1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
5 * Copyright (C) 2011 Don Zickus Red Hat, Inc.
6 *
7 * Pentium III FXSR, SSE support
8 * Gareth Hughes <gareth@valinux.com>, May 2000
9 */
10
11 /*
12 * Handle hardware traps and faults.
13 */
14 #include <linux/spinlock.h>
15 #include <linux/kprobes.h>
16 #include <linux/kdebug.h>
17 #include <linux/sched/debug.h>
18 #include <linux/nmi.h>
19 #include <linux/debugfs.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/ratelimit.h>
23 #include <linux/slab.h>
24 #include <linux/export.h>
25 #include <linux/atomic.h>
26 #include <linux/sched/clock.h>
27
28 #include <asm/cpu_entry_area.h>
29 #include <asm/traps.h>
30 #include <asm/mach_traps.h>
31 #include <asm/nmi.h>
32 #include <asm/x86_init.h>
33 #include <asm/reboot.h>
34 #include <asm/cache.h>
35 #include <asm/nospec-branch.h>
36 #include <asm/sev.h>
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/nmi.h>
40
41 struct nmi_desc {
42 raw_spinlock_t lock;
43 struct list_head head;
44 };
45
46 static struct nmi_desc nmi_desc[NMI_MAX] =
47 {
48 {
49 .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock),
50 .head = LIST_HEAD_INIT(nmi_desc[0].head),
51 },
52 {
53 .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock),
54 .head = LIST_HEAD_INIT(nmi_desc[1].head),
55 },
56 {
57 .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[2].lock),
58 .head = LIST_HEAD_INIT(nmi_desc[2].head),
59 },
60 {
61 .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[3].lock),
62 .head = LIST_HEAD_INIT(nmi_desc[3].head),
63 },
64
65 };
66
67 struct nmi_stats {
68 unsigned int normal;
69 unsigned int unknown;
70 unsigned int external;
71 unsigned int swallow;
72 unsigned long recv_jiffies;
73 unsigned long idt_seq;
74 unsigned long idt_nmi_seq;
75 unsigned long idt_ignored;
76 atomic_long_t idt_calls;
77 unsigned long idt_seq_snap;
78 unsigned long idt_nmi_seq_snap;
79 unsigned long idt_ignored_snap;
80 long idt_calls_snap;
81 };
82
83 static DEFINE_PER_CPU(struct nmi_stats, nmi_stats);
84
85 static int ignore_nmis __read_mostly;
86
87 int unknown_nmi_panic;
88 /*
89 * Prevent NMI reason port (0x61) being accessed simultaneously, can
90 * only be used in NMI handler.
91 */
92 static DEFINE_RAW_SPINLOCK(nmi_reason_lock);
93
setup_unknown_nmi_panic(char * str)94 static int __init setup_unknown_nmi_panic(char *str)
95 {
96 unknown_nmi_panic = 1;
97 return 1;
98 }
99 __setup("unknown_nmi_panic", setup_unknown_nmi_panic);
100
101 #define nmi_to_desc(type) (&nmi_desc[type])
102
103 static u64 nmi_longest_ns = 1 * NSEC_PER_MSEC;
104
nmi_warning_debugfs(void)105 static int __init nmi_warning_debugfs(void)
106 {
107 debugfs_create_u64("nmi_longest_ns", 0644,
108 arch_debugfs_dir, &nmi_longest_ns);
109 return 0;
110 }
111 fs_initcall(nmi_warning_debugfs);
112
nmi_check_duration(struct nmiaction * action,u64 duration)113 static void nmi_check_duration(struct nmiaction *action, u64 duration)
114 {
115 int remainder_ns, decimal_msecs;
116
117 if (duration < nmi_longest_ns || duration < action->max_duration)
118 return;
119
120 action->max_duration = duration;
121
122 remainder_ns = do_div(duration, (1000 * 1000));
123 decimal_msecs = remainder_ns / 1000;
124
125 printk_ratelimited(KERN_INFO
126 "INFO: NMI handler (%ps) took too long to run: %lld.%03d msecs\n",
127 action->handler, duration, decimal_msecs);
128 }
129
nmi_handle(unsigned int type,struct pt_regs * regs)130 static int nmi_handle(unsigned int type, struct pt_regs *regs)
131 {
132 struct nmi_desc *desc = nmi_to_desc(type);
133 struct nmiaction *a;
134 int handled=0;
135
136 rcu_read_lock();
137
138 /*
139 * NMIs are edge-triggered, which means if you have enough
140 * of them concurrently, you can lose some because only one
141 * can be latched at any given time. Walk the whole list
142 * to handle those situations.
143 */
144 list_for_each_entry_rcu(a, &desc->head, list) {
145 int thishandled;
146 u64 delta;
147
148 delta = sched_clock();
149 thishandled = a->handler(type, regs);
150 handled += thishandled;
151 delta = sched_clock() - delta;
152 trace_nmi_handler(a->handler, (int)delta, thishandled);
153
154 nmi_check_duration(a, delta);
155 }
156
157 rcu_read_unlock();
158
159 /* return total number of NMI events handled */
160 return handled;
161 }
162 NOKPROBE_SYMBOL(nmi_handle);
163
__register_nmi_handler(unsigned int type,struct nmiaction * action)164 int __register_nmi_handler(unsigned int type, struct nmiaction *action)
165 {
166 struct nmi_desc *desc = nmi_to_desc(type);
167 unsigned long flags;
168
169 if (WARN_ON_ONCE(!action->handler || !list_empty(&action->list)))
170 return -EINVAL;
171
172 raw_spin_lock_irqsave(&desc->lock, flags);
173
174 /*
175 * Indicate if there are multiple registrations on the
176 * internal NMI handler call chains (SERR and IO_CHECK).
177 */
178 WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head));
179 WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head));
180
181 /*
182 * some handlers need to be executed first otherwise a fake
183 * event confuses some handlers (kdump uses this flag)
184 */
185 if (action->flags & NMI_FLAG_FIRST)
186 list_add_rcu(&action->list, &desc->head);
187 else
188 list_add_tail_rcu(&action->list, &desc->head);
189
190 raw_spin_unlock_irqrestore(&desc->lock, flags);
191 return 0;
192 }
193 EXPORT_SYMBOL(__register_nmi_handler);
194
unregister_nmi_handler(unsigned int type,const char * name)195 void unregister_nmi_handler(unsigned int type, const char *name)
196 {
197 struct nmi_desc *desc = nmi_to_desc(type);
198 struct nmiaction *n, *found = NULL;
199 unsigned long flags;
200
201 raw_spin_lock_irqsave(&desc->lock, flags);
202
203 list_for_each_entry_rcu(n, &desc->head, list) {
204 /*
205 * the name passed in to describe the nmi handler
206 * is used as the lookup key
207 */
208 if (!strcmp(n->name, name)) {
209 WARN(in_nmi(),
210 "Trying to free NMI (%s) from NMI context!\n", n->name);
211 list_del_rcu(&n->list);
212 found = n;
213 break;
214 }
215 }
216
217 raw_spin_unlock_irqrestore(&desc->lock, flags);
218 if (found) {
219 synchronize_rcu();
220 INIT_LIST_HEAD(&found->list);
221 }
222 }
223 EXPORT_SYMBOL_GPL(unregister_nmi_handler);
224
225 static void
pci_serr_error(unsigned char reason,struct pt_regs * regs)226 pci_serr_error(unsigned char reason, struct pt_regs *regs)
227 {
228 /* check to see if anyone registered against these types of errors */
229 if (nmi_handle(NMI_SERR, regs))
230 return;
231
232 pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
233 reason, smp_processor_id());
234
235 if (panic_on_unrecovered_nmi)
236 nmi_panic(regs, "NMI: Not continuing");
237
238 pr_emerg("Dazed and confused, but trying to continue\n");
239
240 /* Clear and disable the PCI SERR error line. */
241 reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR;
242 outb(reason, NMI_REASON_PORT);
243 }
244 NOKPROBE_SYMBOL(pci_serr_error);
245
246 static void
io_check_error(unsigned char reason,struct pt_regs * regs)247 io_check_error(unsigned char reason, struct pt_regs *regs)
248 {
249 unsigned long i;
250
251 /* check to see if anyone registered against these types of errors */
252 if (nmi_handle(NMI_IO_CHECK, regs))
253 return;
254
255 pr_emerg(
256 "NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
257 reason, smp_processor_id());
258 show_regs(regs);
259
260 if (panic_on_io_nmi) {
261 nmi_panic(regs, "NMI IOCK error: Not continuing");
262
263 /*
264 * If we end up here, it means we have received an NMI while
265 * processing panic(). Simply return without delaying and
266 * re-enabling NMIs.
267 */
268 return;
269 }
270
271 /* Re-enable the IOCK line, wait for a few seconds */
272 reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK;
273 outb(reason, NMI_REASON_PORT);
274
275 i = 20000;
276 while (--i) {
277 touch_nmi_watchdog();
278 udelay(100);
279 }
280
281 reason &= ~NMI_REASON_CLEAR_IOCHK;
282 outb(reason, NMI_REASON_PORT);
283 }
284 NOKPROBE_SYMBOL(io_check_error);
285
286 static void
unknown_nmi_error(unsigned char reason,struct pt_regs * regs)287 unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
288 {
289 int handled;
290
291 /*
292 * Use 'false' as back-to-back NMIs are dealt with one level up.
293 * Of course this makes having multiple 'unknown' handlers useless
294 * as only the first one is ever run (unless it can actually determine
295 * if it caused the NMI)
296 */
297 handled = nmi_handle(NMI_UNKNOWN, regs);
298 if (handled) {
299 __this_cpu_add(nmi_stats.unknown, handled);
300 return;
301 }
302
303 __this_cpu_add(nmi_stats.unknown, 1);
304
305 pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
306 reason, smp_processor_id());
307
308 if (unknown_nmi_panic || panic_on_unrecovered_nmi)
309 nmi_panic(regs, "NMI: Not continuing");
310
311 pr_emerg("Dazed and confused, but trying to continue\n");
312 }
313 NOKPROBE_SYMBOL(unknown_nmi_error);
314
315 static DEFINE_PER_CPU(bool, swallow_nmi);
316 static DEFINE_PER_CPU(unsigned long, last_nmi_rip);
317
default_do_nmi(struct pt_regs * regs)318 static noinstr void default_do_nmi(struct pt_regs *regs)
319 {
320 unsigned char reason = 0;
321 int handled;
322 bool b2b = false;
323
324 /*
325 * CPU-specific NMI must be processed before non-CPU-specific
326 * NMI, otherwise we may lose it, because the CPU-specific
327 * NMI can not be detected/processed on other CPUs.
328 */
329
330 /*
331 * Back-to-back NMIs are interesting because they can either
332 * be two NMI or more than two NMIs (any thing over two is dropped
333 * due to NMI being edge-triggered). If this is the second half
334 * of the back-to-back NMI, assume we dropped things and process
335 * more handlers. Otherwise reset the 'swallow' NMI behaviour
336 */
337 if (regs->ip == __this_cpu_read(last_nmi_rip))
338 b2b = true;
339 else
340 __this_cpu_write(swallow_nmi, false);
341
342 __this_cpu_write(last_nmi_rip, regs->ip);
343
344 instrumentation_begin();
345
346 handled = nmi_handle(NMI_LOCAL, regs);
347 __this_cpu_add(nmi_stats.normal, handled);
348 if (handled) {
349 /*
350 * There are cases when a NMI handler handles multiple
351 * events in the current NMI. One of these events may
352 * be queued for in the next NMI. Because the event is
353 * already handled, the next NMI will result in an unknown
354 * NMI. Instead lets flag this for a potential NMI to
355 * swallow.
356 */
357 if (handled > 1)
358 __this_cpu_write(swallow_nmi, true);
359 goto out;
360 }
361
362 /*
363 * Non-CPU-specific NMI: NMI sources can be processed on any CPU.
364 *
365 * Another CPU may be processing panic routines while holding
366 * nmi_reason_lock. Check if the CPU issued the IPI for crash dumping,
367 * and if so, call its callback directly. If there is no CPU preparing
368 * crash dump, we simply loop here.
369 */
370 while (!raw_spin_trylock(&nmi_reason_lock)) {
371 run_crash_ipi_callback(regs);
372 cpu_relax();
373 }
374
375 reason = x86_platform.get_nmi_reason();
376
377 if (reason & NMI_REASON_MASK) {
378 if (reason & NMI_REASON_SERR)
379 pci_serr_error(reason, regs);
380 else if (reason & NMI_REASON_IOCHK)
381 io_check_error(reason, regs);
382 #ifdef CONFIG_X86_32
383 /*
384 * Reassert NMI in case it became active
385 * meanwhile as it's edge-triggered:
386 */
387 reassert_nmi();
388 #endif
389 __this_cpu_add(nmi_stats.external, 1);
390 raw_spin_unlock(&nmi_reason_lock);
391 goto out;
392 }
393 raw_spin_unlock(&nmi_reason_lock);
394
395 /*
396 * Only one NMI can be latched at a time. To handle
397 * this we may process multiple nmi handlers at once to
398 * cover the case where an NMI is dropped. The downside
399 * to this approach is we may process an NMI prematurely,
400 * while its real NMI is sitting latched. This will cause
401 * an unknown NMI on the next run of the NMI processing.
402 *
403 * We tried to flag that condition above, by setting the
404 * swallow_nmi flag when we process more than one event.
405 * This condition is also only present on the second half
406 * of a back-to-back NMI, so we flag that condition too.
407 *
408 * If both are true, we assume we already processed this
409 * NMI previously and we swallow it. Otherwise we reset
410 * the logic.
411 *
412 * There are scenarios where we may accidentally swallow
413 * a 'real' unknown NMI. For example, while processing
414 * a perf NMI another perf NMI comes in along with a
415 * 'real' unknown NMI. These two NMIs get combined into
416 * one (as described above). When the next NMI gets
417 * processed, it will be flagged by perf as handled, but
418 * no one will know that there was a 'real' unknown NMI sent
419 * also. As a result it gets swallowed. Or if the first
420 * perf NMI returns two events handled then the second
421 * NMI will get eaten by the logic below, again losing a
422 * 'real' unknown NMI. But this is the best we can do
423 * for now.
424 */
425 if (b2b && __this_cpu_read(swallow_nmi))
426 __this_cpu_add(nmi_stats.swallow, 1);
427 else
428 unknown_nmi_error(reason, regs);
429
430 out:
431 instrumentation_end();
432 }
433
434 /*
435 * NMIs can page fault or hit breakpoints which will cause it to lose
436 * its NMI context with the CPU when the breakpoint or page fault does an IRET.
437 *
438 * As a result, NMIs can nest if NMIs get unmasked due an IRET during
439 * NMI processing. On x86_64, the asm glue protects us from nested NMIs
440 * if the outer NMI came from kernel mode, but we can still nest if the
441 * outer NMI came from user mode.
442 *
443 * To handle these nested NMIs, we have three states:
444 *
445 * 1) not running
446 * 2) executing
447 * 3) latched
448 *
449 * When no NMI is in progress, it is in the "not running" state.
450 * When an NMI comes in, it goes into the "executing" state.
451 * Normally, if another NMI is triggered, it does not interrupt
452 * the running NMI and the HW will simply latch it so that when
453 * the first NMI finishes, it will restart the second NMI.
454 * (Note, the latch is binary, thus multiple NMIs triggering,
455 * when one is running, are ignored. Only one NMI is restarted.)
456 *
457 * If an NMI executes an iret, another NMI can preempt it. We do not
458 * want to allow this new NMI to run, but we want to execute it when the
459 * first one finishes. We set the state to "latched", and the exit of
460 * the first NMI will perform a dec_return, if the result is zero
461 * (NOT_RUNNING), then it will simply exit the NMI handler. If not, the
462 * dec_return would have set the state to NMI_EXECUTING (what we want it
463 * to be when we are running). In this case, we simply jump back to
464 * rerun the NMI handler again, and restart the 'latched' NMI.
465 *
466 * No trap (breakpoint or page fault) should be hit before nmi_restart,
467 * thus there is no race between the first check of state for NOT_RUNNING
468 * and setting it to NMI_EXECUTING. The HW will prevent nested NMIs
469 * at this point.
470 *
471 * In case the NMI takes a page fault, we need to save off the CR2
472 * because the NMI could have preempted another page fault and corrupt
473 * the CR2 that is about to be read. As nested NMIs must be restarted
474 * and they can not take breakpoints or page faults, the update of the
475 * CR2 must be done before converting the nmi state back to NOT_RUNNING.
476 * Otherwise, there would be a race of another nested NMI coming in
477 * after setting state to NOT_RUNNING but before updating the nmi_cr2.
478 */
479 enum nmi_states {
480 NMI_NOT_RUNNING = 0,
481 NMI_EXECUTING,
482 NMI_LATCHED,
483 };
484 static DEFINE_PER_CPU(enum nmi_states, nmi_state);
485 static DEFINE_PER_CPU(unsigned long, nmi_cr2);
486 static DEFINE_PER_CPU(unsigned long, nmi_dr7);
487
DEFINE_IDTENTRY_RAW(exc_nmi)488 DEFINE_IDTENTRY_RAW(exc_nmi)
489 {
490 irqentry_state_t irq_state;
491 struct nmi_stats *nsp = this_cpu_ptr(&nmi_stats);
492
493 /*
494 * Re-enable NMIs right here when running as an SEV-ES guest. This might
495 * cause nested NMIs, but those can be handled safely.
496 */
497 sev_es_nmi_complete();
498 if (IS_ENABLED(CONFIG_NMI_CHECK_CPU))
499 raw_atomic_long_inc(&nsp->idt_calls);
500
501 if (IS_ENABLED(CONFIG_SMP) && arch_cpu_is_offline(smp_processor_id()))
502 return;
503
504 if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) {
505 this_cpu_write(nmi_state, NMI_LATCHED);
506 return;
507 }
508 this_cpu_write(nmi_state, NMI_EXECUTING);
509 this_cpu_write(nmi_cr2, read_cr2());
510 if (IS_ENABLED(CONFIG_NMI_CHECK_CPU)) {
511 WRITE_ONCE(nsp->idt_seq, nsp->idt_seq + 1);
512 WARN_ON_ONCE(!(nsp->idt_seq & 0x1));
513 WRITE_ONCE(nsp->recv_jiffies, jiffies);
514 }
515 nmi_restart:
516
517 /*
518 * Needs to happen before DR7 is accessed, because the hypervisor can
519 * intercept DR7 reads/writes, turning those into #VC exceptions.
520 */
521 sev_es_ist_enter(regs);
522
523 this_cpu_write(nmi_dr7, local_db_save());
524
525 irq_state = irqentry_nmi_enter(regs);
526
527 inc_irq_stat(__nmi_count);
528
529 if (IS_ENABLED(CONFIG_NMI_CHECK_CPU) && ignore_nmis) {
530 WRITE_ONCE(nsp->idt_ignored, nsp->idt_ignored + 1);
531 } else if (!ignore_nmis) {
532 if (IS_ENABLED(CONFIG_NMI_CHECK_CPU)) {
533 WRITE_ONCE(nsp->idt_nmi_seq, nsp->idt_nmi_seq + 1);
534 WARN_ON_ONCE(!(nsp->idt_nmi_seq & 0x1));
535 }
536 default_do_nmi(regs);
537 if (IS_ENABLED(CONFIG_NMI_CHECK_CPU)) {
538 WRITE_ONCE(nsp->idt_nmi_seq, nsp->idt_nmi_seq + 1);
539 WARN_ON_ONCE(nsp->idt_nmi_seq & 0x1);
540 }
541 }
542
543 irqentry_nmi_exit(regs, irq_state);
544
545 local_db_restore(this_cpu_read(nmi_dr7));
546
547 sev_es_ist_exit();
548
549 if (unlikely(this_cpu_read(nmi_cr2) != read_cr2()))
550 write_cr2(this_cpu_read(nmi_cr2));
551 if (this_cpu_dec_return(nmi_state))
552 goto nmi_restart;
553
554 if (user_mode(regs))
555 mds_user_clear_cpu_buffers();
556 if (IS_ENABLED(CONFIG_NMI_CHECK_CPU)) {
557 WRITE_ONCE(nsp->idt_seq, nsp->idt_seq + 1);
558 WARN_ON_ONCE(nsp->idt_seq & 0x1);
559 WRITE_ONCE(nsp->recv_jiffies, jiffies);
560 }
561 }
562
563 #if IS_ENABLED(CONFIG_KVM_INTEL)
DEFINE_IDTENTRY_RAW(exc_nmi_kvm_vmx)564 DEFINE_IDTENTRY_RAW(exc_nmi_kvm_vmx)
565 {
566 exc_nmi(regs);
567 }
568 #if IS_MODULE(CONFIG_KVM_INTEL)
569 EXPORT_SYMBOL_GPL(asm_exc_nmi_kvm_vmx);
570 #endif
571 #endif
572
573 #ifdef CONFIG_NMI_CHECK_CPU
574
575 static char *nmi_check_stall_msg[] = {
576 /* */
577 /* +--------- nsp->idt_seq_snap & 0x1: CPU is in NMI handler. */
578 /* | +------ cpu_is_offline(cpu) */
579 /* | | +--- nsp->idt_calls_snap != atomic_long_read(&nsp->idt_calls): */
580 /* | | | NMI handler has been invoked. */
581 /* | | | */
582 /* V V V */
583 /* 0 0 0 */ "NMIs are not reaching exc_nmi() handler",
584 /* 0 0 1 */ "exc_nmi() handler is ignoring NMIs",
585 /* 0 1 0 */ "CPU is offline and NMIs are not reaching exc_nmi() handler",
586 /* 0 1 1 */ "CPU is offline and exc_nmi() handler is legitimately ignoring NMIs",
587 /* 1 0 0 */ "CPU is in exc_nmi() handler and no further NMIs are reaching handler",
588 /* 1 0 1 */ "CPU is in exc_nmi() handler which is legitimately ignoring NMIs",
589 /* 1 1 0 */ "CPU is offline in exc_nmi() handler and no more NMIs are reaching exc_nmi() handler",
590 /* 1 1 1 */ "CPU is offline in exc_nmi() handler which is legitimately ignoring NMIs",
591 };
592
nmi_backtrace_stall_snap(const struct cpumask * btp)593 void nmi_backtrace_stall_snap(const struct cpumask *btp)
594 {
595 int cpu;
596 struct nmi_stats *nsp;
597
598 for_each_cpu(cpu, btp) {
599 nsp = per_cpu_ptr(&nmi_stats, cpu);
600 nsp->idt_seq_snap = READ_ONCE(nsp->idt_seq);
601 nsp->idt_nmi_seq_snap = READ_ONCE(nsp->idt_nmi_seq);
602 nsp->idt_ignored_snap = READ_ONCE(nsp->idt_ignored);
603 nsp->idt_calls_snap = atomic_long_read(&nsp->idt_calls);
604 }
605 }
606
nmi_backtrace_stall_check(const struct cpumask * btp)607 void nmi_backtrace_stall_check(const struct cpumask *btp)
608 {
609 int cpu;
610 int idx;
611 unsigned long nmi_seq;
612 unsigned long j = jiffies;
613 char *modp;
614 char *msgp;
615 char *msghp;
616 struct nmi_stats *nsp;
617
618 for_each_cpu(cpu, btp) {
619 nsp = per_cpu_ptr(&nmi_stats, cpu);
620 modp = "";
621 msghp = "";
622 nmi_seq = READ_ONCE(nsp->idt_nmi_seq);
623 if (nsp->idt_nmi_seq_snap + 1 == nmi_seq && (nmi_seq & 0x1)) {
624 msgp = "CPU entered NMI handler function, but has not exited";
625 } else if ((nsp->idt_nmi_seq_snap & 0x1) != (nmi_seq & 0x1)) {
626 msgp = "CPU is handling NMIs";
627 } else {
628 idx = ((nsp->idt_seq_snap & 0x1) << 2) |
629 (cpu_is_offline(cpu) << 1) |
630 (nsp->idt_calls_snap != atomic_long_read(&nsp->idt_calls));
631 msgp = nmi_check_stall_msg[idx];
632 if (nsp->idt_ignored_snap != READ_ONCE(nsp->idt_ignored) && (idx & 0x1))
633 modp = ", but OK because ignore_nmis was set";
634 if (nmi_seq & ~0x1)
635 msghp = " (CPU currently in NMI handler function)";
636 else if (nsp->idt_nmi_seq_snap + 1 == nmi_seq)
637 msghp = " (CPU exited one NMI handler function)";
638 }
639 pr_alert("%s: CPU %d: %s%s%s, last activity: %lu jiffies ago.\n",
640 __func__, cpu, msgp, modp, msghp, j - READ_ONCE(nsp->recv_jiffies));
641 }
642 }
643
644 #endif
645
stop_nmi(void)646 void stop_nmi(void)
647 {
648 ignore_nmis++;
649 }
650
restart_nmi(void)651 void restart_nmi(void)
652 {
653 ignore_nmis--;
654 }
655
656 /* reset the back-to-back NMI logic */
local_touch_nmi(void)657 void local_touch_nmi(void)
658 {
659 __this_cpu_write(last_nmi_rip, 0);
660 }
661 EXPORT_SYMBOL_GPL(local_touch_nmi);
662