1 // SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause
2 /*
3 * Copyright(c) 2015 - 2017 Intel Corporation.
4 */
5
6 #include <linux/firmware.h>
7 #include <linux/mutex.h>
8 #include <linux/delay.h>
9 #include <linux/crc32.h>
10
11 #include "hfi.h"
12 #include "trace.h"
13
14 /*
15 * Make it easy to toggle firmware file name and if it gets loaded by
16 * editing the following. This may be something we do while in development
17 * but not necessarily something a user would ever need to use.
18 */
19 #define DEFAULT_FW_8051_NAME_FPGA "hfi_dc8051.bin"
20 #define DEFAULT_FW_8051_NAME_ASIC "hfi1_dc8051.fw"
21 #define DEFAULT_FW_FABRIC_NAME "hfi1_fabric.fw"
22 #define DEFAULT_FW_SBUS_NAME "hfi1_sbus.fw"
23 #define DEFAULT_FW_PCIE_NAME "hfi1_pcie.fw"
24 #define ALT_FW_8051_NAME_ASIC "hfi1_dc8051_d.fw"
25 #define ALT_FW_FABRIC_NAME "hfi1_fabric_d.fw"
26 #define ALT_FW_SBUS_NAME "hfi1_sbus_d.fw"
27 #define ALT_FW_PCIE_NAME "hfi1_pcie_d.fw"
28
29 MODULE_FIRMWARE(DEFAULT_FW_8051_NAME_ASIC);
30 MODULE_FIRMWARE(DEFAULT_FW_FABRIC_NAME);
31 MODULE_FIRMWARE(DEFAULT_FW_SBUS_NAME);
32 MODULE_FIRMWARE(DEFAULT_FW_PCIE_NAME);
33
34 static uint fw_8051_load = 1;
35 static uint fw_fabric_serdes_load = 1;
36 static uint fw_pcie_serdes_load = 1;
37 static uint fw_sbus_load = 1;
38
39 /* Firmware file names get set in hfi1_firmware_init() based on the above */
40 static char *fw_8051_name;
41 static char *fw_fabric_serdes_name;
42 static char *fw_sbus_name;
43 static char *fw_pcie_serdes_name;
44
45 #define SBUS_MAX_POLL_COUNT 100
46 #define SBUS_COUNTER(reg, name) \
47 (((reg) >> ASIC_STS_SBUS_COUNTERS_##name##_CNT_SHIFT) & \
48 ASIC_STS_SBUS_COUNTERS_##name##_CNT_MASK)
49
50 /*
51 * Firmware security header.
52 */
53 struct css_header {
54 u32 module_type;
55 u32 header_len;
56 u32 header_version;
57 u32 module_id;
58 u32 module_vendor;
59 u32 date; /* BCD yyyymmdd */
60 u32 size; /* in DWORDs */
61 u32 key_size; /* in DWORDs */
62 u32 modulus_size; /* in DWORDs */
63 u32 exponent_size; /* in DWORDs */
64 u32 reserved[22];
65 };
66
67 /* expected field values */
68 #define CSS_MODULE_TYPE 0x00000006
69 #define CSS_HEADER_LEN 0x000000a1
70 #define CSS_HEADER_VERSION 0x00010000
71 #define CSS_MODULE_VENDOR 0x00008086
72
73 #define KEY_SIZE 256
74 #define MU_SIZE 8
75 #define EXPONENT_SIZE 4
76
77 /* size of platform configuration partition */
78 #define MAX_PLATFORM_CONFIG_FILE_SIZE 4096
79
80 /* size of file of plaform configuration encoded in format version 4 */
81 #define PLATFORM_CONFIG_FORMAT_4_FILE_SIZE 528
82
83 /* the file itself */
84 struct firmware_file {
85 struct css_header css_header;
86 u8 modulus[KEY_SIZE];
87 u8 exponent[EXPONENT_SIZE];
88 u8 signature[KEY_SIZE];
89 u8 firmware[];
90 };
91
92 struct augmented_firmware_file {
93 struct css_header css_header;
94 u8 modulus[KEY_SIZE];
95 u8 exponent[EXPONENT_SIZE];
96 u8 signature[KEY_SIZE];
97 u8 r2[KEY_SIZE];
98 u8 mu[MU_SIZE];
99 u8 firmware[];
100 };
101
102 /* augmented file size difference */
103 #define AUGMENT_SIZE (sizeof(struct augmented_firmware_file) - \
104 sizeof(struct firmware_file))
105
106 struct firmware_details {
107 /* Linux core piece */
108 const struct firmware *fw;
109
110 struct css_header *css_header;
111 u8 *firmware_ptr; /* pointer to binary data */
112 u32 firmware_len; /* length in bytes */
113 u8 *modulus; /* pointer to the modulus */
114 u8 *exponent; /* pointer to the exponent */
115 u8 *signature; /* pointer to the signature */
116 u8 *r2; /* pointer to r2 */
117 u8 *mu; /* pointer to mu */
118 struct augmented_firmware_file dummy_header;
119 };
120
121 /*
122 * The mutex protects fw_state, fw_err, and all of the firmware_details
123 * variables.
124 */
125 static DEFINE_MUTEX(fw_mutex);
126 enum fw_state {
127 FW_EMPTY,
128 FW_TRY,
129 FW_FINAL,
130 FW_ERR
131 };
132
133 static enum fw_state fw_state = FW_EMPTY;
134 static int fw_err;
135 static struct firmware_details fw_8051;
136 static struct firmware_details fw_fabric;
137 static struct firmware_details fw_pcie;
138 static struct firmware_details fw_sbus;
139
140 /* flags for turn_off_spicos() */
141 #define SPICO_SBUS 0x1
142 #define SPICO_FABRIC 0x2
143 #define ENABLE_SPICO_SMASK 0x1
144
145 /* security block commands */
146 #define RSA_CMD_INIT 0x1
147 #define RSA_CMD_START 0x2
148
149 /* security block status */
150 #define RSA_STATUS_IDLE 0x0
151 #define RSA_STATUS_ACTIVE 0x1
152 #define RSA_STATUS_DONE 0x2
153 #define RSA_STATUS_FAILED 0x3
154
155 /* RSA engine timeout, in ms */
156 #define RSA_ENGINE_TIMEOUT 100 /* ms */
157
158 /* hardware mutex timeout, in ms */
159 #define HM_TIMEOUT 10 /* ms */
160
161 /* 8051 memory access timeout, in us */
162 #define DC8051_ACCESS_TIMEOUT 100 /* us */
163
164 /* the number of fabric SerDes on the SBus */
165 #define NUM_FABRIC_SERDES 4
166
167 /* ASIC_STS_SBUS_RESULT.RESULT_CODE value */
168 #define SBUS_READ_COMPLETE 0x4
169
170 /* SBus fabric SerDes addresses, one set per HFI */
171 static const u8 fabric_serdes_addrs[2][NUM_FABRIC_SERDES] = {
172 { 0x01, 0x02, 0x03, 0x04 },
173 { 0x28, 0x29, 0x2a, 0x2b }
174 };
175
176 /* SBus PCIe SerDes addresses, one set per HFI */
177 static const u8 pcie_serdes_addrs[2][NUM_PCIE_SERDES] = {
178 { 0x08, 0x0a, 0x0c, 0x0e, 0x10, 0x12, 0x14, 0x16,
179 0x18, 0x1a, 0x1c, 0x1e, 0x20, 0x22, 0x24, 0x26 },
180 { 0x2f, 0x31, 0x33, 0x35, 0x37, 0x39, 0x3b, 0x3d,
181 0x3f, 0x41, 0x43, 0x45, 0x47, 0x49, 0x4b, 0x4d }
182 };
183
184 /* SBus PCIe PCS addresses, one set per HFI */
185 const u8 pcie_pcs_addrs[2][NUM_PCIE_SERDES] = {
186 { 0x09, 0x0b, 0x0d, 0x0f, 0x11, 0x13, 0x15, 0x17,
187 0x19, 0x1b, 0x1d, 0x1f, 0x21, 0x23, 0x25, 0x27 },
188 { 0x30, 0x32, 0x34, 0x36, 0x38, 0x3a, 0x3c, 0x3e,
189 0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e }
190 };
191
192 /* SBus fabric SerDes broadcast addresses, one per HFI */
193 static const u8 fabric_serdes_broadcast[2] = { 0xe4, 0xe5 };
194 static const u8 all_fabric_serdes_broadcast = 0xe1;
195
196 /* SBus PCIe SerDes broadcast addresses, one per HFI */
197 const u8 pcie_serdes_broadcast[2] = { 0xe2, 0xe3 };
198 static const u8 all_pcie_serdes_broadcast = 0xe0;
199
200 static const u32 platform_config_table_limits[PLATFORM_CONFIG_TABLE_MAX] = {
201 0,
202 SYSTEM_TABLE_MAX,
203 PORT_TABLE_MAX,
204 RX_PRESET_TABLE_MAX,
205 TX_PRESET_TABLE_MAX,
206 QSFP_ATTEN_TABLE_MAX,
207 VARIABLE_SETTINGS_TABLE_MAX
208 };
209
210 /* forwards */
211 static void dispose_one_firmware(struct firmware_details *fdet);
212 static int load_fabric_serdes_firmware(struct hfi1_devdata *dd,
213 struct firmware_details *fdet);
214 static void dump_fw_version(struct hfi1_devdata *dd);
215
216 /*
217 * Read a single 64-bit value from 8051 data memory.
218 *
219 * Expects:
220 * o caller to have already set up data read, no auto increment
221 * o caller to turn off read enable when finished
222 *
223 * The address argument is a byte offset. Bits 0:2 in the address are
224 * ignored - i.e. the hardware will always do aligned 8-byte reads as if
225 * the lower bits are zero.
226 *
227 * Return 0 on success, -ENXIO on a read error (timeout).
228 */
__read_8051_data(struct hfi1_devdata * dd,u32 addr,u64 * result)229 static int __read_8051_data(struct hfi1_devdata *dd, u32 addr, u64 *result)
230 {
231 u64 reg;
232 int count;
233
234 /* step 1: set the address, clear enable */
235 reg = (addr & DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_MASK)
236 << DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_SHIFT;
237 write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, reg);
238 /* step 2: enable */
239 write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL,
240 reg | DC_DC8051_CFG_RAM_ACCESS_CTRL_READ_ENA_SMASK);
241
242 /* wait until ACCESS_COMPLETED is set */
243 count = 0;
244 while ((read_csr(dd, DC_DC8051_CFG_RAM_ACCESS_STATUS)
245 & DC_DC8051_CFG_RAM_ACCESS_STATUS_ACCESS_COMPLETED_SMASK)
246 == 0) {
247 count++;
248 if (count > DC8051_ACCESS_TIMEOUT) {
249 dd_dev_err(dd, "timeout reading 8051 data\n");
250 return -ENXIO;
251 }
252 ndelay(10);
253 }
254
255 /* gather the data */
256 *result = read_csr(dd, DC_DC8051_CFG_RAM_ACCESS_RD_DATA);
257
258 return 0;
259 }
260
261 /*
262 * Read 8051 data starting at addr, for len bytes. Will read in 8-byte chunks.
263 * Return 0 on success, -errno on error.
264 */
read_8051_data(struct hfi1_devdata * dd,u32 addr,u32 len,u64 * result)265 int read_8051_data(struct hfi1_devdata *dd, u32 addr, u32 len, u64 *result)
266 {
267 unsigned long flags;
268 u32 done;
269 int ret = 0;
270
271 spin_lock_irqsave(&dd->dc8051_memlock, flags);
272
273 /* data read set-up, no auto-increment */
274 write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_SETUP, 0);
275
276 for (done = 0; done < len; addr += 8, done += 8, result++) {
277 ret = __read_8051_data(dd, addr, result);
278 if (ret)
279 break;
280 }
281
282 /* turn off read enable */
283 write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, 0);
284
285 spin_unlock_irqrestore(&dd->dc8051_memlock, flags);
286
287 return ret;
288 }
289
290 /*
291 * Write data or code to the 8051 code or data RAM.
292 */
write_8051(struct hfi1_devdata * dd,int code,u32 start,const u8 * data,u32 len)293 static int write_8051(struct hfi1_devdata *dd, int code, u32 start,
294 const u8 *data, u32 len)
295 {
296 u64 reg;
297 u32 offset;
298 int aligned, count;
299
300 /* check alignment */
301 aligned = ((unsigned long)data & 0x7) == 0;
302
303 /* write set-up */
304 reg = (code ? DC_DC8051_CFG_RAM_ACCESS_SETUP_RAM_SEL_SMASK : 0ull)
305 | DC_DC8051_CFG_RAM_ACCESS_SETUP_AUTO_INCR_ADDR_SMASK;
306 write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_SETUP, reg);
307
308 reg = ((start & DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_MASK)
309 << DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_SHIFT)
310 | DC_DC8051_CFG_RAM_ACCESS_CTRL_WRITE_ENA_SMASK;
311 write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, reg);
312
313 /* write */
314 for (offset = 0; offset < len; offset += 8) {
315 int bytes = len - offset;
316
317 if (bytes < 8) {
318 reg = 0;
319 memcpy(®, &data[offset], bytes);
320 } else if (aligned) {
321 reg = *(u64 *)&data[offset];
322 } else {
323 memcpy(®, &data[offset], 8);
324 }
325 write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_WR_DATA, reg);
326
327 /* wait until ACCESS_COMPLETED is set */
328 count = 0;
329 while ((read_csr(dd, DC_DC8051_CFG_RAM_ACCESS_STATUS)
330 & DC_DC8051_CFG_RAM_ACCESS_STATUS_ACCESS_COMPLETED_SMASK)
331 == 0) {
332 count++;
333 if (count > DC8051_ACCESS_TIMEOUT) {
334 dd_dev_err(dd, "timeout writing 8051 data\n");
335 return -ENXIO;
336 }
337 udelay(1);
338 }
339 }
340
341 /* turn off write access, auto increment (also sets to data access) */
342 write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, 0);
343 write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_SETUP, 0);
344
345 return 0;
346 }
347
348 /* return 0 if values match, non-zero and complain otherwise */
invalid_header(struct hfi1_devdata * dd,const char * what,u32 actual,u32 expected)349 static int invalid_header(struct hfi1_devdata *dd, const char *what,
350 u32 actual, u32 expected)
351 {
352 if (actual == expected)
353 return 0;
354
355 dd_dev_err(dd,
356 "invalid firmware header field %s: expected 0x%x, actual 0x%x\n",
357 what, expected, actual);
358 return 1;
359 }
360
361 /*
362 * Verify that the static fields in the CSS header match.
363 */
verify_css_header(struct hfi1_devdata * dd,struct css_header * css)364 static int verify_css_header(struct hfi1_devdata *dd, struct css_header *css)
365 {
366 /* verify CSS header fields (most sizes are in DW, so add /4) */
367 if (invalid_header(dd, "module_type", css->module_type,
368 CSS_MODULE_TYPE) ||
369 invalid_header(dd, "header_len", css->header_len,
370 (sizeof(struct firmware_file) / 4)) ||
371 invalid_header(dd, "header_version", css->header_version,
372 CSS_HEADER_VERSION) ||
373 invalid_header(dd, "module_vendor", css->module_vendor,
374 CSS_MODULE_VENDOR) ||
375 invalid_header(dd, "key_size", css->key_size, KEY_SIZE / 4) ||
376 invalid_header(dd, "modulus_size", css->modulus_size,
377 KEY_SIZE / 4) ||
378 invalid_header(dd, "exponent_size", css->exponent_size,
379 EXPONENT_SIZE / 4)) {
380 return -EINVAL;
381 }
382 return 0;
383 }
384
385 /*
386 * Make sure there are at least some bytes after the prefix.
387 */
payload_check(struct hfi1_devdata * dd,const char * name,long file_size,long prefix_size)388 static int payload_check(struct hfi1_devdata *dd, const char *name,
389 long file_size, long prefix_size)
390 {
391 /* make sure we have some payload */
392 if (prefix_size >= file_size) {
393 dd_dev_err(dd,
394 "firmware \"%s\", size %ld, must be larger than %ld bytes\n",
395 name, file_size, prefix_size);
396 return -EINVAL;
397 }
398
399 return 0;
400 }
401
402 /*
403 * Request the firmware from the system. Extract the pieces and fill in
404 * fdet. If successful, the caller will need to call dispose_one_firmware().
405 * Returns 0 on success, -ERRNO on error.
406 */
obtain_one_firmware(struct hfi1_devdata * dd,const char * name,struct firmware_details * fdet)407 static int obtain_one_firmware(struct hfi1_devdata *dd, const char *name,
408 struct firmware_details *fdet)
409 {
410 struct css_header *css;
411 int ret;
412
413 memset(fdet, 0, sizeof(*fdet));
414
415 ret = request_firmware(&fdet->fw, name, &dd->pcidev->dev);
416 if (ret) {
417 dd_dev_warn(dd, "cannot find firmware \"%s\", err %d\n",
418 name, ret);
419 return ret;
420 }
421
422 /* verify the firmware */
423 if (fdet->fw->size < sizeof(struct css_header)) {
424 dd_dev_err(dd, "firmware \"%s\" is too small\n", name);
425 ret = -EINVAL;
426 goto done;
427 }
428 css = (struct css_header *)fdet->fw->data;
429
430 hfi1_cdbg(FIRMWARE, "Firmware %s details:", name);
431 hfi1_cdbg(FIRMWARE, "file size: 0x%lx bytes", fdet->fw->size);
432 hfi1_cdbg(FIRMWARE, "CSS structure:");
433 hfi1_cdbg(FIRMWARE, " module_type 0x%x", css->module_type);
434 hfi1_cdbg(FIRMWARE, " header_len 0x%03x (0x%03x bytes)",
435 css->header_len, 4 * css->header_len);
436 hfi1_cdbg(FIRMWARE, " header_version 0x%x", css->header_version);
437 hfi1_cdbg(FIRMWARE, " module_id 0x%x", css->module_id);
438 hfi1_cdbg(FIRMWARE, " module_vendor 0x%x", css->module_vendor);
439 hfi1_cdbg(FIRMWARE, " date 0x%x", css->date);
440 hfi1_cdbg(FIRMWARE, " size 0x%03x (0x%03x bytes)",
441 css->size, 4 * css->size);
442 hfi1_cdbg(FIRMWARE, " key_size 0x%03x (0x%03x bytes)",
443 css->key_size, 4 * css->key_size);
444 hfi1_cdbg(FIRMWARE, " modulus_size 0x%03x (0x%03x bytes)",
445 css->modulus_size, 4 * css->modulus_size);
446 hfi1_cdbg(FIRMWARE, " exponent_size 0x%03x (0x%03x bytes)",
447 css->exponent_size, 4 * css->exponent_size);
448 hfi1_cdbg(FIRMWARE, "firmware size: 0x%lx bytes",
449 fdet->fw->size - sizeof(struct firmware_file));
450
451 /*
452 * If the file does not have a valid CSS header, fail.
453 * Otherwise, check the CSS size field for an expected size.
454 * The augmented file has r2 and mu inserted after the header
455 * was generated, so there will be a known difference between
456 * the CSS header size and the actual file size. Use this
457 * difference to identify an augmented file.
458 *
459 * Note: css->size is in DWORDs, multiply by 4 to get bytes.
460 */
461 ret = verify_css_header(dd, css);
462 if (ret) {
463 dd_dev_info(dd, "Invalid CSS header for \"%s\"\n", name);
464 } else if ((css->size * 4) == fdet->fw->size) {
465 /* non-augmented firmware file */
466 struct firmware_file *ff = (struct firmware_file *)
467 fdet->fw->data;
468
469 /* make sure there are bytes in the payload */
470 ret = payload_check(dd, name, fdet->fw->size,
471 sizeof(struct firmware_file));
472 if (ret == 0) {
473 fdet->css_header = css;
474 fdet->modulus = ff->modulus;
475 fdet->exponent = ff->exponent;
476 fdet->signature = ff->signature;
477 fdet->r2 = fdet->dummy_header.r2; /* use dummy space */
478 fdet->mu = fdet->dummy_header.mu; /* use dummy space */
479 fdet->firmware_ptr = ff->firmware;
480 fdet->firmware_len = fdet->fw->size -
481 sizeof(struct firmware_file);
482 /*
483 * Header does not include r2 and mu - generate here.
484 * For now, fail.
485 */
486 dd_dev_err(dd, "driver is unable to validate firmware without r2 and mu (not in firmware file)\n");
487 ret = -EINVAL;
488 }
489 } else if ((css->size * 4) + AUGMENT_SIZE == fdet->fw->size) {
490 /* augmented firmware file */
491 struct augmented_firmware_file *aff =
492 (struct augmented_firmware_file *)fdet->fw->data;
493
494 /* make sure there are bytes in the payload */
495 ret = payload_check(dd, name, fdet->fw->size,
496 sizeof(struct augmented_firmware_file));
497 if (ret == 0) {
498 fdet->css_header = css;
499 fdet->modulus = aff->modulus;
500 fdet->exponent = aff->exponent;
501 fdet->signature = aff->signature;
502 fdet->r2 = aff->r2;
503 fdet->mu = aff->mu;
504 fdet->firmware_ptr = aff->firmware;
505 fdet->firmware_len = fdet->fw->size -
506 sizeof(struct augmented_firmware_file);
507 }
508 } else {
509 /* css->size check failed */
510 dd_dev_err(dd,
511 "invalid firmware header field size: expected 0x%lx or 0x%lx, actual 0x%x\n",
512 fdet->fw->size / 4,
513 (fdet->fw->size - AUGMENT_SIZE) / 4,
514 css->size);
515
516 ret = -EINVAL;
517 }
518
519 done:
520 /* if returning an error, clean up after ourselves */
521 if (ret)
522 dispose_one_firmware(fdet);
523 return ret;
524 }
525
dispose_one_firmware(struct firmware_details * fdet)526 static void dispose_one_firmware(struct firmware_details *fdet)
527 {
528 release_firmware(fdet->fw);
529 /* erase all previous information */
530 memset(fdet, 0, sizeof(*fdet));
531 }
532
533 /*
534 * Obtain the 4 firmwares from the OS. All must be obtained at once or not
535 * at all. If called with the firmware state in FW_TRY, use alternate names.
536 * On exit, this routine will have set the firmware state to one of FW_TRY,
537 * FW_FINAL, or FW_ERR.
538 *
539 * Must be holding fw_mutex.
540 */
__obtain_firmware(struct hfi1_devdata * dd)541 static void __obtain_firmware(struct hfi1_devdata *dd)
542 {
543 int err = 0;
544
545 if (fw_state == FW_FINAL) /* nothing more to obtain */
546 return;
547 if (fw_state == FW_ERR) /* already in error */
548 return;
549
550 /* fw_state is FW_EMPTY or FW_TRY */
551 retry:
552 if (fw_state == FW_TRY) {
553 /*
554 * We tried the original and it failed. Move to the
555 * alternate.
556 */
557 dd_dev_warn(dd, "using alternate firmware names\n");
558 /*
559 * Let others run. Some systems, when missing firmware, does
560 * something that holds for 30 seconds. If we do that twice
561 * in a row it triggers task blocked warning.
562 */
563 cond_resched();
564 if (fw_8051_load)
565 dispose_one_firmware(&fw_8051);
566 if (fw_fabric_serdes_load)
567 dispose_one_firmware(&fw_fabric);
568 if (fw_sbus_load)
569 dispose_one_firmware(&fw_sbus);
570 if (fw_pcie_serdes_load)
571 dispose_one_firmware(&fw_pcie);
572 fw_8051_name = ALT_FW_8051_NAME_ASIC;
573 fw_fabric_serdes_name = ALT_FW_FABRIC_NAME;
574 fw_sbus_name = ALT_FW_SBUS_NAME;
575 fw_pcie_serdes_name = ALT_FW_PCIE_NAME;
576
577 /*
578 * Add a delay before obtaining and loading debug firmware.
579 * Authorization will fail if the delay between firmware
580 * authorization events is shorter than 50us. Add 100us to
581 * make a delay time safe.
582 */
583 usleep_range(100, 120);
584 }
585
586 if (fw_sbus_load) {
587 err = obtain_one_firmware(dd, fw_sbus_name, &fw_sbus);
588 if (err)
589 goto done;
590 }
591
592 if (fw_pcie_serdes_load) {
593 err = obtain_one_firmware(dd, fw_pcie_serdes_name, &fw_pcie);
594 if (err)
595 goto done;
596 }
597
598 if (fw_fabric_serdes_load) {
599 err = obtain_one_firmware(dd, fw_fabric_serdes_name,
600 &fw_fabric);
601 if (err)
602 goto done;
603 }
604
605 if (fw_8051_load) {
606 err = obtain_one_firmware(dd, fw_8051_name, &fw_8051);
607 if (err)
608 goto done;
609 }
610
611 done:
612 if (err) {
613 /* oops, had problems obtaining a firmware */
614 if (fw_state == FW_EMPTY && dd->icode == ICODE_RTL_SILICON) {
615 /* retry with alternate (RTL only) */
616 fw_state = FW_TRY;
617 goto retry;
618 }
619 dd_dev_err(dd, "unable to obtain working firmware\n");
620 fw_state = FW_ERR;
621 fw_err = -ENOENT;
622 } else {
623 /* success */
624 if (fw_state == FW_EMPTY &&
625 dd->icode != ICODE_FUNCTIONAL_SIMULATOR)
626 fw_state = FW_TRY; /* may retry later */
627 else
628 fw_state = FW_FINAL; /* cannot try again */
629 }
630 }
631
632 /*
633 * Called by all HFIs when loading their firmware - i.e. device probe time.
634 * The first one will do the actual firmware load. Use a mutex to resolve
635 * any possible race condition.
636 *
637 * The call to this routine cannot be moved to driver load because the kernel
638 * call request_firmware() requires a device which is only available after
639 * the first device probe.
640 */
obtain_firmware(struct hfi1_devdata * dd)641 static int obtain_firmware(struct hfi1_devdata *dd)
642 {
643 unsigned long timeout;
644
645 mutex_lock(&fw_mutex);
646
647 /* 40s delay due to long delay on missing firmware on some systems */
648 timeout = jiffies + msecs_to_jiffies(40000);
649 while (fw_state == FW_TRY) {
650 /*
651 * Another device is trying the firmware. Wait until it
652 * decides what works (or not).
653 */
654 if (time_after(jiffies, timeout)) {
655 /* waited too long */
656 dd_dev_err(dd, "Timeout waiting for firmware try");
657 fw_state = FW_ERR;
658 fw_err = -ETIMEDOUT;
659 break;
660 }
661 mutex_unlock(&fw_mutex);
662 msleep(20); /* arbitrary delay */
663 mutex_lock(&fw_mutex);
664 }
665 /* not in FW_TRY state */
666
667 /* set fw_state to FW_TRY, FW_FINAL, or FW_ERR, and fw_err */
668 if (fw_state == FW_EMPTY)
669 __obtain_firmware(dd);
670
671 mutex_unlock(&fw_mutex);
672 return fw_err;
673 }
674
675 /*
676 * Called when the driver unloads. The timing is asymmetric with its
677 * counterpart, obtain_firmware(). If called at device remove time,
678 * then it is conceivable that another device could probe while the
679 * firmware is being disposed. The mutexes can be moved to do that
680 * safely, but then the firmware would be requested from the OS multiple
681 * times.
682 *
683 * No mutex is needed as the driver is unloading and there cannot be any
684 * other callers.
685 */
dispose_firmware(void)686 void dispose_firmware(void)
687 {
688 dispose_one_firmware(&fw_8051);
689 dispose_one_firmware(&fw_fabric);
690 dispose_one_firmware(&fw_pcie);
691 dispose_one_firmware(&fw_sbus);
692
693 /* retain the error state, otherwise revert to empty */
694 if (fw_state != FW_ERR)
695 fw_state = FW_EMPTY;
696 }
697
698 /*
699 * Called with the result of a firmware download.
700 *
701 * Return 1 to retry loading the firmware, 0 to stop.
702 */
retry_firmware(struct hfi1_devdata * dd,int load_result)703 static int retry_firmware(struct hfi1_devdata *dd, int load_result)
704 {
705 int retry;
706
707 mutex_lock(&fw_mutex);
708
709 if (load_result == 0) {
710 /*
711 * The load succeeded, so expect all others to do the same.
712 * Do not retry again.
713 */
714 if (fw_state == FW_TRY)
715 fw_state = FW_FINAL;
716 retry = 0; /* do NOT retry */
717 } else if (fw_state == FW_TRY) {
718 /* load failed, obtain alternate firmware */
719 __obtain_firmware(dd);
720 retry = (fw_state == FW_FINAL);
721 } else {
722 /* else in FW_FINAL or FW_ERR, no retry in either case */
723 retry = 0;
724 }
725
726 mutex_unlock(&fw_mutex);
727 return retry;
728 }
729
730 /*
731 * Write a block of data to a given array CSR. All calls will be in
732 * multiples of 8 bytes.
733 */
write_rsa_data(struct hfi1_devdata * dd,int what,const u8 * data,int nbytes)734 static void write_rsa_data(struct hfi1_devdata *dd, int what,
735 const u8 *data, int nbytes)
736 {
737 int qw_size = nbytes / 8;
738 int i;
739
740 if (((unsigned long)data & 0x7) == 0) {
741 /* aligned */
742 u64 *ptr = (u64 *)data;
743
744 for (i = 0; i < qw_size; i++, ptr++)
745 write_csr(dd, what + (8 * i), *ptr);
746 } else {
747 /* not aligned */
748 for (i = 0; i < qw_size; i++, data += 8) {
749 u64 value;
750
751 memcpy(&value, data, 8);
752 write_csr(dd, what + (8 * i), value);
753 }
754 }
755 }
756
757 /*
758 * Write a block of data to a given CSR as a stream of writes. All calls will
759 * be in multiples of 8 bytes.
760 */
write_streamed_rsa_data(struct hfi1_devdata * dd,int what,const u8 * data,int nbytes)761 static void write_streamed_rsa_data(struct hfi1_devdata *dd, int what,
762 const u8 *data, int nbytes)
763 {
764 u64 *ptr = (u64 *)data;
765 int qw_size = nbytes / 8;
766
767 for (; qw_size > 0; qw_size--, ptr++)
768 write_csr(dd, what, *ptr);
769 }
770
771 /*
772 * Download the signature and start the RSA mechanism. Wait for
773 * RSA_ENGINE_TIMEOUT before giving up.
774 */
run_rsa(struct hfi1_devdata * dd,const char * who,const u8 * signature)775 static int run_rsa(struct hfi1_devdata *dd, const char *who,
776 const u8 *signature)
777 {
778 unsigned long timeout;
779 u64 reg;
780 u32 status;
781 int ret = 0;
782
783 /* write the signature */
784 write_rsa_data(dd, MISC_CFG_RSA_SIGNATURE, signature, KEY_SIZE);
785
786 /* initialize RSA */
787 write_csr(dd, MISC_CFG_RSA_CMD, RSA_CMD_INIT);
788
789 /*
790 * Make sure the engine is idle and insert a delay between the two
791 * writes to MISC_CFG_RSA_CMD.
792 */
793 status = (read_csr(dd, MISC_CFG_FW_CTRL)
794 & MISC_CFG_FW_CTRL_RSA_STATUS_SMASK)
795 >> MISC_CFG_FW_CTRL_RSA_STATUS_SHIFT;
796 if (status != RSA_STATUS_IDLE) {
797 dd_dev_err(dd, "%s security engine not idle - giving up\n",
798 who);
799 return -EBUSY;
800 }
801
802 /* start RSA */
803 write_csr(dd, MISC_CFG_RSA_CMD, RSA_CMD_START);
804
805 /*
806 * Look for the result.
807 *
808 * The RSA engine is hooked up to two MISC errors. The driver
809 * masks these errors as they do not respond to the standard
810 * error "clear down" mechanism. Look for these errors here and
811 * clear them when possible. This routine will exit with the
812 * errors of the current run still set.
813 *
814 * MISC_FW_AUTH_FAILED_ERR
815 * Firmware authorization failed. This can be cleared by
816 * re-initializing the RSA engine, then clearing the status bit.
817 * Do not re-init the RSA angine immediately after a successful
818 * run - this will reset the current authorization.
819 *
820 * MISC_KEY_MISMATCH_ERR
821 * Key does not match. The only way to clear this is to load
822 * a matching key then clear the status bit. If this error
823 * is raised, it will persist outside of this routine until a
824 * matching key is loaded.
825 */
826 timeout = msecs_to_jiffies(RSA_ENGINE_TIMEOUT) + jiffies;
827 while (1) {
828 status = (read_csr(dd, MISC_CFG_FW_CTRL)
829 & MISC_CFG_FW_CTRL_RSA_STATUS_SMASK)
830 >> MISC_CFG_FW_CTRL_RSA_STATUS_SHIFT;
831
832 if (status == RSA_STATUS_IDLE) {
833 /* should not happen */
834 dd_dev_err(dd, "%s firmware security bad idle state\n",
835 who);
836 ret = -EINVAL;
837 break;
838 } else if (status == RSA_STATUS_DONE) {
839 /* finished successfully */
840 break;
841 } else if (status == RSA_STATUS_FAILED) {
842 /* finished unsuccessfully */
843 ret = -EINVAL;
844 break;
845 }
846 /* else still active */
847
848 if (time_after(jiffies, timeout)) {
849 /*
850 * Timed out while active. We can't reset the engine
851 * if it is stuck active, but run through the
852 * error code to see what error bits are set.
853 */
854 dd_dev_err(dd, "%s firmware security time out\n", who);
855 ret = -ETIMEDOUT;
856 break;
857 }
858
859 msleep(20);
860 }
861
862 /*
863 * Arrive here on success or failure. Clear all RSA engine
864 * errors. All current errors will stick - the RSA logic is keeping
865 * error high. All previous errors will clear - the RSA logic
866 * is not keeping the error high.
867 */
868 write_csr(dd, MISC_ERR_CLEAR,
869 MISC_ERR_STATUS_MISC_FW_AUTH_FAILED_ERR_SMASK |
870 MISC_ERR_STATUS_MISC_KEY_MISMATCH_ERR_SMASK);
871 /*
872 * All that is left are the current errors. Print warnings on
873 * authorization failure details, if any. Firmware authorization
874 * can be retried, so these are only warnings.
875 */
876 reg = read_csr(dd, MISC_ERR_STATUS);
877 if (ret) {
878 if (reg & MISC_ERR_STATUS_MISC_FW_AUTH_FAILED_ERR_SMASK)
879 dd_dev_warn(dd, "%s firmware authorization failed\n",
880 who);
881 if (reg & MISC_ERR_STATUS_MISC_KEY_MISMATCH_ERR_SMASK)
882 dd_dev_warn(dd, "%s firmware key mismatch\n", who);
883 }
884
885 return ret;
886 }
887
load_security_variables(struct hfi1_devdata * dd,struct firmware_details * fdet)888 static void load_security_variables(struct hfi1_devdata *dd,
889 struct firmware_details *fdet)
890 {
891 /* Security variables a. Write the modulus */
892 write_rsa_data(dd, MISC_CFG_RSA_MODULUS, fdet->modulus, KEY_SIZE);
893 /* Security variables b. Write the r2 */
894 write_rsa_data(dd, MISC_CFG_RSA_R2, fdet->r2, KEY_SIZE);
895 /* Security variables c. Write the mu */
896 write_rsa_data(dd, MISC_CFG_RSA_MU, fdet->mu, MU_SIZE);
897 /* Security variables d. Write the header */
898 write_streamed_rsa_data(dd, MISC_CFG_SHA_PRELOAD,
899 (u8 *)fdet->css_header,
900 sizeof(struct css_header));
901 }
902
903 /* return the 8051 firmware state */
get_firmware_state(struct hfi1_devdata * dd)904 static inline u32 get_firmware_state(struct hfi1_devdata *dd)
905 {
906 u64 reg = read_csr(dd, DC_DC8051_STS_CUR_STATE);
907
908 return (reg >> DC_DC8051_STS_CUR_STATE_FIRMWARE_SHIFT)
909 & DC_DC8051_STS_CUR_STATE_FIRMWARE_MASK;
910 }
911
912 /*
913 * Wait until the firmware is up and ready to take host requests.
914 * Return 0 on success, -ETIMEDOUT on timeout.
915 */
wait_fm_ready(struct hfi1_devdata * dd,u32 mstimeout)916 int wait_fm_ready(struct hfi1_devdata *dd, u32 mstimeout)
917 {
918 unsigned long timeout;
919
920 /* in the simulator, the fake 8051 is always ready */
921 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
922 return 0;
923
924 timeout = msecs_to_jiffies(mstimeout) + jiffies;
925 while (1) {
926 if (get_firmware_state(dd) == 0xa0) /* ready */
927 return 0;
928 if (time_after(jiffies, timeout)) /* timed out */
929 return -ETIMEDOUT;
930 usleep_range(1950, 2050); /* sleep 2ms-ish */
931 }
932 }
933
934 /*
935 * Load the 8051 firmware.
936 */
load_8051_firmware(struct hfi1_devdata * dd,struct firmware_details * fdet)937 static int load_8051_firmware(struct hfi1_devdata *dd,
938 struct firmware_details *fdet)
939 {
940 u64 reg;
941 int ret;
942 u8 ver_major;
943 u8 ver_minor;
944 u8 ver_patch;
945
946 /*
947 * DC Reset sequence
948 * Load DC 8051 firmware
949 */
950 /*
951 * DC reset step 1: Reset DC8051
952 */
953 reg = DC_DC8051_CFG_RST_M8051W_SMASK
954 | DC_DC8051_CFG_RST_CRAM_SMASK
955 | DC_DC8051_CFG_RST_DRAM_SMASK
956 | DC_DC8051_CFG_RST_IRAM_SMASK
957 | DC_DC8051_CFG_RST_SFR_SMASK;
958 write_csr(dd, DC_DC8051_CFG_RST, reg);
959
960 /*
961 * DC reset step 2 (optional): Load 8051 data memory with link
962 * configuration
963 */
964
965 /*
966 * DC reset step 3: Load DC8051 firmware
967 */
968 /* release all but the core reset */
969 reg = DC_DC8051_CFG_RST_M8051W_SMASK;
970 write_csr(dd, DC_DC8051_CFG_RST, reg);
971
972 /* Firmware load step 1 */
973 load_security_variables(dd, fdet);
974
975 /*
976 * Firmware load step 2. Clear MISC_CFG_FW_CTRL.FW_8051_LOADED
977 */
978 write_csr(dd, MISC_CFG_FW_CTRL, 0);
979
980 /* Firmware load steps 3-5 */
981 ret = write_8051(dd, 1/*code*/, 0, fdet->firmware_ptr,
982 fdet->firmware_len);
983 if (ret)
984 return ret;
985
986 /*
987 * DC reset step 4. Host starts the DC8051 firmware
988 */
989 /*
990 * Firmware load step 6. Set MISC_CFG_FW_CTRL.FW_8051_LOADED
991 */
992 write_csr(dd, MISC_CFG_FW_CTRL, MISC_CFG_FW_CTRL_FW_8051_LOADED_SMASK);
993
994 /* Firmware load steps 7-10 */
995 ret = run_rsa(dd, "8051", fdet->signature);
996 if (ret)
997 return ret;
998
999 /* clear all reset bits, releasing the 8051 */
1000 write_csr(dd, DC_DC8051_CFG_RST, 0ull);
1001
1002 /*
1003 * DC reset step 5. Wait for firmware to be ready to accept host
1004 * requests.
1005 */
1006 ret = wait_fm_ready(dd, TIMEOUT_8051_START);
1007 if (ret) { /* timed out */
1008 dd_dev_err(dd, "8051 start timeout, current state 0x%x\n",
1009 get_firmware_state(dd));
1010 return -ETIMEDOUT;
1011 }
1012
1013 read_misc_status(dd, &ver_major, &ver_minor, &ver_patch);
1014 dd_dev_info(dd, "8051 firmware version %d.%d.%d\n",
1015 (int)ver_major, (int)ver_minor, (int)ver_patch);
1016 dd->dc8051_ver = dc8051_ver(ver_major, ver_minor, ver_patch);
1017 ret = write_host_interface_version(dd, HOST_INTERFACE_VERSION);
1018 if (ret != HCMD_SUCCESS) {
1019 dd_dev_err(dd,
1020 "Failed to set host interface version, return 0x%x\n",
1021 ret);
1022 return -EIO;
1023 }
1024
1025 return 0;
1026 }
1027
1028 /*
1029 * Write the SBus request register
1030 *
1031 * No need for masking - the arguments are sized exactly.
1032 */
sbus_request(struct hfi1_devdata * dd,u8 receiver_addr,u8 data_addr,u8 command,u32 data_in)1033 void sbus_request(struct hfi1_devdata *dd,
1034 u8 receiver_addr, u8 data_addr, u8 command, u32 data_in)
1035 {
1036 write_csr(dd, ASIC_CFG_SBUS_REQUEST,
1037 ((u64)data_in << ASIC_CFG_SBUS_REQUEST_DATA_IN_SHIFT) |
1038 ((u64)command << ASIC_CFG_SBUS_REQUEST_COMMAND_SHIFT) |
1039 ((u64)data_addr << ASIC_CFG_SBUS_REQUEST_DATA_ADDR_SHIFT) |
1040 ((u64)receiver_addr <<
1041 ASIC_CFG_SBUS_REQUEST_RECEIVER_ADDR_SHIFT));
1042 }
1043
1044 /*
1045 * Read a value from the SBus.
1046 *
1047 * Requires the caller to be in fast mode
1048 */
sbus_read(struct hfi1_devdata * dd,u8 receiver_addr,u8 data_addr,u32 data_in)1049 static u32 sbus_read(struct hfi1_devdata *dd, u8 receiver_addr, u8 data_addr,
1050 u32 data_in)
1051 {
1052 u64 reg;
1053 int retries;
1054 int success = 0;
1055 u32 result = 0;
1056 u32 result_code = 0;
1057
1058 sbus_request(dd, receiver_addr, data_addr, READ_SBUS_RECEIVER, data_in);
1059
1060 for (retries = 0; retries < 100; retries++) {
1061 usleep_range(1000, 1200); /* arbitrary */
1062 reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1063 result_code = (reg >> ASIC_STS_SBUS_RESULT_RESULT_CODE_SHIFT)
1064 & ASIC_STS_SBUS_RESULT_RESULT_CODE_MASK;
1065 if (result_code != SBUS_READ_COMPLETE)
1066 continue;
1067
1068 success = 1;
1069 result = (reg >> ASIC_STS_SBUS_RESULT_DATA_OUT_SHIFT)
1070 & ASIC_STS_SBUS_RESULT_DATA_OUT_MASK;
1071 break;
1072 }
1073
1074 if (!success) {
1075 dd_dev_err(dd, "%s: read failed, result code 0x%x\n", __func__,
1076 result_code);
1077 }
1078
1079 return result;
1080 }
1081
1082 /*
1083 * Turn off the SBus and fabric serdes spicos.
1084 *
1085 * + Must be called with Sbus fast mode turned on.
1086 * + Must be called after fabric serdes broadcast is set up.
1087 * + Must be called before the 8051 is loaded - assumes 8051 is not loaded
1088 * when using MISC_CFG_FW_CTRL.
1089 */
turn_off_spicos(struct hfi1_devdata * dd,int flags)1090 static void turn_off_spicos(struct hfi1_devdata *dd, int flags)
1091 {
1092 /* only needed on A0 */
1093 if (!is_ax(dd))
1094 return;
1095
1096 dd_dev_info(dd, "Turning off spicos:%s%s\n",
1097 flags & SPICO_SBUS ? " SBus" : "",
1098 flags & SPICO_FABRIC ? " fabric" : "");
1099
1100 write_csr(dd, MISC_CFG_FW_CTRL, ENABLE_SPICO_SMASK);
1101 /* disable SBus spico */
1102 if (flags & SPICO_SBUS)
1103 sbus_request(dd, SBUS_MASTER_BROADCAST, 0x01,
1104 WRITE_SBUS_RECEIVER, 0x00000040);
1105
1106 /* disable the fabric serdes spicos */
1107 if (flags & SPICO_FABRIC)
1108 sbus_request(dd, fabric_serdes_broadcast[dd->hfi1_id],
1109 0x07, WRITE_SBUS_RECEIVER, 0x00000000);
1110 write_csr(dd, MISC_CFG_FW_CTRL, 0);
1111 }
1112
1113 /*
1114 * Reset all of the fabric serdes for this HFI in preparation to take the
1115 * link to Polling.
1116 *
1117 * To do a reset, we need to write to the serdes registers. Unfortunately,
1118 * the fabric serdes download to the other HFI on the ASIC will have turned
1119 * off the firmware validation on this HFI. This means we can't write to the
1120 * registers to reset the serdes. Work around this by performing a complete
1121 * re-download and validation of the fabric serdes firmware. This, as a
1122 * by-product, will reset the serdes. NOTE: the re-download requires that
1123 * the 8051 be in the Offline state. I.e. not actively trying to use the
1124 * serdes. This routine is called at the point where the link is Offline and
1125 * is getting ready to go to Polling.
1126 */
fabric_serdes_reset(struct hfi1_devdata * dd)1127 void fabric_serdes_reset(struct hfi1_devdata *dd)
1128 {
1129 int ret;
1130
1131 if (!fw_fabric_serdes_load)
1132 return;
1133
1134 ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
1135 if (ret) {
1136 dd_dev_err(dd,
1137 "Cannot acquire SBus resource to reset fabric SerDes - perhaps you should reboot\n");
1138 return;
1139 }
1140 set_sbus_fast_mode(dd);
1141
1142 if (is_ax(dd)) {
1143 /* A0 serdes do not work with a re-download */
1144 u8 ra = fabric_serdes_broadcast[dd->hfi1_id];
1145
1146 /* place SerDes in reset and disable SPICO */
1147 sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000011);
1148 /* wait 100 refclk cycles @ 156.25MHz => 640ns */
1149 udelay(1);
1150 /* remove SerDes reset */
1151 sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000010);
1152 /* turn SPICO enable on */
1153 sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000002);
1154 } else {
1155 turn_off_spicos(dd, SPICO_FABRIC);
1156 /*
1157 * No need for firmware retry - what to download has already
1158 * been decided.
1159 * No need to pay attention to the load return - the only
1160 * failure is a validation failure, which has already been
1161 * checked by the initial download.
1162 */
1163 (void)load_fabric_serdes_firmware(dd, &fw_fabric);
1164 }
1165
1166 clear_sbus_fast_mode(dd);
1167 release_chip_resource(dd, CR_SBUS);
1168 }
1169
1170 /* Access to the SBus in this routine should probably be serialized */
sbus_request_slow(struct hfi1_devdata * dd,u8 receiver_addr,u8 data_addr,u8 command,u32 data_in)1171 int sbus_request_slow(struct hfi1_devdata *dd,
1172 u8 receiver_addr, u8 data_addr, u8 command, u32 data_in)
1173 {
1174 u64 reg, count = 0;
1175
1176 /* make sure fast mode is clear */
1177 clear_sbus_fast_mode(dd);
1178
1179 sbus_request(dd, receiver_addr, data_addr, command, data_in);
1180 write_csr(dd, ASIC_CFG_SBUS_EXECUTE,
1181 ASIC_CFG_SBUS_EXECUTE_EXECUTE_SMASK);
1182 /* Wait for both DONE and RCV_DATA_VALID to go high */
1183 reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1184 while (!((reg & ASIC_STS_SBUS_RESULT_DONE_SMASK) &&
1185 (reg & ASIC_STS_SBUS_RESULT_RCV_DATA_VALID_SMASK))) {
1186 if (count++ >= SBUS_MAX_POLL_COUNT) {
1187 u64 counts = read_csr(dd, ASIC_STS_SBUS_COUNTERS);
1188 /*
1189 * If the loop has timed out, we are OK if DONE bit
1190 * is set and RCV_DATA_VALID and EXECUTE counters
1191 * are the same. If not, we cannot proceed.
1192 */
1193 if ((reg & ASIC_STS_SBUS_RESULT_DONE_SMASK) &&
1194 (SBUS_COUNTER(counts, RCV_DATA_VALID) ==
1195 SBUS_COUNTER(counts, EXECUTE)))
1196 break;
1197 return -ETIMEDOUT;
1198 }
1199 udelay(1);
1200 reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1201 }
1202 count = 0;
1203 write_csr(dd, ASIC_CFG_SBUS_EXECUTE, 0);
1204 /* Wait for DONE to clear after EXECUTE is cleared */
1205 reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1206 while (reg & ASIC_STS_SBUS_RESULT_DONE_SMASK) {
1207 if (count++ >= SBUS_MAX_POLL_COUNT)
1208 return -ETIME;
1209 udelay(1);
1210 reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1211 }
1212 return 0;
1213 }
1214
load_fabric_serdes_firmware(struct hfi1_devdata * dd,struct firmware_details * fdet)1215 static int load_fabric_serdes_firmware(struct hfi1_devdata *dd,
1216 struct firmware_details *fdet)
1217 {
1218 int i, err;
1219 const u8 ra = fabric_serdes_broadcast[dd->hfi1_id]; /* receiver addr */
1220
1221 dd_dev_info(dd, "Downloading fabric firmware\n");
1222
1223 /* step 1: load security variables */
1224 load_security_variables(dd, fdet);
1225 /* step 2: place SerDes in reset and disable SPICO */
1226 sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000011);
1227 /* wait 100 refclk cycles @ 156.25MHz => 640ns */
1228 udelay(1);
1229 /* step 3: remove SerDes reset */
1230 sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000010);
1231 /* step 4: assert IMEM override */
1232 sbus_request(dd, ra, 0x00, WRITE_SBUS_RECEIVER, 0x40000000);
1233 /* step 5: download SerDes machine code */
1234 for (i = 0; i < fdet->firmware_len; i += 4) {
1235 sbus_request(dd, ra, 0x0a, WRITE_SBUS_RECEIVER,
1236 *(u32 *)&fdet->firmware_ptr[i]);
1237 }
1238 /* step 6: IMEM override off */
1239 sbus_request(dd, ra, 0x00, WRITE_SBUS_RECEIVER, 0x00000000);
1240 /* step 7: turn ECC on */
1241 sbus_request(dd, ra, 0x0b, WRITE_SBUS_RECEIVER, 0x000c0000);
1242
1243 /* steps 8-11: run the RSA engine */
1244 err = run_rsa(dd, "fabric serdes", fdet->signature);
1245 if (err)
1246 return err;
1247
1248 /* step 12: turn SPICO enable on */
1249 sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000002);
1250 /* step 13: enable core hardware interrupts */
1251 sbus_request(dd, ra, 0x08, WRITE_SBUS_RECEIVER, 0x00000000);
1252
1253 return 0;
1254 }
1255
load_sbus_firmware(struct hfi1_devdata * dd,struct firmware_details * fdet)1256 static int load_sbus_firmware(struct hfi1_devdata *dd,
1257 struct firmware_details *fdet)
1258 {
1259 int i, err;
1260 const u8 ra = SBUS_MASTER_BROADCAST; /* receiver address */
1261
1262 dd_dev_info(dd, "Downloading SBus firmware\n");
1263
1264 /* step 1: load security variables */
1265 load_security_variables(dd, fdet);
1266 /* step 2: place SPICO into reset and enable off */
1267 sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x000000c0);
1268 /* step 3: remove reset, enable off, IMEM_CNTRL_EN on */
1269 sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000240);
1270 /* step 4: set starting IMEM address for burst download */
1271 sbus_request(dd, ra, 0x03, WRITE_SBUS_RECEIVER, 0x80000000);
1272 /* step 5: download the SBus Master machine code */
1273 for (i = 0; i < fdet->firmware_len; i += 4) {
1274 sbus_request(dd, ra, 0x14, WRITE_SBUS_RECEIVER,
1275 *(u32 *)&fdet->firmware_ptr[i]);
1276 }
1277 /* step 6: set IMEM_CNTL_EN off */
1278 sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000040);
1279 /* step 7: turn ECC on */
1280 sbus_request(dd, ra, 0x16, WRITE_SBUS_RECEIVER, 0x000c0000);
1281
1282 /* steps 8-11: run the RSA engine */
1283 err = run_rsa(dd, "SBus", fdet->signature);
1284 if (err)
1285 return err;
1286
1287 /* step 12: set SPICO_ENABLE on */
1288 sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000140);
1289
1290 return 0;
1291 }
1292
load_pcie_serdes_firmware(struct hfi1_devdata * dd,struct firmware_details * fdet)1293 static int load_pcie_serdes_firmware(struct hfi1_devdata *dd,
1294 struct firmware_details *fdet)
1295 {
1296 int i;
1297 const u8 ra = SBUS_MASTER_BROADCAST; /* receiver address */
1298
1299 dd_dev_info(dd, "Downloading PCIe firmware\n");
1300
1301 /* step 1: load security variables */
1302 load_security_variables(dd, fdet);
1303 /* step 2: assert single step (halts the SBus Master spico) */
1304 sbus_request(dd, ra, 0x05, WRITE_SBUS_RECEIVER, 0x00000001);
1305 /* step 3: enable XDMEM access */
1306 sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000d40);
1307 /* step 4: load firmware into SBus Master XDMEM */
1308 /*
1309 * NOTE: the dmem address, write_en, and wdata are all pre-packed,
1310 * we only need to pick up the bytes and write them
1311 */
1312 for (i = 0; i < fdet->firmware_len; i += 4) {
1313 sbus_request(dd, ra, 0x04, WRITE_SBUS_RECEIVER,
1314 *(u32 *)&fdet->firmware_ptr[i]);
1315 }
1316 /* step 5: disable XDMEM access */
1317 sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000140);
1318 /* step 6: allow SBus Spico to run */
1319 sbus_request(dd, ra, 0x05, WRITE_SBUS_RECEIVER, 0x00000000);
1320
1321 /*
1322 * steps 7-11: run RSA, if it succeeds, firmware is available to
1323 * be swapped
1324 */
1325 return run_rsa(dd, "PCIe serdes", fdet->signature);
1326 }
1327
1328 /*
1329 * Set the given broadcast values on the given list of devices.
1330 */
set_serdes_broadcast(struct hfi1_devdata * dd,u8 bg1,u8 bg2,const u8 * addrs,int count)1331 static void set_serdes_broadcast(struct hfi1_devdata *dd, u8 bg1, u8 bg2,
1332 const u8 *addrs, int count)
1333 {
1334 while (--count >= 0) {
1335 /*
1336 * Set BROADCAST_GROUP_1 and BROADCAST_GROUP_2, leave
1337 * defaults for everything else. Do not read-modify-write,
1338 * per instruction from the manufacturer.
1339 *
1340 * Register 0xfd:
1341 * bits what
1342 * ----- ---------------------------------
1343 * 0 IGNORE_BROADCAST (default 0)
1344 * 11:4 BROADCAST_GROUP_1 (default 0xff)
1345 * 23:16 BROADCAST_GROUP_2 (default 0xff)
1346 */
1347 sbus_request(dd, addrs[count], 0xfd, WRITE_SBUS_RECEIVER,
1348 (u32)bg1 << 4 | (u32)bg2 << 16);
1349 }
1350 }
1351
acquire_hw_mutex(struct hfi1_devdata * dd)1352 int acquire_hw_mutex(struct hfi1_devdata *dd)
1353 {
1354 unsigned long timeout;
1355 int try = 0;
1356 u8 mask = 1 << dd->hfi1_id;
1357 u8 user = (u8)read_csr(dd, ASIC_CFG_MUTEX);
1358
1359 if (user == mask) {
1360 dd_dev_info(dd,
1361 "Hardware mutex already acquired, mutex mask %u\n",
1362 (u32)mask);
1363 return 0;
1364 }
1365
1366 retry:
1367 timeout = msecs_to_jiffies(HM_TIMEOUT) + jiffies;
1368 while (1) {
1369 write_csr(dd, ASIC_CFG_MUTEX, mask);
1370 user = (u8)read_csr(dd, ASIC_CFG_MUTEX);
1371 if (user == mask)
1372 return 0; /* success */
1373 if (time_after(jiffies, timeout))
1374 break; /* timed out */
1375 msleep(20);
1376 }
1377
1378 /* timed out */
1379 dd_dev_err(dd,
1380 "Unable to acquire hardware mutex, mutex mask %u, my mask %u (%s)\n",
1381 (u32)user, (u32)mask, (try == 0) ? "retrying" : "giving up");
1382
1383 if (try == 0) {
1384 /* break mutex and retry */
1385 write_csr(dd, ASIC_CFG_MUTEX, 0);
1386 try++;
1387 goto retry;
1388 }
1389
1390 return -EBUSY;
1391 }
1392
release_hw_mutex(struct hfi1_devdata * dd)1393 void release_hw_mutex(struct hfi1_devdata *dd)
1394 {
1395 u8 mask = 1 << dd->hfi1_id;
1396 u8 user = (u8)read_csr(dd, ASIC_CFG_MUTEX);
1397
1398 if (user != mask)
1399 dd_dev_warn(dd,
1400 "Unable to release hardware mutex, mutex mask %u, my mask %u\n",
1401 (u32)user, (u32)mask);
1402 else
1403 write_csr(dd, ASIC_CFG_MUTEX, 0);
1404 }
1405
1406 /* return the given resource bit(s) as a mask for the given HFI */
resource_mask(u32 hfi1_id,u32 resource)1407 static inline u64 resource_mask(u32 hfi1_id, u32 resource)
1408 {
1409 return ((u64)resource) << (hfi1_id ? CR_DYN_SHIFT : 0);
1410 }
1411
fail_mutex_acquire_message(struct hfi1_devdata * dd,const char * func)1412 static void fail_mutex_acquire_message(struct hfi1_devdata *dd,
1413 const char *func)
1414 {
1415 dd_dev_err(dd,
1416 "%s: hardware mutex stuck - suggest rebooting the machine\n",
1417 func);
1418 }
1419
1420 /*
1421 * Acquire access to a chip resource.
1422 *
1423 * Return 0 on success, -EBUSY if resource busy, -EIO if mutex acquire failed.
1424 */
__acquire_chip_resource(struct hfi1_devdata * dd,u32 resource)1425 static int __acquire_chip_resource(struct hfi1_devdata *dd, u32 resource)
1426 {
1427 u64 scratch0, all_bits, my_bit;
1428 int ret;
1429
1430 if (resource & CR_DYN_MASK) {
1431 /* a dynamic resource is in use if either HFI has set the bit */
1432 if (dd->pcidev->device == PCI_DEVICE_ID_INTEL0 &&
1433 (resource & (CR_I2C1 | CR_I2C2))) {
1434 /* discrete devices must serialize across both chains */
1435 all_bits = resource_mask(0, CR_I2C1 | CR_I2C2) |
1436 resource_mask(1, CR_I2C1 | CR_I2C2);
1437 } else {
1438 all_bits = resource_mask(0, resource) |
1439 resource_mask(1, resource);
1440 }
1441 my_bit = resource_mask(dd->hfi1_id, resource);
1442 } else {
1443 /* non-dynamic resources are not split between HFIs */
1444 all_bits = resource;
1445 my_bit = resource;
1446 }
1447
1448 /* lock against other callers within the driver wanting a resource */
1449 mutex_lock(&dd->asic_data->asic_resource_mutex);
1450
1451 ret = acquire_hw_mutex(dd);
1452 if (ret) {
1453 fail_mutex_acquire_message(dd, __func__);
1454 ret = -EIO;
1455 goto done;
1456 }
1457
1458 scratch0 = read_csr(dd, ASIC_CFG_SCRATCH);
1459 if (scratch0 & all_bits) {
1460 ret = -EBUSY;
1461 } else {
1462 write_csr(dd, ASIC_CFG_SCRATCH, scratch0 | my_bit);
1463 /* force write to be visible to other HFI on another OS */
1464 (void)read_csr(dd, ASIC_CFG_SCRATCH);
1465 }
1466
1467 release_hw_mutex(dd);
1468
1469 done:
1470 mutex_unlock(&dd->asic_data->asic_resource_mutex);
1471 return ret;
1472 }
1473
1474 /*
1475 * Acquire access to a chip resource, wait up to mswait milliseconds for
1476 * the resource to become available.
1477 *
1478 * Return 0 on success, -EBUSY if busy (even after wait), -EIO if mutex
1479 * acquire failed.
1480 */
acquire_chip_resource(struct hfi1_devdata * dd,u32 resource,u32 mswait)1481 int acquire_chip_resource(struct hfi1_devdata *dd, u32 resource, u32 mswait)
1482 {
1483 unsigned long timeout;
1484 int ret;
1485
1486 timeout = jiffies + msecs_to_jiffies(mswait);
1487 while (1) {
1488 ret = __acquire_chip_resource(dd, resource);
1489 if (ret != -EBUSY)
1490 return ret;
1491 /* resource is busy, check our timeout */
1492 if (time_after_eq(jiffies, timeout))
1493 return -EBUSY;
1494 usleep_range(80, 120); /* arbitrary delay */
1495 }
1496 }
1497
1498 /*
1499 * Release access to a chip resource
1500 */
release_chip_resource(struct hfi1_devdata * dd,u32 resource)1501 void release_chip_resource(struct hfi1_devdata *dd, u32 resource)
1502 {
1503 u64 scratch0, bit;
1504
1505 /* only dynamic resources should ever be cleared */
1506 if (!(resource & CR_DYN_MASK)) {
1507 dd_dev_err(dd, "%s: invalid resource 0x%x\n", __func__,
1508 resource);
1509 return;
1510 }
1511 bit = resource_mask(dd->hfi1_id, resource);
1512
1513 /* lock against other callers within the driver wanting a resource */
1514 mutex_lock(&dd->asic_data->asic_resource_mutex);
1515
1516 if (acquire_hw_mutex(dd)) {
1517 fail_mutex_acquire_message(dd, __func__);
1518 goto done;
1519 }
1520
1521 scratch0 = read_csr(dd, ASIC_CFG_SCRATCH);
1522 if ((scratch0 & bit) != 0) {
1523 scratch0 &= ~bit;
1524 write_csr(dd, ASIC_CFG_SCRATCH, scratch0);
1525 /* force write to be visible to other HFI on another OS */
1526 (void)read_csr(dd, ASIC_CFG_SCRATCH);
1527 } else {
1528 dd_dev_warn(dd, "%s: id %d, resource 0x%x: bit not set\n",
1529 __func__, dd->hfi1_id, resource);
1530 }
1531
1532 release_hw_mutex(dd);
1533
1534 done:
1535 mutex_unlock(&dd->asic_data->asic_resource_mutex);
1536 }
1537
1538 /*
1539 * Return true if resource is set, false otherwise. Print a warning
1540 * if not set and a function is supplied.
1541 */
check_chip_resource(struct hfi1_devdata * dd,u32 resource,const char * func)1542 bool check_chip_resource(struct hfi1_devdata *dd, u32 resource,
1543 const char *func)
1544 {
1545 u64 scratch0, bit;
1546
1547 if (resource & CR_DYN_MASK)
1548 bit = resource_mask(dd->hfi1_id, resource);
1549 else
1550 bit = resource;
1551
1552 scratch0 = read_csr(dd, ASIC_CFG_SCRATCH);
1553 if ((scratch0 & bit) == 0) {
1554 if (func)
1555 dd_dev_warn(dd,
1556 "%s: id %d, resource 0x%x, not acquired!\n",
1557 func, dd->hfi1_id, resource);
1558 return false;
1559 }
1560 return true;
1561 }
1562
clear_chip_resources(struct hfi1_devdata * dd,const char * func)1563 static void clear_chip_resources(struct hfi1_devdata *dd, const char *func)
1564 {
1565 u64 scratch0;
1566
1567 /* lock against other callers within the driver wanting a resource */
1568 mutex_lock(&dd->asic_data->asic_resource_mutex);
1569
1570 if (acquire_hw_mutex(dd)) {
1571 fail_mutex_acquire_message(dd, func);
1572 goto done;
1573 }
1574
1575 /* clear all dynamic access bits for this HFI */
1576 scratch0 = read_csr(dd, ASIC_CFG_SCRATCH);
1577 scratch0 &= ~resource_mask(dd->hfi1_id, CR_DYN_MASK);
1578 write_csr(dd, ASIC_CFG_SCRATCH, scratch0);
1579 /* force write to be visible to other HFI on another OS */
1580 (void)read_csr(dd, ASIC_CFG_SCRATCH);
1581
1582 release_hw_mutex(dd);
1583
1584 done:
1585 mutex_unlock(&dd->asic_data->asic_resource_mutex);
1586 }
1587
init_chip_resources(struct hfi1_devdata * dd)1588 void init_chip_resources(struct hfi1_devdata *dd)
1589 {
1590 /* clear any holds left by us */
1591 clear_chip_resources(dd, __func__);
1592 }
1593
finish_chip_resources(struct hfi1_devdata * dd)1594 void finish_chip_resources(struct hfi1_devdata *dd)
1595 {
1596 /* clear any holds left by us */
1597 clear_chip_resources(dd, __func__);
1598 }
1599
set_sbus_fast_mode(struct hfi1_devdata * dd)1600 void set_sbus_fast_mode(struct hfi1_devdata *dd)
1601 {
1602 write_csr(dd, ASIC_CFG_SBUS_EXECUTE,
1603 ASIC_CFG_SBUS_EXECUTE_FAST_MODE_SMASK);
1604 }
1605
clear_sbus_fast_mode(struct hfi1_devdata * dd)1606 void clear_sbus_fast_mode(struct hfi1_devdata *dd)
1607 {
1608 u64 reg, count = 0;
1609
1610 reg = read_csr(dd, ASIC_STS_SBUS_COUNTERS);
1611 while (SBUS_COUNTER(reg, EXECUTE) !=
1612 SBUS_COUNTER(reg, RCV_DATA_VALID)) {
1613 if (count++ >= SBUS_MAX_POLL_COUNT)
1614 break;
1615 udelay(1);
1616 reg = read_csr(dd, ASIC_STS_SBUS_COUNTERS);
1617 }
1618 write_csr(dd, ASIC_CFG_SBUS_EXECUTE, 0);
1619 }
1620
load_firmware(struct hfi1_devdata * dd)1621 int load_firmware(struct hfi1_devdata *dd)
1622 {
1623 int ret;
1624
1625 if (fw_fabric_serdes_load) {
1626 ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
1627 if (ret)
1628 return ret;
1629
1630 set_sbus_fast_mode(dd);
1631
1632 set_serdes_broadcast(dd, all_fabric_serdes_broadcast,
1633 fabric_serdes_broadcast[dd->hfi1_id],
1634 fabric_serdes_addrs[dd->hfi1_id],
1635 NUM_FABRIC_SERDES);
1636 turn_off_spicos(dd, SPICO_FABRIC);
1637 do {
1638 ret = load_fabric_serdes_firmware(dd, &fw_fabric);
1639 } while (retry_firmware(dd, ret));
1640
1641 clear_sbus_fast_mode(dd);
1642 release_chip_resource(dd, CR_SBUS);
1643 if (ret)
1644 return ret;
1645 }
1646
1647 if (fw_8051_load) {
1648 do {
1649 ret = load_8051_firmware(dd, &fw_8051);
1650 } while (retry_firmware(dd, ret));
1651 if (ret)
1652 return ret;
1653 }
1654
1655 dump_fw_version(dd);
1656 return 0;
1657 }
1658
hfi1_firmware_init(struct hfi1_devdata * dd)1659 int hfi1_firmware_init(struct hfi1_devdata *dd)
1660 {
1661 /* only RTL can use these */
1662 if (dd->icode != ICODE_RTL_SILICON) {
1663 fw_fabric_serdes_load = 0;
1664 fw_pcie_serdes_load = 0;
1665 fw_sbus_load = 0;
1666 }
1667
1668 /* no 8051 or QSFP on simulator */
1669 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
1670 fw_8051_load = 0;
1671
1672 if (!fw_8051_name) {
1673 if (dd->icode == ICODE_RTL_SILICON)
1674 fw_8051_name = DEFAULT_FW_8051_NAME_ASIC;
1675 else
1676 fw_8051_name = DEFAULT_FW_8051_NAME_FPGA;
1677 }
1678 if (!fw_fabric_serdes_name)
1679 fw_fabric_serdes_name = DEFAULT_FW_FABRIC_NAME;
1680 if (!fw_sbus_name)
1681 fw_sbus_name = DEFAULT_FW_SBUS_NAME;
1682 if (!fw_pcie_serdes_name)
1683 fw_pcie_serdes_name = DEFAULT_FW_PCIE_NAME;
1684
1685 return obtain_firmware(dd);
1686 }
1687
1688 /*
1689 * This function is a helper function for parse_platform_config(...) and
1690 * does not check for validity of the platform configuration cache
1691 * (because we know it is invalid as we are building up the cache).
1692 * As such, this should not be called from anywhere other than
1693 * parse_platform_config
1694 */
check_meta_version(struct hfi1_devdata * dd,u32 * system_table)1695 static int check_meta_version(struct hfi1_devdata *dd, u32 *system_table)
1696 {
1697 u32 meta_ver, meta_ver_meta, ver_start, ver_len, mask;
1698 struct platform_config_cache *pcfgcache = &dd->pcfg_cache;
1699
1700 if (!system_table)
1701 return -EINVAL;
1702
1703 meta_ver_meta =
1704 *(pcfgcache->config_tables[PLATFORM_CONFIG_SYSTEM_TABLE].table_metadata
1705 + SYSTEM_TABLE_META_VERSION);
1706
1707 mask = ((1 << METADATA_TABLE_FIELD_START_LEN_BITS) - 1);
1708 ver_start = meta_ver_meta & mask;
1709
1710 meta_ver_meta >>= METADATA_TABLE_FIELD_LEN_SHIFT;
1711
1712 mask = ((1 << METADATA_TABLE_FIELD_LEN_LEN_BITS) - 1);
1713 ver_len = meta_ver_meta & mask;
1714
1715 ver_start /= 8;
1716 meta_ver = *((u8 *)system_table + ver_start) & ((1 << ver_len) - 1);
1717
1718 if (meta_ver < 4) {
1719 dd_dev_info(
1720 dd, "%s:Please update platform config\n", __func__);
1721 return -EINVAL;
1722 }
1723 return 0;
1724 }
1725
parse_platform_config(struct hfi1_devdata * dd)1726 int parse_platform_config(struct hfi1_devdata *dd)
1727 {
1728 struct platform_config_cache *pcfgcache = &dd->pcfg_cache;
1729 struct hfi1_pportdata *ppd = dd->pport;
1730 u32 *ptr = NULL;
1731 u32 header1 = 0, header2 = 0, magic_num = 0, crc = 0, file_length = 0;
1732 u32 record_idx = 0, table_type = 0, table_length_dwords = 0;
1733 int ret = -EINVAL; /* assume failure */
1734
1735 /*
1736 * For integrated devices that did not fall back to the default file,
1737 * the SI tuning information for active channels is acquired from the
1738 * scratch register bitmap, thus there is no platform config to parse.
1739 * Skip parsing in these situations.
1740 */
1741 if (ppd->config_from_scratch)
1742 return 0;
1743
1744 if (!dd->platform_config.data) {
1745 dd_dev_err(dd, "%s: Missing config file\n", __func__);
1746 goto bail;
1747 }
1748 ptr = (u32 *)dd->platform_config.data;
1749
1750 magic_num = *ptr;
1751 ptr++;
1752 if (magic_num != PLATFORM_CONFIG_MAGIC_NUM) {
1753 dd_dev_err(dd, "%s: Bad config file\n", __func__);
1754 goto bail;
1755 }
1756
1757 /* Field is file size in DWORDs */
1758 file_length = (*ptr) * 4;
1759
1760 /*
1761 * Length can't be larger than partition size. Assume platform
1762 * config format version 4 is being used. Interpret the file size
1763 * field as header instead by not moving the pointer.
1764 */
1765 if (file_length > MAX_PLATFORM_CONFIG_FILE_SIZE) {
1766 dd_dev_info(dd,
1767 "%s:File length out of bounds, using alternative format\n",
1768 __func__);
1769 file_length = PLATFORM_CONFIG_FORMAT_4_FILE_SIZE;
1770 } else {
1771 ptr++;
1772 }
1773
1774 if (file_length > dd->platform_config.size) {
1775 dd_dev_info(dd, "%s:File claims to be larger than read size\n",
1776 __func__);
1777 goto bail;
1778 } else if (file_length < dd->platform_config.size) {
1779 dd_dev_info(dd,
1780 "%s:File claims to be smaller than read size, continuing\n",
1781 __func__);
1782 }
1783 /* exactly equal, perfection */
1784
1785 /*
1786 * In both cases where we proceed, using the self-reported file length
1787 * is the safer option. In case of old format a predefined value is
1788 * being used.
1789 */
1790 while (ptr < (u32 *)(dd->platform_config.data + file_length)) {
1791 header1 = *ptr;
1792 header2 = *(ptr + 1);
1793 if (header1 != ~header2) {
1794 dd_dev_err(dd, "%s: Failed validation at offset %ld\n",
1795 __func__, (ptr - (u32 *)
1796 dd->platform_config.data));
1797 goto bail;
1798 }
1799
1800 record_idx = *ptr &
1801 ((1 << PLATFORM_CONFIG_HEADER_RECORD_IDX_LEN_BITS) - 1);
1802
1803 table_length_dwords = (*ptr >>
1804 PLATFORM_CONFIG_HEADER_TABLE_LENGTH_SHIFT) &
1805 ((1 << PLATFORM_CONFIG_HEADER_TABLE_LENGTH_LEN_BITS) - 1);
1806
1807 table_type = (*ptr >> PLATFORM_CONFIG_HEADER_TABLE_TYPE_SHIFT) &
1808 ((1 << PLATFORM_CONFIG_HEADER_TABLE_TYPE_LEN_BITS) - 1);
1809
1810 /* Done with this set of headers */
1811 ptr += 2;
1812
1813 if (record_idx) {
1814 /* data table */
1815 switch (table_type) {
1816 case PLATFORM_CONFIG_SYSTEM_TABLE:
1817 pcfgcache->config_tables[table_type].num_table =
1818 1;
1819 ret = check_meta_version(dd, ptr);
1820 if (ret)
1821 goto bail;
1822 break;
1823 case PLATFORM_CONFIG_PORT_TABLE:
1824 pcfgcache->config_tables[table_type].num_table =
1825 2;
1826 break;
1827 case PLATFORM_CONFIG_RX_PRESET_TABLE:
1828 case PLATFORM_CONFIG_TX_PRESET_TABLE:
1829 case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
1830 case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
1831 pcfgcache->config_tables[table_type].num_table =
1832 table_length_dwords;
1833 break;
1834 default:
1835 dd_dev_err(dd,
1836 "%s: Unknown data table %d, offset %ld\n",
1837 __func__, table_type,
1838 (ptr - (u32 *)
1839 dd->platform_config.data));
1840 goto bail; /* We don't trust this file now */
1841 }
1842 pcfgcache->config_tables[table_type].table = ptr;
1843 } else {
1844 /* metadata table */
1845 switch (table_type) {
1846 case PLATFORM_CONFIG_SYSTEM_TABLE:
1847 case PLATFORM_CONFIG_PORT_TABLE:
1848 case PLATFORM_CONFIG_RX_PRESET_TABLE:
1849 case PLATFORM_CONFIG_TX_PRESET_TABLE:
1850 case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
1851 case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
1852 break;
1853 default:
1854 dd_dev_err(dd,
1855 "%s: Unknown meta table %d, offset %ld\n",
1856 __func__, table_type,
1857 (ptr -
1858 (u32 *)dd->platform_config.data));
1859 goto bail; /* We don't trust this file now */
1860 }
1861 pcfgcache->config_tables[table_type].table_metadata =
1862 ptr;
1863 }
1864
1865 /* Calculate and check table crc */
1866 crc = crc32_le(~(u32)0, (unsigned char const *)ptr,
1867 (table_length_dwords * 4));
1868 crc ^= ~(u32)0;
1869
1870 /* Jump the table */
1871 ptr += table_length_dwords;
1872 if (crc != *ptr) {
1873 dd_dev_err(dd, "%s: Failed CRC check at offset %ld\n",
1874 __func__, (ptr -
1875 (u32 *)dd->platform_config.data));
1876 ret = -EINVAL;
1877 goto bail;
1878 }
1879 /* Jump the CRC DWORD */
1880 ptr++;
1881 }
1882
1883 pcfgcache->cache_valid = 1;
1884 return 0;
1885 bail:
1886 memset(pcfgcache, 0, sizeof(struct platform_config_cache));
1887 return ret;
1888 }
1889
get_integrated_platform_config_field(struct hfi1_devdata * dd,enum platform_config_table_type_encoding table_type,int field_index,u32 * data)1890 static void get_integrated_platform_config_field(
1891 struct hfi1_devdata *dd,
1892 enum platform_config_table_type_encoding table_type,
1893 int field_index, u32 *data)
1894 {
1895 struct hfi1_pportdata *ppd = dd->pport;
1896 u8 *cache = ppd->qsfp_info.cache;
1897 u32 tx_preset = 0;
1898
1899 switch (table_type) {
1900 case PLATFORM_CONFIG_SYSTEM_TABLE:
1901 if (field_index == SYSTEM_TABLE_QSFP_POWER_CLASS_MAX)
1902 *data = ppd->max_power_class;
1903 else if (field_index == SYSTEM_TABLE_QSFP_ATTENUATION_DEFAULT_25G)
1904 *data = ppd->default_atten;
1905 break;
1906 case PLATFORM_CONFIG_PORT_TABLE:
1907 if (field_index == PORT_TABLE_PORT_TYPE)
1908 *data = ppd->port_type;
1909 else if (field_index == PORT_TABLE_LOCAL_ATTEN_25G)
1910 *data = ppd->local_atten;
1911 else if (field_index == PORT_TABLE_REMOTE_ATTEN_25G)
1912 *data = ppd->remote_atten;
1913 break;
1914 case PLATFORM_CONFIG_RX_PRESET_TABLE:
1915 if (field_index == RX_PRESET_TABLE_QSFP_RX_CDR_APPLY)
1916 *data = (ppd->rx_preset & QSFP_RX_CDR_APPLY_SMASK) >>
1917 QSFP_RX_CDR_APPLY_SHIFT;
1918 else if (field_index == RX_PRESET_TABLE_QSFP_RX_EMP_APPLY)
1919 *data = (ppd->rx_preset & QSFP_RX_EMP_APPLY_SMASK) >>
1920 QSFP_RX_EMP_APPLY_SHIFT;
1921 else if (field_index == RX_PRESET_TABLE_QSFP_RX_AMP_APPLY)
1922 *data = (ppd->rx_preset & QSFP_RX_AMP_APPLY_SMASK) >>
1923 QSFP_RX_AMP_APPLY_SHIFT;
1924 else if (field_index == RX_PRESET_TABLE_QSFP_RX_CDR)
1925 *data = (ppd->rx_preset & QSFP_RX_CDR_SMASK) >>
1926 QSFP_RX_CDR_SHIFT;
1927 else if (field_index == RX_PRESET_TABLE_QSFP_RX_EMP)
1928 *data = (ppd->rx_preset & QSFP_RX_EMP_SMASK) >>
1929 QSFP_RX_EMP_SHIFT;
1930 else if (field_index == RX_PRESET_TABLE_QSFP_RX_AMP)
1931 *data = (ppd->rx_preset & QSFP_RX_AMP_SMASK) >>
1932 QSFP_RX_AMP_SHIFT;
1933 break;
1934 case PLATFORM_CONFIG_TX_PRESET_TABLE:
1935 if (cache[QSFP_EQ_INFO_OFFS] & 0x4)
1936 tx_preset = ppd->tx_preset_eq;
1937 else
1938 tx_preset = ppd->tx_preset_noeq;
1939 if (field_index == TX_PRESET_TABLE_PRECUR)
1940 *data = (tx_preset & TX_PRECUR_SMASK) >>
1941 TX_PRECUR_SHIFT;
1942 else if (field_index == TX_PRESET_TABLE_ATTN)
1943 *data = (tx_preset & TX_ATTN_SMASK) >>
1944 TX_ATTN_SHIFT;
1945 else if (field_index == TX_PRESET_TABLE_POSTCUR)
1946 *data = (tx_preset & TX_POSTCUR_SMASK) >>
1947 TX_POSTCUR_SHIFT;
1948 else if (field_index == TX_PRESET_TABLE_QSFP_TX_CDR_APPLY)
1949 *data = (tx_preset & QSFP_TX_CDR_APPLY_SMASK) >>
1950 QSFP_TX_CDR_APPLY_SHIFT;
1951 else if (field_index == TX_PRESET_TABLE_QSFP_TX_EQ_APPLY)
1952 *data = (tx_preset & QSFP_TX_EQ_APPLY_SMASK) >>
1953 QSFP_TX_EQ_APPLY_SHIFT;
1954 else if (field_index == TX_PRESET_TABLE_QSFP_TX_CDR)
1955 *data = (tx_preset & QSFP_TX_CDR_SMASK) >>
1956 QSFP_TX_CDR_SHIFT;
1957 else if (field_index == TX_PRESET_TABLE_QSFP_TX_EQ)
1958 *data = (tx_preset & QSFP_TX_EQ_SMASK) >>
1959 QSFP_TX_EQ_SHIFT;
1960 break;
1961 case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
1962 case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
1963 default:
1964 break;
1965 }
1966 }
1967
get_platform_fw_field_metadata(struct hfi1_devdata * dd,int table,int field,u32 * field_len_bits,u32 * field_start_bits)1968 static int get_platform_fw_field_metadata(struct hfi1_devdata *dd, int table,
1969 int field, u32 *field_len_bits,
1970 u32 *field_start_bits)
1971 {
1972 struct platform_config_cache *pcfgcache = &dd->pcfg_cache;
1973 u32 *src_ptr = NULL;
1974
1975 if (!pcfgcache->cache_valid)
1976 return -EINVAL;
1977
1978 switch (table) {
1979 case PLATFORM_CONFIG_SYSTEM_TABLE:
1980 case PLATFORM_CONFIG_PORT_TABLE:
1981 case PLATFORM_CONFIG_RX_PRESET_TABLE:
1982 case PLATFORM_CONFIG_TX_PRESET_TABLE:
1983 case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
1984 case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
1985 if (field && field < platform_config_table_limits[table])
1986 src_ptr =
1987 pcfgcache->config_tables[table].table_metadata + field;
1988 break;
1989 default:
1990 dd_dev_info(dd, "%s: Unknown table\n", __func__);
1991 break;
1992 }
1993
1994 if (!src_ptr)
1995 return -EINVAL;
1996
1997 if (field_start_bits)
1998 *field_start_bits = *src_ptr &
1999 ((1 << METADATA_TABLE_FIELD_START_LEN_BITS) - 1);
2000
2001 if (field_len_bits)
2002 *field_len_bits = (*src_ptr >> METADATA_TABLE_FIELD_LEN_SHIFT)
2003 & ((1 << METADATA_TABLE_FIELD_LEN_LEN_BITS) - 1);
2004
2005 return 0;
2006 }
2007
2008 /* This is the central interface to getting data out of the platform config
2009 * file. It depends on parse_platform_config() having populated the
2010 * platform_config_cache in hfi1_devdata, and checks the cache_valid member to
2011 * validate the sanity of the cache.
2012 *
2013 * The non-obvious parameters:
2014 * @table_index: Acts as a look up key into which instance of the tables the
2015 * relevant field is fetched from.
2016 *
2017 * This applies to the data tables that have multiple instances. The port table
2018 * is an exception to this rule as each HFI only has one port and thus the
2019 * relevant table can be distinguished by hfi_id.
2020 *
2021 * @data: pointer to memory that will be populated with the field requested.
2022 * @len: length of memory pointed by @data in bytes.
2023 */
get_platform_config_field(struct hfi1_devdata * dd,enum platform_config_table_type_encoding table_type,int table_index,int field_index,u32 * data,u32 len)2024 int get_platform_config_field(struct hfi1_devdata *dd,
2025 enum platform_config_table_type_encoding
2026 table_type, int table_index, int field_index,
2027 u32 *data, u32 len)
2028 {
2029 int ret = 0, wlen = 0, seek = 0;
2030 u32 field_len_bits = 0, field_start_bits = 0, *src_ptr = NULL;
2031 struct platform_config_cache *pcfgcache = &dd->pcfg_cache;
2032 struct hfi1_pportdata *ppd = dd->pport;
2033
2034 if (data)
2035 memset(data, 0, len);
2036 else
2037 return -EINVAL;
2038
2039 if (ppd->config_from_scratch) {
2040 /*
2041 * Use saved configuration from ppd for integrated platforms
2042 */
2043 get_integrated_platform_config_field(dd, table_type,
2044 field_index, data);
2045 return 0;
2046 }
2047
2048 ret = get_platform_fw_field_metadata(dd, table_type, field_index,
2049 &field_len_bits,
2050 &field_start_bits);
2051 if (ret)
2052 return -EINVAL;
2053
2054 /* Convert length to bits */
2055 len *= 8;
2056
2057 /* Our metadata function checked cache_valid and field_index for us */
2058 switch (table_type) {
2059 case PLATFORM_CONFIG_SYSTEM_TABLE:
2060 src_ptr = pcfgcache->config_tables[table_type].table;
2061
2062 if (field_index != SYSTEM_TABLE_QSFP_POWER_CLASS_MAX) {
2063 if (len < field_len_bits)
2064 return -EINVAL;
2065
2066 seek = field_start_bits / 8;
2067 wlen = field_len_bits / 8;
2068
2069 src_ptr = (u32 *)((u8 *)src_ptr + seek);
2070
2071 /*
2072 * We expect the field to be byte aligned and whole byte
2073 * lengths if we are here
2074 */
2075 memcpy(data, src_ptr, wlen);
2076 return 0;
2077 }
2078 break;
2079 case PLATFORM_CONFIG_PORT_TABLE:
2080 /* Port table is 4 DWORDS */
2081 src_ptr = dd->hfi1_id ?
2082 pcfgcache->config_tables[table_type].table + 4 :
2083 pcfgcache->config_tables[table_type].table;
2084 break;
2085 case PLATFORM_CONFIG_RX_PRESET_TABLE:
2086 case PLATFORM_CONFIG_TX_PRESET_TABLE:
2087 case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
2088 case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
2089 src_ptr = pcfgcache->config_tables[table_type].table;
2090
2091 if (table_index <
2092 pcfgcache->config_tables[table_type].num_table)
2093 src_ptr += table_index;
2094 else
2095 src_ptr = NULL;
2096 break;
2097 default:
2098 dd_dev_info(dd, "%s: Unknown table\n", __func__);
2099 break;
2100 }
2101
2102 if (!src_ptr || len < field_len_bits)
2103 return -EINVAL;
2104
2105 src_ptr += (field_start_bits / 32);
2106 *data = (*src_ptr >> (field_start_bits % 32)) &
2107 ((1 << field_len_bits) - 1);
2108
2109 return 0;
2110 }
2111
2112 /*
2113 * Download the firmware needed for the Gen3 PCIe SerDes. An update
2114 * to the SBus firmware is needed before updating the PCIe firmware.
2115 *
2116 * Note: caller must be holding the SBus resource.
2117 */
load_pcie_firmware(struct hfi1_devdata * dd)2118 int load_pcie_firmware(struct hfi1_devdata *dd)
2119 {
2120 int ret = 0;
2121
2122 /* both firmware loads below use the SBus */
2123 set_sbus_fast_mode(dd);
2124
2125 if (fw_sbus_load) {
2126 turn_off_spicos(dd, SPICO_SBUS);
2127 do {
2128 ret = load_sbus_firmware(dd, &fw_sbus);
2129 } while (retry_firmware(dd, ret));
2130 if (ret)
2131 goto done;
2132 }
2133
2134 if (fw_pcie_serdes_load) {
2135 dd_dev_info(dd, "Setting PCIe SerDes broadcast\n");
2136 set_serdes_broadcast(dd, all_pcie_serdes_broadcast,
2137 pcie_serdes_broadcast[dd->hfi1_id],
2138 pcie_serdes_addrs[dd->hfi1_id],
2139 NUM_PCIE_SERDES);
2140 do {
2141 ret = load_pcie_serdes_firmware(dd, &fw_pcie);
2142 } while (retry_firmware(dd, ret));
2143 if (ret)
2144 goto done;
2145 }
2146
2147 done:
2148 clear_sbus_fast_mode(dd);
2149
2150 return ret;
2151 }
2152
2153 /*
2154 * Read the GUID from the hardware, store it in dd.
2155 */
read_guid(struct hfi1_devdata * dd)2156 void read_guid(struct hfi1_devdata *dd)
2157 {
2158 /* Take the DC out of reset to get a valid GUID value */
2159 write_csr(dd, CCE_DC_CTRL, 0);
2160 (void)read_csr(dd, CCE_DC_CTRL);
2161
2162 dd->base_guid = read_csr(dd, DC_DC8051_CFG_LOCAL_GUID);
2163 dd_dev_info(dd, "GUID %llx",
2164 (unsigned long long)dd->base_guid);
2165 }
2166
2167 /* read and display firmware version info */
dump_fw_version(struct hfi1_devdata * dd)2168 static void dump_fw_version(struct hfi1_devdata *dd)
2169 {
2170 u32 pcie_vers[NUM_PCIE_SERDES];
2171 u32 fabric_vers[NUM_FABRIC_SERDES];
2172 u32 sbus_vers;
2173 int i;
2174 int all_same;
2175 int ret;
2176 u8 rcv_addr;
2177
2178 ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
2179 if (ret) {
2180 dd_dev_err(dd, "Unable to acquire SBus to read firmware versions\n");
2181 return;
2182 }
2183
2184 /* set fast mode */
2185 set_sbus_fast_mode(dd);
2186
2187 /* read version for SBus Master */
2188 sbus_request(dd, SBUS_MASTER_BROADCAST, 0x02, WRITE_SBUS_RECEIVER, 0);
2189 sbus_request(dd, SBUS_MASTER_BROADCAST, 0x07, WRITE_SBUS_RECEIVER, 0x1);
2190 /* wait for interrupt to be processed */
2191 usleep_range(10000, 11000);
2192 sbus_vers = sbus_read(dd, SBUS_MASTER_BROADCAST, 0x08, 0x1);
2193 dd_dev_info(dd, "SBus Master firmware version 0x%08x\n", sbus_vers);
2194
2195 /* read version for PCIe SerDes */
2196 all_same = 1;
2197 pcie_vers[0] = 0;
2198 for (i = 0; i < NUM_PCIE_SERDES; i++) {
2199 rcv_addr = pcie_serdes_addrs[dd->hfi1_id][i];
2200 sbus_request(dd, rcv_addr, 0x03, WRITE_SBUS_RECEIVER, 0);
2201 /* wait for interrupt to be processed */
2202 usleep_range(10000, 11000);
2203 pcie_vers[i] = sbus_read(dd, rcv_addr, 0x04, 0x0);
2204 if (i > 0 && pcie_vers[0] != pcie_vers[i])
2205 all_same = 0;
2206 }
2207
2208 if (all_same) {
2209 dd_dev_info(dd, "PCIe SerDes firmware version 0x%x\n",
2210 pcie_vers[0]);
2211 } else {
2212 dd_dev_warn(dd, "PCIe SerDes do not have the same firmware version\n");
2213 for (i = 0; i < NUM_PCIE_SERDES; i++) {
2214 dd_dev_info(dd,
2215 "PCIe SerDes lane %d firmware version 0x%x\n",
2216 i, pcie_vers[i]);
2217 }
2218 }
2219
2220 /* read version for fabric SerDes */
2221 all_same = 1;
2222 fabric_vers[0] = 0;
2223 for (i = 0; i < NUM_FABRIC_SERDES; i++) {
2224 rcv_addr = fabric_serdes_addrs[dd->hfi1_id][i];
2225 sbus_request(dd, rcv_addr, 0x03, WRITE_SBUS_RECEIVER, 0);
2226 /* wait for interrupt to be processed */
2227 usleep_range(10000, 11000);
2228 fabric_vers[i] = sbus_read(dd, rcv_addr, 0x04, 0x0);
2229 if (i > 0 && fabric_vers[0] != fabric_vers[i])
2230 all_same = 0;
2231 }
2232
2233 if (all_same) {
2234 dd_dev_info(dd, "Fabric SerDes firmware version 0x%x\n",
2235 fabric_vers[0]);
2236 } else {
2237 dd_dev_warn(dd, "Fabric SerDes do not have the same firmware version\n");
2238 for (i = 0; i < NUM_FABRIC_SERDES; i++) {
2239 dd_dev_info(dd,
2240 "Fabric SerDes lane %d firmware version 0x%x\n",
2241 i, fabric_vers[i]);
2242 }
2243 }
2244
2245 clear_sbus_fast_mode(dd);
2246 release_chip_resource(dd, CR_SBUS);
2247 }
2248