1 /*
2 * Copyright 2012-15 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: AMD
23 *
24 */
25
26 #include <linux/slab.h>
27
28 #include "dm_services.h"
29
30 #include "resource.h"
31 #include "include/irq_service_interface.h"
32 #include "link_encoder.h"
33 #include "stream_encoder.h"
34 #include "opp.h"
35 #include "timing_generator.h"
36 #include "transform.h"
37 #include "dccg.h"
38 #include "dchubbub.h"
39 #include "dpp.h"
40 #include "core_types.h"
41 #include "set_mode_types.h"
42 #include "virtual/virtual_stream_encoder.h"
43 #include "dpcd_defs.h"
44
45 #if defined(CONFIG_DRM_AMD_DC_SI)
46 #include "dce60/dce60_resource.h"
47 #endif
48 #include "dce80/dce80_resource.h"
49 #include "dce100/dce100_resource.h"
50 #include "dce110/dce110_resource.h"
51 #include "dce112/dce112_resource.h"
52 #include "dce120/dce120_resource.h"
53 #if defined(CONFIG_DRM_AMD_DC_DCN)
54 #include "dcn10/dcn10_resource.h"
55 #include "dcn20/dcn20_resource.h"
56 #include "dcn21/dcn21_resource.h"
57 #include "dcn30/dcn30_resource.h"
58 #include "dcn301/dcn301_resource.h"
59 #include "dcn302/dcn302_resource.h"
60 #include "dcn303/dcn303_resource.h"
61 #include "dcn31/dcn31_resource.h"
62 #endif
63
64 #define DC_LOGGER_INIT(logger)
65
resource_parse_asic_id(struct hw_asic_id asic_id)66 enum dce_version resource_parse_asic_id(struct hw_asic_id asic_id)
67 {
68 enum dce_version dc_version = DCE_VERSION_UNKNOWN;
69 switch (asic_id.chip_family) {
70
71 #if defined(CONFIG_DRM_AMD_DC_SI)
72 case FAMILY_SI:
73 if (ASIC_REV_IS_TAHITI_P(asic_id.hw_internal_rev) ||
74 ASIC_REV_IS_PITCAIRN_PM(asic_id.hw_internal_rev) ||
75 ASIC_REV_IS_CAPEVERDE_M(asic_id.hw_internal_rev))
76 dc_version = DCE_VERSION_6_0;
77 else if (ASIC_REV_IS_OLAND_M(asic_id.hw_internal_rev))
78 dc_version = DCE_VERSION_6_4;
79 else
80 dc_version = DCE_VERSION_6_1;
81 break;
82 #endif
83 case FAMILY_CI:
84 dc_version = DCE_VERSION_8_0;
85 break;
86 case FAMILY_KV:
87 if (ASIC_REV_IS_KALINDI(asic_id.hw_internal_rev) ||
88 ASIC_REV_IS_BHAVANI(asic_id.hw_internal_rev) ||
89 ASIC_REV_IS_GODAVARI(asic_id.hw_internal_rev))
90 dc_version = DCE_VERSION_8_3;
91 else
92 dc_version = DCE_VERSION_8_1;
93 break;
94 case FAMILY_CZ:
95 dc_version = DCE_VERSION_11_0;
96 break;
97
98 case FAMILY_VI:
99 if (ASIC_REV_IS_TONGA_P(asic_id.hw_internal_rev) ||
100 ASIC_REV_IS_FIJI_P(asic_id.hw_internal_rev)) {
101 dc_version = DCE_VERSION_10_0;
102 break;
103 }
104 if (ASIC_REV_IS_POLARIS10_P(asic_id.hw_internal_rev) ||
105 ASIC_REV_IS_POLARIS11_M(asic_id.hw_internal_rev) ||
106 ASIC_REV_IS_POLARIS12_V(asic_id.hw_internal_rev)) {
107 dc_version = DCE_VERSION_11_2;
108 }
109 if (ASIC_REV_IS_VEGAM(asic_id.hw_internal_rev))
110 dc_version = DCE_VERSION_11_22;
111 break;
112 case FAMILY_AI:
113 if (ASICREV_IS_VEGA20_P(asic_id.hw_internal_rev))
114 dc_version = DCE_VERSION_12_1;
115 else
116 dc_version = DCE_VERSION_12_0;
117 break;
118 #if defined(CONFIG_DRM_AMD_DC_DCN)
119 case FAMILY_RV:
120 dc_version = DCN_VERSION_1_0;
121 if (ASICREV_IS_RAVEN2(asic_id.hw_internal_rev))
122 dc_version = DCN_VERSION_1_01;
123 if (ASICREV_IS_RENOIR(asic_id.hw_internal_rev))
124 dc_version = DCN_VERSION_2_1;
125 if (ASICREV_IS_GREEN_SARDINE(asic_id.hw_internal_rev))
126 dc_version = DCN_VERSION_2_1;
127 break;
128
129 case FAMILY_NV:
130 dc_version = DCN_VERSION_2_0;
131 if (ASICREV_IS_SIENNA_CICHLID_P(asic_id.hw_internal_rev))
132 dc_version = DCN_VERSION_3_0;
133 if (ASICREV_IS_DIMGREY_CAVEFISH_P(asic_id.hw_internal_rev))
134 dc_version = DCN_VERSION_3_02;
135 if (ASICREV_IS_BEIGE_GOBY_P(asic_id.hw_internal_rev))
136 dc_version = DCN_VERSION_3_03;
137 break;
138
139 case FAMILY_VGH:
140 dc_version = DCN_VERSION_3_01;
141 break;
142
143 case FAMILY_YELLOW_CARP:
144 if (ASICREV_IS_YELLOW_CARP(asic_id.hw_internal_rev))
145 dc_version = DCN_VERSION_3_1;
146 break;
147 #endif
148
149 default:
150 dc_version = DCE_VERSION_UNKNOWN;
151 break;
152 }
153 return dc_version;
154 }
155
dc_create_resource_pool(struct dc * dc,const struct dc_init_data * init_data,enum dce_version dc_version)156 struct resource_pool *dc_create_resource_pool(struct dc *dc,
157 const struct dc_init_data *init_data,
158 enum dce_version dc_version)
159 {
160 struct resource_pool *res_pool = NULL;
161
162 switch (dc_version) {
163 #if defined(CONFIG_DRM_AMD_DC_SI)
164 case DCE_VERSION_6_0:
165 res_pool = dce60_create_resource_pool(
166 init_data->num_virtual_links, dc);
167 break;
168 case DCE_VERSION_6_1:
169 res_pool = dce61_create_resource_pool(
170 init_data->num_virtual_links, dc);
171 break;
172 case DCE_VERSION_6_4:
173 res_pool = dce64_create_resource_pool(
174 init_data->num_virtual_links, dc);
175 break;
176 #endif
177 case DCE_VERSION_8_0:
178 res_pool = dce80_create_resource_pool(
179 init_data->num_virtual_links, dc);
180 break;
181 case DCE_VERSION_8_1:
182 res_pool = dce81_create_resource_pool(
183 init_data->num_virtual_links, dc);
184 break;
185 case DCE_VERSION_8_3:
186 res_pool = dce83_create_resource_pool(
187 init_data->num_virtual_links, dc);
188 break;
189 case DCE_VERSION_10_0:
190 res_pool = dce100_create_resource_pool(
191 init_data->num_virtual_links, dc);
192 break;
193 case DCE_VERSION_11_0:
194 res_pool = dce110_create_resource_pool(
195 init_data->num_virtual_links, dc,
196 init_data->asic_id);
197 break;
198 case DCE_VERSION_11_2:
199 case DCE_VERSION_11_22:
200 res_pool = dce112_create_resource_pool(
201 init_data->num_virtual_links, dc);
202 break;
203 case DCE_VERSION_12_0:
204 case DCE_VERSION_12_1:
205 res_pool = dce120_create_resource_pool(
206 init_data->num_virtual_links, dc);
207 break;
208
209 #if defined(CONFIG_DRM_AMD_DC_DCN)
210 case DCN_VERSION_1_0:
211 case DCN_VERSION_1_01:
212 res_pool = dcn10_create_resource_pool(init_data, dc);
213 break;
214 case DCN_VERSION_2_0:
215 res_pool = dcn20_create_resource_pool(init_data, dc);
216 break;
217 case DCN_VERSION_2_1:
218 res_pool = dcn21_create_resource_pool(init_data, dc);
219 break;
220 case DCN_VERSION_3_0:
221 res_pool = dcn30_create_resource_pool(init_data, dc);
222 break;
223 case DCN_VERSION_3_01:
224 res_pool = dcn301_create_resource_pool(init_data, dc);
225 break;
226 case DCN_VERSION_3_02:
227 res_pool = dcn302_create_resource_pool(init_data, dc);
228 break;
229 case DCN_VERSION_3_03:
230 res_pool = dcn303_create_resource_pool(init_data, dc);
231 break;
232 case DCN_VERSION_3_1:
233 res_pool = dcn31_create_resource_pool(init_data, dc);
234 break;
235 #endif
236 default:
237 break;
238 }
239
240 if (res_pool != NULL) {
241 if (dc->ctx->dc_bios->fw_info_valid) {
242 res_pool->ref_clocks.xtalin_clock_inKhz =
243 dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency;
244 /* initialize with firmware data first, no all
245 * ASIC have DCCG SW component. FPGA or
246 * simulation need initialization of
247 * dccg_ref_clock_inKhz, dchub_ref_clock_inKhz
248 * with xtalin_clock_inKhz
249 */
250 res_pool->ref_clocks.dccg_ref_clock_inKhz =
251 res_pool->ref_clocks.xtalin_clock_inKhz;
252 res_pool->ref_clocks.dchub_ref_clock_inKhz =
253 res_pool->ref_clocks.xtalin_clock_inKhz;
254 } else
255 ASSERT_CRITICAL(false);
256 }
257
258 return res_pool;
259 }
260
dc_destroy_resource_pool(struct dc * dc)261 void dc_destroy_resource_pool(struct dc *dc)
262 {
263 if (dc) {
264 if (dc->res_pool)
265 dc->res_pool->funcs->destroy(&dc->res_pool);
266
267 kfree(dc->hwseq);
268 }
269 }
270
update_num_audio(const struct resource_straps * straps,unsigned int * num_audio,struct audio_support * aud_support)271 static void update_num_audio(
272 const struct resource_straps *straps,
273 unsigned int *num_audio,
274 struct audio_support *aud_support)
275 {
276 aud_support->dp_audio = true;
277 aud_support->hdmi_audio_native = false;
278 aud_support->hdmi_audio_on_dongle = false;
279
280 if (straps->hdmi_disable == 0) {
281 if (straps->dc_pinstraps_audio & 0x2) {
282 aud_support->hdmi_audio_on_dongle = true;
283 aud_support->hdmi_audio_native = true;
284 }
285 }
286
287 switch (straps->audio_stream_number) {
288 case 0: /* multi streams supported */
289 break;
290 case 1: /* multi streams not supported */
291 *num_audio = 1;
292 break;
293 default:
294 DC_ERR("DC: unexpected audio fuse!\n");
295 }
296 }
297
resource_construct(unsigned int num_virtual_links,struct dc * dc,struct resource_pool * pool,const struct resource_create_funcs * create_funcs)298 bool resource_construct(
299 unsigned int num_virtual_links,
300 struct dc *dc,
301 struct resource_pool *pool,
302 const struct resource_create_funcs *create_funcs)
303 {
304 struct dc_context *ctx = dc->ctx;
305 const struct resource_caps *caps = pool->res_cap;
306 int i;
307 unsigned int num_audio = caps->num_audio;
308 struct resource_straps straps = {0};
309
310 if (create_funcs->read_dce_straps)
311 create_funcs->read_dce_straps(dc->ctx, &straps);
312
313 pool->audio_count = 0;
314 if (create_funcs->create_audio) {
315 /* find the total number of streams available via the
316 * AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_CONFIGURATION_DEFAULT
317 * registers (one for each pin) starting from pin 1
318 * up to the max number of audio pins.
319 * We stop on the first pin where
320 * PORT_CONNECTIVITY == 1 (as instructed by HW team).
321 */
322 update_num_audio(&straps, &num_audio, &pool->audio_support);
323 for (i = 0; i < caps->num_audio; i++) {
324 struct audio *aud = create_funcs->create_audio(ctx, i);
325
326 if (aud == NULL) {
327 DC_ERR("DC: failed to create audio!\n");
328 return false;
329 }
330 if (!aud->funcs->endpoint_valid(aud)) {
331 aud->funcs->destroy(&aud);
332 break;
333 }
334 pool->audios[i] = aud;
335 pool->audio_count++;
336 }
337 }
338
339 pool->stream_enc_count = 0;
340 if (create_funcs->create_stream_encoder) {
341 for (i = 0; i < caps->num_stream_encoder; i++) {
342 pool->stream_enc[i] = create_funcs->create_stream_encoder(i, ctx);
343 if (pool->stream_enc[i] == NULL)
344 DC_ERR("DC: failed to create stream_encoder!\n");
345 pool->stream_enc_count++;
346 }
347 }
348
349 #if defined(CONFIG_DRM_AMD_DC_DCN)
350 for (i = 0; i < caps->num_mpc_3dlut; i++) {
351 pool->mpc_lut[i] = dc_create_3dlut_func();
352 if (pool->mpc_lut[i] == NULL)
353 DC_ERR("DC: failed to create MPC 3dlut!\n");
354 pool->mpc_shaper[i] = dc_create_transfer_func();
355 if (pool->mpc_shaper[i] == NULL)
356 DC_ERR("DC: failed to create MPC shaper!\n");
357 }
358 #endif
359 dc->caps.dynamic_audio = false;
360 if (pool->audio_count < pool->stream_enc_count) {
361 dc->caps.dynamic_audio = true;
362 }
363 for (i = 0; i < num_virtual_links; i++) {
364 pool->stream_enc[pool->stream_enc_count] =
365 virtual_stream_encoder_create(
366 ctx, ctx->dc_bios);
367 if (pool->stream_enc[pool->stream_enc_count] == NULL) {
368 DC_ERR("DC: failed to create stream_encoder!\n");
369 return false;
370 }
371 pool->stream_enc_count++;
372 }
373
374 dc->hwseq = create_funcs->create_hwseq(ctx);
375
376 return true;
377 }
find_matching_clock_source(const struct resource_pool * pool,struct clock_source * clock_source)378 static int find_matching_clock_source(
379 const struct resource_pool *pool,
380 struct clock_source *clock_source)
381 {
382
383 int i;
384
385 for (i = 0; i < pool->clk_src_count; i++) {
386 if (pool->clock_sources[i] == clock_source)
387 return i;
388 }
389 return -1;
390 }
391
resource_unreference_clock_source(struct resource_context * res_ctx,const struct resource_pool * pool,struct clock_source * clock_source)392 void resource_unreference_clock_source(
393 struct resource_context *res_ctx,
394 const struct resource_pool *pool,
395 struct clock_source *clock_source)
396 {
397 int i = find_matching_clock_source(pool, clock_source);
398
399 if (i > -1)
400 res_ctx->clock_source_ref_count[i]--;
401
402 if (pool->dp_clock_source == clock_source)
403 res_ctx->dp_clock_source_ref_count--;
404 }
405
resource_reference_clock_source(struct resource_context * res_ctx,const struct resource_pool * pool,struct clock_source * clock_source)406 void resource_reference_clock_source(
407 struct resource_context *res_ctx,
408 const struct resource_pool *pool,
409 struct clock_source *clock_source)
410 {
411 int i = find_matching_clock_source(pool, clock_source);
412
413 if (i > -1)
414 res_ctx->clock_source_ref_count[i]++;
415
416 if (pool->dp_clock_source == clock_source)
417 res_ctx->dp_clock_source_ref_count++;
418 }
419
resource_get_clock_source_reference(struct resource_context * res_ctx,const struct resource_pool * pool,struct clock_source * clock_source)420 int resource_get_clock_source_reference(
421 struct resource_context *res_ctx,
422 const struct resource_pool *pool,
423 struct clock_source *clock_source)
424 {
425 int i = find_matching_clock_source(pool, clock_source);
426
427 if (i > -1)
428 return res_ctx->clock_source_ref_count[i];
429
430 if (pool->dp_clock_source == clock_source)
431 return res_ctx->dp_clock_source_ref_count;
432
433 return -1;
434 }
435
resource_are_vblanks_synchronizable(struct dc_stream_state * stream1,struct dc_stream_state * stream2)436 bool resource_are_vblanks_synchronizable(
437 struct dc_stream_state *stream1,
438 struct dc_stream_state *stream2)
439 {
440 uint32_t base60_refresh_rates[] = {10, 20, 5};
441 uint8_t i;
442 uint8_t rr_count = ARRAY_SIZE(base60_refresh_rates);
443 uint64_t frame_time_diff;
444
445 if (stream1->ctx->dc->config.vblank_alignment_dto_params &&
446 stream1->ctx->dc->config.vblank_alignment_max_frame_time_diff > 0 &&
447 dc_is_dp_signal(stream1->signal) &&
448 dc_is_dp_signal(stream2->signal) &&
449 false == stream1->has_non_synchronizable_pclk &&
450 false == stream2->has_non_synchronizable_pclk &&
451 stream1->timing.flags.VBLANK_SYNCHRONIZABLE &&
452 stream2->timing.flags.VBLANK_SYNCHRONIZABLE) {
453 /* disable refresh rates higher than 60Hz for now */
454 if (stream1->timing.pix_clk_100hz*100/stream1->timing.h_total/
455 stream1->timing.v_total > 60)
456 return false;
457 if (stream2->timing.pix_clk_100hz*100/stream2->timing.h_total/
458 stream2->timing.v_total > 60)
459 return false;
460 frame_time_diff = (uint64_t)10000 *
461 stream1->timing.h_total *
462 stream1->timing.v_total *
463 stream2->timing.pix_clk_100hz;
464 frame_time_diff = div_u64(frame_time_diff, stream1->timing.pix_clk_100hz);
465 frame_time_diff = div_u64(frame_time_diff, stream2->timing.h_total);
466 frame_time_diff = div_u64(frame_time_diff, stream2->timing.v_total);
467 for (i = 0; i < rr_count; i++) {
468 int64_t diff = (int64_t)div_u64(frame_time_diff * base60_refresh_rates[i], 10) - 10000;
469
470 if (diff < 0)
471 diff = -diff;
472 if (diff < stream1->ctx->dc->config.vblank_alignment_max_frame_time_diff)
473 return true;
474 }
475 }
476 return false;
477 }
478
resource_are_streams_timing_synchronizable(struct dc_stream_state * stream1,struct dc_stream_state * stream2)479 bool resource_are_streams_timing_synchronizable(
480 struct dc_stream_state *stream1,
481 struct dc_stream_state *stream2)
482 {
483 if (stream1->timing.h_total != stream2->timing.h_total)
484 return false;
485
486 if (stream1->timing.v_total != stream2->timing.v_total)
487 return false;
488
489 if (stream1->timing.h_addressable
490 != stream2->timing.h_addressable)
491 return false;
492
493 if (stream1->timing.v_addressable
494 != stream2->timing.v_addressable)
495 return false;
496
497 if (stream1->timing.v_front_porch
498 != stream2->timing.v_front_porch)
499 return false;
500
501 if (stream1->timing.pix_clk_100hz
502 != stream2->timing.pix_clk_100hz)
503 return false;
504
505 if (stream1->clamping.c_depth != stream2->clamping.c_depth)
506 return false;
507
508 if (stream1->phy_pix_clk != stream2->phy_pix_clk
509 && (!dc_is_dp_signal(stream1->signal)
510 || !dc_is_dp_signal(stream2->signal)))
511 return false;
512
513 if (stream1->view_format != stream2->view_format)
514 return false;
515
516 if (stream1->ignore_msa_timing_param || stream2->ignore_msa_timing_param)
517 return false;
518
519 return true;
520 }
is_dp_and_hdmi_sharable(struct dc_stream_state * stream1,struct dc_stream_state * stream2)521 static bool is_dp_and_hdmi_sharable(
522 struct dc_stream_state *stream1,
523 struct dc_stream_state *stream2)
524 {
525 if (stream1->ctx->dc->caps.disable_dp_clk_share)
526 return false;
527
528 if (stream1->clamping.c_depth != COLOR_DEPTH_888 ||
529 stream2->clamping.c_depth != COLOR_DEPTH_888)
530 return false;
531
532 return true;
533
534 }
535
is_sharable_clk_src(const struct pipe_ctx * pipe_with_clk_src,const struct pipe_ctx * pipe)536 static bool is_sharable_clk_src(
537 const struct pipe_ctx *pipe_with_clk_src,
538 const struct pipe_ctx *pipe)
539 {
540 if (pipe_with_clk_src->clock_source == NULL)
541 return false;
542
543 if (pipe_with_clk_src->stream->signal == SIGNAL_TYPE_VIRTUAL)
544 return false;
545
546 if (dc_is_dp_signal(pipe_with_clk_src->stream->signal) ||
547 (dc_is_dp_signal(pipe->stream->signal) &&
548 !is_dp_and_hdmi_sharable(pipe_with_clk_src->stream,
549 pipe->stream)))
550 return false;
551
552 if (dc_is_hdmi_signal(pipe_with_clk_src->stream->signal)
553 && dc_is_dual_link_signal(pipe->stream->signal))
554 return false;
555
556 if (dc_is_hdmi_signal(pipe->stream->signal)
557 && dc_is_dual_link_signal(pipe_with_clk_src->stream->signal))
558 return false;
559
560 if (!resource_are_streams_timing_synchronizable(
561 pipe_with_clk_src->stream, pipe->stream))
562 return false;
563
564 return true;
565 }
566
resource_find_used_clk_src_for_sharing(struct resource_context * res_ctx,struct pipe_ctx * pipe_ctx)567 struct clock_source *resource_find_used_clk_src_for_sharing(
568 struct resource_context *res_ctx,
569 struct pipe_ctx *pipe_ctx)
570 {
571 int i;
572
573 for (i = 0; i < MAX_PIPES; i++) {
574 if (is_sharable_clk_src(&res_ctx->pipe_ctx[i], pipe_ctx))
575 return res_ctx->pipe_ctx[i].clock_source;
576 }
577
578 return NULL;
579 }
580
convert_pixel_format_to_dalsurface(enum surface_pixel_format surface_pixel_format)581 static enum pixel_format convert_pixel_format_to_dalsurface(
582 enum surface_pixel_format surface_pixel_format)
583 {
584 enum pixel_format dal_pixel_format = PIXEL_FORMAT_UNKNOWN;
585
586 switch (surface_pixel_format) {
587 case SURFACE_PIXEL_FORMAT_GRPH_PALETA_256_COLORS:
588 dal_pixel_format = PIXEL_FORMAT_INDEX8;
589 break;
590 case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555:
591 dal_pixel_format = PIXEL_FORMAT_RGB565;
592 break;
593 case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
594 dal_pixel_format = PIXEL_FORMAT_RGB565;
595 break;
596 case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
597 dal_pixel_format = PIXEL_FORMAT_ARGB8888;
598 break;
599 case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
600 dal_pixel_format = PIXEL_FORMAT_ARGB8888;
601 break;
602 case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
603 dal_pixel_format = PIXEL_FORMAT_ARGB2101010;
604 break;
605 case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
606 dal_pixel_format = PIXEL_FORMAT_ARGB2101010;
607 break;
608 case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010_XR_BIAS:
609 dal_pixel_format = PIXEL_FORMAT_ARGB2101010_XRBIAS;
610 break;
611 case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
612 case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F:
613 dal_pixel_format = PIXEL_FORMAT_FP16;
614 break;
615 case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr:
616 case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb:
617 dal_pixel_format = PIXEL_FORMAT_420BPP8;
618 break;
619 case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr:
620 case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb:
621 dal_pixel_format = PIXEL_FORMAT_420BPP10;
622 break;
623 case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
624 case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
625 default:
626 dal_pixel_format = PIXEL_FORMAT_UNKNOWN;
627 break;
628 }
629 return dal_pixel_format;
630 }
631
get_vp_scan_direction(enum dc_rotation_angle rotation,bool horizontal_mirror,bool * orthogonal_rotation,bool * flip_vert_scan_dir,bool * flip_horz_scan_dir)632 static inline void get_vp_scan_direction(
633 enum dc_rotation_angle rotation,
634 bool horizontal_mirror,
635 bool *orthogonal_rotation,
636 bool *flip_vert_scan_dir,
637 bool *flip_horz_scan_dir)
638 {
639 *orthogonal_rotation = false;
640 *flip_vert_scan_dir = false;
641 *flip_horz_scan_dir = false;
642 if (rotation == ROTATION_ANGLE_180) {
643 *flip_vert_scan_dir = true;
644 *flip_horz_scan_dir = true;
645 } else if (rotation == ROTATION_ANGLE_90) {
646 *orthogonal_rotation = true;
647 *flip_horz_scan_dir = true;
648 } else if (rotation == ROTATION_ANGLE_270) {
649 *orthogonal_rotation = true;
650 *flip_vert_scan_dir = true;
651 }
652
653 if (horizontal_mirror)
654 *flip_horz_scan_dir = !*flip_horz_scan_dir;
655 }
656
get_num_mpc_splits(struct pipe_ctx * pipe)657 int get_num_mpc_splits(struct pipe_ctx *pipe)
658 {
659 int mpc_split_count = 0;
660 struct pipe_ctx *other_pipe = pipe->bottom_pipe;
661
662 while (other_pipe && other_pipe->plane_state == pipe->plane_state) {
663 mpc_split_count++;
664 other_pipe = other_pipe->bottom_pipe;
665 }
666 other_pipe = pipe->top_pipe;
667 while (other_pipe && other_pipe->plane_state == pipe->plane_state) {
668 mpc_split_count++;
669 other_pipe = other_pipe->top_pipe;
670 }
671
672 return mpc_split_count;
673 }
674
get_num_odm_splits(struct pipe_ctx * pipe)675 int get_num_odm_splits(struct pipe_ctx *pipe)
676 {
677 int odm_split_count = 0;
678 struct pipe_ctx *next_pipe = pipe->next_odm_pipe;
679 while (next_pipe) {
680 odm_split_count++;
681 next_pipe = next_pipe->next_odm_pipe;
682 }
683 pipe = pipe->prev_odm_pipe;
684 while (pipe) {
685 odm_split_count++;
686 pipe = pipe->prev_odm_pipe;
687 }
688 return odm_split_count;
689 }
690
calculate_split_count_and_index(struct pipe_ctx * pipe_ctx,int * split_count,int * split_idx)691 static void calculate_split_count_and_index(struct pipe_ctx *pipe_ctx, int *split_count, int *split_idx)
692 {
693 *split_count = get_num_odm_splits(pipe_ctx);
694 *split_idx = 0;
695 if (*split_count == 0) {
696 /*Check for mpc split*/
697 struct pipe_ctx *split_pipe = pipe_ctx->top_pipe;
698
699 *split_count = get_num_mpc_splits(pipe_ctx);
700 while (split_pipe && split_pipe->plane_state == pipe_ctx->plane_state) {
701 (*split_idx)++;
702 split_pipe = split_pipe->top_pipe;
703 }
704 } else {
705 /*Get odm split index*/
706 struct pipe_ctx *split_pipe = pipe_ctx->prev_odm_pipe;
707
708 while (split_pipe) {
709 (*split_idx)++;
710 split_pipe = split_pipe->prev_odm_pipe;
711 }
712 }
713 }
714
715 /*
716 * This is a preliminary vp size calculation to allow us to check taps support.
717 * The result is completely overridden afterwards.
718 */
calculate_viewport_size(struct pipe_ctx * pipe_ctx)719 static void calculate_viewport_size(struct pipe_ctx *pipe_ctx)
720 {
721 struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
722
723 data->viewport.width = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.horz, data->recout.width));
724 data->viewport.height = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.vert, data->recout.height));
725 data->viewport_c.width = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.horz_c, data->recout.width));
726 data->viewport_c.height = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.vert_c, data->recout.height));
727 if (pipe_ctx->plane_state->rotation == ROTATION_ANGLE_90 ||
728 pipe_ctx->plane_state->rotation == ROTATION_ANGLE_270) {
729 swap(data->viewport.width, data->viewport.height);
730 swap(data->viewport_c.width, data->viewport_c.height);
731 }
732 }
733
calculate_recout(struct pipe_ctx * pipe_ctx)734 static void calculate_recout(struct pipe_ctx *pipe_ctx)
735 {
736 const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
737 const struct dc_stream_state *stream = pipe_ctx->stream;
738 struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
739 struct rect surf_clip = plane_state->clip_rect;
740 bool split_tb = stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM;
741 int split_count, split_idx;
742
743 calculate_split_count_and_index(pipe_ctx, &split_count, &split_idx);
744 if (stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
745 split_idx = 0;
746
747 /*
748 * Only the leftmost ODM pipe should be offset by a nonzero distance
749 */
750 if (!pipe_ctx->prev_odm_pipe || split_idx == split_count) {
751 data->recout.x = stream->dst.x;
752 if (stream->src.x < surf_clip.x)
753 data->recout.x += (surf_clip.x - stream->src.x) * stream->dst.width
754 / stream->src.width;
755 } else
756 data->recout.x = 0;
757
758 if (stream->src.x > surf_clip.x)
759 surf_clip.width -= stream->src.x - surf_clip.x;
760 data->recout.width = surf_clip.width * stream->dst.width / stream->src.width;
761 if (data->recout.width + data->recout.x > stream->dst.x + stream->dst.width)
762 data->recout.width = stream->dst.x + stream->dst.width - data->recout.x;
763
764 data->recout.y = stream->dst.y;
765 if (stream->src.y < surf_clip.y)
766 data->recout.y += (surf_clip.y - stream->src.y) * stream->dst.height
767 / stream->src.height;
768 else if (stream->src.y > surf_clip.y)
769 surf_clip.height -= stream->src.y - surf_clip.y;
770
771 data->recout.height = surf_clip.height * stream->dst.height / stream->src.height;
772 if (data->recout.height + data->recout.y > stream->dst.y + stream->dst.height)
773 data->recout.height = stream->dst.y + stream->dst.height - data->recout.y;
774
775 /* Handle h & v split */
776 if (split_tb) {
777 ASSERT(data->recout.height % 2 == 0);
778 data->recout.height /= 2;
779 } else if (split_count) {
780 if (!pipe_ctx->next_odm_pipe && !pipe_ctx->prev_odm_pipe) {
781 /* extra pixels in the division remainder need to go to pipes after
782 * the extra pixel index minus one(epimo) defined here as:
783 */
784 int epimo = split_count - data->recout.width % (split_count + 1);
785
786 data->recout.x += (data->recout.width / (split_count + 1)) * split_idx;
787 if (split_idx > epimo)
788 data->recout.x += split_idx - epimo - 1;
789 ASSERT(stream->view_format != VIEW_3D_FORMAT_SIDE_BY_SIDE || data->recout.width % 2 == 0);
790 data->recout.width = data->recout.width / (split_count + 1) + (split_idx > epimo ? 1 : 0);
791 } else {
792 /* odm */
793 if (split_idx == split_count) {
794 /* rightmost pipe is the remainder recout */
795 data->recout.width -= data->h_active * split_count - data->recout.x;
796
797 /* ODM combine cases with MPO we can get negative widths */
798 if (data->recout.width < 0)
799 data->recout.width = 0;
800
801 data->recout.x = 0;
802 } else
803 data->recout.width = data->h_active - data->recout.x;
804 }
805 }
806 }
807
calculate_scaling_ratios(struct pipe_ctx * pipe_ctx)808 static void calculate_scaling_ratios(struct pipe_ctx *pipe_ctx)
809 {
810 const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
811 const struct dc_stream_state *stream = pipe_ctx->stream;
812 struct rect surf_src = plane_state->src_rect;
813 const int in_w = stream->src.width;
814 const int in_h = stream->src.height;
815 const int out_w = stream->dst.width;
816 const int out_h = stream->dst.height;
817
818 /*Swap surf_src height and width since scaling ratios are in recout rotation*/
819 if (pipe_ctx->plane_state->rotation == ROTATION_ANGLE_90 ||
820 pipe_ctx->plane_state->rotation == ROTATION_ANGLE_270)
821 swap(surf_src.height, surf_src.width);
822
823 pipe_ctx->plane_res.scl_data.ratios.horz = dc_fixpt_from_fraction(
824 surf_src.width,
825 plane_state->dst_rect.width);
826 pipe_ctx->plane_res.scl_data.ratios.vert = dc_fixpt_from_fraction(
827 surf_src.height,
828 plane_state->dst_rect.height);
829
830 if (stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
831 pipe_ctx->plane_res.scl_data.ratios.horz.value *= 2;
832 else if (stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM)
833 pipe_ctx->plane_res.scl_data.ratios.vert.value *= 2;
834
835 pipe_ctx->plane_res.scl_data.ratios.vert.value = div64_s64(
836 pipe_ctx->plane_res.scl_data.ratios.vert.value * in_h, out_h);
837 pipe_ctx->plane_res.scl_data.ratios.horz.value = div64_s64(
838 pipe_ctx->plane_res.scl_data.ratios.horz.value * in_w, out_w);
839
840 pipe_ctx->plane_res.scl_data.ratios.horz_c = pipe_ctx->plane_res.scl_data.ratios.horz;
841 pipe_ctx->plane_res.scl_data.ratios.vert_c = pipe_ctx->plane_res.scl_data.ratios.vert;
842
843 if (pipe_ctx->plane_res.scl_data.format == PIXEL_FORMAT_420BPP8
844 || pipe_ctx->plane_res.scl_data.format == PIXEL_FORMAT_420BPP10) {
845 pipe_ctx->plane_res.scl_data.ratios.horz_c.value /= 2;
846 pipe_ctx->plane_res.scl_data.ratios.vert_c.value /= 2;
847 }
848 pipe_ctx->plane_res.scl_data.ratios.horz = dc_fixpt_truncate(
849 pipe_ctx->plane_res.scl_data.ratios.horz, 19);
850 pipe_ctx->plane_res.scl_data.ratios.vert = dc_fixpt_truncate(
851 pipe_ctx->plane_res.scl_data.ratios.vert, 19);
852 pipe_ctx->plane_res.scl_data.ratios.horz_c = dc_fixpt_truncate(
853 pipe_ctx->plane_res.scl_data.ratios.horz_c, 19);
854 pipe_ctx->plane_res.scl_data.ratios.vert_c = dc_fixpt_truncate(
855 pipe_ctx->plane_res.scl_data.ratios.vert_c, 19);
856 }
857
858
859 /*
860 * We completely calculate vp offset, size and inits here based entirely on scaling
861 * ratios and recout for pixel perfect pipe combine.
862 */
calculate_init_and_vp(bool flip_scan_dir,int recout_offset_within_recout_full,int recout_size,int src_size,int taps,struct fixed31_32 ratio,struct fixed31_32 * init,int * vp_offset,int * vp_size)863 static void calculate_init_and_vp(
864 bool flip_scan_dir,
865 int recout_offset_within_recout_full,
866 int recout_size,
867 int src_size,
868 int taps,
869 struct fixed31_32 ratio,
870 struct fixed31_32 *init,
871 int *vp_offset,
872 int *vp_size)
873 {
874 struct fixed31_32 temp;
875 int int_part;
876
877 /*
878 * First of the taps starts sampling pixel number <init_int_part> corresponding to recout
879 * pixel 1. Next recout pixel samples int part of <init + scaling ratio> and so on.
880 * All following calculations are based on this logic.
881 *
882 * Init calculated according to formula:
883 * init = (scaling_ratio + number_of_taps + 1) / 2
884 * init_bot = init + scaling_ratio
885 * to get pixel perfect combine add the fraction from calculating vp offset
886 */
887 temp = dc_fixpt_mul_int(ratio, recout_offset_within_recout_full);
888 *vp_offset = dc_fixpt_floor(temp);
889 temp.value &= 0xffffffff;
890 *init = dc_fixpt_truncate(dc_fixpt_add(dc_fixpt_div_int(
891 dc_fixpt_add_int(ratio, taps + 1), 2), temp), 19);
892 /*
893 * If viewport has non 0 offset and there are more taps than covered by init then
894 * we should decrease the offset and increase init so we are never sampling
895 * outside of viewport.
896 */
897 int_part = dc_fixpt_floor(*init);
898 if (int_part < taps) {
899 int_part = taps - int_part;
900 if (int_part > *vp_offset)
901 int_part = *vp_offset;
902 *vp_offset -= int_part;
903 *init = dc_fixpt_add_int(*init, int_part);
904 }
905 /*
906 * If taps are sampling outside of viewport at end of recout and there are more pixels
907 * available in the surface we should increase the viewport size, regardless set vp to
908 * only what is used.
909 */
910 temp = dc_fixpt_add(*init, dc_fixpt_mul_int(ratio, recout_size - 1));
911 *vp_size = dc_fixpt_floor(temp);
912 if (*vp_size + *vp_offset > src_size)
913 *vp_size = src_size - *vp_offset;
914
915 /* We did all the math assuming we are scanning same direction as display does,
916 * however mirror/rotation changes how vp scans vs how it is offset. If scan direction
917 * is flipped we simply need to calculate offset from the other side of plane.
918 * Note that outside of viewport all scaling hardware works in recout space.
919 */
920 if (flip_scan_dir)
921 *vp_offset = src_size - *vp_offset - *vp_size;
922 }
923
calculate_inits_and_viewports(struct pipe_ctx * pipe_ctx)924 static void calculate_inits_and_viewports(struct pipe_ctx *pipe_ctx)
925 {
926 const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
927 const struct dc_stream_state *stream = pipe_ctx->stream;
928 struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
929 struct rect src = plane_state->src_rect;
930 int vpc_div = (data->format == PIXEL_FORMAT_420BPP8
931 || data->format == PIXEL_FORMAT_420BPP10) ? 2 : 1;
932 int split_count, split_idx, ro_lb, ro_tb, recout_full_x, recout_full_y;
933 bool orthogonal_rotation, flip_vert_scan_dir, flip_horz_scan_dir;
934
935 calculate_split_count_and_index(pipe_ctx, &split_count, &split_idx);
936 /*
937 * recout full is what the recout would have been if we didnt clip
938 * the source plane at all. We only care about left(ro_lb) and top(ro_tb)
939 * offsets of recout within recout full because those are the directions
940 * we scan from and therefore the only ones that affect inits.
941 */
942 recout_full_x = stream->dst.x + (plane_state->dst_rect.x - stream->src.x)
943 * stream->dst.width / stream->src.width;
944 recout_full_y = stream->dst.y + (plane_state->dst_rect.y - stream->src.y)
945 * stream->dst.height / stream->src.height;
946 if (pipe_ctx->prev_odm_pipe && split_idx)
947 ro_lb = data->h_active * split_idx - recout_full_x;
948 else
949 ro_lb = data->recout.x - recout_full_x;
950 ro_tb = data->recout.y - recout_full_y;
951 ASSERT(ro_lb >= 0 && ro_tb >= 0);
952
953 /*
954 * Work in recout rotation since that requires less transformations
955 */
956 get_vp_scan_direction(
957 plane_state->rotation,
958 plane_state->horizontal_mirror,
959 &orthogonal_rotation,
960 &flip_vert_scan_dir,
961 &flip_horz_scan_dir);
962
963 if (orthogonal_rotation) {
964 swap(src.width, src.height);
965 swap(flip_vert_scan_dir, flip_horz_scan_dir);
966 }
967
968 calculate_init_and_vp(
969 flip_horz_scan_dir,
970 ro_lb,
971 data->recout.width,
972 src.width,
973 data->taps.h_taps,
974 data->ratios.horz,
975 &data->inits.h,
976 &data->viewport.x,
977 &data->viewport.width);
978 calculate_init_and_vp(
979 flip_horz_scan_dir,
980 ro_lb,
981 data->recout.width,
982 src.width / vpc_div,
983 data->taps.h_taps_c,
984 data->ratios.horz_c,
985 &data->inits.h_c,
986 &data->viewport_c.x,
987 &data->viewport_c.width);
988 calculate_init_and_vp(
989 flip_vert_scan_dir,
990 ro_tb,
991 data->recout.height,
992 src.height,
993 data->taps.v_taps,
994 data->ratios.vert,
995 &data->inits.v,
996 &data->viewport.y,
997 &data->viewport.height);
998 calculate_init_and_vp(
999 flip_vert_scan_dir,
1000 ro_tb,
1001 data->recout.height,
1002 src.height / vpc_div,
1003 data->taps.v_taps_c,
1004 data->ratios.vert_c,
1005 &data->inits.v_c,
1006 &data->viewport_c.y,
1007 &data->viewport_c.height);
1008 if (orthogonal_rotation) {
1009 swap(data->viewport.x, data->viewport.y);
1010 swap(data->viewport.width, data->viewport.height);
1011 swap(data->viewport_c.x, data->viewport_c.y);
1012 swap(data->viewport_c.width, data->viewport_c.height);
1013 }
1014 data->viewport.x += src.x;
1015 data->viewport.y += src.y;
1016 ASSERT(src.x % vpc_div == 0 && src.y % vpc_div == 0);
1017 data->viewport_c.x += src.x / vpc_div;
1018 data->viewport_c.y += src.y / vpc_div;
1019 }
1020
resource_build_scaling_params(struct pipe_ctx * pipe_ctx)1021 bool resource_build_scaling_params(struct pipe_ctx *pipe_ctx)
1022 {
1023 const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
1024 struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
1025 bool res = false;
1026 DC_LOGGER_INIT(pipe_ctx->stream->ctx->logger);
1027
1028 pipe_ctx->plane_res.scl_data.format = convert_pixel_format_to_dalsurface(
1029 pipe_ctx->plane_state->format);
1030
1031 /* Timing borders are part of vactive that we are also supposed to skip in addition
1032 * to any stream dst offset. Since dm logic assumes dst is in addressable
1033 * space we need to add the left and top borders to dst offsets temporarily.
1034 * TODO: fix in DM, stream dst is supposed to be in vactive
1035 */
1036 pipe_ctx->stream->dst.x += timing->h_border_left;
1037 pipe_ctx->stream->dst.y += timing->v_border_top;
1038
1039 /* Calculate H and V active size */
1040 pipe_ctx->plane_res.scl_data.h_active = timing->h_addressable +
1041 timing->h_border_left + timing->h_border_right;
1042 pipe_ctx->plane_res.scl_data.v_active = timing->v_addressable +
1043 timing->v_border_top + timing->v_border_bottom;
1044 if (pipe_ctx->next_odm_pipe || pipe_ctx->prev_odm_pipe)
1045 pipe_ctx->plane_res.scl_data.h_active /= get_num_odm_splits(pipe_ctx) + 1;
1046
1047 /* depends on h_active */
1048 calculate_recout(pipe_ctx);
1049 /* depends on pixel format */
1050 calculate_scaling_ratios(pipe_ctx);
1051 /* depends on scaling ratios and recout, does not calculate offset yet */
1052 calculate_viewport_size(pipe_ctx);
1053
1054 /* Stopgap for validation of ODM + MPO on one side of screen case */
1055 if (pipe_ctx->plane_res.scl_data.viewport.height < 1 ||
1056 pipe_ctx->plane_res.scl_data.viewport.width < 1)
1057 return false;
1058
1059 /*
1060 * LB calculations depend on vp size, h/v_active and scaling ratios
1061 * Setting line buffer pixel depth to 24bpp yields banding
1062 * on certain displays, such as the Sharp 4k. 36bpp is needed
1063 * to support SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616 and
1064 * SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616 with actual > 10 bpc
1065 * precision on at least DCN display engines. However, at least
1066 * Carrizo with DCE_VERSION_11_0 does not like 36 bpp lb depth,
1067 * so use only 30 bpp on DCE_VERSION_11_0. Testing with DCE 11.2 and 8.3
1068 * did not show such problems, so this seems to be the exception.
1069 */
1070 if (plane_state->ctx->dce_version > DCE_VERSION_11_0)
1071 pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_36BPP;
1072 else
1073 pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_30BPP;
1074
1075 pipe_ctx->plane_res.scl_data.lb_params.alpha_en = plane_state->per_pixel_alpha;
1076
1077 if (pipe_ctx->plane_res.xfm != NULL)
1078 res = pipe_ctx->plane_res.xfm->funcs->transform_get_optimal_number_of_taps(
1079 pipe_ctx->plane_res.xfm, &pipe_ctx->plane_res.scl_data, &plane_state->scaling_quality);
1080
1081 if (pipe_ctx->plane_res.dpp != NULL)
1082 res = pipe_ctx->plane_res.dpp->funcs->dpp_get_optimal_number_of_taps(
1083 pipe_ctx->plane_res.dpp, &pipe_ctx->plane_res.scl_data, &plane_state->scaling_quality);
1084
1085
1086 if (!res) {
1087 /* Try 24 bpp linebuffer */
1088 pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_24BPP;
1089
1090 if (pipe_ctx->plane_res.xfm != NULL)
1091 res = pipe_ctx->plane_res.xfm->funcs->transform_get_optimal_number_of_taps(
1092 pipe_ctx->plane_res.xfm,
1093 &pipe_ctx->plane_res.scl_data,
1094 &plane_state->scaling_quality);
1095
1096 if (pipe_ctx->plane_res.dpp != NULL)
1097 res = pipe_ctx->plane_res.dpp->funcs->dpp_get_optimal_number_of_taps(
1098 pipe_ctx->plane_res.dpp,
1099 &pipe_ctx->plane_res.scl_data,
1100 &plane_state->scaling_quality);
1101 }
1102
1103 /*
1104 * Depends on recout, scaling ratios, h_active and taps
1105 * May need to re-check lb size after this in some obscure scenario
1106 */
1107 if (res)
1108 calculate_inits_and_viewports(pipe_ctx);
1109
1110 /*
1111 * Handle side by side and top bottom 3d recout offsets after vp calculation
1112 * since 3d is special and needs to calculate vp as if there is no recout offset
1113 * This may break with rotation, good thing we aren't mixing hw rotation and 3d
1114 */
1115 if (pipe_ctx->top_pipe && pipe_ctx->top_pipe->plane_state == plane_state) {
1116 ASSERT(plane_state->rotation == ROTATION_ANGLE_0 ||
1117 (pipe_ctx->stream->view_format != VIEW_3D_FORMAT_TOP_AND_BOTTOM &&
1118 pipe_ctx->stream->view_format != VIEW_3D_FORMAT_SIDE_BY_SIDE));
1119 if (pipe_ctx->stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM)
1120 pipe_ctx->plane_res.scl_data.recout.y += pipe_ctx->plane_res.scl_data.recout.height;
1121 else if (pipe_ctx->stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
1122 pipe_ctx->plane_res.scl_data.recout.x += pipe_ctx->plane_res.scl_data.recout.width;
1123 }
1124
1125 if (pipe_ctx->plane_res.scl_data.viewport.height < MIN_VIEWPORT_SIZE ||
1126 pipe_ctx->plane_res.scl_data.viewport.width < MIN_VIEWPORT_SIZE)
1127 res = false;
1128
1129 DC_LOG_SCALER("%s pipe %d:\nViewport: height:%d width:%d x:%d y:%d Recout: height:%d width:%d x:%d y:%d HACTIVE:%d VACTIVE:%d\n"
1130 "src_rect: height:%d width:%d x:%d y:%d dst_rect: height:%d width:%d x:%d y:%d clip_rect: height:%d width:%d x:%d y:%d\n",
1131 __func__,
1132 pipe_ctx->pipe_idx,
1133 pipe_ctx->plane_res.scl_data.viewport.height,
1134 pipe_ctx->plane_res.scl_data.viewport.width,
1135 pipe_ctx->plane_res.scl_data.viewport.x,
1136 pipe_ctx->plane_res.scl_data.viewport.y,
1137 pipe_ctx->plane_res.scl_data.recout.height,
1138 pipe_ctx->plane_res.scl_data.recout.width,
1139 pipe_ctx->plane_res.scl_data.recout.x,
1140 pipe_ctx->plane_res.scl_data.recout.y,
1141 pipe_ctx->plane_res.scl_data.h_active,
1142 pipe_ctx->plane_res.scl_data.v_active,
1143 plane_state->src_rect.height,
1144 plane_state->src_rect.width,
1145 plane_state->src_rect.x,
1146 plane_state->src_rect.y,
1147 plane_state->dst_rect.height,
1148 plane_state->dst_rect.width,
1149 plane_state->dst_rect.x,
1150 plane_state->dst_rect.y,
1151 plane_state->clip_rect.height,
1152 plane_state->clip_rect.width,
1153 plane_state->clip_rect.x,
1154 plane_state->clip_rect.y);
1155
1156 pipe_ctx->stream->dst.x -= timing->h_border_left;
1157 pipe_ctx->stream->dst.y -= timing->v_border_top;
1158
1159 return res;
1160 }
1161
1162
resource_build_scaling_params_for_context(const struct dc * dc,struct dc_state * context)1163 enum dc_status resource_build_scaling_params_for_context(
1164 const struct dc *dc,
1165 struct dc_state *context)
1166 {
1167 int i;
1168
1169 for (i = 0; i < MAX_PIPES; i++) {
1170 if (context->res_ctx.pipe_ctx[i].plane_state != NULL &&
1171 context->res_ctx.pipe_ctx[i].stream != NULL)
1172 if (!resource_build_scaling_params(&context->res_ctx.pipe_ctx[i]))
1173 return DC_FAIL_SCALING;
1174 }
1175
1176 return DC_OK;
1177 }
1178
find_idle_secondary_pipe(struct resource_context * res_ctx,const struct resource_pool * pool,const struct pipe_ctx * primary_pipe)1179 struct pipe_ctx *find_idle_secondary_pipe(
1180 struct resource_context *res_ctx,
1181 const struct resource_pool *pool,
1182 const struct pipe_ctx *primary_pipe)
1183 {
1184 int i;
1185 struct pipe_ctx *secondary_pipe = NULL;
1186
1187 /*
1188 * We add a preferred pipe mapping to avoid the chance that
1189 * MPCCs already in use will need to be reassigned to other trees.
1190 * For example, if we went with the strict, assign backwards logic:
1191 *
1192 * (State 1)
1193 * Display A on, no surface, top pipe = 0
1194 * Display B on, no surface, top pipe = 1
1195 *
1196 * (State 2)
1197 * Display A on, no surface, top pipe = 0
1198 * Display B on, surface enable, top pipe = 1, bottom pipe = 5
1199 *
1200 * (State 3)
1201 * Display A on, surface enable, top pipe = 0, bottom pipe = 5
1202 * Display B on, surface enable, top pipe = 1, bottom pipe = 4
1203 *
1204 * The state 2->3 transition requires remapping MPCC 5 from display B
1205 * to display A.
1206 *
1207 * However, with the preferred pipe logic, state 2 would look like:
1208 *
1209 * (State 2)
1210 * Display A on, no surface, top pipe = 0
1211 * Display B on, surface enable, top pipe = 1, bottom pipe = 4
1212 *
1213 * This would then cause 2->3 to not require remapping any MPCCs.
1214 */
1215 if (primary_pipe) {
1216 int preferred_pipe_idx = (pool->pipe_count - 1) - primary_pipe->pipe_idx;
1217 if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) {
1218 secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
1219 secondary_pipe->pipe_idx = preferred_pipe_idx;
1220 }
1221 }
1222
1223 /*
1224 * search backwards for the second pipe to keep pipe
1225 * assignment more consistent
1226 */
1227 if (!secondary_pipe)
1228 for (i = pool->pipe_count - 1; i >= 0; i--) {
1229 if (res_ctx->pipe_ctx[i].stream == NULL) {
1230 secondary_pipe = &res_ctx->pipe_ctx[i];
1231 secondary_pipe->pipe_idx = i;
1232 break;
1233 }
1234 }
1235
1236 return secondary_pipe;
1237 }
1238
resource_get_head_pipe_for_stream(struct resource_context * res_ctx,struct dc_stream_state * stream)1239 struct pipe_ctx *resource_get_head_pipe_for_stream(
1240 struct resource_context *res_ctx,
1241 struct dc_stream_state *stream)
1242 {
1243 int i;
1244
1245 for (i = 0; i < MAX_PIPES; i++) {
1246 if (res_ctx->pipe_ctx[i].stream == stream
1247 && !res_ctx->pipe_ctx[i].top_pipe
1248 && !res_ctx->pipe_ctx[i].prev_odm_pipe)
1249 return &res_ctx->pipe_ctx[i];
1250 }
1251 return NULL;
1252 }
1253
resource_get_tail_pipe(struct resource_context * res_ctx,struct pipe_ctx * head_pipe)1254 static struct pipe_ctx *resource_get_tail_pipe(
1255 struct resource_context *res_ctx,
1256 struct pipe_ctx *head_pipe)
1257 {
1258 struct pipe_ctx *tail_pipe;
1259
1260 tail_pipe = head_pipe->bottom_pipe;
1261
1262 while (tail_pipe) {
1263 head_pipe = tail_pipe;
1264 tail_pipe = tail_pipe->bottom_pipe;
1265 }
1266
1267 return head_pipe;
1268 }
1269
1270 /*
1271 * A free_pipe for a stream is defined here as a pipe
1272 * that has no surface attached yet
1273 */
acquire_free_pipe_for_head(struct dc_state * context,const struct resource_pool * pool,struct pipe_ctx * head_pipe)1274 static struct pipe_ctx *acquire_free_pipe_for_head(
1275 struct dc_state *context,
1276 const struct resource_pool *pool,
1277 struct pipe_ctx *head_pipe)
1278 {
1279 int i;
1280 struct resource_context *res_ctx = &context->res_ctx;
1281
1282 if (!head_pipe->plane_state)
1283 return head_pipe;
1284
1285 /* Re-use pipe already acquired for this stream if available*/
1286 for (i = pool->pipe_count - 1; i >= 0; i--) {
1287 if (res_ctx->pipe_ctx[i].stream == head_pipe->stream &&
1288 !res_ctx->pipe_ctx[i].plane_state) {
1289 return &res_ctx->pipe_ctx[i];
1290 }
1291 }
1292
1293 /*
1294 * At this point we have no re-useable pipe for this stream and we need
1295 * to acquire an idle one to satisfy the request
1296 */
1297
1298 if (!pool->funcs->acquire_idle_pipe_for_layer)
1299 return NULL;
1300
1301 return pool->funcs->acquire_idle_pipe_for_layer(context, pool, head_pipe->stream);
1302 }
1303
1304 #if defined(CONFIG_DRM_AMD_DC_DCN)
acquire_first_split_pipe(struct resource_context * res_ctx,const struct resource_pool * pool,struct dc_stream_state * stream)1305 static int acquire_first_split_pipe(
1306 struct resource_context *res_ctx,
1307 const struct resource_pool *pool,
1308 struct dc_stream_state *stream)
1309 {
1310 int i;
1311
1312 for (i = 0; i < pool->pipe_count; i++) {
1313 struct pipe_ctx *split_pipe = &res_ctx->pipe_ctx[i];
1314
1315 if (split_pipe->top_pipe &&
1316 split_pipe->top_pipe->plane_state == split_pipe->plane_state) {
1317 split_pipe->top_pipe->bottom_pipe = split_pipe->bottom_pipe;
1318 if (split_pipe->bottom_pipe)
1319 split_pipe->bottom_pipe->top_pipe = split_pipe->top_pipe;
1320
1321 if (split_pipe->top_pipe->plane_state)
1322 resource_build_scaling_params(split_pipe->top_pipe);
1323
1324 memset(split_pipe, 0, sizeof(*split_pipe));
1325 split_pipe->stream_res.tg = pool->timing_generators[i];
1326 split_pipe->plane_res.hubp = pool->hubps[i];
1327 split_pipe->plane_res.ipp = pool->ipps[i];
1328 split_pipe->plane_res.dpp = pool->dpps[i];
1329 split_pipe->stream_res.opp = pool->opps[i];
1330 split_pipe->plane_res.mpcc_inst = pool->dpps[i]->inst;
1331 split_pipe->pipe_idx = i;
1332
1333 split_pipe->stream = stream;
1334 return i;
1335 }
1336 }
1337 return -1;
1338 }
1339 #endif
1340
dc_add_plane_to_context(const struct dc * dc,struct dc_stream_state * stream,struct dc_plane_state * plane_state,struct dc_state * context)1341 bool dc_add_plane_to_context(
1342 const struct dc *dc,
1343 struct dc_stream_state *stream,
1344 struct dc_plane_state *plane_state,
1345 struct dc_state *context)
1346 {
1347 int i;
1348 struct resource_pool *pool = dc->res_pool;
1349 struct pipe_ctx *head_pipe, *tail_pipe, *free_pipe;
1350 struct dc_stream_status *stream_status = NULL;
1351
1352 for (i = 0; i < context->stream_count; i++)
1353 if (context->streams[i] == stream) {
1354 stream_status = &context->stream_status[i];
1355 break;
1356 }
1357 if (stream_status == NULL) {
1358 dm_error("Existing stream not found; failed to attach surface!\n");
1359 return false;
1360 }
1361
1362
1363 if (stream_status->plane_count == MAX_SURFACE_NUM) {
1364 dm_error("Surface: can not attach plane_state %p! Maximum is: %d\n",
1365 plane_state, MAX_SURFACE_NUM);
1366 return false;
1367 }
1368
1369 head_pipe = resource_get_head_pipe_for_stream(&context->res_ctx, stream);
1370
1371 if (!head_pipe) {
1372 dm_error("Head pipe not found for stream_state %p !\n", stream);
1373 return false;
1374 }
1375
1376 /* retain new surface, but only once per stream */
1377 dc_plane_state_retain(plane_state);
1378
1379 while (head_pipe) {
1380 free_pipe = acquire_free_pipe_for_head(context, pool, head_pipe);
1381
1382 #if defined(CONFIG_DRM_AMD_DC_DCN)
1383 if (!free_pipe) {
1384 int pipe_idx = acquire_first_split_pipe(&context->res_ctx, pool, stream);
1385 if (pipe_idx >= 0)
1386 free_pipe = &context->res_ctx.pipe_ctx[pipe_idx];
1387 }
1388 #endif
1389 if (!free_pipe) {
1390 dc_plane_state_release(plane_state);
1391 return false;
1392 }
1393
1394 free_pipe->plane_state = plane_state;
1395
1396 if (head_pipe != free_pipe) {
1397 tail_pipe = resource_get_tail_pipe(&context->res_ctx, head_pipe);
1398 ASSERT(tail_pipe);
1399 free_pipe->stream_res.tg = tail_pipe->stream_res.tg;
1400 free_pipe->stream_res.abm = tail_pipe->stream_res.abm;
1401 free_pipe->stream_res.opp = tail_pipe->stream_res.opp;
1402 free_pipe->stream_res.stream_enc = tail_pipe->stream_res.stream_enc;
1403 free_pipe->stream_res.audio = tail_pipe->stream_res.audio;
1404 free_pipe->clock_source = tail_pipe->clock_source;
1405 free_pipe->top_pipe = tail_pipe;
1406 tail_pipe->bottom_pipe = free_pipe;
1407 if (!free_pipe->next_odm_pipe && tail_pipe->next_odm_pipe && tail_pipe->next_odm_pipe->bottom_pipe) {
1408 free_pipe->next_odm_pipe = tail_pipe->next_odm_pipe->bottom_pipe;
1409 tail_pipe->next_odm_pipe->bottom_pipe->prev_odm_pipe = free_pipe;
1410 }
1411 if (!free_pipe->prev_odm_pipe && tail_pipe->prev_odm_pipe && tail_pipe->prev_odm_pipe->bottom_pipe) {
1412 free_pipe->prev_odm_pipe = tail_pipe->prev_odm_pipe->bottom_pipe;
1413 tail_pipe->prev_odm_pipe->bottom_pipe->next_odm_pipe = free_pipe;
1414 }
1415 }
1416 head_pipe = head_pipe->next_odm_pipe;
1417 }
1418 /* assign new surfaces*/
1419 stream_status->plane_states[stream_status->plane_count] = plane_state;
1420
1421 stream_status->plane_count++;
1422
1423 return true;
1424 }
1425
dc_remove_plane_from_context(const struct dc * dc,struct dc_stream_state * stream,struct dc_plane_state * plane_state,struct dc_state * context)1426 bool dc_remove_plane_from_context(
1427 const struct dc *dc,
1428 struct dc_stream_state *stream,
1429 struct dc_plane_state *plane_state,
1430 struct dc_state *context)
1431 {
1432 int i;
1433 struct dc_stream_status *stream_status = NULL;
1434 struct resource_pool *pool = dc->res_pool;
1435
1436 for (i = 0; i < context->stream_count; i++)
1437 if (context->streams[i] == stream) {
1438 stream_status = &context->stream_status[i];
1439 break;
1440 }
1441
1442 if (stream_status == NULL) {
1443 dm_error("Existing stream not found; failed to remove plane.\n");
1444 return false;
1445 }
1446
1447 /* release pipe for plane*/
1448 for (i = pool->pipe_count - 1; i >= 0; i--) {
1449 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1450
1451 if (pipe_ctx->plane_state == plane_state) {
1452 if (pipe_ctx->top_pipe)
1453 pipe_ctx->top_pipe->bottom_pipe = pipe_ctx->bottom_pipe;
1454
1455 /* Second condition is to avoid setting NULL to top pipe
1456 * of tail pipe making it look like head pipe in subsequent
1457 * deletes
1458 */
1459 if (pipe_ctx->bottom_pipe && pipe_ctx->top_pipe)
1460 pipe_ctx->bottom_pipe->top_pipe = pipe_ctx->top_pipe;
1461
1462 /*
1463 * For head pipe detach surfaces from pipe for tail
1464 * pipe just zero it out
1465 */
1466 if (!pipe_ctx->top_pipe)
1467 pipe_ctx->plane_state = NULL;
1468 else
1469 memset(pipe_ctx, 0, sizeof(*pipe_ctx));
1470 }
1471 }
1472
1473
1474 for (i = 0; i < stream_status->plane_count; i++) {
1475 if (stream_status->plane_states[i] == plane_state) {
1476
1477 dc_plane_state_release(stream_status->plane_states[i]);
1478 break;
1479 }
1480 }
1481
1482 if (i == stream_status->plane_count) {
1483 dm_error("Existing plane_state not found; failed to detach it!\n");
1484 return false;
1485 }
1486
1487 stream_status->plane_count--;
1488
1489 /* Start at the plane we've just released, and move all the planes one index forward to "trim" the array */
1490 for (; i < stream_status->plane_count; i++)
1491 stream_status->plane_states[i] = stream_status->plane_states[i + 1];
1492
1493 stream_status->plane_states[stream_status->plane_count] = NULL;
1494
1495 return true;
1496 }
1497
dc_rem_all_planes_for_stream(const struct dc * dc,struct dc_stream_state * stream,struct dc_state * context)1498 bool dc_rem_all_planes_for_stream(
1499 const struct dc *dc,
1500 struct dc_stream_state *stream,
1501 struct dc_state *context)
1502 {
1503 int i, old_plane_count;
1504 struct dc_stream_status *stream_status = NULL;
1505 struct dc_plane_state *del_planes[MAX_SURFACE_NUM] = { 0 };
1506
1507 for (i = 0; i < context->stream_count; i++)
1508 if (context->streams[i] == stream) {
1509 stream_status = &context->stream_status[i];
1510 break;
1511 }
1512
1513 if (stream_status == NULL) {
1514 dm_error("Existing stream %p not found!\n", stream);
1515 return false;
1516 }
1517
1518 old_plane_count = stream_status->plane_count;
1519
1520 for (i = 0; i < old_plane_count; i++)
1521 del_planes[i] = stream_status->plane_states[i];
1522
1523 for (i = 0; i < old_plane_count; i++)
1524 if (!dc_remove_plane_from_context(dc, stream, del_planes[i], context))
1525 return false;
1526
1527 return true;
1528 }
1529
add_all_planes_for_stream(const struct dc * dc,struct dc_stream_state * stream,const struct dc_validation_set set[],int set_count,struct dc_state * context)1530 static bool add_all_planes_for_stream(
1531 const struct dc *dc,
1532 struct dc_stream_state *stream,
1533 const struct dc_validation_set set[],
1534 int set_count,
1535 struct dc_state *context)
1536 {
1537 int i, j;
1538
1539 for (i = 0; i < set_count; i++)
1540 if (set[i].stream == stream)
1541 break;
1542
1543 if (i == set_count) {
1544 dm_error("Stream %p not found in set!\n", stream);
1545 return false;
1546 }
1547
1548 for (j = 0; j < set[i].plane_count; j++)
1549 if (!dc_add_plane_to_context(dc, stream, set[i].plane_states[j], context))
1550 return false;
1551
1552 return true;
1553 }
1554
dc_add_all_planes_for_stream(const struct dc * dc,struct dc_stream_state * stream,struct dc_plane_state * const * plane_states,int plane_count,struct dc_state * context)1555 bool dc_add_all_planes_for_stream(
1556 const struct dc *dc,
1557 struct dc_stream_state *stream,
1558 struct dc_plane_state * const *plane_states,
1559 int plane_count,
1560 struct dc_state *context)
1561 {
1562 struct dc_validation_set set;
1563 int i;
1564
1565 set.stream = stream;
1566 set.plane_count = plane_count;
1567
1568 for (i = 0; i < plane_count; i++)
1569 set.plane_states[i] = plane_states[i];
1570
1571 return add_all_planes_for_stream(dc, stream, &set, 1, context);
1572 }
1573
is_timing_changed(struct dc_stream_state * cur_stream,struct dc_stream_state * new_stream)1574 static bool is_timing_changed(struct dc_stream_state *cur_stream,
1575 struct dc_stream_state *new_stream)
1576 {
1577 if (cur_stream == NULL)
1578 return true;
1579
1580 /* If output color space is changed, need to reprogram info frames */
1581 if (cur_stream->output_color_space != new_stream->output_color_space)
1582 return true;
1583
1584 return memcmp(
1585 &cur_stream->timing,
1586 &new_stream->timing,
1587 sizeof(struct dc_crtc_timing)) != 0;
1588 }
1589
are_stream_backends_same(struct dc_stream_state * stream_a,struct dc_stream_state * stream_b)1590 static bool are_stream_backends_same(
1591 struct dc_stream_state *stream_a, struct dc_stream_state *stream_b)
1592 {
1593 if (stream_a == stream_b)
1594 return true;
1595
1596 if (stream_a == NULL || stream_b == NULL)
1597 return false;
1598
1599 if (is_timing_changed(stream_a, stream_b))
1600 return false;
1601
1602 if (stream_a->dpms_off != stream_b->dpms_off)
1603 return false;
1604
1605 return true;
1606 }
1607
1608 /*
1609 * dc_is_stream_unchanged() - Compare two stream states for equivalence.
1610 *
1611 * Checks if there a difference between the two states
1612 * that would require a mode change.
1613 *
1614 * Does not compare cursor position or attributes.
1615 */
dc_is_stream_unchanged(struct dc_stream_state * old_stream,struct dc_stream_state * stream)1616 bool dc_is_stream_unchanged(
1617 struct dc_stream_state *old_stream, struct dc_stream_state *stream)
1618 {
1619
1620 if (!are_stream_backends_same(old_stream, stream))
1621 return false;
1622
1623 if (old_stream->ignore_msa_timing_param != stream->ignore_msa_timing_param)
1624 return false;
1625
1626 return true;
1627 }
1628
1629 /*
1630 * dc_is_stream_scaling_unchanged() - Compare scaling rectangles of two streams.
1631 */
dc_is_stream_scaling_unchanged(struct dc_stream_state * old_stream,struct dc_stream_state * stream)1632 bool dc_is_stream_scaling_unchanged(
1633 struct dc_stream_state *old_stream, struct dc_stream_state *stream)
1634 {
1635 if (old_stream == stream)
1636 return true;
1637
1638 if (old_stream == NULL || stream == NULL)
1639 return false;
1640
1641 if (memcmp(&old_stream->src,
1642 &stream->src,
1643 sizeof(struct rect)) != 0)
1644 return false;
1645
1646 if (memcmp(&old_stream->dst,
1647 &stream->dst,
1648 sizeof(struct rect)) != 0)
1649 return false;
1650
1651 return true;
1652 }
1653
update_stream_engine_usage(struct resource_context * res_ctx,const struct resource_pool * pool,struct stream_encoder * stream_enc,bool acquired)1654 static void update_stream_engine_usage(
1655 struct resource_context *res_ctx,
1656 const struct resource_pool *pool,
1657 struct stream_encoder *stream_enc,
1658 bool acquired)
1659 {
1660 int i;
1661
1662 for (i = 0; i < pool->stream_enc_count; i++) {
1663 if (pool->stream_enc[i] == stream_enc)
1664 res_ctx->is_stream_enc_acquired[i] = acquired;
1665 }
1666 }
1667
1668 /* TODO: release audio object */
update_audio_usage(struct resource_context * res_ctx,const struct resource_pool * pool,struct audio * audio,bool acquired)1669 void update_audio_usage(
1670 struct resource_context *res_ctx,
1671 const struct resource_pool *pool,
1672 struct audio *audio,
1673 bool acquired)
1674 {
1675 int i;
1676 for (i = 0; i < pool->audio_count; i++) {
1677 if (pool->audios[i] == audio)
1678 res_ctx->is_audio_acquired[i] = acquired;
1679 }
1680 }
1681
acquire_first_free_pipe(struct resource_context * res_ctx,const struct resource_pool * pool,struct dc_stream_state * stream)1682 static int acquire_first_free_pipe(
1683 struct resource_context *res_ctx,
1684 const struct resource_pool *pool,
1685 struct dc_stream_state *stream)
1686 {
1687 int i;
1688
1689 for (i = 0; i < pool->pipe_count; i++) {
1690 if (!res_ctx->pipe_ctx[i].stream) {
1691 struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[i];
1692
1693 pipe_ctx->stream_res.tg = pool->timing_generators[i];
1694 pipe_ctx->plane_res.mi = pool->mis[i];
1695 pipe_ctx->plane_res.hubp = pool->hubps[i];
1696 pipe_ctx->plane_res.ipp = pool->ipps[i];
1697 pipe_ctx->plane_res.xfm = pool->transforms[i];
1698 pipe_ctx->plane_res.dpp = pool->dpps[i];
1699 pipe_ctx->stream_res.opp = pool->opps[i];
1700 if (pool->dpps[i])
1701 pipe_ctx->plane_res.mpcc_inst = pool->dpps[i]->inst;
1702 pipe_ctx->pipe_idx = i;
1703
1704
1705 pipe_ctx->stream = stream;
1706 return i;
1707 }
1708 }
1709 return -1;
1710 }
1711
find_first_free_audio(struct resource_context * res_ctx,const struct resource_pool * pool,enum engine_id id,enum dce_version dc_version)1712 static struct audio *find_first_free_audio(
1713 struct resource_context *res_ctx,
1714 const struct resource_pool *pool,
1715 enum engine_id id,
1716 enum dce_version dc_version)
1717 {
1718 int i, available_audio_count;
1719
1720 available_audio_count = pool->audio_count;
1721
1722 for (i = 0; i < available_audio_count; i++) {
1723 if ((res_ctx->is_audio_acquired[i] == false) && (res_ctx->is_stream_enc_acquired[i] == true)) {
1724 /*we have enough audio endpoint, find the matching inst*/
1725 if (id != i)
1726 continue;
1727 return pool->audios[i];
1728 }
1729 }
1730
1731 /* use engine id to find free audio */
1732 if ((id < available_audio_count) && (res_ctx->is_audio_acquired[id] == false)) {
1733 return pool->audios[id];
1734 }
1735 /*not found the matching one, first come first serve*/
1736 for (i = 0; i < available_audio_count; i++) {
1737 if (res_ctx->is_audio_acquired[i] == false) {
1738 return pool->audios[i];
1739 }
1740 }
1741 return 0;
1742 }
1743
1744 /*
1745 * dc_add_stream_to_ctx() - Add a new dc_stream_state to a dc_state.
1746 */
dc_add_stream_to_ctx(struct dc * dc,struct dc_state * new_ctx,struct dc_stream_state * stream)1747 enum dc_status dc_add_stream_to_ctx(
1748 struct dc *dc,
1749 struct dc_state *new_ctx,
1750 struct dc_stream_state *stream)
1751 {
1752 enum dc_status res;
1753 DC_LOGGER_INIT(dc->ctx->logger);
1754
1755 if (new_ctx->stream_count >= dc->res_pool->timing_generator_count) {
1756 DC_LOG_WARNING("Max streams reached, can't add stream %p !\n", stream);
1757 return DC_ERROR_UNEXPECTED;
1758 }
1759
1760 new_ctx->streams[new_ctx->stream_count] = stream;
1761 dc_stream_retain(stream);
1762 new_ctx->stream_count++;
1763
1764 res = dc->res_pool->funcs->add_stream_to_ctx(dc, new_ctx, stream);
1765 if (res != DC_OK)
1766 DC_LOG_WARNING("Adding stream %p to context failed with err %d!\n", stream, res);
1767
1768 return res;
1769 }
1770
1771 /*
1772 * dc_remove_stream_from_ctx() - Remove a stream from a dc_state.
1773 */
dc_remove_stream_from_ctx(struct dc * dc,struct dc_state * new_ctx,struct dc_stream_state * stream)1774 enum dc_status dc_remove_stream_from_ctx(
1775 struct dc *dc,
1776 struct dc_state *new_ctx,
1777 struct dc_stream_state *stream)
1778 {
1779 int i;
1780 struct dc_context *dc_ctx = dc->ctx;
1781 struct pipe_ctx *del_pipe = resource_get_head_pipe_for_stream(&new_ctx->res_ctx, stream);
1782 struct pipe_ctx *odm_pipe;
1783
1784 if (!del_pipe) {
1785 DC_ERROR("Pipe not found for stream %p !\n", stream);
1786 return DC_ERROR_UNEXPECTED;
1787 }
1788
1789 odm_pipe = del_pipe->next_odm_pipe;
1790
1791 /* Release primary pipe */
1792 ASSERT(del_pipe->stream_res.stream_enc);
1793 update_stream_engine_usage(
1794 &new_ctx->res_ctx,
1795 dc->res_pool,
1796 del_pipe->stream_res.stream_enc,
1797 false);
1798 /* Release link encoder from stream in new dc_state. */
1799 if (dc->res_pool->funcs->link_enc_unassign)
1800 dc->res_pool->funcs->link_enc_unassign(new_ctx, del_pipe->stream);
1801
1802 if (del_pipe->stream_res.audio)
1803 update_audio_usage(
1804 &new_ctx->res_ctx,
1805 dc->res_pool,
1806 del_pipe->stream_res.audio,
1807 false);
1808
1809 resource_unreference_clock_source(&new_ctx->res_ctx,
1810 dc->res_pool,
1811 del_pipe->clock_source);
1812
1813 if (dc->res_pool->funcs->remove_stream_from_ctx)
1814 dc->res_pool->funcs->remove_stream_from_ctx(dc, new_ctx, stream);
1815
1816 while (odm_pipe) {
1817 struct pipe_ctx *next_odm_pipe = odm_pipe->next_odm_pipe;
1818
1819 memset(odm_pipe, 0, sizeof(*odm_pipe));
1820 odm_pipe = next_odm_pipe;
1821 }
1822 memset(del_pipe, 0, sizeof(*del_pipe));
1823
1824 for (i = 0; i < new_ctx->stream_count; i++)
1825 if (new_ctx->streams[i] == stream)
1826 break;
1827
1828 if (new_ctx->streams[i] != stream) {
1829 DC_ERROR("Context doesn't have stream %p !\n", stream);
1830 return DC_ERROR_UNEXPECTED;
1831 }
1832
1833 dc_stream_release(new_ctx->streams[i]);
1834 new_ctx->stream_count--;
1835
1836 /* Trim back arrays */
1837 for (; i < new_ctx->stream_count; i++) {
1838 new_ctx->streams[i] = new_ctx->streams[i + 1];
1839 new_ctx->stream_status[i] = new_ctx->stream_status[i + 1];
1840 }
1841
1842 new_ctx->streams[new_ctx->stream_count] = NULL;
1843 memset(
1844 &new_ctx->stream_status[new_ctx->stream_count],
1845 0,
1846 sizeof(new_ctx->stream_status[0]));
1847
1848 return DC_OK;
1849 }
1850
find_pll_sharable_stream(struct dc_stream_state * stream_needs_pll,struct dc_state * context)1851 static struct dc_stream_state *find_pll_sharable_stream(
1852 struct dc_stream_state *stream_needs_pll,
1853 struct dc_state *context)
1854 {
1855 int i;
1856
1857 for (i = 0; i < context->stream_count; i++) {
1858 struct dc_stream_state *stream_has_pll = context->streams[i];
1859
1860 /* We are looking for non dp, non virtual stream */
1861 if (resource_are_streams_timing_synchronizable(
1862 stream_needs_pll, stream_has_pll)
1863 && !dc_is_dp_signal(stream_has_pll->signal)
1864 && stream_has_pll->link->connector_signal
1865 != SIGNAL_TYPE_VIRTUAL)
1866 return stream_has_pll;
1867
1868 }
1869
1870 return NULL;
1871 }
1872
get_norm_pix_clk(const struct dc_crtc_timing * timing)1873 static int get_norm_pix_clk(const struct dc_crtc_timing *timing)
1874 {
1875 uint32_t pix_clk = timing->pix_clk_100hz;
1876 uint32_t normalized_pix_clk = pix_clk;
1877
1878 if (timing->pixel_encoding == PIXEL_ENCODING_YCBCR420)
1879 pix_clk /= 2;
1880 if (timing->pixel_encoding != PIXEL_ENCODING_YCBCR422) {
1881 switch (timing->display_color_depth) {
1882 case COLOR_DEPTH_666:
1883 case COLOR_DEPTH_888:
1884 normalized_pix_clk = pix_clk;
1885 break;
1886 case COLOR_DEPTH_101010:
1887 normalized_pix_clk = (pix_clk * 30) / 24;
1888 break;
1889 case COLOR_DEPTH_121212:
1890 normalized_pix_clk = (pix_clk * 36) / 24;
1891 break;
1892 case COLOR_DEPTH_161616:
1893 normalized_pix_clk = (pix_clk * 48) / 24;
1894 break;
1895 default:
1896 ASSERT(0);
1897 break;
1898 }
1899 }
1900 return normalized_pix_clk;
1901 }
1902
calculate_phy_pix_clks(struct dc_stream_state * stream)1903 static void calculate_phy_pix_clks(struct dc_stream_state *stream)
1904 {
1905 /* update actual pixel clock on all streams */
1906 if (dc_is_hdmi_signal(stream->signal))
1907 stream->phy_pix_clk = get_norm_pix_clk(
1908 &stream->timing) / 10;
1909 else
1910 stream->phy_pix_clk =
1911 stream->timing.pix_clk_100hz / 10;
1912
1913 if (stream->timing.timing_3d_format == TIMING_3D_FORMAT_HW_FRAME_PACKING)
1914 stream->phy_pix_clk *= 2;
1915 }
1916
acquire_resource_from_hw_enabled_state(struct resource_context * res_ctx,const struct resource_pool * pool,struct dc_stream_state * stream)1917 static int acquire_resource_from_hw_enabled_state(
1918 struct resource_context *res_ctx,
1919 const struct resource_pool *pool,
1920 struct dc_stream_state *stream)
1921 {
1922 struct dc_link *link = stream->link;
1923 unsigned int i, inst, tg_inst = 0;
1924
1925 /* Check for enabled DIG to identify enabled display */
1926 if (!link->link_enc->funcs->is_dig_enabled(link->link_enc))
1927 return -1;
1928
1929 inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
1930
1931 if (inst == ENGINE_ID_UNKNOWN)
1932 return -1;
1933
1934 for (i = 0; i < pool->stream_enc_count; i++) {
1935 if (pool->stream_enc[i]->id == inst) {
1936 tg_inst = pool->stream_enc[i]->funcs->dig_source_otg(
1937 pool->stream_enc[i]);
1938 break;
1939 }
1940 }
1941
1942 // tg_inst not found
1943 if (i == pool->stream_enc_count)
1944 return -1;
1945
1946 if (tg_inst >= pool->timing_generator_count)
1947 return -1;
1948
1949 if (!res_ctx->pipe_ctx[tg_inst].stream) {
1950 struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[tg_inst];
1951
1952 pipe_ctx->stream_res.tg = pool->timing_generators[tg_inst];
1953 pipe_ctx->plane_res.mi = pool->mis[tg_inst];
1954 pipe_ctx->plane_res.hubp = pool->hubps[tg_inst];
1955 pipe_ctx->plane_res.ipp = pool->ipps[tg_inst];
1956 pipe_ctx->plane_res.xfm = pool->transforms[tg_inst];
1957 pipe_ctx->plane_res.dpp = pool->dpps[tg_inst];
1958 pipe_ctx->stream_res.opp = pool->opps[tg_inst];
1959
1960 if (pool->dpps[tg_inst]) {
1961 pipe_ctx->plane_res.mpcc_inst = pool->dpps[tg_inst]->inst;
1962
1963 // Read DPP->MPCC->OPP Pipe from HW State
1964 if (pool->mpc->funcs->read_mpcc_state) {
1965 struct mpcc_state s = {0};
1966
1967 pool->mpc->funcs->read_mpcc_state(pool->mpc, pipe_ctx->plane_res.mpcc_inst, &s);
1968
1969 if (s.dpp_id < MAX_MPCC)
1970 pool->mpc->mpcc_array[pipe_ctx->plane_res.mpcc_inst].dpp_id = s.dpp_id;
1971
1972 if (s.bot_mpcc_id < MAX_MPCC)
1973 pool->mpc->mpcc_array[pipe_ctx->plane_res.mpcc_inst].mpcc_bot =
1974 &pool->mpc->mpcc_array[s.bot_mpcc_id];
1975
1976 if (s.opp_id < MAX_OPP)
1977 pipe_ctx->stream_res.opp->mpc_tree_params.opp_id = s.opp_id;
1978 }
1979 }
1980 pipe_ctx->pipe_idx = tg_inst;
1981
1982 pipe_ctx->stream = stream;
1983 return tg_inst;
1984 }
1985
1986 return -1;
1987 }
1988
mark_seamless_boot_stream(const struct dc * dc,struct dc_stream_state * stream)1989 static void mark_seamless_boot_stream(
1990 const struct dc *dc,
1991 struct dc_stream_state *stream)
1992 {
1993 struct dc_bios *dcb = dc->ctx->dc_bios;
1994
1995 /* TODO: Check Linux */
1996 if (dc->config.allow_seamless_boot_optimization &&
1997 !dcb->funcs->is_accelerated_mode(dcb)) {
1998 if (dc_validate_seamless_boot_timing(dc, stream->sink, &stream->timing))
1999 stream->apply_seamless_boot_optimization = true;
2000 }
2001 }
2002
resource_map_pool_resources(const struct dc * dc,struct dc_state * context,struct dc_stream_state * stream)2003 enum dc_status resource_map_pool_resources(
2004 const struct dc *dc,
2005 struct dc_state *context,
2006 struct dc_stream_state *stream)
2007 {
2008 const struct resource_pool *pool = dc->res_pool;
2009 int i;
2010 struct dc_context *dc_ctx = dc->ctx;
2011 struct pipe_ctx *pipe_ctx = NULL;
2012 int pipe_idx = -1;
2013
2014 calculate_phy_pix_clks(stream);
2015
2016 mark_seamless_boot_stream(dc, stream);
2017
2018 if (stream->apply_seamless_boot_optimization) {
2019 pipe_idx = acquire_resource_from_hw_enabled_state(
2020 &context->res_ctx,
2021 pool,
2022 stream);
2023 if (pipe_idx < 0)
2024 /* hw resource was assigned to other stream */
2025 stream->apply_seamless_boot_optimization = false;
2026 }
2027
2028 if (pipe_idx < 0)
2029 /* acquire new resources */
2030 pipe_idx = acquire_first_free_pipe(&context->res_ctx, pool, stream);
2031
2032 #ifdef CONFIG_DRM_AMD_DC_DCN
2033 if (pipe_idx < 0)
2034 pipe_idx = acquire_first_split_pipe(&context->res_ctx, pool, stream);
2035 #endif
2036
2037 if (pipe_idx < 0 || context->res_ctx.pipe_ctx[pipe_idx].stream_res.tg == NULL)
2038 return DC_NO_CONTROLLER_RESOURCE;
2039
2040 pipe_ctx = &context->res_ctx.pipe_ctx[pipe_idx];
2041
2042 pipe_ctx->stream_res.stream_enc =
2043 dc->res_pool->funcs->find_first_free_match_stream_enc_for_link(
2044 &context->res_ctx, pool, stream);
2045
2046 if (!pipe_ctx->stream_res.stream_enc)
2047 return DC_NO_STREAM_ENC_RESOURCE;
2048
2049 update_stream_engine_usage(
2050 &context->res_ctx, pool,
2051 pipe_ctx->stream_res.stream_enc,
2052 true);
2053
2054 /* TODO: Add check if ASIC support and EDID audio */
2055 if (!stream->converter_disable_audio &&
2056 dc_is_audio_capable_signal(pipe_ctx->stream->signal) &&
2057 stream->audio_info.mode_count && stream->audio_info.flags.all) {
2058 pipe_ctx->stream_res.audio = find_first_free_audio(
2059 &context->res_ctx, pool, pipe_ctx->stream_res.stream_enc->id, dc_ctx->dce_version);
2060
2061 /*
2062 * Audio assigned in order first come first get.
2063 * There are asics which has number of audio
2064 * resources less then number of pipes
2065 */
2066 if (pipe_ctx->stream_res.audio)
2067 update_audio_usage(&context->res_ctx, pool,
2068 pipe_ctx->stream_res.audio, true);
2069 }
2070
2071 /* Add ABM to the resource if on EDP */
2072 if (pipe_ctx->stream && dc_is_embedded_signal(pipe_ctx->stream->signal)) {
2073 #if defined(CONFIG_DRM_AMD_DC_DCN)
2074 if (pool->abm)
2075 pipe_ctx->stream_res.abm = pool->abm;
2076 else
2077 pipe_ctx->stream_res.abm = pool->multiple_abms[pipe_ctx->stream_res.tg->inst];
2078 #else
2079 pipe_ctx->stream_res.abm = pool->abm;
2080 #endif
2081 }
2082
2083 for (i = 0; i < context->stream_count; i++)
2084 if (context->streams[i] == stream) {
2085 context->stream_status[i].primary_otg_inst = pipe_ctx->stream_res.tg->inst;
2086 context->stream_status[i].stream_enc_inst = pipe_ctx->stream_res.stream_enc->stream_enc_inst;
2087 context->stream_status[i].audio_inst =
2088 pipe_ctx->stream_res.audio ? pipe_ctx->stream_res.audio->inst : -1;
2089
2090 return DC_OK;
2091 }
2092
2093 DC_ERROR("Stream %p not found in new ctx!\n", stream);
2094 return DC_ERROR_UNEXPECTED;
2095 }
2096
2097 /**
2098 * dc_resource_state_copy_construct_current() - Creates a new dc_state from existing state
2099 * Is a shallow copy. Increments refcounts on existing streams and planes.
2100 * @dc: copy out of dc->current_state
2101 * @dst_ctx: copy into this
2102 */
dc_resource_state_copy_construct_current(const struct dc * dc,struct dc_state * dst_ctx)2103 void dc_resource_state_copy_construct_current(
2104 const struct dc *dc,
2105 struct dc_state *dst_ctx)
2106 {
2107 dc_resource_state_copy_construct(dc->current_state, dst_ctx);
2108 }
2109
2110
dc_resource_state_construct(const struct dc * dc,struct dc_state * dst_ctx)2111 void dc_resource_state_construct(
2112 const struct dc *dc,
2113 struct dc_state *dst_ctx)
2114 {
2115 dst_ctx->clk_mgr = dc->clk_mgr;
2116 }
2117
2118
dc_resource_is_dsc_encoding_supported(const struct dc * dc)2119 bool dc_resource_is_dsc_encoding_supported(const struct dc *dc)
2120 {
2121 return dc->res_pool->res_cap->num_dsc > 0;
2122 }
2123
2124
2125 /**
2126 * dc_validate_global_state() - Determine if HW can support a given state
2127 * Checks HW resource availability and bandwidth requirement.
2128 * @dc: dc struct for this driver
2129 * @new_ctx: state to be validated
2130 * @fast_validate: set to true if only yes/no to support matters
2131 *
2132 * Return: DC_OK if the result can be programmed. Otherwise, an error code.
2133 */
dc_validate_global_state(struct dc * dc,struct dc_state * new_ctx,bool fast_validate)2134 enum dc_status dc_validate_global_state(
2135 struct dc *dc,
2136 struct dc_state *new_ctx,
2137 bool fast_validate)
2138 {
2139 enum dc_status result = DC_ERROR_UNEXPECTED;
2140 int i, j;
2141
2142 if (!new_ctx)
2143 return DC_ERROR_UNEXPECTED;
2144 #if defined(CONFIG_DRM_AMD_DC_DCN)
2145
2146 /*
2147 * Update link encoder to stream assignment.
2148 * TODO: Split out reason allocation from validation.
2149 */
2150 if (dc->res_pool->funcs->link_encs_assign)
2151 dc->res_pool->funcs->link_encs_assign(
2152 dc, new_ctx, new_ctx->streams, new_ctx->stream_count);
2153 #endif
2154
2155 if (dc->res_pool->funcs->validate_global) {
2156 result = dc->res_pool->funcs->validate_global(dc, new_ctx);
2157 if (result != DC_OK)
2158 return result;
2159 }
2160
2161 for (i = 0; i < new_ctx->stream_count; i++) {
2162 struct dc_stream_state *stream = new_ctx->streams[i];
2163
2164 for (j = 0; j < dc->res_pool->pipe_count; j++) {
2165 struct pipe_ctx *pipe_ctx = &new_ctx->res_ctx.pipe_ctx[j];
2166
2167 if (pipe_ctx->stream != stream)
2168 continue;
2169
2170 if (dc->res_pool->funcs->patch_unknown_plane_state &&
2171 pipe_ctx->plane_state &&
2172 pipe_ctx->plane_state->tiling_info.gfx9.swizzle == DC_SW_UNKNOWN) {
2173 result = dc->res_pool->funcs->patch_unknown_plane_state(pipe_ctx->plane_state);
2174 if (result != DC_OK)
2175 return result;
2176 }
2177
2178 /* Switch to dp clock source only if there is
2179 * no non dp stream that shares the same timing
2180 * with the dp stream.
2181 */
2182 if (dc_is_dp_signal(pipe_ctx->stream->signal) &&
2183 !find_pll_sharable_stream(stream, new_ctx)) {
2184
2185 resource_unreference_clock_source(
2186 &new_ctx->res_ctx,
2187 dc->res_pool,
2188 pipe_ctx->clock_source);
2189
2190 pipe_ctx->clock_source = dc->res_pool->dp_clock_source;
2191 resource_reference_clock_source(
2192 &new_ctx->res_ctx,
2193 dc->res_pool,
2194 pipe_ctx->clock_source);
2195 }
2196 }
2197 }
2198
2199 result = resource_build_scaling_params_for_context(dc, new_ctx);
2200
2201 if (result == DC_OK)
2202 if (!dc->res_pool->funcs->validate_bandwidth(dc, new_ctx, fast_validate))
2203 result = DC_FAIL_BANDWIDTH_VALIDATE;
2204
2205 return result;
2206 }
2207
patch_gamut_packet_checksum(struct dc_info_packet * gamut_packet)2208 static void patch_gamut_packet_checksum(
2209 struct dc_info_packet *gamut_packet)
2210 {
2211 /* For gamut we recalc checksum */
2212 if (gamut_packet->valid) {
2213 uint8_t chk_sum = 0;
2214 uint8_t *ptr;
2215 uint8_t i;
2216
2217 /*start of the Gamut data. */
2218 ptr = &gamut_packet->sb[3];
2219
2220 for (i = 0; i <= gamut_packet->sb[1]; i++)
2221 chk_sum += ptr[i];
2222
2223 gamut_packet->sb[2] = (uint8_t) (0x100 - chk_sum);
2224 }
2225 }
2226
set_avi_info_frame(struct dc_info_packet * info_packet,struct pipe_ctx * pipe_ctx)2227 static void set_avi_info_frame(
2228 struct dc_info_packet *info_packet,
2229 struct pipe_ctx *pipe_ctx)
2230 {
2231 struct dc_stream_state *stream = pipe_ctx->stream;
2232 enum dc_color_space color_space = COLOR_SPACE_UNKNOWN;
2233 uint32_t pixel_encoding = 0;
2234 enum scanning_type scan_type = SCANNING_TYPE_NODATA;
2235 enum dc_aspect_ratio aspect = ASPECT_RATIO_NO_DATA;
2236 bool itc = false;
2237 uint8_t itc_value = 0;
2238 uint8_t cn0_cn1 = 0;
2239 unsigned int cn0_cn1_value = 0;
2240 uint8_t *check_sum = NULL;
2241 uint8_t byte_index = 0;
2242 union hdmi_info_packet hdmi_info;
2243 union display_content_support support = {0};
2244 unsigned int vic = pipe_ctx->stream->timing.vic;
2245 enum dc_timing_3d_format format;
2246
2247 memset(&hdmi_info, 0, sizeof(union hdmi_info_packet));
2248
2249 color_space = pipe_ctx->stream->output_color_space;
2250 if (color_space == COLOR_SPACE_UNKNOWN)
2251 color_space = (stream->timing.pixel_encoding == PIXEL_ENCODING_RGB) ?
2252 COLOR_SPACE_SRGB:COLOR_SPACE_YCBCR709;
2253
2254 /* Initialize header */
2255 hdmi_info.bits.header.info_frame_type = HDMI_INFOFRAME_TYPE_AVI;
2256 /* InfoFrameVersion_3 is defined by CEA861F (Section 6.4), but shall
2257 * not be used in HDMI 2.0 (Section 10.1) */
2258 hdmi_info.bits.header.version = 2;
2259 hdmi_info.bits.header.length = HDMI_AVI_INFOFRAME_SIZE;
2260
2261 /*
2262 * IDO-defined (Y2,Y1,Y0 = 1,1,1) shall not be used by devices built
2263 * according to HDMI 2.0 spec (Section 10.1)
2264 */
2265
2266 switch (stream->timing.pixel_encoding) {
2267 case PIXEL_ENCODING_YCBCR422:
2268 pixel_encoding = 1;
2269 break;
2270
2271 case PIXEL_ENCODING_YCBCR444:
2272 pixel_encoding = 2;
2273 break;
2274 case PIXEL_ENCODING_YCBCR420:
2275 pixel_encoding = 3;
2276 break;
2277
2278 case PIXEL_ENCODING_RGB:
2279 default:
2280 pixel_encoding = 0;
2281 }
2282
2283 /* Y0_Y1_Y2 : The pixel encoding */
2284 /* H14b AVI InfoFrame has extension on Y-field from 2 bits to 3 bits */
2285 hdmi_info.bits.Y0_Y1_Y2 = pixel_encoding;
2286
2287 /* A0 = 1 Active Format Information valid */
2288 hdmi_info.bits.A0 = ACTIVE_FORMAT_VALID;
2289
2290 /* B0, B1 = 3; Bar info data is valid */
2291 hdmi_info.bits.B0_B1 = BAR_INFO_BOTH_VALID;
2292
2293 hdmi_info.bits.SC0_SC1 = PICTURE_SCALING_UNIFORM;
2294
2295 /* S0, S1 : Underscan / Overscan */
2296 /* TODO: un-hardcode scan type */
2297 scan_type = SCANNING_TYPE_UNDERSCAN;
2298 hdmi_info.bits.S0_S1 = scan_type;
2299
2300 /* C0, C1 : Colorimetry */
2301 if (color_space == COLOR_SPACE_YCBCR709 ||
2302 color_space == COLOR_SPACE_YCBCR709_LIMITED)
2303 hdmi_info.bits.C0_C1 = COLORIMETRY_ITU709;
2304 else if (color_space == COLOR_SPACE_YCBCR601 ||
2305 color_space == COLOR_SPACE_YCBCR601_LIMITED)
2306 hdmi_info.bits.C0_C1 = COLORIMETRY_ITU601;
2307 else {
2308 hdmi_info.bits.C0_C1 = COLORIMETRY_NO_DATA;
2309 }
2310 if (color_space == COLOR_SPACE_2020_RGB_FULLRANGE ||
2311 color_space == COLOR_SPACE_2020_RGB_LIMITEDRANGE ||
2312 color_space == COLOR_SPACE_2020_YCBCR) {
2313 hdmi_info.bits.EC0_EC2 = COLORIMETRYEX_BT2020RGBYCBCR;
2314 hdmi_info.bits.C0_C1 = COLORIMETRY_EXTENDED;
2315 } else if (color_space == COLOR_SPACE_ADOBERGB) {
2316 hdmi_info.bits.EC0_EC2 = COLORIMETRYEX_ADOBERGB;
2317 hdmi_info.bits.C0_C1 = COLORIMETRY_EXTENDED;
2318 }
2319
2320 /* TODO: un-hardcode aspect ratio */
2321 aspect = stream->timing.aspect_ratio;
2322
2323 switch (aspect) {
2324 case ASPECT_RATIO_4_3:
2325 case ASPECT_RATIO_16_9:
2326 hdmi_info.bits.M0_M1 = aspect;
2327 break;
2328
2329 case ASPECT_RATIO_NO_DATA:
2330 case ASPECT_RATIO_64_27:
2331 case ASPECT_RATIO_256_135:
2332 default:
2333 hdmi_info.bits.M0_M1 = 0;
2334 }
2335
2336 /* Active Format Aspect ratio - same as Picture Aspect Ratio. */
2337 hdmi_info.bits.R0_R3 = ACTIVE_FORMAT_ASPECT_RATIO_SAME_AS_PICTURE;
2338
2339 /* TODO: un-hardcode cn0_cn1 and itc */
2340
2341 cn0_cn1 = 0;
2342 cn0_cn1_value = 0;
2343
2344 itc = true;
2345 itc_value = 1;
2346
2347 support = stream->content_support;
2348
2349 if (itc) {
2350 if (!support.bits.valid_content_type) {
2351 cn0_cn1_value = 0;
2352 } else {
2353 if (cn0_cn1 == DISPLAY_CONTENT_TYPE_GRAPHICS) {
2354 if (support.bits.graphics_content == 1) {
2355 cn0_cn1_value = 0;
2356 }
2357 } else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_PHOTO) {
2358 if (support.bits.photo_content == 1) {
2359 cn0_cn1_value = 1;
2360 } else {
2361 cn0_cn1_value = 0;
2362 itc_value = 0;
2363 }
2364 } else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_CINEMA) {
2365 if (support.bits.cinema_content == 1) {
2366 cn0_cn1_value = 2;
2367 } else {
2368 cn0_cn1_value = 0;
2369 itc_value = 0;
2370 }
2371 } else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_GAME) {
2372 if (support.bits.game_content == 1) {
2373 cn0_cn1_value = 3;
2374 } else {
2375 cn0_cn1_value = 0;
2376 itc_value = 0;
2377 }
2378 }
2379 }
2380 hdmi_info.bits.CN0_CN1 = cn0_cn1_value;
2381 hdmi_info.bits.ITC = itc_value;
2382 }
2383
2384 if (stream->qs_bit == 1) {
2385 if (color_space == COLOR_SPACE_SRGB ||
2386 color_space == COLOR_SPACE_2020_RGB_FULLRANGE)
2387 hdmi_info.bits.Q0_Q1 = RGB_QUANTIZATION_FULL_RANGE;
2388 else if (color_space == COLOR_SPACE_SRGB_LIMITED ||
2389 color_space == COLOR_SPACE_2020_RGB_LIMITEDRANGE)
2390 hdmi_info.bits.Q0_Q1 = RGB_QUANTIZATION_LIMITED_RANGE;
2391 else
2392 hdmi_info.bits.Q0_Q1 = RGB_QUANTIZATION_DEFAULT_RANGE;
2393 } else
2394 hdmi_info.bits.Q0_Q1 = RGB_QUANTIZATION_DEFAULT_RANGE;
2395
2396 /* TODO : We should handle YCC quantization */
2397 /* but we do not have matrix calculation */
2398 if (stream->qy_bit == 1) {
2399 if (color_space == COLOR_SPACE_SRGB ||
2400 color_space == COLOR_SPACE_2020_RGB_FULLRANGE)
2401 hdmi_info.bits.YQ0_YQ1 = YYC_QUANTIZATION_LIMITED_RANGE;
2402 else if (color_space == COLOR_SPACE_SRGB_LIMITED ||
2403 color_space == COLOR_SPACE_2020_RGB_LIMITEDRANGE)
2404 hdmi_info.bits.YQ0_YQ1 = YYC_QUANTIZATION_LIMITED_RANGE;
2405 else
2406 hdmi_info.bits.YQ0_YQ1 = YYC_QUANTIZATION_LIMITED_RANGE;
2407 } else
2408 hdmi_info.bits.YQ0_YQ1 = YYC_QUANTIZATION_LIMITED_RANGE;
2409
2410 ///VIC
2411 format = stream->timing.timing_3d_format;
2412 /*todo, add 3DStereo support*/
2413 if (format != TIMING_3D_FORMAT_NONE) {
2414 // Based on HDMI specs hdmi vic needs to be converted to cea vic when 3D is enabled
2415 switch (pipe_ctx->stream->timing.hdmi_vic) {
2416 case 1:
2417 vic = 95;
2418 break;
2419 case 2:
2420 vic = 94;
2421 break;
2422 case 3:
2423 vic = 93;
2424 break;
2425 case 4:
2426 vic = 98;
2427 break;
2428 default:
2429 break;
2430 }
2431 }
2432 /* If VIC >= 128, the Source shall use AVI InfoFrame Version 3*/
2433 hdmi_info.bits.VIC0_VIC7 = vic;
2434 if (vic >= 128)
2435 hdmi_info.bits.header.version = 3;
2436 /* If (C1, C0)=(1, 1) and (EC2, EC1, EC0)=(1, 1, 1),
2437 * the Source shall use 20 AVI InfoFrame Version 4
2438 */
2439 if (hdmi_info.bits.C0_C1 == COLORIMETRY_EXTENDED &&
2440 hdmi_info.bits.EC0_EC2 == COLORIMETRYEX_RESERVED) {
2441 hdmi_info.bits.header.version = 4;
2442 hdmi_info.bits.header.length = 14;
2443 }
2444
2445 /* pixel repetition
2446 * PR0 - PR3 start from 0 whereas pHwPathMode->mode.timing.flags.pixel
2447 * repetition start from 1 */
2448 hdmi_info.bits.PR0_PR3 = 0;
2449
2450 /* Bar Info
2451 * barTop: Line Number of End of Top Bar.
2452 * barBottom: Line Number of Start of Bottom Bar.
2453 * barLeft: Pixel Number of End of Left Bar.
2454 * barRight: Pixel Number of Start of Right Bar. */
2455 hdmi_info.bits.bar_top = stream->timing.v_border_top;
2456 hdmi_info.bits.bar_bottom = (stream->timing.v_total
2457 - stream->timing.v_border_bottom + 1);
2458 hdmi_info.bits.bar_left = stream->timing.h_border_left;
2459 hdmi_info.bits.bar_right = (stream->timing.h_total
2460 - stream->timing.h_border_right + 1);
2461
2462 /* Additional Colorimetry Extension
2463 * Used in conduction with C0-C1 and EC0-EC2
2464 * 0 = DCI-P3 RGB (D65)
2465 * 1 = DCI-P3 RGB (theater)
2466 */
2467 hdmi_info.bits.ACE0_ACE3 = 0;
2468
2469 /* check_sum - Calculate AFMT_AVI_INFO0 ~ AFMT_AVI_INFO3 */
2470 check_sum = &hdmi_info.packet_raw_data.sb[0];
2471
2472 *check_sum = HDMI_INFOFRAME_TYPE_AVI + hdmi_info.bits.header.length + hdmi_info.bits.header.version;
2473
2474 for (byte_index = 1; byte_index <= hdmi_info.bits.header.length; byte_index++)
2475 *check_sum += hdmi_info.packet_raw_data.sb[byte_index];
2476
2477 /* one byte complement */
2478 *check_sum = (uint8_t) (0x100 - *check_sum);
2479
2480 /* Store in hw_path_mode */
2481 info_packet->hb0 = hdmi_info.packet_raw_data.hb0;
2482 info_packet->hb1 = hdmi_info.packet_raw_data.hb1;
2483 info_packet->hb2 = hdmi_info.packet_raw_data.hb2;
2484
2485 for (byte_index = 0; byte_index < sizeof(hdmi_info.packet_raw_data.sb); byte_index++)
2486 info_packet->sb[byte_index] = hdmi_info.packet_raw_data.sb[byte_index];
2487
2488 info_packet->valid = true;
2489 }
2490
set_vendor_info_packet(struct dc_info_packet * info_packet,struct dc_stream_state * stream)2491 static void set_vendor_info_packet(
2492 struct dc_info_packet *info_packet,
2493 struct dc_stream_state *stream)
2494 {
2495 /* SPD info packet for FreeSync */
2496
2497 /* Check if Freesync is supported. Return if false. If true,
2498 * set the corresponding bit in the info packet
2499 */
2500 if (!stream->vsp_infopacket.valid)
2501 return;
2502
2503 *info_packet = stream->vsp_infopacket;
2504 }
2505
set_spd_info_packet(struct dc_info_packet * info_packet,struct dc_stream_state * stream)2506 static void set_spd_info_packet(
2507 struct dc_info_packet *info_packet,
2508 struct dc_stream_state *stream)
2509 {
2510 /* SPD info packet for FreeSync */
2511
2512 /* Check if Freesync is supported. Return if false. If true,
2513 * set the corresponding bit in the info packet
2514 */
2515 if (!stream->vrr_infopacket.valid)
2516 return;
2517
2518 *info_packet = stream->vrr_infopacket;
2519 }
2520
set_hdr_static_info_packet(struct dc_info_packet * info_packet,struct dc_stream_state * stream)2521 static void set_hdr_static_info_packet(
2522 struct dc_info_packet *info_packet,
2523 struct dc_stream_state *stream)
2524 {
2525 /* HDR Static Metadata info packet for HDR10 */
2526
2527 if (!stream->hdr_static_metadata.valid ||
2528 stream->use_dynamic_meta)
2529 return;
2530
2531 *info_packet = stream->hdr_static_metadata;
2532 }
2533
set_vsc_info_packet(struct dc_info_packet * info_packet,struct dc_stream_state * stream)2534 static void set_vsc_info_packet(
2535 struct dc_info_packet *info_packet,
2536 struct dc_stream_state *stream)
2537 {
2538 if (!stream->vsc_infopacket.valid)
2539 return;
2540
2541 *info_packet = stream->vsc_infopacket;
2542 }
2543
dc_resource_state_destruct(struct dc_state * context)2544 void dc_resource_state_destruct(struct dc_state *context)
2545 {
2546 int i, j;
2547
2548 for (i = 0; i < context->stream_count; i++) {
2549 for (j = 0; j < context->stream_status[i].plane_count; j++)
2550 dc_plane_state_release(
2551 context->stream_status[i].plane_states[j]);
2552
2553 context->stream_status[i].plane_count = 0;
2554 dc_stream_release(context->streams[i]);
2555 context->streams[i] = NULL;
2556 }
2557 context->stream_count = 0;
2558 }
2559
dc_resource_state_copy_construct(const struct dc_state * src_ctx,struct dc_state * dst_ctx)2560 void dc_resource_state_copy_construct(
2561 const struct dc_state *src_ctx,
2562 struct dc_state *dst_ctx)
2563 {
2564 int i, j;
2565 struct kref refcount = dst_ctx->refcount;
2566
2567 *dst_ctx = *src_ctx;
2568
2569 for (i = 0; i < MAX_PIPES; i++) {
2570 struct pipe_ctx *cur_pipe = &dst_ctx->res_ctx.pipe_ctx[i];
2571
2572 if (cur_pipe->top_pipe)
2573 cur_pipe->top_pipe = &dst_ctx->res_ctx.pipe_ctx[cur_pipe->top_pipe->pipe_idx];
2574
2575 if (cur_pipe->bottom_pipe)
2576 cur_pipe->bottom_pipe = &dst_ctx->res_ctx.pipe_ctx[cur_pipe->bottom_pipe->pipe_idx];
2577
2578 if (cur_pipe->next_odm_pipe)
2579 cur_pipe->next_odm_pipe = &dst_ctx->res_ctx.pipe_ctx[cur_pipe->next_odm_pipe->pipe_idx];
2580
2581 if (cur_pipe->prev_odm_pipe)
2582 cur_pipe->prev_odm_pipe = &dst_ctx->res_ctx.pipe_ctx[cur_pipe->prev_odm_pipe->pipe_idx];
2583 }
2584
2585 for (i = 0; i < dst_ctx->stream_count; i++) {
2586 dc_stream_retain(dst_ctx->streams[i]);
2587 for (j = 0; j < dst_ctx->stream_status[i].plane_count; j++)
2588 dc_plane_state_retain(
2589 dst_ctx->stream_status[i].plane_states[j]);
2590 }
2591
2592 /* context refcount should not be overridden */
2593 dst_ctx->refcount = refcount;
2594
2595 }
2596
dc_resource_find_first_free_pll(struct resource_context * res_ctx,const struct resource_pool * pool)2597 struct clock_source *dc_resource_find_first_free_pll(
2598 struct resource_context *res_ctx,
2599 const struct resource_pool *pool)
2600 {
2601 int i;
2602
2603 for (i = 0; i < pool->clk_src_count; ++i) {
2604 if (res_ctx->clock_source_ref_count[i] == 0)
2605 return pool->clock_sources[i];
2606 }
2607
2608 return NULL;
2609 }
2610
resource_build_info_frame(struct pipe_ctx * pipe_ctx)2611 void resource_build_info_frame(struct pipe_ctx *pipe_ctx)
2612 {
2613 enum signal_type signal = SIGNAL_TYPE_NONE;
2614 struct encoder_info_frame *info = &pipe_ctx->stream_res.encoder_info_frame;
2615
2616 /* default all packets to invalid */
2617 info->avi.valid = false;
2618 info->gamut.valid = false;
2619 info->vendor.valid = false;
2620 info->spd.valid = false;
2621 info->hdrsmd.valid = false;
2622 info->vsc.valid = false;
2623
2624 signal = pipe_ctx->stream->signal;
2625
2626 /* HDMi and DP have different info packets*/
2627 if (dc_is_hdmi_signal(signal)) {
2628 set_avi_info_frame(&info->avi, pipe_ctx);
2629
2630 set_vendor_info_packet(&info->vendor, pipe_ctx->stream);
2631
2632 set_spd_info_packet(&info->spd, pipe_ctx->stream);
2633
2634 set_hdr_static_info_packet(&info->hdrsmd, pipe_ctx->stream);
2635
2636 } else if (dc_is_dp_signal(signal)) {
2637 set_vsc_info_packet(&info->vsc, pipe_ctx->stream);
2638
2639 set_spd_info_packet(&info->spd, pipe_ctx->stream);
2640
2641 set_hdr_static_info_packet(&info->hdrsmd, pipe_ctx->stream);
2642 }
2643
2644 patch_gamut_packet_checksum(&info->gamut);
2645 }
2646
resource_map_clock_resources(const struct dc * dc,struct dc_state * context,struct dc_stream_state * stream)2647 enum dc_status resource_map_clock_resources(
2648 const struct dc *dc,
2649 struct dc_state *context,
2650 struct dc_stream_state *stream)
2651 {
2652 /* acquire new resources */
2653 const struct resource_pool *pool = dc->res_pool;
2654 struct pipe_ctx *pipe_ctx = resource_get_head_pipe_for_stream(
2655 &context->res_ctx, stream);
2656
2657 if (!pipe_ctx)
2658 return DC_ERROR_UNEXPECTED;
2659
2660 if (dc_is_dp_signal(pipe_ctx->stream->signal)
2661 || pipe_ctx->stream->signal == SIGNAL_TYPE_VIRTUAL)
2662 pipe_ctx->clock_source = pool->dp_clock_source;
2663 else {
2664 pipe_ctx->clock_source = NULL;
2665
2666 if (!dc->config.disable_disp_pll_sharing)
2667 pipe_ctx->clock_source = resource_find_used_clk_src_for_sharing(
2668 &context->res_ctx,
2669 pipe_ctx);
2670
2671 if (pipe_ctx->clock_source == NULL)
2672 pipe_ctx->clock_source =
2673 dc_resource_find_first_free_pll(
2674 &context->res_ctx,
2675 pool);
2676 }
2677
2678 if (pipe_ctx->clock_source == NULL)
2679 return DC_NO_CLOCK_SOURCE_RESOURCE;
2680
2681 resource_reference_clock_source(
2682 &context->res_ctx, pool,
2683 pipe_ctx->clock_source);
2684
2685 return DC_OK;
2686 }
2687
2688 /*
2689 * Note: We need to disable output if clock sources change,
2690 * since bios does optimization and doesn't apply if changing
2691 * PHY when not already disabled.
2692 */
pipe_need_reprogram(struct pipe_ctx * pipe_ctx_old,struct pipe_ctx * pipe_ctx)2693 bool pipe_need_reprogram(
2694 struct pipe_ctx *pipe_ctx_old,
2695 struct pipe_ctx *pipe_ctx)
2696 {
2697 if (!pipe_ctx_old->stream)
2698 return false;
2699
2700 if (pipe_ctx_old->stream->sink != pipe_ctx->stream->sink)
2701 return true;
2702
2703 if (pipe_ctx_old->stream->signal != pipe_ctx->stream->signal)
2704 return true;
2705
2706 if (pipe_ctx_old->stream_res.audio != pipe_ctx->stream_res.audio)
2707 return true;
2708
2709 if (pipe_ctx_old->clock_source != pipe_ctx->clock_source
2710 && pipe_ctx_old->stream != pipe_ctx->stream)
2711 return true;
2712
2713 if (pipe_ctx_old->stream_res.stream_enc != pipe_ctx->stream_res.stream_enc)
2714 return true;
2715
2716 if (is_timing_changed(pipe_ctx_old->stream, pipe_ctx->stream))
2717 return true;
2718
2719 if (pipe_ctx_old->stream->dpms_off != pipe_ctx->stream->dpms_off)
2720 return true;
2721
2722 if (false == pipe_ctx_old->stream->link->link_state_valid &&
2723 false == pipe_ctx_old->stream->dpms_off)
2724 return true;
2725
2726 if (pipe_ctx_old->stream_res.dsc != pipe_ctx->stream_res.dsc)
2727 return true;
2728
2729 /* DIG link encoder resource assignment for stream changed. */
2730 if (pipe_ctx_old->stream->link_enc != pipe_ctx->stream->link_enc)
2731 return true;
2732
2733 return false;
2734 }
2735
resource_build_bit_depth_reduction_params(struct dc_stream_state * stream,struct bit_depth_reduction_params * fmt_bit_depth)2736 void resource_build_bit_depth_reduction_params(struct dc_stream_state *stream,
2737 struct bit_depth_reduction_params *fmt_bit_depth)
2738 {
2739 enum dc_dither_option option = stream->dither_option;
2740 enum dc_pixel_encoding pixel_encoding =
2741 stream->timing.pixel_encoding;
2742
2743 memset(fmt_bit_depth, 0, sizeof(*fmt_bit_depth));
2744
2745 if (option == DITHER_OPTION_DEFAULT) {
2746 switch (stream->timing.display_color_depth) {
2747 case COLOR_DEPTH_666:
2748 option = DITHER_OPTION_SPATIAL6;
2749 break;
2750 case COLOR_DEPTH_888:
2751 option = DITHER_OPTION_SPATIAL8;
2752 break;
2753 case COLOR_DEPTH_101010:
2754 option = DITHER_OPTION_SPATIAL10;
2755 break;
2756 default:
2757 option = DITHER_OPTION_DISABLE;
2758 }
2759 }
2760
2761 if (option == DITHER_OPTION_DISABLE)
2762 return;
2763
2764 if (option == DITHER_OPTION_TRUN6) {
2765 fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
2766 fmt_bit_depth->flags.TRUNCATE_DEPTH = 0;
2767 } else if (option == DITHER_OPTION_TRUN8 ||
2768 option == DITHER_OPTION_TRUN8_SPATIAL6 ||
2769 option == DITHER_OPTION_TRUN8_FM6) {
2770 fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
2771 fmt_bit_depth->flags.TRUNCATE_DEPTH = 1;
2772 } else if (option == DITHER_OPTION_TRUN10 ||
2773 option == DITHER_OPTION_TRUN10_SPATIAL6 ||
2774 option == DITHER_OPTION_TRUN10_SPATIAL8 ||
2775 option == DITHER_OPTION_TRUN10_FM8 ||
2776 option == DITHER_OPTION_TRUN10_FM6 ||
2777 option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
2778 fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
2779 fmt_bit_depth->flags.TRUNCATE_DEPTH = 2;
2780 }
2781
2782 /* special case - Formatter can only reduce by 4 bits at most.
2783 * When reducing from 12 to 6 bits,
2784 * HW recommends we use trunc with round mode
2785 * (if we did nothing, trunc to 10 bits would be used)
2786 * note that any 12->10 bit reduction is ignored prior to DCE8,
2787 * as the input was 10 bits.
2788 */
2789 if (option == DITHER_OPTION_SPATIAL6_FRAME_RANDOM ||
2790 option == DITHER_OPTION_SPATIAL6 ||
2791 option == DITHER_OPTION_FM6) {
2792 fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
2793 fmt_bit_depth->flags.TRUNCATE_DEPTH = 2;
2794 fmt_bit_depth->flags.TRUNCATE_MODE = 1;
2795 }
2796
2797 /* spatial dither
2798 * note that spatial modes 1-3 are never used
2799 */
2800 if (option == DITHER_OPTION_SPATIAL6_FRAME_RANDOM ||
2801 option == DITHER_OPTION_SPATIAL6 ||
2802 option == DITHER_OPTION_TRUN10_SPATIAL6 ||
2803 option == DITHER_OPTION_TRUN8_SPATIAL6) {
2804 fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
2805 fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 0;
2806 fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
2807 fmt_bit_depth->flags.RGB_RANDOM =
2808 (pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
2809 } else if (option == DITHER_OPTION_SPATIAL8_FRAME_RANDOM ||
2810 option == DITHER_OPTION_SPATIAL8 ||
2811 option == DITHER_OPTION_SPATIAL8_FM6 ||
2812 option == DITHER_OPTION_TRUN10_SPATIAL8 ||
2813 option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
2814 fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
2815 fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 1;
2816 fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
2817 fmt_bit_depth->flags.RGB_RANDOM =
2818 (pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
2819 } else if (option == DITHER_OPTION_SPATIAL10_FRAME_RANDOM ||
2820 option == DITHER_OPTION_SPATIAL10 ||
2821 option == DITHER_OPTION_SPATIAL10_FM8 ||
2822 option == DITHER_OPTION_SPATIAL10_FM6) {
2823 fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
2824 fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 2;
2825 fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
2826 fmt_bit_depth->flags.RGB_RANDOM =
2827 (pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
2828 }
2829
2830 if (option == DITHER_OPTION_SPATIAL6 ||
2831 option == DITHER_OPTION_SPATIAL8 ||
2832 option == DITHER_OPTION_SPATIAL10) {
2833 fmt_bit_depth->flags.FRAME_RANDOM = 0;
2834 } else {
2835 fmt_bit_depth->flags.FRAME_RANDOM = 1;
2836 }
2837
2838 //////////////////////
2839 //// temporal dither
2840 //////////////////////
2841 if (option == DITHER_OPTION_FM6 ||
2842 option == DITHER_OPTION_SPATIAL8_FM6 ||
2843 option == DITHER_OPTION_SPATIAL10_FM6 ||
2844 option == DITHER_OPTION_TRUN10_FM6 ||
2845 option == DITHER_OPTION_TRUN8_FM6 ||
2846 option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
2847 fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
2848 fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 0;
2849 } else if (option == DITHER_OPTION_FM8 ||
2850 option == DITHER_OPTION_SPATIAL10_FM8 ||
2851 option == DITHER_OPTION_TRUN10_FM8) {
2852 fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
2853 fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 1;
2854 } else if (option == DITHER_OPTION_FM10) {
2855 fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
2856 fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 2;
2857 }
2858
2859 fmt_bit_depth->pixel_encoding = pixel_encoding;
2860 }
2861
dc_validate_stream(struct dc * dc,struct dc_stream_state * stream)2862 enum dc_status dc_validate_stream(struct dc *dc, struct dc_stream_state *stream)
2863 {
2864 struct dc_link *link = stream->link;
2865 struct timing_generator *tg = dc->res_pool->timing_generators[0];
2866 enum dc_status res = DC_OK;
2867
2868 calculate_phy_pix_clks(stream);
2869
2870 if (!tg->funcs->validate_timing(tg, &stream->timing))
2871 res = DC_FAIL_CONTROLLER_VALIDATE;
2872
2873 if (res == DC_OK) {
2874 if (!link->link_enc->funcs->validate_output_with_stream(
2875 link->link_enc, stream))
2876 res = DC_FAIL_ENC_VALIDATE;
2877 }
2878
2879 /* TODO: validate audio ASIC caps, encoder */
2880
2881 if (res == DC_OK)
2882 res = dc_link_validate_mode_timing(stream,
2883 link,
2884 &stream->timing);
2885
2886 return res;
2887 }
2888
dc_validate_plane(struct dc * dc,const struct dc_plane_state * plane_state)2889 enum dc_status dc_validate_plane(struct dc *dc, const struct dc_plane_state *plane_state)
2890 {
2891 enum dc_status res = DC_OK;
2892
2893 /* TODO For now validates pixel format only */
2894 if (dc->res_pool->funcs->validate_plane)
2895 return dc->res_pool->funcs->validate_plane(plane_state, &dc->caps);
2896
2897 return res;
2898 }
2899
resource_pixel_format_to_bpp(enum surface_pixel_format format)2900 unsigned int resource_pixel_format_to_bpp(enum surface_pixel_format format)
2901 {
2902 switch (format) {
2903 case SURFACE_PIXEL_FORMAT_GRPH_PALETA_256_COLORS:
2904 return 8;
2905 case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr:
2906 case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb:
2907 return 12;
2908 case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555:
2909 case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
2910 case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr:
2911 case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb:
2912 return 16;
2913 case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
2914 case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
2915 case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
2916 case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
2917 case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010_XR_BIAS:
2918 #if defined(CONFIG_DRM_AMD_DC_DCN)
2919 case SURFACE_PIXEL_FORMAT_GRPH_RGBE:
2920 case SURFACE_PIXEL_FORMAT_GRPH_RGBE_ALPHA:
2921 #endif
2922 return 32;
2923 case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
2924 case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
2925 case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F:
2926 case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
2927 return 64;
2928 default:
2929 ASSERT_CRITICAL(false);
2930 return -1;
2931 }
2932 }
get_max_audio_sample_rate(struct audio_mode * modes)2933 static unsigned int get_max_audio_sample_rate(struct audio_mode *modes)
2934 {
2935 if (modes) {
2936 if (modes->sample_rates.rate.RATE_192)
2937 return 192000;
2938 if (modes->sample_rates.rate.RATE_176_4)
2939 return 176400;
2940 if (modes->sample_rates.rate.RATE_96)
2941 return 96000;
2942 if (modes->sample_rates.rate.RATE_88_2)
2943 return 88200;
2944 if (modes->sample_rates.rate.RATE_48)
2945 return 48000;
2946 if (modes->sample_rates.rate.RATE_44_1)
2947 return 44100;
2948 if (modes->sample_rates.rate.RATE_32)
2949 return 32000;
2950 }
2951 /*original logic when no audio info*/
2952 return 441000;
2953 }
2954
get_audio_check(struct audio_info * aud_modes,struct audio_check * audio_chk)2955 void get_audio_check(struct audio_info *aud_modes,
2956 struct audio_check *audio_chk)
2957 {
2958 unsigned int i;
2959 unsigned int max_sample_rate = 0;
2960
2961 if (aud_modes) {
2962 audio_chk->audio_packet_type = 0x2;/*audio sample packet AP = .25 for layout0, 1 for layout1*/
2963
2964 audio_chk->max_audiosample_rate = 0;
2965 for (i = 0; i < aud_modes->mode_count; i++) {
2966 max_sample_rate = get_max_audio_sample_rate(&aud_modes->modes[i]);
2967 if (audio_chk->max_audiosample_rate < max_sample_rate)
2968 audio_chk->max_audiosample_rate = max_sample_rate;
2969 /*dts takes the same as type 2: AP = 0.25*/
2970 }
2971 /*check which one take more bandwidth*/
2972 if (audio_chk->max_audiosample_rate > 192000)
2973 audio_chk->audio_packet_type = 0x9;/*AP =1*/
2974 audio_chk->acat = 0;/*not support*/
2975 }
2976 }
2977
2978