
550 	struct buffer_page		*head_page;
551 	struct buffer_page		*cache_reader_page;
552 	unsigned long			cache_read;
553 	u64				read_stamp;
554 	u64				page_stamp;
555 	struct ring_buffer_event	*event;
556 	int				missed_events;
557 };
558 
559 #ifdef RB_TIME_32
560 
561 /*
562  * On 32 bit machines, local64_t is very expensive. As the ring
563  * buffer doesn't need all the features of a true 64 bit atomic,
564  * on 32 bit, it uses these functions (64 still uses local64_t).
565  *
566  * For the ring buffer, 64 bit required operations for the time is
567  * the following:
568  *
569  *  - Only need 59 bits (uses 60 to make it even).
570  *  - Reads may fail if it interrupted a modification of the time stamp.
571  *      It will succeed if it did not interrupt another write even if
572  *      the read itself is interrupted by a write.
573  *      It returns whether it was successful or not.
574  *
575  *  - Writes always succeed and will overwrite other writes and writes
576  *      that were done by events interrupting the current write.
577  *
578  *  - A write followed by a read of the same time stamp will always succeed,
579  *      but may not contain the same value.
580  *
581  *  - A cmpxchg will fail if it interrupted another write or cmpxchg.
582  *      Other than that, it acts like a normal cmpxchg.
583  *
584  * The 60 bit time stamp is broken up by 30 bits in a top and bottom half
585  *  (bottom being the least significant 30 bits of the 60 bit time stamp).
586  *
587  * The two most significant bits of each half holds a 2 bit counter (0-3).
588  * Each update will increment this counter by one.
589  * When reading the top and bottom, if the two counter bits match then the
590  *  top and bottom together make a valid 60 bit number.
591  */
592 #define RB_TIME_SHIFT	30
593 #define RB_TIME_VAL_MASK ((1 << RB_TIME_SHIFT) - 1)
594 
rb_time_cnt(unsigned long val)595 static inline int rb_time_cnt(unsigned long val)
596 {
597 	return (val >> RB_TIME_SHIFT) & 3;
598 }
599 
rb_time_val(unsigned long top,unsigned long bottom)600 static inline u64 rb_time_val(unsigned long top, unsigned long bottom)
601 {
602 	u64 val;
603 
604 	val = top & RB_TIME_VAL_MASK;
605 	val <<= RB_TIME_SHIFT;
606 	val |= bottom & RB_TIME_VAL_MASK;
607 
608 	return val;
609 }
610 
__rb_time_read(rb_time_t * t,u64 * ret,unsigned long * cnt)611 static inline bool __rb_time_read(rb_time_t *t, u64 *ret, unsigned long *cnt)
612 {
613 	unsigned long top, bottom;
614 	unsigned long c;
615 
616 	/*
617 	 * If the read is interrupted by a write, then the cnt will
618 	 * be different. Loop until both top and bottom have been read
619 	 * without interruption.
620 	 */
621 	do {
622 		c = local_read(&t->cnt);
623 		top = local_read(&t->top);
624 		bottom = local_read(&t->bottom);
625 	} while (c != local_read(&t->cnt));
626 
627 	*cnt = rb_time_cnt(top);
628 
629 	/* If top and bottom counts don't match, this interrupted a write */
630 	if (*cnt != rb_time_cnt(bottom))
631 		return false;
632 
633 	*ret = rb_time_val(top, bottom);
634 	return true;
635 }
636 
rb_time_read(rb_time_t * t,u64 * ret)637 static bool rb_time_read(rb_time_t *t, u64 *ret)
638 {
639 	unsigned long cnt;
640 
641 	return __rb_time_read(t, ret, &cnt);
642 }
643 
rb_time_val_cnt(unsigned long val,unsigned long cnt)644 static inline unsigned long rb_time_val_cnt(unsigned long val, unsigned long cnt)
645 {
646 	return (val & RB_TIME_VAL_MASK) | ((cnt & 3) << RB_TIME_SHIFT);
647 }
648 
rb_time_split(u64 val,unsigned long * top,unsigned long * bottom)649 static inline void rb_time_split(u64 val, unsigned long *top, unsigned long *bottom)
650 {
651 	*top = (unsigned long)((val >> RB_TIME_SHIFT) & RB_TIME_VAL_MASK);
652 	*bottom = (unsigned long)(val & RB_TIME_VAL_MASK);
653 }
654 
rb_time_val_set(local_t * t,unsigned long val,unsigned long cnt)655 static inline void rb_time_val_set(local_t *t, unsigned long val, unsigned long cnt)
656 {
657 	val = rb_time_val_cnt(val, cnt);
658 	local_set(t, val);
659 }
660 
rb_time_set(rb_time_t * t,u64 val)661 static void rb_time_set(rb_time_t *t, u64 val)
662 {
663 	unsigned long cnt, top, bottom;
664 
665 	rb_time_split(val, &top, &bottom);
666 
667 	/* Writes always succeed with a valid number even if it gets interrupted. */
668 	do {
669 		cnt = local_inc_return(&t->cnt);
670 		rb_time_val_set(&t->top, top, cnt);
671 		rb_time_val_set(&t->bottom, bottom, cnt);
672 	} while (cnt != local_read(&t->cnt));
673 }
674 
675 static inline bool
rb_time_read_cmpxchg(local_t * l,unsigned long expect,unsigned long set)676 rb_time_read_cmpxchg(local_t *l, unsigned long expect, unsigned long set)
677 {
678 	unsigned long ret;
679 
680 	ret = local_cmpxchg(l, expect, set);
681 	return ret == expect;
682 }
683 
rb_time_cmpxchg(rb_time_t * t,u64 expect,u64 set)684 static int rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
685 {
686 	unsigned long cnt, top, bottom;
687 	unsigned long cnt2, top2, bottom2;
688 	u64 val;
689 
690 	/* The cmpxchg always fails if it interrupted an update */
691 	 if (!__rb_time_read(t, &val, &cnt2))
692 		 return false;
693 
694 	 if (val != expect)
695 		 return false;
696 
697 	 cnt = local_read(&t->cnt);
698 	 if ((cnt & 3) != cnt2)
699 		 return false;
700 
701 	 cnt2 = cnt + 1;
702 
703 	 rb_time_split(val, &top, &bottom);
704 	 top = rb_time_val_cnt(top, cnt);
705 	 bottom = rb_time_val_cnt(bottom, cnt);
706 
707 	 rb_time_split(set, &top2, &bottom2);
708 	 top2 = rb_time_val_cnt(top2, cnt2);
709 	 bottom2 = rb_time_val_cnt(bottom2, cnt2);
710 
711 	if (!rb_time_read_cmpxchg(&t->cnt, cnt, cnt2))
712 		return false;
713 	if (!rb_time_read_cmpxchg(&t->top, top, top2))
714 		return false;
715 	if (!rb_time_read_cmpxchg(&t->bottom, bottom, bottom2))
716 		return false;
717 	return true;
718 }
719 
720 #else /* 64 bits */
721 
722 /* local64_t always succeeds */
723 
rb_time_read(rb_time_t * t,u64 * ret)724 static inline bool rb_time_read(rb_time_t *t, u64 *ret)
725 {
726 	*ret = local64_read(&t->time);
727 	return true;
728 }
rb_time_set(rb_time_t * t,u64 val)729 static void rb_time_set(rb_time_t *t, u64 val)
730 {
731 	local64_set(&t->time, val);
732 }
733 
rb_time_cmpxchg(rb_time_t * t,u64 expect,u64 set)734 static bool rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
735 {
736 	u64 val;
737 	val = local64_cmpxchg(&t->time, expect, set);
738 	return val == expect;
739 }
740 #endif
741 
742 /**
743  * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer
744  * @buffer: The ring_buffer to get the number of pages from
745  * @cpu: The cpu of the ring_buffer to get the number of pages from
746  *
747  * Returns the number of pages used by a per_cpu buffer of the ring buffer.
748  */
ring_buffer_nr_pages(struct trace_buffer * buffer,int cpu)749 size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu)
750 {
751 	return buffer->buffers[cpu]->nr_pages;
752 }
753 
754 /**
755  * ring_buffer_nr_pages_dirty - get the number of used pages in the ring buffer
756  * @buffer: The ring_buffer to get the number of pages from
757  * @cpu: The cpu of the ring_buffer to get the number of pages from
758  *
759  * Returns the number of pages that have content in the ring buffer.
760  */
ring_buffer_nr_dirty_pages(struct trace_buffer * buffer,int cpu)761 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
762 {
763 	size_t read;
764 	size_t cnt;
765 
766 	read = local_read(&buffer->buffers[cpu]->pages_read);
767 	cnt = local_read(&buffer->buffers[cpu]->pages_touched);
768 	/* The reader can read an empty page, but not more than that */
769 	if (cnt < read) {
770 		WARN_ON_ONCE(read > cnt + 1);
771 		return 0;
772 	}
773 
774 	return cnt - read;
775 }
776 
777 /*
778  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
779  *
780  * Schedules a delayed work to wake up any task that is blocked on the
781  * ring buffer waiters queue.
782  */
rb_wake_up_waiters(struct irq_work * work)783 static void rb_wake_up_waiters(struct irq_work *work)
784 {
785 	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
786 
787 	wake_up_all(&rbwork->waiters);
788 	if (rbwork->wakeup_full) {
789 		rbwork->wakeup_full = false;
790 		wake_up_all(&rbwork->full_waiters);
791 	}
792 }
793 
794 /**
795  * ring_buffer_wait - wait for input to the ring buffer
796  * @buffer: buffer to wait on
797  * @cpu: the cpu buffer to wait on
798  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
799  *
800  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
801  * as data is added to any of the @buffer's cpu buffers. Otherwise
802  * it will wait for data to be added to a specific cpu buffer.
803  */
ring_buffer_wait(struct trace_buffer * buffer,int cpu,int full)804 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full)
805 {
806 	struct ring_buffer_per_cpu *cpu_buffer;
807 	DEFINE_WAIT(wait);
808 	struct rb_irq_work *work;
809 	int ret = 0;
810 
811 	/*
812 	 * Depending on what the caller is waiting for, either any
813 	 * data in any cpu buffer, or a specific buffer, put the
814 	 * caller on the appropriate wait queue.
815 	 */
816 	if (cpu == RING_BUFFER_ALL_CPUS) {
817 		work = &buffer->irq_work;
818 		/* Full only makes sense on per cpu reads */
819 		full = 0;
820 	} else {
821 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
822 			return -ENODEV;
823 		cpu_buffer = buffer->buffers[cpu];
824 		work = &cpu_buffer->irq_work;
825 	}
826 
827 
828 	while (true) {
829 		if (full)
830 			prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
831 		else
832 			prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
833 
834 		/*
835 		 * The events can happen in critical sections where
836 		 * checking a work queue can cause deadlocks.
837 		 * After adding a task to the queue, this flag is set
838 		 * only to notify events to try to wake up the queue
839 		 * using irq_work.
840 		 *
841 		 * We don't clear it even if the buffer is no longer
842 		 * empty. The flag only causes the next event to run
843 		 * irq_work to do the work queue wake up. The worse
844 		 * that can happen if we race with !trace_empty() is that
845 		 * an event will cause an irq_work to try to wake up
846 		 * an empty queue.
847 		 *
848 		 * There's no reason to protect this flag either, as
849 		 * the work queue and irq_work logic will do the necessary
850 		 * synchronization for the wake ups. The only thing
851 		 * that is necessary is that the wake up happens after
852 		 * a task has been queued. It's OK for spurious wake ups.
853 		 */
854 		if (full)
855 			work->full_waiters_pending = true;
856 		else
857 			work->waiters_pending = true;
858 
859 		if (signal_pending(current)) {
860 			ret = -EINTR;
861 			break;
862 		}
863 
864 		if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
865 			break;
866 
867 		if (cpu != RING_BUFFER_ALL_CPUS &&
868 		    !ring_buffer_empty_cpu(buffer, cpu)) {
869 			unsigned long flags;
870 			bool pagebusy;
871 			size_t nr_pages;
872 			size_t dirty;
873 
874 			if (!full)
875 				break;
876 
877 			raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
878 			pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
879 			nr_pages = cpu_buffer->nr_pages;
880 			dirty = ring_buffer_nr_dirty_pages(buffer, cpu);
881 			if (!cpu_buffer->shortest_full ||
882 			    cpu_buffer->shortest_full < full)
883 				cpu_buffer->shortest_full = full;
884 			raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
885 			if (!pagebusy &&
886 			    (!nr_pages || (dirty * 100) > full * nr_pages))
887 				break;
888 		}
889 
890 		schedule();
891 	}
892 
893 	if (full)
894 		finish_wait(&work->full_waiters, &wait);
895 	else
896 		finish_wait(&work->waiters, &wait);
897 
898 	return ret;
899 }
900 
901 /**
902  * ring_buffer_poll_wait - poll on buffer input
903  * @buffer: buffer to wait on
904  * @cpu: the cpu buffer to wait on
905  * @filp: the file descriptor
906  * @poll_table: The poll descriptor
907  *
908  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
909  * as data is added to any of the @buffer's cpu buffers. Otherwise
910  * it will wait for data to be added to a specific cpu buffer.
911  *
912  * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
913  * zero otherwise.
914  */
ring_buffer_poll_wait(struct trace_buffer * buffer,int cpu,struct file * filp,poll_table * poll_table)915 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
916 			  struct file *filp, poll_table *poll_table)
917 {
918 	struct ring_buffer_per_cpu *cpu_buffer;
919 	struct rb_irq_work *work;
920 
921 	if (cpu == RING_BUFFER_ALL_CPUS)
922 		work = &buffer->irq_work;
923 	else {
924 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
925 			return -EINVAL;
926 
927 		cpu_buffer = buffer->buffers[cpu];
928 		work = &cpu_buffer->irq_work;
929 	}
930 
931 	poll_wait(filp, &work->waiters, poll_table);
932 	work->waiters_pending = true;
933 	/*
934 	 * There's a tight race between setting the waiters_pending and
935 	 * checking if the ring buffer is empty.  Once the waiters_pending bit
936 	 * is set, the next event will wake the task up, but we can get stuck
937 	 * if there's only a single event in.
938 	 *
939 	 * FIXME: Ideally, we need a memory barrier on the writer side as well,
940 	 * but adding a memory barrier to all events will cause too much of a
941 	 * performance hit in the fast path.  We only need a memory barrier when
942 	 * the buffer goes from empty to having content.  But as this race is
943 	 * extremely small, and it's not a problem if another event comes in, we
944 	 * will fix it later.
945 	 */
946 	smp_mb();
947 
948 	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
949 	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
950 		return EPOLLIN | EPOLLRDNORM;
951 	return 0;
952 }
953 
954 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
955 #define RB_WARN_ON(b, cond)						\
956 	({								\
957 		int _____ret = unlikely(cond);				\
958 		if (_____ret) {						\
959 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
960 				struct ring_buffer_per_cpu *__b =	\
961 					(void *)b;			\
962 				atomic_inc(&__b->buffer->record_disabled); \
963 			} else						\
964 				atomic_inc(&b->record_disabled);	\
965 			WARN_ON(1);					\
966 		}							\
967 		_____ret;						\
968 	})
969 
970 /* Up this if you want to test the TIME_EXTENTS and normalization */
971 #define DEBUG_SHIFT 0
972 
rb_time_stamp(struct trace_buffer * buffer)973 static inline u64 rb_time_stamp(struct trace_buffer *buffer)
974 {
975 	u64 ts;
976 
977 	/* Skip retpolines :-( */
978 	if (IS_ENABLED(CONFIG_RETPOLINE) && likely(buffer->clock == trace_clock_local))
979 		ts = trace_clock_local();
980 	else
981 		ts = buffer->clock();
982 
983 	/* shift to debug/test normalization and TIME_EXTENTS */
984 	return ts << DEBUG_SHIFT;
985 }
986 
ring_buffer_time_stamp(struct trace_buffer * buffer,int cpu)987 u64 ring_buffer_time_stamp(struct trace_buffer *buffer, int cpu)
988 {
989 	u64 time;
990 
991 	preempt_disable_notrace();
992 	time = rb_time_stamp(buffer);
993 	preempt_enable_notrace();
994 
995 	return time;
996 }
997 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
998 
ring_buffer_normalize_time_stamp(struct trace_buffer * buffer,int cpu,u64 * ts)999 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
1000 				      int cpu, u64 *ts)
1001 {
1002 	/* Just stupid testing the normalize function and deltas */
1003 	*ts >>= DEBUG_SHIFT;
1004 }
1005 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1006 
1007 /*
1008  * Making the ring buffer lockless makes things tricky.
1009  * Although writes only happen on the CPU that they are on,
1010  * and they only need to worry about interrupts. Reads can
1011  * happen on any CPU.
1012  *
1013  * The reader page is always off the ring buffer, but when the
1014  * reader finishes with a page, it needs to swap its page with
1015  * a new one from the buffer. The reader needs to take from
1016  * the head (writes go to the tail). But if a writer is in overwrite
1017  * mode and wraps, it must push the head page forward.
1018  *
1019  * Here lies the problem.
1020  *
1021  * The reader must be careful to replace only the head page, and
1022  * not another one. As described at the top of the file in the
1023  * ASCII art, the reader sets its old page to point to the next
1024  * page after head. It then sets the page after head to point to
1025  * the old reader page. But if the writer moves the head page
1026  * during this operation, the reader could end up with the tail.
1027  *
1028  * We use cmpxchg to help prevent this race. We also do something
1029  * special with the page before head. We set the LSB to 1.
1030  *
1031  * When the writer must push the page forward, it will clear the
1032  * bit that points to the head page, move the head, and then set
1033  * the bit that points to the new head page.
1034  *
1035  * We also don't want an interrupt coming in and moving the head
1036  * page on another writer. Thus we use the second LSB to catch
1037  * that too. Thus:
1038  *
1039  * head->list->prev->next        bit 1          bit 0
1040  *                              -------        -------
1041  * Normal page                     0              0
1042  * Points to head page             0              1
1043  * New head page                   1              0
1044  *
1045  * Note we can not trust the prev pointer of the head page, because:
1046  *
1047  * +----+       +-----+        +-----+
1048  * |    |------>|  T  |---X--->|  N  |
1049  * |    |<------|     |        |     |
1050  * +----+       +-----+        +-----+
1051  *   ^                           ^ |
1052  *   |          +-----+          | |
1053  *   +----------|  R  |----------+ |
1054  *              |     |<-----------+
1055  *              +-----+
1056  *
1057  * Key:  ---X-->  HEAD flag set in pointer
1058  *         T      Tail page
1059  *         R      Reader page
1060  *         N      Next page
1061  *
1062  * (see __rb_reserve_next() to see where this happens)
1063  *
1064  *  What the above shows is that the reader just swapped out
1065  *  the reader page with a page in the buffer, but before it
1066  *  could make the new header point back to the new page added
1067  *  it was preempted by a writer. The writer moved forward onto
1068  *  the new page added by the reader and is about to move forward
1069  *  again.
1070  *
1071  *  You can see, it is legitimate for the previous pointer of
1072  *  the head (or any page) not to point back to itself. But only
1073  *  temporarily.
1074  */
1075 
1076 #define RB_PAGE_NORMAL		0UL
1077 #define RB_PAGE_HEAD		1UL
1078 #define RB_PAGE_UPDATE		2UL
1079 
1080 
1081 #define RB_FLAG_MASK		3UL
1082 
1083 /* PAGE_MOVED is not part of the mask */
1084 #define RB_PAGE_MOVED		4UL
1085 
1086 /*
1087  * rb_list_head - remove any bit
1088  */
rb_list_head(struct list_head * list)1089 static struct list_head *rb_list_head(struct list_head *list)
1090 {
1091 	unsigned long val = (unsigned long)list;
1092 
1093 	return (struct list_head *)(val & ~RB_FLAG_MASK);
1094 }
1095 
1096 /*
1097  * rb_is_head_page - test if the given page is the head page
1098  *
1099  * Because the reader may move the head_page pointer, we can
1100  * not trust what the head page is (it may be pointing to
1101  * the reader page). But if the next page is a header page,
1102  * its flags will be non zero.
1103  */
1104 static inline int
rb_is_head_page(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * page,struct list_head * list)1105 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1106 		struct buffer_page *page, struct list_head *list)
1107 {
1108 	unsigned long val;
1109 
1110 	val = (unsigned long)list->next;
1111 
1112 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1113 		return RB_PAGE_MOVED;
1114 
1115 	return val & RB_FLAG_MASK;
1116 }
1117 
1118 /*
1119  * rb_is_reader_page
1120  *
1121  * The unique thing about the reader page, is that, if the
1122  * writer is ever on it, the previous pointer never points
1123  * back to the reader page.
1124  */
rb_is_reader_page(struct buffer_page * page)1125 static bool rb_is_reader_page(struct buffer_page *page)
1126 {
1127 	struct list_head *list = page->list.prev;
1128 
1129 	return rb_list_head(list->next) != &page->list;
1130 }
1131 
1132 /*
1133  * rb_set_list_to_head - set a list_head to be pointing to head.
1134  */
rb_set_list_to_head(struct ring_buffer_per_cpu * cpu_buffer,struct list_head * list)1135 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
1136 				struct list_head *list)
1137 {
1138 	unsigned long *ptr;
1139 
1140 	ptr = (unsigned long *)&list->next;
1141 	*ptr |= RB_PAGE_HEAD;
1142 	*ptr &= ~RB_PAGE_UPDATE;
1143 }
1144 
1145 /*
1146  * rb_head_page_activate - sets up head page
1147  */
rb_head_page_activate(struct ring_buffer_per_cpu * cpu_buffer)1148 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1149 {
1150 	struct buffer_page *head;
1151 
1152 	head = cpu_buffer->head_page;
1153 	if (!head)
1154 		return;
1155 
1156 	/*
1157 	 * Set the previous list pointer to have the HEAD flag.
1158 	 */
1159 	rb_set_list_to_head(cpu_buffer, head->list.prev);
1160 }
1161 
rb_list_head_clear(struct list_head * list)1162 static void rb_list_head_clear(struct list_head *list)
1163 {
1164 	unsigned long *ptr = (unsigned long *)&list->next;
1165 
1166 	*ptr &= ~RB_FLAG_MASK;
1167 }
1168 
1169 /*
1170  * rb_head_page_deactivate - clears head page ptr (for free list)
1171  */
1172 static void
rb_head_page_deactivate(struct ring_buffer_per_cpu * cpu_buffer)1173 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1174 {
1175 	struct list_head *hd;
1176 
1177 	/* Go through the whole list and clear any pointers found. */
1178 	rb_list_head_clear(cpu_buffer->pages);
1179 
1180 	list_for_each(hd, cpu_buffer->pages)
1181 		rb_list_head_clear(hd);
1182 }
1183 
rb_head_page_set(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag,int new_flag)1184 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1185 			    struct buffer_page *head,
1186 			    struct buffer_page *prev,
1187 			    int old_flag, int new_flag)
1188 {
1189 	struct list_head *list;
1190 	unsigned long val = (unsigned long)&head->list;
1191 	unsigned long ret;
1192 
1193 	list = &prev->list;
1194 
1195 	val &= ~RB_FLAG_MASK;
1196 
1197 	ret = cmpxchg((unsigned long *)&list->next,
1198 		      val | old_flag, val | new_flag);
1199 
1200 	/* check if the reader took the page */
1201 	if ((ret & ~RB_FLAG_MASK) != val)
1202 		return RB_PAGE_MOVED;
1203 
1204 	return ret & RB_FLAG_MASK;
1205 }
1206 
rb_head_page_set_update(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)1207 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1208 				   struct buffer_page *head,
1209 				   struct buffer_page *prev,
1210 				   int old_flag)
1211 {
1212 	return rb_head_page_set(cpu_buffer, head, prev,
1213 				old_flag, RB_PAGE_UPDATE);
1214 }
1215 
rb_head_page_set_head(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)1216 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1217 				 struct buffer_page *head,
1218 				 struct buffer_page *prev,
1219 				 int old_flag)
1220 {
1221 	return rb_head_page_set(cpu_buffer, head, prev,
1222 				old_flag, RB_PAGE_HEAD);
1223 }
1224 
rb_head_page_set_normal(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)1225 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1226 				   struct buffer_page *head,
1227 				   struct buffer_page *prev,
1228 				   int old_flag)
1229 {
1230 	return rb_head_page_set(cpu_buffer, head, prev,
1231 				old_flag, RB_PAGE_NORMAL);
1232 }
1233 
rb_inc_page(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page ** bpage)1234 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
1235 			       struct buffer_page **bpage)
1236 {
1237 	struct list_head *p = rb_list_head((*bpage)->list.next);
1238 
1239 	*bpage = list_entry(p, struct buffer_page, list);
1240 }
1241 
1242 static struct buffer_page *
rb_set_head_page(struct ring_buffer_per_cpu * cpu_buffer)1243 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1244 {
1245 	struct buffer_page *head;
1246 	struct buffer_page *page;
1247 	struct list_head *list;
1248 	int i;
1249 
1250 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1251 		return NULL;
1252 
1253 	/* sanity check */
1254 	list = cpu_buffer->pages;
1255 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1256 		return NULL;
1257 
1258 	page = head = cpu_buffer->head_page;
1259 	/*
1260 	 * It is possible that the writer moves the header behind
1261 	 * where we started, and we miss in one loop.
1262 	 * A second loop should grab the header, but we'll do
1263 	 * three loops just because I'm paranoid.
1264 	 */
1265 	for (i = 0; i < 3; i++) {
1266 		do {
1267 			if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
1268 				cpu_buffer->head_page = page;
1269 				return page;
1270 			}
1271 			rb_inc_page(cpu_buffer, &page);
1272 		} while (page != head);
1273 	}
1274 
1275 	RB_WARN_ON(cpu_buffer, 1);
1276 
1277 	return NULL;
1278 }
1279 
rb_head_page_replace(struct buffer_page * old,struct buffer_page * new)1280 static int rb_head_page_replace(struct buffer_page *old,
1281 				struct buffer_page *new)
1282 {
1283 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1284 	unsigned long val;
1285 	unsigned long ret;
1286 
1287 	val = *ptr & ~RB_FLAG_MASK;
1288 	val |= RB_PAGE_HEAD;
1289 
1290 	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1291 
1292 	return ret == val;
1293 }
1294 
1295 /*
1296  * rb_tail_page_update - move the tail page forward
1297  */
rb_tail_page_update(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * tail_page,struct buffer_page * next_page)1298 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1299 			       struct buffer_page *tail_page,
1300 			       struct buffer_page *next_page)
1301 {
1302 	unsigned long old_entries;
1303 	unsigned long old_write;
1304 
1305 	/*
1306 	 * The tail page now needs to be moved forward.
1307 	 *
1308 	 * We need to reset the tail page, but without messing
1309 	 * with possible erasing of data brought in by interrupts
1310 	 * that have moved the tail page and are currently on it.
1311 	 *
1312 	 * We add a counter to the write field to denote this.
1313 	 */
1314 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1315 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1316 
1317 	local_inc(&cpu_buffer->pages_touched);
1318 	/*
1319 	 * Just make sure we have seen our old_write and synchronize
1320 	 * with any interrupts that come in.
1321 	 */
1322 	barrier();
1323 
1324 	/*
1325 	 * If the tail page is still the same as what we think
1326 	 * it is, then it is up to us to update the tail
1327 	 * pointer.
1328 	 */
1329 	if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1330 		/* Zero the write counter */
1331 		unsigned long val = old_write & ~RB_WRITE_MASK;
1332 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1333 
1334 		/*
1335 		 * This will only succeed if an interrupt did
1336 		 * not come in and change it. In which case, we
1337 		 * do not want to modify it.
1338 		 *
1339 		 * We add (void) to let the compiler know that we do not care
1340 		 * about the return value of these functions. We use the
1341 		 * cmpxchg to only update if an interrupt did not already
1342 		 * do it for us. If the cmpxchg fails, we don't care.
1343 		 */
1344 		(void)local_cmpxchg(&next_page->write, old_write, val);
1345 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1346 
1347 		/*
1348 		 * No need to worry about races with clearing out the commit.
1349 		 * it only can increment when a commit takes place. But that
1350 		 * only happens in the outer most nested commit.
1351 		 */
1352 		local_set(&next_page->page->commit, 0);
1353 
1354 		/* Again, either we update tail_page or an interrupt does */
1355 		(void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1356 	}
1357 }
1358 
rb_check_bpage(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * bpage)1359 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1360 			  struct buffer_page *bpage)
1361 {
1362 	unsigned long val = (unsigned long)bpage;
1363 
1364 	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1365 		return 1;
1366 
1367 	return 0;
1368 }
1369 
1370 /**
1371  * rb_check_list - make sure a pointer to a list has the last bits zero
1372  */
rb_check_list(struct ring_buffer_per_cpu * cpu_buffer,struct list_head * list)1373 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1374 			 struct list_head *list)
1375 {
1376 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1377 		return 1;
1378 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1379 		return 1;
1380 	return 0;
1381 }
1382 
1383 /**
1384  * rb_check_pages - integrity check of buffer pages
1385  * @cpu_buffer: CPU buffer with pages to test
1386  *
1387  * As a safety measure we check to make sure the data pages have not
1388  * been corrupted.
1389  */
rb_check_pages(struct ring_buffer_per_cpu * cpu_buffer)1390 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1391 {
1392 	struct list_head *head = cpu_buffer->pages;
1393 	struct buffer_page *bpage, *tmp;
1394 
1395 	/* Reset the head page if it exists */
1396 	if (cpu_buffer->head_page)
1397 		rb_set_head_page(cpu_buffer);
1398 
1399 	rb_head_page_deactivate(cpu_buffer);
1400 
1401 	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1402 		return -1;
1403 	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1404 		return -1;
1405 
1406 	if (rb_check_list(cpu_buffer, head))
1407 		return -1;
1408 
1409 	list_for_each_entry_safe(bpage, tmp, head, list) {
1410 		if (RB_WARN_ON(cpu_buffer,
1411 			       bpage->list.next->prev != &bpage->list))
1412 			return -1;
1413 		if (RB_WARN_ON(cpu_buffer,
1414 			       bpage->list.prev->next != &bpage->list))
1415 			return -1;
1416 		if (rb_check_list(cpu_buffer, &bpage->list))
1417 			return -1;
1418 	}
1419 
1420 	rb_head_page_activate(cpu_buffer);
1421 
1422 	return 0;
1423 }
1424 
__rb_allocate_pages(long nr_pages,struct list_head * pages,int cpu)1425 static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
1426 {
1427 	struct buffer_page *bpage, *tmp;
1428 	bool user_thread = current->mm != NULL;
1429 	gfp_t mflags;
1430 	long i;
1431 
1432 	/*
1433 	 * Check if the available memory is there first.
1434 	 * Note, si_mem_available() only gives us a rough estimate of available
1435 	 * memory. It may not be accurate. But we don't care, we just want
1436 	 * to prevent doing any allocation when it is obvious that it is
1437 	 * not going to succeed.
1438 	 */
1439 	i = si_mem_available();
1440 	if (i < nr_pages)
1441 		return -ENOMEM;
1442 
1443 	/*
1444 	 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1445 	 * gracefully without invoking oom-killer and the system is not
1446 	 * destabilized.
1447 	 */
1448 	mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1449 
1450 	/*
1451 	 * If a user thread allocates too much, and si_mem_available()
1452 	 * reports there's enough memory, even though there is not.
1453 	 * Make sure the OOM killer kills this thread. This can happen
1454 	 * even with RETRY_MAYFAIL because another task may be doing
1455 	 * an allocation after this task has taken all memory.
1456 	 * This is the task the OOM killer needs to take out during this
1457 	 * loop, even if it was triggered by an allocation somewhere else.
1458 	 */
1459 	if (user_thread)
1460 		set_current_oom_origin();
1461 	for (i = 0; i < nr_pages; i++) {
1462 		struct page *page;
1463 
1464 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1465 				    mflags, cpu_to_node(cpu));
1466 		if (!bpage)
1467 			goto free_pages;
1468 
1469 		list_add(&bpage->list, pages);
1470 
1471 		page = alloc_pages_node(cpu_to_node(cpu), mflags, 0);
1472 		if (!page)
1473 			goto free_pages;
1474 		bpage->page = page_address(page);
1475 		rb_init_page(bpage->page);
1476 
1477 		if (user_thread && fatal_signal_pending(current))
1478 			goto free_pages;
1479 	}
1480 	if (user_thread)
1481 		clear_current_oom_origin();
1482 
1483 	return 0;
1484 
1485 free_pages:
1486 	list_for_each_entry_safe(bpage, tmp, pages, list) {
1487 		list_del_init(&bpage->list);
1488 		free_buffer_page(bpage);
1489 	}
1490 	if (user_thread)
1491 		clear_current_oom_origin();
1492 
1493 	return -ENOMEM;
1494 }
1495 
rb_allocate_pages(struct ring_buffer_per_cpu * cpu_buffer,unsigned long nr_pages)1496 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1497 			     unsigned long nr_pages)
1498 {
1499 	LIST_HEAD(pages);
1500 
1501 	WARN_ON(!nr_pages);
1502 
1503 	if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1504 		return -ENOMEM;
1505 
1506 	/*
1507 	 * The ring buffer page list is a circular list that does not
1508 	 * start and end with a list head. All page list items point to
1509 	 * other pages.
1510 	 */
1511 	cpu_buffer->pages = pages.next;
1512 	list_del(&pages);
1513 
1514 	cpu_buffer->nr_pages = nr_pages;
1515 
1516 	rb_check_pages(cpu_buffer);
1517 
1518 	return 0;
1519 }
1520 
1521 static struct ring_buffer_per_cpu *
rb_allocate_cpu_buffer(struct trace_buffer * buffer,long nr_pages,int cpu)1522 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
1523 {
1524 	struct ring_buffer_per_cpu *cpu_buffer;
1525 	struct buffer_page *bpage;
1526 	struct page *page;
1527 	int ret;
1528 
1529 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1530 				  GFP_KERNEL, cpu_to_node(cpu));
1531 	if (!cpu_buffer)
1532 		return NULL;
1533 
1534 	cpu_buffer->cpu = cpu;
1535 	cpu_buffer->buffer = buffer;
1536 	raw_spin_lock_init(&cpu_buffer->reader_lock);
1537 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1538 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1539 	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1540 	init_completion(&cpu_buffer->update_done);
1541 	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1542 	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1543 	init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1544 
1545 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1546 			    GFP_KERNEL, cpu_to_node(cpu));
1547 	if (!bpage)
1548 		goto fail_free_buffer;
1549 
1550 	rb_check_bpage(cpu_buffer, bpage);
1551 
1552 	cpu_buffer->reader_page = bpage;
1553 	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1554 	if (!page)
1555 		goto fail_free_reader;
1556 	bpage->page = page_address(page);
1557 	rb_init_page(bpage->page);
1558 
1559 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1560 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
1561 
1562 	ret = rb_allocate_pages(cpu_buffer, nr_pages);
1563 	if (ret < 0)
1564 		goto fail_free_reader;
1565 
1566 	cpu_buffer->head_page
1567 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1568 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1569 
1570 	rb_head_page_activate(cpu_buffer);
1571 
1572 	return cpu_buffer;
1573 
1574  fail_free_reader:
1575 	free_buffer_page(cpu_buffer->reader_page);
1576 
1577  fail_free_buffer:
1578 	kfree(cpu_buffer);
1579 	return NULL;
1580 }
1581 
rb_free_cpu_buffer(struct ring_buffer_per_cpu * cpu_buffer)1582 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1583 {
1584 	struct list_head *head = cpu_buffer->pages;
1585 	struct buffer_page *bpage, *tmp;
1586 
1587 	free_buffer_page(cpu_buffer->reader_page);
1588 
1589 	rb_head_page_deactivate(cpu_buffer);
1590 
1591 	if (head) {
1592 		list_for_each_entry_safe(bpage, tmp, head, list) {
1593 			list_del_init(&bpage->list);
1594 			free_buffer_page(bpage);
1595 		}
1596 		bpage = list_entry(head, struct buffer_page, list);
1597 		free_buffer_page(bpage);
1598 	}
1599 
1600 	kfree(cpu_buffer);
1601 }
1602 
1603 /**
1604  * __ring_buffer_alloc - allocate a new ring_buffer
1605  * @size: the size in bytes per cpu that is needed.
1606  * @flags: attributes to set for the ring buffer.
1607  * @key: ring buffer reader_lock_key.
1608  *
1609  * Currently the only flag that is available is the RB_FL_OVERWRITE
1610  * flag. This flag means that the buffer will overwrite old data
1611  * when the buffer wraps. If this flag is not set, the buffer will
1612  * drop data when the tail hits the head.
1613  */
__ring_buffer_alloc(unsigned long size,unsigned flags,struct lock_class_key * key)1614 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1615 					struct lock_class_key *key)
1616 {
1617 	struct trace_buffer *buffer;
1618 	long nr_pages;
1619 	int bsize;
1620 	int cpu;
1621 	int ret;
1622 
1623 	/* keep it in its own cache line */
1624 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1625 			 GFP_KERNEL);
1626 	if (!buffer)
1627 		return NULL;
1628 
1629 	if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1630 		goto fail_free_buffer;
1631 
1632 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1633 	buffer->flags = flags;
1634 	buffer->clock = trace_clock_local;
1635 	buffer->reader_lock_key = key;
1636 
1637 	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1638 	init_waitqueue_head(&buffer->irq_work.waiters);
1639 
1640 	/* need at least two pages */
1641 	if (nr_pages < 2)
1642 		nr_pages = 2;
1643 
1644 	buffer->cpus = nr_cpu_ids;
1645 
1646 	bsize = sizeof(void *) * nr_cpu_ids;
1647 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1648 				  GFP_KERNEL);
1649 	if (!buffer->buffers)
1650 		goto fail_free_cpumask;
1651 
1652 	cpu = raw_smp_processor_id();
1653 	cpumask_set_cpu(cpu, buffer->cpumask);
1654 	buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1655 	if (!buffer->buffers[cpu])
1656 		goto fail_free_buffers;
1657 
1658 	ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1659 	if (ret < 0)
1660 		goto fail_free_buffers;
1661 
1662 	mutex_init(&buffer->mutex);
1663 
1664 	return buffer;
1665 
1666  fail_free_buffers:
1667 	for_each_buffer_cpu(buffer, cpu) {
1668 		if (buffer->buffers[cpu])
1669 			rb_free_cpu_buffer(buffer->buffers[cpu]);
1670 	}
1671 	kfree(buffer->buffers);
1672 
1673  fail_free_cpumask:
1674 	free_cpumask_var(buffer->cpumask);
1675 
1676  fail_free_buffer:
1677 	kfree(buffer);
1678 	return NULL;
1679 }
1680 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1681 
1682 /**
1683  * ring_buffer_free - free a ring buffer.
1684  * @buffer: the buffer to free.
1685  */
1686 void
ring_buffer_free(struct trace_buffer * buffer)1687 ring_buffer_free(struct trace_buffer *buffer)
1688 {
1689 	int cpu;
1690 
1691 	cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1692 
1693 	for_each_buffer_cpu(buffer, cpu)
1694 		rb_free_cpu_buffer(buffer->buffers[cpu]);
1695 
1696 	kfree(buffer->buffers);
1697 	free_cpumask_var(buffer->cpumask);
1698 
1699 	kfree(buffer);
1700 }
1701 EXPORT_SYMBOL_GPL(ring_buffer_free);
1702 
ring_buffer_set_clock(struct trace_buffer * buffer,u64 (* clock)(void))1703 void ring_buffer_set_clock(struct trace_buffer *buffer,
1704 			   u64 (*clock)(void))
1705 {
1706 	buffer->clock = clock;
1707 }
1708 
ring_buffer_set_time_stamp_abs(struct trace_buffer * buffer,bool abs)1709 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
1710 {
1711 	buffer->time_stamp_abs = abs;
1712 }
1713 
ring_buffer_time_stamp_abs(struct trace_buffer * buffer)1714 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
1715 {
1716 	return buffer->time_stamp_abs;
1717 }
1718 
1719 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1720 
rb_page_entries(struct buffer_page * bpage)1721 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1722 {
1723 	return local_read(&bpage->entries) & RB_WRITE_MASK;
1724 }
1725 
rb_page_write(struct buffer_page * bpage)1726 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1727 {
1728 	return local_read(&bpage->write) & RB_WRITE_MASK;
1729 }
1730 
1731 static int
rb_remove_pages(struct ring_buffer_per_cpu * cpu_buffer,unsigned long nr_pages)1732 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1733 {
1734 	struct list_head *tail_page, *to_remove, *next_page;
1735 	struct buffer_page *to_remove_page, *tmp_iter_page;
1736 	struct buffer_page *last_page, *first_page;
1737 	unsigned long nr_removed;
1738 	unsigned long head_bit;
1739 	int page_entries;
1740 
1741 	head_bit = 0;
1742 
1743 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1744 	atomic_inc(&cpu_buffer->record_disabled);
1745 	/*
1746 	 * We don't race with the readers since we have acquired the reader
1747 	 * lock. We also don't race with writers after disabling recording.
1748 	 * This makes it easy to figure out the first and the last page to be
1749 	 * removed from the list. We unlink all the pages in between including
1750 	 * the first and last pages. This is done in a busy loop so that we
1751 	 * lose the least number of traces.
1752 	 * The pages are freed after we restart recording and unlock readers.
1753 	 */
1754 	tail_page = &cpu_buffer->tail_page->list;
1755 
1756 	/*
1757 	 * tail page might be on reader page, we remove the next page
1758 	 * from the ring buffer
1759 	 */
1760 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1761 		tail_page = rb_list_head(tail_page->next);
1762 	to_remove = tail_page;
1763 
1764 	/* start of pages to remove */
1765 	first_page = list_entry(rb_list_head(to_remove->next),
1766 				struct buffer_page, list);
1767 
1768 	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1769 		to_remove = rb_list_head(to_remove)->next;
1770 		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1771 	}
1772 
1773 	next_page = rb_list_head(to_remove)->next;
1774 
1775 	/*
1776 	 * Now we remove all pages between tail_page and next_page.
1777 	 * Make sure that we have head_bit value preserved for the
1778 	 * next page
1779 	 */
1780 	tail_page->next = (struct list_head *)((unsigned long)next_page |
1781 						head_bit);
1782 	next_page = rb_list_head(next_page);
1783 	next_page->prev = tail_page;
1784 
1785 	/* make sure pages points to a valid page in the ring buffer */
1786 	cpu_buffer->pages = next_page;
1787 
1788 	/* update head page */
1789 	if (head_bit)
1790 		cpu_buffer->head_page = list_entry(next_page,
1791 						struct buffer_page, list);
1792 
1793 	/*
1794 	 * change read pointer to make sure any read iterators reset
1795 	 * themselves
1796 	 */
1797 	cpu_buffer->read = 0;
1798 
1799 	/* pages are removed, resume tracing and then free the pages */
1800 	atomic_dec(&cpu_buffer->record_disabled);
1801 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1802 
1803 	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1804 
1805 	/* last buffer page to remove */
1806 	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1807 				list);
1808 	tmp_iter_page = first_page;
1809 
1810 	do {
1811 		cond_resched();
1812 
1813 		to_remove_page = tmp_iter_page;
1814 		rb_inc_page(cpu_buffer, &tmp_iter_page);
1815 
1816 		/* update the counters */
1817 		page_entries = rb_page_entries(to_remove_page);
1818 		if (page_entries) {
1819 			/*
1820 			 * If something was added to this page, it was full
1821 			 * since it is not the tail page. So we deduct the
1822 			 * bytes consumed in ring buffer from here.
1823 			 * Increment overrun to account for the lost events.
1824 			 */
1825 			local_add(page_entries, &cpu_buffer->overrun);
1826 			local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1827 		}
1828 
1829 		/*
1830 		 * We have already removed references to this list item, just
1831 		 * free up the buffer_page and its page
1832 		 */
1833 		free_buffer_page(to_remove_page);
1834 		nr_removed--;
1835 
1836 	} while (to_remove_page != last_page);
1837 
1838 	RB_WARN_ON(cpu_buffer, nr_removed);
1839 
1840 	return nr_removed == 0;
1841 }
1842 
1843 static int
rb_insert_pages(struct ring_buffer_per_cpu * cpu_buffer)1844 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1845 {
1846 	struct list_head *pages = &cpu_buffer->new_pages;
1847 	int retries, success;
1848 
1849 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1850 	/*
1851 	 * We are holding the reader lock, so the reader page won't be swapped
1852 	 * in the ring buffer. Now we are racing with the writer trying to
1853 	 * move head page and the tail page.
1854 	 * We are going to adapt the reader page update process where:
1855 	 * 1. We first splice the start and end of list of new pages between
1856 	 *    the head page and its previous page.
1857 	 * 2. We cmpxchg the prev_page->next to point from head page to the
1858 	 *    start of new pages list.
1859 	 * 3. Finally, we update the head->prev to the end of new list.
1860 	 *
1861 	 * We will try this process 10 times, to make sure that we don't keep
1862 	 * spinning.
1863 	 */
1864 	retries = 10;
1865 	success = 0;
1866 	while (retries--) {
1867 		struct list_head *head_page, *prev_page, *r;
1868 		struct list_head *last_page, *first_page;
1869 		struct list_head *head_page_with_bit;
1870 
1871 		head_page = &rb_set_head_page(cpu_buffer)->list;
1872 		if (!head_page)
1873 			break;
1874 		prev_page = head_page->prev;
1875 
1876 		first_page = pages->next;
1877 		last_page  = pages->prev;
1878 
1879 		head_page_with_bit = (struct list_head *)
1880 				     ((unsigned long)head_page | RB_PAGE_HEAD);
1881 
1882 		last_page->next = head_page_with_bit;
1883 		first_page->prev = prev_page;
1884 
1885 		r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1886 
1887 		if (r == head_page_with_bit) {
1888 			/*
1889 			 * yay, we replaced the page pointer to our new list,
1890 			 * now, we just have to update to head page's prev
1891 			 * pointer to point to end of list
1892 			 */
1893 			head_page->prev = last_page;
1894 			success = 1;
1895 			break;
1896 		}
1897 	}
1898 
1899 	if (success)
1900 		INIT_LIST_HEAD(pages);
1901 	/*
1902 	 * If we weren't successful in adding in new pages, warn and stop
1903 	 * tracing
1904 	 */
1905 	RB_WARN_ON(cpu_buffer, !success);
1906 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1907 
1908 	/* free pages if they weren't inserted */
1909 	if (!success) {
1910 		struct buffer_page *bpage, *tmp;
1911 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1912 					 list) {
1913 			list_del_init(&bpage->list);
1914 			free_buffer_page(bpage);
1915 		}
1916 	}
1917 	return success;
1918 }
1919 
rb_update_pages(struct ring_buffer_per_cpu * cpu_buffer)1920 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1921 {
1922 	int success;
1923 
1924 	if (cpu_buffer->nr_pages_to_update > 0)
1925 		success = rb_insert_pages(cpu_buffer);
1926 	else
1927 		success = rb_remove_pages(cpu_buffer,
1928 					-cpu_buffer->nr_pages_to_update);
1929 
1930 	if (success)
1931 		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1932 }
1933 
update_pages_handler(struct work_struct * work)1934 static void update_pages_handler(struct work_struct *work)
1935 {
1936 	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1937 			struct ring_buffer_per_cpu, update_pages_work);
1938 	rb_update_pages(cpu_buffer);
1939 	complete(&cpu_buffer->update_done);
1940 }
1941 
1942 /**
1943  * ring_buffer_resize - resize the ring buffer
1944  * @buffer: the buffer to resize.
1945  * @size: the new size.
1946  * @cpu_id: the cpu buffer to resize
1947  *
1948  * Minimum size is 2 * BUF_PAGE_SIZE.
1949  *
1950  * Returns 0 on success and < 0 on failure.
1951  */
ring_buffer_resize(struct trace_buffer * buffer,unsigned long size,int cpu_id)1952 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
1953 			int cpu_id)
1954 {
1955 	struct ring_buffer_per_cpu *cpu_buffer;
1956 	unsigned long nr_pages;
1957 	int cpu, err;
1958 
1959 	/*
1960 	 * Always succeed at resizing a non-existent buffer:
1961 	 */
1962 	if (!buffer)
1963 		return 0;
1964 
1965 	/* Make sure the requested buffer exists */
1966 	if (cpu_id != RING_BUFFER_ALL_CPUS &&
1967 	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
1968 		return 0;
1969 
1970 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1971 
1972 	/* we need a minimum of two pages */
1973 	if (nr_pages < 2)
1974 		nr_pages = 2;
1975 
1976 	size = nr_pages * BUF_PAGE_SIZE;
1977 
1978 	/* prevent another thread from changing buffer sizes */
1979 	mutex_lock(&buffer->mutex);
1980 
1981 
1982 	if (cpu_id == RING_BUFFER_ALL_CPUS) {
1983 		/*
1984 		 * Don't succeed if resizing is disabled, as a reader might be
1985 		 * manipulating the ring buffer and is expecting a sane state while
1986 		 * this is true.
1987 		 */
1988 		for_each_buffer_cpu(buffer, cpu) {
1989 			cpu_buffer = buffer->buffers[cpu];
1990 			if (atomic_read(&cpu_buffer->resize_disabled)) {
1991 				err = -EBUSY;
1992 				goto out_err_unlock;
1993 			}
1994 		}
1995 
1996 		/* calculate the pages to update */
1997 		for_each_buffer_cpu(buffer, cpu) {
1998 			cpu_buffer = buffer->buffers[cpu];
1999 
2000 			cpu_buffer->nr_pages_to_update = nr_pages -
2001 							cpu_buffer->nr_pages;
2002 			/*
2003 			 * nothing more to do for removing pages or no update
2004 			 */
2005 			if (cpu_buffer->nr_pages_to_update <= 0)
2006 				continue;
2007 			/*
2008 			 * to add pages, make sure all new pages can be
2009 			 * allocated without receiving ENOMEM
2010 			 */
2011 			INIT_LIST_HEAD(&cpu_buffer->new_pages);
2012 			if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
2013 						&cpu_buffer->new_pages, cpu)) {
2014 				/* not enough memory for new pages */
2015 				err = -ENOMEM;
2016 				goto out_err;
2017 			}
2018 		}
2019 
2020 		get_online_cpus();
2021 		/*
2022 		 * Fire off all the required work handlers
2023 		 * We can't schedule on offline CPUs, but it's not necessary
2024 		 * since we can change their buffer sizes without any race.
2025 		 */
2026 		for_each_buffer_cpu(buffer, cpu) {
2027 			cpu_buffer = buffer->buffers[cpu];
2028 			if (!cpu_buffer->nr_pages_to_update)
2029 				continue;
2030 
2031 			/* Can't run something on an offline CPU. */
2032 			if (!cpu_online(cpu)) {
2033 				rb_update_pages(cpu_buffer);
2034 				cpu_buffer->nr_pages_to_update = 0;
2035 			} else {
2036 				schedule_work_on(cpu,
2037 						&cpu_buffer->update_pages_work);
2038 			}
2039 		}
2040 
2041 		/* wait for all the updates to complete */
2042 		for_each_buffer_cpu(buffer, cpu) {
2043 			cpu_buffer = buffer->buffers[cpu];
2044 			if (!cpu_buffer->nr_pages_to_update)
2045 				continue;
2046 
2047 			if (cpu_online(cpu))
2048 				wait_for_completion(&cpu_buffer->update_done);
2049 			cpu_buffer->nr_pages_to_update = 0;
2050 		}
2051 
2052 		put_online_cpus();
2053 	} else {
2054 		/* Make sure this CPU has been initialized */
2055 		if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
2056 			goto out;
2057 
2058 		cpu_buffer = buffer->buffers[cpu_id];
2059 
2060 		if (nr_pages == cpu_buffer->nr_pages)
2061 			goto out;
2062 
2063 		/*
2064 		 * Don't succeed if resizing is disabled, as a reader might be
2065 		 * manipulating the ring buffer and is expecting a sane state while
2066 		 * this is true.
2067 		 */
2068 		if (atomic_read(&cpu_buffer->resize_disabled)) {
2069 			err = -EBUSY;
2070 			goto out_err_unlock;
2071 		}
2072 
2073 		cpu_buffer->nr_pages_to_update = nr_pages -
2074 						cpu_buffer->nr_pages;
2075 
2076 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
2077 		if (cpu_buffer->nr_pages_to_update > 0 &&
2078 			__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
2079 					    &cpu_buffer->new_pages, cpu_id)) {
2080 			err = -ENOMEM;
2081 			goto out_err;
2082 		}
2083 
2084 		get_online_cpus();
2085 
2086 		/* Can't run something on an offline CPU. */
2087 		if (!cpu_online(cpu_id))
2088 			rb_update_pages(cpu_buffer);
2089 		else {
2090 			schedule_work_on(cpu_id,
2091 					 &cpu_buffer->update_pages_work);
2092 			wait_for_completion(&cpu_buffer->update_done);
2093 		}
2094 
2095 		cpu_buffer->nr_pages_to_update = 0;
2096 		put_online_cpus();
2097 	}
2098 
2099  out:
2100 	/*
2101 	 * The ring buffer resize can happen with the ring buffer
2102 	 * enabled, so that the update disturbs the tracing as little
2103 	 * as possible. But if the buffer is disabled, we do not need
2104 	 * to worry about that, and we can take the time to verify
2105 	 * that the buffer is not corrupt.
2106 	 */
2107 	if (atomic_read(&buffer->record_disabled)) {
2108 		atomic_inc(&buffer->record_disabled);
2109 		/*
2110 		 * Even though the buffer was disabled, we must make sure
2111 		 * that it is truly disabled before calling rb_check_pages.
2112 		 * There could have been a race between checking
2113 		 * record_disable and incrementing it.
2114 		 */
2115 		synchronize_rcu();
2116 		for_each_buffer_cpu(buffer, cpu) {
2117 			cpu_buffer = buffer->buffers[cpu];
2118 			rb_check_pages(cpu_buffer);
2119 		}
2120 		atomic_dec(&buffer->record_disabled);
2121 	}
2122 
2123 	mutex_unlock(&buffer->mutex);
2124 	return 0;
2125 
2126  out_err:
2127 	for_each_buffer_cpu(buffer, cpu) {
2128 		struct buffer_page *bpage, *tmp;
2129 
2130 		cpu_buffer = buffer->buffers[cpu];
2131 		cpu_buffer->nr_pages_to_update = 0;
2132 
2133 		if (list_empty(&cpu_buffer->new_pages))
2134 			continue;
2135 
2136 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2137 					list) {
2138 			list_del_init(&bpage->list);
2139 			free_buffer_page(bpage);
2140 		}
2141 	}
2142  out_err_unlock:
2143 	mutex_unlock(&buffer->mutex);
2144 	return err;
2145 }
2146 EXPORT_SYMBOL_GPL(ring_buffer_resize);
2147 
ring_buffer_change_overwrite(struct trace_buffer * buffer,int val)2148 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
2149 {
2150 	mutex_lock(&buffer->mutex);
2151 	if (val)
2152 		buffer->flags |= RB_FL_OVERWRITE;
2153 	else
2154 		buffer->flags &= ~RB_FL_OVERWRITE;
2155 	mutex_unlock(&buffer->mutex);
2156 }
2157 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
2158 
__rb_page_index(struct buffer_page * bpage,unsigned index)2159 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
2160 {
2161 	return bpage->page->data + index;
2162 }
2163 
2164 static __always_inline struct ring_buffer_event *
rb_reader_event(struct ring_buffer_per_cpu * cpu_buffer)2165 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
2166 {
2167 	return __rb_page_index(cpu_buffer->reader_page,
2168 			       cpu_buffer->reader_page->read);
2169 }
2170 
rb_page_commit(struct buffer_page * bpage)2171 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
2172 {
2173 	return local_read(&bpage->page->commit);
2174 }
2175 
2176 static struct ring_buffer_event *
rb_iter_head_event(struct ring_buffer_iter * iter)2177 rb_iter_head_event(struct ring_buffer_iter *iter)
2178 {
2179 	struct ring_buffer_event *event;
2180 	struct buffer_page *iter_head_page = iter->head_page;
2181 	unsigned long commit;
2182 	unsigned length;
2183 
2184 	if (iter->head != iter->next_event)
2185 		return iter->event;
2186 
2187 	/*
2188 	 * When the writer goes across pages, it issues a cmpxchg which
2189 	 * is a mb(), which will synchronize with the rmb here.
2190 	 * (see rb_tail_page_update() and __rb_reserve_next())
2191 	 */
2192 	commit = rb_page_commit(iter_head_page);
2193 	smp_rmb();
2194 	event = __rb_page_index(iter_head_page, iter->head);
2195 	length = rb_event_length(event);
2196 
2197 	/*
2198 	 * READ_ONCE() doesn't work on functions and we don't want the
2199 	 * compiler doing any crazy optimizations with length.
2200 	 */
2201 	barrier();
2202 
2203 	if ((iter->head + length) > commit || length > BUF_MAX_DATA_SIZE)
2204 		/* Writer corrupted the read? */
2205 		goto reset;
2206 
2207 	memcpy(iter->event, event, length);
2208 	/*
2209 	 * If the page stamp is still the same after this rmb() then the
2210 	 * event was safely copied without the writer entering the page.
2211 	 */
2212 	smp_rmb();
2213 
2214 	/* Make sure the page didn't change since we read this */
2215 	if (iter->page_stamp != iter_head_page->page->time_stamp ||
2216 	    commit > rb_page_commit(iter_head_page))
2217 		goto reset;
2218 
2219 	iter->next_event = iter->head + length;
2220 	return iter->event;
2221  reset:
2222 	/* Reset to the beginning */
2223 	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2224 	iter->head = 0;
2225 	iter->next_event = 0;
2226 	iter->missed_events = 1;
2227 	return NULL;
2228 }
2229 
2230 /* Size is determined by what has been committed */
rb_page_size(struct buffer_page * bpage)2231 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
2232 {
2233 	return rb_page_commit(bpage);
2234 }
2235 
2236 static __always_inline unsigned
rb_commit_index(struct ring_buffer_per_cpu * cpu_buffer)2237 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
2238 {
2239 	return rb_page_commit(cpu_buffer->commit_page);
2240 }
2241 
2242 static __always_inline unsigned
rb_event_index(struct ring_buffer_event * event)2243 rb_event_index(struct ring_buffer_event *event)
2244 {
2245 	unsigned long addr = (unsigned long)event;
2246 
2247 	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
2248 }
2249 
rb_inc_iter(struct ring_buffer_iter * iter)2250 static void rb_inc_iter(struct ring_buffer_iter *iter)
2251 {
2252 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2253 
2254 	/*
2255 	 * The iterator could be on the reader page (it starts there).
2256 	 * But the head could have moved, since the reader was
2257 	 * found. Check for this case and assign the iterator
2258 	 * to the head page instead of next.
2259 	 */
2260 	if (iter->head_page == cpu_buffer->reader_page)
2261 		iter->head_page = rb_set_head_page(cpu_buffer);
2262 	else
2263 		rb_inc_page(cpu_buffer, &iter->head_page);
2264 
2265 	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2266 	iter->head = 0;
2267 	iter->next_event = 0;
2268 }
2269 
2270 /*
2271  * rb_handle_head_page - writer hit the head page
2272  *
2273  * Returns: +1 to retry page
2274  *           0 to continue
2275  *          -1 on error
2276  */
2277 static int
rb_handle_head_page(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * tail_page,struct buffer_page * next_page)2278 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2279 		    struct buffer_page *tail_page,
2280 		    struct buffer_page *next_page)
2281 {
2282 	struct buffer_page *new_head;
2283 	int entries;
2284 	int type;
2285 	int ret;
2286 
2287 	entries = rb_page_entries(next_page);
2288 
2289 	/*
2290 	 * The hard part is here. We need to move the head
2291 	 * forward, and protect against both readers on
2292 	 * other CPUs and writers coming in via interrupts.
2293 	 */
2294 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2295 				       RB_PAGE_HEAD);
2296 
2297 	/*
2298 	 * type can be one of four:
2299 	 *  NORMAL - an interrupt already moved it for us
2300 	 *  HEAD   - we are the first to get here.
2301 	 *  UPDATE - we are the interrupt interrupting
2302 	 *           a current move.
2303 	 *  MOVED  - a reader on another CPU moved the next
2304 	 *           pointer to its reader page. Give up
2305 	 *           and try again.
2306 	 */
2307 
2308 	switch (type) {
2309 	case RB_PAGE_HEAD:
2310 		/*
2311 		 * We changed the head to UPDATE, thus
2312 		 * it is our responsibility to update
2313 		 * the counters.
2314 		 */
2315 		local_add(entries, &cpu_buffer->overrun);
2316 		local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2317 
2318 		/*
2319 		 * The entries will be zeroed out when we move the
2320 		 * tail page.
2321 		 */
2322 
2323 		/* still more to do */
2324 		break;
2325 
2326 	case RB_PAGE_UPDATE:
2327 		/*
2328 		 * This is an interrupt that interrupt the
2329 		 * previous update. Still more to do.
2330 		 */
2331 		break;
2332 	case RB_PAGE_NORMAL:
2333 		/*
2334 		 * An interrupt came in before the update
2335 		 * and processed this for us.
2336 		 * Nothing left to do.
2337 		 */
2338 		return 1;
2339 	case RB_PAGE_MOVED:
2340 		/*
2341 		 * The reader is on another CPU and just did
2342 		 * a swap with our next_page.
2343 		 * Try again.
2344 		 */
2345 		return 1;
2346 	default:
2347 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2348 		return -1;
2349 	}
2350 
2351 	/*
2352 	 * Now that we are here, the old head pointer is
2353 	 * set to UPDATE. This will keep the reader from
2354 	 * swapping the head page with the reader page.
2355 	 * The reader (on another CPU) will spin till
2356 	 * we are finished.
2357 	 *
2358 	 * We just need to protect against interrupts
2359 	 * doing the job. We will set the next pointer
2360 	 * to HEAD. After that, we set the old pointer
2361 	 * to NORMAL, but only if it was HEAD before.
2362 	 * otherwise we are an interrupt, and only
2363 	 * want the outer most commit to reset it.
2364 	 */
2365 	new_head = next_page;
2366 	rb_inc_page(cpu_buffer, &new_head);
2367 
2368 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2369 				    RB_PAGE_NORMAL);
2370 
2371 	/*
2372 	 * Valid returns are:
2373 	 *  HEAD   - an interrupt came in and already set it.
2374 	 *  NORMAL - One of two things:
2375 	 *            1) We really set it.
2376 	 *            2) A bunch of interrupts came in and moved
2377 	 *               the page forward again.
2378 	 */
2379 	switch (ret) {
2380 	case RB_PAGE_HEAD:
2381 	case RB_PAGE_NORMAL:
2382 		/* OK */
2383 		break;
2384 	default:
2385 		RB_WARN_ON(cpu_buffer, 1);
2386 		return -1;
2387 	}
2388 
2389 	/*
2390 	 * It is possible that an interrupt came in,
2391 	 * set the head up, then more interrupts came in
2392 	 * and moved it again. When we get back here,
2393 	 * the page would have been set to NORMAL but we
2394 	 * just set it back to HEAD.
2395 	 *
2396 	 * How do you detect this? Well, if that happened
2397 	 * the tail page would have moved.
2398 	 */
2399 	if (ret == RB_PAGE_NORMAL) {
2400 		struct buffer_page *buffer_tail_page;
2401 
2402 		buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2403 		/*
2404 		 * If the tail had moved passed next, then we need
2405 		 * to reset the pointer.
2406 		 */
2407 		if (buffer_tail_page != tail_page &&
2408 		    buffer_tail_page != next_page)
2409 			rb_head_page_set_normal(cpu_buffer, new_head,
2410 						next_page,
2411 						RB_PAGE_HEAD);
2412 	}
2413 
2414 	/*
2415 	 * If this was the outer most commit (the one that
2416 	 * changed the original pointer from HEAD to UPDATE),
2417 	 * then it is up to us to reset it to NORMAL.
2418 	 */
2419 	if (type == RB_PAGE_HEAD) {
2420 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
2421 					      tail_page,
2422 					      RB_PAGE_UPDATE);
2423 		if (RB_WARN_ON(cpu_buffer,
2424 			       ret != RB_PAGE_UPDATE))
2425 			return -1;
2426 	}
2427 
2428 	return 0;
2429 }
2430 
2431 static inline void
rb_reset_tail(struct ring_buffer_per_cpu * cpu_buffer,unsigned long tail,struct rb_event_info * info)2432 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2433 	      unsigned long tail, struct rb_event_info *info)
2434 {
2435 	struct buffer_page *tail_page = info->tail_page;
2436 	struct ring_buffer_event *event;
2437 	unsigned long length = info->length;
2438 
2439 	/*
2440 	 * Only the event that crossed the page boundary
2441 	 * must fill the old tail_page with padding.
2442 	 */
2443 	if (tail >= BUF_PAGE_SIZE) {
2444 		/*
2445 		 * If the page was filled, then we still need
2446 		 * to update the real_end. Reset it to zero
2447 		 * and the reader will ignore it.
2448 		 */
2449 		if (tail == BUF_PAGE_SIZE)
2450 			tail_page->real_end = 0;
2451 
2452 		local_sub(length, &tail_page->write);
2453 		return;
2454 	}
2455 
2456 	event = __rb_page_index(tail_page, tail);
2457 
2458 	/* account for padding bytes */
2459 	local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2460 
2461 	/*
2462 	 * Save the original length to the meta data.
2463 	 * This will be used by the reader to add lost event
2464 	 * counter.
2465 	 */
2466 	tail_page->real_end = tail;
2467 
2468 	/*
2469 	 * If this event is bigger than the minimum size, then
2470 	 * we need to be careful that we don't subtract the
2471 	 * write counter enough to allow another writer to slip
2472 	 * in on this page.
2473 	 * We put in a discarded commit instead, to make sure
2474 	 * that this space is not used again.
2475 	 *
2476 	 * If we are less than the minimum size, we don't need to
2477 	 * worry about it.
2478 	 */
2479 	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2480 		/* No room for any events */
2481 
2482 		/* Mark the rest of the page with padding */
2483 		rb_event_set_padding(event);
2484 
2485 		/* Set the write back to the previous setting */
2486 		local_sub(length, &tail_page->write);
2487 		return;
2488 	}
2489 
2490 	/* Put in a discarded event */
2491 	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2492 	event->type_len = RINGBUF_TYPE_PADDING;
2493 	/* time delta must be non zero */
2494 	event->time_delta = 1;
2495 
2496 	/* Set write to end of buffer */
2497 	length = (tail + length) - BUF_PAGE_SIZE;
2498 	local_sub(length, &tail_page->write);
2499 }
2500 
2501 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2502 
2503 /*
2504  * This is the slow path, force gcc not to inline it.
2505  */
2506 static noinline struct ring_buffer_event *
rb_move_tail(struct ring_buffer_per_cpu * cpu_buffer,unsigned long tail,struct rb_event_info * info)2507 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2508 	     unsigned long tail, struct rb_event_info *info)
2509 {
2510 	struct buffer_page *tail_page = info->tail_page;
2511 	struct buffer_page *commit_page = cpu_buffer->commit_page;
2512 	struct trace_buffer *buffer = cpu_buffer->buffer;
2513 	struct buffer_page *next_page;
2514 	int ret;
2515 
2516 	next_page = tail_page;
2517 
2518 	rb_inc_page(cpu_buffer, &next_page);
2519 
2520 	/*
2521 	 * If for some reason, we had an interrupt storm that made
2522 	 * it all the way around the buffer, bail, and warn
2523 	 * about it.
2524 	 */
2525 	if (unlikely(next_page == commit_page)) {
2526 		local_inc(&cpu_buffer->commit_overrun);
2527 		goto out_reset;
2528 	}
2529 
2530 	/*
2531 	 * This is where the fun begins!
2532 	 *
2533 	 * We are fighting against races between a reader that
2534 	 * could be on another CPU trying to swap its reader
2535 	 * page with the buffer head.
2536 	 *
2537 	 * We are also fighting against interrupts coming in and
2538 	 * moving the head or tail on us as well.
2539 	 *
2540 	 * If the next page is the head page then we have filled
2541 	 * the buffer, unless the commit page is still on the
2542 	 * reader page.
2543 	 */
2544 	if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2545 
2546 		/*
2547 		 * If the commit is not on the reader page, then
2548 		 * move the header page.
2549 		 */
2550 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2551 			/*
2552 			 * If we are not in overwrite mode,
2553 			 * this is easy, just stop here.
2554 			 */
2555 			if (!(buffer->flags & RB_FL_OVERWRITE)) {
2556 				local_inc(&cpu_buffer->dropped_events);
2557 				goto out_reset;
2558 			}
2559 
2560 			ret = rb_handle_head_page(cpu_buffer,
2561 						  tail_page,
2562 						  next_page);
2563 			if (ret < 0)
2564 				goto out_reset;
2565 			if (ret)
2566 				goto out_again;
2567 		} else {
2568 			/*
2569 			 * We need to be careful here too. The
2570 			 * commit page could still be on the reader
2571 			 * page. We could have a small buffer, and
2572 			 * have filled up the buffer with events
2573 			 * from interrupts and such, and wrapped.
2574 			 *
2575 			 * Note, if the tail page is also the on the
2576 			 * reader_page, we let it move out.
2577 			 */
2578 			if (unlikely((cpu_buffer->commit_page !=
2579 				      cpu_buffer->tail_page) &&
2580 				     (cpu_buffer->commit_page ==
2581 				      cpu_buffer->reader_page))) {
2582 				local_inc(&cpu_buffer->commit_overrun);
2583 				goto out_reset;
2584 			}
2585 		}
2586 	}
2587 
2588 	rb_tail_page_update(cpu_buffer, tail_page, next_page);
2589 
2590  out_again:
2591 
2592 	rb_reset_tail(cpu_buffer, tail, info);
2593 
2594 	/* Commit what we have for now. */
2595 	rb_end_commit(cpu_buffer);
2596 	/* rb_end_commit() decs committing */
2597 	local_inc(&cpu_buffer->committing);
2598 
2599 	/* fail and let the caller try again */
2600 	return ERR_PTR(-EAGAIN);
2601 
2602  out_reset:
2603 	/* reset write */
2604 	rb_reset_tail(cpu_buffer, tail, info);
2605 
2606 	return NULL;
2607 }
2608 
2609 /* Slow path */
2610 static struct ring_buffer_event *
rb_add_time_stamp(struct ring_buffer_event * event,u64 delta,bool abs)2611 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs)
2612 {
2613 	if (abs)
2614 		event->type_len = RINGBUF_TYPE_TIME_STAMP;
2615 	else
2616 		event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2617 
2618 	/* Not the first event on the page, or not delta? */
2619 	if (abs || rb_event_index(event)) {
2620 		event->time_delta = delta & TS_MASK;
2621 		event->array[0] = delta >> TS_SHIFT;
2622 	} else {
2623 		/* nope, just zero it */
2624 		event->time_delta = 0;
2625 		event->array[0] = 0;
2626 	}
2627 
2628 	return skip_time_extend(event);
2629 }
2630 
2631 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2632 				     struct ring_buffer_event *event);
2633 
2634 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
sched_clock_stable(void)2635 static inline bool sched_clock_stable(void)
2636 {
2637 	return true;
2638 }
2639 #endif
2640 
2641 static void
rb_check_timestamp(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info)2642 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2643 		   struct rb_event_info *info)
2644 {
2645 	u64 write_stamp;
2646 
2647 	WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
2648 		  (unsigned long long)info->delta,
2649 		  (unsigned long long)info->ts,
2650 		  (unsigned long long)info->before,
2651 		  (unsigned long long)info->after,
2652 		  (unsigned long long)(rb_time_read(&cpu_buffer->write_stamp, &write_stamp) ? write_stamp : 0),
2653 		  sched_clock_stable() ? "" :
2654 		  "If you just came from a suspend/resume,\n"
2655 		  "please switch to the trace global clock:\n"
2656 		  "  echo global > /sys/kernel/debug/tracing/trace_clock\n"
2657 		  "or add trace_clock=global to the kernel command line\n");
2658 }
2659 
rb_add_timestamp(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event ** event,struct rb_event_info * info,u64 * delta,unsigned int * length)2660 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2661 				      struct ring_buffer_event **event,
2662 				      struct rb_event_info *info,
2663 				      u64 *delta,
2664 				      unsigned int *length)
2665 {
2666 	bool abs = info->add_timestamp &
2667 		(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
2668 
2669 	if (unlikely(info->delta > (1ULL << 59))) {
2670 		/* did the clock go backwards */
2671 		if (info->before == info->after && info->before > info->ts) {
2672 			/* not interrupted */
2673 			static int once;
2674 
2675 			/*
2676 			 * This is possible with a recalibrating of the TSC.
2677 			 * Do not produce a call stack, but just report it.
2678 			 */
2679 			if (!once) {
2680 				once++;
2681 				pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
2682 					info->before, info->ts);
2683 			}
2684 		} else
2685 			rb_check_timestamp(cpu_buffer, info);
2686 		if (!abs)
2687 			info->delta = 0;
2688 	}
2689 	*event = rb_add_time_stamp(*event, info->delta, abs);
2690 	*length -= RB_LEN_TIME_EXTEND;
2691 	*delta = 0;
2692 }
2693 
2694 /**
2695  * rb_update_event - update event type and data
2696  * @cpu_buffer: The per cpu buffer of the @event
2697  * @event: the event to update
2698  * @info: The info to update the @event with (contains length and delta)
2699  *
2700  * Update the type and data fields of the @event. The length
2701  * is the actual size that is written to the ring buffer,
2702  * and with this, we can determine what to place into the
2703  * data field.
2704  */
2705 static void
rb_update_event(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event,struct rb_event_info * info)2706 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2707 		struct ring_buffer_event *event,
2708 		struct rb_event_info *info)
2709 {
2710 	unsigned length = info->length;
2711 	u64 delta = info->delta;
2712 
2713 	/*
2714 	 * If we need to add a timestamp, then we
2715 	 * add it to the start of the reserved space.
2716 	 */
2717 	if (unlikely(info->add_timestamp))
2718 		rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
2719 
2720 	event->time_delta = delta;
2721 	length -= RB_EVNT_HDR_SIZE;
2722 	if (length > RB_MAX_SMALL_DATA) {
2723 		event->type_len = 0;
2724 		event->array[0] = length;
2725 	} else
2726 		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2727 }
2728 
rb_calculate_event_length(unsigned length)2729 static unsigned rb_calculate_event_length(unsigned length)
2730 {
2731 	struct ring_buffer_event event; /* Used only for sizeof array */
2732 
2733 	/* zero length can cause confusions */
2734 	if (!length)
2735 		length++;
2736 
2737 	if (length > RB_MAX_SMALL_DATA)
2738 		length += sizeof(event.array[0]);
2739 
2740 	length += RB_EVNT_HDR_SIZE;
2741 	length = ALIGN(length, RB_ALIGNMENT);
2742 
2743 	/*
2744 	 * In case the time delta is larger than the 27 bits for it
2745 	 * in the header, we need to add a timestamp. If another
2746 	 * event comes in when trying to discard this one to increase
2747 	 * the length, then the timestamp will be added in the allocated
2748 	 * space of this event. If length is bigger than the size needed
2749 	 * for the TIME_EXTEND, then padding has to be used. The events
2750 	 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2751 	 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2752 	 * As length is a multiple of 4, we only need to worry if it
2753 	 * is 12 (RB_LEN_TIME_EXTEND + 4).
2754 	 */
2755 	if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2756 		length += RB_ALIGNMENT;
2757 
2758 	return length;
2759 }
2760 
2761 static __always_inline bool
rb_event_is_commit(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)2762 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2763 		   struct ring_buffer_event *event)
2764 {
2765 	unsigned long addr = (unsigned long)event;
2766 	unsigned long index;
2767 
2768 	index = rb_event_index(event);
2769 	addr &= PAGE_MASK;
2770 
2771 	return cpu_buffer->commit_page->page == (void *)addr &&
2772 		rb_commit_index(cpu_buffer) == index;
2773 }
2774 
rb_time_delta(struct ring_buffer_event * event)2775 static u64 rb_time_delta(struct ring_buffer_event *event)
2776 {
2777 	switch (event->type_len) {
2778 	case RINGBUF_TYPE_PADDING:
2779 		return 0;
2780 
2781 	case RINGBUF_TYPE_TIME_EXTEND:
2782 		return ring_buffer_event_time_stamp(event);
2783 
2784 	case RINGBUF_TYPE_TIME_STAMP:
2785 		return 0;
2786 
2787 	case RINGBUF_TYPE_DATA:
2788 		return event->time_delta;
2789 	default:
2790 		return 0;
2791 	}
2792 }
2793 
2794 static inline int
rb_try_to_discard(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)2795 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2796 		  struct ring_buffer_event *event)
2797 {
2798 	unsigned long new_index, old_index;
2799 	struct buffer_page *bpage;
2800 	unsigned long index;
2801 	unsigned long addr;
2802 	u64 write_stamp;
2803 	u64 delta;
2804 
2805 	new_index = rb_event_index(event);
2806 	old_index = new_index + rb_event_ts_length(event);
2807 	addr = (unsigned long)event;
2808 	addr &= PAGE_MASK;
2809 
2810 	bpage = READ_ONCE(cpu_buffer->tail_page);
2811 
2812 	delta = rb_time_delta(event);
2813 
2814 	if (!rb_time_read(&cpu_buffer->write_stamp, &write_stamp))
2815 		return 0;
2816 
2817 	/* Make sure the write stamp is read before testing the location */
2818 	barrier();
2819 
2820 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2821 		unsigned long write_mask =
2822 			local_read(&bpage->write) & ~RB_WRITE_MASK;
2823 		unsigned long event_length = rb_event_length(event);
2824 
2825 		/* Something came in, can't discard */
2826 		if (!rb_time_cmpxchg(&cpu_buffer->write_stamp,
2827 				       write_stamp, write_stamp - delta))
2828 			return 0;
2829 
2830 		/*
2831 		 * If an event were to come in now, it would see that the
2832 		 * write_stamp and the before_stamp are different, and assume
2833 		 * that this event just added itself before updating
2834 		 * the write stamp. The interrupting event will fix the
2835 		 * write stamp for us, and use the before stamp as its delta.
2836 		 */
2837 
2838 		/*
2839 		 * This is on the tail page. It is possible that
2840 		 * a write could come in and move the tail page
2841 		 * and write to the next page. That is fine
2842 		 * because we just shorten what is on this page.
2843 		 */
2844 		old_index += write_mask;
2845 		new_index += write_mask;
2846 		index = local_cmpxchg(&bpage->write, old_index, new_index);
2847 		if (index == old_index) {
2848 			/* update counters */
2849 			local_sub(event_length, &cpu_buffer->entries_bytes);
2850 			return 1;
2851 		}
2852 	}
2853 
2854 	/* could not discard */
2855 	return 0;
2856 }
2857 
rb_start_commit(struct ring_buffer_per_cpu * cpu_buffer)2858 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2859 {
2860 	local_inc(&cpu_buffer->committing);
2861 	local_inc(&cpu_buffer->commits);
2862 }
2863 
2864 static __always_inline void
rb_set_commit_to_write(struct ring_buffer_per_cpu * cpu_buffer)2865 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2866 {
2867 	unsigned long max_count;
2868 
2869 	/*
2870 	 * We only race with interrupts and NMIs on this CPU.
2871 	 * If we own the commit event, then we can commit
2872 	 * all others that interrupted us, since the interruptions
2873 	 * are in stack format (they finish before they come
2874 	 * back to us). This allows us to do a simple loop to
2875 	 * assign the commit to the tail.
2876 	 */
2877  again:
2878 	max_count = cpu_buffer->nr_pages * 100;
2879 
2880 	while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2881 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2882 			return;
2883 		if (RB_WARN_ON(cpu_buffer,
2884 			       rb_is_reader_page(cpu_buffer->tail_page)))
2885 			return;
2886 		local_set(&cpu_buffer->commit_page->page->commit,
2887 			  rb_page_write(cpu_buffer->commit_page));
2888 		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2889 		/* add barrier to keep gcc from optimizing too much */
2890 		barrier();
2891 	}
2892 	while (rb_commit_index(cpu_buffer) !=
2893 	       rb_page_write(cpu_buffer->commit_page)) {
2894 
2895 		local_set(&cpu_buffer->commit_page->page->commit,
2896 			  rb_page_write(cpu_buffer->commit_page));
2897 		RB_WARN_ON(cpu_buffer,
2898 			   local_read(&cpu_buffer->commit_page->page->commit) &
2899 			   ~RB_WRITE_MASK);
2900 		barrier();
2901 	}
2902 
2903 	/* again, keep gcc from optimizing */
2904 	barrier();
2905 
2906 	/*
2907 	 * If an interrupt came in just after the first while loop
2908 	 * and pushed the tail page forward, we will be left with
2909 	 * a dangling commit that will never go forward.
2910 	 */
2911 	if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2912 		goto again;
2913 }
2914 
rb_end_commit(struct ring_buffer_per_cpu * cpu_buffer)2915 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2916 {
2917 	unsigned long commits;
2918 
2919 	if (RB_WARN_ON(cpu_buffer,
2920 		       !local_read(&cpu_buffer->committing)))
2921 		return;
2922 
2923  again:
2924 	commits = local_read(&cpu_buffer->commits);
2925 	/* synchronize with interrupts */
2926 	barrier();
2927 	if (local_read(&cpu_buffer->committing) == 1)
2928 		rb_set_commit_to_write(cpu_buffer);
2929 
2930 	local_dec(&cpu_buffer->committing);
2931 
2932 	/* synchronize with interrupts */
2933 	barrier();
2934 
2935 	/*
2936 	 * Need to account for interrupts coming in between the
2937 	 * updating of the commit page and the clearing of the
2938 	 * committing counter.
2939 	 */
2940 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2941 	    !local_read(&cpu_buffer->committing)) {
2942 		local_inc(&cpu_buffer->committing);
2943 		goto again;
2944 	}
2945 }
2946 
rb_event_discard(struct ring_buffer_event * event)2947 static inline void rb_event_discard(struct ring_buffer_event *event)
2948 {
2949 	if (extended_time(event))
2950 		event = skip_time_extend(event);
2951 
2952 	/* array[0] holds the actual length for the discarded event */
2953 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2954 	event->type_len = RINGBUF_TYPE_PADDING;
2955 	/* time delta must be non zero */
2956 	if (!event->time_delta)
2957 		event->time_delta = 1;
2958 }
2959 
rb_commit(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)2960 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2961 		      struct ring_buffer_event *event)
2962 {
2963 	local_inc(&cpu_buffer->entries);
2964 	rb_end_commit(cpu_buffer);
2965 }
2966 
2967 static __always_inline void
rb_wakeups(struct trace_buffer * buffer,struct ring_buffer_per_cpu * cpu_buffer)2968 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2969 {
2970 	size_t nr_pages;
2971 	size_t dirty;
2972 	size_t full;
2973 
2974 	if (buffer->irq_work.waiters_pending) {
2975 		buffer->irq_work.waiters_pending = false;
2976 		/* irq_work_queue() supplies it's own memory barriers */
2977 		irq_work_queue(&buffer->irq_work.work);
2978 	}
2979 
2980 	if (cpu_buffer->irq_work.waiters_pending) {
2981 		cpu_buffer->irq_work.waiters_pending = false;
2982 		/* irq_work_queue() supplies it's own memory barriers */
2983 		irq_work_queue(&cpu_buffer->irq_work.work);
2984 	}
2985 
2986 	if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
2987 		return;
2988 
2989 	if (cpu_buffer->reader_page == cpu_buffer->commit_page)
2990 		return;
2991 
2992 	if (!cpu_buffer->irq_work.full_waiters_pending)
2993 		return;
2994 
2995 	cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
2996 
2997 	full = cpu_buffer->shortest_full;
2998 	nr_pages = cpu_buffer->nr_pages;
2999 	dirty = ring_buffer_nr_dirty_pages(buffer, cpu_buffer->cpu);
3000 	if (full && nr_pages && (dirty * 100) <= full * nr_pages)
3001 		return;
3002 
3003 	cpu_buffer->irq_work.wakeup_full = true;
3004 	cpu_buffer->irq_work.full_waiters_pending = false;
3005 	/* irq_work_queue() supplies it's own memory barriers */
3006 	irq_work_queue(&cpu_buffer->irq_work.work);
3007 }
3008 
3009 /*
3010  * The lock and unlock are done within a preempt disable section.
3011  * The current_context per_cpu variable can only be modified
3012  * by the current task between lock and unlock. But it can
3013  * be modified more than once via an interrupt. To pass this
3014  * information from the lock to the unlock without having to
3015  * access the 'in_interrupt()' functions again (which do show
3016  * a bit of overhead in something as critical as function tracing,
3017  * we use a bitmask trick.
3018  *
3019  *  bit 1 =  NMI context
3020  *  bit 2 =  IRQ context
3021  *  bit 3 =  SoftIRQ context
3022  *  bit 4 =  normal context.
3023  *
3024  * This works because this is the order of contexts that can
3025  * preempt other contexts. A SoftIRQ never preempts an IRQ
3026  * context.
3027  *
3028  * When the context is determined, the corresponding bit is
3029  * checked and set (if it was set, then a recursion of that context
3030  * happened).
3031  *
3032  * On unlock, we need to clear this bit. To do so, just subtract
3033  * 1 from the current_context and AND it to itself.
3034  *
3035  * (binary)
3036  *  101 - 1 = 100
3037  *  101 & 100 = 100 (clearing bit zero)
3038  *
3039  *  1010 - 1 = 1001
3040  *  1010 & 1001 = 1000 (clearing bit 1)
3041  *
3042  * The least significant bit can be cleared this way, and it
3043  * just so happens that it is the same bit corresponding to
3044  * the current context.
3045  *
3046  * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
3047  * is set when a recursion is detected at the current context, and if
3048  * the TRANSITION bit is already set, it will fail the recursion.
3049  * This is needed because there's a lag between the changing of
3050  * interrupt context and updating the preempt count. In this case,
3051  * a false positive will be found. To handle this, one extra recursion
3052  * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
3053  * bit is already set, then it is considered a recursion and the function
3054  * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
3055  *
3056  * On the trace_recursive_unlock(), the TRANSITION bit will be the first
3057  * to be cleared. Even if it wasn't the context that set it. That is,
3058  * if an interrupt comes in while NORMAL bit is set and the ring buffer
3059  * is called before preempt_count() is updated, since the check will
3060  * be on the NORMAL bit, the TRANSITION bit will then be set. If an
3061  * NMI then comes in, it will set the NMI bit, but when the NMI code
3062  * does the trace_recursive_unlock() it will clear the TRANSTION bit
3063  * and leave the NMI bit set. But this is fine, because the interrupt
3064  * code that set the TRANSITION bit will then clear the NMI bit when it
3065  * calls trace_recursive_unlock(). If another NMI comes in, it will
3066  * set the TRANSITION bit and continue.
3067  *
3068  * Note: The TRANSITION bit only handles a single transition between context.
3069  */
3070 
3071 static __always_inline int
trace_recursive_lock(struct ring_buffer_per_cpu * cpu_buffer)3072 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
3073 {
3074 	unsigned int val = cpu_buffer->current_context;
3075 	unsigned long pc = preempt_count();
3076 	int bit;
3077 
3078 	if (!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET)))
3079 		bit = RB_CTX_NORMAL;
3080 	else
3081 		bit = pc & NMI_MASK ? RB_CTX_NMI :
3082 			pc & HARDIRQ_MASK ? RB_CTX_IRQ : RB_CTX_SOFTIRQ;
3083 
3084 	if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
3085 		/*
3086 		 * It is possible that this was called by transitioning
3087 		 * between interrupt context, and preempt_count() has not
3088 		 * been updated yet. In this case, use the TRANSITION bit.
3089 		 */
3090 		bit = RB_CTX_TRANSITION;
3091 		if (val & (1 << (bit + cpu_buffer->nest)))
3092 			return 1;
3093 	}
3094 
3095 	val |= (1 << (bit + cpu_buffer->nest));
3096 	cpu_buffer->current_context = val;
3097 
3098 	return 0;
3099 }
3100 
3101 static __always_inline void
trace_recursive_unlock(struct ring_buffer_per_cpu * cpu_buffer)3102 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
3103 {
3104 	cpu_buffer->current_context &=
3105 		cpu_buffer->current_context - (1 << cpu_buffer->nest);
3106 }
3107 
3108 /* The recursive locking above uses 5 bits */
3109 #define NESTED_BITS 5
3110 
3111 /**
3112  * ring_buffer_nest_start - Allow to trace while nested
3113  * @buffer: The ring buffer to modify
3114  *
3115  * The ring buffer has a safety mechanism to prevent recursion.
3116  * But there may be a case where a trace needs to be done while
3117  * tracing something else. In this case, calling this function
3118  * will allow this function to nest within a currently active
3119  * ring_buffer_lock_reserve().
3120  *
3121  * Call this function before calling another ring_buffer_lock_reserve() and
3122  * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
3123  */
ring_buffer_nest_start(struct trace_buffer * buffer)3124 void ring_buffer_nest_start(struct trace_buffer *buffer)
3125 {
3126 	struct ring_buffer_per_cpu *cpu_buffer;
3127 	int cpu;
3128 
3129 	/* Enabled by ring_buffer_nest_end() */
3130 	preempt_disable_notrace();
3131 	cpu = raw_smp_processor_id();
3132 	cpu_buffer = buffer->buffers[cpu];
3133 	/* This is the shift value for the above recursive locking */
3134 	cpu_buffer->nest += NESTED_BITS;
3135 }
3136 
3137 /**
3138  * ring_buffer_nest_end - Allow to trace while nested
3139  * @buffer: The ring buffer to modify
3140  *
3141  * Must be called after ring_buffer_nest_start() and after the
3142  * ring_buffer_unlock_commit().
3143  */
ring_buffer_nest_end(struct trace_buffer * buffer)3144 void ring_buffer_nest_end(struct trace_buffer *buffer)
3145 {
3146 	struct ring_buffer_per_cpu *cpu_buffer;
3147 	int cpu;
3148 
3149 	/* disabled by ring_buffer_nest_start() */
3150 	cpu = raw_smp_processor_id();
3151 	cpu_buffer = buffer->buffers[cpu];
3152 	/* This is the shift value for the above recursive locking */
3153 	cpu_buffer->nest -= NESTED_BITS;
3154 	preempt_enable_notrace();
3155 }
3156 
3157 /**
3158  * ring_buffer_unlock_commit - commit a reserved
3159  * @buffer: The buffer to commit to
3160  * @event: The event pointer to commit.
3161  *
3162  * This commits the data to the ring buffer, and releases any locks held.
3163  *
3164  * Must be paired with ring_buffer_lock_reserve.
3165  */
ring_buffer_unlock_commit(struct trace_buffer * buffer,struct ring_buffer_event * event)3166 int ring_buffer_unlock_commit(struct trace_buffer *buffer,
3167 			      struct ring_buffer_event *event)
3168 {
3169 	struct ring_buffer_per_cpu *cpu_buffer;
3170 	int cpu = raw_smp_processor_id();
3171 
3172 	cpu_buffer = buffer->buffers[cpu];
3173 
3174 	rb_commit(cpu_buffer, event);
3175 
3176 	rb_wakeups(buffer, cpu_buffer);
3177 
3178 	trace_recursive_unlock(cpu_buffer);
3179 
3180 	preempt_enable_notrace();
3181 
3182 	return 0;
3183 }
3184 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
3185 
3186 static struct ring_buffer_event *
__rb_reserve_next(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info)3187 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
3188 		  struct rb_event_info *info)
3189 {
3190 	struct ring_buffer_event *event;
3191 	struct buffer_page *tail_page;
3192 	unsigned long tail, write, w;
3193 	bool a_ok;
3194 	bool b_ok;
3195 
3196 	/* Don't let the compiler play games with cpu_buffer->tail_page */
3197 	tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
3198 
3199  /*A*/	w = local_read(&tail_page->write) & RB_WRITE_MASK;
3200 	barrier();
3201 	b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3202 	a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3203 	barrier();
3204 	info->ts = rb_time_stamp(cpu_buffer->buffer);
3205 
3206 	if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
3207 		info->delta = info->ts;
3208 	} else {
3209 		/*
3210 		 * If interrupting an event time update, we may need an
3211 		 * absolute timestamp.
3212 		 * Don't bother if this is the start of a new page (w == 0).
3213 		 */
3214 		if (unlikely(!a_ok || !b_ok || (info->before != info->after && w))) {
3215 			info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
3216 			info->length += RB_LEN_TIME_EXTEND;
3217 		} else {
3218 			info->delta = info->ts - info->after;
3219 			if (unlikely(test_time_stamp(info->delta))) {
3220 				info->add_timestamp |= RB_ADD_STAMP_EXTEND;
3221 				info->length += RB_LEN_TIME_EXTEND;
3222 			}
3223 		}
3224 	}
3225 
3226  /*B*/	rb_time_set(&cpu_buffer->before_stamp, info->ts);
3227 
3228  /*C*/	write = local_add_return(info->length, &tail_page->write);
3229 
3230 	/* set write to only the index of the write */
3231 	write &= RB_WRITE_MASK;
3232 
3233 	tail = write - info->length;
3234 
3235 	/* See if we shot pass the end of this buffer page */
3236 	if (unlikely(write > BUF_PAGE_SIZE)) {
3237 		/* before and after may now different, fix it up*/
3238 		b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3239 		a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3240 		if (a_ok && b_ok && info->before != info->after)
3241 			(void)rb_time_cmpxchg(&cpu_buffer->before_stamp,
3242 					      info->before, info->after);
3243 		return rb_move_tail(cpu_buffer, tail, info);
3244 	}
3245 
3246 	if (likely(tail == w)) {
3247 		u64 save_before;
3248 		bool s_ok;
3249 
3250 		/* Nothing interrupted us between A and C */
3251  /*D*/		rb_time_set(&cpu_buffer->write_stamp, info->ts);
3252 		barrier();
3253  /*E*/		s_ok = rb_time_read(&cpu_buffer->before_stamp, &save_before);
3254 		RB_WARN_ON(cpu_buffer, !s_ok);
3255 		if (likely(!(info->add_timestamp &
3256 			     (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3257 			/* This did not interrupt any time update */
3258 			info->delta = info->ts - info->after;
3259 		else
3260 			/* Just use full timestamp for inerrupting event */
3261 			info->delta = info->ts;
3262 		barrier();
3263 		if (unlikely(info->ts != save_before)) {
3264 			/* SLOW PATH - Interrupted between C and E */
3265 
3266 			a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3267 			RB_WARN_ON(cpu_buffer, !a_ok);
3268 
3269 			/* Write stamp must only go forward */
3270 			if (save_before > info->after) {
3271 				/*
3272 				 * We do not care about the result, only that
3273 				 * it gets updated atomically.
3274 				 */
3275 				(void)rb_time_cmpxchg(&cpu_buffer->write_stamp,
3276 						      info->after, save_before);
3277 			}
3278 		}
3279 	} else {
3280 		u64 ts;
3281 		/* SLOW PATH - Interrupted between A and C */
3282 		a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3283 		/* Was interrupted before here, write_stamp must be valid */
3284 		RB_WARN_ON(cpu_buffer, !a_ok);
3285 		ts = rb_time_stamp(cpu_buffer->buffer);
3286 		barrier();
3287  /*E*/		if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
3288 		    info->after < ts &&
3289 		    rb_time_cmpxchg(&cpu_buffer->write_stamp,
3290 				    info->after, ts)) {
3291 			/* Nothing came after this event between C and E */
3292 			info->delta = ts - info->after;
3293 			info->ts = ts;
3294 		} else {
3295 			/*
3296 			 * Interrupted beween C and E:
3297 			 * Lost the previous events time stamp. Just set the
3298 			 * delta to zero, and this will be the same time as
3299 			 * the event this event interrupted. And the events that
3300 			 * came after this will still be correct (as they would
3301 			 * have built their delta on the previous event.
3302 			 */
3303 			info->delta = 0;
3304 		}
3305 		info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
3306 	}
3307 
3308 	/*
3309 	 * If this is the first commit on the page, then it has the same
3310 	 * timestamp as the page itself.
3311 	 */
3312 	if (unlikely(!tail && !(info->add_timestamp &
3313 				(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3314 		info->delta = 0;
3315 
3316 	/* We reserved something on the buffer */
3317 
3318 	event = __rb_page_index(tail_page, tail);
3319 	rb_update_event(cpu_buffer, event, info);
3320 
3321 	local_inc(&tail_page->entries);
3322 
3323 	/*
3324 	 * If this is the first commit on the page, then update
3325 	 * its timestamp.
3326 	 */
3327 	if (unlikely(!tail))
3328 		tail_page->page->time_stamp = info->ts;
3329 
3330 	/* account for these added bytes */
3331 	local_add(info->length, &cpu_buffer->entries_bytes);
3332 
3333 	return event;
3334 }
3335 
3336 static __always_inline struct ring_buffer_event *
rb_reserve_next_event(struct trace_buffer * buffer,struct ring_buffer_per_cpu * cpu_buffer,unsigned long length)3337 rb_reserve_next_event(struct trace_buffer *buffer,
3338 		      struct ring_buffer_per_cpu *cpu_buffer,
3339 		      unsigned long length)
3340 {
3341 	struct ring_buffer_event *event;
3342 	struct rb_event_info info;
3343 	int nr_loops = 0;
3344 	int add_ts_default;
3345 
3346 	rb_start_commit(cpu_buffer);
3347 	/* The commit page can not change after this */
3348 
3349 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3350 	/*
3351 	 * Due to the ability to swap a cpu buffer from a buffer
3352 	 * it is possible it was swapped before we committed.
3353 	 * (committing stops a swap). We check for it here and
3354 	 * if it happened, we have to fail the write.
3355 	 */
3356 	barrier();
3357 	if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
3358 		local_dec(&cpu_buffer->committing);
3359 		local_dec(&cpu_buffer->commits);
3360 		return NULL;
3361 	}
3362 #endif
3363 
3364 	info.length = rb_calculate_event_length(length);
3365 
3366 	if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
3367 		add_ts_default = RB_ADD_STAMP_ABSOLUTE;
3368 		info.length += RB_LEN_TIME_EXTEND;
3369 	} else {
3370 		add_ts_default = RB_ADD_STAMP_NONE;
3371 	}
3372 
3373  again:
3374 	info.add_timestamp = add_ts_default;
3375 	info.delta = 0;
3376 
3377 	/*
3378 	 * We allow for interrupts to reenter here and do a trace.
3379 	 * If one does, it will cause this original code to loop
3380 	 * back here. Even with heavy interrupts happening, this
3381 	 * should only happen a few times in a row. If this happens
3382 	 * 1000 times in a row, there must be either an interrupt
3383 	 * storm or we have something buggy.
3384 	 * Bail!
3385 	 */
3386 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
3387 		goto out_fail;
3388 
3389 	event = __rb_reserve_next(cpu_buffer, &info);
3390 
3391 	if (unlikely(PTR_ERR(event) == -EAGAIN)) {
3392 		if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
3393 			info.length -= RB_LEN_TIME_EXTEND;
3394 		goto again;
3395 	}
3396 
3397 	if (likely(event))
3398 		return event;
3399  out_fail:
3400 	rb_end_commit(cpu_buffer);
3401 	return NULL;
3402 }
3403 
3404 /**
3405  * ring_buffer_lock_reserve - reserve a part of the buffer
3406  * @buffer: the ring buffer to reserve from
3407  * @length: the length of the data to reserve (excluding event header)
3408  *
3409  * Returns a reserved event on the ring buffer to copy directly to.
3410  * The user of this interface will need to get the body to write into
3411  * and can use the ring_buffer_event_data() interface.
3412  *
3413  * The length is the length of the data needed, not the event length
3414  * which also includes the event header.
3415  *
3416  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
3417  * If NULL is returned, then nothing has been allocated or locked.
3418  */
3419 struct ring_buffer_event *
ring_buffer_lock_reserve(struct trace_buffer * buffer,unsigned long length)3420 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
3421 {
3422 	struct ring_buffer_per_cpu *cpu_buffer;
3423 	struct ring_buffer_event *event;
3424 	int cpu;
3425 
3426 	/* If we are tracing schedule, we don't want to recurse */
3427 	preempt_disable_notrace();
3428 
3429 	if (unlikely(atomic_read(&buffer->record_disabled)))
3430 		goto out;
3431 
3432 	cpu = raw_smp_processor_id();
3433 
3434 	if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
3435 		goto out;
3436 
3437 	cpu_buffer = buffer->buffers[cpu];
3438 
3439 	if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
3440 		goto out;
3441 
3442 	if (unlikely(length > BUF_MAX_DATA_SIZE))
3443 		goto out;
3444 
3445 	if (unlikely(trace_recursive_lock(cpu_buffer)))
3446 		goto out;
3447 
3448 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3449 	if (!event)
3450 		goto out_unlock;
3451 
3452 	return event;
3453 
3454  out_unlock:
3455 	trace_recursive_unlock(cpu_buffer);
3456  out:
3457 	preempt_enable_notrace();
3458 	return NULL;
3459 }
3460 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
3461 
3462 /*
3463  * Decrement the entries to the page that an event is on.
3464  * The event does not even need to exist, only the pointer
3465  * to the page it is on. This may only be called before the commit
3466  * takes place.
3467  */
3468 static inline void
rb_decrement_entry(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)3469 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
3470 		   struct ring_buffer_event *event)
3471 {
3472 	unsigned long addr = (unsigned long)event;
3473 	struct buffer_page *bpage = cpu_buffer->commit_page;
3474 	struct buffer_page *start;
3475 
3476 	addr &= PAGE_MASK;
3477 
3478 	/* Do the likely case first */
3479 	if (likely(bpage->page == (void *)addr)) {
3480 		local_dec(&bpage->entries);
3481 		return;
3482 	}
3483 
3484 	/*
3485 	 * Because the commit page may be on the reader page we
3486 	 * start with the next page and check the end loop there.
3487 	 */
3488 	rb_inc_page(cpu_buffer, &bpage);
3489 	start = bpage;
3490 	do {
3491 		if (bpage->page == (void *)addr) {
3492 			local_dec(&bpage->entries);
3493 			return;
3494 		}
3495 		rb_inc_page(cpu_buffer, &bpage);
3496 	} while (bpage != start);
3497 
3498 	/* commit not part of this buffer?? */
3499 	RB_WARN_ON(cpu_buffer, 1);
3500 }
3501 
3502 /**
3503  * ring_buffer_commit_discard - discard an event that has not been committed
3504  * @buffer: the ring buffer
3505  * @event: non committed event to discard
3506  *
3507  * Sometimes an event that is in the ring buffer needs to be ignored.
3508  * This function lets the user discard an event in the ring buffer
3509  * and then that event will not be read later.
3510  *
3511  * This function only works if it is called before the item has been
3512  * committed. It will try to free the event from the ring buffer
3513  * if another event has not been added behind it.
3514  *
3515  * If another event has been added behind it, it will set the event
3516  * up as discarded, and perform the commit.
3517  *
3518  * If this function is called, do not call ring_buffer_unlock_commit on
3519  * the event.
3520  */
ring_buffer_discard_commit(struct trace_buffer * buffer,struct ring_buffer_event * event)3521 void ring_buffer_discard_commit(struct trace_buffer *buffer,
3522 				struct ring_buffer_event *event)
3523 {
3524 	struct ring_buffer_per_cpu *cpu_buffer;
3525 	int cpu;
3526 
3527 	/* The event is discarded regardless */
3528 	rb_event_discard(event);
3529 
3530 	cpu = smp_processor_id();
3531 	cpu_buffer = buffer->buffers[cpu];
3532 
3533 	/*
3534 	 * This must only be called if the event has not been
3535 	 * committed yet. Thus we can assume that preemption
3536 	 * is still disabled.
3537 	 */
3538 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3539 
3540 	rb_decrement_entry(cpu_buffer, event);
3541 	if (rb_try_to_discard(cpu_buffer, event))
3542 		goto out;
3543 
3544  out:
3545 	rb_end_commit(cpu_buffer);
3546 
3547 	trace_recursive_unlock(cpu_buffer);
3548 
3549 	preempt_enable_notrace();
3550 
3551 }
3552 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3553 
3554 /**
3555  * ring_buffer_write - write data to the buffer without reserving
3556  * @buffer: The ring buffer to write to.
3557  * @length: The length of the data being written (excluding the event header)
3558  * @data: The data to write to the buffer.
3559  *
3560  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3561  * one function. If you already have the data to write to the buffer, it
3562  * may be easier to simply call this function.
3563  *
3564  * Note, like ring_buffer_lock_reserve, the length is the length of the data
3565  * and not the length of the event which would hold the header.
3566  */
ring_buffer_write(struct trace_buffer * buffer,unsigned long length,void * data)3567 int ring_buffer_write(struct trace_buffer *buffer,
3568 		      unsigned long length,
3569 		      void *data)
3570 {
3571 	struct ring_buffer_per_cpu *cpu_buffer;
3572 	struct ring_buffer_event *event;
3573 	void *body;
3574 	int ret = -EBUSY;
3575 	int cpu;
3576 
3577 	preempt_disable_notrace();
3578 
3579 	if (atomic_read(&buffer->record_disabled))
3580 		goto out;
3581 
3582 	cpu = raw_smp_processor_id();
3583 
3584 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3585 		goto out;
3586 
3587 	cpu_buffer = buffer->buffers[cpu];
3588 
3589 	if (atomic_read(&cpu_buffer->record_disabled))
3590 		goto out;
3591 
3592 	if (length > BUF_MAX_DATA_SIZE)
3593 		goto out;
3594 
3595 	if (unlikely(trace_recursive_lock(cpu_buffer)))
3596 		goto out;
3597 
3598 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3599 	if (!event)
3600 		goto out_unlock;
3601 
3602 	body = rb_event_data(event);
3603 
3604 	memcpy(body, data, length);
3605 
3606 	rb_commit(cpu_buffer, event);
3607 
3608 	rb_wakeups(buffer, cpu_buffer);
3609 
3610 	ret = 0;
3611 
3612  out_unlock:
3613 	trace_recursive_unlock(cpu_buffer);
3614 
3615  out:
3616 	preempt_enable_notrace();
3617 
3618 	return ret;
3619 }
3620 EXPORT_SYMBOL_GPL(ring_buffer_write);
3621 
rb_per_cpu_empty(struct ring_buffer_per_cpu * cpu_buffer)3622 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3623 {
3624 	struct buffer_page *reader = cpu_buffer->reader_page;
3625 	struct buffer_page *head = rb_set_head_page(cpu_buffer);
3626 	struct buffer_page *commit = cpu_buffer->commit_page;
3627 
3628 	/* In case of error, head will be NULL */
3629 	if (unlikely(!head))
3630 		return true;
3631 
3632 	return reader->read == rb_page_commit(reader) &&
3633 		(commit == reader ||
3634 		 (commit == head &&
3635 		  head->read == rb_page_commit(commit)));
3636 }
3637 
3638 /**
3639  * ring_buffer_record_disable - stop all writes into the buffer
3640  * @buffer: The ring buffer to stop writes to.
3641  *
3642  * This prevents all writes to the buffer. Any attempt to write
3643  * to the buffer after this will fail and return NULL.
3644  *
3645  * The caller should call synchronize_rcu() after this.
3646  */
ring_buffer_record_disable(struct trace_buffer * buffer)3647 void ring_buffer_record_disable(struct trace_buffer *buffer)
3648 {
3649 	atomic_inc(&buffer->record_disabled);
3650 }
3651 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3652 
3653 /**
3654  * ring_buffer_record_enable - enable writes to the buffer
3655  * @buffer: The ring buffer to enable writes
3656  *
3657  * Note, multiple disables will need the same number of enables
3658  * to truly enable the writing (much like preempt_disable).
3659  */
ring_buffer_record_enable(struct trace_buffer * buffer)3660 void ring_buffer_record_enable(struct trace_buffer *buffer)
3661 {
3662 	atomic_dec(&buffer->record_disabled);
3663 }
3664 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3665 
3666 /**
3667  * ring_buffer_record_off - stop all writes into the buffer
3668  * @buffer: The ring buffer to stop writes to.
3669  *
3670  * This prevents all writes to the buffer. Any attempt to write
3671  * to the buffer after this will fail and return NULL.
3672  *
3673  * This is different than ring_buffer_record_disable() as
3674  * it works like an on/off switch, where as the disable() version
3675  * must be paired with a enable().
3676  */
ring_buffer_record_off(struct trace_buffer * buffer)3677 void ring_buffer_record_off(struct trace_buffer *buffer)
3678 {
3679 	unsigned int rd;
3680 	unsigned int new_rd;
3681 
3682 	do {
3683 		rd = atomic_read(&buffer->record_disabled);
3684 		new_rd = rd | RB_BUFFER_OFF;
3685 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3686 }
3687 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3688 
3689 /**
3690  * ring_buffer_record_on - restart writes into the buffer
3691  * @buffer: The ring buffer to start writes to.
3692  *
3693  * This enables all writes to the buffer that was disabled by
3694  * ring_buffer_record_off().
3695  *
3696  * This is different than ring_buffer_record_enable() as
3697  * it works like an on/off switch, where as the enable() version
3698  * must be paired with a disable().
3699  */
ring_buffer_record_on(struct trace_buffer * buffer)3700 void ring_buffer_record_on(struct trace_buffer *buffer)
3701 {
3702 	unsigned int rd;
3703 	unsigned int new_rd;
3704 
3705 	do {
3706 		rd = atomic_read(&buffer->record_disabled);
3707 		new_rd = rd & ~RB_BUFFER_OFF;
3708 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3709 }
3710 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3711 
3712 /**
3713  * ring_buffer_record_is_on - return true if the ring buffer can write
3714  * @buffer: The ring buffer to see if write is enabled
3715  *
3716  * Returns true if the ring buffer is in a state that it accepts writes.
3717  */
ring_buffer_record_is_on(struct trace_buffer * buffer)3718 bool ring_buffer_record_is_on(struct trace_buffer *buffer)
3719 {
3720 	return !atomic_read(&buffer->record_disabled);
3721 }
3722 
3723 /**
3724  * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
3725  * @buffer: The ring buffer to see if write is set enabled
3726  *
3727  * Returns true if the ring buffer is set writable by ring_buffer_record_on().
3728  * Note that this does NOT mean it is in a writable state.
3729  *
3730  * It may return true when the ring buffer has been disabled by
3731  * ring_buffer_record_disable(), as that is a temporary disabling of
3732  * the ring buffer.
3733  */
ring_buffer_record_is_set_on(struct trace_buffer * buffer)3734 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
3735 {
3736 	return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
3737 }
3738 
3739 /**
3740  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3741  * @buffer: The ring buffer to stop writes to.
3742  * @cpu: The CPU buffer to stop
3743  *
3744  * This prevents all writes to the buffer. Any attempt to write
3745  * to the buffer after this will fail and return NULL.
3746  *
3747  * The caller should call synchronize_rcu() after this.
3748  */
ring_buffer_record_disable_cpu(struct trace_buffer * buffer,int cpu)3749 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
3750 {
3751 	struct ring_buffer_per_cpu *cpu_buffer;
3752 
3753 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3754 		return;
3755 
3756 	cpu_buffer = buffer->buffers[cpu];
3757 	atomic_inc(&cpu_buffer->record_disabled);
3758 }
3759 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3760 
3761 /**
3762  * ring_buffer_record_enable_cpu - enable writes to the buffer
3763  * @buffer: The ring buffer to enable writes
3764  * @cpu: The CPU to enable.
3765  *
3766  * Note, multiple disables will need the same number of enables
3767  * to truly enable the writing (much like preempt_disable).
3768  */
ring_buffer_record_enable_cpu(struct trace_buffer * buffer,int cpu)3769 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
3770 {
3771 	struct ring_buffer_per_cpu *cpu_buffer;
3772 
3773 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3774 		return;
3775 
3776 	cpu_buffer = buffer->buffers[cpu];
3777 	atomic_dec(&cpu_buffer->record_disabled);
3778 }
3779 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3780 
3781 /*
3782  * The total entries in the ring buffer is the running counter
3783  * of entries entered into the ring buffer, minus the sum of
3784  * the entries read from the ring buffer and the number of
3785  * entries that were overwritten.
3786  */
3787 static inline unsigned long
rb_num_of_entries(struct ring_buffer_per_cpu * cpu_buffer)3788 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3789 {
3790 	return local_read(&cpu_buffer->entries) -
3791 		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3792 }
3793 
3794 /**
3795  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3796  * @buffer: The ring buffer
3797  * @cpu: The per CPU buffer to read from.
3798  */
ring_buffer_oldest_event_ts(struct trace_buffer * buffer,int cpu)3799 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
3800 {
3801 	unsigned long flags;
3802 	struct ring_buffer_per_cpu *cpu_buffer;
3803 	struct buffer_page *bpage;
3804 	u64 ret = 0;
3805 
3806 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3807 		return 0;
3808 
3809 	cpu_buffer = buffer->buffers[cpu];
3810 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3811 	/*
3812 	 * if the tail is on reader_page, oldest time stamp is on the reader
3813 	 * page
3814 	 */
3815 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3816 		bpage = cpu_buffer->reader_page;
3817 	else
3818 		bpage = rb_set_head_page(cpu_buffer);
3819 	if (bpage)
3820 		ret = bpage->page->time_stamp;
3821 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3822 
3823 	return ret;
3824 }
3825 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3826 
3827 /**
3828  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3829  * @buffer: The ring buffer
3830  * @cpu: The per CPU buffer to read from.
3831  */
ring_buffer_bytes_cpu(struct trace_buffer * buffer,int cpu)3832 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
3833 {
3834 	struct ring_buffer_per_cpu *cpu_buffer;
3835 	unsigned long ret;
3836 
3837 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3838 		return 0;
3839 
3840 	cpu_buffer = buffer->buffers[cpu];
3841 	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3842 
3843 	return ret;
3844 }
3845 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3846 
3847 /**
3848  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3849  * @buffer: The ring buffer
3850  * @cpu: The per CPU buffer to get the entries from.
3851  */
ring_buffer_entries_cpu(struct trace_buffer * buffer,int cpu)3852 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
3853 {
3854 	struct ring_buffer_per_cpu *cpu_buffer;
3855 
3856 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3857 		return 0;
3858 
3859 	cpu_buffer = buffer->buffers[cpu];
3860 
3861 	return rb_num_of_entries(cpu_buffer);
3862 }
3863 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3864 
3865 /**
3866  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3867  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3868  * @buffer: The ring buffer
3869  * @cpu: The per CPU buffer to get the number of overruns from
3870  */
ring_buffer_overrun_cpu(struct trace_buffer * buffer,int cpu)3871 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
3872 {
3873 	struct ring_buffer_per_cpu *cpu_buffer;
3874 	unsigned long ret;
3875 
3876 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3877 		return 0;
3878 
3879 	cpu_buffer = buffer->buffers[cpu];
3880 	ret = local_read(&cpu_buffer->overrun);
3881 
3882 	return ret;
3883 }
3884 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3885 
3886 /**
3887  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3888  * commits failing due to the buffer wrapping around while there are uncommitted
3889  * events, such as during an interrupt storm.
3890  * @buffer: The ring buffer
3891  * @cpu: The per CPU buffer to get the number of overruns from
3892  */
3893 unsigned long
ring_buffer_commit_overrun_cpu(struct trace_buffer * buffer,int cpu)3894 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
3895 {
3896 	struct ring_buffer_per_cpu *cpu_buffer;
3897 	unsigned long ret;
3898 
3899 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3900 		return 0;
3901 
3902 	cpu_buffer = buffer->buffers[cpu];
3903 	ret = local_read(&cpu_buffer->commit_overrun);
3904 
3905 	return ret;
3906 }
3907 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3908 
3909 /**
3910  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3911  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3912  * @buffer: The ring buffer
3913  * @cpu: The per CPU buffer to get the number of overruns from
3914  */
3915 unsigned long
ring_buffer_dropped_events_cpu(struct trace_buffer * buffer,int cpu)3916 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
3917 {
3918 	struct ring_buffer_per_cpu *cpu_buffer;
3919 	unsigned long ret;
3920 
3921 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3922 		return 0;
3923 
3924 	cpu_buffer = buffer->buffers[cpu];
3925 	ret = local_read(&cpu_buffer->dropped_events);
3926 
3927 	return ret;
3928 }
3929 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3930 
3931 /**
3932  * ring_buffer_read_events_cpu - get the number of events successfully read
3933  * @buffer: The ring buffer
3934  * @cpu: The per CPU buffer to get the number of events read
3935  */
3936 unsigned long
ring_buffer_read_events_cpu(struct trace_buffer * buffer,int cpu)3937 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
3938 {
3939 	struct ring_buffer_per_cpu *cpu_buffer;
3940 
3941 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3942 		return 0;
3943 
3944 	cpu_buffer = buffer->buffers[cpu];
3945 	return cpu_buffer->read;
3946 }
3947 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3948 
3949 /**
3950  * ring_buffer_entries - get the number of entries in a buffer
3951  * @buffer: The ring buffer
3952  *
3953  * Returns the total number of entries in the ring buffer
3954  * (all CPU entries)
3955  */
ring_buffer_entries(struct trace_buffer * buffer)3956 unsigned long ring_buffer_entries(struct trace_buffer *buffer)
3957 {
3958 	struct ring_buffer_per_cpu *cpu_buffer;
3959 	unsigned long entries = 0;
3960 	int cpu;
3961 
3962 	/* if you care about this being correct, lock the buffer */
3963 	for_each_buffer_cpu(buffer, cpu) {
3964 		cpu_buffer = buffer->buffers[cpu];
3965 		entries += rb_num_of_entries(cpu_buffer);
3966 	}
3967 
3968 	return entries;
3969 }
3970 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3971 
3972 /**
3973  * ring_buffer_overruns - get the number of overruns in buffer
3974  * @buffer: The ring buffer
3975  *
3976  * Returns the total number of overruns in the ring buffer
3977  * (all CPU entries)
3978  */
ring_buffer_overruns(struct trace_buffer * buffer)3979 unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
3980 {
3981 	struct ring_buffer_per_cpu *cpu_buffer;
3982 	unsigned long overruns = 0;
3983 	int cpu;
3984 
3985 	/* if you care about this being correct, lock the buffer */
3986 	for_each_buffer_cpu(buffer, cpu) {
3987 		cpu_buffer = buffer->buffers[cpu];
3988 		overruns += local_read(&cpu_buffer->overrun);
3989 	}
3990 
3991 	return overruns;
3992 }
3993 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3994 
rb_iter_reset(struct ring_buffer_iter * iter)3995 static void rb_iter_reset(struct ring_buffer_iter *iter)
3996 {
3997 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3998 
3999 	/* Iterator usage is expected to have record disabled */
4000 	iter->head_page = cpu_buffer->reader_page;
4001 	iter->head = cpu_buffer->reader_page->read;
4002 	iter->next_event = iter->head;
4003 
4004 	iter->cache_reader_page = iter->head_page;
4005 	iter->cache_read = cpu_buffer->read;
4006 
4007 	if (iter->head) {
4008 		iter->read_stamp = cpu_buffer->read_stamp;
4009 		iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
4010 	} else {
4011 		iter->read_stamp = iter->head_page->page->time_stamp;
4012 		iter->page_stamp = iter->read_stamp;
4013 	}
4014 }
4015 
4016 /**
4017  * ring_buffer_iter_reset - reset an iterator
4018  * @iter: The iterator to reset
4019  *
4020  * Resets the iterator, so that it will start from the beginning
4021  * again.
4022  */
ring_buffer_iter_reset(struct ring_buffer_iter * iter)4023 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
4024 {
4025 	struct ring_buffer_per_cpu *cpu_buffer;
4026 	unsigned long flags;
4027 
4028 	if (!iter)
4029 		return;
4030 
4031 	cpu_buffer = iter->cpu_buffer;
4032 
4033 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4034 	rb_iter_reset(iter);
4035 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4036 }
4037 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
4038 
4039 /**
4040  * ring_buffer_iter_empty - check if an iterator has no more to read
4041  * @iter: The iterator to check
4042  */
ring_buffer_iter_empty(struct ring_buffer_iter * iter)4043 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
4044 {
4045 	struct ring_buffer_per_cpu *cpu_buffer;
4046 	struct buffer_page *reader;
4047 	struct buffer_page *head_page;
4048 	struct buffer_page *commit_page;
4049 	struct buffer_page *curr_commit_page;
4050 	unsigned commit;
4051 	u64 curr_commit_ts;
4052 	u64 commit_ts;
4053 
4054 	cpu_buffer = iter->cpu_buffer;
4055 	reader = cpu_buffer->reader_page;
4056 	head_page = cpu_buffer->head_page;
4057 	commit_page = cpu_buffer->commit_page;
4058 	commit_ts = commit_page->page->time_stamp;
4059 
4060 	/*
4061 	 * When the writer goes across pages, it issues a cmpxchg which
4062 	 * is a mb(), which will synchronize with the rmb here.
4063 	 * (see rb_tail_page_update())
4064 	 */
4065 	smp_rmb();
4066 	commit = rb_page_commit(commit_page);
4067 	/* We want to make sure that the commit page doesn't change */
4068 	smp_rmb();
4069 
4070 	/* Make sure commit page didn't change */
4071 	curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
4072 	curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
4073 
4074 	/* If the commit page changed, then there's more data */
4075 	if (curr_commit_page != commit_page ||
4076 	    curr_commit_ts != commit_ts)
4077 		return 0;
4078 
4079 	/* Still racy, as it may return a false positive, but that's OK */
4080 	return ((iter->head_page == commit_page && iter->head >= commit) ||
4081 		(iter->head_page == reader && commit_page == head_page &&
4082 		 head_page->read == commit &&
4083 		 iter->head == rb_page_commit(cpu_buffer->reader_page)));
4084 }
4085 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
4086 
4087 static void
rb_update_read_stamp(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)4088 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
4089 		     struct ring_buffer_event *event)
4090 {
4091 	u64 delta;
4092 
4093 	switch (event->type_len) {
4094 	case RINGBUF_TYPE_PADDING:
4095 		return;
4096 
4097 	case RINGBUF_TYPE_TIME_EXTEND:
4098 		delta = ring_buffer_event_time_stamp(event);
4099 		cpu_buffer->read_stamp += delta;
4100 		return;
4101 
4102 	case RINGBUF_TYPE_TIME_STAMP:
4103 		delta = ring_buffer_event_time_stamp(event);
4104 		cpu_buffer->read_stamp = delta;
4105 		return;
4106 
4107 	case RINGBUF_TYPE_DATA:
4108 		cpu_buffer->read_stamp += event->time_delta;
4109 		return;
4110 
4111 	default:
4112 		RB_WARN_ON(cpu_buffer, 1);
4113 	}
4114 	return;
4115 }
4116 
4117 static void
rb_update_iter_read_stamp(struct ring_buffer_iter * iter,struct ring_buffer_event * event)4118 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
4119 			  struct ring_buffer_event *event)
4120 {
4121 	u64 delta;
4122 
4123 	switch (event->type_len) {
4124 	case RINGBUF_TYPE_PADDING:
4125 		return;
4126 
4127 	case RINGBUF_TYPE_TIME_EXTEND:
4128 		delta = ring_buffer_event_time_stamp(event);
4129 		iter->read_stamp += delta;
4130 		return;
4131 
4132 	case RINGBUF_TYPE_TIME_STAMP:
4133 		delta = ring_buffer_event_time_stamp(event);
4134 		iter->read_stamp = delta;
4135 		return;
4136 
4137 	case RINGBUF_TYPE_DATA:
4138 		iter->read_stamp += event->time_delta;
4139 		return;
4140 
4141 	default:
4142 		RB_WARN_ON(iter->cpu_buffer, 1);
4143 	}
4144 	return;
4145 }
4146 
4147 static struct buffer_page *
rb_get_reader_page(struct ring_buffer_per_cpu * cpu_buffer)4148 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
4149 {
4150 	struct buffer_page *reader = NULL;
4151 	unsigned long overwrite;
4152 	unsigned long flags;
4153 	int nr_loops = 0;
4154 	int ret;
4155 
4156 	local_irq_save(flags);
4157 	arch_spin_lock(&cpu_buffer->lock);
4158 
4159  again:
4160 	/*
4161 	 * This should normally only loop twice. But because the
4162 	 * start of the reader inserts an empty page, it causes
4163 	 * a case where we will loop three times. There should be no
4164 	 * reason to loop four times (that I know of).
4165 	 */
4166 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
4167 		reader = NULL;
4168 		goto out;
4169 	}
4170 
4171 	reader = cpu_buffer->reader_page;
4172 
4173 	/* If there's more to read, return this page */
4174 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
4175 		goto out;
4176 
4177 	/* Never should we have an index greater than the size */
4178 	if (RB_WARN_ON(cpu_buffer,
4179 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
4180 		goto out;
4181 
4182 	/* check if we caught up to the tail */
4183 	reader = NULL;
4184 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
4185 		goto out;
4186 
4187 	/* Don't bother swapping if the ring buffer is empty */
4188 	if (rb_num_of_entries(cpu_buffer) == 0)
4189 		goto out;
4190 
4191 	/*
4192 	 * Reset the reader page to size zero.
4193 	 */
4194 	local_set(&cpu_buffer->reader_page->write, 0);
4195 	local_set(&cpu_buffer->reader_page->entries, 0);
4196 	local_set(&cpu_buffer->reader_page->page->commit, 0);
4197 	cpu_buffer->reader_page->real_end = 0;
4198 
4199  spin:
4200 	/*
4201 	 * Splice the empty reader page into the list around the head.
4202 	 */
4203 	reader = rb_set_head_page(cpu_buffer);
4204 	if (!reader)
4205 		goto out;
4206 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
4207 	cpu_buffer->reader_page->list.prev = reader->list.prev;
4208 
4209 	/*
4210 	 * cpu_buffer->pages just needs to point to the buffer, it
4211 	 *  has no specific buffer page to point to. Lets move it out
4212 	 *  of our way so we don't accidentally swap it.
4213 	 */
4214 	cpu_buffer->pages = reader->list.prev;
4215 
4216 	/* The reader page will be pointing to the new head */
4217 	rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
4218 
4219 	/*
4220 	 * We want to make sure we read the overruns after we set up our
4221 	 * pointers to the next object. The writer side does a
4222 	 * cmpxchg to cross pages which acts as the mb on the writer
4223 	 * side. Note, the reader will constantly fail the swap
4224 	 * while the writer is updating the pointers, so this
4225 	 * guarantees that the overwrite recorded here is the one we
4226 	 * want to compare with the last_overrun.
4227 	 */
4228 	smp_mb();
4229 	overwrite = local_read(&(cpu_buffer->overrun));
4230 
4231 	/*
4232 	 * Here's the tricky part.
4233 	 *
4234 	 * We need to move the pointer past the header page.
4235 	 * But we can only do that if a writer is not currently
4236 	 * moving it. The page before the header page has the
4237 	 * flag bit '1' set if it is pointing to the page we want.
4238 	 * but if the writer is in the process of moving it
4239 	 * than it will be '2' or already moved '0'.
4240 	 */
4241 
4242 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
4243 
4244 	/*
4245 	 * If we did not convert it, then we must try again.
4246 	 */
4247 	if (!ret)
4248 		goto spin;
4249 
4250 	/*
4251 	 * Yay! We succeeded in replacing the page.
4252 	 *
4253 	 * Now make the new head point back to the reader page.
4254 	 */
4255 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
4256 	rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
4257 
4258 	local_inc(&cpu_buffer->pages_read);
4259 
4260 	/* Finally update the reader page to the new head */
4261 	cpu_buffer->reader_page = reader;
4262 	cpu_buffer->reader_page->read = 0;
4263 
4264 	if (overwrite != cpu_buffer->last_overrun) {
4265 		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
4266 		cpu_buffer->last_overrun = overwrite;
4267 	}
4268 
4269 	goto again;
4270 
4271  out:
4272 	/* Update the read_stamp on the first event */
4273 	if (reader && reader->read == 0)
4274 		cpu_buffer->read_stamp = reader->page->time_stamp;
4275 
4276 	arch_spin_unlock(&cpu_buffer->lock);
4277 	local_irq_restore(flags);
4278 
4279 	return reader;
4280 }
4281 
rb_advance_reader(struct ring_buffer_per_cpu * cpu_buffer)4282 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
4283 {
4284 	struct ring_buffer_event *event;
4285 	struct buffer_page *reader;
4286 	unsigned length;
4287 
4288 	reader = rb_get_reader_page(cpu_buffer);
4289 
4290 	/* This function should not be called when buffer is empty */
4291 	if (RB_WARN_ON(cpu_buffer, !reader))
4292 		return;
4293 
4294 	event = rb_reader_event(cpu_buffer);
4295 
4296 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
4297 		cpu_buffer->read++;
4298 
4299 	rb_update_read_stamp(cpu_buffer, event);
4300 
4301 	length = rb_event_length(event);
4302 	cpu_buffer->reader_page->read += length;
4303 }
4304 
rb_advance_iter(struct ring_buffer_iter * iter)4305 static void rb_advance_iter(struct ring_buffer_iter *iter)
4306 {
4307 	struct ring_buffer_per_cpu *cpu_buffer;
4308 
4309 	cpu_buffer = iter->cpu_buffer;
4310 
4311 	/* If head == next_event then we need to jump to the next event */
4312 	if (iter->head == iter->next_event) {
4313 		/* If the event gets overwritten again, there's nothing to do */
4314 		if (rb_iter_head_event(iter) == NULL)
4315 			return;
4316 	}
4317 
4318 	iter->head = iter->next_event;
4319 
4320 	/*
4321 	 * Check if we are at the end of the buffer.
4322 	 */
4323 	if (iter->next_event >= rb_page_size(iter->head_page)) {
4324 		/* discarded commits can make the page empty */
4325 		if (iter->head_page == cpu_buffer->commit_page)
4326 			return;
4327 		rb_inc_iter(iter);
4328 		return;
4329 	}
4330 
4331 	rb_update_iter_read_stamp(iter, iter->event);
4332 }
4333 
rb_lost_events(struct ring_buffer_per_cpu * cpu_buffer)4334 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
4335 {
4336 	return cpu_buffer->lost_events;
4337 }
4338 
4339 static struct ring_buffer_event *
rb_buffer_peek(struct ring_buffer_per_cpu * cpu_buffer,u64 * ts,unsigned long * lost_events)4340 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
4341 	       unsigned long *lost_events)
4342 {
4343 	struct ring_buffer_event *event;
4344 	struct buffer_page *reader;
4345 	int nr_loops = 0;
4346 
4347 	if (ts)
4348 		*ts = 0;
4349  again:
4350 	/*
4351 	 * We repeat when a time extend is encountered.
4352 	 * Since the time extend is always attached to a data event,
4353 	 * we should never loop more than once.
4354 	 * (We never hit the following condition more than twice).
4355 	 */
4356 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
4357 		return NULL;
4358 
4359 	reader = rb_get_reader_page(cpu_buffer);
4360 	if (!reader)
4361 		return NULL;
4362 
4363 	event = rb_reader_event(cpu_buffer);
4364 
4365 	switch (event->type_len) {
4366 	case RINGBUF_TYPE_PADDING:
4367 		if (rb_null_event(event))
4368 			RB_WARN_ON(cpu_buffer, 1);
4369 		/*
4370 		 * Because the writer could be discarding every
4371 		 * event it creates (which would probably be bad)
4372 		 * if we were to go back to "again" then we may never
4373 		 * catch up, and will trigger the warn on, or lock
4374 		 * the box. Return the padding, and we will release
4375 		 * the current locks, and try again.
4376 		 */
4377 		return event;
4378 
4379 	case RINGBUF_TYPE_TIME_EXTEND:
4380 		/* Internal data, OK to advance */
4381 		rb_advance_reader(cpu_buffer);
4382 		goto again;
4383 
4384 	case RINGBUF_TYPE_TIME_STAMP:
4385 		if (ts) {
4386 			*ts = ring_buffer_event_time_stamp(event);
4387 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4388 							 cpu_buffer->cpu, ts);
4389 		}
4390 		/* Internal data, OK to advance */
4391 		rb_advance_reader(cpu_buffer);
4392 		goto again;
4393 
4394 	case RINGBUF_TYPE_DATA:
4395 		if (ts && !(*ts)) {
4396 			*ts = cpu_buffer->read_stamp + event->time_delta;
4397 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4398 							 cpu_buffer->cpu, ts);
4399 		}
4400 		if (lost_events)
4401 			*lost_events = rb_lost_events(cpu_buffer);
4402 		return event;
4403 
4404 	default:
4405 		RB_WARN_ON(cpu_buffer, 1);
4406 	}
4407 
4408 	return NULL;
4409 }
4410 EXPORT_SYMBOL_GPL(ring_buffer_peek);
4411 
4412 static struct ring_buffer_event *
rb_iter_peek(struct ring_buffer_iter * iter,u64 * ts)4413 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4414 {
4415 	struct trace_buffer *buffer;
4416 	struct ring_buffer_per_cpu *cpu_buffer;
4417 	struct ring_buffer_event *event;
4418 	int nr_loops = 0;
4419 
4420 	if (ts)
4421 		*ts = 0;
4422 
4423 	cpu_buffer = iter->cpu_buffer;
4424 	buffer = cpu_buffer->buffer;
4425 
4426 	/*
4427 	 * Check if someone performed a consuming read to
4428 	 * the buffer. A consuming read invalidates the iterator
4429 	 * and we need to reset the iterator in this case.
4430 	 */
4431 	if (unlikely(iter->cache_read != cpu_buffer->read ||
4432 		     iter->cache_reader_page != cpu_buffer->reader_page))
4433 		rb_iter_reset(iter);
4434 
4435  again:
4436 	if (ring_buffer_iter_empty(iter))
4437 		return NULL;
4438 
4439 	/*
4440 	 * As the writer can mess with what the iterator is trying
4441 	 * to read, just give up if we fail to get an event after
4442 	 * three tries. The iterator is not as reliable when reading
4443 	 * the ring buffer with an active write as the consumer is.
4444 	 * Do not warn if the three failures is reached.
4445 	 */
4446 	if (++nr_loops > 3)
4447 		return NULL;
4448 
4449 	if (rb_per_cpu_empty(cpu_buffer))
4450 		return NULL;
4451 
4452 	if (iter->head >= rb_page_size(iter->head_page)) {
4453 		rb_inc_iter(iter);
4454 		goto again;
4455 	}
4456 
4457 	event = rb_iter_head_event(iter);
4458 	if (!event)
4459 		goto again;
4460 
4461 	switch (event->type_len) {
4462 	case RINGBUF_TYPE_PADDING:
4463 		if (rb_null_event(event)) {
4464 			rb_inc_iter(iter);
4465 			goto again;
4466 		}
4467 		rb_advance_iter(iter);
4468 		return event;
4469 
4470 	case RINGBUF_TYPE_TIME_EXTEND:
4471 		/* Internal data, OK to advance */
4472 		rb_advance_iter(iter);
4473 		goto again;
4474 
4475 	case RINGBUF_TYPE_TIME_STAMP:
4476 		if (ts) {
4477 			*ts = ring_buffer_event_time_stamp(event);
4478 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4479 							 cpu_buffer->cpu, ts);
4480 		}
4481 		/* Internal data, OK to advance */
4482 		rb_advance_iter(iter);
4483 		goto again;
4484 
4485 	case RINGBUF_TYPE_DATA:
4486 		if (ts && !(*ts)) {
4487 			*ts = iter->read_stamp + event->time_delta;
4488 			ring_buffer_normalize_time_stamp(buffer,
4489 							 cpu_buffer->cpu, ts);
4490 		}
4491 		return event;
4492 
4493 	default:
4494 		RB_WARN_ON(cpu_buffer, 1);
4495 	}
4496 
4497 	return NULL;
4498 }
4499 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
4500 
rb_reader_lock(struct ring_buffer_per_cpu * cpu_buffer)4501 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
4502 {
4503 	if (likely(!in_nmi())) {
4504 		raw_spin_lock(&cpu_buffer->reader_lock);
4505 		return true;
4506 	}
4507 
4508 	/*
4509 	 * If an NMI die dumps out the content of the ring buffer
4510 	 * trylock must be used to prevent a deadlock if the NMI
4511 	 * preempted a task that holds the ring buffer locks. If
4512 	 * we get the lock then all is fine, if not, then continue
4513 	 * to do the read, but this can corrupt the ring buffer,
4514 	 * so it must be permanently disabled from future writes.
4515 	 * Reading from NMI is a oneshot deal.
4516 	 */
4517 	if (raw_spin_trylock(&cpu_buffer->reader_lock))
4518 		return true;
4519 
4520 	/* Continue without locking, but disable the ring buffer */
4521 	atomic_inc(&cpu_buffer->record_disabled);
4522 	return false;
4523 }
4524 
4525 static inline void
rb_reader_unlock(struct ring_buffer_per_cpu * cpu_buffer,bool locked)4526 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4527 {
4528 	if (likely(locked))
4529 		raw_spin_unlock(&cpu_buffer->reader_lock);
4530 	return;
4531 }
4532 
4533 /**
4534  * ring_buffer_peek - peek at the next event to be read
4535  * @buffer: The ring buffer to read
4536  * @cpu: The cpu to peak at
4537  * @ts: The timestamp counter of this event.
4538  * @lost_events: a variable to store if events were lost (may be NULL)
4539  *
4540  * This will return the event that will be read next, but does
4541  * not consume the data.
4542  */
4543 struct ring_buffer_event *
ring_buffer_peek(struct trace_buffer * buffer,int cpu,u64 * ts,unsigned long * lost_events)4544 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
4545 		 unsigned long *lost_events)
4546 {
4547 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4548 	struct ring_buffer_event *event;
4549 	unsigned long flags;
4550 	bool dolock;
4551 
4552 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4553 		return NULL;
4554 
4555  again:
4556 	local_irq_save(flags);
4557 	dolock = rb_reader_lock(cpu_buffer);
4558 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4559 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4560 		rb_advance_reader(cpu_buffer);
4561 	rb_reader_unlock(cpu_buffer, dolock);
4562 	local_irq_restore(flags);
4563 
4564 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4565 		goto again;
4566 
4567 	return event;
4568 }
4569 
4570 /** ring_buffer_iter_dropped - report if there are dropped events
4571  * @iter: The ring buffer iterator
4572  *
4573  * Returns true if there was dropped events since the last peek.
4574  */
ring_buffer_iter_dropped(struct ring_buffer_iter * iter)4575 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
4576 {
4577 	bool ret = iter->missed_events != 0;
4578 
4579 	iter->missed_events = 0;
4580 	return ret;
4581 }
4582 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
4583 
4584 /**
4585  * ring_buffer_iter_peek - peek at the next event to be read
4586  * @iter: The ring buffer iterator
4587  * @ts: The timestamp counter of this event.
4588  *
4589  * This will return the event that will be read next, but does
4590  * not increment the iterator.
4591  */
4592 struct ring_buffer_event *
ring_buffer_iter_peek(struct ring_buffer_iter * iter,u64 * ts)4593 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4594 {
4595 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4596 	struct ring_buffer_event *event;
4597 	unsigned long flags;
4598 
4599  again:
4600 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4601 	event = rb_iter_peek(iter, ts);
4602 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4603 
4604 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4605 		goto again;
4606 
4607 	return event;
4608 }
4609 
4610 /**
4611  * ring_buffer_consume - return an event and consume it
4612  * @buffer: The ring buffer to get the next event from
4613  * @cpu: the cpu to read the buffer from
4614  * @ts: a variable to store the timestamp (may be NULL)
4615  * @lost_events: a variable to store if events were lost (may be NULL)
4616  *
4617  * Returns the next event in the ring buffer, and that event is consumed.
4618  * Meaning, that sequential reads will keep returning a different event,
4619  * and eventually empty the ring buffer if the producer is slower.
4620  */
4621 struct ring_buffer_event *
ring_buffer_consume(struct trace_buffer * buffer,int cpu,u64 * ts,unsigned long * lost_events)4622 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
4623 		    unsigned long *lost_events)
4624 {
4625 	struct ring_buffer_per_cpu *cpu_buffer;
4626 	struct ring_buffer_event *event = NULL;
4627 	unsigned long flags;
4628 	bool dolock;
4629 
4630  again:
4631 	/* might be called in atomic */
4632 	preempt_disable();
4633 
4634 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4635 		goto out;
4636 
4637 	cpu_buffer = buffer->buffers[cpu];
4638 	local_irq_save(flags);
4639 	dolock = rb_reader_lock(cpu_buffer);
4640 
4641 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4642 	if (event) {
4643 		cpu_buffer->lost_events = 0;
4644 		rb_advance_reader(cpu_buffer);
4645 	}
4646 
4647 	rb_reader_unlock(cpu_buffer, dolock);
4648 	local_irq_restore(flags);
4649 
4650  out:
4651 	preempt_enable();
4652 
4653 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4654 		goto again;
4655 
4656 	return event;
4657 }
4658 EXPORT_SYMBOL_GPL(ring_buffer_consume);
4659 
4660 /**
4661  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4662  * @buffer: The ring buffer to read from
4663  * @cpu: The cpu buffer to iterate over
4664  * @flags: gfp flags to use for memory allocation
4665  *
4666  * This performs the initial preparations necessary to iterate
4667  * through the buffer.  Memory is allocated, buffer recording
4668  * is disabled, and the iterator pointer is returned to the caller.
4669  *
4670  * Disabling buffer recording prevents the reading from being
4671  * corrupted. This is not a consuming read, so a producer is not
4672  * expected.
4673  *
4674  * After a sequence of ring_buffer_read_prepare calls, the user is
4675  * expected to make at least one call to ring_buffer_read_prepare_sync.
4676  * Afterwards, ring_buffer_read_start is invoked to get things going
4677  * for real.
4678  *
4679  * This overall must be paired with ring_buffer_read_finish.
4680  */
4681 struct ring_buffer_iter *
ring_buffer_read_prepare(struct trace_buffer * buffer,int cpu,gfp_t flags)4682 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
4683 {
4684 	struct ring_buffer_per_cpu *cpu_buffer;
4685 	struct ring_buffer_iter *iter;
4686 
4687 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4688 		return NULL;
4689 
4690 	iter = kzalloc(sizeof(*iter), flags);
4691 	if (!iter)
4692 		return NULL;
4693 
4694 	iter->event = kmalloc(BUF_MAX_DATA_SIZE, flags);
4695 	if (!iter->event) {
4696 		kfree(iter);
4697 		return NULL;
4698 	}
4699 
4700 	cpu_buffer = buffer->buffers[cpu];
4701 
4702 	iter->cpu_buffer = cpu_buffer;
4703 
4704 	atomic_inc(&cpu_buffer->resize_disabled);
4705 
4706 	return iter;
4707 }
4708 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4709 
4710 /**
4711  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4712  *
4713  * All previously invoked ring_buffer_read_prepare calls to prepare
4714  * iterators will be synchronized.  Afterwards, read_buffer_read_start
4715  * calls on those iterators are allowed.
4716  */
4717 void
ring_buffer_read_prepare_sync(void)4718 ring_buffer_read_prepare_sync(void)
4719 {
4720 	synchronize_rcu();
4721 }
4722 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4723 
4724 /**
4725  * ring_buffer_read_start - start a non consuming read of the buffer
4726  * @iter: The iterator returned by ring_buffer_read_prepare
4727  *
4728  * This finalizes the startup of an iteration through the buffer.
4729  * The iterator comes from a call to ring_buffer_read_prepare and
4730  * an intervening ring_buffer_read_prepare_sync must have been
4731  * performed.
4732  *
4733  * Must be paired with ring_buffer_read_finish.
4734  */
4735 void
ring_buffer_read_start(struct ring_buffer_iter * iter)4736 ring_buffer_read_start(struct ring_buffer_iter *iter)
4737 {
4738 	struct ring_buffer_per_cpu *cpu_buffer;
4739 	unsigned long flags;
4740 
4741 	if (!iter)
4742 		return;
4743 
4744 	cpu_buffer = iter->cpu_buffer;
4745 
4746 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4747 	arch_spin_lock(&cpu_buffer->lock);
4748 	rb_iter_reset(iter);
4749 	arch_spin_unlock(&cpu_buffer->lock);
4750 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4751 }
4752 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4753 
4754 /**
4755  * ring_buffer_read_finish - finish reading the iterator of the buffer
4756  * @iter: The iterator retrieved by ring_buffer_start
4757  *
4758  * This re-enables the recording to the buffer, and frees the
4759  * iterator.
4760  */
4761 void
ring_buffer_read_finish(struct ring_buffer_iter * iter)4762 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4763 {
4764 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4765 	unsigned long flags;
4766 
4767 	/*
4768 	 * Ring buffer is disabled from recording, here's a good place
4769 	 * to check the integrity of the ring buffer.
4770 	 * Must prevent readers from trying to read, as the check
4771 	 * clears the HEAD page and readers require it.
4772 	 */
4773 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4774 	rb_check_pages(cpu_buffer);
4775 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4776 
4777 	atomic_dec(&cpu_buffer->resize_disabled);
4778 	kfree(iter->event);
4779 	kfree(iter);
4780 }
4781 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4782 
4783 /**
4784  * ring_buffer_iter_advance - advance the iterator to the next location
4785  * @iter: The ring buffer iterator
4786  *
4787  * Move the location of the iterator such that the next read will
4788  * be the next location of the iterator.
4789  */
ring_buffer_iter_advance(struct ring_buffer_iter * iter)4790 void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
4791 {
4792 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4793 	unsigned long flags;
4794 
4795 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4796 
4797 	rb_advance_iter(iter);
4798 
4799 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4800 }
4801 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
4802 
4803 /**
4804  * ring_buffer_size - return the size of the ring buffer (in bytes)
4805  * @buffer: The ring buffer.
4806  * @cpu: The CPU to get ring buffer size from.
4807  */
ring_buffer_size(struct trace_buffer * buffer,int cpu)4808 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
4809 {
4810 	/*
4811 	 * Earlier, this method returned
4812 	 *	BUF_PAGE_SIZE * buffer->nr_pages
4813 	 * Since the nr_pages field is now removed, we have converted this to
4814 	 * return the per cpu buffer value.
4815 	 */
4816 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4817 		return 0;
4818 
4819 	return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4820 }
4821 EXPORT_SYMBOL_GPL(ring_buffer_size);
4822 
4823 static void
rb_reset_cpu(struct ring_buffer_per_cpu * cpu_buffer)4824 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4825 {
4826 	rb_head_page_deactivate(cpu_buffer);
4827 
4828 	cpu_buffer->head_page
4829 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
4830 	local_set(&cpu_buffer->head_page->write, 0);
4831 	local_set(&cpu_buffer->head_page->entries, 0);
4832 	local_set(&cpu_buffer->head_page->page->commit, 0);
4833 
4834 	cpu_buffer->head_page->read = 0;
4835 
4836 	cpu_buffer->tail_page = cpu_buffer->head_page;
4837 	cpu_buffer->commit_page = cpu_buffer->head_page;
4838 
4839 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4840 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
4841 	local_set(&cpu_buffer->reader_page->write, 0);
4842 	local_set(&cpu_buffer->reader_page->entries, 0);
4843 	local_set(&cpu_buffer->reader_page->page->commit, 0);
4844 	cpu_buffer->reader_page->read = 0;
4845 
4846 	local_set(&cpu_buffer->entries_bytes, 0);
4847 	local_set(&cpu_buffer->overrun, 0);
4848 	local_set(&cpu_buffer->commit_overrun, 0);
4849 	local_set(&cpu_buffer->dropped_events, 0);
4850 	local_set(&cpu_buffer->entries, 0);
4851 	local_set(&cpu_buffer->committing, 0);
4852 	local_set(&cpu_buffer->commits, 0);
4853 	local_set(&cpu_buffer->pages_touched, 0);
4854 	local_set(&cpu_buffer->pages_read, 0);
4855 	cpu_buffer->last_pages_touch = 0;
4856 	cpu_buffer->shortest_full = 0;
4857 	cpu_buffer->read = 0;
4858 	cpu_buffer->read_bytes = 0;
4859 
4860 	rb_time_set(&cpu_buffer->write_stamp, 0);
4861 	rb_time_set(&cpu_buffer->before_stamp, 0);
4862 
4863 	cpu_buffer->lost_events = 0;
4864 	cpu_buffer->last_overrun = 0;
4865 
4866 	rb_head_page_activate(cpu_buffer);
4867 }
4868 
4869 /* Must have disabled the cpu buffer then done a synchronize_rcu */
reset_disabled_cpu_buffer(struct ring_buffer_per_cpu * cpu_buffer)4870 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
4871 {
4872 	unsigned long flags;
4873 
4874 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4875 
4876 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4877 		goto out;
4878 
4879 	arch_spin_lock(&cpu_buffer->lock);
4880 
4881 	rb_reset_cpu(cpu_buffer);
4882 
4883 	arch_spin_unlock(&cpu_buffer->lock);
4884 
4885  out:
4886 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4887 }
4888 
4889 /**
4890  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4891  * @buffer: The ring buffer to reset a per cpu buffer of
4892  * @cpu: The CPU buffer to be reset
4893  */
ring_buffer_reset_cpu(struct trace_buffer * buffer,int cpu)4894 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
4895 {
4896 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4897 
4898 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4899 		return;
4900 
4901 	/* prevent another thread from changing buffer sizes */
4902 	mutex_lock(&buffer->mutex);
4903 
4904 	atomic_inc(&cpu_buffer->resize_disabled);
4905 	atomic_inc(&cpu_buffer->record_disabled);
4906 
4907 	/* Make sure all commits have finished */
4908 	synchronize_rcu();
4909 
4910 	reset_disabled_cpu_buffer(cpu_buffer);
4911 
4912 	atomic_dec(&cpu_buffer->record_disabled);
4913 	atomic_dec(&cpu_buffer->resize_disabled);
4914 
4915 	mutex_unlock(&buffer->mutex);
4916 }
4917 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4918 
4919 /**
4920  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4921  * @buffer: The ring buffer to reset a per cpu buffer of
4922  * @cpu: The CPU buffer to be reset
4923  */
ring_buffer_reset_online_cpus(struct trace_buffer * buffer)4924 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
4925 {
4926 	struct ring_buffer_per_cpu *cpu_buffer;
4927 	int cpu;
4928 
4929 	/* prevent another thread from changing buffer sizes */
4930 	mutex_lock(&buffer->mutex);
4931 
4932 	for_each_online_buffer_cpu(buffer, cpu) {
4933 		cpu_buffer = buffer->buffers[cpu];
4934 
4935 		atomic_inc(&cpu_buffer->resize_disabled);
4936 		atomic_inc(&cpu_buffer->record_disabled);
4937 	}
4938 
4939 	/* Make sure all commits have finished */
4940 	synchronize_rcu();
4941 
4942 	for_each_online_buffer_cpu(buffer, cpu) {
4943 		cpu_buffer = buffer->buffers[cpu];
4944 
4945 		reset_disabled_cpu_buffer(cpu_buffer);
4946 
4947 		atomic_dec(&cpu_buffer->record_disabled);
4948 		atomic_dec(&cpu_buffer->resize_disabled);
4949 	}
4950 
4951 	mutex_unlock(&buffer->mutex);
4952 }
4953 
4954 /**
4955  * ring_buffer_reset - reset a ring buffer
4956  * @buffer: The ring buffer to reset all cpu buffers
4957  */
ring_buffer_reset(struct trace_buffer * buffer)4958 void ring_buffer_reset(struct trace_buffer *buffer)
4959 {
4960 	struct ring_buffer_per_cpu *cpu_buffer;
4961 	int cpu;
4962 
4963 	for_each_buffer_cpu(buffer, cpu) {
4964 		cpu_buffer = buffer->buffers[cpu];
4965 
4966 		atomic_inc(&cpu_buffer->resize_disabled);
4967 		atomic_inc(&cpu_buffer->record_disabled);
4968 	}
4969 
4970 	/* Make sure all commits have finished */
4971 	synchronize_rcu();
4972 
4973 	for_each_buffer_cpu(buffer, cpu) {
4974 		cpu_buffer = buffer->buffers[cpu];
4975 
4976 		reset_disabled_cpu_buffer(cpu_buffer);
4977 
4978 		atomic_dec(&cpu_buffer->record_disabled);
4979 		atomic_dec(&cpu_buffer->resize_disabled);
4980 	}
4981 }
4982 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4983 
4984 /**
4985  * rind_buffer_empty - is the ring buffer empty?
4986  * @buffer: The ring buffer to test
4987  */
ring_buffer_empty(struct trace_buffer * buffer)4988 bool ring_buffer_empty(struct trace_buffer *buffer)
4989 {
4990 	struct ring_buffer_per_cpu *cpu_buffer;
4991 	unsigned long flags;
4992 	bool dolock;
4993 	int cpu;
4994 	int ret;
4995 
4996 	/* yes this is racy, but if you don't like the race, lock the buffer */
4997 	for_each_buffer_cpu(buffer, cpu) {
4998 		cpu_buffer = buffer->buffers[cpu];
4999 		local_irq_save(flags);
5000 		dolock = rb_reader_lock(cpu_buffer);
5001 		ret = rb_per_cpu_empty(cpu_buffer);
5002 		rb_reader_unlock(cpu_buffer, dolock);
5003 		local_irq_restore(flags);
5004 
5005 		if (!ret)
5006 			return false;
5007 	}
5008 
5009 	return true;
5010 }
5011 EXPORT_SYMBOL_GPL(ring_buffer_empty);
5012 
5013 /**
5014  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
5015  * @buffer: The ring buffer
5016  * @cpu: The CPU buffer to test
5017  */
ring_buffer_empty_cpu(struct trace_buffer * buffer,int cpu)5018 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
5019 {
5020 	struct ring_buffer_per_cpu *cpu_buffer;
5021 	unsigned long flags;
5022 	bool dolock;
5023 	int ret;
5024 
5025 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5026 		return true;
5027 
5028 	cpu_buffer = buffer->buffers[cpu];
5029 	local_irq_save(flags);
5030 	dolock = rb_reader_lock(cpu_buffer);
5031 	ret = rb_per_cpu_empty(cpu_buffer);
5032 	rb_reader_unlock(cpu_buffer, dolock);
5033 	local_irq_restore(flags);
5034 
5035 	return ret;
5036 }
5037 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
5038 
5039 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
5040 /**
5041  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
5042  * @buffer_a: One buffer to swap with
5043  * @buffer_b: The other buffer to swap with
5044  * @cpu: the CPU of the buffers to swap
5045  *
5046  * This function is useful for tracers that want to take a "snapshot"
5047  * of a CPU buffer and has another back up buffer lying around.
5048  * it is expected that the tracer handles the cpu buffer not being
5049  * used at the moment.
5050  */
ring_buffer_swap_cpu(struct trace_buffer * buffer_a,struct trace_buffer * buffer_b,int cpu)5051 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
5052 			 struct trace_buffer *buffer_b, int cpu)
5053 {
5054 	struct ring_buffer_per_cpu *cpu_buffer_a;
5055 	struct ring_buffer_per_cpu *cpu_buffer_b;
5056 	int ret = -EINVAL;
5057 
5058 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
5059 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
5060 		goto out;
5061 
5062 	cpu_buffer_a = buffer_a->buffers[cpu];
5063 	cpu_buffer_b = buffer_b->buffers[cpu];
5064 
5065 	/* At least make sure the two buffers are somewhat the same */
5066 	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
5067 		goto out;
5068 
5069 	ret = -EAGAIN;
5070 
5071 	if (atomic_read(&buffer_a->record_disabled))
5072 		goto out;
5073 
5074 	if (atomic_read(&buffer_b->record_disabled))
5075 		goto out;
5076 
5077 	if (atomic_read(&cpu_buffer_a->record_disabled))
5078 		goto out;
5079 
5080 	if (atomic_read(&cpu_buffer_b->record_disabled))
5081 		goto out;
5082 
5083 	/*
5084 	 * We can't do a synchronize_rcu here because this
5085 	 * function can be called in atomic context.
5086 	 * Normally this will be called from the same CPU as cpu.
5087 	 * If not it's up to the caller to protect this.
5088 	 */
5089 	atomic_inc(&cpu_buffer_a->record_disabled);
5090 	atomic_inc(&cpu_buffer_b->record_disabled);
5091 
5092 	ret = -EBUSY;
5093 	if (local_read(&cpu_buffer_a->committing))
5094 		goto out_dec;
5095 	if (local_read(&cpu_buffer_b->committing))
5096 		goto out_dec;
5097 
5098 	buffer_a->buffers[cpu] = cpu_buffer_b;
5099 	buffer_b->buffers[cpu] = cpu_buffer_a;
5100 
5101 	cpu_buffer_b->buffer = buffer_a;
5102 	cpu_buffer_a->buffer = buffer_b;
5103 
5104 	ret = 0;
5105 
5106 out_dec:
5107 	atomic_dec(&cpu_buffer_a->record_disabled);
5108 	atomic_dec(&cpu_buffer_b->record_disabled);
5109 out:
5110 	return ret;
5111 }
5112 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
5113 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
5114 
5115 /**
5116  * ring_buffer_alloc_read_page - allocate a page to read from buffer
5117  * @buffer: the buffer to allocate for.
5118  * @cpu: the cpu buffer to allocate.
5119  *
5120  * This function is used in conjunction with ring_buffer_read_page.
5121  * When reading a full page from the ring buffer, these functions
5122  * can be used to speed up the process. The calling function should
5123  * allocate a few pages first with this function. Then when it
5124  * needs to get pages from the ring buffer, it passes the result
5125  * of this function into ring_buffer_read_page, which will swap
5126  * the page that was allocated, with the read page of the buffer.
5127  *
5128  * Returns:
5129  *  The page allocated, or ERR_PTR
5130  */
ring_buffer_alloc_read_page(struct trace_buffer * buffer,int cpu)5131 void *ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
5132 {
5133 	struct ring_buffer_per_cpu *cpu_buffer;
5134 	struct buffer_data_page *bpage = NULL;
5135 	unsigned long flags;
5136 	struct page *page;
5137 
5138 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5139 		return ERR_PTR(-ENODEV);
5140 
5141 	cpu_buffer = buffer->buffers[cpu];
5142 	local_irq_save(flags);
5143 	arch_spin_lock(&cpu_buffer->lock);
5144 
5145 	if (cpu_buffer->free_page) {
5146 		bpage = cpu_buffer->free_page;
5147 		cpu_buffer->free_page = NULL;
5148 	}
5149 
5150 	arch_spin_unlock(&cpu_buffer->lock);
5151 	local_irq_restore(flags);
5152 
5153 	if (bpage)
5154 		goto out;
5155 
5156 	page = alloc_pages_node(cpu_to_node(cpu),
5157 				GFP_KERNEL | __GFP_NORETRY, 0);
5158 	if (!page)
5159 		return ERR_PTR(-ENOMEM);
5160 
5161 	bpage = page_address(page);
5162 
5163  out:
5164 	rb_init_page(bpage);
5165 
5166 	return bpage;
5167 }
5168 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
5169 
5170 /**
5171  * ring_buffer_free_read_page - free an allocated read page
5172  * @buffer: the buffer the page was allocate for
5173  * @cpu: the cpu buffer the page came from
5174  * @data: the page to free
5175  *
5176  * Free a page allocated from ring_buffer_alloc_read_page.
5177  */
ring_buffer_free_read_page(struct trace_buffer * buffer,int cpu,void * data)5178 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, void *data)
5179 {
5180 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5181 	struct buffer_data_page *bpage = data;
5182 	struct page *page = virt_to_page(bpage);
5183 	unsigned long flags;
5184 
5185 	/* If the page is still in use someplace else, we can't reuse it */
5186 	if (page_ref_count(page) > 1)
5187 		goto out;
5188 
5189 	local_irq_save(flags);
5190 	arch_spin_lock(&cpu_buffer->lock);
5191 
5192 	if (!cpu_buffer->free_page) {
5193 		cpu_buffer->free_page = bpage;
5194 		bpage = NULL;
5195 	}
5196 
5197 	arch_spin_unlock(&cpu_buffer->lock);
5198 	local_irq_restore(flags);
5199 
5200  out:
5201 	free_page((unsigned long)bpage);
5202 }
5203 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
5204 
5205 /**
5206  * ring_buffer_read_page - extract a page from the ring buffer
5207  * @buffer: buffer to extract from
5208  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
5209  * @len: amount to extract
5210  * @cpu: the cpu of the buffer to extract
5211  * @full: should the extraction only happen when the page is full.
5212  *
5213  * This function will pull out a page from the ring buffer and consume it.
5214  * @data_page must be the address of the variable that was returned
5215  * from ring_buffer_alloc_read_page. This is because the page might be used
5216  * to swap with a page in the ring buffer.
5217  *
5218  * for example:
5219  *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
5220  *	if (IS_ERR(rpage))
5221  *		return PTR_ERR(rpage);
5222  *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
5223  *	if (ret >= 0)
5224  *		process_page(rpage, ret);
5225  *
5226  * When @full is set, the function will not return true unless
5227  * the writer is off the reader page.
5228  *
5229  * Note: it is up to the calling functions to handle sleeps and wakeups.
5230  *  The ring buffer can be used anywhere in the kernel and can not
5231  *  blindly call wake_up. The layer that uses the ring buffer must be
5232  *  responsible for that.
5233  *
5234  * Returns:
5235  *  >=0 if data has been transferred, returns the offset of consumed data.
5236  *  <0 if no data has been transferred.
5237  */
ring_buffer_read_page(struct trace_buffer * buffer,void ** data_page,size_t len,int cpu,int full)5238 int ring_buffer_read_page(struct trace_buffer *buffer,
5239 			  void **data_page, size_t len, int cpu, int full)
5240 {
5241 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5242 	struct ring_buffer_event *event;
5243 	struct buffer_data_page *bpage;
5244 	struct buffer_page *reader;
5245 	unsigned long missed_events;
5246 	unsigned long flags;
5247 	unsigned int commit;
5248 	unsigned int read;
5249 	u64 save_timestamp;
5250 	int ret = -1;
5251 
5252 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5253 		goto out;
5254 
5255 	/*
5256 	 * If len is not big enough to hold the page header, then
5257 	 * we can not copy anything.
5258 	 */
5259 	if (len <= BUF_PAGE_HDR_SIZE)
5260 		goto out;
5261 
5262 	len -= BUF_PAGE_HDR_SIZE;
5263 
5264 	if (!data_page)
5265 		goto out;
5266 
5267 	bpage = *data_page;
5268 	if (!bpage)
5269 		goto out;
5270 
5271 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5272 
5273 	reader = rb_get_reader_page(cpu_buffer);
5274 	if (!reader)
5275 		goto out_unlock;
5276 
5277 	event = rb_reader_event(cpu_buffer);
5278 
5279 	read = reader->read;
5280 	commit = rb_page_commit(reader);
5281 
5282 	/* Check if any events were dropped */
5283 	missed_events = cpu_buffer->lost_events;
5284 
5285 	/*
5286 	 * If this page has been partially read or
5287 	 * if len is not big enough to read the rest of the page or
5288 	 * a writer is still on the page, then
5289 	 * we must copy the data from the page to the buffer.
5290 	 * Otherwise, we can simply swap the page with the one passed in.
5291 	 */
5292 	if (read || (len < (commit - read)) ||
5293 	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
5294 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
5295 		unsigned int rpos = read;
5296 		unsigned int pos = 0;
5297 		unsigned int size;
5298 
5299 		if (full)
5300 			goto out_unlock;
5301 
5302 		if (len > (commit - read))
5303 			len = (commit - read);
5304 
5305 		/* Always keep the time extend and data together */
5306 		size = rb_event_ts_length(event);
5307 
5308 		if (len < size)
5309 			goto out_unlock;
5310 
5311 		/* save the current timestamp, since the user will need it */
5312 		save_timestamp = cpu_buffer->read_stamp;
5313 
5314 		/* Need to copy one event at a time */
5315 		do {
5316 			/* We need the size of one event, because
5317 			 * rb_advance_reader only advances by one event,
5318 			 * whereas rb_event_ts_length may include the size of
5319 			 * one or two events.
5320 			 * We have already ensured there's enough space if this
5321 			 * is a time extend. */
5322 			size = rb_event_length(event);
5323 			memcpy(bpage->data + pos, rpage->data + rpos, size);
5324 
5325 			len -= size;
5326 
5327 			rb_advance_reader(cpu_buffer);
5328 			rpos = reader->read;
5329 			pos += size;
5330 
5331 			if (rpos >= commit)
5332 				break;
5333 
5334 			event = rb_reader_event(cpu_buffer);
5335 			/* Always keep the time extend and data together */
5336 			size = rb_event_ts_length(event);
5337 		} while (len >= size);
5338 
5339 		/* update bpage */
5340 		local_set(&bpage->commit, pos);
5341 		bpage->time_stamp = save_timestamp;
5342 
5343 		/* we copied everything to the beginning */
5344 		read = 0;
5345 	} else {
5346 		/* update the entry counter */
5347 		cpu_buffer->read += rb_page_entries(reader);
5348 		cpu_buffer->read_bytes += BUF_PAGE_SIZE;
5349 
5350 		/* swap the pages */
5351 		rb_init_page(bpage);
5352 		bpage = reader->page;
5353 		reader->page = *data_page;
5354 		local_set(&reader->write, 0);
5355 		local_set(&reader->entries, 0);
5356 		reader->read = 0;
5357 		*data_page = bpage;
5358 
5359 		/*
5360 		 * Use the real_end for the data size,
5361 		 * This gives us a chance to store the lost events
5362 		 * on the page.
5363 		 */
5364 		if (reader->real_end)
5365 			local_set(&bpage->commit, reader->real_end);
5366 	}
5367 	ret = read;
5368 
5369 	cpu_buffer->lost_events = 0;
5370 
5371 	commit = local_read(&bpage->commit);
5372 	/*
5373 	 * Set a flag in the commit field if we lost events
5374 	 */
5375 	if (missed_events) {
5376 		/* If there is room at the end of the page to save the
5377 		 * missed events, then record it there.
5378 		 */
5379 		if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
5380 			memcpy(&bpage->data[commit], &missed_events,
5381 			       sizeof(missed_events));
5382 			local_add(RB_MISSED_STORED, &bpage->commit);
5383 			commit += sizeof(missed_events);
5384 		}
5385 		local_add(RB_MISSED_EVENTS, &bpage->commit);
5386 	}
5387 
5388 	/*
5389 	 * This page may be off to user land. Zero it out here.
5390 	 */
5391 	if (commit < BUF_PAGE_SIZE)
5392 		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
5393 
5394  out_unlock:
5395 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5396 
5397  out:
5398 	return ret;
5399 }
5400 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
5401 
5402 /*
5403  * We only allocate new buffers, never free them if the CPU goes down.
5404  * If we were to free the buffer, then the user would lose any trace that was in
5405  * the buffer.
5406  */
trace_rb_cpu_prepare(unsigned int cpu,struct hlist_node * node)5407 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
5408 {
5409 	struct trace_buffer *buffer;
5410 	long nr_pages_same;
5411 	int cpu_i;
5412 	unsigned long nr_pages;
5413 
5414 	buffer = container_of(node, struct trace_buffer, node);
5415 	if (cpumask_test_cpu(cpu, buffer->cpumask))
5416 		return 0;
5417 
5418 	nr_pages = 0;
5419 	nr_pages_same = 1;
5420 	/* check if all cpu sizes are same */
5421 	for_each_buffer_cpu(buffer, cpu_i) {
5422 		/* fill in the size from first enabled cpu */
5423 		if (nr_pages == 0)
5424 			nr_pages = buffer->buffers[cpu_i]->nr_pages;
5425 		if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
5426 			nr_pages_same = 0;
5427 			break;
5428 		}
5429 	}
5430 	/* allocate minimum pages, user can later expand it */
5431 	if (!nr_pages_same)
5432 		nr_pages = 2;
5433 	buffer->buffers[cpu] =
5434 		rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
5435 	if (!buffer->buffers[cpu]) {
5436 		WARN(1, "failed to allocate ring buffer on CPU %u\n",
5437 		     cpu);
5438 		return -ENOMEM;
5439 	}
5440 	smp_wmb();
5441 	cpumask_set_cpu(cpu, buffer->cpumask);
5442 	return 0;
5443 }
5444 
5445 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
5446 /*
5447  * This is a basic integrity check of the ring buffer.
5448  * Late in the boot cycle this test will run when configured in.
5449  * It will kick off a thread per CPU that will go into a loop
5450  * writing to the per cpu ring buffer various sizes of data.
5451  * Some of the data will be large items, some small.
5452  *
5453  * Another thread is created that goes into a spin, sending out
5454  * IPIs to the other CPUs to also write into the ring buffer.
5455  * this is to test the nesting ability of the buffer.
5456  *
5457  * Basic stats are recorded and reported. If something in the
5458  * ring buffer should happen that's not expected, a big warning
5459  * is displayed and all ring buffers are disabled.
5460  */
5461 static struct task_struct *rb_threads[NR_CPUS] __initdata;
5462 
5463 struct rb_test_data {
5464 	struct trace_buffer *buffer;
5465 	unsigned long		events;
5466 	unsigned long		bytes_written;
5467 	unsigned long		bytes_alloc;
5468 	unsigned long		bytes_dropped;
5469 	unsigned long		events_nested;
5470 	unsigned long		bytes_written_nested;
5471 	unsigned long		bytes_alloc_nested;
5472 	unsigned long		bytes_dropped_nested;
5473 	int			min_size_nested;
5474 	int			max_size_nested;
5475 	int			max_size;
5476 	int			min_size;
5477 	int			cpu;
5478 	int			cnt;
5479 };
5480 
5481 static struct rb_test_data rb_data[NR_CPUS] __initdata;
5482 
5483 /* 1 meg per cpu */
5484 #define RB_TEST_BUFFER_SIZE	1048576
5485 
5486 static char rb_string[] __initdata =
5487 	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
5488 	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
5489 	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
5490 
5491 static bool rb_test_started __initdata;
5492 
5493 struct rb_item {
5494 	int size;
5495 	char str[];
5496 };
5497 
rb_write_something(struct rb_test_data * data,bool nested)5498 static __init int rb_write_something(struct rb_test_data *data, bool nested)
5499 {
5500 	struct ring_buffer_event *event;
5501 	struct rb_item *item;
5502 	bool started;
5503 	int event_len;
5504 	int size;
5505 	int len;
5506 	int cnt;
5507 
5508 	/* Have nested writes different that what is written */
5509 	cnt = data->cnt + (nested ? 27 : 0);
5510 
5511 	/* Multiply cnt by ~e, to make some unique increment */
5512 	size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
5513 
5514 	len = size + sizeof(struct rb_item);
5515 
5516 	started = rb_test_started;
5517 	/* read rb_test_started before checking buffer enabled */
5518 	smp_rmb();
5519 
5520 	event = ring_buffer_lock_reserve(data->buffer, len);
5521 	if (!event) {
5522 		/* Ignore dropped events before test starts. */
5523 		if (started) {
5524 			if (nested)
5525 				data->bytes_dropped += len;
5526 			else
5527 				data->bytes_dropped_nested += len;
5528 		}
5529 		return len;
5530 	}
5531 
5532 	event_len = ring_buffer_event_length(event);
5533 
5534 	if (RB_WARN_ON(data->buffer, event_len < len))
5535 		goto out;
5536 
5537 	item = ring_buffer_event_data(event);
5538 	item->size = size;
5539 	memcpy(item->str, rb_string, size);
5540 
5541 	if (nested) {
5542 		data->bytes_alloc_nested += event_len;
5543 		data->bytes_written_nested += len;
5544 		data->events_nested++;
5545 		if (!data->min_size_nested || len < data->min_size_nested)
5546 			data->min_size_nested = len;
5547 		if (len > data->max_size_nested)
5548 			data->max_size_nested = len;
5549 	} else {
5550 		data->bytes_alloc += event_len;
5551 		data->bytes_written += len;
5552 		data->events++;
5553 		if (!data->min_size || len < data->min_size)
5554 			data->max_size = len;
5555 		if (len > data->max_size)
5556 			data->max_size = len;
5557 	}
5558 
5559  out:
5560 	ring_buffer_unlock_commit(data->buffer, event);
5561 
5562 	return 0;
5563 }
5564 
rb_test(void * arg)5565 static __init int rb_test(void *arg)
5566 {
5567 	struct rb_test_data *data = arg;
5568 
5569 	while (!kthread_should_stop()) {
5570 		rb_write_something(data, false);
5571 		data->cnt++;
5572 
5573 		set_current_state(TASK_INTERRUPTIBLE);
5574 		/* Now sleep between a min of 100-300us and a max of 1ms */
5575 		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
5576 	}
5577 
5578 	return 0;
5579 }
5580 
rb_ipi(void * ignore)5581 static __init void rb_ipi(void *ignore)
5582 {
5583 	struct rb_test_data *data;
5584 	int cpu = smp_processor_id();
5585 
5586 	data = &rb_data[cpu];
5587 	rb_write_something(data, true);
5588 }
5589 
rb_hammer_test(void * arg)5590 static __init int rb_hammer_test(void *arg)
5591 {
5592 	while (!kthread_should_stop()) {
5593 
5594 		/* Send an IPI to all cpus to write data! */
5595 		smp_call_function(rb_ipi, NULL, 1);
5596 		/* No sleep, but for non preempt, let others run */
5597 		schedule();
5598 	}
5599 
5600 	return 0;
5601 }
5602 
test_ringbuffer(void)5603 static __init int test_ringbuffer(void)
5604 {
5605 	struct task_struct *rb_hammer;
5606 	struct trace_buffer *buffer;
5607 	int cpu;
5608 	int ret = 0;
5609 
5610 	if (security_locked_down(LOCKDOWN_TRACEFS)) {
5611 		pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
5612 		return 0;
5613 	}
5614 
5615 	pr_info("Running ring buffer tests...\n");
5616 
5617 	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
5618 	if (WARN_ON(!buffer))
5619 		return 0;
5620 
5621 	/* Disable buffer so that threads can't write to it yet */
5622 	ring_buffer_record_off(buffer);
5623 
5624 	for_each_online_cpu(cpu) {
5625 		rb_data[cpu].buffer = buffer;
5626 		rb_data[cpu].cpu = cpu;
5627 		rb_data[cpu].cnt = cpu;
5628 		rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
5629 						 "rbtester/%d", cpu);
5630 		if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
5631 			pr_cont("FAILED\n");
5632 			ret = PTR_ERR(rb_threads[cpu]);
5633 			goto out_free;
5634 		}
5635 
5636 		kthread_bind(rb_threads[cpu], cpu);
5637  		wake_up_process(rb_threads[cpu]);
5638 	}
5639 
5640 	/* Now create the rb hammer! */
5641 	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
5642 	if (WARN_ON(IS_ERR(rb_hammer))) {
5643 		pr_cont("FAILED\n");
5644 		ret = PTR_ERR(rb_hammer);
5645 		goto out_free;
5646 	}
5647 
5648 	ring_buffer_record_on(buffer);
5649 	/*
5650 	 * Show buffer is enabled before setting rb_test_started.
5651 	 * Yes there's a small race window where events could be
5652 	 * dropped and the thread wont catch it. But when a ring
5653 	 * buffer gets enabled, there will always be some kind of
5654 	 * delay before other CPUs see it. Thus, we don't care about
5655 	 * those dropped events. We care about events dropped after
5656 	 * the threads see that the buffer is active.
5657 	 */
5658 	smp_wmb();
5659 	rb_test_started = true;
5660 
5661 	set_current_state(TASK_INTERRUPTIBLE);
5662 	/* Just run for 10 seconds */;
5663 	schedule_timeout(10 * HZ);
5664 
5665 	kthread_stop(rb_hammer);
5666 
5667  out_free:
5668 	for_each_online_cpu(cpu) {
5669 		if (!rb_threads[cpu])
5670 			break;
5671 		kthread_stop(rb_threads[cpu]);
5672 	}
5673 	if (ret) {
5674 		ring_buffer_free(buffer);
5675 		return ret;
5676 	}
5677 
5678 	/* Report! */
5679 	pr_info("finished\n");
5680 	for_each_online_cpu(cpu) {
5681 		struct ring_buffer_event *event;
5682 		struct rb_test_data *data = &rb_data[cpu];
5683 		struct rb_item *item;
5684 		unsigned long total_events;
5685 		unsigned long total_dropped;
5686 		unsigned long total_written;
5687 		unsigned long total_alloc;
5688 		unsigned long total_read = 0;
5689 		unsigned long total_size = 0;
5690 		unsigned long total_len = 0;
5691 		unsigned long total_lost = 0;
5692 		unsigned long lost;
5693 		int big_event_size;
5694 		int small_event_size;
5695 
5696 		ret = -1;
5697 
5698 		total_events = data->events + data->events_nested;
5699 		total_written = data->bytes_written + data->bytes_written_nested;
5700 		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
5701 		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
5702 
5703 		big_event_size = data->max_size + data->max_size_nested;
5704 		small_event_size = data->min_size + data->min_size_nested;
5705 
5706 		pr_info("CPU %d:\n", cpu);
5707 		pr_info("              events:    %ld\n", total_events);
5708 		pr_info("       dropped bytes:    %ld\n", total_dropped);
5709 		pr_info("       alloced bytes:    %ld\n", total_alloc);
5710 		pr_info("       written bytes:    %ld\n", total_written);
5711 		pr_info("       biggest event:    %d\n", big_event_size);
5712 		pr_info("      smallest event:    %d\n", small_event_size);
5713 
5714 		if (RB_WARN_ON(buffer, total_dropped))
5715 			break;
5716 
5717 		ret = 0;
5718 
5719 		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
5720 			total_lost += lost;
5721 			item = ring_buffer_event_data(event);
5722 			total_len += ring_buffer_event_length(event);
5723 			total_size += item->size + sizeof(struct rb_item);
5724 			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
5725 				pr_info("FAILED!\n");
5726 				pr_info("buffer had: %.*s\n", item->size, item->str);
5727 				pr_info("expected:   %.*s\n", item->size, rb_string);
5728 				RB_WARN_ON(buffer, 1);
5729 				ret = -1;
5730 				break;
5731 			}
5732 			total_read++;
5733 		}
5734 		if (ret)
5735 			break;
5736 
5737 		ret = -1;
5738 
5739 		pr_info("         read events:   %ld\n", total_read);
5740 		pr_info("         lost events:   %ld\n", total_lost);
5741 		pr_info("        total events:   %ld\n", total_lost + total_read);
5742 		pr_info("  recorded len bytes:   %ld\n", total_len);
5743 		pr_info(" recorded size bytes:   %ld\n", total_size);
5744 		if (total_lost)
5745 			pr_info(" With dropped events, record len and size may not match\n"
5746 				" alloced and written from above\n");
5747 		if (!total_lost) {
5748 			if (RB_WARN_ON(buffer, total_len != total_alloc ||
5749 				       total_size != total_written))
5750 				break;
5751 		}
5752 		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5753 			break;
5754 
5755 		ret = 0;
5756 	}
5757 	if (!ret)
5758 		pr_info("Ring buffer PASSED!\n");
5759 
5760 	ring_buffer_free(buffer);
5761 	return 0;
5762 }
5763 
5764 late_initcall(test_ringbuffer);
5765 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
5766