1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
5 *
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
8 *
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqring (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
16 * CQ entries.
17 *
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
23 * head will do).
24 *
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
28 * between.
29 *
30 * Also see the examples in the liburing library:
31 *
32 * git://git.kernel.dk/liburing
33 *
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
38 *
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
41 */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <linux/compat.h>
47 #include <net/compat.h>
48 #include <linux/refcount.h>
49 #include <linux/uio.h>
50 #include <linux/bits.h>
51
52 #include <linux/sched/signal.h>
53 #include <linux/fs.h>
54 #include <linux/file.h>
55 #include <linux/fdtable.h>
56 #include <linux/mm.h>
57 #include <linux/mman.h>
58 #include <linux/percpu.h>
59 #include <linux/slab.h>
60 #include <linux/kthread.h>
61 #include <linux/blkdev.h>
62 #include <linux/bvec.h>
63 #include <linux/net.h>
64 #include <net/sock.h>
65 #include <net/af_unix.h>
66 #include <net/scm.h>
67 #include <linux/anon_inodes.h>
68 #include <linux/sched/mm.h>
69 #include <linux/uaccess.h>
70 #include <linux/nospec.h>
71 #include <linux/sizes.h>
72 #include <linux/hugetlb.h>
73 #include <linux/highmem.h>
74 #include <linux/namei.h>
75 #include <linux/fsnotify.h>
76 #include <linux/fadvise.h>
77 #include <linux/eventpoll.h>
78 #include <linux/fs_struct.h>
79 #include <linux/splice.h>
80 #include <linux/task_work.h>
81 #include <linux/pagemap.h>
82 #include <linux/io_uring.h>
83 #include <linux/blk-cgroup.h>
84 #include <linux/audit.h>
85
86 #define CREATE_TRACE_POINTS
87 #include <trace/events/io_uring.h>
88
89 #include <uapi/linux/io_uring.h>
90
91 #include "internal.h"
92 #include "io-wq.h"
93
94 #define IORING_MAX_ENTRIES 32768
95 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
96
97 /*
98 * Shift of 9 is 512 entries, or exactly one page on 64-bit archs
99 */
100 #define IORING_FILE_TABLE_SHIFT 9
101 #define IORING_MAX_FILES_TABLE (1U << IORING_FILE_TABLE_SHIFT)
102 #define IORING_FILE_TABLE_MASK (IORING_MAX_FILES_TABLE - 1)
103 #define IORING_MAX_FIXED_FILES (64 * IORING_MAX_FILES_TABLE)
104 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \
105 IORING_REGISTER_LAST + IORING_OP_LAST)
106
107 struct io_uring {
108 u32 head ____cacheline_aligned_in_smp;
109 u32 tail ____cacheline_aligned_in_smp;
110 };
111
112 /*
113 * This data is shared with the application through the mmap at offsets
114 * IORING_OFF_SQ_RING and IORING_OFF_CQ_RING.
115 *
116 * The offsets to the member fields are published through struct
117 * io_sqring_offsets when calling io_uring_setup.
118 */
119 struct io_rings {
120 /*
121 * Head and tail offsets into the ring; the offsets need to be
122 * masked to get valid indices.
123 *
124 * The kernel controls head of the sq ring and the tail of the cq ring,
125 * and the application controls tail of the sq ring and the head of the
126 * cq ring.
127 */
128 struct io_uring sq, cq;
129 /*
130 * Bitmasks to apply to head and tail offsets (constant, equals
131 * ring_entries - 1)
132 */
133 u32 sq_ring_mask, cq_ring_mask;
134 /* Ring sizes (constant, power of 2) */
135 u32 sq_ring_entries, cq_ring_entries;
136 /*
137 * Number of invalid entries dropped by the kernel due to
138 * invalid index stored in array
139 *
140 * Written by the kernel, shouldn't be modified by the
141 * application (i.e. get number of "new events" by comparing to
142 * cached value).
143 *
144 * After a new SQ head value was read by the application this
145 * counter includes all submissions that were dropped reaching
146 * the new SQ head (and possibly more).
147 */
148 u32 sq_dropped;
149 /*
150 * Runtime SQ flags
151 *
152 * Written by the kernel, shouldn't be modified by the
153 * application.
154 *
155 * The application needs a full memory barrier before checking
156 * for IORING_SQ_NEED_WAKEUP after updating the sq tail.
157 */
158 u32 sq_flags;
159 /*
160 * Runtime CQ flags
161 *
162 * Written by the application, shouldn't be modified by the
163 * kernel.
164 */
165 u32 cq_flags;
166 /*
167 * Number of completion events lost because the queue was full;
168 * this should be avoided by the application by making sure
169 * there are not more requests pending than there is space in
170 * the completion queue.
171 *
172 * Written by the kernel, shouldn't be modified by the
173 * application (i.e. get number of "new events" by comparing to
174 * cached value).
175 *
176 * As completion events come in out of order this counter is not
177 * ordered with any other data.
178 */
179 u32 cq_overflow;
180 /*
181 * Ring buffer of completion events.
182 *
183 * The kernel writes completion events fresh every time they are
184 * produced, so the application is allowed to modify pending
185 * entries.
186 */
187 struct io_uring_cqe cqes[] ____cacheline_aligned_in_smp;
188 };
189
190 struct io_mapped_ubuf {
191 u64 ubuf;
192 size_t len;
193 struct bio_vec *bvec;
194 unsigned int nr_bvecs;
195 unsigned long acct_pages;
196 };
197
198 struct fixed_file_table {
199 struct file **files;
200 };
201
202 struct fixed_file_ref_node {
203 struct percpu_ref refs;
204 struct list_head node;
205 struct list_head file_list;
206 struct fixed_file_data *file_data;
207 struct llist_node llist;
208 bool done;
209 };
210
211 struct fixed_file_data {
212 struct fixed_file_table *table;
213 struct io_ring_ctx *ctx;
214
215 struct fixed_file_ref_node *node;
216 struct percpu_ref refs;
217 struct completion done;
218 struct list_head ref_list;
219 spinlock_t lock;
220 };
221
222 struct io_buffer {
223 struct list_head list;
224 __u64 addr;
225 __s32 len;
226 __u16 bid;
227 };
228
229 struct io_restriction {
230 DECLARE_BITMAP(register_op, IORING_REGISTER_LAST);
231 DECLARE_BITMAP(sqe_op, IORING_OP_LAST);
232 u8 sqe_flags_allowed;
233 u8 sqe_flags_required;
234 bool registered;
235 };
236
237 struct io_sq_data {
238 refcount_t refs;
239 struct mutex lock;
240
241 /* ctx's that are using this sqd */
242 struct list_head ctx_list;
243 struct list_head ctx_new_list;
244 struct mutex ctx_lock;
245
246 struct task_struct *thread;
247 struct wait_queue_head wait;
248 };
249
250 struct io_ring_ctx {
251 struct {
252 struct percpu_ref refs;
253 } ____cacheline_aligned_in_smp;
254
255 struct {
256 unsigned int flags;
257 unsigned int compat: 1;
258 unsigned int limit_mem: 1;
259 unsigned int cq_overflow_flushed: 1;
260 unsigned int drain_next: 1;
261 unsigned int eventfd_async: 1;
262 unsigned int restricted: 1;
263
264 /*
265 * Ring buffer of indices into array of io_uring_sqe, which is
266 * mmapped by the application using the IORING_OFF_SQES offset.
267 *
268 * This indirection could e.g. be used to assign fixed
269 * io_uring_sqe entries to operations and only submit them to
270 * the queue when needed.
271 *
272 * The kernel modifies neither the indices array nor the entries
273 * array.
274 */
275 u32 *sq_array;
276 unsigned cached_sq_head;
277 unsigned sq_entries;
278 unsigned sq_mask;
279 unsigned sq_thread_idle;
280 unsigned cached_sq_dropped;
281 unsigned cached_cq_overflow;
282 unsigned long sq_check_overflow;
283
284 struct list_head defer_list;
285 struct list_head timeout_list;
286 struct list_head cq_overflow_list;
287
288 wait_queue_head_t inflight_wait;
289 struct io_uring_sqe *sq_sqes;
290 } ____cacheline_aligned_in_smp;
291
292 struct io_rings *rings;
293
294 /* IO offload */
295 struct io_wq *io_wq;
296
297 /*
298 * For SQPOLL usage - we hold a reference to the parent task, so we
299 * have access to the ->files
300 */
301 struct task_struct *sqo_task;
302
303 /* Only used for accounting purposes */
304 struct mm_struct *mm_account;
305
306 #ifdef CONFIG_BLK_CGROUP
307 struct cgroup_subsys_state *sqo_blkcg_css;
308 #endif
309
310 struct io_sq_data *sq_data; /* if using sq thread polling */
311
312 struct wait_queue_head sqo_sq_wait;
313 struct wait_queue_entry sqo_wait_entry;
314 struct list_head sqd_list;
315
316 /*
317 * If used, fixed file set. Writers must ensure that ->refs is dead,
318 * readers must ensure that ->refs is alive as long as the file* is
319 * used. Only updated through io_uring_register(2).
320 */
321 struct fixed_file_data *file_data;
322 unsigned nr_user_files;
323
324 /* if used, fixed mapped user buffers */
325 unsigned nr_user_bufs;
326 struct io_mapped_ubuf *user_bufs;
327
328 struct user_struct *user;
329
330 const struct cred *creds;
331
332 #ifdef CONFIG_AUDIT
333 kuid_t loginuid;
334 unsigned int sessionid;
335 #endif
336
337 struct completion ref_comp;
338 struct completion sq_thread_comp;
339
340 /* if all else fails... */
341 struct io_kiocb *fallback_req;
342
343 #if defined(CONFIG_UNIX)
344 struct socket *ring_sock;
345 #endif
346
347 struct idr io_buffer_idr;
348
349 struct idr personality_idr;
350
351 struct {
352 unsigned cached_cq_tail;
353 unsigned cq_entries;
354 unsigned cq_mask;
355 atomic_t cq_timeouts;
356 unsigned long cq_check_overflow;
357 struct wait_queue_head cq_wait;
358 struct fasync_struct *cq_fasync;
359 struct eventfd_ctx *cq_ev_fd;
360 } ____cacheline_aligned_in_smp;
361
362 struct {
363 struct mutex uring_lock;
364 wait_queue_head_t wait;
365 } ____cacheline_aligned_in_smp;
366
367 struct {
368 spinlock_t completion_lock;
369
370 /*
371 * ->iopoll_list is protected by the ctx->uring_lock for
372 * io_uring instances that don't use IORING_SETUP_SQPOLL.
373 * For SQPOLL, only the single threaded io_sq_thread() will
374 * manipulate the list, hence no extra locking is needed there.
375 */
376 struct list_head iopoll_list;
377 struct hlist_head *cancel_hash;
378 unsigned cancel_hash_bits;
379 bool poll_multi_file;
380
381 spinlock_t inflight_lock;
382 struct list_head inflight_list;
383 } ____cacheline_aligned_in_smp;
384
385 struct delayed_work file_put_work;
386 struct llist_head file_put_llist;
387
388 struct work_struct exit_work;
389 struct io_restriction restrictions;
390 };
391
392 /*
393 * First field must be the file pointer in all the
394 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
395 */
396 struct io_poll_iocb {
397 struct file *file;
398 union {
399 struct wait_queue_head *head;
400 u64 addr;
401 };
402 __poll_t events;
403 bool done;
404 bool canceled;
405 struct wait_queue_entry wait;
406 };
407
408 struct io_close {
409 struct file *file;
410 struct file *put_file;
411 int fd;
412 };
413
414 struct io_timeout_data {
415 struct io_kiocb *req;
416 struct hrtimer timer;
417 struct timespec64 ts;
418 enum hrtimer_mode mode;
419 };
420
421 struct io_accept {
422 struct file *file;
423 struct sockaddr __user *addr;
424 int __user *addr_len;
425 int flags;
426 unsigned long nofile;
427 };
428
429 struct io_sync {
430 struct file *file;
431 loff_t len;
432 loff_t off;
433 int flags;
434 int mode;
435 };
436
437 struct io_cancel {
438 struct file *file;
439 u64 addr;
440 };
441
442 struct io_timeout {
443 struct file *file;
444 u32 off;
445 u32 target_seq;
446 struct list_head list;
447 };
448
449 struct io_timeout_rem {
450 struct file *file;
451 u64 addr;
452 };
453
454 struct io_rw {
455 /* NOTE: kiocb has the file as the first member, so don't do it here */
456 struct kiocb kiocb;
457 u64 addr;
458 u64 len;
459 };
460
461 struct io_connect {
462 struct file *file;
463 struct sockaddr __user *addr;
464 int addr_len;
465 };
466
467 struct io_sr_msg {
468 struct file *file;
469 union {
470 struct user_msghdr __user *umsg;
471 void __user *buf;
472 };
473 int msg_flags;
474 int bgid;
475 size_t len;
476 struct io_buffer *kbuf;
477 };
478
479 struct io_open {
480 struct file *file;
481 int dfd;
482 bool ignore_nonblock;
483 struct filename *filename;
484 struct open_how how;
485 unsigned long nofile;
486 };
487
488 struct io_files_update {
489 struct file *file;
490 u64 arg;
491 u32 nr_args;
492 u32 offset;
493 };
494
495 struct io_fadvise {
496 struct file *file;
497 u64 offset;
498 u32 len;
499 u32 advice;
500 };
501
502 struct io_madvise {
503 struct file *file;
504 u64 addr;
505 u32 len;
506 u32 advice;
507 };
508
509 struct io_epoll {
510 struct file *file;
511 int epfd;
512 int op;
513 int fd;
514 struct epoll_event event;
515 };
516
517 struct io_splice {
518 struct file *file_out;
519 struct file *file_in;
520 loff_t off_out;
521 loff_t off_in;
522 u64 len;
523 unsigned int flags;
524 };
525
526 struct io_provide_buf {
527 struct file *file;
528 __u64 addr;
529 __s32 len;
530 __u32 bgid;
531 __u16 nbufs;
532 __u16 bid;
533 };
534
535 struct io_statx {
536 struct file *file;
537 int dfd;
538 unsigned int mask;
539 unsigned int flags;
540 const char __user *filename;
541 struct statx __user *buffer;
542 };
543
544 struct io_completion {
545 struct file *file;
546 struct list_head list;
547 int cflags;
548 };
549
550 struct io_async_connect {
551 struct sockaddr_storage address;
552 };
553
554 struct io_async_msghdr {
555 struct iovec fast_iov[UIO_FASTIOV];
556 struct iovec *iov;
557 struct sockaddr __user *uaddr;
558 struct msghdr msg;
559 struct sockaddr_storage addr;
560 };
561
562 struct io_async_rw {
563 struct iovec fast_iov[UIO_FASTIOV];
564 const struct iovec *free_iovec;
565 struct iov_iter iter;
566 size_t bytes_done;
567 struct wait_page_queue wpq;
568 };
569
570 enum {
571 REQ_F_FIXED_FILE_BIT = IOSQE_FIXED_FILE_BIT,
572 REQ_F_IO_DRAIN_BIT = IOSQE_IO_DRAIN_BIT,
573 REQ_F_LINK_BIT = IOSQE_IO_LINK_BIT,
574 REQ_F_HARDLINK_BIT = IOSQE_IO_HARDLINK_BIT,
575 REQ_F_FORCE_ASYNC_BIT = IOSQE_ASYNC_BIT,
576 REQ_F_BUFFER_SELECT_BIT = IOSQE_BUFFER_SELECT_BIT,
577
578 REQ_F_LINK_HEAD_BIT,
579 REQ_F_FAIL_LINK_BIT,
580 REQ_F_INFLIGHT_BIT,
581 REQ_F_CUR_POS_BIT,
582 REQ_F_NOWAIT_BIT,
583 REQ_F_LINK_TIMEOUT_BIT,
584 REQ_F_ISREG_BIT,
585 REQ_F_NEED_CLEANUP_BIT,
586 REQ_F_POLLED_BIT,
587 REQ_F_BUFFER_SELECTED_BIT,
588 REQ_F_NO_FILE_TABLE_BIT,
589 REQ_F_WORK_INITIALIZED_BIT,
590 REQ_F_LTIMEOUT_ACTIVE_BIT,
591
592 /* not a real bit, just to check we're not overflowing the space */
593 __REQ_F_LAST_BIT,
594 };
595
596 enum {
597 /* ctx owns file */
598 REQ_F_FIXED_FILE = BIT(REQ_F_FIXED_FILE_BIT),
599 /* drain existing IO first */
600 REQ_F_IO_DRAIN = BIT(REQ_F_IO_DRAIN_BIT),
601 /* linked sqes */
602 REQ_F_LINK = BIT(REQ_F_LINK_BIT),
603 /* doesn't sever on completion < 0 */
604 REQ_F_HARDLINK = BIT(REQ_F_HARDLINK_BIT),
605 /* IOSQE_ASYNC */
606 REQ_F_FORCE_ASYNC = BIT(REQ_F_FORCE_ASYNC_BIT),
607 /* IOSQE_BUFFER_SELECT */
608 REQ_F_BUFFER_SELECT = BIT(REQ_F_BUFFER_SELECT_BIT),
609
610 /* head of a link */
611 REQ_F_LINK_HEAD = BIT(REQ_F_LINK_HEAD_BIT),
612 /* fail rest of links */
613 REQ_F_FAIL_LINK = BIT(REQ_F_FAIL_LINK_BIT),
614 /* on inflight list */
615 REQ_F_INFLIGHT = BIT(REQ_F_INFLIGHT_BIT),
616 /* read/write uses file position */
617 REQ_F_CUR_POS = BIT(REQ_F_CUR_POS_BIT),
618 /* must not punt to workers */
619 REQ_F_NOWAIT = BIT(REQ_F_NOWAIT_BIT),
620 /* has or had linked timeout */
621 REQ_F_LINK_TIMEOUT = BIT(REQ_F_LINK_TIMEOUT_BIT),
622 /* regular file */
623 REQ_F_ISREG = BIT(REQ_F_ISREG_BIT),
624 /* needs cleanup */
625 REQ_F_NEED_CLEANUP = BIT(REQ_F_NEED_CLEANUP_BIT),
626 /* already went through poll handler */
627 REQ_F_POLLED = BIT(REQ_F_POLLED_BIT),
628 /* buffer already selected */
629 REQ_F_BUFFER_SELECTED = BIT(REQ_F_BUFFER_SELECTED_BIT),
630 /* doesn't need file table for this request */
631 REQ_F_NO_FILE_TABLE = BIT(REQ_F_NO_FILE_TABLE_BIT),
632 /* io_wq_work is initialized */
633 REQ_F_WORK_INITIALIZED = BIT(REQ_F_WORK_INITIALIZED_BIT),
634 /* linked timeout is active, i.e. prepared by link's head */
635 REQ_F_LTIMEOUT_ACTIVE = BIT(REQ_F_LTIMEOUT_ACTIVE_BIT),
636 };
637
638 struct async_poll {
639 struct io_poll_iocb poll;
640 struct io_poll_iocb *double_poll;
641 };
642
643 /*
644 * NOTE! Each of the iocb union members has the file pointer
645 * as the first entry in their struct definition. So you can
646 * access the file pointer through any of the sub-structs,
647 * or directly as just 'ki_filp' in this struct.
648 */
649 struct io_kiocb {
650 union {
651 struct file *file;
652 struct io_rw rw;
653 struct io_poll_iocb poll;
654 struct io_accept accept;
655 struct io_sync sync;
656 struct io_cancel cancel;
657 struct io_timeout timeout;
658 struct io_timeout_rem timeout_rem;
659 struct io_connect connect;
660 struct io_sr_msg sr_msg;
661 struct io_open open;
662 struct io_close close;
663 struct io_files_update files_update;
664 struct io_fadvise fadvise;
665 struct io_madvise madvise;
666 struct io_epoll epoll;
667 struct io_splice splice;
668 struct io_provide_buf pbuf;
669 struct io_statx statx;
670 /* use only after cleaning per-op data, see io_clean_op() */
671 struct io_completion compl;
672 };
673
674 /* opcode allocated if it needs to store data for async defer */
675 void *async_data;
676 u8 opcode;
677 /* polled IO has completed */
678 u8 iopoll_completed;
679
680 u16 buf_index;
681 u32 result;
682
683 struct io_ring_ctx *ctx;
684 unsigned int flags;
685 refcount_t refs;
686 struct task_struct *task;
687 u64 user_data;
688
689 struct list_head link_list;
690
691 /*
692 * 1. used with ctx->iopoll_list with reads/writes
693 * 2. to track reqs with ->files (see io_op_def::file_table)
694 */
695 struct list_head inflight_entry;
696
697 struct percpu_ref *fixed_file_refs;
698 struct callback_head task_work;
699 /* for polled requests, i.e. IORING_OP_POLL_ADD and async armed poll */
700 struct hlist_node hash_node;
701 struct async_poll *apoll;
702 struct io_wq_work work;
703 };
704
705 struct io_defer_entry {
706 struct list_head list;
707 struct io_kiocb *req;
708 u32 seq;
709 };
710
711 #define IO_IOPOLL_BATCH 8
712
713 struct io_comp_state {
714 unsigned int nr;
715 struct list_head list;
716 struct io_ring_ctx *ctx;
717 };
718
719 struct io_submit_state {
720 struct blk_plug plug;
721
722 /*
723 * io_kiocb alloc cache
724 */
725 void *reqs[IO_IOPOLL_BATCH];
726 unsigned int free_reqs;
727
728 /*
729 * Batch completion logic
730 */
731 struct io_comp_state comp;
732
733 /*
734 * File reference cache
735 */
736 struct file *file;
737 unsigned int fd;
738 unsigned int has_refs;
739 unsigned int ios_left;
740 };
741
742 struct io_op_def {
743 /* needs req->file assigned */
744 unsigned needs_file : 1;
745 /* don't fail if file grab fails */
746 unsigned needs_file_no_error : 1;
747 /* hash wq insertion if file is a regular file */
748 unsigned hash_reg_file : 1;
749 /* unbound wq insertion if file is a non-regular file */
750 unsigned unbound_nonreg_file : 1;
751 /* opcode is not supported by this kernel */
752 unsigned not_supported : 1;
753 /* set if opcode supports polled "wait" */
754 unsigned pollin : 1;
755 unsigned pollout : 1;
756 /* op supports buffer selection */
757 unsigned buffer_select : 1;
758 /* must always have async data allocated */
759 unsigned needs_async_data : 1;
760 /* size of async data needed, if any */
761 unsigned short async_size;
762 unsigned work_flags;
763 };
764
765 static const struct io_op_def io_op_defs[] = {
766 [IORING_OP_NOP] = {},
767 [IORING_OP_READV] = {
768 .needs_file = 1,
769 .unbound_nonreg_file = 1,
770 .pollin = 1,
771 .buffer_select = 1,
772 .needs_async_data = 1,
773 .async_size = sizeof(struct io_async_rw),
774 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
775 },
776 [IORING_OP_WRITEV] = {
777 .needs_file = 1,
778 .hash_reg_file = 1,
779 .unbound_nonreg_file = 1,
780 .pollout = 1,
781 .needs_async_data = 1,
782 .async_size = sizeof(struct io_async_rw),
783 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG |
784 IO_WQ_WORK_FSIZE,
785 },
786 [IORING_OP_FSYNC] = {
787 .needs_file = 1,
788 .work_flags = IO_WQ_WORK_BLKCG,
789 },
790 [IORING_OP_READ_FIXED] = {
791 .needs_file = 1,
792 .unbound_nonreg_file = 1,
793 .pollin = 1,
794 .async_size = sizeof(struct io_async_rw),
795 .work_flags = IO_WQ_WORK_BLKCG | IO_WQ_WORK_MM,
796 },
797 [IORING_OP_WRITE_FIXED] = {
798 .needs_file = 1,
799 .hash_reg_file = 1,
800 .unbound_nonreg_file = 1,
801 .pollout = 1,
802 .async_size = sizeof(struct io_async_rw),
803 .work_flags = IO_WQ_WORK_BLKCG | IO_WQ_WORK_FSIZE |
804 IO_WQ_WORK_MM,
805 },
806 [IORING_OP_POLL_ADD] = {
807 .needs_file = 1,
808 .unbound_nonreg_file = 1,
809 },
810 [IORING_OP_POLL_REMOVE] = {},
811 [IORING_OP_SYNC_FILE_RANGE] = {
812 .needs_file = 1,
813 .work_flags = IO_WQ_WORK_BLKCG,
814 },
815 [IORING_OP_SENDMSG] = {
816 .needs_file = 1,
817 .unbound_nonreg_file = 1,
818 .pollout = 1,
819 .needs_async_data = 1,
820 .async_size = sizeof(struct io_async_msghdr),
821 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG |
822 IO_WQ_WORK_FS,
823 },
824 [IORING_OP_RECVMSG] = {
825 .needs_file = 1,
826 .unbound_nonreg_file = 1,
827 .pollin = 1,
828 .buffer_select = 1,
829 .needs_async_data = 1,
830 .async_size = sizeof(struct io_async_msghdr),
831 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG |
832 IO_WQ_WORK_FS,
833 },
834 [IORING_OP_TIMEOUT] = {
835 .needs_async_data = 1,
836 .async_size = sizeof(struct io_timeout_data),
837 .work_flags = IO_WQ_WORK_MM,
838 },
839 [IORING_OP_TIMEOUT_REMOVE] = {},
840 [IORING_OP_ACCEPT] = {
841 .needs_file = 1,
842 .unbound_nonreg_file = 1,
843 .pollin = 1,
844 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_FILES,
845 },
846 [IORING_OP_ASYNC_CANCEL] = {},
847 [IORING_OP_LINK_TIMEOUT] = {
848 .needs_async_data = 1,
849 .async_size = sizeof(struct io_timeout_data),
850 .work_flags = IO_WQ_WORK_MM,
851 },
852 [IORING_OP_CONNECT] = {
853 .needs_file = 1,
854 .unbound_nonreg_file = 1,
855 .pollout = 1,
856 .needs_async_data = 1,
857 .async_size = sizeof(struct io_async_connect),
858 .work_flags = IO_WQ_WORK_MM,
859 },
860 [IORING_OP_FALLOCATE] = {
861 .needs_file = 1,
862 .work_flags = IO_WQ_WORK_BLKCG | IO_WQ_WORK_FSIZE,
863 },
864 [IORING_OP_OPENAT] = {
865 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_BLKCG |
866 IO_WQ_WORK_FS,
867 },
868 [IORING_OP_CLOSE] = {
869 .needs_file = 1,
870 .needs_file_no_error = 1,
871 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_BLKCG,
872 },
873 [IORING_OP_FILES_UPDATE] = {
874 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_MM,
875 },
876 [IORING_OP_STATX] = {
877 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_MM |
878 IO_WQ_WORK_FS | IO_WQ_WORK_BLKCG,
879 },
880 [IORING_OP_READ] = {
881 .needs_file = 1,
882 .unbound_nonreg_file = 1,
883 .pollin = 1,
884 .buffer_select = 1,
885 .async_size = sizeof(struct io_async_rw),
886 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
887 },
888 [IORING_OP_WRITE] = {
889 .needs_file = 1,
890 .unbound_nonreg_file = 1,
891 .pollout = 1,
892 .async_size = sizeof(struct io_async_rw),
893 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG |
894 IO_WQ_WORK_FSIZE,
895 },
896 [IORING_OP_FADVISE] = {
897 .needs_file = 1,
898 .work_flags = IO_WQ_WORK_BLKCG,
899 },
900 [IORING_OP_MADVISE] = {
901 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
902 },
903 [IORING_OP_SEND] = {
904 .needs_file = 1,
905 .unbound_nonreg_file = 1,
906 .pollout = 1,
907 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
908 },
909 [IORING_OP_RECV] = {
910 .needs_file = 1,
911 .unbound_nonreg_file = 1,
912 .pollin = 1,
913 .buffer_select = 1,
914 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
915 },
916 [IORING_OP_OPENAT2] = {
917 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_FS |
918 IO_WQ_WORK_BLKCG,
919 },
920 [IORING_OP_EPOLL_CTL] = {
921 .unbound_nonreg_file = 1,
922 .work_flags = IO_WQ_WORK_FILES,
923 },
924 [IORING_OP_SPLICE] = {
925 .needs_file = 1,
926 .hash_reg_file = 1,
927 .unbound_nonreg_file = 1,
928 .work_flags = IO_WQ_WORK_BLKCG,
929 },
930 [IORING_OP_PROVIDE_BUFFERS] = {},
931 [IORING_OP_REMOVE_BUFFERS] = {},
932 [IORING_OP_TEE] = {
933 .needs_file = 1,
934 .hash_reg_file = 1,
935 .unbound_nonreg_file = 1,
936 },
937 };
938
939 enum io_mem_account {
940 ACCT_LOCKED,
941 ACCT_PINNED,
942 };
943
944 static void __io_complete_rw(struct io_kiocb *req, long res, long res2,
945 struct io_comp_state *cs);
946 static void io_cqring_fill_event(struct io_kiocb *req, long res);
947 static void io_put_req(struct io_kiocb *req);
948 static void io_put_req_deferred(struct io_kiocb *req, int nr);
949 static void io_double_put_req(struct io_kiocb *req);
950 static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req);
951 static void __io_queue_linked_timeout(struct io_kiocb *req);
952 static void io_queue_linked_timeout(struct io_kiocb *req);
953 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
954 struct io_uring_files_update *ip,
955 unsigned nr_args);
956 static void __io_clean_op(struct io_kiocb *req);
957 static struct file *io_file_get(struct io_submit_state *state,
958 struct io_kiocb *req, int fd, bool fixed);
959 static void __io_queue_sqe(struct io_kiocb *req, struct io_comp_state *cs);
960 static void io_file_put_work(struct work_struct *work);
961
962 static ssize_t io_import_iovec(int rw, struct io_kiocb *req,
963 struct iovec **iovec, struct iov_iter *iter,
964 bool needs_lock);
965 static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
966 const struct iovec *fast_iov,
967 struct iov_iter *iter, bool force);
968
969 static struct kmem_cache *req_cachep;
970
971 static const struct file_operations io_uring_fops;
972
io_uring_get_socket(struct file * file)973 struct sock *io_uring_get_socket(struct file *file)
974 {
975 #if defined(CONFIG_UNIX)
976 if (file->f_op == &io_uring_fops) {
977 struct io_ring_ctx *ctx = file->private_data;
978
979 return ctx->ring_sock->sk;
980 }
981 #endif
982 return NULL;
983 }
984 EXPORT_SYMBOL(io_uring_get_socket);
985
io_clean_op(struct io_kiocb * req)986 static inline void io_clean_op(struct io_kiocb *req)
987 {
988 if (req->flags & (REQ_F_NEED_CLEANUP | REQ_F_BUFFER_SELECTED |
989 REQ_F_INFLIGHT))
990 __io_clean_op(req);
991 }
992
io_sq_thread_drop_mm(void)993 static void io_sq_thread_drop_mm(void)
994 {
995 struct mm_struct *mm = current->mm;
996
997 if (mm) {
998 kthread_unuse_mm(mm);
999 mmput(mm);
1000 current->mm = NULL;
1001 }
1002 }
1003
__io_sq_thread_acquire_mm(struct io_ring_ctx * ctx)1004 static int __io_sq_thread_acquire_mm(struct io_ring_ctx *ctx)
1005 {
1006 struct mm_struct *mm;
1007
1008 if (current->mm)
1009 return 0;
1010
1011 /* Should never happen */
1012 if (unlikely(!(ctx->flags & IORING_SETUP_SQPOLL)))
1013 return -EFAULT;
1014
1015 task_lock(ctx->sqo_task);
1016 mm = ctx->sqo_task->mm;
1017 if (unlikely(!mm || !mmget_not_zero(mm)))
1018 mm = NULL;
1019 task_unlock(ctx->sqo_task);
1020
1021 if (mm) {
1022 kthread_use_mm(mm);
1023 return 0;
1024 }
1025
1026 return -EFAULT;
1027 }
1028
io_sq_thread_acquire_mm(struct io_ring_ctx * ctx,struct io_kiocb * req)1029 static int io_sq_thread_acquire_mm(struct io_ring_ctx *ctx,
1030 struct io_kiocb *req)
1031 {
1032 if (!(io_op_defs[req->opcode].work_flags & IO_WQ_WORK_MM))
1033 return 0;
1034 return __io_sq_thread_acquire_mm(ctx);
1035 }
1036
io_sq_thread_associate_blkcg(struct io_ring_ctx * ctx,struct cgroup_subsys_state ** cur_css)1037 static void io_sq_thread_associate_blkcg(struct io_ring_ctx *ctx,
1038 struct cgroup_subsys_state **cur_css)
1039
1040 {
1041 #ifdef CONFIG_BLK_CGROUP
1042 /* puts the old one when swapping */
1043 if (*cur_css != ctx->sqo_blkcg_css) {
1044 kthread_associate_blkcg(ctx->sqo_blkcg_css);
1045 *cur_css = ctx->sqo_blkcg_css;
1046 }
1047 #endif
1048 }
1049
io_sq_thread_unassociate_blkcg(void)1050 static void io_sq_thread_unassociate_blkcg(void)
1051 {
1052 #ifdef CONFIG_BLK_CGROUP
1053 kthread_associate_blkcg(NULL);
1054 #endif
1055 }
1056
req_set_fail_links(struct io_kiocb * req)1057 static inline void req_set_fail_links(struct io_kiocb *req)
1058 {
1059 if ((req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) == REQ_F_LINK)
1060 req->flags |= REQ_F_FAIL_LINK;
1061 }
1062
1063 /*
1064 * None of these are dereferenced, they are simply used to check if any of
1065 * them have changed. If we're under current and check they are still the
1066 * same, we're fine to grab references to them for actual out-of-line use.
1067 */
io_init_identity(struct io_identity * id)1068 static void io_init_identity(struct io_identity *id)
1069 {
1070 id->files = current->files;
1071 id->mm = current->mm;
1072 #ifdef CONFIG_BLK_CGROUP
1073 rcu_read_lock();
1074 id->blkcg_css = blkcg_css();
1075 rcu_read_unlock();
1076 #endif
1077 id->creds = current_cred();
1078 id->nsproxy = current->nsproxy;
1079 id->fs = current->fs;
1080 id->fsize = rlimit(RLIMIT_FSIZE);
1081 #ifdef CONFIG_AUDIT
1082 id->loginuid = current->loginuid;
1083 id->sessionid = current->sessionid;
1084 #endif
1085 refcount_set(&id->count, 1);
1086 }
1087
__io_req_init_async(struct io_kiocb * req)1088 static inline void __io_req_init_async(struct io_kiocb *req)
1089 {
1090 memset(&req->work, 0, sizeof(req->work));
1091 req->flags |= REQ_F_WORK_INITIALIZED;
1092 }
1093
1094 /*
1095 * Note: must call io_req_init_async() for the first time you
1096 * touch any members of io_wq_work.
1097 */
io_req_init_async(struct io_kiocb * req)1098 static inline void io_req_init_async(struct io_kiocb *req)
1099 {
1100 struct io_uring_task *tctx = current->io_uring;
1101
1102 if (req->flags & REQ_F_WORK_INITIALIZED)
1103 return;
1104
1105 __io_req_init_async(req);
1106
1107 /* Grab a ref if this isn't our static identity */
1108 req->work.identity = tctx->identity;
1109 if (tctx->identity != &tctx->__identity)
1110 refcount_inc(&req->work.identity->count);
1111 }
1112
io_async_submit(struct io_ring_ctx * ctx)1113 static inline bool io_async_submit(struct io_ring_ctx *ctx)
1114 {
1115 return ctx->flags & IORING_SETUP_SQPOLL;
1116 }
1117
io_ring_ctx_ref_free(struct percpu_ref * ref)1118 static void io_ring_ctx_ref_free(struct percpu_ref *ref)
1119 {
1120 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
1121
1122 complete(&ctx->ref_comp);
1123 }
1124
io_is_timeout_noseq(struct io_kiocb * req)1125 static inline bool io_is_timeout_noseq(struct io_kiocb *req)
1126 {
1127 return !req->timeout.off;
1128 }
1129
io_ring_ctx_alloc(struct io_uring_params * p)1130 static struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
1131 {
1132 struct io_ring_ctx *ctx;
1133 int hash_bits;
1134
1135 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1136 if (!ctx)
1137 return NULL;
1138
1139 ctx->fallback_req = kmem_cache_alloc(req_cachep, GFP_KERNEL);
1140 if (!ctx->fallback_req)
1141 goto err;
1142
1143 /*
1144 * Use 5 bits less than the max cq entries, that should give us around
1145 * 32 entries per hash list if totally full and uniformly spread.
1146 */
1147 hash_bits = ilog2(p->cq_entries);
1148 hash_bits -= 5;
1149 if (hash_bits <= 0)
1150 hash_bits = 1;
1151 ctx->cancel_hash_bits = hash_bits;
1152 ctx->cancel_hash = kmalloc((1U << hash_bits) * sizeof(struct hlist_head),
1153 GFP_KERNEL);
1154 if (!ctx->cancel_hash)
1155 goto err;
1156 __hash_init(ctx->cancel_hash, 1U << hash_bits);
1157
1158 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
1159 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
1160 goto err;
1161
1162 ctx->flags = p->flags;
1163 init_waitqueue_head(&ctx->sqo_sq_wait);
1164 INIT_LIST_HEAD(&ctx->sqd_list);
1165 init_waitqueue_head(&ctx->cq_wait);
1166 INIT_LIST_HEAD(&ctx->cq_overflow_list);
1167 init_completion(&ctx->ref_comp);
1168 init_completion(&ctx->sq_thread_comp);
1169 idr_init(&ctx->io_buffer_idr);
1170 idr_init(&ctx->personality_idr);
1171 mutex_init(&ctx->uring_lock);
1172 init_waitqueue_head(&ctx->wait);
1173 spin_lock_init(&ctx->completion_lock);
1174 INIT_LIST_HEAD(&ctx->iopoll_list);
1175 INIT_LIST_HEAD(&ctx->defer_list);
1176 INIT_LIST_HEAD(&ctx->timeout_list);
1177 init_waitqueue_head(&ctx->inflight_wait);
1178 spin_lock_init(&ctx->inflight_lock);
1179 INIT_LIST_HEAD(&ctx->inflight_list);
1180 INIT_DELAYED_WORK(&ctx->file_put_work, io_file_put_work);
1181 init_llist_head(&ctx->file_put_llist);
1182 return ctx;
1183 err:
1184 if (ctx->fallback_req)
1185 kmem_cache_free(req_cachep, ctx->fallback_req);
1186 kfree(ctx->cancel_hash);
1187 kfree(ctx);
1188 return NULL;
1189 }
1190
req_need_defer(struct io_kiocb * req,u32 seq)1191 static bool req_need_defer(struct io_kiocb *req, u32 seq)
1192 {
1193 if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
1194 struct io_ring_ctx *ctx = req->ctx;
1195
1196 return seq != ctx->cached_cq_tail
1197 + READ_ONCE(ctx->cached_cq_overflow);
1198 }
1199
1200 return false;
1201 }
1202
__io_commit_cqring(struct io_ring_ctx * ctx)1203 static void __io_commit_cqring(struct io_ring_ctx *ctx)
1204 {
1205 struct io_rings *rings = ctx->rings;
1206
1207 /* order cqe stores with ring update */
1208 smp_store_release(&rings->cq.tail, ctx->cached_cq_tail);
1209
1210 if (wq_has_sleeper(&ctx->cq_wait)) {
1211 wake_up_interruptible(&ctx->cq_wait);
1212 kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN);
1213 }
1214 }
1215
io_put_identity(struct io_uring_task * tctx,struct io_kiocb * req)1216 static void io_put_identity(struct io_uring_task *tctx, struct io_kiocb *req)
1217 {
1218 if (req->work.identity == &tctx->__identity)
1219 return;
1220 if (refcount_dec_and_test(&req->work.identity->count))
1221 kfree(req->work.identity);
1222 }
1223
io_req_clean_work(struct io_kiocb * req)1224 static void io_req_clean_work(struct io_kiocb *req)
1225 {
1226 if (!(req->flags & REQ_F_WORK_INITIALIZED))
1227 return;
1228
1229 req->flags &= ~REQ_F_WORK_INITIALIZED;
1230
1231 if (req->work.flags & IO_WQ_WORK_MM) {
1232 mmdrop(req->work.identity->mm);
1233 req->work.flags &= ~IO_WQ_WORK_MM;
1234 }
1235 #ifdef CONFIG_BLK_CGROUP
1236 if (req->work.flags & IO_WQ_WORK_BLKCG) {
1237 css_put(req->work.identity->blkcg_css);
1238 req->work.flags &= ~IO_WQ_WORK_BLKCG;
1239 }
1240 #endif
1241 if (req->work.flags & IO_WQ_WORK_CREDS) {
1242 put_cred(req->work.identity->creds);
1243 req->work.flags &= ~IO_WQ_WORK_CREDS;
1244 }
1245 if (req->work.flags & IO_WQ_WORK_FS) {
1246 struct fs_struct *fs = req->work.identity->fs;
1247
1248 spin_lock(&req->work.identity->fs->lock);
1249 if (--fs->users)
1250 fs = NULL;
1251 spin_unlock(&req->work.identity->fs->lock);
1252 if (fs)
1253 free_fs_struct(fs);
1254 req->work.flags &= ~IO_WQ_WORK_FS;
1255 }
1256
1257 io_put_identity(req->task->io_uring, req);
1258 }
1259
1260 /*
1261 * Create a private copy of io_identity, since some fields don't match
1262 * the current context.
1263 */
io_identity_cow(struct io_kiocb * req)1264 static bool io_identity_cow(struct io_kiocb *req)
1265 {
1266 struct io_uring_task *tctx = current->io_uring;
1267 const struct cred *creds = NULL;
1268 struct io_identity *id;
1269
1270 if (req->work.flags & IO_WQ_WORK_CREDS)
1271 creds = req->work.identity->creds;
1272
1273 id = kmemdup(req->work.identity, sizeof(*id), GFP_KERNEL);
1274 if (unlikely(!id)) {
1275 req->work.flags |= IO_WQ_WORK_CANCEL;
1276 return false;
1277 }
1278
1279 /*
1280 * We can safely just re-init the creds we copied Either the field
1281 * matches the current one, or we haven't grabbed it yet. The only
1282 * exception is ->creds, through registered personalities, so handle
1283 * that one separately.
1284 */
1285 io_init_identity(id);
1286 if (creds)
1287 id->creds = creds;
1288
1289 /* add one for this request */
1290 refcount_inc(&id->count);
1291
1292 /* drop tctx and req identity references, if needed */
1293 if (tctx->identity != &tctx->__identity &&
1294 refcount_dec_and_test(&tctx->identity->count))
1295 kfree(tctx->identity);
1296 if (req->work.identity != &tctx->__identity &&
1297 refcount_dec_and_test(&req->work.identity->count))
1298 kfree(req->work.identity);
1299
1300 req->work.identity = id;
1301 tctx->identity = id;
1302 return true;
1303 }
1304
io_grab_identity(struct io_kiocb * req)1305 static bool io_grab_identity(struct io_kiocb *req)
1306 {
1307 const struct io_op_def *def = &io_op_defs[req->opcode];
1308 struct io_identity *id = req->work.identity;
1309 struct io_ring_ctx *ctx = req->ctx;
1310
1311 if (def->work_flags & IO_WQ_WORK_FSIZE) {
1312 if (id->fsize != rlimit(RLIMIT_FSIZE))
1313 return false;
1314 req->work.flags |= IO_WQ_WORK_FSIZE;
1315 }
1316 #ifdef CONFIG_BLK_CGROUP
1317 if (!(req->work.flags & IO_WQ_WORK_BLKCG) &&
1318 (def->work_flags & IO_WQ_WORK_BLKCG)) {
1319 rcu_read_lock();
1320 if (id->blkcg_css != blkcg_css()) {
1321 rcu_read_unlock();
1322 return false;
1323 }
1324 /*
1325 * This should be rare, either the cgroup is dying or the task
1326 * is moving cgroups. Just punt to root for the handful of ios.
1327 */
1328 if (css_tryget_online(id->blkcg_css))
1329 req->work.flags |= IO_WQ_WORK_BLKCG;
1330 rcu_read_unlock();
1331 }
1332 #endif
1333 if (!(req->work.flags & IO_WQ_WORK_CREDS)) {
1334 if (id->creds != current_cred())
1335 return false;
1336 get_cred(id->creds);
1337 req->work.flags |= IO_WQ_WORK_CREDS;
1338 }
1339 #ifdef CONFIG_AUDIT
1340 if (!uid_eq(current->loginuid, id->loginuid) ||
1341 current->sessionid != id->sessionid)
1342 return false;
1343 #endif
1344 if (!(req->work.flags & IO_WQ_WORK_FS) &&
1345 (def->work_flags & IO_WQ_WORK_FS)) {
1346 if (current->fs != id->fs)
1347 return false;
1348 spin_lock(&id->fs->lock);
1349 if (!id->fs->in_exec) {
1350 id->fs->users++;
1351 req->work.flags |= IO_WQ_WORK_FS;
1352 } else {
1353 req->work.flags |= IO_WQ_WORK_CANCEL;
1354 }
1355 spin_unlock(¤t->fs->lock);
1356 }
1357 if (!(req->work.flags & IO_WQ_WORK_FILES) &&
1358 (def->work_flags & IO_WQ_WORK_FILES) &&
1359 !(req->flags & REQ_F_NO_FILE_TABLE)) {
1360 if (id->files != current->files ||
1361 id->nsproxy != current->nsproxy)
1362 return false;
1363 atomic_inc(&id->files->count);
1364 get_nsproxy(id->nsproxy);
1365 req->flags |= REQ_F_INFLIGHT;
1366
1367 spin_lock_irq(&ctx->inflight_lock);
1368 list_add(&req->inflight_entry, &ctx->inflight_list);
1369 spin_unlock_irq(&ctx->inflight_lock);
1370 req->work.flags |= IO_WQ_WORK_FILES;
1371 }
1372
1373 return true;
1374 }
1375
io_prep_async_work(struct io_kiocb * req)1376 static void io_prep_async_work(struct io_kiocb *req)
1377 {
1378 const struct io_op_def *def = &io_op_defs[req->opcode];
1379 struct io_ring_ctx *ctx = req->ctx;
1380 struct io_identity *id;
1381
1382 io_req_init_async(req);
1383 id = req->work.identity;
1384
1385 if (req->flags & REQ_F_FORCE_ASYNC)
1386 req->work.flags |= IO_WQ_WORK_CONCURRENT;
1387
1388 if (req->flags & REQ_F_ISREG) {
1389 if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL))
1390 io_wq_hash_work(&req->work, file_inode(req->file));
1391 } else {
1392 if (def->unbound_nonreg_file)
1393 req->work.flags |= IO_WQ_WORK_UNBOUND;
1394 }
1395
1396 /* ->mm can never change on us */
1397 if (!(req->work.flags & IO_WQ_WORK_MM) &&
1398 (def->work_flags & IO_WQ_WORK_MM)) {
1399 mmgrab(id->mm);
1400 req->work.flags |= IO_WQ_WORK_MM;
1401 }
1402
1403 /* if we fail grabbing identity, we must COW, regrab, and retry */
1404 if (io_grab_identity(req))
1405 return;
1406
1407 if (!io_identity_cow(req))
1408 return;
1409
1410 /* can't fail at this point */
1411 if (!io_grab_identity(req))
1412 WARN_ON(1);
1413 }
1414
io_prep_async_link(struct io_kiocb * req)1415 static void io_prep_async_link(struct io_kiocb *req)
1416 {
1417 struct io_kiocb *cur;
1418
1419 io_prep_async_work(req);
1420 if (req->flags & REQ_F_LINK_HEAD)
1421 list_for_each_entry(cur, &req->link_list, link_list)
1422 io_prep_async_work(cur);
1423 }
1424
__io_queue_async_work(struct io_kiocb * req)1425 static struct io_kiocb *__io_queue_async_work(struct io_kiocb *req)
1426 {
1427 struct io_ring_ctx *ctx = req->ctx;
1428 struct io_kiocb *link = io_prep_linked_timeout(req);
1429
1430 trace_io_uring_queue_async_work(ctx, io_wq_is_hashed(&req->work), req,
1431 &req->work, req->flags);
1432 io_wq_enqueue(ctx->io_wq, &req->work);
1433 return link;
1434 }
1435
io_queue_async_work(struct io_kiocb * req)1436 static void io_queue_async_work(struct io_kiocb *req)
1437 {
1438 struct io_kiocb *link;
1439
1440 /* init ->work of the whole link before punting */
1441 io_prep_async_link(req);
1442 link = __io_queue_async_work(req);
1443
1444 if (link)
1445 io_queue_linked_timeout(link);
1446 }
1447
io_kill_timeout(struct io_kiocb * req)1448 static void io_kill_timeout(struct io_kiocb *req)
1449 {
1450 struct io_timeout_data *io = req->async_data;
1451 int ret;
1452
1453 ret = hrtimer_try_to_cancel(&io->timer);
1454 if (ret != -1) {
1455 atomic_set(&req->ctx->cq_timeouts,
1456 atomic_read(&req->ctx->cq_timeouts) + 1);
1457 list_del_init(&req->timeout.list);
1458 io_cqring_fill_event(req, 0);
1459 io_put_req_deferred(req, 1);
1460 }
1461 }
1462
io_task_match(struct io_kiocb * req,struct task_struct * tsk)1463 static bool io_task_match(struct io_kiocb *req, struct task_struct *tsk)
1464 {
1465 struct io_ring_ctx *ctx = req->ctx;
1466
1467 if (!tsk || req->task == tsk)
1468 return true;
1469 if (ctx->flags & IORING_SETUP_SQPOLL) {
1470 if (ctx->sq_data && req->task == ctx->sq_data->thread)
1471 return true;
1472 }
1473 return false;
1474 }
1475
1476 /*
1477 * Returns true if we found and killed one or more timeouts
1478 */
io_kill_timeouts(struct io_ring_ctx * ctx,struct task_struct * tsk)1479 static bool io_kill_timeouts(struct io_ring_ctx *ctx, struct task_struct *tsk)
1480 {
1481 struct io_kiocb *req, *tmp;
1482 int canceled = 0;
1483
1484 spin_lock_irq(&ctx->completion_lock);
1485 list_for_each_entry_safe(req, tmp, &ctx->timeout_list, timeout.list) {
1486 if (io_task_match(req, tsk)) {
1487 io_kill_timeout(req);
1488 canceled++;
1489 }
1490 }
1491 spin_unlock_irq(&ctx->completion_lock);
1492 return canceled != 0;
1493 }
1494
__io_queue_deferred(struct io_ring_ctx * ctx)1495 static void __io_queue_deferred(struct io_ring_ctx *ctx)
1496 {
1497 do {
1498 struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
1499 struct io_defer_entry, list);
1500 struct io_kiocb *link;
1501
1502 if (req_need_defer(de->req, de->seq))
1503 break;
1504 list_del_init(&de->list);
1505 /* punt-init is done before queueing for defer */
1506 link = __io_queue_async_work(de->req);
1507 if (link) {
1508 __io_queue_linked_timeout(link);
1509 /* drop submission reference */
1510 io_put_req_deferred(link, 1);
1511 }
1512 kfree(de);
1513 } while (!list_empty(&ctx->defer_list));
1514 }
1515
io_flush_timeouts(struct io_ring_ctx * ctx)1516 static void io_flush_timeouts(struct io_ring_ctx *ctx)
1517 {
1518 while (!list_empty(&ctx->timeout_list)) {
1519 struct io_kiocb *req = list_first_entry(&ctx->timeout_list,
1520 struct io_kiocb, timeout.list);
1521
1522 if (io_is_timeout_noseq(req))
1523 break;
1524 if (req->timeout.target_seq != ctx->cached_cq_tail
1525 - atomic_read(&ctx->cq_timeouts))
1526 break;
1527
1528 list_del_init(&req->timeout.list);
1529 io_kill_timeout(req);
1530 }
1531 }
1532
io_commit_cqring(struct io_ring_ctx * ctx)1533 static void io_commit_cqring(struct io_ring_ctx *ctx)
1534 {
1535 io_flush_timeouts(ctx);
1536 __io_commit_cqring(ctx);
1537
1538 if (unlikely(!list_empty(&ctx->defer_list)))
1539 __io_queue_deferred(ctx);
1540 }
1541
io_sqring_full(struct io_ring_ctx * ctx)1542 static inline bool io_sqring_full(struct io_ring_ctx *ctx)
1543 {
1544 struct io_rings *r = ctx->rings;
1545
1546 return READ_ONCE(r->sq.tail) - ctx->cached_sq_head == r->sq_ring_entries;
1547 }
1548
io_get_cqring(struct io_ring_ctx * ctx)1549 static struct io_uring_cqe *io_get_cqring(struct io_ring_ctx *ctx)
1550 {
1551 struct io_rings *rings = ctx->rings;
1552 unsigned tail;
1553
1554 tail = ctx->cached_cq_tail;
1555 /*
1556 * writes to the cq entry need to come after reading head; the
1557 * control dependency is enough as we're using WRITE_ONCE to
1558 * fill the cq entry
1559 */
1560 if (tail - READ_ONCE(rings->cq.head) == rings->cq_ring_entries)
1561 return NULL;
1562
1563 ctx->cached_cq_tail++;
1564 return &rings->cqes[tail & ctx->cq_mask];
1565 }
1566
io_should_trigger_evfd(struct io_ring_ctx * ctx)1567 static inline bool io_should_trigger_evfd(struct io_ring_ctx *ctx)
1568 {
1569 if (!ctx->cq_ev_fd)
1570 return false;
1571 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
1572 return false;
1573 if (!ctx->eventfd_async)
1574 return true;
1575 return io_wq_current_is_worker();
1576 }
1577
io_cqring_ev_posted(struct io_ring_ctx * ctx)1578 static void io_cqring_ev_posted(struct io_ring_ctx *ctx)
1579 {
1580 if (waitqueue_active(&ctx->wait))
1581 wake_up(&ctx->wait);
1582 if (ctx->sq_data && waitqueue_active(&ctx->sq_data->wait))
1583 wake_up(&ctx->sq_data->wait);
1584 if (io_should_trigger_evfd(ctx))
1585 eventfd_signal(ctx->cq_ev_fd, 1);
1586 }
1587
io_cqring_mark_overflow(struct io_ring_ctx * ctx)1588 static void io_cqring_mark_overflow(struct io_ring_ctx *ctx)
1589 {
1590 if (list_empty(&ctx->cq_overflow_list)) {
1591 clear_bit(0, &ctx->sq_check_overflow);
1592 clear_bit(0, &ctx->cq_check_overflow);
1593 ctx->rings->sq_flags &= ~IORING_SQ_CQ_OVERFLOW;
1594 }
1595 }
1596
__io_match_files(struct io_kiocb * req,struct files_struct * files)1597 static inline bool __io_match_files(struct io_kiocb *req,
1598 struct files_struct *files)
1599 {
1600 return ((req->flags & REQ_F_WORK_INITIALIZED) &&
1601 (req->work.flags & IO_WQ_WORK_FILES)) &&
1602 req->work.identity->files == files;
1603 }
1604
io_match_files(struct io_kiocb * req,struct files_struct * files)1605 static bool io_match_files(struct io_kiocb *req,
1606 struct files_struct *files)
1607 {
1608 struct io_kiocb *link;
1609
1610 if (!files)
1611 return true;
1612 if (__io_match_files(req, files))
1613 return true;
1614 if (req->flags & REQ_F_LINK_HEAD) {
1615 list_for_each_entry(link, &req->link_list, link_list) {
1616 if (__io_match_files(link, files))
1617 return true;
1618 }
1619 }
1620 return false;
1621 }
1622
1623 /* Returns true if there are no backlogged entries after the flush */
io_cqring_overflow_flush(struct io_ring_ctx * ctx,bool force,struct task_struct * tsk,struct files_struct * files)1624 static bool io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force,
1625 struct task_struct *tsk,
1626 struct files_struct *files)
1627 {
1628 struct io_rings *rings = ctx->rings;
1629 struct io_kiocb *req, *tmp;
1630 struct io_uring_cqe *cqe;
1631 unsigned long flags;
1632 LIST_HEAD(list);
1633
1634 if (!force) {
1635 if (list_empty_careful(&ctx->cq_overflow_list))
1636 return true;
1637 if ((ctx->cached_cq_tail - READ_ONCE(rings->cq.head) ==
1638 rings->cq_ring_entries))
1639 return false;
1640 }
1641
1642 spin_lock_irqsave(&ctx->completion_lock, flags);
1643
1644 /* if force is set, the ring is going away. always drop after that */
1645 if (force)
1646 ctx->cq_overflow_flushed = 1;
1647
1648 cqe = NULL;
1649 list_for_each_entry_safe(req, tmp, &ctx->cq_overflow_list, compl.list) {
1650 if (tsk && req->task != tsk)
1651 continue;
1652 if (!io_match_files(req, files))
1653 continue;
1654
1655 cqe = io_get_cqring(ctx);
1656 if (!cqe && !force)
1657 break;
1658
1659 list_move(&req->compl.list, &list);
1660 if (cqe) {
1661 WRITE_ONCE(cqe->user_data, req->user_data);
1662 WRITE_ONCE(cqe->res, req->result);
1663 WRITE_ONCE(cqe->flags, req->compl.cflags);
1664 } else {
1665 ctx->cached_cq_overflow++;
1666 WRITE_ONCE(ctx->rings->cq_overflow,
1667 ctx->cached_cq_overflow);
1668 }
1669 }
1670
1671 io_commit_cqring(ctx);
1672 io_cqring_mark_overflow(ctx);
1673
1674 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1675 io_cqring_ev_posted(ctx);
1676
1677 while (!list_empty(&list)) {
1678 req = list_first_entry(&list, struct io_kiocb, compl.list);
1679 list_del(&req->compl.list);
1680 io_put_req(req);
1681 }
1682
1683 return cqe != NULL;
1684 }
1685
__io_cqring_fill_event(struct io_kiocb * req,long res,long cflags)1686 static void __io_cqring_fill_event(struct io_kiocb *req, long res, long cflags)
1687 {
1688 struct io_ring_ctx *ctx = req->ctx;
1689 struct io_uring_cqe *cqe;
1690
1691 trace_io_uring_complete(ctx, req->user_data, res);
1692
1693 /*
1694 * If we can't get a cq entry, userspace overflowed the
1695 * submission (by quite a lot). Increment the overflow count in
1696 * the ring.
1697 */
1698 cqe = io_get_cqring(ctx);
1699 if (likely(cqe)) {
1700 WRITE_ONCE(cqe->user_data, req->user_data);
1701 WRITE_ONCE(cqe->res, res);
1702 WRITE_ONCE(cqe->flags, cflags);
1703 } else if (ctx->cq_overflow_flushed ||
1704 atomic_read(&req->task->io_uring->in_idle)) {
1705 /*
1706 * If we're in ring overflow flush mode, or in task cancel mode,
1707 * then we cannot store the request for later flushing, we need
1708 * to drop it on the floor.
1709 */
1710 ctx->cached_cq_overflow++;
1711 WRITE_ONCE(ctx->rings->cq_overflow, ctx->cached_cq_overflow);
1712 } else {
1713 if (list_empty(&ctx->cq_overflow_list)) {
1714 set_bit(0, &ctx->sq_check_overflow);
1715 set_bit(0, &ctx->cq_check_overflow);
1716 ctx->rings->sq_flags |= IORING_SQ_CQ_OVERFLOW;
1717 }
1718 io_clean_op(req);
1719 req->result = res;
1720 req->compl.cflags = cflags;
1721 refcount_inc(&req->refs);
1722 list_add_tail(&req->compl.list, &ctx->cq_overflow_list);
1723 }
1724 }
1725
io_cqring_fill_event(struct io_kiocb * req,long res)1726 static void io_cqring_fill_event(struct io_kiocb *req, long res)
1727 {
1728 __io_cqring_fill_event(req, res, 0);
1729 }
1730
io_cqring_add_event(struct io_kiocb * req,long res,long cflags)1731 static void io_cqring_add_event(struct io_kiocb *req, long res, long cflags)
1732 {
1733 struct io_ring_ctx *ctx = req->ctx;
1734 unsigned long flags;
1735
1736 spin_lock_irqsave(&ctx->completion_lock, flags);
1737 __io_cqring_fill_event(req, res, cflags);
1738 io_commit_cqring(ctx);
1739 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1740
1741 io_cqring_ev_posted(ctx);
1742 }
1743
io_submit_flush_completions(struct io_comp_state * cs)1744 static void io_submit_flush_completions(struct io_comp_state *cs)
1745 {
1746 struct io_ring_ctx *ctx = cs->ctx;
1747
1748 spin_lock_irq(&ctx->completion_lock);
1749 while (!list_empty(&cs->list)) {
1750 struct io_kiocb *req;
1751
1752 req = list_first_entry(&cs->list, struct io_kiocb, compl.list);
1753 list_del(&req->compl.list);
1754 __io_cqring_fill_event(req, req->result, req->compl.cflags);
1755
1756 /*
1757 * io_free_req() doesn't care about completion_lock unless one
1758 * of these flags is set. REQ_F_WORK_INITIALIZED is in the list
1759 * because of a potential deadlock with req->work.fs->lock
1760 */
1761 if (req->flags & (REQ_F_FAIL_LINK|REQ_F_LINK_TIMEOUT
1762 |REQ_F_WORK_INITIALIZED)) {
1763 spin_unlock_irq(&ctx->completion_lock);
1764 io_put_req(req);
1765 spin_lock_irq(&ctx->completion_lock);
1766 } else {
1767 io_put_req(req);
1768 }
1769 }
1770 io_commit_cqring(ctx);
1771 spin_unlock_irq(&ctx->completion_lock);
1772
1773 io_cqring_ev_posted(ctx);
1774 cs->nr = 0;
1775 }
1776
__io_req_complete(struct io_kiocb * req,long res,unsigned cflags,struct io_comp_state * cs)1777 static void __io_req_complete(struct io_kiocb *req, long res, unsigned cflags,
1778 struct io_comp_state *cs)
1779 {
1780 if (!cs) {
1781 io_cqring_add_event(req, res, cflags);
1782 io_put_req(req);
1783 } else {
1784 io_clean_op(req);
1785 req->result = res;
1786 req->compl.cflags = cflags;
1787 list_add_tail(&req->compl.list, &cs->list);
1788 if (++cs->nr >= 32)
1789 io_submit_flush_completions(cs);
1790 }
1791 }
1792
io_req_complete(struct io_kiocb * req,long res)1793 static void io_req_complete(struct io_kiocb *req, long res)
1794 {
1795 __io_req_complete(req, res, 0, NULL);
1796 }
1797
io_is_fallback_req(struct io_kiocb * req)1798 static inline bool io_is_fallback_req(struct io_kiocb *req)
1799 {
1800 return req == (struct io_kiocb *)
1801 ((unsigned long) req->ctx->fallback_req & ~1UL);
1802 }
1803
io_get_fallback_req(struct io_ring_ctx * ctx)1804 static struct io_kiocb *io_get_fallback_req(struct io_ring_ctx *ctx)
1805 {
1806 struct io_kiocb *req;
1807
1808 req = ctx->fallback_req;
1809 if (!test_and_set_bit_lock(0, (unsigned long *) &ctx->fallback_req))
1810 return req;
1811
1812 return NULL;
1813 }
1814
io_alloc_req(struct io_ring_ctx * ctx,struct io_submit_state * state)1815 static struct io_kiocb *io_alloc_req(struct io_ring_ctx *ctx,
1816 struct io_submit_state *state)
1817 {
1818 if (!state->free_reqs) {
1819 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1820 size_t sz;
1821 int ret;
1822
1823 sz = min_t(size_t, state->ios_left, ARRAY_SIZE(state->reqs));
1824 ret = kmem_cache_alloc_bulk(req_cachep, gfp, sz, state->reqs);
1825
1826 /*
1827 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1828 * retry single alloc to be on the safe side.
1829 */
1830 if (unlikely(ret <= 0)) {
1831 state->reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1832 if (!state->reqs[0])
1833 goto fallback;
1834 ret = 1;
1835 }
1836 state->free_reqs = ret;
1837 }
1838
1839 state->free_reqs--;
1840 return state->reqs[state->free_reqs];
1841 fallback:
1842 return io_get_fallback_req(ctx);
1843 }
1844
io_put_file(struct io_kiocb * req,struct file * file,bool fixed)1845 static inline void io_put_file(struct io_kiocb *req, struct file *file,
1846 bool fixed)
1847 {
1848 if (fixed)
1849 percpu_ref_put(req->fixed_file_refs);
1850 else
1851 fput(file);
1852 }
1853
io_dismantle_req(struct io_kiocb * req)1854 static void io_dismantle_req(struct io_kiocb *req)
1855 {
1856 io_clean_op(req);
1857
1858 if (req->async_data)
1859 kfree(req->async_data);
1860 if (req->file)
1861 io_put_file(req, req->file, (req->flags & REQ_F_FIXED_FILE));
1862
1863 io_req_clean_work(req);
1864 }
1865
__io_free_req(struct io_kiocb * req)1866 static void __io_free_req(struct io_kiocb *req)
1867 {
1868 struct io_uring_task *tctx = req->task->io_uring;
1869 struct io_ring_ctx *ctx = req->ctx;
1870
1871 io_dismantle_req(req);
1872
1873 percpu_counter_dec(&tctx->inflight);
1874 if (atomic_read(&tctx->in_idle))
1875 wake_up(&tctx->wait);
1876 put_task_struct(req->task);
1877
1878 if (likely(!io_is_fallback_req(req)))
1879 kmem_cache_free(req_cachep, req);
1880 else
1881 clear_bit_unlock(0, (unsigned long *) &ctx->fallback_req);
1882 percpu_ref_put(&ctx->refs);
1883 }
1884
io_kill_linked_timeout(struct io_kiocb * req)1885 static void io_kill_linked_timeout(struct io_kiocb *req)
1886 {
1887 struct io_ring_ctx *ctx = req->ctx;
1888 struct io_kiocb *link;
1889 bool cancelled = false;
1890 unsigned long flags;
1891
1892 spin_lock_irqsave(&ctx->completion_lock, flags);
1893 link = list_first_entry_or_null(&req->link_list, struct io_kiocb,
1894 link_list);
1895 /*
1896 * Can happen if a linked timeout fired and link had been like
1897 * req -> link t-out -> link t-out [-> ...]
1898 */
1899 if (link && (link->flags & REQ_F_LTIMEOUT_ACTIVE)) {
1900 struct io_timeout_data *io = link->async_data;
1901 int ret;
1902
1903 list_del_init(&link->link_list);
1904 ret = hrtimer_try_to_cancel(&io->timer);
1905 if (ret != -1) {
1906 io_cqring_fill_event(link, -ECANCELED);
1907 io_commit_cqring(ctx);
1908 cancelled = true;
1909 }
1910 }
1911 req->flags &= ~REQ_F_LINK_TIMEOUT;
1912 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1913
1914 if (cancelled) {
1915 io_cqring_ev_posted(ctx);
1916 io_put_req(link);
1917 }
1918 }
1919
io_req_link_next(struct io_kiocb * req)1920 static struct io_kiocb *io_req_link_next(struct io_kiocb *req)
1921 {
1922 struct io_kiocb *nxt;
1923
1924 /*
1925 * The list should never be empty when we are called here. But could
1926 * potentially happen if the chain is messed up, check to be on the
1927 * safe side.
1928 */
1929 if (unlikely(list_empty(&req->link_list)))
1930 return NULL;
1931
1932 nxt = list_first_entry(&req->link_list, struct io_kiocb, link_list);
1933 list_del_init(&req->link_list);
1934 if (!list_empty(&nxt->link_list))
1935 nxt->flags |= REQ_F_LINK_HEAD;
1936 return nxt;
1937 }
1938
1939 /*
1940 * Called if REQ_F_LINK_HEAD is set, and we fail the head request
1941 */
io_fail_links(struct io_kiocb * req)1942 static void io_fail_links(struct io_kiocb *req)
1943 {
1944 struct io_ring_ctx *ctx = req->ctx;
1945 unsigned long flags;
1946
1947 spin_lock_irqsave(&ctx->completion_lock, flags);
1948 while (!list_empty(&req->link_list)) {
1949 struct io_kiocb *link = list_first_entry(&req->link_list,
1950 struct io_kiocb, link_list);
1951
1952 list_del_init(&link->link_list);
1953 trace_io_uring_fail_link(req, link);
1954
1955 io_cqring_fill_event(link, -ECANCELED);
1956
1957 /*
1958 * It's ok to free under spinlock as they're not linked anymore,
1959 * but avoid REQ_F_WORK_INITIALIZED because it may deadlock on
1960 * work.fs->lock.
1961 */
1962 if (link->flags & REQ_F_WORK_INITIALIZED)
1963 io_put_req_deferred(link, 2);
1964 else
1965 io_double_put_req(link);
1966 }
1967
1968 io_commit_cqring(ctx);
1969 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1970
1971 io_cqring_ev_posted(ctx);
1972 }
1973
__io_req_find_next(struct io_kiocb * req)1974 static struct io_kiocb *__io_req_find_next(struct io_kiocb *req)
1975 {
1976 req->flags &= ~REQ_F_LINK_HEAD;
1977 if (req->flags & REQ_F_LINK_TIMEOUT)
1978 io_kill_linked_timeout(req);
1979
1980 /*
1981 * If LINK is set, we have dependent requests in this chain. If we
1982 * didn't fail this request, queue the first one up, moving any other
1983 * dependencies to the next request. In case of failure, fail the rest
1984 * of the chain.
1985 */
1986 if (likely(!(req->flags & REQ_F_FAIL_LINK)))
1987 return io_req_link_next(req);
1988 io_fail_links(req);
1989 return NULL;
1990 }
1991
io_req_find_next(struct io_kiocb * req)1992 static struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1993 {
1994 if (likely(!(req->flags & REQ_F_LINK_HEAD)))
1995 return NULL;
1996 return __io_req_find_next(req);
1997 }
1998
io_req_task_work_add(struct io_kiocb * req,bool twa_signal_ok)1999 static int io_req_task_work_add(struct io_kiocb *req, bool twa_signal_ok)
2000 {
2001 struct task_struct *tsk = req->task;
2002 struct io_ring_ctx *ctx = req->ctx;
2003 enum task_work_notify_mode notify;
2004 int ret;
2005
2006 if (tsk->flags & PF_EXITING)
2007 return -ESRCH;
2008
2009 /*
2010 * SQPOLL kernel thread doesn't need notification, just a wakeup. For
2011 * all other cases, use TWA_SIGNAL unconditionally to ensure we're
2012 * processing task_work. There's no reliable way to tell if TWA_RESUME
2013 * will do the job.
2014 */
2015 notify = TWA_NONE;
2016 if (!(ctx->flags & IORING_SETUP_SQPOLL) && twa_signal_ok)
2017 notify = TWA_SIGNAL;
2018
2019 ret = task_work_add(tsk, &req->task_work, notify);
2020 if (!ret)
2021 wake_up_process(tsk);
2022
2023 return ret;
2024 }
2025
__io_req_task_cancel(struct io_kiocb * req,int error)2026 static void __io_req_task_cancel(struct io_kiocb *req, int error)
2027 {
2028 struct io_ring_ctx *ctx = req->ctx;
2029
2030 spin_lock_irq(&ctx->completion_lock);
2031 io_cqring_fill_event(req, error);
2032 io_commit_cqring(ctx);
2033 spin_unlock_irq(&ctx->completion_lock);
2034
2035 io_cqring_ev_posted(ctx);
2036 req_set_fail_links(req);
2037 io_double_put_req(req);
2038 }
2039
io_req_task_cancel(struct callback_head * cb)2040 static void io_req_task_cancel(struct callback_head *cb)
2041 {
2042 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2043 struct io_ring_ctx *ctx = req->ctx;
2044
2045 __io_req_task_cancel(req, -ECANCELED);
2046 percpu_ref_put(&ctx->refs);
2047 }
2048
__io_req_task_submit(struct io_kiocb * req)2049 static void __io_req_task_submit(struct io_kiocb *req)
2050 {
2051 struct io_ring_ctx *ctx = req->ctx;
2052
2053 if (!__io_sq_thread_acquire_mm(ctx)) {
2054 mutex_lock(&ctx->uring_lock);
2055 __io_queue_sqe(req, NULL);
2056 mutex_unlock(&ctx->uring_lock);
2057 } else {
2058 __io_req_task_cancel(req, -EFAULT);
2059 }
2060 }
2061
io_req_task_submit(struct callback_head * cb)2062 static void io_req_task_submit(struct callback_head *cb)
2063 {
2064 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2065 struct io_ring_ctx *ctx = req->ctx;
2066
2067 __io_req_task_submit(req);
2068 percpu_ref_put(&ctx->refs);
2069 }
2070
io_req_task_queue(struct io_kiocb * req)2071 static void io_req_task_queue(struct io_kiocb *req)
2072 {
2073 int ret;
2074
2075 init_task_work(&req->task_work, io_req_task_submit);
2076 percpu_ref_get(&req->ctx->refs);
2077
2078 ret = io_req_task_work_add(req, true);
2079 if (unlikely(ret)) {
2080 struct task_struct *tsk;
2081
2082 init_task_work(&req->task_work, io_req_task_cancel);
2083 tsk = io_wq_get_task(req->ctx->io_wq);
2084 task_work_add(tsk, &req->task_work, TWA_NONE);
2085 wake_up_process(tsk);
2086 }
2087 }
2088
io_queue_next(struct io_kiocb * req)2089 static void io_queue_next(struct io_kiocb *req)
2090 {
2091 struct io_kiocb *nxt = io_req_find_next(req);
2092
2093 if (nxt)
2094 io_req_task_queue(nxt);
2095 }
2096
io_free_req(struct io_kiocb * req)2097 static void io_free_req(struct io_kiocb *req)
2098 {
2099 io_queue_next(req);
2100 __io_free_req(req);
2101 }
2102
2103 struct req_batch {
2104 void *reqs[IO_IOPOLL_BATCH];
2105 int to_free;
2106
2107 struct task_struct *task;
2108 int task_refs;
2109 };
2110
io_init_req_batch(struct req_batch * rb)2111 static inline void io_init_req_batch(struct req_batch *rb)
2112 {
2113 rb->to_free = 0;
2114 rb->task_refs = 0;
2115 rb->task = NULL;
2116 }
2117
__io_req_free_batch_flush(struct io_ring_ctx * ctx,struct req_batch * rb)2118 static void __io_req_free_batch_flush(struct io_ring_ctx *ctx,
2119 struct req_batch *rb)
2120 {
2121 kmem_cache_free_bulk(req_cachep, rb->to_free, rb->reqs);
2122 percpu_ref_put_many(&ctx->refs, rb->to_free);
2123 rb->to_free = 0;
2124 }
2125
io_req_free_batch_finish(struct io_ring_ctx * ctx,struct req_batch * rb)2126 static void io_req_free_batch_finish(struct io_ring_ctx *ctx,
2127 struct req_batch *rb)
2128 {
2129 if (rb->to_free)
2130 __io_req_free_batch_flush(ctx, rb);
2131 if (rb->task) {
2132 struct io_uring_task *tctx = rb->task->io_uring;
2133
2134 percpu_counter_sub(&tctx->inflight, rb->task_refs);
2135 put_task_struct_many(rb->task, rb->task_refs);
2136 rb->task = NULL;
2137 }
2138 }
2139
io_req_free_batch(struct req_batch * rb,struct io_kiocb * req)2140 static void io_req_free_batch(struct req_batch *rb, struct io_kiocb *req)
2141 {
2142 if (unlikely(io_is_fallback_req(req))) {
2143 io_free_req(req);
2144 return;
2145 }
2146 if (req->flags & REQ_F_LINK_HEAD)
2147 io_queue_next(req);
2148
2149 if (req->task != rb->task) {
2150 if (rb->task) {
2151 struct io_uring_task *tctx = rb->task->io_uring;
2152
2153 percpu_counter_sub(&tctx->inflight, rb->task_refs);
2154 put_task_struct_many(rb->task, rb->task_refs);
2155 }
2156 rb->task = req->task;
2157 rb->task_refs = 0;
2158 }
2159 rb->task_refs++;
2160
2161 io_dismantle_req(req);
2162 rb->reqs[rb->to_free++] = req;
2163 if (unlikely(rb->to_free == ARRAY_SIZE(rb->reqs)))
2164 __io_req_free_batch_flush(req->ctx, rb);
2165 }
2166
2167 /*
2168 * Drop reference to request, return next in chain (if there is one) if this
2169 * was the last reference to this request.
2170 */
io_put_req_find_next(struct io_kiocb * req)2171 static struct io_kiocb *io_put_req_find_next(struct io_kiocb *req)
2172 {
2173 struct io_kiocb *nxt = NULL;
2174
2175 if (refcount_dec_and_test(&req->refs)) {
2176 nxt = io_req_find_next(req);
2177 __io_free_req(req);
2178 }
2179 return nxt;
2180 }
2181
io_put_req(struct io_kiocb * req)2182 static void io_put_req(struct io_kiocb *req)
2183 {
2184 if (refcount_dec_and_test(&req->refs))
2185 io_free_req(req);
2186 }
2187
io_put_req_deferred_cb(struct callback_head * cb)2188 static void io_put_req_deferred_cb(struct callback_head *cb)
2189 {
2190 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2191
2192 io_free_req(req);
2193 }
2194
io_free_req_deferred(struct io_kiocb * req)2195 static void io_free_req_deferred(struct io_kiocb *req)
2196 {
2197 int ret;
2198
2199 init_task_work(&req->task_work, io_put_req_deferred_cb);
2200 ret = io_req_task_work_add(req, true);
2201 if (unlikely(ret)) {
2202 struct task_struct *tsk;
2203
2204 tsk = io_wq_get_task(req->ctx->io_wq);
2205 task_work_add(tsk, &req->task_work, TWA_NONE);
2206 wake_up_process(tsk);
2207 }
2208 }
2209
io_put_req_deferred(struct io_kiocb * req,int refs)2210 static inline void io_put_req_deferred(struct io_kiocb *req, int refs)
2211 {
2212 if (refcount_sub_and_test(refs, &req->refs))
2213 io_free_req_deferred(req);
2214 }
2215
io_steal_work(struct io_kiocb * req)2216 static struct io_wq_work *io_steal_work(struct io_kiocb *req)
2217 {
2218 struct io_kiocb *nxt;
2219
2220 /*
2221 * A ref is owned by io-wq in which context we're. So, if that's the
2222 * last one, it's safe to steal next work. False negatives are Ok,
2223 * it just will be re-punted async in io_put_work()
2224 */
2225 if (refcount_read(&req->refs) != 1)
2226 return NULL;
2227
2228 nxt = io_req_find_next(req);
2229 return nxt ? &nxt->work : NULL;
2230 }
2231
io_double_put_req(struct io_kiocb * req)2232 static void io_double_put_req(struct io_kiocb *req)
2233 {
2234 /* drop both submit and complete references */
2235 if (refcount_sub_and_test(2, &req->refs))
2236 io_free_req(req);
2237 }
2238
io_cqring_events(struct io_ring_ctx * ctx,bool noflush)2239 static unsigned io_cqring_events(struct io_ring_ctx *ctx, bool noflush)
2240 {
2241 struct io_rings *rings = ctx->rings;
2242
2243 if (test_bit(0, &ctx->cq_check_overflow)) {
2244 /*
2245 * noflush == true is from the waitqueue handler, just ensure
2246 * we wake up the task, and the next invocation will flush the
2247 * entries. We cannot safely to it from here.
2248 */
2249 if (noflush && !list_empty(&ctx->cq_overflow_list))
2250 return -1U;
2251
2252 io_cqring_overflow_flush(ctx, false, NULL, NULL);
2253 }
2254
2255 /* See comment at the top of this file */
2256 smp_rmb();
2257 return ctx->cached_cq_tail - READ_ONCE(rings->cq.head);
2258 }
2259
io_sqring_entries(struct io_ring_ctx * ctx)2260 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
2261 {
2262 struct io_rings *rings = ctx->rings;
2263
2264 /* make sure SQ entry isn't read before tail */
2265 return smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
2266 }
2267
io_put_kbuf(struct io_kiocb * req,struct io_buffer * kbuf)2268 static unsigned int io_put_kbuf(struct io_kiocb *req, struct io_buffer *kbuf)
2269 {
2270 unsigned int cflags;
2271
2272 cflags = kbuf->bid << IORING_CQE_BUFFER_SHIFT;
2273 cflags |= IORING_CQE_F_BUFFER;
2274 req->flags &= ~REQ_F_BUFFER_SELECTED;
2275 kfree(kbuf);
2276 return cflags;
2277 }
2278
io_put_rw_kbuf(struct io_kiocb * req)2279 static inline unsigned int io_put_rw_kbuf(struct io_kiocb *req)
2280 {
2281 struct io_buffer *kbuf;
2282
2283 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
2284 return io_put_kbuf(req, kbuf);
2285 }
2286
io_run_task_work(void)2287 static inline bool io_run_task_work(void)
2288 {
2289 /*
2290 * Not safe to run on exiting task, and the task_work handling will
2291 * not add work to such a task.
2292 */
2293 if (unlikely(current->flags & PF_EXITING))
2294 return false;
2295 if (current->task_works) {
2296 __set_current_state(TASK_RUNNING);
2297 task_work_run();
2298 return true;
2299 }
2300
2301 return false;
2302 }
2303
io_iopoll_queue(struct list_head * again)2304 static void io_iopoll_queue(struct list_head *again)
2305 {
2306 struct io_kiocb *req;
2307
2308 do {
2309 req = list_first_entry(again, struct io_kiocb, inflight_entry);
2310 list_del(&req->inflight_entry);
2311 __io_complete_rw(req, -EAGAIN, 0, NULL);
2312 } while (!list_empty(again));
2313 }
2314
2315 /*
2316 * Find and free completed poll iocbs
2317 */
io_iopoll_complete(struct io_ring_ctx * ctx,unsigned int * nr_events,struct list_head * done)2318 static void io_iopoll_complete(struct io_ring_ctx *ctx, unsigned int *nr_events,
2319 struct list_head *done)
2320 {
2321 struct req_batch rb;
2322 struct io_kiocb *req;
2323 LIST_HEAD(again);
2324
2325 /* order with ->result store in io_complete_rw_iopoll() */
2326 smp_rmb();
2327
2328 io_init_req_batch(&rb);
2329 while (!list_empty(done)) {
2330 int cflags = 0;
2331
2332 req = list_first_entry(done, struct io_kiocb, inflight_entry);
2333 if (READ_ONCE(req->result) == -EAGAIN) {
2334 req->result = 0;
2335 req->iopoll_completed = 0;
2336 list_move_tail(&req->inflight_entry, &again);
2337 continue;
2338 }
2339 list_del(&req->inflight_entry);
2340
2341 if (req->flags & REQ_F_BUFFER_SELECTED)
2342 cflags = io_put_rw_kbuf(req);
2343
2344 __io_cqring_fill_event(req, req->result, cflags);
2345 (*nr_events)++;
2346
2347 if (refcount_dec_and_test(&req->refs))
2348 io_req_free_batch(&rb, req);
2349 }
2350
2351 io_commit_cqring(ctx);
2352 if (ctx->flags & IORING_SETUP_SQPOLL)
2353 io_cqring_ev_posted(ctx);
2354 io_req_free_batch_finish(ctx, &rb);
2355
2356 if (!list_empty(&again))
2357 io_iopoll_queue(&again);
2358 }
2359
io_do_iopoll(struct io_ring_ctx * ctx,unsigned int * nr_events,long min)2360 static int io_do_iopoll(struct io_ring_ctx *ctx, unsigned int *nr_events,
2361 long min)
2362 {
2363 struct io_kiocb *req, *tmp;
2364 LIST_HEAD(done);
2365 bool spin;
2366 int ret;
2367
2368 /*
2369 * Only spin for completions if we don't have multiple devices hanging
2370 * off our complete list, and we're under the requested amount.
2371 */
2372 spin = !ctx->poll_multi_file && *nr_events < min;
2373
2374 ret = 0;
2375 list_for_each_entry_safe(req, tmp, &ctx->iopoll_list, inflight_entry) {
2376 struct kiocb *kiocb = &req->rw.kiocb;
2377
2378 /*
2379 * Move completed and retryable entries to our local lists.
2380 * If we find a request that requires polling, break out
2381 * and complete those lists first, if we have entries there.
2382 */
2383 if (READ_ONCE(req->iopoll_completed)) {
2384 list_move_tail(&req->inflight_entry, &done);
2385 continue;
2386 }
2387 if (!list_empty(&done))
2388 break;
2389
2390 ret = kiocb->ki_filp->f_op->iopoll(kiocb, spin);
2391 if (ret < 0)
2392 break;
2393
2394 /* iopoll may have completed current req */
2395 if (READ_ONCE(req->iopoll_completed))
2396 list_move_tail(&req->inflight_entry, &done);
2397
2398 if (ret && spin)
2399 spin = false;
2400 ret = 0;
2401 }
2402
2403 if (!list_empty(&done))
2404 io_iopoll_complete(ctx, nr_events, &done);
2405
2406 return ret;
2407 }
2408
2409 /*
2410 * Poll for a minimum of 'min' events. Note that if min == 0 we consider that a
2411 * non-spinning poll check - we'll still enter the driver poll loop, but only
2412 * as a non-spinning completion check.
2413 */
io_iopoll_getevents(struct io_ring_ctx * ctx,unsigned int * nr_events,long min)2414 static int io_iopoll_getevents(struct io_ring_ctx *ctx, unsigned int *nr_events,
2415 long min)
2416 {
2417 while (!list_empty(&ctx->iopoll_list) && !need_resched()) {
2418 int ret;
2419
2420 ret = io_do_iopoll(ctx, nr_events, min);
2421 if (ret < 0)
2422 return ret;
2423 if (*nr_events >= min)
2424 return 0;
2425 }
2426
2427 return 1;
2428 }
2429
2430 /*
2431 * We can't just wait for polled events to come to us, we have to actively
2432 * find and complete them.
2433 */
io_iopoll_try_reap_events(struct io_ring_ctx * ctx)2434 static void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
2435 {
2436 if (!(ctx->flags & IORING_SETUP_IOPOLL))
2437 return;
2438
2439 mutex_lock(&ctx->uring_lock);
2440 while (!list_empty(&ctx->iopoll_list)) {
2441 unsigned int nr_events = 0;
2442
2443 io_do_iopoll(ctx, &nr_events, 0);
2444
2445 /* let it sleep and repeat later if can't complete a request */
2446 if (nr_events == 0)
2447 break;
2448 /*
2449 * Ensure we allow local-to-the-cpu processing to take place,
2450 * in this case we need to ensure that we reap all events.
2451 * Also let task_work, etc. to progress by releasing the mutex
2452 */
2453 if (need_resched()) {
2454 mutex_unlock(&ctx->uring_lock);
2455 cond_resched();
2456 mutex_lock(&ctx->uring_lock);
2457 }
2458 }
2459 mutex_unlock(&ctx->uring_lock);
2460 }
2461
io_iopoll_check(struct io_ring_ctx * ctx,long min)2462 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
2463 {
2464 unsigned int nr_events = 0;
2465 int iters = 0, ret = 0;
2466
2467 /*
2468 * We disallow the app entering submit/complete with polling, but we
2469 * still need to lock the ring to prevent racing with polled issue
2470 * that got punted to a workqueue.
2471 */
2472 mutex_lock(&ctx->uring_lock);
2473 do {
2474 /*
2475 * Don't enter poll loop if we already have events pending.
2476 * If we do, we can potentially be spinning for commands that
2477 * already triggered a CQE (eg in error).
2478 */
2479 if (io_cqring_events(ctx, false))
2480 break;
2481
2482 /*
2483 * If a submit got punted to a workqueue, we can have the
2484 * application entering polling for a command before it gets
2485 * issued. That app will hold the uring_lock for the duration
2486 * of the poll right here, so we need to take a breather every
2487 * now and then to ensure that the issue has a chance to add
2488 * the poll to the issued list. Otherwise we can spin here
2489 * forever, while the workqueue is stuck trying to acquire the
2490 * very same mutex.
2491 */
2492 if (!(++iters & 7)) {
2493 mutex_unlock(&ctx->uring_lock);
2494 io_run_task_work();
2495 mutex_lock(&ctx->uring_lock);
2496 }
2497
2498 ret = io_iopoll_getevents(ctx, &nr_events, min);
2499 if (ret <= 0)
2500 break;
2501 ret = 0;
2502 } while (min && !nr_events && !need_resched());
2503
2504 mutex_unlock(&ctx->uring_lock);
2505 return ret;
2506 }
2507
kiocb_end_write(struct io_kiocb * req)2508 static void kiocb_end_write(struct io_kiocb *req)
2509 {
2510 /*
2511 * Tell lockdep we inherited freeze protection from submission
2512 * thread.
2513 */
2514 if (req->flags & REQ_F_ISREG) {
2515 struct inode *inode = file_inode(req->file);
2516
2517 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
2518 }
2519 file_end_write(req->file);
2520 }
2521
io_complete_rw_common(struct kiocb * kiocb,long res,struct io_comp_state * cs)2522 static void io_complete_rw_common(struct kiocb *kiocb, long res,
2523 struct io_comp_state *cs)
2524 {
2525 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2526 int cflags = 0;
2527
2528 if (kiocb->ki_flags & IOCB_WRITE)
2529 kiocb_end_write(req);
2530
2531 if (res != req->result)
2532 req_set_fail_links(req);
2533 if (req->flags & REQ_F_BUFFER_SELECTED)
2534 cflags = io_put_rw_kbuf(req);
2535 __io_req_complete(req, res, cflags, cs);
2536 }
2537
2538 #ifdef CONFIG_BLOCK
io_resubmit_prep(struct io_kiocb * req,int error)2539 static bool io_resubmit_prep(struct io_kiocb *req, int error)
2540 {
2541 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
2542 ssize_t ret = -ECANCELED;
2543 struct iov_iter iter;
2544 int rw;
2545
2546 if (error) {
2547 ret = error;
2548 goto end_req;
2549 }
2550
2551 switch (req->opcode) {
2552 case IORING_OP_READV:
2553 case IORING_OP_READ_FIXED:
2554 case IORING_OP_READ:
2555 rw = READ;
2556 break;
2557 case IORING_OP_WRITEV:
2558 case IORING_OP_WRITE_FIXED:
2559 case IORING_OP_WRITE:
2560 rw = WRITE;
2561 break;
2562 default:
2563 printk_once(KERN_WARNING "io_uring: bad opcode in resubmit %d\n",
2564 req->opcode);
2565 goto end_req;
2566 }
2567
2568 if (!req->async_data) {
2569 ret = io_import_iovec(rw, req, &iovec, &iter, false);
2570 if (ret < 0)
2571 goto end_req;
2572 ret = io_setup_async_rw(req, iovec, inline_vecs, &iter, false);
2573 if (!ret)
2574 return true;
2575 kfree(iovec);
2576 } else {
2577 return true;
2578 }
2579 end_req:
2580 req_set_fail_links(req);
2581 return false;
2582 }
2583 #endif
2584
io_rw_reissue(struct io_kiocb * req,long res)2585 static bool io_rw_reissue(struct io_kiocb *req, long res)
2586 {
2587 #ifdef CONFIG_BLOCK
2588 umode_t mode = file_inode(req->file)->i_mode;
2589 int ret;
2590
2591 if (!S_ISBLK(mode) && !S_ISREG(mode))
2592 return false;
2593 if ((res != -EAGAIN && res != -EOPNOTSUPP) || io_wq_current_is_worker())
2594 return false;
2595
2596 ret = io_sq_thread_acquire_mm(req->ctx, req);
2597
2598 if (io_resubmit_prep(req, ret)) {
2599 refcount_inc(&req->refs);
2600 io_queue_async_work(req);
2601 return true;
2602 }
2603
2604 #endif
2605 return false;
2606 }
2607
__io_complete_rw(struct io_kiocb * req,long res,long res2,struct io_comp_state * cs)2608 static void __io_complete_rw(struct io_kiocb *req, long res, long res2,
2609 struct io_comp_state *cs)
2610 {
2611 if (!io_rw_reissue(req, res))
2612 io_complete_rw_common(&req->rw.kiocb, res, cs);
2613 }
2614
io_complete_rw(struct kiocb * kiocb,long res,long res2)2615 static void io_complete_rw(struct kiocb *kiocb, long res, long res2)
2616 {
2617 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2618
2619 __io_complete_rw(req, res, res2, NULL);
2620 }
2621
io_complete_rw_iopoll(struct kiocb * kiocb,long res,long res2)2622 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res, long res2)
2623 {
2624 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2625
2626 if (kiocb->ki_flags & IOCB_WRITE)
2627 kiocb_end_write(req);
2628
2629 if (res != -EAGAIN && res != req->result)
2630 req_set_fail_links(req);
2631
2632 WRITE_ONCE(req->result, res);
2633 /* order with io_poll_complete() checking ->result */
2634 smp_wmb();
2635 WRITE_ONCE(req->iopoll_completed, 1);
2636 }
2637
2638 /*
2639 * After the iocb has been issued, it's safe to be found on the poll list.
2640 * Adding the kiocb to the list AFTER submission ensures that we don't
2641 * find it from a io_iopoll_getevents() thread before the issuer is done
2642 * accessing the kiocb cookie.
2643 */
io_iopoll_req_issued(struct io_kiocb * req)2644 static void io_iopoll_req_issued(struct io_kiocb *req)
2645 {
2646 struct io_ring_ctx *ctx = req->ctx;
2647
2648 /*
2649 * Track whether we have multiple files in our lists. This will impact
2650 * how we do polling eventually, not spinning if we're on potentially
2651 * different devices.
2652 */
2653 if (list_empty(&ctx->iopoll_list)) {
2654 ctx->poll_multi_file = false;
2655 } else if (!ctx->poll_multi_file) {
2656 struct io_kiocb *list_req;
2657
2658 list_req = list_first_entry(&ctx->iopoll_list, struct io_kiocb,
2659 inflight_entry);
2660 if (list_req->file != req->file)
2661 ctx->poll_multi_file = true;
2662 }
2663
2664 /*
2665 * For fast devices, IO may have already completed. If it has, add
2666 * it to the front so we find it first.
2667 */
2668 if (READ_ONCE(req->iopoll_completed))
2669 list_add(&req->inflight_entry, &ctx->iopoll_list);
2670 else
2671 list_add_tail(&req->inflight_entry, &ctx->iopoll_list);
2672
2673 if ((ctx->flags & IORING_SETUP_SQPOLL) &&
2674 wq_has_sleeper(&ctx->sq_data->wait))
2675 wake_up(&ctx->sq_data->wait);
2676 }
2677
__io_state_file_put(struct io_submit_state * state)2678 static void __io_state_file_put(struct io_submit_state *state)
2679 {
2680 if (state->has_refs)
2681 fput_many(state->file, state->has_refs);
2682 state->file = NULL;
2683 }
2684
io_state_file_put(struct io_submit_state * state)2685 static inline void io_state_file_put(struct io_submit_state *state)
2686 {
2687 if (state->file)
2688 __io_state_file_put(state);
2689 }
2690
2691 /*
2692 * Get as many references to a file as we have IOs left in this submission,
2693 * assuming most submissions are for one file, or at least that each file
2694 * has more than one submission.
2695 */
__io_file_get(struct io_submit_state * state,int fd)2696 static struct file *__io_file_get(struct io_submit_state *state, int fd)
2697 {
2698 if (!state)
2699 return fget(fd);
2700
2701 if (state->file) {
2702 if (state->fd == fd) {
2703 state->has_refs--;
2704 return state->file;
2705 }
2706 __io_state_file_put(state);
2707 }
2708 state->file = fget_many(fd, state->ios_left);
2709 if (!state->file)
2710 return NULL;
2711
2712 state->fd = fd;
2713 state->has_refs = state->ios_left - 1;
2714 return state->file;
2715 }
2716
io_bdev_nowait(struct block_device * bdev)2717 static bool io_bdev_nowait(struct block_device *bdev)
2718 {
2719 #ifdef CONFIG_BLOCK
2720 return !bdev || blk_queue_nowait(bdev_get_queue(bdev));
2721 #else
2722 return true;
2723 #endif
2724 }
2725
2726 /*
2727 * If we tracked the file through the SCM inflight mechanism, we could support
2728 * any file. For now, just ensure that anything potentially problematic is done
2729 * inline.
2730 */
io_file_supports_async(struct file * file,int rw)2731 static bool io_file_supports_async(struct file *file, int rw)
2732 {
2733 umode_t mode = file_inode(file)->i_mode;
2734
2735 if (S_ISBLK(mode)) {
2736 if (io_bdev_nowait(file->f_inode->i_bdev))
2737 return true;
2738 return false;
2739 }
2740 if (S_ISCHR(mode) || S_ISSOCK(mode))
2741 return true;
2742 if (S_ISREG(mode)) {
2743 if (io_bdev_nowait(file->f_inode->i_sb->s_bdev) &&
2744 file->f_op != &io_uring_fops)
2745 return true;
2746 return false;
2747 }
2748
2749 /* any ->read/write should understand O_NONBLOCK */
2750 if (file->f_flags & O_NONBLOCK)
2751 return true;
2752
2753 if (!(file->f_mode & FMODE_NOWAIT))
2754 return false;
2755
2756 if (rw == READ)
2757 return file->f_op->read_iter != NULL;
2758
2759 return file->f_op->write_iter != NULL;
2760 }
2761
io_prep_rw(struct io_kiocb * req,const struct io_uring_sqe * sqe)2762 static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe)
2763 {
2764 struct io_ring_ctx *ctx = req->ctx;
2765 struct kiocb *kiocb = &req->rw.kiocb;
2766 unsigned ioprio;
2767 int ret;
2768
2769 if (S_ISREG(file_inode(req->file)->i_mode))
2770 req->flags |= REQ_F_ISREG;
2771
2772 kiocb->ki_pos = READ_ONCE(sqe->off);
2773 if (kiocb->ki_pos == -1 && !(req->file->f_mode & FMODE_STREAM)) {
2774 req->flags |= REQ_F_CUR_POS;
2775 kiocb->ki_pos = req->file->f_pos;
2776 }
2777 kiocb->ki_hint = ki_hint_validate(file_write_hint(kiocb->ki_filp));
2778 kiocb->ki_flags = iocb_flags(kiocb->ki_filp);
2779 ret = kiocb_set_rw_flags(kiocb, READ_ONCE(sqe->rw_flags));
2780 if (unlikely(ret))
2781 return ret;
2782
2783 ioprio = READ_ONCE(sqe->ioprio);
2784 if (ioprio) {
2785 ret = ioprio_check_cap(ioprio);
2786 if (ret)
2787 return ret;
2788
2789 kiocb->ki_ioprio = ioprio;
2790 } else
2791 kiocb->ki_ioprio = get_current_ioprio();
2792
2793 /* don't allow async punt if RWF_NOWAIT was requested */
2794 if (kiocb->ki_flags & IOCB_NOWAIT)
2795 req->flags |= REQ_F_NOWAIT;
2796
2797 if (ctx->flags & IORING_SETUP_IOPOLL) {
2798 if (!(kiocb->ki_flags & IOCB_DIRECT) ||
2799 !kiocb->ki_filp->f_op->iopoll)
2800 return -EOPNOTSUPP;
2801
2802 kiocb->ki_flags |= IOCB_HIPRI;
2803 kiocb->ki_complete = io_complete_rw_iopoll;
2804 req->iopoll_completed = 0;
2805 } else {
2806 if (kiocb->ki_flags & IOCB_HIPRI)
2807 return -EINVAL;
2808 kiocb->ki_complete = io_complete_rw;
2809 }
2810
2811 req->rw.addr = READ_ONCE(sqe->addr);
2812 req->rw.len = READ_ONCE(sqe->len);
2813 req->buf_index = READ_ONCE(sqe->buf_index);
2814 return 0;
2815 }
2816
io_rw_done(struct kiocb * kiocb,ssize_t ret)2817 static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
2818 {
2819 switch (ret) {
2820 case -EIOCBQUEUED:
2821 break;
2822 case -ERESTARTSYS:
2823 case -ERESTARTNOINTR:
2824 case -ERESTARTNOHAND:
2825 case -ERESTART_RESTARTBLOCK:
2826 /*
2827 * We can't just restart the syscall, since previously
2828 * submitted sqes may already be in progress. Just fail this
2829 * IO with EINTR.
2830 */
2831 ret = -EINTR;
2832 fallthrough;
2833 default:
2834 kiocb->ki_complete(kiocb, ret, 0);
2835 }
2836 }
2837
kiocb_done(struct kiocb * kiocb,ssize_t ret,struct io_comp_state * cs)2838 static void kiocb_done(struct kiocb *kiocb, ssize_t ret,
2839 struct io_comp_state *cs)
2840 {
2841 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2842 struct io_async_rw *io = req->async_data;
2843
2844 /* add previously done IO, if any */
2845 if (io && io->bytes_done > 0) {
2846 if (ret < 0)
2847 ret = io->bytes_done;
2848 else
2849 ret += io->bytes_done;
2850 }
2851
2852 if (req->flags & REQ_F_CUR_POS)
2853 req->file->f_pos = kiocb->ki_pos;
2854 if (ret >= 0 && kiocb->ki_complete == io_complete_rw)
2855 __io_complete_rw(req, ret, 0, cs);
2856 else
2857 io_rw_done(kiocb, ret);
2858 }
2859
io_import_fixed(struct io_kiocb * req,int rw,struct iov_iter * iter)2860 static ssize_t io_import_fixed(struct io_kiocb *req, int rw,
2861 struct iov_iter *iter)
2862 {
2863 struct io_ring_ctx *ctx = req->ctx;
2864 size_t len = req->rw.len;
2865 struct io_mapped_ubuf *imu;
2866 u16 index, buf_index = req->buf_index;
2867 size_t offset;
2868 u64 buf_addr;
2869
2870 if (unlikely(buf_index >= ctx->nr_user_bufs))
2871 return -EFAULT;
2872 index = array_index_nospec(buf_index, ctx->nr_user_bufs);
2873 imu = &ctx->user_bufs[index];
2874 buf_addr = req->rw.addr;
2875
2876 /* overflow */
2877 if (buf_addr + len < buf_addr)
2878 return -EFAULT;
2879 /* not inside the mapped region */
2880 if (buf_addr < imu->ubuf || buf_addr + len > imu->ubuf + imu->len)
2881 return -EFAULT;
2882
2883 /*
2884 * May not be a start of buffer, set size appropriately
2885 * and advance us to the beginning.
2886 */
2887 offset = buf_addr - imu->ubuf;
2888 iov_iter_bvec(iter, rw, imu->bvec, imu->nr_bvecs, offset + len);
2889
2890 if (offset) {
2891 /*
2892 * Don't use iov_iter_advance() here, as it's really slow for
2893 * using the latter parts of a big fixed buffer - it iterates
2894 * over each segment manually. We can cheat a bit here, because
2895 * we know that:
2896 *
2897 * 1) it's a BVEC iter, we set it up
2898 * 2) all bvecs are PAGE_SIZE in size, except potentially the
2899 * first and last bvec
2900 *
2901 * So just find our index, and adjust the iterator afterwards.
2902 * If the offset is within the first bvec (or the whole first
2903 * bvec, just use iov_iter_advance(). This makes it easier
2904 * since we can just skip the first segment, which may not
2905 * be PAGE_SIZE aligned.
2906 */
2907 const struct bio_vec *bvec = imu->bvec;
2908
2909 if (offset <= bvec->bv_len) {
2910 iov_iter_advance(iter, offset);
2911 } else {
2912 unsigned long seg_skip;
2913
2914 /* skip first vec */
2915 offset -= bvec->bv_len;
2916 seg_skip = 1 + (offset >> PAGE_SHIFT);
2917
2918 iter->bvec = bvec + seg_skip;
2919 iter->nr_segs -= seg_skip;
2920 iter->count -= bvec->bv_len + offset;
2921 iter->iov_offset = offset & ~PAGE_MASK;
2922 }
2923 }
2924
2925 return len;
2926 }
2927
io_ring_submit_unlock(struct io_ring_ctx * ctx,bool needs_lock)2928 static void io_ring_submit_unlock(struct io_ring_ctx *ctx, bool needs_lock)
2929 {
2930 if (needs_lock)
2931 mutex_unlock(&ctx->uring_lock);
2932 }
2933
io_ring_submit_lock(struct io_ring_ctx * ctx,bool needs_lock)2934 static void io_ring_submit_lock(struct io_ring_ctx *ctx, bool needs_lock)
2935 {
2936 /*
2937 * "Normal" inline submissions always hold the uring_lock, since we
2938 * grab it from the system call. Same is true for the SQPOLL offload.
2939 * The only exception is when we've detached the request and issue it
2940 * from an async worker thread, grab the lock for that case.
2941 */
2942 if (needs_lock)
2943 mutex_lock(&ctx->uring_lock);
2944 }
2945
io_buffer_select(struct io_kiocb * req,size_t * len,int bgid,struct io_buffer * kbuf,bool needs_lock)2946 static struct io_buffer *io_buffer_select(struct io_kiocb *req, size_t *len,
2947 int bgid, struct io_buffer *kbuf,
2948 bool needs_lock)
2949 {
2950 struct io_buffer *head;
2951
2952 if (req->flags & REQ_F_BUFFER_SELECTED)
2953 return kbuf;
2954
2955 io_ring_submit_lock(req->ctx, needs_lock);
2956
2957 lockdep_assert_held(&req->ctx->uring_lock);
2958
2959 head = idr_find(&req->ctx->io_buffer_idr, bgid);
2960 if (head) {
2961 if (!list_empty(&head->list)) {
2962 kbuf = list_last_entry(&head->list, struct io_buffer,
2963 list);
2964 list_del(&kbuf->list);
2965 } else {
2966 kbuf = head;
2967 idr_remove(&req->ctx->io_buffer_idr, bgid);
2968 }
2969 if (*len > kbuf->len)
2970 *len = kbuf->len;
2971 } else {
2972 kbuf = ERR_PTR(-ENOBUFS);
2973 }
2974
2975 io_ring_submit_unlock(req->ctx, needs_lock);
2976
2977 return kbuf;
2978 }
2979
io_rw_buffer_select(struct io_kiocb * req,size_t * len,bool needs_lock)2980 static void __user *io_rw_buffer_select(struct io_kiocb *req, size_t *len,
2981 bool needs_lock)
2982 {
2983 struct io_buffer *kbuf;
2984 u16 bgid;
2985
2986 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
2987 bgid = req->buf_index;
2988 kbuf = io_buffer_select(req, len, bgid, kbuf, needs_lock);
2989 if (IS_ERR(kbuf))
2990 return kbuf;
2991 req->rw.addr = (u64) (unsigned long) kbuf;
2992 req->flags |= REQ_F_BUFFER_SELECTED;
2993 return u64_to_user_ptr(kbuf->addr);
2994 }
2995
2996 #ifdef CONFIG_COMPAT
io_compat_import(struct io_kiocb * req,struct iovec * iov,bool needs_lock)2997 static ssize_t io_compat_import(struct io_kiocb *req, struct iovec *iov,
2998 bool needs_lock)
2999 {
3000 struct compat_iovec __user *uiov;
3001 compat_ssize_t clen;
3002 void __user *buf;
3003 ssize_t len;
3004
3005 uiov = u64_to_user_ptr(req->rw.addr);
3006 if (!access_ok(uiov, sizeof(*uiov)))
3007 return -EFAULT;
3008 if (__get_user(clen, &uiov->iov_len))
3009 return -EFAULT;
3010 if (clen < 0)
3011 return -EINVAL;
3012
3013 len = clen;
3014 buf = io_rw_buffer_select(req, &len, needs_lock);
3015 if (IS_ERR(buf))
3016 return PTR_ERR(buf);
3017 iov[0].iov_base = buf;
3018 iov[0].iov_len = (compat_size_t) len;
3019 return 0;
3020 }
3021 #endif
3022
__io_iov_buffer_select(struct io_kiocb * req,struct iovec * iov,bool needs_lock)3023 static ssize_t __io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3024 bool needs_lock)
3025 {
3026 struct iovec __user *uiov = u64_to_user_ptr(req->rw.addr);
3027 void __user *buf;
3028 ssize_t len;
3029
3030 if (copy_from_user(iov, uiov, sizeof(*uiov)))
3031 return -EFAULT;
3032
3033 len = iov[0].iov_len;
3034 if (len < 0)
3035 return -EINVAL;
3036 buf = io_rw_buffer_select(req, &len, needs_lock);
3037 if (IS_ERR(buf))
3038 return PTR_ERR(buf);
3039 iov[0].iov_base = buf;
3040 iov[0].iov_len = len;
3041 return 0;
3042 }
3043
io_iov_buffer_select(struct io_kiocb * req,struct iovec * iov,bool needs_lock)3044 static ssize_t io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3045 bool needs_lock)
3046 {
3047 if (req->flags & REQ_F_BUFFER_SELECTED) {
3048 struct io_buffer *kbuf;
3049
3050 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3051 iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
3052 iov[0].iov_len = kbuf->len;
3053 return 0;
3054 }
3055 if (!req->rw.len)
3056 return 0;
3057 else if (req->rw.len > 1)
3058 return -EINVAL;
3059
3060 #ifdef CONFIG_COMPAT
3061 if (req->ctx->compat)
3062 return io_compat_import(req, iov, needs_lock);
3063 #endif
3064
3065 return __io_iov_buffer_select(req, iov, needs_lock);
3066 }
3067
__io_import_iovec(int rw,struct io_kiocb * req,struct iovec ** iovec,struct iov_iter * iter,bool needs_lock)3068 static ssize_t __io_import_iovec(int rw, struct io_kiocb *req,
3069 struct iovec **iovec, struct iov_iter *iter,
3070 bool needs_lock)
3071 {
3072 void __user *buf = u64_to_user_ptr(req->rw.addr);
3073 size_t sqe_len = req->rw.len;
3074 ssize_t ret;
3075 u8 opcode;
3076
3077 opcode = req->opcode;
3078 if (opcode == IORING_OP_READ_FIXED || opcode == IORING_OP_WRITE_FIXED) {
3079 *iovec = NULL;
3080 return io_import_fixed(req, rw, iter);
3081 }
3082
3083 /* buffer index only valid with fixed read/write, or buffer select */
3084 if (req->buf_index && !(req->flags & REQ_F_BUFFER_SELECT))
3085 return -EINVAL;
3086
3087 if (opcode == IORING_OP_READ || opcode == IORING_OP_WRITE) {
3088 if (req->flags & REQ_F_BUFFER_SELECT) {
3089 buf = io_rw_buffer_select(req, &sqe_len, needs_lock);
3090 if (IS_ERR(buf))
3091 return PTR_ERR(buf);
3092 req->rw.len = sqe_len;
3093 }
3094
3095 ret = import_single_range(rw, buf, sqe_len, *iovec, iter);
3096 *iovec = NULL;
3097 return ret < 0 ? ret : sqe_len;
3098 }
3099
3100 if (req->flags & REQ_F_BUFFER_SELECT) {
3101 ret = io_iov_buffer_select(req, *iovec, needs_lock);
3102 if (!ret) {
3103 ret = (*iovec)->iov_len;
3104 iov_iter_init(iter, rw, *iovec, 1, ret);
3105 }
3106 *iovec = NULL;
3107 return ret;
3108 }
3109
3110 return __import_iovec(rw, buf, sqe_len, UIO_FASTIOV, iovec, iter,
3111 req->ctx->compat);
3112 }
3113
io_import_iovec(int rw,struct io_kiocb * req,struct iovec ** iovec,struct iov_iter * iter,bool needs_lock)3114 static ssize_t io_import_iovec(int rw, struct io_kiocb *req,
3115 struct iovec **iovec, struct iov_iter *iter,
3116 bool needs_lock)
3117 {
3118 struct io_async_rw *iorw = req->async_data;
3119
3120 if (!iorw)
3121 return __io_import_iovec(rw, req, iovec, iter, needs_lock);
3122 *iovec = NULL;
3123 return iov_iter_count(&iorw->iter);
3124 }
3125
io_kiocb_ppos(struct kiocb * kiocb)3126 static inline loff_t *io_kiocb_ppos(struct kiocb *kiocb)
3127 {
3128 return (kiocb->ki_filp->f_mode & FMODE_STREAM) ? NULL : &kiocb->ki_pos;
3129 }
3130
3131 /*
3132 * For files that don't have ->read_iter() and ->write_iter(), handle them
3133 * by looping over ->read() or ->write() manually.
3134 */
loop_rw_iter(int rw,struct io_kiocb * req,struct iov_iter * iter)3135 static ssize_t loop_rw_iter(int rw, struct io_kiocb *req, struct iov_iter *iter)
3136 {
3137 struct kiocb *kiocb = &req->rw.kiocb;
3138 struct file *file = req->file;
3139 ssize_t ret = 0;
3140
3141 /*
3142 * Don't support polled IO through this interface, and we can't
3143 * support non-blocking either. For the latter, this just causes
3144 * the kiocb to be handled from an async context.
3145 */
3146 if (kiocb->ki_flags & IOCB_HIPRI)
3147 return -EOPNOTSUPP;
3148 if (kiocb->ki_flags & IOCB_NOWAIT)
3149 return -EAGAIN;
3150
3151 while (iov_iter_count(iter)) {
3152 struct iovec iovec;
3153 ssize_t nr;
3154
3155 if (!iov_iter_is_bvec(iter)) {
3156 iovec = iov_iter_iovec(iter);
3157 } else {
3158 iovec.iov_base = u64_to_user_ptr(req->rw.addr);
3159 iovec.iov_len = req->rw.len;
3160 }
3161
3162 if (rw == READ) {
3163 nr = file->f_op->read(file, iovec.iov_base,
3164 iovec.iov_len, io_kiocb_ppos(kiocb));
3165 } else {
3166 nr = file->f_op->write(file, iovec.iov_base,
3167 iovec.iov_len, io_kiocb_ppos(kiocb));
3168 }
3169
3170 if (nr < 0) {
3171 if (!ret)
3172 ret = nr;
3173 break;
3174 }
3175 ret += nr;
3176 if (nr != iovec.iov_len)
3177 break;
3178 req->rw.len -= nr;
3179 req->rw.addr += nr;
3180 iov_iter_advance(iter, nr);
3181 }
3182
3183 return ret;
3184 }
3185
io_req_map_rw(struct io_kiocb * req,const struct iovec * iovec,const struct iovec * fast_iov,struct iov_iter * iter)3186 static void io_req_map_rw(struct io_kiocb *req, const struct iovec *iovec,
3187 const struct iovec *fast_iov, struct iov_iter *iter)
3188 {
3189 struct io_async_rw *rw = req->async_data;
3190
3191 memcpy(&rw->iter, iter, sizeof(*iter));
3192 rw->free_iovec = iovec;
3193 rw->bytes_done = 0;
3194 /* can only be fixed buffers, no need to do anything */
3195 if (iov_iter_is_bvec(iter))
3196 return;
3197 if (!iovec) {
3198 unsigned iov_off = 0;
3199
3200 rw->iter.iov = rw->fast_iov;
3201 if (iter->iov != fast_iov) {
3202 iov_off = iter->iov - fast_iov;
3203 rw->iter.iov += iov_off;
3204 }
3205 if (rw->fast_iov != fast_iov)
3206 memcpy(rw->fast_iov + iov_off, fast_iov + iov_off,
3207 sizeof(struct iovec) * iter->nr_segs);
3208 } else {
3209 req->flags |= REQ_F_NEED_CLEANUP;
3210 }
3211 }
3212
__io_alloc_async_data(struct io_kiocb * req)3213 static inline int __io_alloc_async_data(struct io_kiocb *req)
3214 {
3215 WARN_ON_ONCE(!io_op_defs[req->opcode].async_size);
3216 req->async_data = kmalloc(io_op_defs[req->opcode].async_size, GFP_KERNEL);
3217 return req->async_data == NULL;
3218 }
3219
io_alloc_async_data(struct io_kiocb * req)3220 static int io_alloc_async_data(struct io_kiocb *req)
3221 {
3222 if (!io_op_defs[req->opcode].needs_async_data)
3223 return 0;
3224
3225 return __io_alloc_async_data(req);
3226 }
3227
io_setup_async_rw(struct io_kiocb * req,const struct iovec * iovec,const struct iovec * fast_iov,struct iov_iter * iter,bool force)3228 static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
3229 const struct iovec *fast_iov,
3230 struct iov_iter *iter, bool force)
3231 {
3232 if (!force && !io_op_defs[req->opcode].needs_async_data)
3233 return 0;
3234 if (!req->async_data) {
3235 if (__io_alloc_async_data(req))
3236 return -ENOMEM;
3237
3238 io_req_map_rw(req, iovec, fast_iov, iter);
3239 }
3240 return 0;
3241 }
3242
io_rw_prep_async(struct io_kiocb * req,int rw)3243 static inline int io_rw_prep_async(struct io_kiocb *req, int rw)
3244 {
3245 struct io_async_rw *iorw = req->async_data;
3246 struct iovec *iov = iorw->fast_iov;
3247 ssize_t ret;
3248
3249 ret = __io_import_iovec(rw, req, &iov, &iorw->iter, false);
3250 if (unlikely(ret < 0))
3251 return ret;
3252
3253 iorw->bytes_done = 0;
3254 iorw->free_iovec = iov;
3255 if (iov)
3256 req->flags |= REQ_F_NEED_CLEANUP;
3257 return 0;
3258 }
3259
io_read_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)3260 static int io_read_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3261 {
3262 ssize_t ret;
3263
3264 ret = io_prep_rw(req, sqe);
3265 if (ret)
3266 return ret;
3267
3268 if (unlikely(!(req->file->f_mode & FMODE_READ)))
3269 return -EBADF;
3270
3271 /* either don't need iovec imported or already have it */
3272 if (!req->async_data)
3273 return 0;
3274 return io_rw_prep_async(req, READ);
3275 }
3276
3277 /*
3278 * This is our waitqueue callback handler, registered through lock_page_async()
3279 * when we initially tried to do the IO with the iocb armed our waitqueue.
3280 * This gets called when the page is unlocked, and we generally expect that to
3281 * happen when the page IO is completed and the page is now uptodate. This will
3282 * queue a task_work based retry of the operation, attempting to copy the data
3283 * again. If the latter fails because the page was NOT uptodate, then we will
3284 * do a thread based blocking retry of the operation. That's the unexpected
3285 * slow path.
3286 */
io_async_buf_func(struct wait_queue_entry * wait,unsigned mode,int sync,void * arg)3287 static int io_async_buf_func(struct wait_queue_entry *wait, unsigned mode,
3288 int sync, void *arg)
3289 {
3290 struct wait_page_queue *wpq;
3291 struct io_kiocb *req = wait->private;
3292 struct wait_page_key *key = arg;
3293 int ret;
3294
3295 wpq = container_of(wait, struct wait_page_queue, wait);
3296
3297 if (!wake_page_match(wpq, key))
3298 return 0;
3299
3300 req->rw.kiocb.ki_flags &= ~IOCB_WAITQ;
3301 list_del_init(&wait->entry);
3302
3303 init_task_work(&req->task_work, io_req_task_submit);
3304 percpu_ref_get(&req->ctx->refs);
3305
3306 /* submit ref gets dropped, acquire a new one */
3307 refcount_inc(&req->refs);
3308 ret = io_req_task_work_add(req, true);
3309 if (unlikely(ret)) {
3310 struct task_struct *tsk;
3311
3312 /* queue just for cancelation */
3313 init_task_work(&req->task_work, io_req_task_cancel);
3314 tsk = io_wq_get_task(req->ctx->io_wq);
3315 task_work_add(tsk, &req->task_work, TWA_NONE);
3316 wake_up_process(tsk);
3317 }
3318 return 1;
3319 }
3320
3321 /*
3322 * This controls whether a given IO request should be armed for async page
3323 * based retry. If we return false here, the request is handed to the async
3324 * worker threads for retry. If we're doing buffered reads on a regular file,
3325 * we prepare a private wait_page_queue entry and retry the operation. This
3326 * will either succeed because the page is now uptodate and unlocked, or it
3327 * will register a callback when the page is unlocked at IO completion. Through
3328 * that callback, io_uring uses task_work to setup a retry of the operation.
3329 * That retry will attempt the buffered read again. The retry will generally
3330 * succeed, or in rare cases where it fails, we then fall back to using the
3331 * async worker threads for a blocking retry.
3332 */
io_rw_should_retry(struct io_kiocb * req)3333 static bool io_rw_should_retry(struct io_kiocb *req)
3334 {
3335 struct io_async_rw *rw = req->async_data;
3336 struct wait_page_queue *wait = &rw->wpq;
3337 struct kiocb *kiocb = &req->rw.kiocb;
3338
3339 /* never retry for NOWAIT, we just complete with -EAGAIN */
3340 if (req->flags & REQ_F_NOWAIT)
3341 return false;
3342
3343 /* Only for buffered IO */
3344 if (kiocb->ki_flags & (IOCB_DIRECT | IOCB_HIPRI))
3345 return false;
3346
3347 /*
3348 * just use poll if we can, and don't attempt if the fs doesn't
3349 * support callback based unlocks
3350 */
3351 if (file_can_poll(req->file) || !(req->file->f_mode & FMODE_BUF_RASYNC))
3352 return false;
3353
3354 wait->wait.func = io_async_buf_func;
3355 wait->wait.private = req;
3356 wait->wait.flags = 0;
3357 INIT_LIST_HEAD(&wait->wait.entry);
3358 kiocb->ki_flags |= IOCB_WAITQ;
3359 kiocb->ki_flags &= ~IOCB_NOWAIT;
3360 kiocb->ki_waitq = wait;
3361 return true;
3362 }
3363
io_iter_do_read(struct io_kiocb * req,struct iov_iter * iter)3364 static int io_iter_do_read(struct io_kiocb *req, struct iov_iter *iter)
3365 {
3366 if (req->file->f_op->read_iter)
3367 return call_read_iter(req->file, &req->rw.kiocb, iter);
3368 else if (req->file->f_op->read)
3369 return loop_rw_iter(READ, req, iter);
3370 else
3371 return -EINVAL;
3372 }
3373
io_read(struct io_kiocb * req,bool force_nonblock,struct io_comp_state * cs)3374 static int io_read(struct io_kiocb *req, bool force_nonblock,
3375 struct io_comp_state *cs)
3376 {
3377 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3378 struct kiocb *kiocb = &req->rw.kiocb;
3379 struct iov_iter __iter, *iter = &__iter;
3380 struct io_async_rw *rw = req->async_data;
3381 ssize_t io_size, ret, ret2;
3382 size_t iov_count;
3383 bool no_async;
3384
3385 if (rw)
3386 iter = &rw->iter;
3387
3388 ret = io_import_iovec(READ, req, &iovec, iter, !force_nonblock);
3389 if (ret < 0)
3390 return ret;
3391 iov_count = iov_iter_count(iter);
3392 io_size = ret;
3393 req->result = io_size;
3394 ret = 0;
3395
3396 /* Ensure we clear previously set non-block flag */
3397 if (!force_nonblock)
3398 kiocb->ki_flags &= ~IOCB_NOWAIT;
3399 else
3400 kiocb->ki_flags |= IOCB_NOWAIT;
3401
3402
3403 /* If the file doesn't support async, just async punt */
3404 no_async = force_nonblock && !io_file_supports_async(req->file, READ);
3405 if (no_async)
3406 goto copy_iov;
3407
3408 ret = rw_verify_area(READ, req->file, io_kiocb_ppos(kiocb), iov_count);
3409 if (unlikely(ret))
3410 goto out_free;
3411
3412 ret = io_iter_do_read(req, iter);
3413
3414 if (!ret) {
3415 goto done;
3416 } else if (ret == -EIOCBQUEUED) {
3417 ret = 0;
3418 goto out_free;
3419 } else if (ret == -EAGAIN) {
3420 /* IOPOLL retry should happen for io-wq threads */
3421 if (!force_nonblock && !(req->ctx->flags & IORING_SETUP_IOPOLL))
3422 goto done;
3423 /* no retry on NONBLOCK marked file */
3424 if (req->file->f_flags & O_NONBLOCK)
3425 goto done;
3426 /* some cases will consume bytes even on error returns */
3427 iov_iter_revert(iter, iov_count - iov_iter_count(iter));
3428 ret = 0;
3429 goto copy_iov;
3430 } else if (ret < 0) {
3431 /* make sure -ERESTARTSYS -> -EINTR is done */
3432 goto done;
3433 }
3434
3435 /* read it all, or we did blocking attempt. no retry. */
3436 if (!iov_iter_count(iter) || !force_nonblock ||
3437 (req->file->f_flags & O_NONBLOCK))
3438 goto done;
3439
3440 io_size -= ret;
3441 copy_iov:
3442 ret2 = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3443 if (ret2) {
3444 ret = ret2;
3445 goto out_free;
3446 }
3447 if (no_async)
3448 return -EAGAIN;
3449 rw = req->async_data;
3450 /* it's copied and will be cleaned with ->io */
3451 iovec = NULL;
3452 /* now use our persistent iterator, if we aren't already */
3453 iter = &rw->iter;
3454 retry:
3455 rw->bytes_done += ret;
3456 /* if we can retry, do so with the callbacks armed */
3457 if (!io_rw_should_retry(req)) {
3458 kiocb->ki_flags &= ~IOCB_WAITQ;
3459 return -EAGAIN;
3460 }
3461
3462 /*
3463 * Now retry read with the IOCB_WAITQ parts set in the iocb. If we
3464 * get -EIOCBQUEUED, then we'll get a notification when the desired
3465 * page gets unlocked. We can also get a partial read here, and if we
3466 * do, then just retry at the new offset.
3467 */
3468 ret = io_iter_do_read(req, iter);
3469 if (ret == -EIOCBQUEUED) {
3470 ret = 0;
3471 goto out_free;
3472 } else if (ret > 0 && ret < io_size) {
3473 /* we got some bytes, but not all. retry. */
3474 goto retry;
3475 }
3476 done:
3477 kiocb_done(kiocb, ret, cs);
3478 ret = 0;
3479 out_free:
3480 /* it's reportedly faster than delegating the null check to kfree() */
3481 if (iovec)
3482 kfree(iovec);
3483 return ret;
3484 }
3485
io_write_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)3486 static int io_write_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3487 {
3488 ssize_t ret;
3489
3490 ret = io_prep_rw(req, sqe);
3491 if (ret)
3492 return ret;
3493
3494 if (unlikely(!(req->file->f_mode & FMODE_WRITE)))
3495 return -EBADF;
3496
3497 /* either don't need iovec imported or already have it */
3498 if (!req->async_data)
3499 return 0;
3500 return io_rw_prep_async(req, WRITE);
3501 }
3502
io_write(struct io_kiocb * req,bool force_nonblock,struct io_comp_state * cs)3503 static int io_write(struct io_kiocb *req, bool force_nonblock,
3504 struct io_comp_state *cs)
3505 {
3506 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3507 struct kiocb *kiocb = &req->rw.kiocb;
3508 struct iov_iter __iter, *iter = &__iter;
3509 struct io_async_rw *rw = req->async_data;
3510 size_t iov_count;
3511 ssize_t ret, ret2, io_size;
3512
3513 if (rw)
3514 iter = &rw->iter;
3515
3516 ret = io_import_iovec(WRITE, req, &iovec, iter, !force_nonblock);
3517 if (ret < 0)
3518 return ret;
3519 iov_count = iov_iter_count(iter);
3520 io_size = ret;
3521 req->result = io_size;
3522
3523 /* Ensure we clear previously set non-block flag */
3524 if (!force_nonblock)
3525 kiocb->ki_flags &= ~IOCB_NOWAIT;
3526 else
3527 kiocb->ki_flags |= IOCB_NOWAIT;
3528
3529 /* If the file doesn't support async, just async punt */
3530 if (force_nonblock && !io_file_supports_async(req->file, WRITE))
3531 goto copy_iov;
3532
3533 /* file path doesn't support NOWAIT for non-direct_IO */
3534 if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT) &&
3535 (req->flags & REQ_F_ISREG))
3536 goto copy_iov;
3537
3538 ret = rw_verify_area(WRITE, req->file, io_kiocb_ppos(kiocb), iov_count);
3539 if (unlikely(ret))
3540 goto out_free;
3541
3542 /*
3543 * Open-code file_start_write here to grab freeze protection,
3544 * which will be released by another thread in
3545 * io_complete_rw(). Fool lockdep by telling it the lock got
3546 * released so that it doesn't complain about the held lock when
3547 * we return to userspace.
3548 */
3549 if (req->flags & REQ_F_ISREG) {
3550 sb_start_write(file_inode(req->file)->i_sb);
3551 __sb_writers_release(file_inode(req->file)->i_sb,
3552 SB_FREEZE_WRITE);
3553 }
3554 kiocb->ki_flags |= IOCB_WRITE;
3555
3556 if (req->file->f_op->write_iter)
3557 ret2 = call_write_iter(req->file, kiocb, iter);
3558 else if (req->file->f_op->write)
3559 ret2 = loop_rw_iter(WRITE, req, iter);
3560 else
3561 ret2 = -EINVAL;
3562
3563 /*
3564 * Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just
3565 * retry them without IOCB_NOWAIT.
3566 */
3567 if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT))
3568 ret2 = -EAGAIN;
3569 /* no retry on NONBLOCK marked file */
3570 if (ret2 == -EAGAIN && (req->file->f_flags & O_NONBLOCK))
3571 goto done;
3572 if (!force_nonblock || ret2 != -EAGAIN) {
3573 /* IOPOLL retry should happen for io-wq threads */
3574 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && ret2 == -EAGAIN)
3575 goto copy_iov;
3576 done:
3577 kiocb_done(kiocb, ret2, cs);
3578 } else {
3579 copy_iov:
3580 /* some cases will consume bytes even on error returns */
3581 iov_iter_revert(iter, iov_count - iov_iter_count(iter));
3582 ret = io_setup_async_rw(req, iovec, inline_vecs, iter, false);
3583 if (!ret)
3584 return -EAGAIN;
3585 }
3586 out_free:
3587 /* it's reportedly faster than delegating the null check to kfree() */
3588 if (iovec)
3589 kfree(iovec);
3590 return ret;
3591 }
3592
__io_splice_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)3593 static int __io_splice_prep(struct io_kiocb *req,
3594 const struct io_uring_sqe *sqe)
3595 {
3596 struct io_splice* sp = &req->splice;
3597 unsigned int valid_flags = SPLICE_F_FD_IN_FIXED | SPLICE_F_ALL;
3598
3599 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3600 return -EINVAL;
3601
3602 sp->file_in = NULL;
3603 sp->len = READ_ONCE(sqe->len);
3604 sp->flags = READ_ONCE(sqe->splice_flags);
3605
3606 if (unlikely(sp->flags & ~valid_flags))
3607 return -EINVAL;
3608
3609 sp->file_in = io_file_get(NULL, req, READ_ONCE(sqe->splice_fd_in),
3610 (sp->flags & SPLICE_F_FD_IN_FIXED));
3611 if (!sp->file_in)
3612 return -EBADF;
3613 req->flags |= REQ_F_NEED_CLEANUP;
3614
3615 if (!S_ISREG(file_inode(sp->file_in)->i_mode)) {
3616 /*
3617 * Splice operation will be punted aync, and here need to
3618 * modify io_wq_work.flags, so initialize io_wq_work firstly.
3619 */
3620 io_req_init_async(req);
3621 req->work.flags |= IO_WQ_WORK_UNBOUND;
3622 }
3623
3624 return 0;
3625 }
3626
io_tee_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)3627 static int io_tee_prep(struct io_kiocb *req,
3628 const struct io_uring_sqe *sqe)
3629 {
3630 if (READ_ONCE(sqe->splice_off_in) || READ_ONCE(sqe->off))
3631 return -EINVAL;
3632 return __io_splice_prep(req, sqe);
3633 }
3634
io_tee(struct io_kiocb * req,bool force_nonblock)3635 static int io_tee(struct io_kiocb *req, bool force_nonblock)
3636 {
3637 struct io_splice *sp = &req->splice;
3638 struct file *in = sp->file_in;
3639 struct file *out = sp->file_out;
3640 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
3641 long ret = 0;
3642
3643 if (force_nonblock)
3644 return -EAGAIN;
3645 if (sp->len)
3646 ret = do_tee(in, out, sp->len, flags);
3647
3648 io_put_file(req, in, (sp->flags & SPLICE_F_FD_IN_FIXED));
3649 req->flags &= ~REQ_F_NEED_CLEANUP;
3650
3651 if (ret != sp->len)
3652 req_set_fail_links(req);
3653 io_req_complete(req, ret);
3654 return 0;
3655 }
3656
io_splice_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)3657 static int io_splice_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3658 {
3659 struct io_splice* sp = &req->splice;
3660
3661 sp->off_in = READ_ONCE(sqe->splice_off_in);
3662 sp->off_out = READ_ONCE(sqe->off);
3663 return __io_splice_prep(req, sqe);
3664 }
3665
io_splice(struct io_kiocb * req,bool force_nonblock)3666 static int io_splice(struct io_kiocb *req, bool force_nonblock)
3667 {
3668 struct io_splice *sp = &req->splice;
3669 struct file *in = sp->file_in;
3670 struct file *out = sp->file_out;
3671 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
3672 loff_t *poff_in, *poff_out;
3673 long ret = 0;
3674
3675 if (force_nonblock)
3676 return -EAGAIN;
3677
3678 poff_in = (sp->off_in == -1) ? NULL : &sp->off_in;
3679 poff_out = (sp->off_out == -1) ? NULL : &sp->off_out;
3680
3681 if (sp->len)
3682 ret = do_splice(in, poff_in, out, poff_out, sp->len, flags);
3683
3684 io_put_file(req, in, (sp->flags & SPLICE_F_FD_IN_FIXED));
3685 req->flags &= ~REQ_F_NEED_CLEANUP;
3686
3687 if (ret != sp->len)
3688 req_set_fail_links(req);
3689 io_req_complete(req, ret);
3690 return 0;
3691 }
3692
3693 /*
3694 * IORING_OP_NOP just posts a completion event, nothing else.
3695 */
io_nop(struct io_kiocb * req,struct io_comp_state * cs)3696 static int io_nop(struct io_kiocb *req, struct io_comp_state *cs)
3697 {
3698 struct io_ring_ctx *ctx = req->ctx;
3699
3700 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
3701 return -EINVAL;
3702
3703 __io_req_complete(req, 0, 0, cs);
3704 return 0;
3705 }
3706
io_prep_fsync(struct io_kiocb * req,const struct io_uring_sqe * sqe)3707 static int io_prep_fsync(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3708 {
3709 struct io_ring_ctx *ctx = req->ctx;
3710
3711 if (!req->file)
3712 return -EBADF;
3713
3714 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
3715 return -EINVAL;
3716 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
3717 return -EINVAL;
3718
3719 req->sync.flags = READ_ONCE(sqe->fsync_flags);
3720 if (unlikely(req->sync.flags & ~IORING_FSYNC_DATASYNC))
3721 return -EINVAL;
3722
3723 req->sync.off = READ_ONCE(sqe->off);
3724 req->sync.len = READ_ONCE(sqe->len);
3725 return 0;
3726 }
3727
io_fsync(struct io_kiocb * req,bool force_nonblock)3728 static int io_fsync(struct io_kiocb *req, bool force_nonblock)
3729 {
3730 loff_t end = req->sync.off + req->sync.len;
3731 int ret;
3732
3733 /* fsync always requires a blocking context */
3734 if (force_nonblock)
3735 return -EAGAIN;
3736
3737 ret = vfs_fsync_range(req->file, req->sync.off,
3738 end > 0 ? end : LLONG_MAX,
3739 req->sync.flags & IORING_FSYNC_DATASYNC);
3740 if (ret < 0)
3741 req_set_fail_links(req);
3742 io_req_complete(req, ret);
3743 return 0;
3744 }
3745
io_fallocate_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)3746 static int io_fallocate_prep(struct io_kiocb *req,
3747 const struct io_uring_sqe *sqe)
3748 {
3749 if (sqe->ioprio || sqe->buf_index || sqe->rw_flags)
3750 return -EINVAL;
3751 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3752 return -EINVAL;
3753
3754 req->sync.off = READ_ONCE(sqe->off);
3755 req->sync.len = READ_ONCE(sqe->addr);
3756 req->sync.mode = READ_ONCE(sqe->len);
3757 return 0;
3758 }
3759
io_fallocate(struct io_kiocb * req,bool force_nonblock)3760 static int io_fallocate(struct io_kiocb *req, bool force_nonblock)
3761 {
3762 int ret;
3763
3764 /* fallocate always requiring blocking context */
3765 if (force_nonblock)
3766 return -EAGAIN;
3767 ret = vfs_fallocate(req->file, req->sync.mode, req->sync.off,
3768 req->sync.len);
3769 if (ret < 0)
3770 req_set_fail_links(req);
3771 io_req_complete(req, ret);
3772 return 0;
3773 }
3774
__io_openat_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)3775 static int __io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3776 {
3777 const char __user *fname;
3778 int ret;
3779
3780 if (unlikely(sqe->ioprio || sqe->buf_index))
3781 return -EINVAL;
3782 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3783 return -EBADF;
3784
3785 /* open.how should be already initialised */
3786 if (!(req->open.how.flags & O_PATH) && force_o_largefile())
3787 req->open.how.flags |= O_LARGEFILE;
3788
3789 req->open.dfd = READ_ONCE(sqe->fd);
3790 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3791 req->open.filename = getname(fname);
3792 if (IS_ERR(req->open.filename)) {
3793 ret = PTR_ERR(req->open.filename);
3794 req->open.filename = NULL;
3795 return ret;
3796 }
3797 req->open.nofile = rlimit(RLIMIT_NOFILE);
3798 req->open.ignore_nonblock = false;
3799 req->flags |= REQ_F_NEED_CLEANUP;
3800 return 0;
3801 }
3802
io_openat_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)3803 static int io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3804 {
3805 u64 flags, mode;
3806
3807 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL|IORING_SETUP_SQPOLL)))
3808 return -EINVAL;
3809 mode = READ_ONCE(sqe->len);
3810 flags = READ_ONCE(sqe->open_flags);
3811 req->open.how = build_open_how(flags, mode);
3812 return __io_openat_prep(req, sqe);
3813 }
3814
io_openat2_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)3815 static int io_openat2_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3816 {
3817 struct open_how __user *how;
3818 size_t len;
3819 int ret;
3820
3821 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL|IORING_SETUP_SQPOLL)))
3822 return -EINVAL;
3823 how = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3824 len = READ_ONCE(sqe->len);
3825 if (len < OPEN_HOW_SIZE_VER0)
3826 return -EINVAL;
3827
3828 ret = copy_struct_from_user(&req->open.how, sizeof(req->open.how), how,
3829 len);
3830 if (ret)
3831 return ret;
3832
3833 return __io_openat_prep(req, sqe);
3834 }
3835
io_openat2(struct io_kiocb * req,bool force_nonblock)3836 static int io_openat2(struct io_kiocb *req, bool force_nonblock)
3837 {
3838 struct open_flags op;
3839 struct file *file;
3840 int ret;
3841
3842 if (force_nonblock && !req->open.ignore_nonblock)
3843 return -EAGAIN;
3844
3845 ret = build_open_flags(&req->open.how, &op);
3846 if (ret)
3847 goto err;
3848
3849 ret = __get_unused_fd_flags(req->open.how.flags, req->open.nofile);
3850 if (ret < 0)
3851 goto err;
3852
3853 file = do_filp_open(req->open.dfd, req->open.filename, &op);
3854 if (IS_ERR(file)) {
3855 put_unused_fd(ret);
3856 ret = PTR_ERR(file);
3857 /*
3858 * A work-around to ensure that /proc/self works that way
3859 * that it should - if we get -EOPNOTSUPP back, then assume
3860 * that proc_self_get_link() failed us because we're in async
3861 * context. We should be safe to retry this from the task
3862 * itself with force_nonblock == false set, as it should not
3863 * block on lookup. Would be nice to know this upfront and
3864 * avoid the async dance, but doesn't seem feasible.
3865 */
3866 if (ret == -EOPNOTSUPP && io_wq_current_is_worker()) {
3867 req->open.ignore_nonblock = true;
3868 refcount_inc(&req->refs);
3869 io_req_task_queue(req);
3870 return 0;
3871 }
3872 } else {
3873 fsnotify_open(file);
3874 fd_install(ret, file);
3875 }
3876 err:
3877 putname(req->open.filename);
3878 req->flags &= ~REQ_F_NEED_CLEANUP;
3879 if (ret < 0)
3880 req_set_fail_links(req);
3881 io_req_complete(req, ret);
3882 return 0;
3883 }
3884
io_openat(struct io_kiocb * req,bool force_nonblock)3885 static int io_openat(struct io_kiocb *req, bool force_nonblock)
3886 {
3887 return io_openat2(req, force_nonblock);
3888 }
3889
io_remove_buffers_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)3890 static int io_remove_buffers_prep(struct io_kiocb *req,
3891 const struct io_uring_sqe *sqe)
3892 {
3893 struct io_provide_buf *p = &req->pbuf;
3894 u64 tmp;
3895
3896 if (sqe->ioprio || sqe->rw_flags || sqe->addr || sqe->len || sqe->off)
3897 return -EINVAL;
3898
3899 tmp = READ_ONCE(sqe->fd);
3900 if (!tmp || tmp > USHRT_MAX)
3901 return -EINVAL;
3902
3903 memset(p, 0, sizeof(*p));
3904 p->nbufs = tmp;
3905 p->bgid = READ_ONCE(sqe->buf_group);
3906 return 0;
3907 }
3908
__io_remove_buffers(struct io_ring_ctx * ctx,struct io_buffer * buf,int bgid,unsigned nbufs)3909 static int __io_remove_buffers(struct io_ring_ctx *ctx, struct io_buffer *buf,
3910 int bgid, unsigned nbufs)
3911 {
3912 unsigned i = 0;
3913
3914 /* shouldn't happen */
3915 if (!nbufs)
3916 return 0;
3917
3918 /* the head kbuf is the list itself */
3919 while (!list_empty(&buf->list)) {
3920 struct io_buffer *nxt;
3921
3922 nxt = list_first_entry(&buf->list, struct io_buffer, list);
3923 list_del(&nxt->list);
3924 kfree(nxt);
3925 if (++i == nbufs)
3926 return i;
3927 }
3928 i++;
3929 kfree(buf);
3930 idr_remove(&ctx->io_buffer_idr, bgid);
3931
3932 return i;
3933 }
3934
io_remove_buffers(struct io_kiocb * req,bool force_nonblock,struct io_comp_state * cs)3935 static int io_remove_buffers(struct io_kiocb *req, bool force_nonblock,
3936 struct io_comp_state *cs)
3937 {
3938 struct io_provide_buf *p = &req->pbuf;
3939 struct io_ring_ctx *ctx = req->ctx;
3940 struct io_buffer *head;
3941 int ret = 0;
3942
3943 io_ring_submit_lock(ctx, !force_nonblock);
3944
3945 lockdep_assert_held(&ctx->uring_lock);
3946
3947 ret = -ENOENT;
3948 head = idr_find(&ctx->io_buffer_idr, p->bgid);
3949 if (head)
3950 ret = __io_remove_buffers(ctx, head, p->bgid, p->nbufs);
3951
3952 io_ring_submit_lock(ctx, !force_nonblock);
3953 if (ret < 0)
3954 req_set_fail_links(req);
3955 __io_req_complete(req, ret, 0, cs);
3956 return 0;
3957 }
3958
io_provide_buffers_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)3959 static int io_provide_buffers_prep(struct io_kiocb *req,
3960 const struct io_uring_sqe *sqe)
3961 {
3962 struct io_provide_buf *p = &req->pbuf;
3963 u64 tmp;
3964
3965 if (sqe->ioprio || sqe->rw_flags)
3966 return -EINVAL;
3967
3968 tmp = READ_ONCE(sqe->fd);
3969 if (!tmp || tmp > USHRT_MAX)
3970 return -E2BIG;
3971 p->nbufs = tmp;
3972 p->addr = READ_ONCE(sqe->addr);
3973 p->len = READ_ONCE(sqe->len);
3974
3975 if (!access_ok(u64_to_user_ptr(p->addr), (p->len * p->nbufs)))
3976 return -EFAULT;
3977
3978 p->bgid = READ_ONCE(sqe->buf_group);
3979 tmp = READ_ONCE(sqe->off);
3980 if (tmp > USHRT_MAX)
3981 return -E2BIG;
3982 p->bid = tmp;
3983 return 0;
3984 }
3985
io_add_buffers(struct io_provide_buf * pbuf,struct io_buffer ** head)3986 static int io_add_buffers(struct io_provide_buf *pbuf, struct io_buffer **head)
3987 {
3988 struct io_buffer *buf;
3989 u64 addr = pbuf->addr;
3990 int i, bid = pbuf->bid;
3991
3992 for (i = 0; i < pbuf->nbufs; i++) {
3993 buf = kmalloc(sizeof(*buf), GFP_KERNEL);
3994 if (!buf)
3995 break;
3996
3997 buf->addr = addr;
3998 buf->len = pbuf->len;
3999 buf->bid = bid;
4000 addr += pbuf->len;
4001 bid++;
4002 if (!*head) {
4003 INIT_LIST_HEAD(&buf->list);
4004 *head = buf;
4005 } else {
4006 list_add_tail(&buf->list, &(*head)->list);
4007 }
4008 }
4009
4010 return i ? i : -ENOMEM;
4011 }
4012
io_provide_buffers(struct io_kiocb * req,bool force_nonblock,struct io_comp_state * cs)4013 static int io_provide_buffers(struct io_kiocb *req, bool force_nonblock,
4014 struct io_comp_state *cs)
4015 {
4016 struct io_provide_buf *p = &req->pbuf;
4017 struct io_ring_ctx *ctx = req->ctx;
4018 struct io_buffer *head, *list;
4019 int ret = 0;
4020
4021 io_ring_submit_lock(ctx, !force_nonblock);
4022
4023 lockdep_assert_held(&ctx->uring_lock);
4024
4025 list = head = idr_find(&ctx->io_buffer_idr, p->bgid);
4026
4027 ret = io_add_buffers(p, &head);
4028 if (ret < 0)
4029 goto out;
4030
4031 if (!list) {
4032 ret = idr_alloc(&ctx->io_buffer_idr, head, p->bgid, p->bgid + 1,
4033 GFP_KERNEL);
4034 if (ret < 0) {
4035 __io_remove_buffers(ctx, head, p->bgid, -1U);
4036 goto out;
4037 }
4038 }
4039 out:
4040 io_ring_submit_unlock(ctx, !force_nonblock);
4041 if (ret < 0)
4042 req_set_fail_links(req);
4043 __io_req_complete(req, ret, 0, cs);
4044 return 0;
4045 }
4046
io_epoll_ctl_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4047 static int io_epoll_ctl_prep(struct io_kiocb *req,
4048 const struct io_uring_sqe *sqe)
4049 {
4050 #if defined(CONFIG_EPOLL)
4051 if (sqe->ioprio || sqe->buf_index)
4052 return -EINVAL;
4053 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL)))
4054 return -EINVAL;
4055
4056 req->epoll.epfd = READ_ONCE(sqe->fd);
4057 req->epoll.op = READ_ONCE(sqe->len);
4058 req->epoll.fd = READ_ONCE(sqe->off);
4059
4060 if (ep_op_has_event(req->epoll.op)) {
4061 struct epoll_event __user *ev;
4062
4063 ev = u64_to_user_ptr(READ_ONCE(sqe->addr));
4064 if (copy_from_user(&req->epoll.event, ev, sizeof(*ev)))
4065 return -EFAULT;
4066 }
4067
4068 return 0;
4069 #else
4070 return -EOPNOTSUPP;
4071 #endif
4072 }
4073
io_epoll_ctl(struct io_kiocb * req,bool force_nonblock,struct io_comp_state * cs)4074 static int io_epoll_ctl(struct io_kiocb *req, bool force_nonblock,
4075 struct io_comp_state *cs)
4076 {
4077 #if defined(CONFIG_EPOLL)
4078 struct io_epoll *ie = &req->epoll;
4079 int ret;
4080
4081 ret = do_epoll_ctl(ie->epfd, ie->op, ie->fd, &ie->event, force_nonblock);
4082 if (force_nonblock && ret == -EAGAIN)
4083 return -EAGAIN;
4084
4085 if (ret < 0)
4086 req_set_fail_links(req);
4087 __io_req_complete(req, ret, 0, cs);
4088 return 0;
4089 #else
4090 return -EOPNOTSUPP;
4091 #endif
4092 }
4093
io_madvise_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4094 static int io_madvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4095 {
4096 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4097 if (sqe->ioprio || sqe->buf_index || sqe->off)
4098 return -EINVAL;
4099 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4100 return -EINVAL;
4101
4102 req->madvise.addr = READ_ONCE(sqe->addr);
4103 req->madvise.len = READ_ONCE(sqe->len);
4104 req->madvise.advice = READ_ONCE(sqe->fadvise_advice);
4105 return 0;
4106 #else
4107 return -EOPNOTSUPP;
4108 #endif
4109 }
4110
io_madvise(struct io_kiocb * req,bool force_nonblock)4111 static int io_madvise(struct io_kiocb *req, bool force_nonblock)
4112 {
4113 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4114 struct io_madvise *ma = &req->madvise;
4115 int ret;
4116
4117 if (force_nonblock)
4118 return -EAGAIN;
4119
4120 ret = do_madvise(current->mm, ma->addr, ma->len, ma->advice);
4121 if (ret < 0)
4122 req_set_fail_links(req);
4123 io_req_complete(req, ret);
4124 return 0;
4125 #else
4126 return -EOPNOTSUPP;
4127 #endif
4128 }
4129
io_fadvise_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4130 static int io_fadvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4131 {
4132 if (sqe->ioprio || sqe->buf_index || sqe->addr)
4133 return -EINVAL;
4134 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4135 return -EINVAL;
4136
4137 req->fadvise.offset = READ_ONCE(sqe->off);
4138 req->fadvise.len = READ_ONCE(sqe->len);
4139 req->fadvise.advice = READ_ONCE(sqe->fadvise_advice);
4140 return 0;
4141 }
4142
io_fadvise(struct io_kiocb * req,bool force_nonblock)4143 static int io_fadvise(struct io_kiocb *req, bool force_nonblock)
4144 {
4145 struct io_fadvise *fa = &req->fadvise;
4146 int ret;
4147
4148 if (force_nonblock) {
4149 switch (fa->advice) {
4150 case POSIX_FADV_NORMAL:
4151 case POSIX_FADV_RANDOM:
4152 case POSIX_FADV_SEQUENTIAL:
4153 break;
4154 default:
4155 return -EAGAIN;
4156 }
4157 }
4158
4159 ret = vfs_fadvise(req->file, fa->offset, fa->len, fa->advice);
4160 if (ret < 0)
4161 req_set_fail_links(req);
4162 io_req_complete(req, ret);
4163 return 0;
4164 }
4165
io_statx_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4166 static int io_statx_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4167 {
4168 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL)))
4169 return -EINVAL;
4170 if (sqe->ioprio || sqe->buf_index)
4171 return -EINVAL;
4172 if (req->flags & REQ_F_FIXED_FILE)
4173 return -EBADF;
4174
4175 req->statx.dfd = READ_ONCE(sqe->fd);
4176 req->statx.mask = READ_ONCE(sqe->len);
4177 req->statx.filename = u64_to_user_ptr(READ_ONCE(sqe->addr));
4178 req->statx.buffer = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4179 req->statx.flags = READ_ONCE(sqe->statx_flags);
4180
4181 return 0;
4182 }
4183
io_statx(struct io_kiocb * req,bool force_nonblock)4184 static int io_statx(struct io_kiocb *req, bool force_nonblock)
4185 {
4186 struct io_statx *ctx = &req->statx;
4187 int ret;
4188
4189 if (force_nonblock) {
4190 /* only need file table for an actual valid fd */
4191 if (ctx->dfd == -1 || ctx->dfd == AT_FDCWD)
4192 req->flags |= REQ_F_NO_FILE_TABLE;
4193 return -EAGAIN;
4194 }
4195
4196 ret = do_statx(ctx->dfd, ctx->filename, ctx->flags, ctx->mask,
4197 ctx->buffer);
4198
4199 if (ret < 0)
4200 req_set_fail_links(req);
4201 io_req_complete(req, ret);
4202 return 0;
4203 }
4204
io_close_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4205 static int io_close_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4206 {
4207 /*
4208 * If we queue this for async, it must not be cancellable. That would
4209 * leave the 'file' in an undeterminate state, and here need to modify
4210 * io_wq_work.flags, so initialize io_wq_work firstly.
4211 */
4212 io_req_init_async(req);
4213 req->work.flags |= IO_WQ_WORK_NO_CANCEL;
4214
4215 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL|IORING_SETUP_SQPOLL)))
4216 return -EINVAL;
4217 if (sqe->ioprio || sqe->off || sqe->addr || sqe->len ||
4218 sqe->rw_flags || sqe->buf_index)
4219 return -EINVAL;
4220 if (req->flags & REQ_F_FIXED_FILE)
4221 return -EBADF;
4222
4223 req->close.fd = READ_ONCE(sqe->fd);
4224 if ((req->file && req->file->f_op == &io_uring_fops))
4225 return -EBADF;
4226
4227 req->close.put_file = NULL;
4228 return 0;
4229 }
4230
io_close(struct io_kiocb * req,bool force_nonblock,struct io_comp_state * cs)4231 static int io_close(struct io_kiocb *req, bool force_nonblock,
4232 struct io_comp_state *cs)
4233 {
4234 struct io_close *close = &req->close;
4235 int ret;
4236
4237 /* might be already done during nonblock submission */
4238 if (!close->put_file) {
4239 ret = __close_fd_get_file(close->fd, &close->put_file);
4240 if (ret < 0)
4241 return (ret == -ENOENT) ? -EBADF : ret;
4242 }
4243
4244 /* if the file has a flush method, be safe and punt to async */
4245 if (close->put_file->f_op->flush && force_nonblock) {
4246 /* was never set, but play safe */
4247 req->flags &= ~REQ_F_NOWAIT;
4248 /* avoid grabbing files - we don't need the files */
4249 req->flags |= REQ_F_NO_FILE_TABLE;
4250 return -EAGAIN;
4251 }
4252
4253 /* No ->flush() or already async, safely close from here */
4254 ret = filp_close(close->put_file, req->work.identity->files);
4255 if (ret < 0)
4256 req_set_fail_links(req);
4257 fput(close->put_file);
4258 close->put_file = NULL;
4259 __io_req_complete(req, ret, 0, cs);
4260 return 0;
4261 }
4262
io_prep_sfr(struct io_kiocb * req,const struct io_uring_sqe * sqe)4263 static int io_prep_sfr(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4264 {
4265 struct io_ring_ctx *ctx = req->ctx;
4266
4267 if (!req->file)
4268 return -EBADF;
4269
4270 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4271 return -EINVAL;
4272 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
4273 return -EINVAL;
4274
4275 req->sync.off = READ_ONCE(sqe->off);
4276 req->sync.len = READ_ONCE(sqe->len);
4277 req->sync.flags = READ_ONCE(sqe->sync_range_flags);
4278 return 0;
4279 }
4280
io_sync_file_range(struct io_kiocb * req,bool force_nonblock)4281 static int io_sync_file_range(struct io_kiocb *req, bool force_nonblock)
4282 {
4283 int ret;
4284
4285 /* sync_file_range always requires a blocking context */
4286 if (force_nonblock)
4287 return -EAGAIN;
4288
4289 ret = sync_file_range(req->file, req->sync.off, req->sync.len,
4290 req->sync.flags);
4291 if (ret < 0)
4292 req_set_fail_links(req);
4293 io_req_complete(req, ret);
4294 return 0;
4295 }
4296
4297 #if defined(CONFIG_NET)
io_setup_async_msg(struct io_kiocb * req,struct io_async_msghdr * kmsg)4298 static int io_setup_async_msg(struct io_kiocb *req,
4299 struct io_async_msghdr *kmsg)
4300 {
4301 struct io_async_msghdr *async_msg = req->async_data;
4302
4303 if (async_msg)
4304 return -EAGAIN;
4305 if (io_alloc_async_data(req)) {
4306 if (kmsg->iov != kmsg->fast_iov)
4307 kfree(kmsg->iov);
4308 return -ENOMEM;
4309 }
4310 async_msg = req->async_data;
4311 req->flags |= REQ_F_NEED_CLEANUP;
4312 memcpy(async_msg, kmsg, sizeof(*kmsg));
4313 return -EAGAIN;
4314 }
4315
io_sendmsg_copy_hdr(struct io_kiocb * req,struct io_async_msghdr * iomsg)4316 static int io_sendmsg_copy_hdr(struct io_kiocb *req,
4317 struct io_async_msghdr *iomsg)
4318 {
4319 iomsg->iov = iomsg->fast_iov;
4320 iomsg->msg.msg_name = &iomsg->addr;
4321 return sendmsg_copy_msghdr(&iomsg->msg, req->sr_msg.umsg,
4322 req->sr_msg.msg_flags, &iomsg->iov);
4323 }
4324
io_sendmsg_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4325 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4326 {
4327 struct io_async_msghdr *async_msg = req->async_data;
4328 struct io_sr_msg *sr = &req->sr_msg;
4329 int ret;
4330
4331 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4332 return -EINVAL;
4333
4334 sr->msg_flags = READ_ONCE(sqe->msg_flags);
4335 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4336 sr->len = READ_ONCE(sqe->len);
4337
4338 #ifdef CONFIG_COMPAT
4339 if (req->ctx->compat)
4340 sr->msg_flags |= MSG_CMSG_COMPAT;
4341 #endif
4342
4343 if (!async_msg || !io_op_defs[req->opcode].needs_async_data)
4344 return 0;
4345 ret = io_sendmsg_copy_hdr(req, async_msg);
4346 if (!ret)
4347 req->flags |= REQ_F_NEED_CLEANUP;
4348 return ret;
4349 }
4350
io_sendmsg(struct io_kiocb * req,bool force_nonblock,struct io_comp_state * cs)4351 static int io_sendmsg(struct io_kiocb *req, bool force_nonblock,
4352 struct io_comp_state *cs)
4353 {
4354 struct io_async_msghdr iomsg, *kmsg;
4355 struct socket *sock;
4356 unsigned flags;
4357 int ret;
4358
4359 sock = sock_from_file(req->file, &ret);
4360 if (unlikely(!sock))
4361 return ret;
4362
4363 if (req->async_data) {
4364 kmsg = req->async_data;
4365 kmsg->msg.msg_name = &kmsg->addr;
4366 /* if iov is set, it's allocated already */
4367 if (!kmsg->iov)
4368 kmsg->iov = kmsg->fast_iov;
4369 kmsg->msg.msg_iter.iov = kmsg->iov;
4370 } else {
4371 ret = io_sendmsg_copy_hdr(req, &iomsg);
4372 if (ret)
4373 return ret;
4374 kmsg = &iomsg;
4375 }
4376
4377 flags = req->sr_msg.msg_flags;
4378 if (flags & MSG_DONTWAIT)
4379 req->flags |= REQ_F_NOWAIT;
4380 else if (force_nonblock)
4381 flags |= MSG_DONTWAIT;
4382
4383 ret = __sys_sendmsg_sock(sock, &kmsg->msg, flags);
4384 if (force_nonblock && ret == -EAGAIN)
4385 return io_setup_async_msg(req, kmsg);
4386 if (ret == -ERESTARTSYS)
4387 ret = -EINTR;
4388
4389 if (kmsg->iov != kmsg->fast_iov)
4390 kfree(kmsg->iov);
4391 req->flags &= ~REQ_F_NEED_CLEANUP;
4392 if (ret < 0)
4393 req_set_fail_links(req);
4394 __io_req_complete(req, ret, 0, cs);
4395 return 0;
4396 }
4397
io_send(struct io_kiocb * req,bool force_nonblock,struct io_comp_state * cs)4398 static int io_send(struct io_kiocb *req, bool force_nonblock,
4399 struct io_comp_state *cs)
4400 {
4401 struct io_sr_msg *sr = &req->sr_msg;
4402 struct msghdr msg;
4403 struct iovec iov;
4404 struct socket *sock;
4405 unsigned flags;
4406 int ret;
4407
4408 sock = sock_from_file(req->file, &ret);
4409 if (unlikely(!sock))
4410 return ret;
4411
4412 ret = import_single_range(WRITE, sr->buf, sr->len, &iov, &msg.msg_iter);
4413 if (unlikely(ret))
4414 return ret;
4415
4416 msg.msg_name = NULL;
4417 msg.msg_control = NULL;
4418 msg.msg_controllen = 0;
4419 msg.msg_namelen = 0;
4420
4421 flags = req->sr_msg.msg_flags;
4422 if (flags & MSG_DONTWAIT)
4423 req->flags |= REQ_F_NOWAIT;
4424 else if (force_nonblock)
4425 flags |= MSG_DONTWAIT;
4426
4427 msg.msg_flags = flags;
4428 ret = sock_sendmsg(sock, &msg);
4429 if (force_nonblock && ret == -EAGAIN)
4430 return -EAGAIN;
4431 if (ret == -ERESTARTSYS)
4432 ret = -EINTR;
4433
4434 if (ret < 0)
4435 req_set_fail_links(req);
4436 __io_req_complete(req, ret, 0, cs);
4437 return 0;
4438 }
4439
__io_recvmsg_copy_hdr(struct io_kiocb * req,struct io_async_msghdr * iomsg)4440 static int __io_recvmsg_copy_hdr(struct io_kiocb *req,
4441 struct io_async_msghdr *iomsg)
4442 {
4443 struct io_sr_msg *sr = &req->sr_msg;
4444 struct iovec __user *uiov;
4445 size_t iov_len;
4446 int ret;
4447
4448 ret = __copy_msghdr_from_user(&iomsg->msg, sr->umsg,
4449 &iomsg->uaddr, &uiov, &iov_len);
4450 if (ret)
4451 return ret;
4452
4453 if (req->flags & REQ_F_BUFFER_SELECT) {
4454 if (iov_len > 1)
4455 return -EINVAL;
4456 if (copy_from_user(iomsg->iov, uiov, sizeof(*uiov)))
4457 return -EFAULT;
4458 sr->len = iomsg->iov[0].iov_len;
4459 iov_iter_init(&iomsg->msg.msg_iter, READ, iomsg->iov, 1,
4460 sr->len);
4461 iomsg->iov = NULL;
4462 } else {
4463 ret = __import_iovec(READ, uiov, iov_len, UIO_FASTIOV,
4464 &iomsg->iov, &iomsg->msg.msg_iter,
4465 false);
4466 if (ret > 0)
4467 ret = 0;
4468 }
4469
4470 return ret;
4471 }
4472
4473 #ifdef CONFIG_COMPAT
__io_compat_recvmsg_copy_hdr(struct io_kiocb * req,struct io_async_msghdr * iomsg)4474 static int __io_compat_recvmsg_copy_hdr(struct io_kiocb *req,
4475 struct io_async_msghdr *iomsg)
4476 {
4477 struct compat_msghdr __user *msg_compat;
4478 struct io_sr_msg *sr = &req->sr_msg;
4479 struct compat_iovec __user *uiov;
4480 compat_uptr_t ptr;
4481 compat_size_t len;
4482 int ret;
4483
4484 msg_compat = (struct compat_msghdr __user *) sr->umsg;
4485 ret = __get_compat_msghdr(&iomsg->msg, msg_compat, &iomsg->uaddr,
4486 &ptr, &len);
4487 if (ret)
4488 return ret;
4489
4490 uiov = compat_ptr(ptr);
4491 if (req->flags & REQ_F_BUFFER_SELECT) {
4492 compat_ssize_t clen;
4493
4494 if (len > 1)
4495 return -EINVAL;
4496 if (!access_ok(uiov, sizeof(*uiov)))
4497 return -EFAULT;
4498 if (__get_user(clen, &uiov->iov_len))
4499 return -EFAULT;
4500 if (clen < 0)
4501 return -EINVAL;
4502 sr->len = clen;
4503 iomsg->iov[0].iov_len = clen;
4504 iomsg->iov = NULL;
4505 } else {
4506 ret = __import_iovec(READ, (struct iovec __user *)uiov, len,
4507 UIO_FASTIOV, &iomsg->iov,
4508 &iomsg->msg.msg_iter, true);
4509 if (ret < 0)
4510 return ret;
4511 }
4512
4513 return 0;
4514 }
4515 #endif
4516
io_recvmsg_copy_hdr(struct io_kiocb * req,struct io_async_msghdr * iomsg)4517 static int io_recvmsg_copy_hdr(struct io_kiocb *req,
4518 struct io_async_msghdr *iomsg)
4519 {
4520 iomsg->msg.msg_name = &iomsg->addr;
4521 iomsg->iov = iomsg->fast_iov;
4522
4523 #ifdef CONFIG_COMPAT
4524 if (req->ctx->compat)
4525 return __io_compat_recvmsg_copy_hdr(req, iomsg);
4526 #endif
4527
4528 return __io_recvmsg_copy_hdr(req, iomsg);
4529 }
4530
io_recv_buffer_select(struct io_kiocb * req,bool needs_lock)4531 static struct io_buffer *io_recv_buffer_select(struct io_kiocb *req,
4532 bool needs_lock)
4533 {
4534 struct io_sr_msg *sr = &req->sr_msg;
4535 struct io_buffer *kbuf;
4536
4537 kbuf = io_buffer_select(req, &sr->len, sr->bgid, sr->kbuf, needs_lock);
4538 if (IS_ERR(kbuf))
4539 return kbuf;
4540
4541 sr->kbuf = kbuf;
4542 req->flags |= REQ_F_BUFFER_SELECTED;
4543 return kbuf;
4544 }
4545
io_put_recv_kbuf(struct io_kiocb * req)4546 static inline unsigned int io_put_recv_kbuf(struct io_kiocb *req)
4547 {
4548 return io_put_kbuf(req, req->sr_msg.kbuf);
4549 }
4550
io_recvmsg_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4551 static int io_recvmsg_prep(struct io_kiocb *req,
4552 const struct io_uring_sqe *sqe)
4553 {
4554 struct io_async_msghdr *async_msg = req->async_data;
4555 struct io_sr_msg *sr = &req->sr_msg;
4556 int ret;
4557
4558 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4559 return -EINVAL;
4560
4561 sr->msg_flags = READ_ONCE(sqe->msg_flags);
4562 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4563 sr->len = READ_ONCE(sqe->len);
4564 sr->bgid = READ_ONCE(sqe->buf_group);
4565
4566 #ifdef CONFIG_COMPAT
4567 if (req->ctx->compat)
4568 sr->msg_flags |= MSG_CMSG_COMPAT;
4569 #endif
4570
4571 if (!async_msg || !io_op_defs[req->opcode].needs_async_data)
4572 return 0;
4573 ret = io_recvmsg_copy_hdr(req, async_msg);
4574 if (!ret)
4575 req->flags |= REQ_F_NEED_CLEANUP;
4576 return ret;
4577 }
4578
io_recvmsg(struct io_kiocb * req,bool force_nonblock,struct io_comp_state * cs)4579 static int io_recvmsg(struct io_kiocb *req, bool force_nonblock,
4580 struct io_comp_state *cs)
4581 {
4582 struct io_async_msghdr iomsg, *kmsg;
4583 struct socket *sock;
4584 struct io_buffer *kbuf;
4585 unsigned flags;
4586 int ret, cflags = 0;
4587
4588 sock = sock_from_file(req->file, &ret);
4589 if (unlikely(!sock))
4590 return ret;
4591
4592 if (req->async_data) {
4593 kmsg = req->async_data;
4594 kmsg->msg.msg_name = &kmsg->addr;
4595 /* if iov is set, it's allocated already */
4596 if (!kmsg->iov)
4597 kmsg->iov = kmsg->fast_iov;
4598 kmsg->msg.msg_iter.iov = kmsg->iov;
4599 } else {
4600 ret = io_recvmsg_copy_hdr(req, &iomsg);
4601 if (ret)
4602 return ret;
4603 kmsg = &iomsg;
4604 }
4605
4606 if (req->flags & REQ_F_BUFFER_SELECT) {
4607 kbuf = io_recv_buffer_select(req, !force_nonblock);
4608 if (IS_ERR(kbuf))
4609 return PTR_ERR(kbuf);
4610 kmsg->fast_iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
4611 iov_iter_init(&kmsg->msg.msg_iter, READ, kmsg->iov,
4612 1, req->sr_msg.len);
4613 }
4614
4615 flags = req->sr_msg.msg_flags;
4616 if (flags & MSG_DONTWAIT)
4617 req->flags |= REQ_F_NOWAIT;
4618 else if (force_nonblock)
4619 flags |= MSG_DONTWAIT;
4620
4621 ret = __sys_recvmsg_sock(sock, &kmsg->msg, req->sr_msg.umsg,
4622 kmsg->uaddr, flags);
4623 if (force_nonblock && ret == -EAGAIN)
4624 return io_setup_async_msg(req, kmsg);
4625 if (ret == -ERESTARTSYS)
4626 ret = -EINTR;
4627
4628 if (req->flags & REQ_F_BUFFER_SELECTED)
4629 cflags = io_put_recv_kbuf(req);
4630 if (kmsg->iov != kmsg->fast_iov)
4631 kfree(kmsg->iov);
4632 req->flags &= ~REQ_F_NEED_CLEANUP;
4633 if (ret < 0)
4634 req_set_fail_links(req);
4635 __io_req_complete(req, ret, cflags, cs);
4636 return 0;
4637 }
4638
io_recv(struct io_kiocb * req,bool force_nonblock,struct io_comp_state * cs)4639 static int io_recv(struct io_kiocb *req, bool force_nonblock,
4640 struct io_comp_state *cs)
4641 {
4642 struct io_buffer *kbuf;
4643 struct io_sr_msg *sr = &req->sr_msg;
4644 struct msghdr msg;
4645 void __user *buf = sr->buf;
4646 struct socket *sock;
4647 struct iovec iov;
4648 unsigned flags;
4649 int ret, cflags = 0;
4650
4651 sock = sock_from_file(req->file, &ret);
4652 if (unlikely(!sock))
4653 return ret;
4654
4655 if (req->flags & REQ_F_BUFFER_SELECT) {
4656 kbuf = io_recv_buffer_select(req, !force_nonblock);
4657 if (IS_ERR(kbuf))
4658 return PTR_ERR(kbuf);
4659 buf = u64_to_user_ptr(kbuf->addr);
4660 }
4661
4662 ret = import_single_range(READ, buf, sr->len, &iov, &msg.msg_iter);
4663 if (unlikely(ret))
4664 goto out_free;
4665
4666 msg.msg_name = NULL;
4667 msg.msg_control = NULL;
4668 msg.msg_controllen = 0;
4669 msg.msg_namelen = 0;
4670 msg.msg_iocb = NULL;
4671 msg.msg_flags = 0;
4672
4673 flags = req->sr_msg.msg_flags;
4674 if (flags & MSG_DONTWAIT)
4675 req->flags |= REQ_F_NOWAIT;
4676 else if (force_nonblock)
4677 flags |= MSG_DONTWAIT;
4678
4679 ret = sock_recvmsg(sock, &msg, flags);
4680 if (force_nonblock && ret == -EAGAIN)
4681 return -EAGAIN;
4682 if (ret == -ERESTARTSYS)
4683 ret = -EINTR;
4684 out_free:
4685 if (req->flags & REQ_F_BUFFER_SELECTED)
4686 cflags = io_put_recv_kbuf(req);
4687 if (ret < 0)
4688 req_set_fail_links(req);
4689 __io_req_complete(req, ret, cflags, cs);
4690 return 0;
4691 }
4692
io_accept_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4693 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4694 {
4695 struct io_accept *accept = &req->accept;
4696
4697 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL|IORING_SETUP_SQPOLL)))
4698 return -EINVAL;
4699 if (sqe->ioprio || sqe->len || sqe->buf_index)
4700 return -EINVAL;
4701
4702 accept->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
4703 accept->addr_len = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4704 accept->flags = READ_ONCE(sqe->accept_flags);
4705 accept->nofile = rlimit(RLIMIT_NOFILE);
4706 return 0;
4707 }
4708
io_accept(struct io_kiocb * req,bool force_nonblock,struct io_comp_state * cs)4709 static int io_accept(struct io_kiocb *req, bool force_nonblock,
4710 struct io_comp_state *cs)
4711 {
4712 struct io_accept *accept = &req->accept;
4713 unsigned int file_flags = force_nonblock ? O_NONBLOCK : 0;
4714 int ret;
4715
4716 if (req->file->f_flags & O_NONBLOCK)
4717 req->flags |= REQ_F_NOWAIT;
4718
4719 ret = __sys_accept4_file(req->file, file_flags, accept->addr,
4720 accept->addr_len, accept->flags,
4721 accept->nofile);
4722 if (ret == -EAGAIN && force_nonblock)
4723 return -EAGAIN;
4724 if (ret < 0) {
4725 if (ret == -ERESTARTSYS)
4726 ret = -EINTR;
4727 req_set_fail_links(req);
4728 }
4729 __io_req_complete(req, ret, 0, cs);
4730 return 0;
4731 }
4732
io_connect_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4733 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4734 {
4735 struct io_connect *conn = &req->connect;
4736 struct io_async_connect *io = req->async_data;
4737
4738 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL|IORING_SETUP_SQPOLL)))
4739 return -EINVAL;
4740 if (sqe->ioprio || sqe->len || sqe->buf_index || sqe->rw_flags)
4741 return -EINVAL;
4742
4743 conn->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
4744 conn->addr_len = READ_ONCE(sqe->addr2);
4745
4746 if (!io)
4747 return 0;
4748
4749 return move_addr_to_kernel(conn->addr, conn->addr_len,
4750 &io->address);
4751 }
4752
io_connect(struct io_kiocb * req,bool force_nonblock,struct io_comp_state * cs)4753 static int io_connect(struct io_kiocb *req, bool force_nonblock,
4754 struct io_comp_state *cs)
4755 {
4756 struct io_async_connect __io, *io;
4757 unsigned file_flags;
4758 int ret;
4759
4760 if (req->async_data) {
4761 io = req->async_data;
4762 } else {
4763 ret = move_addr_to_kernel(req->connect.addr,
4764 req->connect.addr_len,
4765 &__io.address);
4766 if (ret)
4767 goto out;
4768 io = &__io;
4769 }
4770
4771 file_flags = force_nonblock ? O_NONBLOCK : 0;
4772
4773 ret = __sys_connect_file(req->file, &io->address,
4774 req->connect.addr_len, file_flags);
4775 if ((ret == -EAGAIN || ret == -EINPROGRESS) && force_nonblock) {
4776 if (req->async_data)
4777 return -EAGAIN;
4778 if (io_alloc_async_data(req)) {
4779 ret = -ENOMEM;
4780 goto out;
4781 }
4782 io = req->async_data;
4783 memcpy(req->async_data, &__io, sizeof(__io));
4784 return -EAGAIN;
4785 }
4786 if (ret == -ERESTARTSYS)
4787 ret = -EINTR;
4788 out:
4789 if (ret < 0)
4790 req_set_fail_links(req);
4791 __io_req_complete(req, ret, 0, cs);
4792 return 0;
4793 }
4794 #else /* !CONFIG_NET */
io_sendmsg_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4795 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4796 {
4797 return -EOPNOTSUPP;
4798 }
4799
io_sendmsg(struct io_kiocb * req,bool force_nonblock,struct io_comp_state * cs)4800 static int io_sendmsg(struct io_kiocb *req, bool force_nonblock,
4801 struct io_comp_state *cs)
4802 {
4803 return -EOPNOTSUPP;
4804 }
4805
io_send(struct io_kiocb * req,bool force_nonblock,struct io_comp_state * cs)4806 static int io_send(struct io_kiocb *req, bool force_nonblock,
4807 struct io_comp_state *cs)
4808 {
4809 return -EOPNOTSUPP;
4810 }
4811
io_recvmsg_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4812 static int io_recvmsg_prep(struct io_kiocb *req,
4813 const struct io_uring_sqe *sqe)
4814 {
4815 return -EOPNOTSUPP;
4816 }
4817
io_recvmsg(struct io_kiocb * req,bool force_nonblock,struct io_comp_state * cs)4818 static int io_recvmsg(struct io_kiocb *req, bool force_nonblock,
4819 struct io_comp_state *cs)
4820 {
4821 return -EOPNOTSUPP;
4822 }
4823
io_recv(struct io_kiocb * req,bool force_nonblock,struct io_comp_state * cs)4824 static int io_recv(struct io_kiocb *req, bool force_nonblock,
4825 struct io_comp_state *cs)
4826 {
4827 return -EOPNOTSUPP;
4828 }
4829
io_accept_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4830 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4831 {
4832 return -EOPNOTSUPP;
4833 }
4834
io_accept(struct io_kiocb * req,bool force_nonblock,struct io_comp_state * cs)4835 static int io_accept(struct io_kiocb *req, bool force_nonblock,
4836 struct io_comp_state *cs)
4837 {
4838 return -EOPNOTSUPP;
4839 }
4840
io_connect_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4841 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4842 {
4843 return -EOPNOTSUPP;
4844 }
4845
io_connect(struct io_kiocb * req,bool force_nonblock,struct io_comp_state * cs)4846 static int io_connect(struct io_kiocb *req, bool force_nonblock,
4847 struct io_comp_state *cs)
4848 {
4849 return -EOPNOTSUPP;
4850 }
4851 #endif /* CONFIG_NET */
4852
4853 struct io_poll_table {
4854 struct poll_table_struct pt;
4855 struct io_kiocb *req;
4856 int error;
4857 };
4858
__io_async_wake(struct io_kiocb * req,struct io_poll_iocb * poll,__poll_t mask,task_work_func_t func)4859 static int __io_async_wake(struct io_kiocb *req, struct io_poll_iocb *poll,
4860 __poll_t mask, task_work_func_t func)
4861 {
4862 bool twa_signal_ok;
4863 int ret;
4864
4865 /* for instances that support it check for an event match first: */
4866 if (mask && !(mask & poll->events))
4867 return 0;
4868
4869 trace_io_uring_task_add(req->ctx, req->opcode, req->user_data, mask);
4870
4871 list_del_init(&poll->wait.entry);
4872
4873 req->result = mask;
4874 init_task_work(&req->task_work, func);
4875 percpu_ref_get(&req->ctx->refs);
4876
4877 /*
4878 * If we using the signalfd wait_queue_head for this wakeup, then
4879 * it's not safe to use TWA_SIGNAL as we could be recursing on the
4880 * tsk->sighand->siglock on doing the wakeup. Should not be needed
4881 * either, as the normal wakeup will suffice.
4882 */
4883 twa_signal_ok = (poll->head != &req->task->sighand->signalfd_wqh);
4884
4885 /*
4886 * If this fails, then the task is exiting. When a task exits, the
4887 * work gets canceled, so just cancel this request as well instead
4888 * of executing it. We can't safely execute it anyway, as we may not
4889 * have the needed state needed for it anyway.
4890 */
4891 ret = io_req_task_work_add(req, twa_signal_ok);
4892 if (unlikely(ret)) {
4893 struct task_struct *tsk;
4894
4895 WRITE_ONCE(poll->canceled, true);
4896 tsk = io_wq_get_task(req->ctx->io_wq);
4897 task_work_add(tsk, &req->task_work, TWA_NONE);
4898 wake_up_process(tsk);
4899 }
4900 return 1;
4901 }
4902
io_poll_rewait(struct io_kiocb * req,struct io_poll_iocb * poll)4903 static bool io_poll_rewait(struct io_kiocb *req, struct io_poll_iocb *poll)
4904 __acquires(&req->ctx->completion_lock)
4905 {
4906 struct io_ring_ctx *ctx = req->ctx;
4907
4908 if (!req->result && !READ_ONCE(poll->canceled)) {
4909 struct poll_table_struct pt = { ._key = poll->events };
4910
4911 req->result = vfs_poll(req->file, &pt) & poll->events;
4912 }
4913
4914 spin_lock_irq(&ctx->completion_lock);
4915 if (!req->result && !READ_ONCE(poll->canceled)) {
4916 add_wait_queue(poll->head, &poll->wait);
4917 return true;
4918 }
4919
4920 return false;
4921 }
4922
io_poll_get_double(struct io_kiocb * req)4923 static struct io_poll_iocb *io_poll_get_double(struct io_kiocb *req)
4924 {
4925 /* pure poll stashes this in ->async_data, poll driven retry elsewhere */
4926 if (req->opcode == IORING_OP_POLL_ADD)
4927 return req->async_data;
4928 return req->apoll->double_poll;
4929 }
4930
io_poll_get_single(struct io_kiocb * req)4931 static struct io_poll_iocb *io_poll_get_single(struct io_kiocb *req)
4932 {
4933 if (req->opcode == IORING_OP_POLL_ADD)
4934 return &req->poll;
4935 return &req->apoll->poll;
4936 }
4937
io_poll_remove_double(struct io_kiocb * req)4938 static void io_poll_remove_double(struct io_kiocb *req)
4939 {
4940 struct io_poll_iocb *poll = io_poll_get_double(req);
4941
4942 lockdep_assert_held(&req->ctx->completion_lock);
4943
4944 if (poll && poll->head) {
4945 struct wait_queue_head *head = poll->head;
4946
4947 spin_lock(&head->lock);
4948 list_del_init(&poll->wait.entry);
4949 if (poll->wait.private)
4950 refcount_dec(&req->refs);
4951 poll->head = NULL;
4952 spin_unlock(&head->lock);
4953 }
4954 }
4955
io_poll_complete(struct io_kiocb * req,__poll_t mask,int error)4956 static void io_poll_complete(struct io_kiocb *req, __poll_t mask, int error)
4957 {
4958 struct io_ring_ctx *ctx = req->ctx;
4959
4960 io_poll_remove_double(req);
4961 req->poll.done = true;
4962 io_cqring_fill_event(req, error ? error : mangle_poll(mask));
4963 io_commit_cqring(ctx);
4964 }
4965
io_poll_task_func(struct callback_head * cb)4966 static void io_poll_task_func(struct callback_head *cb)
4967 {
4968 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
4969 struct io_ring_ctx *ctx = req->ctx;
4970 struct io_kiocb *nxt;
4971
4972 if (io_poll_rewait(req, &req->poll)) {
4973 spin_unlock_irq(&ctx->completion_lock);
4974 } else {
4975 hash_del(&req->hash_node);
4976 io_poll_complete(req, req->result, 0);
4977 spin_unlock_irq(&ctx->completion_lock);
4978
4979 nxt = io_put_req_find_next(req);
4980 io_cqring_ev_posted(ctx);
4981 if (nxt)
4982 __io_req_task_submit(nxt);
4983 }
4984
4985 percpu_ref_put(&ctx->refs);
4986 }
4987
io_poll_double_wake(struct wait_queue_entry * wait,unsigned mode,int sync,void * key)4988 static int io_poll_double_wake(struct wait_queue_entry *wait, unsigned mode,
4989 int sync, void *key)
4990 {
4991 struct io_kiocb *req = wait->private;
4992 struct io_poll_iocb *poll = io_poll_get_single(req);
4993 __poll_t mask = key_to_poll(key);
4994
4995 /* for instances that support it check for an event match first: */
4996 if (mask && !(mask & poll->events))
4997 return 0;
4998
4999 list_del_init(&wait->entry);
5000
5001 if (poll && poll->head) {
5002 bool done;
5003
5004 spin_lock(&poll->head->lock);
5005 done = list_empty(&poll->wait.entry);
5006 if (!done)
5007 list_del_init(&poll->wait.entry);
5008 /* make sure double remove sees this as being gone */
5009 wait->private = NULL;
5010 spin_unlock(&poll->head->lock);
5011 if (!done) {
5012 /* use wait func handler, so it matches the rq type */
5013 poll->wait.func(&poll->wait, mode, sync, key);
5014 }
5015 }
5016 refcount_dec(&req->refs);
5017 return 1;
5018 }
5019
io_init_poll_iocb(struct io_poll_iocb * poll,__poll_t events,wait_queue_func_t wake_func)5020 static void io_init_poll_iocb(struct io_poll_iocb *poll, __poll_t events,
5021 wait_queue_func_t wake_func)
5022 {
5023 poll->head = NULL;
5024 poll->done = false;
5025 poll->canceled = false;
5026 poll->events = events;
5027 INIT_LIST_HEAD(&poll->wait.entry);
5028 init_waitqueue_func_entry(&poll->wait, wake_func);
5029 }
5030
__io_queue_proc(struct io_poll_iocb * poll,struct io_poll_table * pt,struct wait_queue_head * head,struct io_poll_iocb ** poll_ptr)5031 static void __io_queue_proc(struct io_poll_iocb *poll, struct io_poll_table *pt,
5032 struct wait_queue_head *head,
5033 struct io_poll_iocb **poll_ptr)
5034 {
5035 struct io_kiocb *req = pt->req;
5036
5037 /*
5038 * If poll->head is already set, it's because the file being polled
5039 * uses multiple waitqueues for poll handling (eg one for read, one
5040 * for write). Setup a separate io_poll_iocb if this happens.
5041 */
5042 if (unlikely(poll->head)) {
5043 struct io_poll_iocb *poll_one = poll;
5044
5045 /* already have a 2nd entry, fail a third attempt */
5046 if (*poll_ptr) {
5047 pt->error = -EINVAL;
5048 return;
5049 }
5050 poll = kmalloc(sizeof(*poll), GFP_ATOMIC);
5051 if (!poll) {
5052 pt->error = -ENOMEM;
5053 return;
5054 }
5055 io_init_poll_iocb(poll, poll_one->events, io_poll_double_wake);
5056 refcount_inc(&req->refs);
5057 poll->wait.private = req;
5058 *poll_ptr = poll;
5059 }
5060
5061 pt->error = 0;
5062 poll->head = head;
5063
5064 if (poll->events & EPOLLEXCLUSIVE)
5065 add_wait_queue_exclusive(head, &poll->wait);
5066 else
5067 add_wait_queue(head, &poll->wait);
5068 }
5069
io_async_queue_proc(struct file * file,struct wait_queue_head * head,struct poll_table_struct * p)5070 static void io_async_queue_proc(struct file *file, struct wait_queue_head *head,
5071 struct poll_table_struct *p)
5072 {
5073 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5074 struct async_poll *apoll = pt->req->apoll;
5075
5076 __io_queue_proc(&apoll->poll, pt, head, &apoll->double_poll);
5077 }
5078
io_async_task_func(struct callback_head * cb)5079 static void io_async_task_func(struct callback_head *cb)
5080 {
5081 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
5082 struct async_poll *apoll = req->apoll;
5083 struct io_ring_ctx *ctx = req->ctx;
5084
5085 trace_io_uring_task_run(req->ctx, req->opcode, req->user_data);
5086
5087 if (io_poll_rewait(req, &apoll->poll)) {
5088 spin_unlock_irq(&ctx->completion_lock);
5089 percpu_ref_put(&ctx->refs);
5090 return;
5091 }
5092
5093 /* If req is still hashed, it cannot have been canceled. Don't check. */
5094 if (hash_hashed(&req->hash_node))
5095 hash_del(&req->hash_node);
5096
5097 io_poll_remove_double(req);
5098 spin_unlock_irq(&ctx->completion_lock);
5099
5100 if (!READ_ONCE(apoll->poll.canceled))
5101 __io_req_task_submit(req);
5102 else
5103 __io_req_task_cancel(req, -ECANCELED);
5104
5105 percpu_ref_put(&ctx->refs);
5106 kfree(apoll->double_poll);
5107 kfree(apoll);
5108 }
5109
io_async_wake(struct wait_queue_entry * wait,unsigned mode,int sync,void * key)5110 static int io_async_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5111 void *key)
5112 {
5113 struct io_kiocb *req = wait->private;
5114 struct io_poll_iocb *poll = &req->apoll->poll;
5115
5116 trace_io_uring_poll_wake(req->ctx, req->opcode, req->user_data,
5117 key_to_poll(key));
5118
5119 return __io_async_wake(req, poll, key_to_poll(key), io_async_task_func);
5120 }
5121
io_poll_req_insert(struct io_kiocb * req)5122 static void io_poll_req_insert(struct io_kiocb *req)
5123 {
5124 struct io_ring_ctx *ctx = req->ctx;
5125 struct hlist_head *list;
5126
5127 list = &ctx->cancel_hash[hash_long(req->user_data, ctx->cancel_hash_bits)];
5128 hlist_add_head(&req->hash_node, list);
5129 }
5130
__io_arm_poll_handler(struct io_kiocb * req,struct io_poll_iocb * poll,struct io_poll_table * ipt,__poll_t mask,wait_queue_func_t wake_func)5131 static __poll_t __io_arm_poll_handler(struct io_kiocb *req,
5132 struct io_poll_iocb *poll,
5133 struct io_poll_table *ipt, __poll_t mask,
5134 wait_queue_func_t wake_func)
5135 __acquires(&ctx->completion_lock)
5136 {
5137 struct io_ring_ctx *ctx = req->ctx;
5138 bool cancel = false;
5139
5140 INIT_HLIST_NODE(&req->hash_node);
5141 io_init_poll_iocb(poll, mask, wake_func);
5142 poll->file = req->file;
5143 poll->wait.private = req;
5144
5145 ipt->pt._key = mask;
5146 ipt->req = req;
5147 ipt->error = -EINVAL;
5148
5149 mask = vfs_poll(req->file, &ipt->pt) & poll->events;
5150
5151 spin_lock_irq(&ctx->completion_lock);
5152 if (likely(poll->head)) {
5153 spin_lock(&poll->head->lock);
5154 if (unlikely(list_empty(&poll->wait.entry))) {
5155 if (ipt->error)
5156 cancel = true;
5157 ipt->error = 0;
5158 mask = 0;
5159 }
5160 if (mask || ipt->error)
5161 list_del_init(&poll->wait.entry);
5162 else if (cancel)
5163 WRITE_ONCE(poll->canceled, true);
5164 else if (!poll->done) /* actually waiting for an event */
5165 io_poll_req_insert(req);
5166 spin_unlock(&poll->head->lock);
5167 }
5168
5169 return mask;
5170 }
5171
io_arm_poll_handler(struct io_kiocb * req)5172 static bool io_arm_poll_handler(struct io_kiocb *req)
5173 {
5174 const struct io_op_def *def = &io_op_defs[req->opcode];
5175 struct io_ring_ctx *ctx = req->ctx;
5176 struct async_poll *apoll;
5177 struct io_poll_table ipt;
5178 __poll_t mask, ret;
5179 int rw;
5180
5181 if (!req->file || !file_can_poll(req->file))
5182 return false;
5183 if (req->flags & REQ_F_POLLED)
5184 return false;
5185 if (def->pollin)
5186 rw = READ;
5187 else if (def->pollout)
5188 rw = WRITE;
5189 else
5190 return false;
5191 /* if we can't nonblock try, then no point in arming a poll handler */
5192 if (!io_file_supports_async(req->file, rw))
5193 return false;
5194
5195 apoll = kmalloc(sizeof(*apoll), GFP_ATOMIC);
5196 if (unlikely(!apoll))
5197 return false;
5198 apoll->double_poll = NULL;
5199
5200 req->flags |= REQ_F_POLLED;
5201 req->apoll = apoll;
5202
5203 mask = 0;
5204 if (def->pollin)
5205 mask |= POLLIN | POLLRDNORM;
5206 if (def->pollout)
5207 mask |= POLLOUT | POLLWRNORM;
5208
5209 /* If reading from MSG_ERRQUEUE using recvmsg, ignore POLLIN */
5210 if ((req->opcode == IORING_OP_RECVMSG) &&
5211 (req->sr_msg.msg_flags & MSG_ERRQUEUE))
5212 mask &= ~POLLIN;
5213
5214 mask |= POLLERR | POLLPRI;
5215
5216 ipt.pt._qproc = io_async_queue_proc;
5217
5218 ret = __io_arm_poll_handler(req, &apoll->poll, &ipt, mask,
5219 io_async_wake);
5220 if (ret || ipt.error) {
5221 io_poll_remove_double(req);
5222 spin_unlock_irq(&ctx->completion_lock);
5223 kfree(apoll->double_poll);
5224 kfree(apoll);
5225 return false;
5226 }
5227 spin_unlock_irq(&ctx->completion_lock);
5228 trace_io_uring_poll_arm(ctx, req->opcode, req->user_data, mask,
5229 apoll->poll.events);
5230 return true;
5231 }
5232
__io_poll_remove_one(struct io_kiocb * req,struct io_poll_iocb * poll)5233 static bool __io_poll_remove_one(struct io_kiocb *req,
5234 struct io_poll_iocb *poll)
5235 {
5236 bool do_complete = false;
5237
5238 spin_lock(&poll->head->lock);
5239 WRITE_ONCE(poll->canceled, true);
5240 if (!list_empty(&poll->wait.entry)) {
5241 list_del_init(&poll->wait.entry);
5242 do_complete = true;
5243 }
5244 spin_unlock(&poll->head->lock);
5245 hash_del(&req->hash_node);
5246 return do_complete;
5247 }
5248
io_poll_remove_one(struct io_kiocb * req)5249 static bool io_poll_remove_one(struct io_kiocb *req)
5250 {
5251 bool do_complete;
5252
5253 io_poll_remove_double(req);
5254
5255 if (req->opcode == IORING_OP_POLL_ADD) {
5256 do_complete = __io_poll_remove_one(req, &req->poll);
5257 } else {
5258 struct async_poll *apoll = req->apoll;
5259
5260 /* non-poll requests have submit ref still */
5261 do_complete = __io_poll_remove_one(req, &apoll->poll);
5262 if (do_complete) {
5263 io_put_req(req);
5264 kfree(apoll->double_poll);
5265 kfree(apoll);
5266 }
5267 }
5268
5269 if (do_complete) {
5270 io_cqring_fill_event(req, -ECANCELED);
5271 io_commit_cqring(req->ctx);
5272 req_set_fail_links(req);
5273 io_put_req_deferred(req, 1);
5274 }
5275
5276 return do_complete;
5277 }
5278
5279 /*
5280 * Returns true if we found and killed one or more poll requests
5281 */
io_poll_remove_all(struct io_ring_ctx * ctx,struct task_struct * tsk)5282 static bool io_poll_remove_all(struct io_ring_ctx *ctx, struct task_struct *tsk)
5283 {
5284 struct hlist_node *tmp;
5285 struct io_kiocb *req;
5286 int posted = 0, i;
5287
5288 spin_lock_irq(&ctx->completion_lock);
5289 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
5290 struct hlist_head *list;
5291
5292 list = &ctx->cancel_hash[i];
5293 hlist_for_each_entry_safe(req, tmp, list, hash_node) {
5294 if (io_task_match(req, tsk))
5295 posted += io_poll_remove_one(req);
5296 }
5297 }
5298 spin_unlock_irq(&ctx->completion_lock);
5299
5300 if (posted)
5301 io_cqring_ev_posted(ctx);
5302
5303 return posted != 0;
5304 }
5305
io_poll_cancel(struct io_ring_ctx * ctx,__u64 sqe_addr)5306 static int io_poll_cancel(struct io_ring_ctx *ctx, __u64 sqe_addr)
5307 {
5308 struct hlist_head *list;
5309 struct io_kiocb *req;
5310
5311 list = &ctx->cancel_hash[hash_long(sqe_addr, ctx->cancel_hash_bits)];
5312 hlist_for_each_entry(req, list, hash_node) {
5313 if (sqe_addr != req->user_data)
5314 continue;
5315 if (io_poll_remove_one(req))
5316 return 0;
5317 return -EALREADY;
5318 }
5319
5320 return -ENOENT;
5321 }
5322
io_poll_remove_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)5323 static int io_poll_remove_prep(struct io_kiocb *req,
5324 const struct io_uring_sqe *sqe)
5325 {
5326 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5327 return -EINVAL;
5328 if (sqe->ioprio || sqe->off || sqe->len || sqe->buf_index ||
5329 sqe->poll_events)
5330 return -EINVAL;
5331
5332 req->poll.addr = READ_ONCE(sqe->addr);
5333 return 0;
5334 }
5335
5336 /*
5337 * Find a running poll command that matches one specified in sqe->addr,
5338 * and remove it if found.
5339 */
io_poll_remove(struct io_kiocb * req)5340 static int io_poll_remove(struct io_kiocb *req)
5341 {
5342 struct io_ring_ctx *ctx = req->ctx;
5343 u64 addr;
5344 int ret;
5345
5346 addr = req->poll.addr;
5347 spin_lock_irq(&ctx->completion_lock);
5348 ret = io_poll_cancel(ctx, addr);
5349 spin_unlock_irq(&ctx->completion_lock);
5350
5351 if (ret < 0)
5352 req_set_fail_links(req);
5353 io_req_complete(req, ret);
5354 return 0;
5355 }
5356
io_poll_wake(struct wait_queue_entry * wait,unsigned mode,int sync,void * key)5357 static int io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5358 void *key)
5359 {
5360 struct io_kiocb *req = wait->private;
5361 struct io_poll_iocb *poll = &req->poll;
5362
5363 return __io_async_wake(req, poll, key_to_poll(key), io_poll_task_func);
5364 }
5365
io_poll_queue_proc(struct file * file,struct wait_queue_head * head,struct poll_table_struct * p)5366 static void io_poll_queue_proc(struct file *file, struct wait_queue_head *head,
5367 struct poll_table_struct *p)
5368 {
5369 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5370
5371 __io_queue_proc(&pt->req->poll, pt, head, (struct io_poll_iocb **) &pt->req->async_data);
5372 }
5373
io_poll_add_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)5374 static int io_poll_add_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5375 {
5376 struct io_poll_iocb *poll = &req->poll;
5377 u32 events;
5378
5379 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5380 return -EINVAL;
5381 if (sqe->addr || sqe->ioprio || sqe->off || sqe->len || sqe->buf_index)
5382 return -EINVAL;
5383
5384 events = READ_ONCE(sqe->poll32_events);
5385 #ifdef __BIG_ENDIAN
5386 events = swahw32(events);
5387 #endif
5388 poll->events = demangle_poll(events) | EPOLLERR | EPOLLHUP |
5389 (events & EPOLLEXCLUSIVE);
5390 return 0;
5391 }
5392
io_poll_add(struct io_kiocb * req)5393 static int io_poll_add(struct io_kiocb *req)
5394 {
5395 struct io_poll_iocb *poll = &req->poll;
5396 struct io_ring_ctx *ctx = req->ctx;
5397 struct io_poll_table ipt;
5398 __poll_t mask;
5399
5400 ipt.pt._qproc = io_poll_queue_proc;
5401
5402 mask = __io_arm_poll_handler(req, &req->poll, &ipt, poll->events,
5403 io_poll_wake);
5404
5405 if (mask) { /* no async, we'd stolen it */
5406 ipt.error = 0;
5407 io_poll_complete(req, mask, 0);
5408 }
5409 spin_unlock_irq(&ctx->completion_lock);
5410
5411 if (mask) {
5412 io_cqring_ev_posted(ctx);
5413 io_put_req(req);
5414 }
5415 return ipt.error;
5416 }
5417
io_timeout_fn(struct hrtimer * timer)5418 static enum hrtimer_restart io_timeout_fn(struct hrtimer *timer)
5419 {
5420 struct io_timeout_data *data = container_of(timer,
5421 struct io_timeout_data, timer);
5422 struct io_kiocb *req = data->req;
5423 struct io_ring_ctx *ctx = req->ctx;
5424 unsigned long flags;
5425
5426 spin_lock_irqsave(&ctx->completion_lock, flags);
5427 list_del_init(&req->timeout.list);
5428 atomic_set(&req->ctx->cq_timeouts,
5429 atomic_read(&req->ctx->cq_timeouts) + 1);
5430
5431 io_cqring_fill_event(req, -ETIME);
5432 io_commit_cqring(ctx);
5433 spin_unlock_irqrestore(&ctx->completion_lock, flags);
5434
5435 io_cqring_ev_posted(ctx);
5436 req_set_fail_links(req);
5437 io_put_req(req);
5438 return HRTIMER_NORESTART;
5439 }
5440
__io_timeout_cancel(struct io_kiocb * req)5441 static int __io_timeout_cancel(struct io_kiocb *req)
5442 {
5443 struct io_timeout_data *io = req->async_data;
5444 int ret;
5445
5446 ret = hrtimer_try_to_cancel(&io->timer);
5447 if (ret == -1)
5448 return -EALREADY;
5449 list_del_init(&req->timeout.list);
5450
5451 req_set_fail_links(req);
5452 io_cqring_fill_event(req, -ECANCELED);
5453 io_put_req_deferred(req, 1);
5454 return 0;
5455 }
5456
io_timeout_cancel(struct io_ring_ctx * ctx,__u64 user_data)5457 static int io_timeout_cancel(struct io_ring_ctx *ctx, __u64 user_data)
5458 {
5459 struct io_kiocb *req;
5460 int ret = -ENOENT;
5461
5462 list_for_each_entry(req, &ctx->timeout_list, timeout.list) {
5463 if (user_data == req->user_data) {
5464 ret = 0;
5465 break;
5466 }
5467 }
5468
5469 if (ret == -ENOENT)
5470 return ret;
5471
5472 return __io_timeout_cancel(req);
5473 }
5474
io_timeout_remove_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)5475 static int io_timeout_remove_prep(struct io_kiocb *req,
5476 const struct io_uring_sqe *sqe)
5477 {
5478 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5479 return -EINVAL;
5480 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5481 return -EINVAL;
5482 if (sqe->ioprio || sqe->buf_index || sqe->len || sqe->timeout_flags)
5483 return -EINVAL;
5484
5485 req->timeout_rem.addr = READ_ONCE(sqe->addr);
5486 return 0;
5487 }
5488
5489 /*
5490 * Remove or update an existing timeout command
5491 */
io_timeout_remove(struct io_kiocb * req)5492 static int io_timeout_remove(struct io_kiocb *req)
5493 {
5494 struct io_ring_ctx *ctx = req->ctx;
5495 int ret;
5496
5497 spin_lock_irq(&ctx->completion_lock);
5498 ret = io_timeout_cancel(ctx, req->timeout_rem.addr);
5499
5500 io_cqring_fill_event(req, ret);
5501 io_commit_cqring(ctx);
5502 spin_unlock_irq(&ctx->completion_lock);
5503 io_cqring_ev_posted(ctx);
5504 if (ret < 0)
5505 req_set_fail_links(req);
5506 io_put_req(req);
5507 return 0;
5508 }
5509
io_timeout_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe,bool is_timeout_link)5510 static int io_timeout_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe,
5511 bool is_timeout_link)
5512 {
5513 struct io_timeout_data *data;
5514 unsigned flags;
5515 u32 off = READ_ONCE(sqe->off);
5516
5517 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5518 return -EINVAL;
5519 if (sqe->ioprio || sqe->buf_index || sqe->len != 1)
5520 return -EINVAL;
5521 if (off && is_timeout_link)
5522 return -EINVAL;
5523 flags = READ_ONCE(sqe->timeout_flags);
5524 if (flags & ~IORING_TIMEOUT_ABS)
5525 return -EINVAL;
5526
5527 req->timeout.off = off;
5528
5529 if (!req->async_data && io_alloc_async_data(req))
5530 return -ENOMEM;
5531
5532 data = req->async_data;
5533 data->req = req;
5534
5535 if (get_timespec64(&data->ts, u64_to_user_ptr(sqe->addr)))
5536 return -EFAULT;
5537
5538 if (flags & IORING_TIMEOUT_ABS)
5539 data->mode = HRTIMER_MODE_ABS;
5540 else
5541 data->mode = HRTIMER_MODE_REL;
5542
5543 hrtimer_init(&data->timer, CLOCK_MONOTONIC, data->mode);
5544 return 0;
5545 }
5546
io_timeout(struct io_kiocb * req)5547 static int io_timeout(struct io_kiocb *req)
5548 {
5549 struct io_ring_ctx *ctx = req->ctx;
5550 struct io_timeout_data *data = req->async_data;
5551 struct list_head *entry;
5552 u32 tail, off = req->timeout.off;
5553
5554 spin_lock_irq(&ctx->completion_lock);
5555
5556 /*
5557 * sqe->off holds how many events that need to occur for this
5558 * timeout event to be satisfied. If it isn't set, then this is
5559 * a pure timeout request, sequence isn't used.
5560 */
5561 if (io_is_timeout_noseq(req)) {
5562 entry = ctx->timeout_list.prev;
5563 goto add;
5564 }
5565
5566 tail = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
5567 req->timeout.target_seq = tail + off;
5568
5569 /*
5570 * Insertion sort, ensuring the first entry in the list is always
5571 * the one we need first.
5572 */
5573 list_for_each_prev(entry, &ctx->timeout_list) {
5574 struct io_kiocb *nxt = list_entry(entry, struct io_kiocb,
5575 timeout.list);
5576
5577 if (io_is_timeout_noseq(nxt))
5578 continue;
5579 /* nxt.seq is behind @tail, otherwise would've been completed */
5580 if (off >= nxt->timeout.target_seq - tail)
5581 break;
5582 }
5583 add:
5584 list_add(&req->timeout.list, entry);
5585 data->timer.function = io_timeout_fn;
5586 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts), data->mode);
5587 spin_unlock_irq(&ctx->completion_lock);
5588 return 0;
5589 }
5590
io_cancel_cb(struct io_wq_work * work,void * data)5591 static bool io_cancel_cb(struct io_wq_work *work, void *data)
5592 {
5593 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
5594
5595 return req->user_data == (unsigned long) data;
5596 }
5597
io_async_cancel_one(struct io_ring_ctx * ctx,void * sqe_addr)5598 static int io_async_cancel_one(struct io_ring_ctx *ctx, void *sqe_addr)
5599 {
5600 enum io_wq_cancel cancel_ret;
5601 int ret = 0;
5602
5603 cancel_ret = io_wq_cancel_cb(ctx->io_wq, io_cancel_cb, sqe_addr, false);
5604 switch (cancel_ret) {
5605 case IO_WQ_CANCEL_OK:
5606 ret = 0;
5607 break;
5608 case IO_WQ_CANCEL_RUNNING:
5609 ret = -EALREADY;
5610 break;
5611 case IO_WQ_CANCEL_NOTFOUND:
5612 ret = -ENOENT;
5613 break;
5614 }
5615
5616 return ret;
5617 }
5618
io_async_find_and_cancel(struct io_ring_ctx * ctx,struct io_kiocb * req,__u64 sqe_addr,int success_ret)5619 static void io_async_find_and_cancel(struct io_ring_ctx *ctx,
5620 struct io_kiocb *req, __u64 sqe_addr,
5621 int success_ret)
5622 {
5623 unsigned long flags;
5624 int ret;
5625
5626 ret = io_async_cancel_one(ctx, (void *) (unsigned long) sqe_addr);
5627 if (ret != -ENOENT) {
5628 spin_lock_irqsave(&ctx->completion_lock, flags);
5629 goto done;
5630 }
5631
5632 spin_lock_irqsave(&ctx->completion_lock, flags);
5633 ret = io_timeout_cancel(ctx, sqe_addr);
5634 if (ret != -ENOENT)
5635 goto done;
5636 ret = io_poll_cancel(ctx, sqe_addr);
5637 done:
5638 if (!ret)
5639 ret = success_ret;
5640 io_cqring_fill_event(req, ret);
5641 io_commit_cqring(ctx);
5642 spin_unlock_irqrestore(&ctx->completion_lock, flags);
5643 io_cqring_ev_posted(ctx);
5644
5645 if (ret < 0)
5646 req_set_fail_links(req);
5647 io_put_req(req);
5648 }
5649
io_async_cancel_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)5650 static int io_async_cancel_prep(struct io_kiocb *req,
5651 const struct io_uring_sqe *sqe)
5652 {
5653 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5654 return -EINVAL;
5655 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5656 return -EINVAL;
5657 if (sqe->ioprio || sqe->off || sqe->len || sqe->cancel_flags)
5658 return -EINVAL;
5659
5660 req->cancel.addr = READ_ONCE(sqe->addr);
5661 return 0;
5662 }
5663
io_async_cancel(struct io_kiocb * req)5664 static int io_async_cancel(struct io_kiocb *req)
5665 {
5666 struct io_ring_ctx *ctx = req->ctx;
5667
5668 io_async_find_and_cancel(ctx, req, req->cancel.addr, 0);
5669 return 0;
5670 }
5671
io_files_update_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)5672 static int io_files_update_prep(struct io_kiocb *req,
5673 const struct io_uring_sqe *sqe)
5674 {
5675 if (unlikely(req->ctx->flags & IORING_SETUP_SQPOLL))
5676 return -EINVAL;
5677 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5678 return -EINVAL;
5679 if (sqe->ioprio || sqe->rw_flags)
5680 return -EINVAL;
5681
5682 req->files_update.offset = READ_ONCE(sqe->off);
5683 req->files_update.nr_args = READ_ONCE(sqe->len);
5684 if (!req->files_update.nr_args)
5685 return -EINVAL;
5686 req->files_update.arg = READ_ONCE(sqe->addr);
5687 return 0;
5688 }
5689
io_files_update(struct io_kiocb * req,bool force_nonblock,struct io_comp_state * cs)5690 static int io_files_update(struct io_kiocb *req, bool force_nonblock,
5691 struct io_comp_state *cs)
5692 {
5693 struct io_ring_ctx *ctx = req->ctx;
5694 struct io_uring_files_update up;
5695 int ret;
5696
5697 if (force_nonblock)
5698 return -EAGAIN;
5699
5700 up.offset = req->files_update.offset;
5701 up.fds = req->files_update.arg;
5702
5703 mutex_lock(&ctx->uring_lock);
5704 ret = __io_sqe_files_update(ctx, &up, req->files_update.nr_args);
5705 mutex_unlock(&ctx->uring_lock);
5706
5707 if (ret < 0)
5708 req_set_fail_links(req);
5709 __io_req_complete(req, ret, 0, cs);
5710 return 0;
5711 }
5712
io_req_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)5713 static int io_req_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5714 {
5715 switch (req->opcode) {
5716 case IORING_OP_NOP:
5717 return 0;
5718 case IORING_OP_READV:
5719 case IORING_OP_READ_FIXED:
5720 case IORING_OP_READ:
5721 return io_read_prep(req, sqe);
5722 case IORING_OP_WRITEV:
5723 case IORING_OP_WRITE_FIXED:
5724 case IORING_OP_WRITE:
5725 return io_write_prep(req, sqe);
5726 case IORING_OP_POLL_ADD:
5727 return io_poll_add_prep(req, sqe);
5728 case IORING_OP_POLL_REMOVE:
5729 return io_poll_remove_prep(req, sqe);
5730 case IORING_OP_FSYNC:
5731 return io_prep_fsync(req, sqe);
5732 case IORING_OP_SYNC_FILE_RANGE:
5733 return io_prep_sfr(req, sqe);
5734 case IORING_OP_SENDMSG:
5735 case IORING_OP_SEND:
5736 return io_sendmsg_prep(req, sqe);
5737 case IORING_OP_RECVMSG:
5738 case IORING_OP_RECV:
5739 return io_recvmsg_prep(req, sqe);
5740 case IORING_OP_CONNECT:
5741 return io_connect_prep(req, sqe);
5742 case IORING_OP_TIMEOUT:
5743 return io_timeout_prep(req, sqe, false);
5744 case IORING_OP_TIMEOUT_REMOVE:
5745 return io_timeout_remove_prep(req, sqe);
5746 case IORING_OP_ASYNC_CANCEL:
5747 return io_async_cancel_prep(req, sqe);
5748 case IORING_OP_LINK_TIMEOUT:
5749 return io_timeout_prep(req, sqe, true);
5750 case IORING_OP_ACCEPT:
5751 return io_accept_prep(req, sqe);
5752 case IORING_OP_FALLOCATE:
5753 return io_fallocate_prep(req, sqe);
5754 case IORING_OP_OPENAT:
5755 return io_openat_prep(req, sqe);
5756 case IORING_OP_CLOSE:
5757 return io_close_prep(req, sqe);
5758 case IORING_OP_FILES_UPDATE:
5759 return io_files_update_prep(req, sqe);
5760 case IORING_OP_STATX:
5761 return io_statx_prep(req, sqe);
5762 case IORING_OP_FADVISE:
5763 return io_fadvise_prep(req, sqe);
5764 case IORING_OP_MADVISE:
5765 return io_madvise_prep(req, sqe);
5766 case IORING_OP_OPENAT2:
5767 return io_openat2_prep(req, sqe);
5768 case IORING_OP_EPOLL_CTL:
5769 return io_epoll_ctl_prep(req, sqe);
5770 case IORING_OP_SPLICE:
5771 return io_splice_prep(req, sqe);
5772 case IORING_OP_PROVIDE_BUFFERS:
5773 return io_provide_buffers_prep(req, sqe);
5774 case IORING_OP_REMOVE_BUFFERS:
5775 return io_remove_buffers_prep(req, sqe);
5776 case IORING_OP_TEE:
5777 return io_tee_prep(req, sqe);
5778 }
5779
5780 printk_once(KERN_WARNING "io_uring: unhandled opcode %d\n",
5781 req->opcode);
5782 return-EINVAL;
5783 }
5784
io_req_defer_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)5785 static int io_req_defer_prep(struct io_kiocb *req,
5786 const struct io_uring_sqe *sqe)
5787 {
5788 if (!sqe)
5789 return 0;
5790 if (io_alloc_async_data(req))
5791 return -EAGAIN;
5792 return io_req_prep(req, sqe);
5793 }
5794
io_get_sequence(struct io_kiocb * req)5795 static u32 io_get_sequence(struct io_kiocb *req)
5796 {
5797 struct io_kiocb *pos;
5798 struct io_ring_ctx *ctx = req->ctx;
5799 u32 total_submitted, nr_reqs = 1;
5800
5801 if (req->flags & REQ_F_LINK_HEAD)
5802 list_for_each_entry(pos, &req->link_list, link_list)
5803 nr_reqs++;
5804
5805 total_submitted = ctx->cached_sq_head - ctx->cached_sq_dropped;
5806 return total_submitted - nr_reqs;
5807 }
5808
io_req_defer(struct io_kiocb * req,const struct io_uring_sqe * sqe)5809 static int io_req_defer(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5810 {
5811 struct io_ring_ctx *ctx = req->ctx;
5812 struct io_defer_entry *de;
5813 int ret;
5814 u32 seq;
5815
5816 /* Still need defer if there is pending req in defer list. */
5817 if (likely(list_empty_careful(&ctx->defer_list) &&
5818 !(req->flags & REQ_F_IO_DRAIN)))
5819 return 0;
5820
5821 seq = io_get_sequence(req);
5822 /* Still a chance to pass the sequence check */
5823 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list))
5824 return 0;
5825
5826 if (!req->async_data) {
5827 ret = io_req_defer_prep(req, sqe);
5828 if (ret)
5829 return ret;
5830 }
5831 io_prep_async_link(req);
5832 de = kmalloc(sizeof(*de), GFP_KERNEL);
5833 if (!de)
5834 return -ENOMEM;
5835
5836 spin_lock_irq(&ctx->completion_lock);
5837 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
5838 spin_unlock_irq(&ctx->completion_lock);
5839 kfree(de);
5840 io_queue_async_work(req);
5841 return -EIOCBQUEUED;
5842 }
5843
5844 trace_io_uring_defer(ctx, req, req->user_data);
5845 de->req = req;
5846 de->seq = seq;
5847 list_add_tail(&de->list, &ctx->defer_list);
5848 spin_unlock_irq(&ctx->completion_lock);
5849 return -EIOCBQUEUED;
5850 }
5851
io_req_drop_files(struct io_kiocb * req)5852 static void io_req_drop_files(struct io_kiocb *req)
5853 {
5854 struct io_ring_ctx *ctx = req->ctx;
5855 unsigned long flags;
5856
5857 spin_lock_irqsave(&ctx->inflight_lock, flags);
5858 list_del(&req->inflight_entry);
5859 if (waitqueue_active(&ctx->inflight_wait))
5860 wake_up(&ctx->inflight_wait);
5861 spin_unlock_irqrestore(&ctx->inflight_lock, flags);
5862 req->flags &= ~REQ_F_INFLIGHT;
5863 put_files_struct(req->work.identity->files);
5864 put_nsproxy(req->work.identity->nsproxy);
5865 req->work.flags &= ~IO_WQ_WORK_FILES;
5866 }
5867
__io_clean_op(struct io_kiocb * req)5868 static void __io_clean_op(struct io_kiocb *req)
5869 {
5870 if (req->flags & REQ_F_BUFFER_SELECTED) {
5871 switch (req->opcode) {
5872 case IORING_OP_READV:
5873 case IORING_OP_READ_FIXED:
5874 case IORING_OP_READ:
5875 kfree((void *)(unsigned long)req->rw.addr);
5876 break;
5877 case IORING_OP_RECVMSG:
5878 case IORING_OP_RECV:
5879 kfree(req->sr_msg.kbuf);
5880 break;
5881 }
5882 req->flags &= ~REQ_F_BUFFER_SELECTED;
5883 }
5884
5885 if (req->flags & REQ_F_NEED_CLEANUP) {
5886 switch (req->opcode) {
5887 case IORING_OP_READV:
5888 case IORING_OP_READ_FIXED:
5889 case IORING_OP_READ:
5890 case IORING_OP_WRITEV:
5891 case IORING_OP_WRITE_FIXED:
5892 case IORING_OP_WRITE: {
5893 struct io_async_rw *io = req->async_data;
5894 if (io->free_iovec)
5895 kfree(io->free_iovec);
5896 break;
5897 }
5898 case IORING_OP_RECVMSG:
5899 case IORING_OP_SENDMSG: {
5900 struct io_async_msghdr *io = req->async_data;
5901 if (io->iov != io->fast_iov)
5902 kfree(io->iov);
5903 break;
5904 }
5905 case IORING_OP_SPLICE:
5906 case IORING_OP_TEE:
5907 io_put_file(req, req->splice.file_in,
5908 (req->splice.flags & SPLICE_F_FD_IN_FIXED));
5909 break;
5910 case IORING_OP_OPENAT:
5911 case IORING_OP_OPENAT2:
5912 if (req->open.filename)
5913 putname(req->open.filename);
5914 break;
5915 }
5916 req->flags &= ~REQ_F_NEED_CLEANUP;
5917 }
5918
5919 if (req->flags & REQ_F_INFLIGHT)
5920 io_req_drop_files(req);
5921 }
5922
io_issue_sqe(struct io_kiocb * req,bool force_nonblock,struct io_comp_state * cs)5923 static int io_issue_sqe(struct io_kiocb *req, bool force_nonblock,
5924 struct io_comp_state *cs)
5925 {
5926 struct io_ring_ctx *ctx = req->ctx;
5927 int ret;
5928
5929 switch (req->opcode) {
5930 case IORING_OP_NOP:
5931 ret = io_nop(req, cs);
5932 break;
5933 case IORING_OP_READV:
5934 case IORING_OP_READ_FIXED:
5935 case IORING_OP_READ:
5936 ret = io_read(req, force_nonblock, cs);
5937 break;
5938 case IORING_OP_WRITEV:
5939 case IORING_OP_WRITE_FIXED:
5940 case IORING_OP_WRITE:
5941 ret = io_write(req, force_nonblock, cs);
5942 break;
5943 case IORING_OP_FSYNC:
5944 ret = io_fsync(req, force_nonblock);
5945 break;
5946 case IORING_OP_POLL_ADD:
5947 ret = io_poll_add(req);
5948 break;
5949 case IORING_OP_POLL_REMOVE:
5950 ret = io_poll_remove(req);
5951 break;
5952 case IORING_OP_SYNC_FILE_RANGE:
5953 ret = io_sync_file_range(req, force_nonblock);
5954 break;
5955 case IORING_OP_SENDMSG:
5956 ret = io_sendmsg(req, force_nonblock, cs);
5957 break;
5958 case IORING_OP_SEND:
5959 ret = io_send(req, force_nonblock, cs);
5960 break;
5961 case IORING_OP_RECVMSG:
5962 ret = io_recvmsg(req, force_nonblock, cs);
5963 break;
5964 case IORING_OP_RECV:
5965 ret = io_recv(req, force_nonblock, cs);
5966 break;
5967 case IORING_OP_TIMEOUT:
5968 ret = io_timeout(req);
5969 break;
5970 case IORING_OP_TIMEOUT_REMOVE:
5971 ret = io_timeout_remove(req);
5972 break;
5973 case IORING_OP_ACCEPT:
5974 ret = io_accept(req, force_nonblock, cs);
5975 break;
5976 case IORING_OP_CONNECT:
5977 ret = io_connect(req, force_nonblock, cs);
5978 break;
5979 case IORING_OP_ASYNC_CANCEL:
5980 ret = io_async_cancel(req);
5981 break;
5982 case IORING_OP_FALLOCATE:
5983 ret = io_fallocate(req, force_nonblock);
5984 break;
5985 case IORING_OP_OPENAT:
5986 ret = io_openat(req, force_nonblock);
5987 break;
5988 case IORING_OP_CLOSE:
5989 ret = io_close(req, force_nonblock, cs);
5990 break;
5991 case IORING_OP_FILES_UPDATE:
5992 ret = io_files_update(req, force_nonblock, cs);
5993 break;
5994 case IORING_OP_STATX:
5995 ret = io_statx(req, force_nonblock);
5996 break;
5997 case IORING_OP_FADVISE:
5998 ret = io_fadvise(req, force_nonblock);
5999 break;
6000 case IORING_OP_MADVISE:
6001 ret = io_madvise(req, force_nonblock);
6002 break;
6003 case IORING_OP_OPENAT2:
6004 ret = io_openat2(req, force_nonblock);
6005 break;
6006 case IORING_OP_EPOLL_CTL:
6007 ret = io_epoll_ctl(req, force_nonblock, cs);
6008 break;
6009 case IORING_OP_SPLICE:
6010 ret = io_splice(req, force_nonblock);
6011 break;
6012 case IORING_OP_PROVIDE_BUFFERS:
6013 ret = io_provide_buffers(req, force_nonblock, cs);
6014 break;
6015 case IORING_OP_REMOVE_BUFFERS:
6016 ret = io_remove_buffers(req, force_nonblock, cs);
6017 break;
6018 case IORING_OP_TEE:
6019 ret = io_tee(req, force_nonblock);
6020 break;
6021 default:
6022 ret = -EINVAL;
6023 break;
6024 }
6025
6026 if (ret)
6027 return ret;
6028
6029 /* If the op doesn't have a file, we're not polling for it */
6030 if ((ctx->flags & IORING_SETUP_IOPOLL) && req->file) {
6031 const bool in_async = io_wq_current_is_worker();
6032
6033 /* workqueue context doesn't hold uring_lock, grab it now */
6034 if (in_async)
6035 mutex_lock(&ctx->uring_lock);
6036
6037 io_iopoll_req_issued(req);
6038
6039 if (in_async)
6040 mutex_unlock(&ctx->uring_lock);
6041 }
6042
6043 return 0;
6044 }
6045
io_wq_submit_work(struct io_wq_work * work)6046 static struct io_wq_work *io_wq_submit_work(struct io_wq_work *work)
6047 {
6048 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6049 struct io_kiocb *timeout;
6050 int ret = 0;
6051
6052 timeout = io_prep_linked_timeout(req);
6053 if (timeout)
6054 io_queue_linked_timeout(timeout);
6055
6056 /* if NO_CANCEL is set, we must still run the work */
6057 if ((work->flags & (IO_WQ_WORK_CANCEL|IO_WQ_WORK_NO_CANCEL)) ==
6058 IO_WQ_WORK_CANCEL) {
6059 ret = -ECANCELED;
6060 }
6061
6062 if (!ret) {
6063 do {
6064 ret = io_issue_sqe(req, false, NULL);
6065 /*
6066 * We can get EAGAIN for polled IO even though we're
6067 * forcing a sync submission from here, since we can't
6068 * wait for request slots on the block side.
6069 */
6070 if (ret != -EAGAIN)
6071 break;
6072 cond_resched();
6073 } while (1);
6074 }
6075
6076 if (ret) {
6077 req_set_fail_links(req);
6078 io_req_complete(req, ret);
6079 }
6080
6081 return io_steal_work(req);
6082 }
6083
io_file_from_index(struct io_ring_ctx * ctx,int index)6084 static inline struct file *io_file_from_index(struct io_ring_ctx *ctx,
6085 int index)
6086 {
6087 struct fixed_file_table *table;
6088
6089 table = &ctx->file_data->table[index >> IORING_FILE_TABLE_SHIFT];
6090 return table->files[index & IORING_FILE_TABLE_MASK];
6091 }
6092
io_file_get(struct io_submit_state * state,struct io_kiocb * req,int fd,bool fixed)6093 static struct file *io_file_get(struct io_submit_state *state,
6094 struct io_kiocb *req, int fd, bool fixed)
6095 {
6096 struct io_ring_ctx *ctx = req->ctx;
6097 struct file *file;
6098
6099 if (fixed) {
6100 if (unlikely((unsigned int)fd >= ctx->nr_user_files))
6101 return NULL;
6102 fd = array_index_nospec(fd, ctx->nr_user_files);
6103 file = io_file_from_index(ctx, fd);
6104 if (file) {
6105 req->fixed_file_refs = &ctx->file_data->node->refs;
6106 percpu_ref_get(req->fixed_file_refs);
6107 }
6108 } else {
6109 trace_io_uring_file_get(ctx, fd);
6110 file = __io_file_get(state, fd);
6111 }
6112
6113 return file;
6114 }
6115
io_req_set_file(struct io_submit_state * state,struct io_kiocb * req,int fd)6116 static int io_req_set_file(struct io_submit_state *state, struct io_kiocb *req,
6117 int fd)
6118 {
6119 bool fixed;
6120
6121 fixed = (req->flags & REQ_F_FIXED_FILE) != 0;
6122 if (unlikely(!fixed && io_async_submit(req->ctx)))
6123 return -EBADF;
6124
6125 req->file = io_file_get(state, req, fd, fixed);
6126 if (req->file || io_op_defs[req->opcode].needs_file_no_error)
6127 return 0;
6128 return -EBADF;
6129 }
6130
io_link_timeout_fn(struct hrtimer * timer)6131 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer)
6132 {
6133 struct io_timeout_data *data = container_of(timer,
6134 struct io_timeout_data, timer);
6135 struct io_kiocb *req = data->req;
6136 struct io_ring_ctx *ctx = req->ctx;
6137 struct io_kiocb *prev = NULL;
6138 unsigned long flags;
6139
6140 spin_lock_irqsave(&ctx->completion_lock, flags);
6141
6142 /*
6143 * We don't expect the list to be empty, that will only happen if we
6144 * race with the completion of the linked work.
6145 */
6146 if (!list_empty(&req->link_list)) {
6147 prev = list_entry(req->link_list.prev, struct io_kiocb,
6148 link_list);
6149 if (refcount_inc_not_zero(&prev->refs))
6150 list_del_init(&req->link_list);
6151 else
6152 prev = NULL;
6153 }
6154
6155 spin_unlock_irqrestore(&ctx->completion_lock, flags);
6156
6157 if (prev) {
6158 req_set_fail_links(prev);
6159 io_async_find_and_cancel(ctx, req, prev->user_data, -ETIME);
6160 io_put_req(prev);
6161 } else {
6162 io_req_complete(req, -ETIME);
6163 }
6164 return HRTIMER_NORESTART;
6165 }
6166
__io_queue_linked_timeout(struct io_kiocb * req)6167 static void __io_queue_linked_timeout(struct io_kiocb *req)
6168 {
6169 /*
6170 * If the list is now empty, then our linked request finished before
6171 * we got a chance to setup the timer
6172 */
6173 if (!list_empty(&req->link_list)) {
6174 struct io_timeout_data *data = req->async_data;
6175
6176 data->timer.function = io_link_timeout_fn;
6177 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts),
6178 data->mode);
6179 }
6180 }
6181
io_queue_linked_timeout(struct io_kiocb * req)6182 static void io_queue_linked_timeout(struct io_kiocb *req)
6183 {
6184 struct io_ring_ctx *ctx = req->ctx;
6185
6186 spin_lock_irq(&ctx->completion_lock);
6187 __io_queue_linked_timeout(req);
6188 spin_unlock_irq(&ctx->completion_lock);
6189
6190 /* drop submission reference */
6191 io_put_req(req);
6192 }
6193
io_prep_linked_timeout(struct io_kiocb * req)6194 static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
6195 {
6196 struct io_kiocb *nxt;
6197
6198 if (!(req->flags & REQ_F_LINK_HEAD))
6199 return NULL;
6200 if (req->flags & REQ_F_LINK_TIMEOUT)
6201 return NULL;
6202
6203 nxt = list_first_entry_or_null(&req->link_list, struct io_kiocb,
6204 link_list);
6205 if (!nxt || nxt->opcode != IORING_OP_LINK_TIMEOUT)
6206 return NULL;
6207
6208 nxt->flags |= REQ_F_LTIMEOUT_ACTIVE;
6209 req->flags |= REQ_F_LINK_TIMEOUT;
6210 return nxt;
6211 }
6212
__io_queue_sqe(struct io_kiocb * req,struct io_comp_state * cs)6213 static void __io_queue_sqe(struct io_kiocb *req, struct io_comp_state *cs)
6214 {
6215 struct io_kiocb *linked_timeout;
6216 const struct cred *old_creds = NULL;
6217 int ret;
6218
6219 again:
6220 linked_timeout = io_prep_linked_timeout(req);
6221
6222 if ((req->flags & REQ_F_WORK_INITIALIZED) &&
6223 (req->work.flags & IO_WQ_WORK_CREDS) &&
6224 req->work.identity->creds != current_cred()) {
6225 if (old_creds)
6226 revert_creds(old_creds);
6227 if (old_creds == req->work.identity->creds)
6228 old_creds = NULL; /* restored original creds */
6229 else
6230 old_creds = override_creds(req->work.identity->creds);
6231 }
6232
6233 ret = io_issue_sqe(req, true, cs);
6234
6235 /*
6236 * We async punt it if the file wasn't marked NOWAIT, or if the file
6237 * doesn't support non-blocking read/write attempts
6238 */
6239 if (ret == -EAGAIN && !(req->flags & REQ_F_NOWAIT)) {
6240 if (!io_arm_poll_handler(req)) {
6241 /*
6242 * Queued up for async execution, worker will release
6243 * submit reference when the iocb is actually submitted.
6244 */
6245 io_queue_async_work(req);
6246 }
6247
6248 if (linked_timeout)
6249 io_queue_linked_timeout(linked_timeout);
6250 } else if (likely(!ret)) {
6251 /* drop submission reference */
6252 req = io_put_req_find_next(req);
6253 if (linked_timeout)
6254 io_queue_linked_timeout(linked_timeout);
6255
6256 if (req) {
6257 if (!(req->flags & REQ_F_FORCE_ASYNC))
6258 goto again;
6259 io_queue_async_work(req);
6260 }
6261 } else {
6262 /* un-prep timeout, so it'll be killed as any other linked */
6263 req->flags &= ~REQ_F_LINK_TIMEOUT;
6264 req_set_fail_links(req);
6265 io_put_req(req);
6266 io_req_complete(req, ret);
6267 }
6268
6269 if (old_creds)
6270 revert_creds(old_creds);
6271 }
6272
io_queue_sqe(struct io_kiocb * req,const struct io_uring_sqe * sqe,struct io_comp_state * cs)6273 static void io_queue_sqe(struct io_kiocb *req, const struct io_uring_sqe *sqe,
6274 struct io_comp_state *cs)
6275 {
6276 int ret;
6277
6278 ret = io_req_defer(req, sqe);
6279 if (ret) {
6280 if (ret != -EIOCBQUEUED) {
6281 fail_req:
6282 req_set_fail_links(req);
6283 io_put_req(req);
6284 io_req_complete(req, ret);
6285 }
6286 } else if (req->flags & REQ_F_FORCE_ASYNC) {
6287 if (!req->async_data) {
6288 ret = io_req_defer_prep(req, sqe);
6289 if (unlikely(ret))
6290 goto fail_req;
6291 }
6292 io_queue_async_work(req);
6293 } else {
6294 if (sqe) {
6295 ret = io_req_prep(req, sqe);
6296 if (unlikely(ret))
6297 goto fail_req;
6298 }
6299 __io_queue_sqe(req, cs);
6300 }
6301 }
6302
io_queue_link_head(struct io_kiocb * req,struct io_comp_state * cs)6303 static inline void io_queue_link_head(struct io_kiocb *req,
6304 struct io_comp_state *cs)
6305 {
6306 if (unlikely(req->flags & REQ_F_FAIL_LINK)) {
6307 io_put_req(req);
6308 io_req_complete(req, -ECANCELED);
6309 } else
6310 io_queue_sqe(req, NULL, cs);
6311 }
6312
io_submit_sqe(struct io_kiocb * req,const struct io_uring_sqe * sqe,struct io_kiocb ** link,struct io_comp_state * cs)6313 static int io_submit_sqe(struct io_kiocb *req, const struct io_uring_sqe *sqe,
6314 struct io_kiocb **link, struct io_comp_state *cs)
6315 {
6316 struct io_ring_ctx *ctx = req->ctx;
6317 int ret;
6318
6319 /*
6320 * If we already have a head request, queue this one for async
6321 * submittal once the head completes. If we don't have a head but
6322 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
6323 * submitted sync once the chain is complete. If none of those
6324 * conditions are true (normal request), then just queue it.
6325 */
6326 if (*link) {
6327 struct io_kiocb *head = *link;
6328
6329 /*
6330 * Taking sequential execution of a link, draining both sides
6331 * of the link also fullfils IOSQE_IO_DRAIN semantics for all
6332 * requests in the link. So, it drains the head and the
6333 * next after the link request. The last one is done via
6334 * drain_next flag to persist the effect across calls.
6335 */
6336 if (req->flags & REQ_F_IO_DRAIN) {
6337 head->flags |= REQ_F_IO_DRAIN;
6338 ctx->drain_next = 1;
6339 }
6340 ret = io_req_defer_prep(req, sqe);
6341 if (unlikely(ret)) {
6342 /* fail even hard links since we don't submit */
6343 head->flags |= REQ_F_FAIL_LINK;
6344 return ret;
6345 }
6346 trace_io_uring_link(ctx, req, head);
6347 list_add_tail(&req->link_list, &head->link_list);
6348
6349 /* last request of a link, enqueue the link */
6350 if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) {
6351 io_queue_link_head(head, cs);
6352 *link = NULL;
6353 }
6354 } else {
6355 if (unlikely(ctx->drain_next)) {
6356 req->flags |= REQ_F_IO_DRAIN;
6357 ctx->drain_next = 0;
6358 }
6359 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
6360 req->flags |= REQ_F_LINK_HEAD;
6361 INIT_LIST_HEAD(&req->link_list);
6362
6363 ret = io_req_defer_prep(req, sqe);
6364 if (unlikely(ret))
6365 req->flags |= REQ_F_FAIL_LINK;
6366 *link = req;
6367 } else {
6368 io_queue_sqe(req, sqe, cs);
6369 }
6370 }
6371
6372 return 0;
6373 }
6374
6375 /*
6376 * Batched submission is done, ensure local IO is flushed out.
6377 */
io_submit_state_end(struct io_submit_state * state)6378 static void io_submit_state_end(struct io_submit_state *state)
6379 {
6380 if (!list_empty(&state->comp.list))
6381 io_submit_flush_completions(&state->comp);
6382 blk_finish_plug(&state->plug);
6383 io_state_file_put(state);
6384 if (state->free_reqs)
6385 kmem_cache_free_bulk(req_cachep, state->free_reqs, state->reqs);
6386 }
6387
6388 /*
6389 * Start submission side cache.
6390 */
io_submit_state_start(struct io_submit_state * state,struct io_ring_ctx * ctx,unsigned int max_ios)6391 static void io_submit_state_start(struct io_submit_state *state,
6392 struct io_ring_ctx *ctx, unsigned int max_ios)
6393 {
6394 blk_start_plug(&state->plug);
6395 state->comp.nr = 0;
6396 INIT_LIST_HEAD(&state->comp.list);
6397 state->comp.ctx = ctx;
6398 state->free_reqs = 0;
6399 state->file = NULL;
6400 state->ios_left = max_ios;
6401 }
6402
io_commit_sqring(struct io_ring_ctx * ctx)6403 static void io_commit_sqring(struct io_ring_ctx *ctx)
6404 {
6405 struct io_rings *rings = ctx->rings;
6406
6407 /*
6408 * Ensure any loads from the SQEs are done at this point,
6409 * since once we write the new head, the application could
6410 * write new data to them.
6411 */
6412 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
6413 }
6414
6415 /*
6416 * Fetch an sqe, if one is available. Note that sqe_ptr will point to memory
6417 * that is mapped by userspace. This means that care needs to be taken to
6418 * ensure that reads are stable, as we cannot rely on userspace always
6419 * being a good citizen. If members of the sqe are validated and then later
6420 * used, it's important that those reads are done through READ_ONCE() to
6421 * prevent a re-load down the line.
6422 */
io_get_sqe(struct io_ring_ctx * ctx)6423 static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx)
6424 {
6425 u32 *sq_array = ctx->sq_array;
6426 unsigned head;
6427
6428 /*
6429 * The cached sq head (or cq tail) serves two purposes:
6430 *
6431 * 1) allows us to batch the cost of updating the user visible
6432 * head updates.
6433 * 2) allows the kernel side to track the head on its own, even
6434 * though the application is the one updating it.
6435 */
6436 head = READ_ONCE(sq_array[ctx->cached_sq_head & ctx->sq_mask]);
6437 if (likely(head < ctx->sq_entries))
6438 return &ctx->sq_sqes[head];
6439
6440 /* drop invalid entries */
6441 ctx->cached_sq_dropped++;
6442 WRITE_ONCE(ctx->rings->sq_dropped, ctx->cached_sq_dropped);
6443 return NULL;
6444 }
6445
io_consume_sqe(struct io_ring_ctx * ctx)6446 static inline void io_consume_sqe(struct io_ring_ctx *ctx)
6447 {
6448 ctx->cached_sq_head++;
6449 }
6450
6451 /*
6452 * Check SQE restrictions (opcode and flags).
6453 *
6454 * Returns 'true' if SQE is allowed, 'false' otherwise.
6455 */
io_check_restriction(struct io_ring_ctx * ctx,struct io_kiocb * req,unsigned int sqe_flags)6456 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
6457 struct io_kiocb *req,
6458 unsigned int sqe_flags)
6459 {
6460 if (!ctx->restricted)
6461 return true;
6462
6463 if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
6464 return false;
6465
6466 if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
6467 ctx->restrictions.sqe_flags_required)
6468 return false;
6469
6470 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
6471 ctx->restrictions.sqe_flags_required))
6472 return false;
6473
6474 return true;
6475 }
6476
6477 #define SQE_VALID_FLAGS (IOSQE_FIXED_FILE|IOSQE_IO_DRAIN|IOSQE_IO_LINK| \
6478 IOSQE_IO_HARDLINK | IOSQE_ASYNC | \
6479 IOSQE_BUFFER_SELECT)
6480
io_init_req(struct io_ring_ctx * ctx,struct io_kiocb * req,const struct io_uring_sqe * sqe,struct io_submit_state * state)6481 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
6482 const struct io_uring_sqe *sqe,
6483 struct io_submit_state *state)
6484 {
6485 unsigned int sqe_flags;
6486 int id, ret;
6487
6488 req->opcode = READ_ONCE(sqe->opcode);
6489 req->user_data = READ_ONCE(sqe->user_data);
6490 req->async_data = NULL;
6491 req->file = NULL;
6492 req->ctx = ctx;
6493 req->flags = 0;
6494 /* one is dropped after submission, the other at completion */
6495 refcount_set(&req->refs, 2);
6496 req->task = current;
6497 req->result = 0;
6498
6499 if (unlikely(req->opcode >= IORING_OP_LAST))
6500 return -EINVAL;
6501
6502 if (unlikely(io_sq_thread_acquire_mm(ctx, req)))
6503 return -EFAULT;
6504
6505 sqe_flags = READ_ONCE(sqe->flags);
6506 /* enforce forwards compatibility on users */
6507 if (unlikely(sqe_flags & ~SQE_VALID_FLAGS))
6508 return -EINVAL;
6509
6510 if (unlikely(!io_check_restriction(ctx, req, sqe_flags)))
6511 return -EACCES;
6512
6513 if ((sqe_flags & IOSQE_BUFFER_SELECT) &&
6514 !io_op_defs[req->opcode].buffer_select)
6515 return -EOPNOTSUPP;
6516
6517 id = READ_ONCE(sqe->personality);
6518 if (id) {
6519 struct io_identity *iod;
6520
6521 iod = idr_find(&ctx->personality_idr, id);
6522 if (unlikely(!iod))
6523 return -EINVAL;
6524 refcount_inc(&iod->count);
6525
6526 __io_req_init_async(req);
6527 get_cred(iod->creds);
6528 req->work.identity = iod;
6529 req->work.flags |= IO_WQ_WORK_CREDS;
6530 }
6531
6532 /* same numerical values with corresponding REQ_F_*, safe to copy */
6533 req->flags |= sqe_flags;
6534
6535 if (!io_op_defs[req->opcode].needs_file)
6536 return 0;
6537
6538 ret = io_req_set_file(state, req, READ_ONCE(sqe->fd));
6539 state->ios_left--;
6540 return ret;
6541 }
6542
io_submit_sqes(struct io_ring_ctx * ctx,unsigned int nr)6543 static int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
6544 {
6545 struct io_submit_state state;
6546 struct io_kiocb *link = NULL;
6547 int i, submitted = 0;
6548
6549 /* if we have a backlog and couldn't flush it all, return BUSY */
6550 if (test_bit(0, &ctx->sq_check_overflow)) {
6551 if (!list_empty(&ctx->cq_overflow_list) &&
6552 !io_cqring_overflow_flush(ctx, false, NULL, NULL))
6553 return -EBUSY;
6554 }
6555
6556 /* make sure SQ entry isn't read before tail */
6557 nr = min3(nr, ctx->sq_entries, io_sqring_entries(ctx));
6558
6559 if (!percpu_ref_tryget_many(&ctx->refs, nr))
6560 return -EAGAIN;
6561
6562 percpu_counter_add(¤t->io_uring->inflight, nr);
6563 refcount_add(nr, ¤t->usage);
6564
6565 io_submit_state_start(&state, ctx, nr);
6566
6567 for (i = 0; i < nr; i++) {
6568 const struct io_uring_sqe *sqe;
6569 struct io_kiocb *req;
6570 int err;
6571
6572 sqe = io_get_sqe(ctx);
6573 if (unlikely(!sqe)) {
6574 io_consume_sqe(ctx);
6575 break;
6576 }
6577 req = io_alloc_req(ctx, &state);
6578 if (unlikely(!req)) {
6579 if (!submitted)
6580 submitted = -EAGAIN;
6581 break;
6582 }
6583 io_consume_sqe(ctx);
6584 /* will complete beyond this point, count as submitted */
6585 submitted++;
6586
6587 err = io_init_req(ctx, req, sqe, &state);
6588 if (unlikely(err)) {
6589 fail_req:
6590 io_put_req(req);
6591 io_req_complete(req, err);
6592 break;
6593 }
6594
6595 trace_io_uring_submit_sqe(ctx, req->opcode, req->user_data,
6596 true, io_async_submit(ctx));
6597 err = io_submit_sqe(req, sqe, &link, &state.comp);
6598 if (err)
6599 goto fail_req;
6600 }
6601
6602 if (unlikely(submitted != nr)) {
6603 int ref_used = (submitted == -EAGAIN) ? 0 : submitted;
6604 struct io_uring_task *tctx = current->io_uring;
6605 int unused = nr - ref_used;
6606
6607 percpu_ref_put_many(&ctx->refs, unused);
6608 percpu_counter_sub(&tctx->inflight, unused);
6609 put_task_struct_many(current, unused);
6610 }
6611 if (link)
6612 io_queue_link_head(link, &state.comp);
6613 io_submit_state_end(&state);
6614
6615 /* Commit SQ ring head once we've consumed and submitted all SQEs */
6616 io_commit_sqring(ctx);
6617
6618 return submitted;
6619 }
6620
io_ring_set_wakeup_flag(struct io_ring_ctx * ctx)6621 static inline void io_ring_set_wakeup_flag(struct io_ring_ctx *ctx)
6622 {
6623 /* Tell userspace we may need a wakeup call */
6624 spin_lock_irq(&ctx->completion_lock);
6625 ctx->rings->sq_flags |= IORING_SQ_NEED_WAKEUP;
6626 spin_unlock_irq(&ctx->completion_lock);
6627 }
6628
io_ring_clear_wakeup_flag(struct io_ring_ctx * ctx)6629 static inline void io_ring_clear_wakeup_flag(struct io_ring_ctx *ctx)
6630 {
6631 spin_lock_irq(&ctx->completion_lock);
6632 ctx->rings->sq_flags &= ~IORING_SQ_NEED_WAKEUP;
6633 spin_unlock_irq(&ctx->completion_lock);
6634 }
6635
io_sq_wake_function(struct wait_queue_entry * wqe,unsigned mode,int sync,void * key)6636 static int io_sq_wake_function(struct wait_queue_entry *wqe, unsigned mode,
6637 int sync, void *key)
6638 {
6639 struct io_ring_ctx *ctx = container_of(wqe, struct io_ring_ctx, sqo_wait_entry);
6640 int ret;
6641
6642 ret = autoremove_wake_function(wqe, mode, sync, key);
6643 if (ret) {
6644 unsigned long flags;
6645
6646 spin_lock_irqsave(&ctx->completion_lock, flags);
6647 ctx->rings->sq_flags &= ~IORING_SQ_NEED_WAKEUP;
6648 spin_unlock_irqrestore(&ctx->completion_lock, flags);
6649 }
6650 return ret;
6651 }
6652
6653 enum sq_ret {
6654 SQT_IDLE = 1,
6655 SQT_SPIN = 2,
6656 SQT_DID_WORK = 4,
6657 };
6658
__io_sq_thread(struct io_ring_ctx * ctx,unsigned long start_jiffies,bool cap_entries)6659 static enum sq_ret __io_sq_thread(struct io_ring_ctx *ctx,
6660 unsigned long start_jiffies, bool cap_entries)
6661 {
6662 unsigned long timeout = start_jiffies + ctx->sq_thread_idle;
6663 struct io_sq_data *sqd = ctx->sq_data;
6664 unsigned int to_submit;
6665 int ret = 0;
6666
6667 again:
6668 if (!list_empty(&ctx->iopoll_list)) {
6669 unsigned nr_events = 0;
6670
6671 mutex_lock(&ctx->uring_lock);
6672 if (!list_empty(&ctx->iopoll_list) && !need_resched())
6673 io_do_iopoll(ctx, &nr_events, 0);
6674 mutex_unlock(&ctx->uring_lock);
6675 }
6676
6677 to_submit = io_sqring_entries(ctx);
6678
6679 /*
6680 * If submit got -EBUSY, flag us as needing the application
6681 * to enter the kernel to reap and flush events.
6682 */
6683 if (!to_submit || ret == -EBUSY || need_resched()) {
6684 /*
6685 * Drop cur_mm before scheduling, we can't hold it for
6686 * long periods (or over schedule()). Do this before
6687 * adding ourselves to the waitqueue, as the unuse/drop
6688 * may sleep.
6689 */
6690 io_sq_thread_drop_mm();
6691
6692 /*
6693 * We're polling. If we're within the defined idle
6694 * period, then let us spin without work before going
6695 * to sleep. The exception is if we got EBUSY doing
6696 * more IO, we should wait for the application to
6697 * reap events and wake us up.
6698 */
6699 if (!list_empty(&ctx->iopoll_list) || need_resched() ||
6700 (!time_after(jiffies, timeout) && ret != -EBUSY &&
6701 !percpu_ref_is_dying(&ctx->refs)))
6702 return SQT_SPIN;
6703
6704 prepare_to_wait(&sqd->wait, &ctx->sqo_wait_entry,
6705 TASK_INTERRUPTIBLE);
6706
6707 /*
6708 * While doing polled IO, before going to sleep, we need
6709 * to check if there are new reqs added to iopoll_list,
6710 * it is because reqs may have been punted to io worker
6711 * and will be added to iopoll_list later, hence check
6712 * the iopoll_list again.
6713 */
6714 if ((ctx->flags & IORING_SETUP_IOPOLL) &&
6715 !list_empty_careful(&ctx->iopoll_list)) {
6716 finish_wait(&sqd->wait, &ctx->sqo_wait_entry);
6717 goto again;
6718 }
6719
6720 to_submit = io_sqring_entries(ctx);
6721 if (!to_submit || ret == -EBUSY)
6722 return SQT_IDLE;
6723 }
6724
6725 finish_wait(&sqd->wait, &ctx->sqo_wait_entry);
6726 io_ring_clear_wakeup_flag(ctx);
6727
6728 /* if we're handling multiple rings, cap submit size for fairness */
6729 if (cap_entries && to_submit > 8)
6730 to_submit = 8;
6731
6732 mutex_lock(&ctx->uring_lock);
6733 if (likely(!percpu_ref_is_dying(&ctx->refs)))
6734 ret = io_submit_sqes(ctx, to_submit);
6735 mutex_unlock(&ctx->uring_lock);
6736
6737 if (!io_sqring_full(ctx) && wq_has_sleeper(&ctx->sqo_sq_wait))
6738 wake_up(&ctx->sqo_sq_wait);
6739
6740 return SQT_DID_WORK;
6741 }
6742
io_sqd_init_new(struct io_sq_data * sqd)6743 static void io_sqd_init_new(struct io_sq_data *sqd)
6744 {
6745 struct io_ring_ctx *ctx;
6746
6747 while (!list_empty(&sqd->ctx_new_list)) {
6748 ctx = list_first_entry(&sqd->ctx_new_list, struct io_ring_ctx, sqd_list);
6749 init_wait(&ctx->sqo_wait_entry);
6750 ctx->sqo_wait_entry.func = io_sq_wake_function;
6751 list_move_tail(&ctx->sqd_list, &sqd->ctx_list);
6752 complete(&ctx->sq_thread_comp);
6753 }
6754 }
6755
io_sq_thread(void * data)6756 static int io_sq_thread(void *data)
6757 {
6758 struct cgroup_subsys_state *cur_css = NULL;
6759 const struct cred *old_cred = NULL;
6760 struct io_sq_data *sqd = data;
6761 struct io_ring_ctx *ctx;
6762 unsigned long start_jiffies;
6763
6764 start_jiffies = jiffies;
6765 while (!kthread_should_stop()) {
6766 enum sq_ret ret = 0;
6767 bool cap_entries;
6768
6769 /*
6770 * Any changes to the sqd lists are synchronized through the
6771 * kthread parking. This synchronizes the thread vs users,
6772 * the users are synchronized on the sqd->ctx_lock.
6773 */
6774 if (kthread_should_park())
6775 kthread_parkme();
6776
6777 if (unlikely(!list_empty(&sqd->ctx_new_list)))
6778 io_sqd_init_new(sqd);
6779
6780 cap_entries = !list_is_singular(&sqd->ctx_list);
6781
6782 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
6783 if (current->cred != ctx->creds) {
6784 if (old_cred)
6785 revert_creds(old_cred);
6786 old_cred = override_creds(ctx->creds);
6787 }
6788 io_sq_thread_associate_blkcg(ctx, &cur_css);
6789 #ifdef CONFIG_AUDIT
6790 current->loginuid = ctx->loginuid;
6791 current->sessionid = ctx->sessionid;
6792 #endif
6793
6794 ret |= __io_sq_thread(ctx, start_jiffies, cap_entries);
6795
6796 io_sq_thread_drop_mm();
6797 }
6798
6799 if (ret & SQT_SPIN) {
6800 io_run_task_work();
6801 cond_resched();
6802 } else if (ret == SQT_IDLE) {
6803 if (kthread_should_park())
6804 continue;
6805 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
6806 io_ring_set_wakeup_flag(ctx);
6807 schedule();
6808 start_jiffies = jiffies;
6809 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
6810 io_ring_clear_wakeup_flag(ctx);
6811 }
6812 }
6813
6814 io_run_task_work();
6815
6816 if (cur_css)
6817 io_sq_thread_unassociate_blkcg();
6818 if (old_cred)
6819 revert_creds(old_cred);
6820
6821 kthread_parkme();
6822
6823 return 0;
6824 }
6825
6826 struct io_wait_queue {
6827 struct wait_queue_entry wq;
6828 struct io_ring_ctx *ctx;
6829 unsigned to_wait;
6830 unsigned nr_timeouts;
6831 };
6832
io_should_wake(struct io_wait_queue * iowq,bool noflush)6833 static inline bool io_should_wake(struct io_wait_queue *iowq, bool noflush)
6834 {
6835 struct io_ring_ctx *ctx = iowq->ctx;
6836
6837 /*
6838 * Wake up if we have enough events, or if a timeout occurred since we
6839 * started waiting. For timeouts, we always want to return to userspace,
6840 * regardless of event count.
6841 */
6842 return io_cqring_events(ctx, noflush) >= iowq->to_wait ||
6843 atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
6844 }
6845
io_wake_function(struct wait_queue_entry * curr,unsigned int mode,int wake_flags,void * key)6846 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
6847 int wake_flags, void *key)
6848 {
6849 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
6850 wq);
6851
6852 /* use noflush == true, as we can't safely rely on locking context */
6853 if (!io_should_wake(iowq, true))
6854 return -1;
6855
6856 return autoremove_wake_function(curr, mode, wake_flags, key);
6857 }
6858
io_run_task_work_sig(void)6859 static int io_run_task_work_sig(void)
6860 {
6861 if (io_run_task_work())
6862 return 1;
6863 if (!signal_pending(current))
6864 return 0;
6865 if (current->jobctl & JOBCTL_TASK_WORK) {
6866 spin_lock_irq(¤t->sighand->siglock);
6867 current->jobctl &= ~JOBCTL_TASK_WORK;
6868 recalc_sigpending();
6869 spin_unlock_irq(¤t->sighand->siglock);
6870 return 1;
6871 }
6872 return -EINTR;
6873 }
6874
6875 /*
6876 * Wait until events become available, if we don't already have some. The
6877 * application must reap them itself, as they reside on the shared cq ring.
6878 */
io_cqring_wait(struct io_ring_ctx * ctx,int min_events,const sigset_t __user * sig,size_t sigsz)6879 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
6880 const sigset_t __user *sig, size_t sigsz)
6881 {
6882 struct io_wait_queue iowq = {
6883 .wq = {
6884 .private = current,
6885 .func = io_wake_function,
6886 .entry = LIST_HEAD_INIT(iowq.wq.entry),
6887 },
6888 .ctx = ctx,
6889 .to_wait = min_events,
6890 };
6891 struct io_rings *rings = ctx->rings;
6892 int ret = 0;
6893
6894 do {
6895 if (io_cqring_events(ctx, false) >= min_events)
6896 return 0;
6897 if (!io_run_task_work())
6898 break;
6899 } while (1);
6900
6901 if (sig) {
6902 #ifdef CONFIG_COMPAT
6903 if (in_compat_syscall())
6904 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
6905 sigsz);
6906 else
6907 #endif
6908 ret = set_user_sigmask(sig, sigsz);
6909
6910 if (ret)
6911 return ret;
6912 }
6913
6914 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
6915 trace_io_uring_cqring_wait(ctx, min_events);
6916 do {
6917 prepare_to_wait_exclusive(&ctx->wait, &iowq.wq,
6918 TASK_INTERRUPTIBLE);
6919 /* make sure we run task_work before checking for signals */
6920 ret = io_run_task_work_sig();
6921 if (ret > 0)
6922 continue;
6923 else if (ret < 0)
6924 break;
6925 if (io_should_wake(&iowq, false))
6926 break;
6927 schedule();
6928 } while (1);
6929 finish_wait(&ctx->wait, &iowq.wq);
6930
6931 restore_saved_sigmask_unless(ret == -EINTR);
6932
6933 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
6934 }
6935
__io_sqe_files_unregister(struct io_ring_ctx * ctx)6936 static void __io_sqe_files_unregister(struct io_ring_ctx *ctx)
6937 {
6938 #if defined(CONFIG_UNIX)
6939 if (ctx->ring_sock) {
6940 struct sock *sock = ctx->ring_sock->sk;
6941 struct sk_buff *skb;
6942
6943 while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL)
6944 kfree_skb(skb);
6945 }
6946 #else
6947 int i;
6948
6949 for (i = 0; i < ctx->nr_user_files; i++) {
6950 struct file *file;
6951
6952 file = io_file_from_index(ctx, i);
6953 if (file)
6954 fput(file);
6955 }
6956 #endif
6957 }
6958
io_file_ref_kill(struct percpu_ref * ref)6959 static void io_file_ref_kill(struct percpu_ref *ref)
6960 {
6961 struct fixed_file_data *data;
6962
6963 data = container_of(ref, struct fixed_file_data, refs);
6964 complete(&data->done);
6965 }
6966
io_sqe_files_unregister(struct io_ring_ctx * ctx)6967 static int io_sqe_files_unregister(struct io_ring_ctx *ctx)
6968 {
6969 struct fixed_file_data *data = ctx->file_data;
6970 struct fixed_file_ref_node *ref_node = NULL;
6971 unsigned nr_tables, i;
6972
6973 if (!data)
6974 return -ENXIO;
6975
6976 spin_lock(&data->lock);
6977 ref_node = data->node;
6978 spin_unlock(&data->lock);
6979 if (ref_node)
6980 percpu_ref_kill(&ref_node->refs);
6981
6982 percpu_ref_kill(&data->refs);
6983
6984 /* wait for all refs nodes to complete */
6985 flush_delayed_work(&ctx->file_put_work);
6986 wait_for_completion(&data->done);
6987
6988 __io_sqe_files_unregister(ctx);
6989 nr_tables = DIV_ROUND_UP(ctx->nr_user_files, IORING_MAX_FILES_TABLE);
6990 for (i = 0; i < nr_tables; i++)
6991 kfree(data->table[i].files);
6992 kfree(data->table);
6993 percpu_ref_exit(&data->refs);
6994 kfree(data);
6995 ctx->file_data = NULL;
6996 ctx->nr_user_files = 0;
6997 return 0;
6998 }
6999
io_put_sq_data(struct io_sq_data * sqd)7000 static void io_put_sq_data(struct io_sq_data *sqd)
7001 {
7002 if (refcount_dec_and_test(&sqd->refs)) {
7003 /*
7004 * The park is a bit of a work-around, without it we get
7005 * warning spews on shutdown with SQPOLL set and affinity
7006 * set to a single CPU.
7007 */
7008 if (sqd->thread) {
7009 kthread_park(sqd->thread);
7010 kthread_stop(sqd->thread);
7011 }
7012
7013 kfree(sqd);
7014 }
7015 }
7016
io_attach_sq_data(struct io_uring_params * p)7017 static struct io_sq_data *io_attach_sq_data(struct io_uring_params *p)
7018 {
7019 struct io_ring_ctx *ctx_attach;
7020 struct io_sq_data *sqd;
7021 struct fd f;
7022
7023 f = fdget(p->wq_fd);
7024 if (!f.file)
7025 return ERR_PTR(-ENXIO);
7026 if (f.file->f_op != &io_uring_fops) {
7027 fdput(f);
7028 return ERR_PTR(-EINVAL);
7029 }
7030
7031 ctx_attach = f.file->private_data;
7032 sqd = ctx_attach->sq_data;
7033 if (!sqd) {
7034 fdput(f);
7035 return ERR_PTR(-EINVAL);
7036 }
7037
7038 refcount_inc(&sqd->refs);
7039 fdput(f);
7040 return sqd;
7041 }
7042
io_get_sq_data(struct io_uring_params * p)7043 static struct io_sq_data *io_get_sq_data(struct io_uring_params *p)
7044 {
7045 struct io_sq_data *sqd;
7046
7047 if (p->flags & IORING_SETUP_ATTACH_WQ)
7048 return io_attach_sq_data(p);
7049
7050 sqd = kzalloc(sizeof(*sqd), GFP_KERNEL);
7051 if (!sqd)
7052 return ERR_PTR(-ENOMEM);
7053
7054 refcount_set(&sqd->refs, 1);
7055 INIT_LIST_HEAD(&sqd->ctx_list);
7056 INIT_LIST_HEAD(&sqd->ctx_new_list);
7057 mutex_init(&sqd->ctx_lock);
7058 mutex_init(&sqd->lock);
7059 init_waitqueue_head(&sqd->wait);
7060 return sqd;
7061 }
7062
io_sq_thread_unpark(struct io_sq_data * sqd)7063 static void io_sq_thread_unpark(struct io_sq_data *sqd)
7064 __releases(&sqd->lock)
7065 {
7066 if (!sqd->thread)
7067 return;
7068 kthread_unpark(sqd->thread);
7069 mutex_unlock(&sqd->lock);
7070 }
7071
io_sq_thread_park(struct io_sq_data * sqd)7072 static void io_sq_thread_park(struct io_sq_data *sqd)
7073 __acquires(&sqd->lock)
7074 {
7075 if (!sqd->thread)
7076 return;
7077 mutex_lock(&sqd->lock);
7078 kthread_park(sqd->thread);
7079 }
7080
io_sq_thread_stop(struct io_ring_ctx * ctx)7081 static void io_sq_thread_stop(struct io_ring_ctx *ctx)
7082 {
7083 struct io_sq_data *sqd = ctx->sq_data;
7084
7085 if (sqd) {
7086 if (sqd->thread) {
7087 /*
7088 * We may arrive here from the error branch in
7089 * io_sq_offload_create() where the kthread is created
7090 * without being waked up, thus wake it up now to make
7091 * sure the wait will complete.
7092 */
7093 wake_up_process(sqd->thread);
7094 wait_for_completion(&ctx->sq_thread_comp);
7095
7096 io_sq_thread_park(sqd);
7097 }
7098
7099 mutex_lock(&sqd->ctx_lock);
7100 list_del(&ctx->sqd_list);
7101 mutex_unlock(&sqd->ctx_lock);
7102
7103 if (sqd->thread) {
7104 finish_wait(&sqd->wait, &ctx->sqo_wait_entry);
7105 io_sq_thread_unpark(sqd);
7106 }
7107
7108 io_put_sq_data(sqd);
7109 ctx->sq_data = NULL;
7110 }
7111 }
7112
io_finish_async(struct io_ring_ctx * ctx)7113 static void io_finish_async(struct io_ring_ctx *ctx)
7114 {
7115 io_sq_thread_stop(ctx);
7116
7117 if (ctx->io_wq) {
7118 io_wq_destroy(ctx->io_wq);
7119 ctx->io_wq = NULL;
7120 }
7121 }
7122
7123 #if defined(CONFIG_UNIX)
7124 /*
7125 * Ensure the UNIX gc is aware of our file set, so we are certain that
7126 * the io_uring can be safely unregistered on process exit, even if we have
7127 * loops in the file referencing.
7128 */
__io_sqe_files_scm(struct io_ring_ctx * ctx,int nr,int offset)7129 static int __io_sqe_files_scm(struct io_ring_ctx *ctx, int nr, int offset)
7130 {
7131 struct sock *sk = ctx->ring_sock->sk;
7132 struct scm_fp_list *fpl;
7133 struct sk_buff *skb;
7134 int i, nr_files;
7135
7136 fpl = kzalloc(sizeof(*fpl), GFP_KERNEL);
7137 if (!fpl)
7138 return -ENOMEM;
7139
7140 skb = alloc_skb(0, GFP_KERNEL);
7141 if (!skb) {
7142 kfree(fpl);
7143 return -ENOMEM;
7144 }
7145
7146 skb->sk = sk;
7147
7148 nr_files = 0;
7149 fpl->user = get_uid(ctx->user);
7150 for (i = 0; i < nr; i++) {
7151 struct file *file = io_file_from_index(ctx, i + offset);
7152
7153 if (!file)
7154 continue;
7155 fpl->fp[nr_files] = get_file(file);
7156 unix_inflight(fpl->user, fpl->fp[nr_files]);
7157 nr_files++;
7158 }
7159
7160 if (nr_files) {
7161 fpl->max = SCM_MAX_FD;
7162 fpl->count = nr_files;
7163 UNIXCB(skb).fp = fpl;
7164 skb->destructor = unix_destruct_scm;
7165 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
7166 skb_queue_head(&sk->sk_receive_queue, skb);
7167
7168 for (i = 0; i < nr_files; i++)
7169 fput(fpl->fp[i]);
7170 } else {
7171 kfree_skb(skb);
7172 kfree(fpl);
7173 }
7174
7175 return 0;
7176 }
7177
7178 /*
7179 * If UNIX sockets are enabled, fd passing can cause a reference cycle which
7180 * causes regular reference counting to break down. We rely on the UNIX
7181 * garbage collection to take care of this problem for us.
7182 */
io_sqe_files_scm(struct io_ring_ctx * ctx)7183 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
7184 {
7185 unsigned left, total;
7186 int ret = 0;
7187
7188 total = 0;
7189 left = ctx->nr_user_files;
7190 while (left) {
7191 unsigned this_files = min_t(unsigned, left, SCM_MAX_FD);
7192
7193 ret = __io_sqe_files_scm(ctx, this_files, total);
7194 if (ret)
7195 break;
7196 left -= this_files;
7197 total += this_files;
7198 }
7199
7200 if (!ret)
7201 return 0;
7202
7203 while (total < ctx->nr_user_files) {
7204 struct file *file = io_file_from_index(ctx, total);
7205
7206 if (file)
7207 fput(file);
7208 total++;
7209 }
7210
7211 return ret;
7212 }
7213 #else
io_sqe_files_scm(struct io_ring_ctx * ctx)7214 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
7215 {
7216 return 0;
7217 }
7218 #endif
7219
io_sqe_alloc_file_tables(struct fixed_file_data * file_data,unsigned nr_tables,unsigned nr_files)7220 static int io_sqe_alloc_file_tables(struct fixed_file_data *file_data,
7221 unsigned nr_tables, unsigned nr_files)
7222 {
7223 int i;
7224
7225 for (i = 0; i < nr_tables; i++) {
7226 struct fixed_file_table *table = &file_data->table[i];
7227 unsigned this_files;
7228
7229 this_files = min(nr_files, IORING_MAX_FILES_TABLE);
7230 table->files = kcalloc(this_files, sizeof(struct file *),
7231 GFP_KERNEL);
7232 if (!table->files)
7233 break;
7234 nr_files -= this_files;
7235 }
7236
7237 if (i == nr_tables)
7238 return 0;
7239
7240 for (i = 0; i < nr_tables; i++) {
7241 struct fixed_file_table *table = &file_data->table[i];
7242 kfree(table->files);
7243 }
7244 return 1;
7245 }
7246
io_ring_file_put(struct io_ring_ctx * ctx,struct file * file)7247 static void io_ring_file_put(struct io_ring_ctx *ctx, struct file *file)
7248 {
7249 #if defined(CONFIG_UNIX)
7250 struct sock *sock = ctx->ring_sock->sk;
7251 struct sk_buff_head list, *head = &sock->sk_receive_queue;
7252 struct sk_buff *skb;
7253 int i;
7254
7255 __skb_queue_head_init(&list);
7256
7257 /*
7258 * Find the skb that holds this file in its SCM_RIGHTS. When found,
7259 * remove this entry and rearrange the file array.
7260 */
7261 skb = skb_dequeue(head);
7262 while (skb) {
7263 struct scm_fp_list *fp;
7264
7265 fp = UNIXCB(skb).fp;
7266 for (i = 0; i < fp->count; i++) {
7267 int left;
7268
7269 if (fp->fp[i] != file)
7270 continue;
7271
7272 unix_notinflight(fp->user, fp->fp[i]);
7273 left = fp->count - 1 - i;
7274 if (left) {
7275 memmove(&fp->fp[i], &fp->fp[i + 1],
7276 left * sizeof(struct file *));
7277 }
7278 fp->count--;
7279 if (!fp->count) {
7280 kfree_skb(skb);
7281 skb = NULL;
7282 } else {
7283 __skb_queue_tail(&list, skb);
7284 }
7285 fput(file);
7286 file = NULL;
7287 break;
7288 }
7289
7290 if (!file)
7291 break;
7292
7293 __skb_queue_tail(&list, skb);
7294
7295 skb = skb_dequeue(head);
7296 }
7297
7298 if (skb_peek(&list)) {
7299 spin_lock_irq(&head->lock);
7300 while ((skb = __skb_dequeue(&list)) != NULL)
7301 __skb_queue_tail(head, skb);
7302 spin_unlock_irq(&head->lock);
7303 }
7304 #else
7305 fput(file);
7306 #endif
7307 }
7308
7309 struct io_file_put {
7310 struct list_head list;
7311 struct file *file;
7312 };
7313
__io_file_put_work(struct fixed_file_ref_node * ref_node)7314 static void __io_file_put_work(struct fixed_file_ref_node *ref_node)
7315 {
7316 struct fixed_file_data *file_data = ref_node->file_data;
7317 struct io_ring_ctx *ctx = file_data->ctx;
7318 struct io_file_put *pfile, *tmp;
7319
7320 list_for_each_entry_safe(pfile, tmp, &ref_node->file_list, list) {
7321 list_del(&pfile->list);
7322 io_ring_file_put(ctx, pfile->file);
7323 kfree(pfile);
7324 }
7325
7326 percpu_ref_exit(&ref_node->refs);
7327 kfree(ref_node);
7328 percpu_ref_put(&file_data->refs);
7329 }
7330
io_file_put_work(struct work_struct * work)7331 static void io_file_put_work(struct work_struct *work)
7332 {
7333 struct io_ring_ctx *ctx;
7334 struct llist_node *node;
7335
7336 ctx = container_of(work, struct io_ring_ctx, file_put_work.work);
7337 node = llist_del_all(&ctx->file_put_llist);
7338
7339 while (node) {
7340 struct fixed_file_ref_node *ref_node;
7341 struct llist_node *next = node->next;
7342
7343 ref_node = llist_entry(node, struct fixed_file_ref_node, llist);
7344 __io_file_put_work(ref_node);
7345 node = next;
7346 }
7347 }
7348
io_file_data_ref_zero(struct percpu_ref * ref)7349 static void io_file_data_ref_zero(struct percpu_ref *ref)
7350 {
7351 struct fixed_file_ref_node *ref_node;
7352 struct fixed_file_data *data;
7353 struct io_ring_ctx *ctx;
7354 bool first_add = false;
7355 int delay = HZ;
7356
7357 ref_node = container_of(ref, struct fixed_file_ref_node, refs);
7358 data = ref_node->file_data;
7359 ctx = data->ctx;
7360
7361 spin_lock(&data->lock);
7362 ref_node->done = true;
7363
7364 while (!list_empty(&data->ref_list)) {
7365 ref_node = list_first_entry(&data->ref_list,
7366 struct fixed_file_ref_node, node);
7367 /* recycle ref nodes in order */
7368 if (!ref_node->done)
7369 break;
7370 list_del(&ref_node->node);
7371 first_add |= llist_add(&ref_node->llist, &ctx->file_put_llist);
7372 }
7373 spin_unlock(&data->lock);
7374
7375 if (percpu_ref_is_dying(&data->refs))
7376 delay = 0;
7377
7378 if (!delay)
7379 mod_delayed_work(system_wq, &ctx->file_put_work, 0);
7380 else if (first_add)
7381 queue_delayed_work(system_wq, &ctx->file_put_work, delay);
7382 }
7383
alloc_fixed_file_ref_node(struct io_ring_ctx * ctx)7384 static struct fixed_file_ref_node *alloc_fixed_file_ref_node(
7385 struct io_ring_ctx *ctx)
7386 {
7387 struct fixed_file_ref_node *ref_node;
7388
7389 ref_node = kzalloc(sizeof(*ref_node), GFP_KERNEL);
7390 if (!ref_node)
7391 return ERR_PTR(-ENOMEM);
7392
7393 if (percpu_ref_init(&ref_node->refs, io_file_data_ref_zero,
7394 0, GFP_KERNEL)) {
7395 kfree(ref_node);
7396 return ERR_PTR(-ENOMEM);
7397 }
7398 INIT_LIST_HEAD(&ref_node->node);
7399 INIT_LIST_HEAD(&ref_node->file_list);
7400 ref_node->file_data = ctx->file_data;
7401 ref_node->done = false;
7402 return ref_node;
7403 }
7404
destroy_fixed_file_ref_node(struct fixed_file_ref_node * ref_node)7405 static void destroy_fixed_file_ref_node(struct fixed_file_ref_node *ref_node)
7406 {
7407 percpu_ref_exit(&ref_node->refs);
7408 kfree(ref_node);
7409 }
7410
io_sqe_files_register(struct io_ring_ctx * ctx,void __user * arg,unsigned nr_args)7411 static int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg,
7412 unsigned nr_args)
7413 {
7414 __s32 __user *fds = (__s32 __user *) arg;
7415 unsigned nr_tables, i;
7416 struct file *file;
7417 int fd, ret = -ENOMEM;
7418 struct fixed_file_ref_node *ref_node;
7419 struct fixed_file_data *file_data;
7420
7421 if (ctx->file_data)
7422 return -EBUSY;
7423 if (!nr_args)
7424 return -EINVAL;
7425 if (nr_args > IORING_MAX_FIXED_FILES)
7426 return -EMFILE;
7427
7428 file_data = kzalloc(sizeof(*ctx->file_data), GFP_KERNEL);
7429 if (!file_data)
7430 return -ENOMEM;
7431 file_data->ctx = ctx;
7432 init_completion(&file_data->done);
7433 INIT_LIST_HEAD(&file_data->ref_list);
7434 spin_lock_init(&file_data->lock);
7435
7436 nr_tables = DIV_ROUND_UP(nr_args, IORING_MAX_FILES_TABLE);
7437 file_data->table = kcalloc(nr_tables, sizeof(*file_data->table),
7438 GFP_KERNEL);
7439 if (!file_data->table)
7440 goto out_free;
7441
7442 if (percpu_ref_init(&file_data->refs, io_file_ref_kill,
7443 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
7444 goto out_free;
7445
7446 if (io_sqe_alloc_file_tables(file_data, nr_tables, nr_args))
7447 goto out_ref;
7448 ctx->file_data = file_data;
7449
7450 for (i = 0; i < nr_args; i++, ctx->nr_user_files++) {
7451 struct fixed_file_table *table;
7452 unsigned index;
7453
7454 if (copy_from_user(&fd, &fds[i], sizeof(fd))) {
7455 ret = -EFAULT;
7456 goto out_fput;
7457 }
7458 /* allow sparse sets */
7459 if (fd == -1)
7460 continue;
7461
7462 file = fget(fd);
7463 ret = -EBADF;
7464 if (!file)
7465 goto out_fput;
7466
7467 /*
7468 * Don't allow io_uring instances to be registered. If UNIX
7469 * isn't enabled, then this causes a reference cycle and this
7470 * instance can never get freed. If UNIX is enabled we'll
7471 * handle it just fine, but there's still no point in allowing
7472 * a ring fd as it doesn't support regular read/write anyway.
7473 */
7474 if (file->f_op == &io_uring_fops) {
7475 fput(file);
7476 goto out_fput;
7477 }
7478 table = &file_data->table[i >> IORING_FILE_TABLE_SHIFT];
7479 index = i & IORING_FILE_TABLE_MASK;
7480 table->files[index] = file;
7481 }
7482
7483 ret = io_sqe_files_scm(ctx);
7484 if (ret) {
7485 io_sqe_files_unregister(ctx);
7486 return ret;
7487 }
7488
7489 ref_node = alloc_fixed_file_ref_node(ctx);
7490 if (IS_ERR(ref_node)) {
7491 io_sqe_files_unregister(ctx);
7492 return PTR_ERR(ref_node);
7493 }
7494
7495 file_data->node = ref_node;
7496 spin_lock(&file_data->lock);
7497 list_add_tail(&ref_node->node, &file_data->ref_list);
7498 spin_unlock(&file_data->lock);
7499 percpu_ref_get(&file_data->refs);
7500 return ret;
7501 out_fput:
7502 for (i = 0; i < ctx->nr_user_files; i++) {
7503 file = io_file_from_index(ctx, i);
7504 if (file)
7505 fput(file);
7506 }
7507 for (i = 0; i < nr_tables; i++)
7508 kfree(file_data->table[i].files);
7509 ctx->nr_user_files = 0;
7510 out_ref:
7511 percpu_ref_exit(&file_data->refs);
7512 out_free:
7513 kfree(file_data->table);
7514 kfree(file_data);
7515 ctx->file_data = NULL;
7516 return ret;
7517 }
7518
io_sqe_file_register(struct io_ring_ctx * ctx,struct file * file,int index)7519 static int io_sqe_file_register(struct io_ring_ctx *ctx, struct file *file,
7520 int index)
7521 {
7522 #if defined(CONFIG_UNIX)
7523 struct sock *sock = ctx->ring_sock->sk;
7524 struct sk_buff_head *head = &sock->sk_receive_queue;
7525 struct sk_buff *skb;
7526
7527 /*
7528 * See if we can merge this file into an existing skb SCM_RIGHTS
7529 * file set. If there's no room, fall back to allocating a new skb
7530 * and filling it in.
7531 */
7532 spin_lock_irq(&head->lock);
7533 skb = skb_peek(head);
7534 if (skb) {
7535 struct scm_fp_list *fpl = UNIXCB(skb).fp;
7536
7537 if (fpl->count < SCM_MAX_FD) {
7538 __skb_unlink(skb, head);
7539 spin_unlock_irq(&head->lock);
7540 fpl->fp[fpl->count] = get_file(file);
7541 unix_inflight(fpl->user, fpl->fp[fpl->count]);
7542 fpl->count++;
7543 spin_lock_irq(&head->lock);
7544 __skb_queue_head(head, skb);
7545 } else {
7546 skb = NULL;
7547 }
7548 }
7549 spin_unlock_irq(&head->lock);
7550
7551 if (skb) {
7552 fput(file);
7553 return 0;
7554 }
7555
7556 return __io_sqe_files_scm(ctx, 1, index);
7557 #else
7558 return 0;
7559 #endif
7560 }
7561
io_queue_file_removal(struct fixed_file_data * data,struct file * file)7562 static int io_queue_file_removal(struct fixed_file_data *data,
7563 struct file *file)
7564 {
7565 struct io_file_put *pfile;
7566 struct fixed_file_ref_node *ref_node = data->node;
7567
7568 pfile = kzalloc(sizeof(*pfile), GFP_KERNEL);
7569 if (!pfile)
7570 return -ENOMEM;
7571
7572 pfile->file = file;
7573 list_add(&pfile->list, &ref_node->file_list);
7574
7575 return 0;
7576 }
7577
__io_sqe_files_update(struct io_ring_ctx * ctx,struct io_uring_files_update * up,unsigned nr_args)7578 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
7579 struct io_uring_files_update *up,
7580 unsigned nr_args)
7581 {
7582 struct fixed_file_data *data = ctx->file_data;
7583 struct fixed_file_ref_node *ref_node;
7584 struct file *file;
7585 __s32 __user *fds;
7586 int fd, i, err;
7587 __u32 done;
7588 bool needs_switch = false;
7589
7590 if (check_add_overflow(up->offset, nr_args, &done))
7591 return -EOVERFLOW;
7592 if (done > ctx->nr_user_files)
7593 return -EINVAL;
7594
7595 ref_node = alloc_fixed_file_ref_node(ctx);
7596 if (IS_ERR(ref_node))
7597 return PTR_ERR(ref_node);
7598
7599 done = 0;
7600 fds = u64_to_user_ptr(up->fds);
7601 while (nr_args) {
7602 struct fixed_file_table *table;
7603 unsigned index;
7604
7605 err = 0;
7606 if (copy_from_user(&fd, &fds[done], sizeof(fd))) {
7607 err = -EFAULT;
7608 break;
7609 }
7610 i = array_index_nospec(up->offset, ctx->nr_user_files);
7611 table = &ctx->file_data->table[i >> IORING_FILE_TABLE_SHIFT];
7612 index = i & IORING_FILE_TABLE_MASK;
7613 if (table->files[index]) {
7614 file = table->files[index];
7615 err = io_queue_file_removal(data, file);
7616 if (err)
7617 break;
7618 table->files[index] = NULL;
7619 needs_switch = true;
7620 }
7621 if (fd != -1) {
7622 file = fget(fd);
7623 if (!file) {
7624 err = -EBADF;
7625 break;
7626 }
7627 /*
7628 * Don't allow io_uring instances to be registered. If
7629 * UNIX isn't enabled, then this causes a reference
7630 * cycle and this instance can never get freed. If UNIX
7631 * is enabled we'll handle it just fine, but there's
7632 * still no point in allowing a ring fd as it doesn't
7633 * support regular read/write anyway.
7634 */
7635 if (file->f_op == &io_uring_fops) {
7636 fput(file);
7637 err = -EBADF;
7638 break;
7639 }
7640 table->files[index] = file;
7641 err = io_sqe_file_register(ctx, file, i);
7642 if (err) {
7643 table->files[index] = NULL;
7644 fput(file);
7645 break;
7646 }
7647 }
7648 nr_args--;
7649 done++;
7650 up->offset++;
7651 }
7652
7653 if (needs_switch) {
7654 percpu_ref_kill(&data->node->refs);
7655 spin_lock(&data->lock);
7656 list_add_tail(&ref_node->node, &data->ref_list);
7657 data->node = ref_node;
7658 spin_unlock(&data->lock);
7659 percpu_ref_get(&ctx->file_data->refs);
7660 } else
7661 destroy_fixed_file_ref_node(ref_node);
7662
7663 return done ? done : err;
7664 }
7665
io_sqe_files_update(struct io_ring_ctx * ctx,void __user * arg,unsigned nr_args)7666 static int io_sqe_files_update(struct io_ring_ctx *ctx, void __user *arg,
7667 unsigned nr_args)
7668 {
7669 struct io_uring_files_update up;
7670
7671 if (!ctx->file_data)
7672 return -ENXIO;
7673 if (!nr_args)
7674 return -EINVAL;
7675 if (copy_from_user(&up, arg, sizeof(up)))
7676 return -EFAULT;
7677 if (up.resv)
7678 return -EINVAL;
7679
7680 return __io_sqe_files_update(ctx, &up, nr_args);
7681 }
7682
io_free_work(struct io_wq_work * work)7683 static void io_free_work(struct io_wq_work *work)
7684 {
7685 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
7686
7687 /* Consider that io_steal_work() relies on this ref */
7688 io_put_req(req);
7689 }
7690
io_init_wq_offload(struct io_ring_ctx * ctx,struct io_uring_params * p)7691 static int io_init_wq_offload(struct io_ring_ctx *ctx,
7692 struct io_uring_params *p)
7693 {
7694 struct io_wq_data data;
7695 struct fd f;
7696 struct io_ring_ctx *ctx_attach;
7697 unsigned int concurrency;
7698 int ret = 0;
7699
7700 data.user = ctx->user;
7701 data.free_work = io_free_work;
7702 data.do_work = io_wq_submit_work;
7703
7704 if (!(p->flags & IORING_SETUP_ATTACH_WQ)) {
7705 /* Do QD, or 4 * CPUS, whatever is smallest */
7706 concurrency = min(ctx->sq_entries, 4 * num_online_cpus());
7707
7708 ctx->io_wq = io_wq_create(concurrency, &data);
7709 if (IS_ERR(ctx->io_wq)) {
7710 ret = PTR_ERR(ctx->io_wq);
7711 ctx->io_wq = NULL;
7712 }
7713 return ret;
7714 }
7715
7716 f = fdget(p->wq_fd);
7717 if (!f.file)
7718 return -EBADF;
7719
7720 if (f.file->f_op != &io_uring_fops) {
7721 ret = -EINVAL;
7722 goto out_fput;
7723 }
7724
7725 ctx_attach = f.file->private_data;
7726 /* @io_wq is protected by holding the fd */
7727 if (!io_wq_get(ctx_attach->io_wq, &data)) {
7728 ret = -EINVAL;
7729 goto out_fput;
7730 }
7731
7732 ctx->io_wq = ctx_attach->io_wq;
7733 out_fput:
7734 fdput(f);
7735 return ret;
7736 }
7737
io_uring_alloc_task_context(struct task_struct * task)7738 static int io_uring_alloc_task_context(struct task_struct *task)
7739 {
7740 struct io_uring_task *tctx;
7741 int ret;
7742
7743 tctx = kmalloc(sizeof(*tctx), GFP_KERNEL);
7744 if (unlikely(!tctx))
7745 return -ENOMEM;
7746
7747 ret = percpu_counter_init(&tctx->inflight, 0, GFP_KERNEL);
7748 if (unlikely(ret)) {
7749 kfree(tctx);
7750 return ret;
7751 }
7752
7753 xa_init(&tctx->xa);
7754 init_waitqueue_head(&tctx->wait);
7755 tctx->last = NULL;
7756 atomic_set(&tctx->in_idle, 0);
7757 tctx->sqpoll = false;
7758 io_init_identity(&tctx->__identity);
7759 tctx->identity = &tctx->__identity;
7760 task->io_uring = tctx;
7761 return 0;
7762 }
7763
__io_uring_free(struct task_struct * tsk)7764 void __io_uring_free(struct task_struct *tsk)
7765 {
7766 struct io_uring_task *tctx = tsk->io_uring;
7767
7768 WARN_ON_ONCE(!xa_empty(&tctx->xa));
7769 WARN_ON_ONCE(refcount_read(&tctx->identity->count) != 1);
7770 if (tctx->identity != &tctx->__identity)
7771 kfree(tctx->identity);
7772 percpu_counter_destroy(&tctx->inflight);
7773 kfree(tctx);
7774 tsk->io_uring = NULL;
7775 }
7776
io_sq_offload_create(struct io_ring_ctx * ctx,struct io_uring_params * p)7777 static int io_sq_offload_create(struct io_ring_ctx *ctx,
7778 struct io_uring_params *p)
7779 {
7780 int ret;
7781
7782 if (ctx->flags & IORING_SETUP_SQPOLL) {
7783 struct io_sq_data *sqd;
7784
7785 ret = -EPERM;
7786 if (!capable(CAP_SYS_ADMIN))
7787 goto err;
7788
7789 sqd = io_get_sq_data(p);
7790 if (IS_ERR(sqd)) {
7791 ret = PTR_ERR(sqd);
7792 goto err;
7793 }
7794
7795 ctx->sq_data = sqd;
7796 io_sq_thread_park(sqd);
7797 mutex_lock(&sqd->ctx_lock);
7798 list_add(&ctx->sqd_list, &sqd->ctx_new_list);
7799 mutex_unlock(&sqd->ctx_lock);
7800 io_sq_thread_unpark(sqd);
7801
7802 ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle);
7803 if (!ctx->sq_thread_idle)
7804 ctx->sq_thread_idle = HZ;
7805
7806 if (sqd->thread)
7807 goto done;
7808
7809 if (p->flags & IORING_SETUP_SQ_AFF) {
7810 int cpu = p->sq_thread_cpu;
7811
7812 ret = -EINVAL;
7813 if (cpu >= nr_cpu_ids)
7814 goto err;
7815 if (!cpu_online(cpu))
7816 goto err;
7817
7818 sqd->thread = kthread_create_on_cpu(io_sq_thread, sqd,
7819 cpu, "io_uring-sq");
7820 } else {
7821 sqd->thread = kthread_create(io_sq_thread, sqd,
7822 "io_uring-sq");
7823 }
7824 if (IS_ERR(sqd->thread)) {
7825 ret = PTR_ERR(sqd->thread);
7826 sqd->thread = NULL;
7827 goto err;
7828 }
7829 ret = io_uring_alloc_task_context(sqd->thread);
7830 if (ret)
7831 goto err;
7832 } else if (p->flags & IORING_SETUP_SQ_AFF) {
7833 /* Can't have SQ_AFF without SQPOLL */
7834 ret = -EINVAL;
7835 goto err;
7836 }
7837
7838 done:
7839 ret = io_init_wq_offload(ctx, p);
7840 if (ret)
7841 goto err;
7842
7843 return 0;
7844 err:
7845 io_finish_async(ctx);
7846 return ret;
7847 }
7848
io_sq_offload_start(struct io_ring_ctx * ctx)7849 static void io_sq_offload_start(struct io_ring_ctx *ctx)
7850 {
7851 struct io_sq_data *sqd = ctx->sq_data;
7852
7853 if ((ctx->flags & IORING_SETUP_SQPOLL) && sqd->thread)
7854 wake_up_process(sqd->thread);
7855 }
7856
__io_unaccount_mem(struct user_struct * user,unsigned long nr_pages)7857 static inline void __io_unaccount_mem(struct user_struct *user,
7858 unsigned long nr_pages)
7859 {
7860 atomic_long_sub(nr_pages, &user->locked_vm);
7861 }
7862
__io_account_mem(struct user_struct * user,unsigned long nr_pages)7863 static inline int __io_account_mem(struct user_struct *user,
7864 unsigned long nr_pages)
7865 {
7866 unsigned long page_limit, cur_pages, new_pages;
7867
7868 /* Don't allow more pages than we can safely lock */
7869 page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
7870
7871 do {
7872 cur_pages = atomic_long_read(&user->locked_vm);
7873 new_pages = cur_pages + nr_pages;
7874 if (new_pages > page_limit)
7875 return -ENOMEM;
7876 } while (atomic_long_cmpxchg(&user->locked_vm, cur_pages,
7877 new_pages) != cur_pages);
7878
7879 return 0;
7880 }
7881
io_unaccount_mem(struct io_ring_ctx * ctx,unsigned long nr_pages,enum io_mem_account acct)7882 static void io_unaccount_mem(struct io_ring_ctx *ctx, unsigned long nr_pages,
7883 enum io_mem_account acct)
7884 {
7885 if (ctx->limit_mem)
7886 __io_unaccount_mem(ctx->user, nr_pages);
7887
7888 if (ctx->mm_account) {
7889 if (acct == ACCT_LOCKED)
7890 ctx->mm_account->locked_vm -= nr_pages;
7891 else if (acct == ACCT_PINNED)
7892 atomic64_sub(nr_pages, &ctx->mm_account->pinned_vm);
7893 }
7894 }
7895
io_account_mem(struct io_ring_ctx * ctx,unsigned long nr_pages,enum io_mem_account acct)7896 static int io_account_mem(struct io_ring_ctx *ctx, unsigned long nr_pages,
7897 enum io_mem_account acct)
7898 {
7899 int ret;
7900
7901 if (ctx->limit_mem) {
7902 ret = __io_account_mem(ctx->user, nr_pages);
7903 if (ret)
7904 return ret;
7905 }
7906
7907 if (ctx->mm_account) {
7908 if (acct == ACCT_LOCKED)
7909 ctx->mm_account->locked_vm += nr_pages;
7910 else if (acct == ACCT_PINNED)
7911 atomic64_add(nr_pages, &ctx->mm_account->pinned_vm);
7912 }
7913
7914 return 0;
7915 }
7916
io_mem_free(void * ptr)7917 static void io_mem_free(void *ptr)
7918 {
7919 struct page *page;
7920
7921 if (!ptr)
7922 return;
7923
7924 page = virt_to_head_page(ptr);
7925 if (put_page_testzero(page))
7926 free_compound_page(page);
7927 }
7928
io_mem_alloc(size_t size)7929 static void *io_mem_alloc(size_t size)
7930 {
7931 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP |
7932 __GFP_NORETRY;
7933
7934 return (void *) __get_free_pages(gfp_flags, get_order(size));
7935 }
7936
rings_size(unsigned sq_entries,unsigned cq_entries,size_t * sq_offset)7937 static unsigned long rings_size(unsigned sq_entries, unsigned cq_entries,
7938 size_t *sq_offset)
7939 {
7940 struct io_rings *rings;
7941 size_t off, sq_array_size;
7942
7943 off = struct_size(rings, cqes, cq_entries);
7944 if (off == SIZE_MAX)
7945 return SIZE_MAX;
7946
7947 #ifdef CONFIG_SMP
7948 off = ALIGN(off, SMP_CACHE_BYTES);
7949 if (off == 0)
7950 return SIZE_MAX;
7951 #endif
7952
7953 if (sq_offset)
7954 *sq_offset = off;
7955
7956 sq_array_size = array_size(sizeof(u32), sq_entries);
7957 if (sq_array_size == SIZE_MAX)
7958 return SIZE_MAX;
7959
7960 if (check_add_overflow(off, sq_array_size, &off))
7961 return SIZE_MAX;
7962
7963 return off;
7964 }
7965
ring_pages(unsigned sq_entries,unsigned cq_entries)7966 static unsigned long ring_pages(unsigned sq_entries, unsigned cq_entries)
7967 {
7968 size_t pages;
7969
7970 pages = (size_t)1 << get_order(
7971 rings_size(sq_entries, cq_entries, NULL));
7972 pages += (size_t)1 << get_order(
7973 array_size(sizeof(struct io_uring_sqe), sq_entries));
7974
7975 return pages;
7976 }
7977
io_sqe_buffer_unregister(struct io_ring_ctx * ctx)7978 static int io_sqe_buffer_unregister(struct io_ring_ctx *ctx)
7979 {
7980 int i, j;
7981
7982 if (!ctx->user_bufs)
7983 return -ENXIO;
7984
7985 for (i = 0; i < ctx->nr_user_bufs; i++) {
7986 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
7987
7988 for (j = 0; j < imu->nr_bvecs; j++)
7989 unpin_user_page(imu->bvec[j].bv_page);
7990
7991 if (imu->acct_pages)
7992 io_unaccount_mem(ctx, imu->acct_pages, ACCT_PINNED);
7993 kvfree(imu->bvec);
7994 imu->nr_bvecs = 0;
7995 }
7996
7997 kfree(ctx->user_bufs);
7998 ctx->user_bufs = NULL;
7999 ctx->nr_user_bufs = 0;
8000 return 0;
8001 }
8002
io_copy_iov(struct io_ring_ctx * ctx,struct iovec * dst,void __user * arg,unsigned index)8003 static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst,
8004 void __user *arg, unsigned index)
8005 {
8006 struct iovec __user *src;
8007
8008 #ifdef CONFIG_COMPAT
8009 if (ctx->compat) {
8010 struct compat_iovec __user *ciovs;
8011 struct compat_iovec ciov;
8012
8013 ciovs = (struct compat_iovec __user *) arg;
8014 if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov)))
8015 return -EFAULT;
8016
8017 dst->iov_base = u64_to_user_ptr((u64)ciov.iov_base);
8018 dst->iov_len = ciov.iov_len;
8019 return 0;
8020 }
8021 #endif
8022 src = (struct iovec __user *) arg;
8023 if (copy_from_user(dst, &src[index], sizeof(*dst)))
8024 return -EFAULT;
8025 return 0;
8026 }
8027
8028 /*
8029 * Not super efficient, but this is just a registration time. And we do cache
8030 * the last compound head, so generally we'll only do a full search if we don't
8031 * match that one.
8032 *
8033 * We check if the given compound head page has already been accounted, to
8034 * avoid double accounting it. This allows us to account the full size of the
8035 * page, not just the constituent pages of a huge page.
8036 */
headpage_already_acct(struct io_ring_ctx * ctx,struct page ** pages,int nr_pages,struct page * hpage)8037 static bool headpage_already_acct(struct io_ring_ctx *ctx, struct page **pages,
8038 int nr_pages, struct page *hpage)
8039 {
8040 int i, j;
8041
8042 /* check current page array */
8043 for (i = 0; i < nr_pages; i++) {
8044 if (!PageCompound(pages[i]))
8045 continue;
8046 if (compound_head(pages[i]) == hpage)
8047 return true;
8048 }
8049
8050 /* check previously registered pages */
8051 for (i = 0; i < ctx->nr_user_bufs; i++) {
8052 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
8053
8054 for (j = 0; j < imu->nr_bvecs; j++) {
8055 if (!PageCompound(imu->bvec[j].bv_page))
8056 continue;
8057 if (compound_head(imu->bvec[j].bv_page) == hpage)
8058 return true;
8059 }
8060 }
8061
8062 return false;
8063 }
8064
io_buffer_account_pin(struct io_ring_ctx * ctx,struct page ** pages,int nr_pages,struct io_mapped_ubuf * imu,struct page ** last_hpage)8065 static int io_buffer_account_pin(struct io_ring_ctx *ctx, struct page **pages,
8066 int nr_pages, struct io_mapped_ubuf *imu,
8067 struct page **last_hpage)
8068 {
8069 int i, ret;
8070
8071 for (i = 0; i < nr_pages; i++) {
8072 if (!PageCompound(pages[i])) {
8073 imu->acct_pages++;
8074 } else {
8075 struct page *hpage;
8076
8077 hpage = compound_head(pages[i]);
8078 if (hpage == *last_hpage)
8079 continue;
8080 *last_hpage = hpage;
8081 if (headpage_already_acct(ctx, pages, i, hpage))
8082 continue;
8083 imu->acct_pages += page_size(hpage) >> PAGE_SHIFT;
8084 }
8085 }
8086
8087 if (!imu->acct_pages)
8088 return 0;
8089
8090 ret = io_account_mem(ctx, imu->acct_pages, ACCT_PINNED);
8091 if (ret)
8092 imu->acct_pages = 0;
8093 return ret;
8094 }
8095
io_sqe_buffer_register(struct io_ring_ctx * ctx,void __user * arg,unsigned nr_args)8096 static int io_sqe_buffer_register(struct io_ring_ctx *ctx, void __user *arg,
8097 unsigned nr_args)
8098 {
8099 struct vm_area_struct **vmas = NULL;
8100 struct page **pages = NULL;
8101 struct page *last_hpage = NULL;
8102 int i, j, got_pages = 0;
8103 int ret = -EINVAL;
8104
8105 if (ctx->user_bufs)
8106 return -EBUSY;
8107 if (!nr_args || nr_args > UIO_MAXIOV)
8108 return -EINVAL;
8109
8110 ctx->user_bufs = kcalloc(nr_args, sizeof(struct io_mapped_ubuf),
8111 GFP_KERNEL);
8112 if (!ctx->user_bufs)
8113 return -ENOMEM;
8114
8115 for (i = 0; i < nr_args; i++) {
8116 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
8117 unsigned long off, start, end, ubuf;
8118 int pret, nr_pages;
8119 struct iovec iov;
8120 size_t size;
8121
8122 ret = io_copy_iov(ctx, &iov, arg, i);
8123 if (ret)
8124 goto err;
8125
8126 /*
8127 * Don't impose further limits on the size and buffer
8128 * constraints here, we'll -EINVAL later when IO is
8129 * submitted if they are wrong.
8130 */
8131 ret = -EFAULT;
8132 if (!iov.iov_base || !iov.iov_len)
8133 goto err;
8134
8135 /* arbitrary limit, but we need something */
8136 if (iov.iov_len > SZ_1G)
8137 goto err;
8138
8139 ubuf = (unsigned long) iov.iov_base;
8140 end = (ubuf + iov.iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
8141 start = ubuf >> PAGE_SHIFT;
8142 nr_pages = end - start;
8143
8144 ret = 0;
8145 if (!pages || nr_pages > got_pages) {
8146 kvfree(vmas);
8147 kvfree(pages);
8148 pages = kvmalloc_array(nr_pages, sizeof(struct page *),
8149 GFP_KERNEL);
8150 vmas = kvmalloc_array(nr_pages,
8151 sizeof(struct vm_area_struct *),
8152 GFP_KERNEL);
8153 if (!pages || !vmas) {
8154 ret = -ENOMEM;
8155 goto err;
8156 }
8157 got_pages = nr_pages;
8158 }
8159
8160 imu->bvec = kvmalloc_array(nr_pages, sizeof(struct bio_vec),
8161 GFP_KERNEL);
8162 ret = -ENOMEM;
8163 if (!imu->bvec)
8164 goto err;
8165
8166 ret = 0;
8167 mmap_read_lock(current->mm);
8168 pret = pin_user_pages(ubuf, nr_pages,
8169 FOLL_WRITE | FOLL_LONGTERM,
8170 pages, vmas);
8171 if (pret == nr_pages) {
8172 /* don't support file backed memory */
8173 for (j = 0; j < nr_pages; j++) {
8174 struct vm_area_struct *vma = vmas[j];
8175
8176 if (vma->vm_file &&
8177 !is_file_hugepages(vma->vm_file)) {
8178 ret = -EOPNOTSUPP;
8179 break;
8180 }
8181 }
8182 } else {
8183 ret = pret < 0 ? pret : -EFAULT;
8184 }
8185 mmap_read_unlock(current->mm);
8186 if (ret) {
8187 /*
8188 * if we did partial map, or found file backed vmas,
8189 * release any pages we did get
8190 */
8191 if (pret > 0)
8192 unpin_user_pages(pages, pret);
8193 kvfree(imu->bvec);
8194 goto err;
8195 }
8196
8197 ret = io_buffer_account_pin(ctx, pages, pret, imu, &last_hpage);
8198 if (ret) {
8199 unpin_user_pages(pages, pret);
8200 kvfree(imu->bvec);
8201 goto err;
8202 }
8203
8204 off = ubuf & ~PAGE_MASK;
8205 size = iov.iov_len;
8206 for (j = 0; j < nr_pages; j++) {
8207 size_t vec_len;
8208
8209 vec_len = min_t(size_t, size, PAGE_SIZE - off);
8210 imu->bvec[j].bv_page = pages[j];
8211 imu->bvec[j].bv_len = vec_len;
8212 imu->bvec[j].bv_offset = off;
8213 off = 0;
8214 size -= vec_len;
8215 }
8216 /* store original address for later verification */
8217 imu->ubuf = ubuf;
8218 imu->len = iov.iov_len;
8219 imu->nr_bvecs = nr_pages;
8220
8221 ctx->nr_user_bufs++;
8222 }
8223 kvfree(pages);
8224 kvfree(vmas);
8225 return 0;
8226 err:
8227 kvfree(pages);
8228 kvfree(vmas);
8229 io_sqe_buffer_unregister(ctx);
8230 return ret;
8231 }
8232
io_eventfd_register(struct io_ring_ctx * ctx,void __user * arg)8233 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg)
8234 {
8235 __s32 __user *fds = arg;
8236 int fd;
8237
8238 if (ctx->cq_ev_fd)
8239 return -EBUSY;
8240
8241 if (copy_from_user(&fd, fds, sizeof(*fds)))
8242 return -EFAULT;
8243
8244 ctx->cq_ev_fd = eventfd_ctx_fdget(fd);
8245 if (IS_ERR(ctx->cq_ev_fd)) {
8246 int ret = PTR_ERR(ctx->cq_ev_fd);
8247 ctx->cq_ev_fd = NULL;
8248 return ret;
8249 }
8250
8251 return 0;
8252 }
8253
io_eventfd_unregister(struct io_ring_ctx * ctx)8254 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
8255 {
8256 if (ctx->cq_ev_fd) {
8257 eventfd_ctx_put(ctx->cq_ev_fd);
8258 ctx->cq_ev_fd = NULL;
8259 return 0;
8260 }
8261
8262 return -ENXIO;
8263 }
8264
__io_destroy_buffers(int id,void * p,void * data)8265 static int __io_destroy_buffers(int id, void *p, void *data)
8266 {
8267 struct io_ring_ctx *ctx = data;
8268 struct io_buffer *buf = p;
8269
8270 __io_remove_buffers(ctx, buf, id, -1U);
8271 return 0;
8272 }
8273
io_destroy_buffers(struct io_ring_ctx * ctx)8274 static void io_destroy_buffers(struct io_ring_ctx *ctx)
8275 {
8276 idr_for_each(&ctx->io_buffer_idr, __io_destroy_buffers, ctx);
8277 idr_destroy(&ctx->io_buffer_idr);
8278 }
8279
io_ring_ctx_free(struct io_ring_ctx * ctx)8280 static void io_ring_ctx_free(struct io_ring_ctx *ctx)
8281 {
8282 io_finish_async(ctx);
8283 io_sqe_buffer_unregister(ctx);
8284
8285 if (ctx->sqo_task) {
8286 put_task_struct(ctx->sqo_task);
8287 ctx->sqo_task = NULL;
8288 mmdrop(ctx->mm_account);
8289 ctx->mm_account = NULL;
8290 }
8291
8292 #ifdef CONFIG_BLK_CGROUP
8293 if (ctx->sqo_blkcg_css)
8294 css_put(ctx->sqo_blkcg_css);
8295 #endif
8296
8297 io_sqe_files_unregister(ctx);
8298 io_eventfd_unregister(ctx);
8299 io_destroy_buffers(ctx);
8300 idr_destroy(&ctx->personality_idr);
8301
8302 #if defined(CONFIG_UNIX)
8303 if (ctx->ring_sock) {
8304 ctx->ring_sock->file = NULL; /* so that iput() is called */
8305 sock_release(ctx->ring_sock);
8306 }
8307 #endif
8308
8309 io_mem_free(ctx->rings);
8310 io_mem_free(ctx->sq_sqes);
8311
8312 percpu_ref_exit(&ctx->refs);
8313 free_uid(ctx->user);
8314 put_cred(ctx->creds);
8315 kfree(ctx->cancel_hash);
8316 kmem_cache_free(req_cachep, ctx->fallback_req);
8317 kfree(ctx);
8318 }
8319
io_uring_poll(struct file * file,poll_table * wait)8320 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
8321 {
8322 struct io_ring_ctx *ctx = file->private_data;
8323 __poll_t mask = 0;
8324
8325 poll_wait(file, &ctx->cq_wait, wait);
8326 /*
8327 * synchronizes with barrier from wq_has_sleeper call in
8328 * io_commit_cqring
8329 */
8330 smp_rmb();
8331 if (!io_sqring_full(ctx))
8332 mask |= EPOLLOUT | EPOLLWRNORM;
8333 if (io_cqring_events(ctx, false))
8334 mask |= EPOLLIN | EPOLLRDNORM;
8335
8336 return mask;
8337 }
8338
io_uring_fasync(int fd,struct file * file,int on)8339 static int io_uring_fasync(int fd, struct file *file, int on)
8340 {
8341 struct io_ring_ctx *ctx = file->private_data;
8342
8343 return fasync_helper(fd, file, on, &ctx->cq_fasync);
8344 }
8345
io_remove_personalities(int id,void * p,void * data)8346 static int io_remove_personalities(int id, void *p, void *data)
8347 {
8348 struct io_ring_ctx *ctx = data;
8349 struct io_identity *iod;
8350
8351 iod = idr_remove(&ctx->personality_idr, id);
8352 if (iod) {
8353 put_cred(iod->creds);
8354 if (refcount_dec_and_test(&iod->count))
8355 kfree(iod);
8356 }
8357 return 0;
8358 }
8359
io_ring_exit_work(struct work_struct * work)8360 static void io_ring_exit_work(struct work_struct *work)
8361 {
8362 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
8363 exit_work);
8364
8365 /*
8366 * If we're doing polled IO and end up having requests being
8367 * submitted async (out-of-line), then completions can come in while
8368 * we're waiting for refs to drop. We need to reap these manually,
8369 * as nobody else will be looking for them.
8370 */
8371 do {
8372 if (ctx->rings)
8373 io_cqring_overflow_flush(ctx, true, NULL, NULL);
8374 io_iopoll_try_reap_events(ctx);
8375 } while (!wait_for_completion_timeout(&ctx->ref_comp, HZ/20));
8376 io_ring_ctx_free(ctx);
8377 }
8378
io_ring_ctx_wait_and_kill(struct io_ring_ctx * ctx)8379 static void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
8380 {
8381 mutex_lock(&ctx->uring_lock);
8382 percpu_ref_kill(&ctx->refs);
8383 mutex_unlock(&ctx->uring_lock);
8384
8385 io_kill_timeouts(ctx, NULL);
8386 io_poll_remove_all(ctx, NULL);
8387
8388 if (ctx->io_wq)
8389 io_wq_cancel_all(ctx->io_wq);
8390
8391 /* if we failed setting up the ctx, we might not have any rings */
8392 if (ctx->rings)
8393 io_cqring_overflow_flush(ctx, true, NULL, NULL);
8394 io_iopoll_try_reap_events(ctx);
8395 idr_for_each(&ctx->personality_idr, io_remove_personalities, ctx);
8396
8397 /*
8398 * Do this upfront, so we won't have a grace period where the ring
8399 * is closed but resources aren't reaped yet. This can cause
8400 * spurious failure in setting up a new ring.
8401 */
8402 io_unaccount_mem(ctx, ring_pages(ctx->sq_entries, ctx->cq_entries),
8403 ACCT_LOCKED);
8404
8405 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
8406 /*
8407 * Use system_unbound_wq to avoid spawning tons of event kworkers
8408 * if we're exiting a ton of rings at the same time. It just adds
8409 * noise and overhead, there's no discernable change in runtime
8410 * over using system_wq.
8411 */
8412 queue_work(system_unbound_wq, &ctx->exit_work);
8413 }
8414
io_uring_release(struct inode * inode,struct file * file)8415 static int io_uring_release(struct inode *inode, struct file *file)
8416 {
8417 struct io_ring_ctx *ctx = file->private_data;
8418
8419 file->private_data = NULL;
8420 io_ring_ctx_wait_and_kill(ctx);
8421 return 0;
8422 }
8423
io_wq_files_match(struct io_wq_work * work,void * data)8424 static bool io_wq_files_match(struct io_wq_work *work, void *data)
8425 {
8426 struct files_struct *files = data;
8427
8428 return !files || ((work->flags & IO_WQ_WORK_FILES) &&
8429 work->identity->files == files);
8430 }
8431
8432 /*
8433 * Returns true if 'preq' is the link parent of 'req'
8434 */
io_match_link(struct io_kiocb * preq,struct io_kiocb * req)8435 static bool io_match_link(struct io_kiocb *preq, struct io_kiocb *req)
8436 {
8437 struct io_kiocb *link;
8438
8439 if (!(preq->flags & REQ_F_LINK_HEAD))
8440 return false;
8441
8442 list_for_each_entry(link, &preq->link_list, link_list) {
8443 if (link == req)
8444 return true;
8445 }
8446
8447 return false;
8448 }
8449
8450 /*
8451 * We're looking to cancel 'req' because it's holding on to our files, but
8452 * 'req' could be a link to another request. See if it is, and cancel that
8453 * parent request if so.
8454 */
io_poll_remove_link(struct io_ring_ctx * ctx,struct io_kiocb * req)8455 static bool io_poll_remove_link(struct io_ring_ctx *ctx, struct io_kiocb *req)
8456 {
8457 struct hlist_node *tmp;
8458 struct io_kiocb *preq;
8459 bool found = false;
8460 int i;
8461
8462 spin_lock_irq(&ctx->completion_lock);
8463 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
8464 struct hlist_head *list;
8465
8466 list = &ctx->cancel_hash[i];
8467 hlist_for_each_entry_safe(preq, tmp, list, hash_node) {
8468 found = io_match_link(preq, req);
8469 if (found) {
8470 io_poll_remove_one(preq);
8471 break;
8472 }
8473 }
8474 }
8475 spin_unlock_irq(&ctx->completion_lock);
8476 return found;
8477 }
8478
io_timeout_remove_link(struct io_ring_ctx * ctx,struct io_kiocb * req)8479 static bool io_timeout_remove_link(struct io_ring_ctx *ctx,
8480 struct io_kiocb *req)
8481 {
8482 struct io_kiocb *preq;
8483 bool found = false;
8484
8485 spin_lock_irq(&ctx->completion_lock);
8486 list_for_each_entry(preq, &ctx->timeout_list, timeout.list) {
8487 found = io_match_link(preq, req);
8488 if (found) {
8489 __io_timeout_cancel(preq);
8490 break;
8491 }
8492 }
8493 spin_unlock_irq(&ctx->completion_lock);
8494 return found;
8495 }
8496
io_cancel_link_cb(struct io_wq_work * work,void * data)8497 static bool io_cancel_link_cb(struct io_wq_work *work, void *data)
8498 {
8499 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
8500 bool ret;
8501
8502 if (req->flags & REQ_F_LINK_TIMEOUT) {
8503 unsigned long flags;
8504 struct io_ring_ctx *ctx = req->ctx;
8505
8506 /* protect against races with linked timeouts */
8507 spin_lock_irqsave(&ctx->completion_lock, flags);
8508 ret = io_match_link(req, data);
8509 spin_unlock_irqrestore(&ctx->completion_lock, flags);
8510 } else {
8511 ret = io_match_link(req, data);
8512 }
8513 return ret;
8514 }
8515
io_attempt_cancel(struct io_ring_ctx * ctx,struct io_kiocb * req)8516 static void io_attempt_cancel(struct io_ring_ctx *ctx, struct io_kiocb *req)
8517 {
8518 enum io_wq_cancel cret;
8519
8520 /* cancel this particular work, if it's running */
8521 cret = io_wq_cancel_work(ctx->io_wq, &req->work);
8522 if (cret != IO_WQ_CANCEL_NOTFOUND)
8523 return;
8524
8525 /* find links that hold this pending, cancel those */
8526 cret = io_wq_cancel_cb(ctx->io_wq, io_cancel_link_cb, req, true);
8527 if (cret != IO_WQ_CANCEL_NOTFOUND)
8528 return;
8529
8530 /* if we have a poll link holding this pending, cancel that */
8531 if (io_poll_remove_link(ctx, req))
8532 return;
8533
8534 /* final option, timeout link is holding this req pending */
8535 io_timeout_remove_link(ctx, req);
8536 }
8537
io_cancel_defer_files(struct io_ring_ctx * ctx,struct task_struct * task,struct files_struct * files)8538 static void io_cancel_defer_files(struct io_ring_ctx *ctx,
8539 struct task_struct *task,
8540 struct files_struct *files)
8541 {
8542 struct io_defer_entry *de = NULL;
8543 LIST_HEAD(list);
8544
8545 spin_lock_irq(&ctx->completion_lock);
8546 list_for_each_entry_reverse(de, &ctx->defer_list, list) {
8547 if (io_task_match(de->req, task) &&
8548 io_match_files(de->req, files)) {
8549 list_cut_position(&list, &ctx->defer_list, &de->list);
8550 break;
8551 }
8552 }
8553 spin_unlock_irq(&ctx->completion_lock);
8554
8555 while (!list_empty(&list)) {
8556 de = list_first_entry(&list, struct io_defer_entry, list);
8557 list_del_init(&de->list);
8558 req_set_fail_links(de->req);
8559 io_put_req(de->req);
8560 io_req_complete(de->req, -ECANCELED);
8561 kfree(de);
8562 }
8563 }
8564
8565 /*
8566 * Returns true if we found and killed one or more files pinning requests
8567 */
io_uring_cancel_files(struct io_ring_ctx * ctx,struct files_struct * files)8568 static bool io_uring_cancel_files(struct io_ring_ctx *ctx,
8569 struct files_struct *files)
8570 {
8571 if (list_empty_careful(&ctx->inflight_list))
8572 return false;
8573
8574 /* cancel all at once, should be faster than doing it one by one*/
8575 io_wq_cancel_cb(ctx->io_wq, io_wq_files_match, files, true);
8576
8577 while (!list_empty_careful(&ctx->inflight_list)) {
8578 struct io_kiocb *cancel_req = NULL, *req;
8579 DEFINE_WAIT(wait);
8580
8581 spin_lock_irq(&ctx->inflight_lock);
8582 list_for_each_entry(req, &ctx->inflight_list, inflight_entry) {
8583 if (files && (req->work.flags & IO_WQ_WORK_FILES) &&
8584 req->work.identity->files != files)
8585 continue;
8586 /* req is being completed, ignore */
8587 if (!refcount_inc_not_zero(&req->refs))
8588 continue;
8589 cancel_req = req;
8590 break;
8591 }
8592 if (cancel_req)
8593 prepare_to_wait(&ctx->inflight_wait, &wait,
8594 TASK_UNINTERRUPTIBLE);
8595 spin_unlock_irq(&ctx->inflight_lock);
8596
8597 /* We need to keep going until we don't find a matching req */
8598 if (!cancel_req)
8599 break;
8600 /* cancel this request, or head link requests */
8601 io_attempt_cancel(ctx, cancel_req);
8602 io_put_req(cancel_req);
8603 /* cancellations _may_ trigger task work */
8604 io_run_task_work();
8605 schedule();
8606 finish_wait(&ctx->inflight_wait, &wait);
8607 }
8608
8609 return true;
8610 }
8611
io_cancel_task_cb(struct io_wq_work * work,void * data)8612 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
8613 {
8614 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
8615 struct task_struct *task = data;
8616
8617 return io_task_match(req, task);
8618 }
8619
__io_uring_cancel_task_requests(struct io_ring_ctx * ctx,struct task_struct * task,struct files_struct * files)8620 static bool __io_uring_cancel_task_requests(struct io_ring_ctx *ctx,
8621 struct task_struct *task,
8622 struct files_struct *files)
8623 {
8624 bool ret;
8625
8626 ret = io_uring_cancel_files(ctx, files);
8627 if (!files) {
8628 enum io_wq_cancel cret;
8629
8630 cret = io_wq_cancel_cb(ctx->io_wq, io_cancel_task_cb, task, true);
8631 if (cret != IO_WQ_CANCEL_NOTFOUND)
8632 ret = true;
8633
8634 /* SQPOLL thread does its own polling */
8635 if (!(ctx->flags & IORING_SETUP_SQPOLL)) {
8636 while (!list_empty_careful(&ctx->iopoll_list)) {
8637 io_iopoll_try_reap_events(ctx);
8638 ret = true;
8639 }
8640 }
8641
8642 ret |= io_poll_remove_all(ctx, task);
8643 ret |= io_kill_timeouts(ctx, task);
8644 }
8645
8646 return ret;
8647 }
8648
8649 /*
8650 * We need to iteratively cancel requests, in case a request has dependent
8651 * hard links. These persist even for failure of cancelations, hence keep
8652 * looping until none are found.
8653 */
io_uring_cancel_task_requests(struct io_ring_ctx * ctx,struct files_struct * files)8654 static void io_uring_cancel_task_requests(struct io_ring_ctx *ctx,
8655 struct files_struct *files)
8656 {
8657 struct task_struct *task = current;
8658
8659 if ((ctx->flags & IORING_SETUP_SQPOLL) && ctx->sq_data) {
8660 task = ctx->sq_data->thread;
8661 atomic_inc(&task->io_uring->in_idle);
8662 io_sq_thread_park(ctx->sq_data);
8663 }
8664
8665 if (files)
8666 io_cancel_defer_files(ctx, NULL, files);
8667 else
8668 io_cancel_defer_files(ctx, task, NULL);
8669
8670 io_cqring_overflow_flush(ctx, true, task, files);
8671
8672 while (__io_uring_cancel_task_requests(ctx, task, files)) {
8673 io_run_task_work();
8674 cond_resched();
8675 }
8676
8677 if ((ctx->flags & IORING_SETUP_SQPOLL) && ctx->sq_data) {
8678 atomic_dec(&task->io_uring->in_idle);
8679 /*
8680 * If the files that are going away are the ones in the thread
8681 * identity, clear them out.
8682 */
8683 if (task->io_uring->identity->files == files)
8684 task->io_uring->identity->files = NULL;
8685 io_sq_thread_unpark(ctx->sq_data);
8686 }
8687 }
8688
8689 /*
8690 * Note that this task has used io_uring. We use it for cancelation purposes.
8691 */
io_uring_add_task_file(struct io_ring_ctx * ctx,struct file * file)8692 static int io_uring_add_task_file(struct io_ring_ctx *ctx, struct file *file)
8693 {
8694 struct io_uring_task *tctx = current->io_uring;
8695
8696 if (unlikely(!tctx)) {
8697 int ret;
8698
8699 ret = io_uring_alloc_task_context(current);
8700 if (unlikely(ret))
8701 return ret;
8702 tctx = current->io_uring;
8703 }
8704 if (tctx->last != file) {
8705 void *old = xa_load(&tctx->xa, (unsigned long)file);
8706
8707 if (!old) {
8708 get_file(file);
8709 xa_store(&tctx->xa, (unsigned long)file, file, GFP_KERNEL);
8710 }
8711 tctx->last = file;
8712 }
8713
8714 /*
8715 * This is race safe in that the task itself is doing this, hence it
8716 * cannot be going through the exit/cancel paths at the same time.
8717 * This cannot be modified while exit/cancel is running.
8718 */
8719 if (!tctx->sqpoll && (ctx->flags & IORING_SETUP_SQPOLL))
8720 tctx->sqpoll = true;
8721
8722 return 0;
8723 }
8724
8725 /*
8726 * Remove this io_uring_file -> task mapping.
8727 */
io_uring_del_task_file(struct file * file)8728 static void io_uring_del_task_file(struct file *file)
8729 {
8730 struct io_uring_task *tctx = current->io_uring;
8731
8732 if (tctx->last == file)
8733 tctx->last = NULL;
8734 file = xa_erase(&tctx->xa, (unsigned long)file);
8735 if (file)
8736 fput(file);
8737 }
8738
8739 /*
8740 * Drop task note for this file if we're the only ones that hold it after
8741 * pending fput()
8742 */
io_uring_attempt_task_drop(struct file * file)8743 static void io_uring_attempt_task_drop(struct file *file)
8744 {
8745 if (!current->io_uring)
8746 return;
8747 /*
8748 * fput() is pending, will be 2 if the only other ref is our potential
8749 * task file note. If the task is exiting, drop regardless of count.
8750 */
8751 if (fatal_signal_pending(current) || (current->flags & PF_EXITING) ||
8752 atomic_long_read(&file->f_count) == 2)
8753 io_uring_del_task_file(file);
8754 }
8755
__io_uring_files_cancel(struct files_struct * files)8756 void __io_uring_files_cancel(struct files_struct *files)
8757 {
8758 struct io_uring_task *tctx = current->io_uring;
8759 struct file *file;
8760 unsigned long index;
8761
8762 /* make sure overflow events are dropped */
8763 atomic_inc(&tctx->in_idle);
8764
8765 xa_for_each(&tctx->xa, index, file) {
8766 struct io_ring_ctx *ctx = file->private_data;
8767
8768 io_uring_cancel_task_requests(ctx, files);
8769 if (files)
8770 io_uring_del_task_file(file);
8771 }
8772
8773 atomic_dec(&tctx->in_idle);
8774 }
8775
tctx_inflight(struct io_uring_task * tctx)8776 static s64 tctx_inflight(struct io_uring_task *tctx)
8777 {
8778 unsigned long index;
8779 struct file *file;
8780 s64 inflight;
8781
8782 inflight = percpu_counter_sum(&tctx->inflight);
8783 if (!tctx->sqpoll)
8784 return inflight;
8785
8786 /*
8787 * If we have SQPOLL rings, then we need to iterate and find them, and
8788 * add the pending count for those.
8789 */
8790 xa_for_each(&tctx->xa, index, file) {
8791 struct io_ring_ctx *ctx = file->private_data;
8792
8793 if (ctx->flags & IORING_SETUP_SQPOLL) {
8794 struct io_uring_task *__tctx = ctx->sqo_task->io_uring;
8795
8796 inflight += percpu_counter_sum(&__tctx->inflight);
8797 }
8798 }
8799
8800 return inflight;
8801 }
8802
8803 /*
8804 * Find any io_uring fd that this task has registered or done IO on, and cancel
8805 * requests.
8806 */
__io_uring_task_cancel(void)8807 void __io_uring_task_cancel(void)
8808 {
8809 struct io_uring_task *tctx = current->io_uring;
8810 DEFINE_WAIT(wait);
8811 s64 inflight;
8812
8813 /* make sure overflow events are dropped */
8814 atomic_inc(&tctx->in_idle);
8815
8816 do {
8817 /* read completions before cancelations */
8818 inflight = tctx_inflight(tctx);
8819 if (!inflight)
8820 break;
8821 __io_uring_files_cancel(NULL);
8822
8823 prepare_to_wait(&tctx->wait, &wait, TASK_UNINTERRUPTIBLE);
8824
8825 /*
8826 * If we've seen completions, retry. This avoids a race where
8827 * a completion comes in before we did prepare_to_wait().
8828 */
8829 if (inflight != tctx_inflight(tctx))
8830 continue;
8831 schedule();
8832 } while (1);
8833
8834 finish_wait(&tctx->wait, &wait);
8835 atomic_dec(&tctx->in_idle);
8836 }
8837
io_uring_flush(struct file * file,void * data)8838 static int io_uring_flush(struct file *file, void *data)
8839 {
8840 io_uring_attempt_task_drop(file);
8841 return 0;
8842 }
8843
io_uring_validate_mmap_request(struct file * file,loff_t pgoff,size_t sz)8844 static void *io_uring_validate_mmap_request(struct file *file,
8845 loff_t pgoff, size_t sz)
8846 {
8847 struct io_ring_ctx *ctx = file->private_data;
8848 loff_t offset = pgoff << PAGE_SHIFT;
8849 struct page *page;
8850 void *ptr;
8851
8852 switch (offset) {
8853 case IORING_OFF_SQ_RING:
8854 case IORING_OFF_CQ_RING:
8855 ptr = ctx->rings;
8856 break;
8857 case IORING_OFF_SQES:
8858 ptr = ctx->sq_sqes;
8859 break;
8860 default:
8861 return ERR_PTR(-EINVAL);
8862 }
8863
8864 page = virt_to_head_page(ptr);
8865 if (sz > page_size(page))
8866 return ERR_PTR(-EINVAL);
8867
8868 return ptr;
8869 }
8870
8871 #ifdef CONFIG_MMU
8872
io_uring_mmap(struct file * file,struct vm_area_struct * vma)8873 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
8874 {
8875 size_t sz = vma->vm_end - vma->vm_start;
8876 unsigned long pfn;
8877 void *ptr;
8878
8879 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
8880 if (IS_ERR(ptr))
8881 return PTR_ERR(ptr);
8882
8883 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
8884 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
8885 }
8886
8887 #else /* !CONFIG_MMU */
8888
io_uring_mmap(struct file * file,struct vm_area_struct * vma)8889 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
8890 {
8891 return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL;
8892 }
8893
io_uring_nommu_mmap_capabilities(struct file * file)8894 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
8895 {
8896 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
8897 }
8898
io_uring_nommu_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)8899 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
8900 unsigned long addr, unsigned long len,
8901 unsigned long pgoff, unsigned long flags)
8902 {
8903 void *ptr;
8904
8905 ptr = io_uring_validate_mmap_request(file, pgoff, len);
8906 if (IS_ERR(ptr))
8907 return PTR_ERR(ptr);
8908
8909 return (unsigned long) ptr;
8910 }
8911
8912 #endif /* !CONFIG_MMU */
8913
io_sqpoll_wait_sq(struct io_ring_ctx * ctx)8914 static void io_sqpoll_wait_sq(struct io_ring_ctx *ctx)
8915 {
8916 DEFINE_WAIT(wait);
8917
8918 do {
8919 if (!io_sqring_full(ctx))
8920 break;
8921
8922 prepare_to_wait(&ctx->sqo_sq_wait, &wait, TASK_INTERRUPTIBLE);
8923
8924 if (!io_sqring_full(ctx))
8925 break;
8926
8927 schedule();
8928 } while (!signal_pending(current));
8929
8930 finish_wait(&ctx->sqo_sq_wait, &wait);
8931 }
8932
SYSCALL_DEFINE6(io_uring_enter,unsigned int,fd,u32,to_submit,u32,min_complete,u32,flags,const sigset_t __user *,sig,size_t,sigsz)8933 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
8934 u32, min_complete, u32, flags, const sigset_t __user *, sig,
8935 size_t, sigsz)
8936 {
8937 struct io_ring_ctx *ctx;
8938 long ret = -EBADF;
8939 int submitted = 0;
8940 struct fd f;
8941
8942 io_run_task_work();
8943
8944 if (flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
8945 IORING_ENTER_SQ_WAIT))
8946 return -EINVAL;
8947
8948 f = fdget(fd);
8949 if (!f.file)
8950 return -EBADF;
8951
8952 ret = -EOPNOTSUPP;
8953 if (f.file->f_op != &io_uring_fops)
8954 goto out_fput;
8955
8956 ret = -ENXIO;
8957 ctx = f.file->private_data;
8958 if (!percpu_ref_tryget(&ctx->refs))
8959 goto out_fput;
8960
8961 ret = -EBADFD;
8962 if (ctx->flags & IORING_SETUP_R_DISABLED)
8963 goto out;
8964
8965 /*
8966 * For SQ polling, the thread will do all submissions and completions.
8967 * Just return the requested submit count, and wake the thread if
8968 * we were asked to.
8969 */
8970 ret = 0;
8971 if (ctx->flags & IORING_SETUP_SQPOLL) {
8972 if (!list_empty_careful(&ctx->cq_overflow_list))
8973 io_cqring_overflow_flush(ctx, false, NULL, NULL);
8974 if (flags & IORING_ENTER_SQ_WAKEUP)
8975 wake_up(&ctx->sq_data->wait);
8976 if (flags & IORING_ENTER_SQ_WAIT)
8977 io_sqpoll_wait_sq(ctx);
8978 submitted = to_submit;
8979 } else if (to_submit) {
8980 ret = io_uring_add_task_file(ctx, f.file);
8981 if (unlikely(ret))
8982 goto out;
8983 mutex_lock(&ctx->uring_lock);
8984 submitted = io_submit_sqes(ctx, to_submit);
8985 mutex_unlock(&ctx->uring_lock);
8986
8987 if (submitted != to_submit)
8988 goto out;
8989 }
8990 if (flags & IORING_ENTER_GETEVENTS) {
8991 min_complete = min(min_complete, ctx->cq_entries);
8992
8993 /*
8994 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
8995 * space applications don't need to do io completion events
8996 * polling again, they can rely on io_sq_thread to do polling
8997 * work, which can reduce cpu usage and uring_lock contention.
8998 */
8999 if (ctx->flags & IORING_SETUP_IOPOLL &&
9000 !(ctx->flags & IORING_SETUP_SQPOLL)) {
9001 ret = io_iopoll_check(ctx, min_complete);
9002 } else {
9003 ret = io_cqring_wait(ctx, min_complete, sig, sigsz);
9004 }
9005 }
9006
9007 out:
9008 percpu_ref_put(&ctx->refs);
9009 out_fput:
9010 fdput(f);
9011 return submitted ? submitted : ret;
9012 }
9013
9014 #ifdef CONFIG_PROC_FS
io_uring_show_cred(int id,void * p,void * data)9015 static int io_uring_show_cred(int id, void *p, void *data)
9016 {
9017 struct io_identity *iod = p;
9018 const struct cred *cred = iod->creds;
9019 struct seq_file *m = data;
9020 struct user_namespace *uns = seq_user_ns(m);
9021 struct group_info *gi;
9022 kernel_cap_t cap;
9023 unsigned __capi;
9024 int g;
9025
9026 seq_printf(m, "%5d\n", id);
9027 seq_put_decimal_ull(m, "\tUid:\t", from_kuid_munged(uns, cred->uid));
9028 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->euid));
9029 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->suid));
9030 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->fsuid));
9031 seq_put_decimal_ull(m, "\n\tGid:\t", from_kgid_munged(uns, cred->gid));
9032 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->egid));
9033 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->sgid));
9034 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->fsgid));
9035 seq_puts(m, "\n\tGroups:\t");
9036 gi = cred->group_info;
9037 for (g = 0; g < gi->ngroups; g++) {
9038 seq_put_decimal_ull(m, g ? " " : "",
9039 from_kgid_munged(uns, gi->gid[g]));
9040 }
9041 seq_puts(m, "\n\tCapEff:\t");
9042 cap = cred->cap_effective;
9043 CAP_FOR_EACH_U32(__capi)
9044 seq_put_hex_ll(m, NULL, cap.cap[CAP_LAST_U32 - __capi], 8);
9045 seq_putc(m, '\n');
9046 return 0;
9047 }
9048
__io_uring_show_fdinfo(struct io_ring_ctx * ctx,struct seq_file * m)9049 static void __io_uring_show_fdinfo(struct io_ring_ctx *ctx, struct seq_file *m)
9050 {
9051 struct io_sq_data *sq = NULL;
9052 bool has_lock;
9053 int i;
9054
9055 /*
9056 * Avoid ABBA deadlock between the seq lock and the io_uring mutex,
9057 * since fdinfo case grabs it in the opposite direction of normal use
9058 * cases. If we fail to get the lock, we just don't iterate any
9059 * structures that could be going away outside the io_uring mutex.
9060 */
9061 has_lock = mutex_trylock(&ctx->uring_lock);
9062
9063 if (has_lock && (ctx->flags & IORING_SETUP_SQPOLL))
9064 sq = ctx->sq_data;
9065
9066 seq_printf(m, "SqThread:\t%d\n", sq ? task_pid_nr(sq->thread) : -1);
9067 seq_printf(m, "SqThreadCpu:\t%d\n", sq ? task_cpu(sq->thread) : -1);
9068 seq_printf(m, "UserFiles:\t%u\n", ctx->nr_user_files);
9069 for (i = 0; has_lock && i < ctx->nr_user_files; i++) {
9070 struct fixed_file_table *table;
9071 struct file *f;
9072
9073 table = &ctx->file_data->table[i >> IORING_FILE_TABLE_SHIFT];
9074 f = table->files[i & IORING_FILE_TABLE_MASK];
9075 if (f)
9076 seq_printf(m, "%5u: %s\n", i, file_dentry(f)->d_iname);
9077 else
9078 seq_printf(m, "%5u: <none>\n", i);
9079 }
9080 seq_printf(m, "UserBufs:\t%u\n", ctx->nr_user_bufs);
9081 for (i = 0; has_lock && i < ctx->nr_user_bufs; i++) {
9082 struct io_mapped_ubuf *buf = &ctx->user_bufs[i];
9083
9084 seq_printf(m, "%5u: 0x%llx/%u\n", i, buf->ubuf,
9085 (unsigned int) buf->len);
9086 }
9087 if (has_lock && !idr_is_empty(&ctx->personality_idr)) {
9088 seq_printf(m, "Personalities:\n");
9089 idr_for_each(&ctx->personality_idr, io_uring_show_cred, m);
9090 }
9091 seq_printf(m, "PollList:\n");
9092 spin_lock_irq(&ctx->completion_lock);
9093 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
9094 struct hlist_head *list = &ctx->cancel_hash[i];
9095 struct io_kiocb *req;
9096
9097 hlist_for_each_entry(req, list, hash_node)
9098 seq_printf(m, " op=%d, task_works=%d\n", req->opcode,
9099 req->task->task_works != NULL);
9100 }
9101 spin_unlock_irq(&ctx->completion_lock);
9102 if (has_lock)
9103 mutex_unlock(&ctx->uring_lock);
9104 }
9105
io_uring_show_fdinfo(struct seq_file * m,struct file * f)9106 static void io_uring_show_fdinfo(struct seq_file *m, struct file *f)
9107 {
9108 struct io_ring_ctx *ctx = f->private_data;
9109
9110 if (percpu_ref_tryget(&ctx->refs)) {
9111 __io_uring_show_fdinfo(ctx, m);
9112 percpu_ref_put(&ctx->refs);
9113 }
9114 }
9115 #endif
9116
9117 static const struct file_operations io_uring_fops = {
9118 .release = io_uring_release,
9119 .flush = io_uring_flush,
9120 .mmap = io_uring_mmap,
9121 #ifndef CONFIG_MMU
9122 .get_unmapped_area = io_uring_nommu_get_unmapped_area,
9123 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
9124 #endif
9125 .poll = io_uring_poll,
9126 .fasync = io_uring_fasync,
9127 #ifdef CONFIG_PROC_FS
9128 .show_fdinfo = io_uring_show_fdinfo,
9129 #endif
9130 };
9131
io_allocate_scq_urings(struct io_ring_ctx * ctx,struct io_uring_params * p)9132 static int io_allocate_scq_urings(struct io_ring_ctx *ctx,
9133 struct io_uring_params *p)
9134 {
9135 struct io_rings *rings;
9136 size_t size, sq_array_offset;
9137
9138 /* make sure these are sane, as we already accounted them */
9139 ctx->sq_entries = p->sq_entries;
9140 ctx->cq_entries = p->cq_entries;
9141
9142 size = rings_size(p->sq_entries, p->cq_entries, &sq_array_offset);
9143 if (size == SIZE_MAX)
9144 return -EOVERFLOW;
9145
9146 rings = io_mem_alloc(size);
9147 if (!rings)
9148 return -ENOMEM;
9149
9150 ctx->rings = rings;
9151 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
9152 rings->sq_ring_mask = p->sq_entries - 1;
9153 rings->cq_ring_mask = p->cq_entries - 1;
9154 rings->sq_ring_entries = p->sq_entries;
9155 rings->cq_ring_entries = p->cq_entries;
9156 ctx->sq_mask = rings->sq_ring_mask;
9157 ctx->cq_mask = rings->cq_ring_mask;
9158
9159 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
9160 if (size == SIZE_MAX) {
9161 io_mem_free(ctx->rings);
9162 ctx->rings = NULL;
9163 return -EOVERFLOW;
9164 }
9165
9166 ctx->sq_sqes = io_mem_alloc(size);
9167 if (!ctx->sq_sqes) {
9168 io_mem_free(ctx->rings);
9169 ctx->rings = NULL;
9170 return -ENOMEM;
9171 }
9172
9173 return 0;
9174 }
9175
9176 /*
9177 * Allocate an anonymous fd, this is what constitutes the application
9178 * visible backing of an io_uring instance. The application mmaps this
9179 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
9180 * we have to tie this fd to a socket for file garbage collection purposes.
9181 */
io_uring_get_fd(struct io_ring_ctx * ctx)9182 static int io_uring_get_fd(struct io_ring_ctx *ctx)
9183 {
9184 struct file *file;
9185 int ret;
9186 int fd;
9187
9188 #if defined(CONFIG_UNIX)
9189 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
9190 &ctx->ring_sock);
9191 if (ret)
9192 return ret;
9193 #endif
9194
9195 ret = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
9196 if (ret < 0)
9197 goto err;
9198 fd = ret;
9199
9200 file = anon_inode_getfile("[io_uring]", &io_uring_fops, ctx,
9201 O_RDWR | O_CLOEXEC);
9202 if (IS_ERR(file)) {
9203 put_unused_fd(fd);
9204 ret = PTR_ERR(file);
9205 goto err;
9206 }
9207
9208 #if defined(CONFIG_UNIX)
9209 ctx->ring_sock->file = file;
9210 #endif
9211 ret = io_uring_add_task_file(ctx, file);
9212 if (ret) {
9213 fput(file);
9214 put_unused_fd(fd);
9215 goto err;
9216 }
9217 fd_install(fd, file);
9218 return fd;
9219 err:
9220 #if defined(CONFIG_UNIX)
9221 sock_release(ctx->ring_sock);
9222 ctx->ring_sock = NULL;
9223 #endif
9224 return ret;
9225 }
9226
io_uring_create(unsigned entries,struct io_uring_params * p,struct io_uring_params __user * params)9227 static int io_uring_create(unsigned entries, struct io_uring_params *p,
9228 struct io_uring_params __user *params)
9229 {
9230 struct user_struct *user = NULL;
9231 struct io_ring_ctx *ctx;
9232 bool limit_mem;
9233 int ret;
9234
9235 if (!entries)
9236 return -EINVAL;
9237 if (entries > IORING_MAX_ENTRIES) {
9238 if (!(p->flags & IORING_SETUP_CLAMP))
9239 return -EINVAL;
9240 entries = IORING_MAX_ENTRIES;
9241 }
9242
9243 /*
9244 * Use twice as many entries for the CQ ring. It's possible for the
9245 * application to drive a higher depth than the size of the SQ ring,
9246 * since the sqes are only used at submission time. This allows for
9247 * some flexibility in overcommitting a bit. If the application has
9248 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
9249 * of CQ ring entries manually.
9250 */
9251 p->sq_entries = roundup_pow_of_two(entries);
9252 if (p->flags & IORING_SETUP_CQSIZE) {
9253 /*
9254 * If IORING_SETUP_CQSIZE is set, we do the same roundup
9255 * to a power-of-two, if it isn't already. We do NOT impose
9256 * any cq vs sq ring sizing.
9257 */
9258 if (!p->cq_entries)
9259 return -EINVAL;
9260 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
9261 if (!(p->flags & IORING_SETUP_CLAMP))
9262 return -EINVAL;
9263 p->cq_entries = IORING_MAX_CQ_ENTRIES;
9264 }
9265 p->cq_entries = roundup_pow_of_two(p->cq_entries);
9266 if (p->cq_entries < p->sq_entries)
9267 return -EINVAL;
9268 } else {
9269 p->cq_entries = 2 * p->sq_entries;
9270 }
9271
9272 user = get_uid(current_user());
9273 limit_mem = !capable(CAP_IPC_LOCK);
9274
9275 if (limit_mem) {
9276 ret = __io_account_mem(user,
9277 ring_pages(p->sq_entries, p->cq_entries));
9278 if (ret) {
9279 free_uid(user);
9280 return ret;
9281 }
9282 }
9283
9284 ctx = io_ring_ctx_alloc(p);
9285 if (!ctx) {
9286 if (limit_mem)
9287 __io_unaccount_mem(user, ring_pages(p->sq_entries,
9288 p->cq_entries));
9289 free_uid(user);
9290 return -ENOMEM;
9291 }
9292 ctx->compat = in_compat_syscall();
9293 ctx->user = user;
9294 ctx->creds = get_current_cred();
9295 #ifdef CONFIG_AUDIT
9296 ctx->loginuid = current->loginuid;
9297 ctx->sessionid = current->sessionid;
9298 #endif
9299 ctx->sqo_task = get_task_struct(current);
9300
9301 /*
9302 * This is just grabbed for accounting purposes. When a process exits,
9303 * the mm is exited and dropped before the files, hence we need to hang
9304 * on to this mm purely for the purposes of being able to unaccount
9305 * memory (locked/pinned vm). It's not used for anything else.
9306 */
9307 mmgrab(current->mm);
9308 ctx->mm_account = current->mm;
9309
9310 #ifdef CONFIG_BLK_CGROUP
9311 /*
9312 * The sq thread will belong to the original cgroup it was inited in.
9313 * If the cgroup goes offline (e.g. disabling the io controller), then
9314 * issued bios will be associated with the closest cgroup later in the
9315 * block layer.
9316 */
9317 rcu_read_lock();
9318 ctx->sqo_blkcg_css = blkcg_css();
9319 ret = css_tryget_online(ctx->sqo_blkcg_css);
9320 rcu_read_unlock();
9321 if (!ret) {
9322 /* don't init against a dying cgroup, have the user try again */
9323 ctx->sqo_blkcg_css = NULL;
9324 ret = -ENODEV;
9325 goto err;
9326 }
9327 #endif
9328
9329 /*
9330 * Account memory _before_ installing the file descriptor. Once
9331 * the descriptor is installed, it can get closed at any time. Also
9332 * do this before hitting the general error path, as ring freeing
9333 * will un-account as well.
9334 */
9335 io_account_mem(ctx, ring_pages(p->sq_entries, p->cq_entries),
9336 ACCT_LOCKED);
9337 ctx->limit_mem = limit_mem;
9338
9339 ret = io_allocate_scq_urings(ctx, p);
9340 if (ret)
9341 goto err;
9342
9343 ret = io_sq_offload_create(ctx, p);
9344 if (ret)
9345 goto err;
9346
9347 if (!(p->flags & IORING_SETUP_R_DISABLED))
9348 io_sq_offload_start(ctx);
9349
9350 memset(&p->sq_off, 0, sizeof(p->sq_off));
9351 p->sq_off.head = offsetof(struct io_rings, sq.head);
9352 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
9353 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
9354 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
9355 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
9356 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
9357 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
9358
9359 memset(&p->cq_off, 0, sizeof(p->cq_off));
9360 p->cq_off.head = offsetof(struct io_rings, cq.head);
9361 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
9362 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
9363 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
9364 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
9365 p->cq_off.cqes = offsetof(struct io_rings, cqes);
9366 p->cq_off.flags = offsetof(struct io_rings, cq_flags);
9367
9368 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
9369 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
9370 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
9371 IORING_FEAT_POLL_32BITS;
9372
9373 if (copy_to_user(params, p, sizeof(*p))) {
9374 ret = -EFAULT;
9375 goto err;
9376 }
9377
9378 /*
9379 * Install ring fd as the very last thing, so we don't risk someone
9380 * having closed it before we finish setup
9381 */
9382 ret = io_uring_get_fd(ctx);
9383 if (ret < 0)
9384 goto err;
9385
9386 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
9387 return ret;
9388 err:
9389 io_ring_ctx_wait_and_kill(ctx);
9390 return ret;
9391 }
9392
9393 /*
9394 * Sets up an aio uring context, and returns the fd. Applications asks for a
9395 * ring size, we return the actual sq/cq ring sizes (among other things) in the
9396 * params structure passed in.
9397 */
io_uring_setup(u32 entries,struct io_uring_params __user * params)9398 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
9399 {
9400 struct io_uring_params p;
9401 int i;
9402
9403 if (copy_from_user(&p, params, sizeof(p)))
9404 return -EFAULT;
9405 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
9406 if (p.resv[i])
9407 return -EINVAL;
9408 }
9409
9410 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
9411 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
9412 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
9413 IORING_SETUP_R_DISABLED))
9414 return -EINVAL;
9415
9416 return io_uring_create(entries, &p, params);
9417 }
9418
SYSCALL_DEFINE2(io_uring_setup,u32,entries,struct io_uring_params __user *,params)9419 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
9420 struct io_uring_params __user *, params)
9421 {
9422 return io_uring_setup(entries, params);
9423 }
9424
io_probe(struct io_ring_ctx * ctx,void __user * arg,unsigned nr_args)9425 static int io_probe(struct io_ring_ctx *ctx, void __user *arg, unsigned nr_args)
9426 {
9427 struct io_uring_probe *p;
9428 size_t size;
9429 int i, ret;
9430
9431 size = struct_size(p, ops, nr_args);
9432 if (size == SIZE_MAX)
9433 return -EOVERFLOW;
9434 p = kzalloc(size, GFP_KERNEL);
9435 if (!p)
9436 return -ENOMEM;
9437
9438 ret = -EFAULT;
9439 if (copy_from_user(p, arg, size))
9440 goto out;
9441 ret = -EINVAL;
9442 if (memchr_inv(p, 0, size))
9443 goto out;
9444
9445 p->last_op = IORING_OP_LAST - 1;
9446 if (nr_args > IORING_OP_LAST)
9447 nr_args = IORING_OP_LAST;
9448
9449 for (i = 0; i < nr_args; i++) {
9450 p->ops[i].op = i;
9451 if (!io_op_defs[i].not_supported)
9452 p->ops[i].flags = IO_URING_OP_SUPPORTED;
9453 }
9454 p->ops_len = i;
9455
9456 ret = 0;
9457 if (copy_to_user(arg, p, size))
9458 ret = -EFAULT;
9459 out:
9460 kfree(p);
9461 return ret;
9462 }
9463
io_register_personality(struct io_ring_ctx * ctx)9464 static int io_register_personality(struct io_ring_ctx *ctx)
9465 {
9466 struct io_identity *id;
9467 int ret;
9468
9469 id = kmalloc(sizeof(*id), GFP_KERNEL);
9470 if (unlikely(!id))
9471 return -ENOMEM;
9472
9473 io_init_identity(id);
9474 id->creds = get_current_cred();
9475
9476 ret = idr_alloc_cyclic(&ctx->personality_idr, id, 1, USHRT_MAX, GFP_KERNEL);
9477 if (ret < 0) {
9478 put_cred(id->creds);
9479 kfree(id);
9480 }
9481 return ret;
9482 }
9483
io_unregister_personality(struct io_ring_ctx * ctx,unsigned id)9484 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
9485 {
9486 struct io_identity *iod;
9487
9488 iod = idr_remove(&ctx->personality_idr, id);
9489 if (iod) {
9490 put_cred(iod->creds);
9491 if (refcount_dec_and_test(&iod->count))
9492 kfree(iod);
9493 return 0;
9494 }
9495
9496 return -EINVAL;
9497 }
9498
io_register_restrictions(struct io_ring_ctx * ctx,void __user * arg,unsigned int nr_args)9499 static int io_register_restrictions(struct io_ring_ctx *ctx, void __user *arg,
9500 unsigned int nr_args)
9501 {
9502 struct io_uring_restriction *res;
9503 size_t size;
9504 int i, ret;
9505
9506 /* Restrictions allowed only if rings started disabled */
9507 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
9508 return -EBADFD;
9509
9510 /* We allow only a single restrictions registration */
9511 if (ctx->restrictions.registered)
9512 return -EBUSY;
9513
9514 if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
9515 return -EINVAL;
9516
9517 size = array_size(nr_args, sizeof(*res));
9518 if (size == SIZE_MAX)
9519 return -EOVERFLOW;
9520
9521 res = memdup_user(arg, size);
9522 if (IS_ERR(res))
9523 return PTR_ERR(res);
9524
9525 ret = 0;
9526
9527 for (i = 0; i < nr_args; i++) {
9528 switch (res[i].opcode) {
9529 case IORING_RESTRICTION_REGISTER_OP:
9530 if (res[i].register_op >= IORING_REGISTER_LAST) {
9531 ret = -EINVAL;
9532 goto out;
9533 }
9534
9535 __set_bit(res[i].register_op,
9536 ctx->restrictions.register_op);
9537 break;
9538 case IORING_RESTRICTION_SQE_OP:
9539 if (res[i].sqe_op >= IORING_OP_LAST) {
9540 ret = -EINVAL;
9541 goto out;
9542 }
9543
9544 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
9545 break;
9546 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
9547 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
9548 break;
9549 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
9550 ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
9551 break;
9552 default:
9553 ret = -EINVAL;
9554 goto out;
9555 }
9556 }
9557
9558 out:
9559 /* Reset all restrictions if an error happened */
9560 if (ret != 0)
9561 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
9562 else
9563 ctx->restrictions.registered = true;
9564
9565 kfree(res);
9566 return ret;
9567 }
9568
io_register_enable_rings(struct io_ring_ctx * ctx)9569 static int io_register_enable_rings(struct io_ring_ctx *ctx)
9570 {
9571 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
9572 return -EBADFD;
9573
9574 if (ctx->restrictions.registered)
9575 ctx->restricted = 1;
9576
9577 ctx->flags &= ~IORING_SETUP_R_DISABLED;
9578
9579 io_sq_offload_start(ctx);
9580
9581 return 0;
9582 }
9583
io_register_op_must_quiesce(int op)9584 static bool io_register_op_must_quiesce(int op)
9585 {
9586 switch (op) {
9587 case IORING_UNREGISTER_FILES:
9588 case IORING_REGISTER_FILES_UPDATE:
9589 case IORING_REGISTER_PROBE:
9590 case IORING_REGISTER_PERSONALITY:
9591 case IORING_UNREGISTER_PERSONALITY:
9592 return false;
9593 default:
9594 return true;
9595 }
9596 }
9597
__io_uring_register(struct io_ring_ctx * ctx,unsigned opcode,void __user * arg,unsigned nr_args)9598 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
9599 void __user *arg, unsigned nr_args)
9600 __releases(ctx->uring_lock)
9601 __acquires(ctx->uring_lock)
9602 {
9603 int ret;
9604
9605 /*
9606 * We're inside the ring mutex, if the ref is already dying, then
9607 * someone else killed the ctx or is already going through
9608 * io_uring_register().
9609 */
9610 if (percpu_ref_is_dying(&ctx->refs))
9611 return -ENXIO;
9612
9613 if (io_register_op_must_quiesce(opcode)) {
9614 percpu_ref_kill(&ctx->refs);
9615
9616 /*
9617 * Drop uring mutex before waiting for references to exit. If
9618 * another thread is currently inside io_uring_enter() it might
9619 * need to grab the uring_lock to make progress. If we hold it
9620 * here across the drain wait, then we can deadlock. It's safe
9621 * to drop the mutex here, since no new references will come in
9622 * after we've killed the percpu ref.
9623 */
9624 mutex_unlock(&ctx->uring_lock);
9625 do {
9626 ret = wait_for_completion_interruptible(&ctx->ref_comp);
9627 if (!ret)
9628 break;
9629 ret = io_run_task_work_sig();
9630 if (ret < 0)
9631 break;
9632 } while (1);
9633
9634 mutex_lock(&ctx->uring_lock);
9635
9636 if (ret) {
9637 percpu_ref_resurrect(&ctx->refs);
9638 goto out_quiesce;
9639 }
9640 }
9641
9642 if (ctx->restricted) {
9643 if (opcode >= IORING_REGISTER_LAST) {
9644 ret = -EINVAL;
9645 goto out;
9646 }
9647
9648 if (!test_bit(opcode, ctx->restrictions.register_op)) {
9649 ret = -EACCES;
9650 goto out;
9651 }
9652 }
9653
9654 switch (opcode) {
9655 case IORING_REGISTER_BUFFERS:
9656 ret = io_sqe_buffer_register(ctx, arg, nr_args);
9657 break;
9658 case IORING_UNREGISTER_BUFFERS:
9659 ret = -EINVAL;
9660 if (arg || nr_args)
9661 break;
9662 ret = io_sqe_buffer_unregister(ctx);
9663 break;
9664 case IORING_REGISTER_FILES:
9665 ret = io_sqe_files_register(ctx, arg, nr_args);
9666 break;
9667 case IORING_UNREGISTER_FILES:
9668 ret = -EINVAL;
9669 if (arg || nr_args)
9670 break;
9671 ret = io_sqe_files_unregister(ctx);
9672 break;
9673 case IORING_REGISTER_FILES_UPDATE:
9674 ret = io_sqe_files_update(ctx, arg, nr_args);
9675 break;
9676 case IORING_REGISTER_EVENTFD:
9677 case IORING_REGISTER_EVENTFD_ASYNC:
9678 ret = -EINVAL;
9679 if (nr_args != 1)
9680 break;
9681 ret = io_eventfd_register(ctx, arg);
9682 if (ret)
9683 break;
9684 if (opcode == IORING_REGISTER_EVENTFD_ASYNC)
9685 ctx->eventfd_async = 1;
9686 else
9687 ctx->eventfd_async = 0;
9688 break;
9689 case IORING_UNREGISTER_EVENTFD:
9690 ret = -EINVAL;
9691 if (arg || nr_args)
9692 break;
9693 ret = io_eventfd_unregister(ctx);
9694 break;
9695 case IORING_REGISTER_PROBE:
9696 ret = -EINVAL;
9697 if (!arg || nr_args > 256)
9698 break;
9699 ret = io_probe(ctx, arg, nr_args);
9700 break;
9701 case IORING_REGISTER_PERSONALITY:
9702 ret = -EINVAL;
9703 if (arg || nr_args)
9704 break;
9705 ret = io_register_personality(ctx);
9706 break;
9707 case IORING_UNREGISTER_PERSONALITY:
9708 ret = -EINVAL;
9709 if (arg)
9710 break;
9711 ret = io_unregister_personality(ctx, nr_args);
9712 break;
9713 case IORING_REGISTER_ENABLE_RINGS:
9714 ret = -EINVAL;
9715 if (arg || nr_args)
9716 break;
9717 ret = io_register_enable_rings(ctx);
9718 break;
9719 case IORING_REGISTER_RESTRICTIONS:
9720 ret = io_register_restrictions(ctx, arg, nr_args);
9721 break;
9722 default:
9723 ret = -EINVAL;
9724 break;
9725 }
9726
9727 out:
9728 if (io_register_op_must_quiesce(opcode)) {
9729 /* bring the ctx back to life */
9730 percpu_ref_reinit(&ctx->refs);
9731 out_quiesce:
9732 reinit_completion(&ctx->ref_comp);
9733 }
9734 return ret;
9735 }
9736
SYSCALL_DEFINE4(io_uring_register,unsigned int,fd,unsigned int,opcode,void __user *,arg,unsigned int,nr_args)9737 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
9738 void __user *, arg, unsigned int, nr_args)
9739 {
9740 struct io_ring_ctx *ctx;
9741 long ret = -EBADF;
9742 struct fd f;
9743
9744 f = fdget(fd);
9745 if (!f.file)
9746 return -EBADF;
9747
9748 ret = -EOPNOTSUPP;
9749 if (f.file->f_op != &io_uring_fops)
9750 goto out_fput;
9751
9752 ctx = f.file->private_data;
9753
9754 mutex_lock(&ctx->uring_lock);
9755 ret = __io_uring_register(ctx, opcode, arg, nr_args);
9756 mutex_unlock(&ctx->uring_lock);
9757 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs,
9758 ctx->cq_ev_fd != NULL, ret);
9759 out_fput:
9760 fdput(f);
9761 return ret;
9762 }
9763
io_uring_init(void)9764 static int __init io_uring_init(void)
9765 {
9766 #define __BUILD_BUG_VERIFY_ELEMENT(stype, eoffset, etype, ename) do { \
9767 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
9768 BUILD_BUG_ON(sizeof(etype) != sizeof_field(stype, ename)); \
9769 } while (0)
9770
9771 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
9772 __BUILD_BUG_VERIFY_ELEMENT(struct io_uring_sqe, eoffset, etype, ename)
9773 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
9774 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
9775 BUILD_BUG_SQE_ELEM(1, __u8, flags);
9776 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
9777 BUILD_BUG_SQE_ELEM(4, __s32, fd);
9778 BUILD_BUG_SQE_ELEM(8, __u64, off);
9779 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
9780 BUILD_BUG_SQE_ELEM(16, __u64, addr);
9781 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
9782 BUILD_BUG_SQE_ELEM(24, __u32, len);
9783 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
9784 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
9785 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
9786 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
9787 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
9788 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
9789 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
9790 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
9791 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
9792 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
9793 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
9794 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
9795 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
9796 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
9797 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
9798 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
9799 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
9800 BUILD_BUG_SQE_ELEM(42, __u16, personality);
9801 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
9802
9803 BUILD_BUG_ON(ARRAY_SIZE(io_op_defs) != IORING_OP_LAST);
9804 BUILD_BUG_ON(__REQ_F_LAST_BIT >= 8 * sizeof(int));
9805 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC);
9806 return 0;
9807 };
9808 __initcall(io_uring_init);
9809