1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3 * Copyright 2014-2022 Advanced Micro Devices, Inc.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 *
23 */
24
25 #include <linux/ratelimit.h>
26 #include <linux/printk.h>
27 #include <linux/slab.h>
28 #include <linux/list.h>
29 #include <linux/types.h>
30 #include <linux/bitops.h>
31 #include <linux/sched.h>
32 #include "kfd_priv.h"
33 #include "kfd_device_queue_manager.h"
34 #include "kfd_mqd_manager.h"
35 #include "cik_regs.h"
36 #include "kfd_kernel_queue.h"
37 #include "amdgpu_amdkfd.h"
38 #include "mes_api_def.h"
39 #include "kfd_debug.h"
40
41 /* Size of the per-pipe EOP queue */
42 #define CIK_HPD_EOP_BYTES_LOG2 11
43 #define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2)
44
45 static int set_pasid_vmid_mapping(struct device_queue_manager *dqm,
46 u32 pasid, unsigned int vmid);
47
48 static int execute_queues_cpsch(struct device_queue_manager *dqm,
49 enum kfd_unmap_queues_filter filter,
50 uint32_t filter_param,
51 uint32_t grace_period);
52 static int unmap_queues_cpsch(struct device_queue_manager *dqm,
53 enum kfd_unmap_queues_filter filter,
54 uint32_t filter_param,
55 uint32_t grace_period,
56 bool reset);
57
58 static int map_queues_cpsch(struct device_queue_manager *dqm);
59
60 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
61 struct queue *q);
62
63 static inline void deallocate_hqd(struct device_queue_manager *dqm,
64 struct queue *q);
65 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q);
66 static int allocate_sdma_queue(struct device_queue_manager *dqm,
67 struct queue *q, const uint32_t *restore_sdma_id);
68 static void kfd_process_hw_exception(struct work_struct *work);
69
70 static inline
get_mqd_type_from_queue_type(enum kfd_queue_type type)71 enum KFD_MQD_TYPE get_mqd_type_from_queue_type(enum kfd_queue_type type)
72 {
73 if (type == KFD_QUEUE_TYPE_SDMA || type == KFD_QUEUE_TYPE_SDMA_XGMI)
74 return KFD_MQD_TYPE_SDMA;
75 return KFD_MQD_TYPE_CP;
76 }
77
is_pipe_enabled(struct device_queue_manager * dqm,int mec,int pipe)78 static bool is_pipe_enabled(struct device_queue_manager *dqm, int mec, int pipe)
79 {
80 int i;
81 int pipe_offset = (mec * dqm->dev->kfd->shared_resources.num_pipe_per_mec
82 + pipe) * dqm->dev->kfd->shared_resources.num_queue_per_pipe;
83
84 /* queue is available for KFD usage if bit is 1 */
85 for (i = 0; i < dqm->dev->kfd->shared_resources.num_queue_per_pipe; ++i)
86 if (test_bit(pipe_offset + i,
87 dqm->dev->kfd->shared_resources.cp_queue_bitmap))
88 return true;
89 return false;
90 }
91
get_cp_queues_num(struct device_queue_manager * dqm)92 unsigned int get_cp_queues_num(struct device_queue_manager *dqm)
93 {
94 return bitmap_weight(dqm->dev->kfd->shared_resources.cp_queue_bitmap,
95 KGD_MAX_QUEUES);
96 }
97
get_queues_per_pipe(struct device_queue_manager * dqm)98 unsigned int get_queues_per_pipe(struct device_queue_manager *dqm)
99 {
100 return dqm->dev->kfd->shared_resources.num_queue_per_pipe;
101 }
102
get_pipes_per_mec(struct device_queue_manager * dqm)103 unsigned int get_pipes_per_mec(struct device_queue_manager *dqm)
104 {
105 return dqm->dev->kfd->shared_resources.num_pipe_per_mec;
106 }
107
get_num_all_sdma_engines(struct device_queue_manager * dqm)108 static unsigned int get_num_all_sdma_engines(struct device_queue_manager *dqm)
109 {
110 return kfd_get_num_sdma_engines(dqm->dev) +
111 kfd_get_num_xgmi_sdma_engines(dqm->dev);
112 }
113
get_num_sdma_queues(struct device_queue_manager * dqm)114 unsigned int get_num_sdma_queues(struct device_queue_manager *dqm)
115 {
116 return kfd_get_num_sdma_engines(dqm->dev) *
117 dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
118 }
119
get_num_xgmi_sdma_queues(struct device_queue_manager * dqm)120 unsigned int get_num_xgmi_sdma_queues(struct device_queue_manager *dqm)
121 {
122 return kfd_get_num_xgmi_sdma_engines(dqm->dev) *
123 dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
124 }
125
init_sdma_bitmaps(struct device_queue_manager * dqm)126 static void init_sdma_bitmaps(struct device_queue_manager *dqm)
127 {
128 bitmap_zero(dqm->sdma_bitmap, KFD_MAX_SDMA_QUEUES);
129 bitmap_set(dqm->sdma_bitmap, 0, get_num_sdma_queues(dqm));
130
131 bitmap_zero(dqm->xgmi_sdma_bitmap, KFD_MAX_SDMA_QUEUES);
132 bitmap_set(dqm->xgmi_sdma_bitmap, 0, get_num_xgmi_sdma_queues(dqm));
133
134 /* Mask out the reserved queues */
135 bitmap_andnot(dqm->sdma_bitmap, dqm->sdma_bitmap,
136 dqm->dev->kfd->device_info.reserved_sdma_queues_bitmap,
137 KFD_MAX_SDMA_QUEUES);
138 }
139
program_sh_mem_settings(struct device_queue_manager * dqm,struct qcm_process_device * qpd)140 void program_sh_mem_settings(struct device_queue_manager *dqm,
141 struct qcm_process_device *qpd)
142 {
143 uint32_t xcc_mask = dqm->dev->xcc_mask;
144 int xcc_id;
145
146 for_each_inst(xcc_id, xcc_mask)
147 dqm->dev->kfd2kgd->program_sh_mem_settings(
148 dqm->dev->adev, qpd->vmid, qpd->sh_mem_config,
149 qpd->sh_mem_ape1_base, qpd->sh_mem_ape1_limit,
150 qpd->sh_mem_bases, xcc_id);
151 }
152
kfd_hws_hang(struct device_queue_manager * dqm)153 static void kfd_hws_hang(struct device_queue_manager *dqm)
154 {
155 /*
156 * Issue a GPU reset if HWS is unresponsive
157 */
158 dqm->is_hws_hang = true;
159
160 /* It's possible we're detecting a HWS hang in the
161 * middle of a GPU reset. No need to schedule another
162 * reset in this case.
163 */
164 if (!dqm->is_resetting)
165 schedule_work(&dqm->hw_exception_work);
166 }
167
convert_to_mes_queue_type(int queue_type)168 static int convert_to_mes_queue_type(int queue_type)
169 {
170 int mes_queue_type;
171
172 switch (queue_type) {
173 case KFD_QUEUE_TYPE_COMPUTE:
174 mes_queue_type = MES_QUEUE_TYPE_COMPUTE;
175 break;
176 case KFD_QUEUE_TYPE_SDMA:
177 mes_queue_type = MES_QUEUE_TYPE_SDMA;
178 break;
179 default:
180 WARN(1, "Invalid queue type %d", queue_type);
181 mes_queue_type = -EINVAL;
182 break;
183 }
184
185 return mes_queue_type;
186 }
187
add_queue_mes(struct device_queue_manager * dqm,struct queue * q,struct qcm_process_device * qpd)188 static int add_queue_mes(struct device_queue_manager *dqm, struct queue *q,
189 struct qcm_process_device *qpd)
190 {
191 struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev;
192 struct kfd_process_device *pdd = qpd_to_pdd(qpd);
193 struct mes_add_queue_input queue_input;
194 int r, queue_type;
195 uint64_t wptr_addr_off;
196
197 if (dqm->is_hws_hang)
198 return -EIO;
199
200 memset(&queue_input, 0x0, sizeof(struct mes_add_queue_input));
201 queue_input.process_id = qpd->pqm->process->pasid;
202 queue_input.page_table_base_addr = qpd->page_table_base;
203 queue_input.process_va_start = 0;
204 queue_input.process_va_end = adev->vm_manager.max_pfn - 1;
205 /* MES unit for quantum is 100ns */
206 queue_input.process_quantum = KFD_MES_PROCESS_QUANTUM; /* Equivalent to 10ms. */
207 queue_input.process_context_addr = pdd->proc_ctx_gpu_addr;
208 queue_input.gang_quantum = KFD_MES_GANG_QUANTUM; /* Equivalent to 1ms */
209 queue_input.gang_context_addr = q->gang_ctx_gpu_addr;
210 queue_input.inprocess_gang_priority = q->properties.priority;
211 queue_input.gang_global_priority_level =
212 AMDGPU_MES_PRIORITY_LEVEL_NORMAL;
213 queue_input.doorbell_offset = q->properties.doorbell_off;
214 queue_input.mqd_addr = q->gart_mqd_addr;
215 queue_input.wptr_addr = (uint64_t)q->properties.write_ptr;
216
217 if (q->wptr_bo) {
218 wptr_addr_off = (uint64_t)q->properties.write_ptr & (PAGE_SIZE - 1);
219 queue_input.wptr_mc_addr = amdgpu_bo_gpu_offset(q->wptr_bo) + wptr_addr_off;
220 }
221
222 queue_input.is_kfd_process = 1;
223 queue_input.is_aql_queue = (q->properties.format == KFD_QUEUE_FORMAT_AQL);
224 queue_input.queue_size = q->properties.queue_size >> 2;
225
226 queue_input.paging = false;
227 queue_input.tba_addr = qpd->tba_addr;
228 queue_input.tma_addr = qpd->tma_addr;
229 queue_input.trap_en = !kfd_dbg_has_cwsr_workaround(q->device);
230 queue_input.skip_process_ctx_clear = qpd->pqm->process->debug_trap_enabled ||
231 kfd_dbg_has_ttmps_always_setup(q->device);
232
233 queue_type = convert_to_mes_queue_type(q->properties.type);
234 if (queue_type < 0) {
235 pr_err("Queue type not supported with MES, queue:%d\n",
236 q->properties.type);
237 return -EINVAL;
238 }
239 queue_input.queue_type = (uint32_t)queue_type;
240
241 queue_input.exclusively_scheduled = q->properties.is_gws;
242
243 amdgpu_mes_lock(&adev->mes);
244 r = adev->mes.funcs->add_hw_queue(&adev->mes, &queue_input);
245 amdgpu_mes_unlock(&adev->mes);
246 if (r) {
247 pr_err("failed to add hardware queue to MES, doorbell=0x%x\n",
248 q->properties.doorbell_off);
249 pr_err("MES might be in unrecoverable state, issue a GPU reset\n");
250 kfd_hws_hang(dqm);
251 }
252
253 return r;
254 }
255
remove_queue_mes(struct device_queue_manager * dqm,struct queue * q,struct qcm_process_device * qpd)256 static int remove_queue_mes(struct device_queue_manager *dqm, struct queue *q,
257 struct qcm_process_device *qpd)
258 {
259 struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev;
260 int r;
261 struct mes_remove_queue_input queue_input;
262
263 if (dqm->is_hws_hang)
264 return -EIO;
265
266 memset(&queue_input, 0x0, sizeof(struct mes_remove_queue_input));
267 queue_input.doorbell_offset = q->properties.doorbell_off;
268 queue_input.gang_context_addr = q->gang_ctx_gpu_addr;
269
270 amdgpu_mes_lock(&adev->mes);
271 r = adev->mes.funcs->remove_hw_queue(&adev->mes, &queue_input);
272 amdgpu_mes_unlock(&adev->mes);
273
274 if (r) {
275 pr_err("failed to remove hardware queue from MES, doorbell=0x%x\n",
276 q->properties.doorbell_off);
277 pr_err("MES might be in unrecoverable state, issue a GPU reset\n");
278 kfd_hws_hang(dqm);
279 }
280
281 return r;
282 }
283
remove_all_queues_mes(struct device_queue_manager * dqm)284 static int remove_all_queues_mes(struct device_queue_manager *dqm)
285 {
286 struct device_process_node *cur;
287 struct qcm_process_device *qpd;
288 struct queue *q;
289 int retval = 0;
290
291 list_for_each_entry(cur, &dqm->queues, list) {
292 qpd = cur->qpd;
293 list_for_each_entry(q, &qpd->queues_list, list) {
294 if (q->properties.is_active) {
295 retval = remove_queue_mes(dqm, q, qpd);
296 if (retval) {
297 pr_err("%s: Failed to remove queue %d for dev %d",
298 __func__,
299 q->properties.queue_id,
300 dqm->dev->id);
301 return retval;
302 }
303 }
304 }
305 }
306
307 return retval;
308 }
309
increment_queue_count(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)310 static void increment_queue_count(struct device_queue_manager *dqm,
311 struct qcm_process_device *qpd,
312 struct queue *q)
313 {
314 dqm->active_queue_count++;
315 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
316 q->properties.type == KFD_QUEUE_TYPE_DIQ)
317 dqm->active_cp_queue_count++;
318
319 if (q->properties.is_gws) {
320 dqm->gws_queue_count++;
321 qpd->mapped_gws_queue = true;
322 }
323 }
324
decrement_queue_count(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)325 static void decrement_queue_count(struct device_queue_manager *dqm,
326 struct qcm_process_device *qpd,
327 struct queue *q)
328 {
329 dqm->active_queue_count--;
330 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
331 q->properties.type == KFD_QUEUE_TYPE_DIQ)
332 dqm->active_cp_queue_count--;
333
334 if (q->properties.is_gws) {
335 dqm->gws_queue_count--;
336 qpd->mapped_gws_queue = false;
337 }
338 }
339
340 /*
341 * Allocate a doorbell ID to this queue.
342 * If doorbell_id is passed in, make sure requested ID is valid then allocate it.
343 */
allocate_doorbell(struct qcm_process_device * qpd,struct queue * q,uint32_t const * restore_id)344 static int allocate_doorbell(struct qcm_process_device *qpd,
345 struct queue *q,
346 uint32_t const *restore_id)
347 {
348 struct kfd_node *dev = qpd->dqm->dev;
349
350 if (!KFD_IS_SOC15(dev)) {
351 /* On pre-SOC15 chips we need to use the queue ID to
352 * preserve the user mode ABI.
353 */
354
355 if (restore_id && *restore_id != q->properties.queue_id)
356 return -EINVAL;
357
358 q->doorbell_id = q->properties.queue_id;
359 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
360 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
361 /* For SDMA queues on SOC15 with 8-byte doorbell, use static
362 * doorbell assignments based on the engine and queue id.
363 * The doobell index distance between RLC (2*i) and (2*i+1)
364 * for a SDMA engine is 512.
365 */
366
367 uint32_t *idx_offset = dev->kfd->shared_resources.sdma_doorbell_idx;
368
369 /*
370 * q->properties.sdma_engine_id corresponds to the virtual
371 * sdma engine number. However, for doorbell allocation,
372 * we need the physical sdma engine id in order to get the
373 * correct doorbell offset.
374 */
375 uint32_t valid_id = idx_offset[qpd->dqm->dev->node_id *
376 get_num_all_sdma_engines(qpd->dqm) +
377 q->properties.sdma_engine_id]
378 + (q->properties.sdma_queue_id & 1)
379 * KFD_QUEUE_DOORBELL_MIRROR_OFFSET
380 + (q->properties.sdma_queue_id >> 1);
381
382 if (restore_id && *restore_id != valid_id)
383 return -EINVAL;
384 q->doorbell_id = valid_id;
385 } else {
386 /* For CP queues on SOC15 */
387 if (restore_id) {
388 /* make sure that ID is free */
389 if (__test_and_set_bit(*restore_id, qpd->doorbell_bitmap))
390 return -EINVAL;
391
392 q->doorbell_id = *restore_id;
393 } else {
394 /* or reserve a free doorbell ID */
395 unsigned int found;
396
397 found = find_first_zero_bit(qpd->doorbell_bitmap,
398 KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
399 if (found >= KFD_MAX_NUM_OF_QUEUES_PER_PROCESS) {
400 pr_debug("No doorbells available");
401 return -EBUSY;
402 }
403 set_bit(found, qpd->doorbell_bitmap);
404 q->doorbell_id = found;
405 }
406 }
407
408 q->properties.doorbell_off = amdgpu_doorbell_index_on_bar(dev->adev,
409 qpd->proc_doorbells,
410 q->doorbell_id);
411 return 0;
412 }
413
deallocate_doorbell(struct qcm_process_device * qpd,struct queue * q)414 static void deallocate_doorbell(struct qcm_process_device *qpd,
415 struct queue *q)
416 {
417 unsigned int old;
418 struct kfd_node *dev = qpd->dqm->dev;
419
420 if (!KFD_IS_SOC15(dev) ||
421 q->properties.type == KFD_QUEUE_TYPE_SDMA ||
422 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
423 return;
424
425 old = test_and_clear_bit(q->doorbell_id, qpd->doorbell_bitmap);
426 WARN_ON(!old);
427 }
428
program_trap_handler_settings(struct device_queue_manager * dqm,struct qcm_process_device * qpd)429 static void program_trap_handler_settings(struct device_queue_manager *dqm,
430 struct qcm_process_device *qpd)
431 {
432 uint32_t xcc_mask = dqm->dev->xcc_mask;
433 int xcc_id;
434
435 if (dqm->dev->kfd2kgd->program_trap_handler_settings)
436 for_each_inst(xcc_id, xcc_mask)
437 dqm->dev->kfd2kgd->program_trap_handler_settings(
438 dqm->dev->adev, qpd->vmid, qpd->tba_addr,
439 qpd->tma_addr, xcc_id);
440 }
441
allocate_vmid(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)442 static int allocate_vmid(struct device_queue_manager *dqm,
443 struct qcm_process_device *qpd,
444 struct queue *q)
445 {
446 int allocated_vmid = -1, i;
447
448 for (i = dqm->dev->vm_info.first_vmid_kfd;
449 i <= dqm->dev->vm_info.last_vmid_kfd; i++) {
450 if (!dqm->vmid_pasid[i]) {
451 allocated_vmid = i;
452 break;
453 }
454 }
455
456 if (allocated_vmid < 0) {
457 pr_err("no more vmid to allocate\n");
458 return -ENOSPC;
459 }
460
461 pr_debug("vmid allocated: %d\n", allocated_vmid);
462
463 dqm->vmid_pasid[allocated_vmid] = q->process->pasid;
464
465 set_pasid_vmid_mapping(dqm, q->process->pasid, allocated_vmid);
466
467 qpd->vmid = allocated_vmid;
468 q->properties.vmid = allocated_vmid;
469
470 program_sh_mem_settings(dqm, qpd);
471
472 if (KFD_IS_SOC15(dqm->dev) && dqm->dev->kfd->cwsr_enabled)
473 program_trap_handler_settings(dqm, qpd);
474
475 /* qpd->page_table_base is set earlier when register_process()
476 * is called, i.e. when the first queue is created.
477 */
478 dqm->dev->kfd2kgd->set_vm_context_page_table_base(dqm->dev->adev,
479 qpd->vmid,
480 qpd->page_table_base);
481 /* invalidate the VM context after pasid and vmid mapping is set up */
482 kfd_flush_tlb(qpd_to_pdd(qpd), TLB_FLUSH_LEGACY);
483
484 if (dqm->dev->kfd2kgd->set_scratch_backing_va)
485 dqm->dev->kfd2kgd->set_scratch_backing_va(dqm->dev->adev,
486 qpd->sh_hidden_private_base, qpd->vmid);
487
488 return 0;
489 }
490
flush_texture_cache_nocpsch(struct kfd_node * kdev,struct qcm_process_device * qpd)491 static int flush_texture_cache_nocpsch(struct kfd_node *kdev,
492 struct qcm_process_device *qpd)
493 {
494 const struct packet_manager_funcs *pmf = qpd->dqm->packet_mgr.pmf;
495 int ret;
496
497 if (!qpd->ib_kaddr)
498 return -ENOMEM;
499
500 ret = pmf->release_mem(qpd->ib_base, (uint32_t *)qpd->ib_kaddr);
501 if (ret)
502 return ret;
503
504 return amdgpu_amdkfd_submit_ib(kdev->adev, KGD_ENGINE_MEC1, qpd->vmid,
505 qpd->ib_base, (uint32_t *)qpd->ib_kaddr,
506 pmf->release_mem_size / sizeof(uint32_t));
507 }
508
deallocate_vmid(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)509 static void deallocate_vmid(struct device_queue_manager *dqm,
510 struct qcm_process_device *qpd,
511 struct queue *q)
512 {
513 /* On GFX v7, CP doesn't flush TC at dequeue */
514 if (q->device->adev->asic_type == CHIP_HAWAII)
515 if (flush_texture_cache_nocpsch(q->device, qpd))
516 pr_err("Failed to flush TC\n");
517
518 kfd_flush_tlb(qpd_to_pdd(qpd), TLB_FLUSH_LEGACY);
519
520 /* Release the vmid mapping */
521 set_pasid_vmid_mapping(dqm, 0, qpd->vmid);
522 dqm->vmid_pasid[qpd->vmid] = 0;
523
524 qpd->vmid = 0;
525 q->properties.vmid = 0;
526 }
527
create_queue_nocpsch(struct device_queue_manager * dqm,struct queue * q,struct qcm_process_device * qpd,const struct kfd_criu_queue_priv_data * qd,const void * restore_mqd,const void * restore_ctl_stack)528 static int create_queue_nocpsch(struct device_queue_manager *dqm,
529 struct queue *q,
530 struct qcm_process_device *qpd,
531 const struct kfd_criu_queue_priv_data *qd,
532 const void *restore_mqd, const void *restore_ctl_stack)
533 {
534 struct mqd_manager *mqd_mgr;
535 int retval;
536
537 dqm_lock(dqm);
538
539 if (dqm->total_queue_count >= max_num_of_queues_per_device) {
540 pr_warn("Can't create new usermode queue because %d queues were already created\n",
541 dqm->total_queue_count);
542 retval = -EPERM;
543 goto out_unlock;
544 }
545
546 if (list_empty(&qpd->queues_list)) {
547 retval = allocate_vmid(dqm, qpd, q);
548 if (retval)
549 goto out_unlock;
550 }
551 q->properties.vmid = qpd->vmid;
552 /*
553 * Eviction state logic: mark all queues as evicted, even ones
554 * not currently active. Restoring inactive queues later only
555 * updates the is_evicted flag but is a no-op otherwise.
556 */
557 q->properties.is_evicted = !!qpd->evicted;
558
559 q->properties.tba_addr = qpd->tba_addr;
560 q->properties.tma_addr = qpd->tma_addr;
561
562 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
563 q->properties.type)];
564 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) {
565 retval = allocate_hqd(dqm, q);
566 if (retval)
567 goto deallocate_vmid;
568 pr_debug("Loading mqd to hqd on pipe %d, queue %d\n",
569 q->pipe, q->queue);
570 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
571 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
572 retval = allocate_sdma_queue(dqm, q, qd ? &qd->sdma_id : NULL);
573 if (retval)
574 goto deallocate_vmid;
575 dqm->asic_ops.init_sdma_vm(dqm, q, qpd);
576 }
577
578 retval = allocate_doorbell(qpd, q, qd ? &qd->doorbell_id : NULL);
579 if (retval)
580 goto out_deallocate_hqd;
581
582 /* Temporarily release dqm lock to avoid a circular lock dependency */
583 dqm_unlock(dqm);
584 q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties);
585 dqm_lock(dqm);
586
587 if (!q->mqd_mem_obj) {
588 retval = -ENOMEM;
589 goto out_deallocate_doorbell;
590 }
591
592 if (qd)
593 mqd_mgr->restore_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, &q->gart_mqd_addr,
594 &q->properties, restore_mqd, restore_ctl_stack,
595 qd->ctl_stack_size);
596 else
597 mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj,
598 &q->gart_mqd_addr, &q->properties);
599
600 if (q->properties.is_active) {
601 if (!dqm->sched_running) {
602 WARN_ONCE(1, "Load non-HWS mqd while stopped\n");
603 goto add_queue_to_list;
604 }
605
606 if (WARN(q->process->mm != current->mm,
607 "should only run in user thread"))
608 retval = -EFAULT;
609 else
610 retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe,
611 q->queue, &q->properties, current->mm);
612 if (retval)
613 goto out_free_mqd;
614 }
615
616 add_queue_to_list:
617 list_add(&q->list, &qpd->queues_list);
618 qpd->queue_count++;
619 if (q->properties.is_active)
620 increment_queue_count(dqm, qpd, q);
621
622 /*
623 * Unconditionally increment this counter, regardless of the queue's
624 * type or whether the queue is active.
625 */
626 dqm->total_queue_count++;
627 pr_debug("Total of %d queues are accountable so far\n",
628 dqm->total_queue_count);
629 goto out_unlock;
630
631 out_free_mqd:
632 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
633 out_deallocate_doorbell:
634 deallocate_doorbell(qpd, q);
635 out_deallocate_hqd:
636 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
637 deallocate_hqd(dqm, q);
638 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
639 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
640 deallocate_sdma_queue(dqm, q);
641 deallocate_vmid:
642 if (list_empty(&qpd->queues_list))
643 deallocate_vmid(dqm, qpd, q);
644 out_unlock:
645 dqm_unlock(dqm);
646 return retval;
647 }
648
allocate_hqd(struct device_queue_manager * dqm,struct queue * q)649 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q)
650 {
651 bool set;
652 int pipe, bit, i;
653
654 set = false;
655
656 for (pipe = dqm->next_pipe_to_allocate, i = 0;
657 i < get_pipes_per_mec(dqm);
658 pipe = ((pipe + 1) % get_pipes_per_mec(dqm)), ++i) {
659
660 if (!is_pipe_enabled(dqm, 0, pipe))
661 continue;
662
663 if (dqm->allocated_queues[pipe] != 0) {
664 bit = ffs(dqm->allocated_queues[pipe]) - 1;
665 dqm->allocated_queues[pipe] &= ~(1 << bit);
666 q->pipe = pipe;
667 q->queue = bit;
668 set = true;
669 break;
670 }
671 }
672
673 if (!set)
674 return -EBUSY;
675
676 pr_debug("hqd slot - pipe %d, queue %d\n", q->pipe, q->queue);
677 /* horizontal hqd allocation */
678 dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_per_mec(dqm);
679
680 return 0;
681 }
682
deallocate_hqd(struct device_queue_manager * dqm,struct queue * q)683 static inline void deallocate_hqd(struct device_queue_manager *dqm,
684 struct queue *q)
685 {
686 dqm->allocated_queues[q->pipe] |= (1 << q->queue);
687 }
688
689 #define SQ_IND_CMD_CMD_KILL 0x00000003
690 #define SQ_IND_CMD_MODE_BROADCAST 0x00000001
691
dbgdev_wave_reset_wavefronts(struct kfd_node * dev,struct kfd_process * p)692 static int dbgdev_wave_reset_wavefronts(struct kfd_node *dev, struct kfd_process *p)
693 {
694 int status = 0;
695 unsigned int vmid;
696 uint16_t queried_pasid;
697 union SQ_CMD_BITS reg_sq_cmd;
698 union GRBM_GFX_INDEX_BITS reg_gfx_index;
699 struct kfd_process_device *pdd;
700 int first_vmid_to_scan = dev->vm_info.first_vmid_kfd;
701 int last_vmid_to_scan = dev->vm_info.last_vmid_kfd;
702 uint32_t xcc_mask = dev->xcc_mask;
703 int xcc_id;
704
705 reg_sq_cmd.u32All = 0;
706 reg_gfx_index.u32All = 0;
707
708 pr_debug("Killing all process wavefronts\n");
709
710 if (!dev->kfd2kgd->get_atc_vmid_pasid_mapping_info) {
711 pr_err("no vmid pasid mapping supported \n");
712 return -EOPNOTSUPP;
713 }
714
715 /* Scan all registers in the range ATC_VMID8_PASID_MAPPING ..
716 * ATC_VMID15_PASID_MAPPING
717 * to check which VMID the current process is mapped to.
718 */
719
720 for (vmid = first_vmid_to_scan; vmid <= last_vmid_to_scan; vmid++) {
721 status = dev->kfd2kgd->get_atc_vmid_pasid_mapping_info
722 (dev->adev, vmid, &queried_pasid);
723
724 if (status && queried_pasid == p->pasid) {
725 pr_debug("Killing wave fronts of vmid %d and pasid 0x%x\n",
726 vmid, p->pasid);
727 break;
728 }
729 }
730
731 if (vmid > last_vmid_to_scan) {
732 pr_err("Didn't find vmid for pasid 0x%x\n", p->pasid);
733 return -EFAULT;
734 }
735
736 /* taking the VMID for that process on the safe way using PDD */
737 pdd = kfd_get_process_device_data(dev, p);
738 if (!pdd)
739 return -EFAULT;
740
741 reg_gfx_index.bits.sh_broadcast_writes = 1;
742 reg_gfx_index.bits.se_broadcast_writes = 1;
743 reg_gfx_index.bits.instance_broadcast_writes = 1;
744 reg_sq_cmd.bits.mode = SQ_IND_CMD_MODE_BROADCAST;
745 reg_sq_cmd.bits.cmd = SQ_IND_CMD_CMD_KILL;
746 reg_sq_cmd.bits.vm_id = vmid;
747
748 for_each_inst(xcc_id, xcc_mask)
749 dev->kfd2kgd->wave_control_execute(
750 dev->adev, reg_gfx_index.u32All,
751 reg_sq_cmd.u32All, xcc_id);
752
753 return 0;
754 }
755
756 /* Access to DQM has to be locked before calling destroy_queue_nocpsch_locked
757 * to avoid asynchronized access
758 */
destroy_queue_nocpsch_locked(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)759 static int destroy_queue_nocpsch_locked(struct device_queue_manager *dqm,
760 struct qcm_process_device *qpd,
761 struct queue *q)
762 {
763 int retval;
764 struct mqd_manager *mqd_mgr;
765
766 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
767 q->properties.type)];
768
769 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
770 deallocate_hqd(dqm, q);
771 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
772 deallocate_sdma_queue(dqm, q);
773 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
774 deallocate_sdma_queue(dqm, q);
775 else {
776 pr_debug("q->properties.type %d is invalid\n",
777 q->properties.type);
778 return -EINVAL;
779 }
780 dqm->total_queue_count--;
781
782 deallocate_doorbell(qpd, q);
783
784 if (!dqm->sched_running) {
785 WARN_ONCE(1, "Destroy non-HWS queue while stopped\n");
786 return 0;
787 }
788
789 retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
790 KFD_PREEMPT_TYPE_WAVEFRONT_RESET,
791 KFD_UNMAP_LATENCY_MS,
792 q->pipe, q->queue);
793 if (retval == -ETIME)
794 qpd->reset_wavefronts = true;
795
796 list_del(&q->list);
797 if (list_empty(&qpd->queues_list)) {
798 if (qpd->reset_wavefronts) {
799 pr_warn("Resetting wave fronts (nocpsch) on dev %p\n",
800 dqm->dev);
801 /* dbgdev_wave_reset_wavefronts has to be called before
802 * deallocate_vmid(), i.e. when vmid is still in use.
803 */
804 dbgdev_wave_reset_wavefronts(dqm->dev,
805 qpd->pqm->process);
806 qpd->reset_wavefronts = false;
807 }
808
809 deallocate_vmid(dqm, qpd, q);
810 }
811 qpd->queue_count--;
812 if (q->properties.is_active)
813 decrement_queue_count(dqm, qpd, q);
814
815 return retval;
816 }
817
destroy_queue_nocpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)818 static int destroy_queue_nocpsch(struct device_queue_manager *dqm,
819 struct qcm_process_device *qpd,
820 struct queue *q)
821 {
822 int retval;
823 uint64_t sdma_val = 0;
824 struct kfd_process_device *pdd = qpd_to_pdd(qpd);
825 struct mqd_manager *mqd_mgr =
826 dqm->mqd_mgrs[get_mqd_type_from_queue_type(q->properties.type)];
827
828 /* Get the SDMA queue stats */
829 if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
830 (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
831 retval = read_sdma_queue_counter((uint64_t __user *)q->properties.read_ptr,
832 &sdma_val);
833 if (retval)
834 pr_err("Failed to read SDMA queue counter for queue: %d\n",
835 q->properties.queue_id);
836 }
837
838 dqm_lock(dqm);
839 retval = destroy_queue_nocpsch_locked(dqm, qpd, q);
840 if (!retval)
841 pdd->sdma_past_activity_counter += sdma_val;
842 dqm_unlock(dqm);
843
844 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
845
846 return retval;
847 }
848
update_queue(struct device_queue_manager * dqm,struct queue * q,struct mqd_update_info * minfo)849 static int update_queue(struct device_queue_manager *dqm, struct queue *q,
850 struct mqd_update_info *minfo)
851 {
852 int retval = 0;
853 struct mqd_manager *mqd_mgr;
854 struct kfd_process_device *pdd;
855 bool prev_active = false;
856
857 dqm_lock(dqm);
858 pdd = kfd_get_process_device_data(q->device, q->process);
859 if (!pdd) {
860 retval = -ENODEV;
861 goto out_unlock;
862 }
863 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
864 q->properties.type)];
865
866 /* Save previous activity state for counters */
867 prev_active = q->properties.is_active;
868
869 /* Make sure the queue is unmapped before updating the MQD */
870 if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) {
871 if (!dqm->dev->kfd->shared_resources.enable_mes)
872 retval = unmap_queues_cpsch(dqm,
873 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD, false);
874 else if (prev_active)
875 retval = remove_queue_mes(dqm, q, &pdd->qpd);
876
877 if (retval) {
878 pr_err("unmap queue failed\n");
879 goto out_unlock;
880 }
881 } else if (prev_active &&
882 (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
883 q->properties.type == KFD_QUEUE_TYPE_SDMA ||
884 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
885
886 if (!dqm->sched_running) {
887 WARN_ONCE(1, "Update non-HWS queue while stopped\n");
888 goto out_unlock;
889 }
890
891 retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
892 (dqm->dev->kfd->cwsr_enabled ?
893 KFD_PREEMPT_TYPE_WAVEFRONT_SAVE :
894 KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN),
895 KFD_UNMAP_LATENCY_MS, q->pipe, q->queue);
896 if (retval) {
897 pr_err("destroy mqd failed\n");
898 goto out_unlock;
899 }
900 }
901
902 mqd_mgr->update_mqd(mqd_mgr, q->mqd, &q->properties, minfo);
903
904 /*
905 * check active state vs. the previous state and modify
906 * counter accordingly. map_queues_cpsch uses the
907 * dqm->active_queue_count to determine whether a new runlist must be
908 * uploaded.
909 */
910 if (q->properties.is_active && !prev_active) {
911 increment_queue_count(dqm, &pdd->qpd, q);
912 } else if (!q->properties.is_active && prev_active) {
913 decrement_queue_count(dqm, &pdd->qpd, q);
914 } else if (q->gws && !q->properties.is_gws) {
915 if (q->properties.is_active) {
916 dqm->gws_queue_count++;
917 pdd->qpd.mapped_gws_queue = true;
918 }
919 q->properties.is_gws = true;
920 } else if (!q->gws && q->properties.is_gws) {
921 if (q->properties.is_active) {
922 dqm->gws_queue_count--;
923 pdd->qpd.mapped_gws_queue = false;
924 }
925 q->properties.is_gws = false;
926 }
927
928 if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) {
929 if (!dqm->dev->kfd->shared_resources.enable_mes)
930 retval = map_queues_cpsch(dqm);
931 else if (q->properties.is_active)
932 retval = add_queue_mes(dqm, q, &pdd->qpd);
933 } else if (q->properties.is_active &&
934 (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
935 q->properties.type == KFD_QUEUE_TYPE_SDMA ||
936 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
937 if (WARN(q->process->mm != current->mm,
938 "should only run in user thread"))
939 retval = -EFAULT;
940 else
941 retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd,
942 q->pipe, q->queue,
943 &q->properties, current->mm);
944 }
945
946 out_unlock:
947 dqm_unlock(dqm);
948 return retval;
949 }
950
951 /* suspend_single_queue does not lock the dqm like the
952 * evict_process_queues_cpsch or evict_process_queues_nocpsch. You should
953 * lock the dqm before calling, and unlock after calling.
954 *
955 * The reason we don't lock the dqm is because this function may be
956 * called on multiple queues in a loop, so rather than locking/unlocking
957 * multiple times, we will just keep the dqm locked for all of the calls.
958 */
suspend_single_queue(struct device_queue_manager * dqm,struct kfd_process_device * pdd,struct queue * q)959 static int suspend_single_queue(struct device_queue_manager *dqm,
960 struct kfd_process_device *pdd,
961 struct queue *q)
962 {
963 bool is_new;
964
965 if (q->properties.is_suspended)
966 return 0;
967
968 pr_debug("Suspending PASID %u queue [%i]\n",
969 pdd->process->pasid,
970 q->properties.queue_id);
971
972 is_new = q->properties.exception_status & KFD_EC_MASK(EC_QUEUE_NEW);
973
974 if (is_new || q->properties.is_being_destroyed) {
975 pr_debug("Suspend: skip %s queue id %i\n",
976 is_new ? "new" : "destroyed",
977 q->properties.queue_id);
978 return -EBUSY;
979 }
980
981 q->properties.is_suspended = true;
982 if (q->properties.is_active) {
983 if (dqm->dev->kfd->shared_resources.enable_mes) {
984 int r = remove_queue_mes(dqm, q, &pdd->qpd);
985
986 if (r)
987 return r;
988 }
989
990 decrement_queue_count(dqm, &pdd->qpd, q);
991 q->properties.is_active = false;
992 }
993
994 return 0;
995 }
996
997 /* resume_single_queue does not lock the dqm like the functions
998 * restore_process_queues_cpsch or restore_process_queues_nocpsch. You should
999 * lock the dqm before calling, and unlock after calling.
1000 *
1001 * The reason we don't lock the dqm is because this function may be
1002 * called on multiple queues in a loop, so rather than locking/unlocking
1003 * multiple times, we will just keep the dqm locked for all of the calls.
1004 */
resume_single_queue(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)1005 static int resume_single_queue(struct device_queue_manager *dqm,
1006 struct qcm_process_device *qpd,
1007 struct queue *q)
1008 {
1009 struct kfd_process_device *pdd;
1010
1011 if (!q->properties.is_suspended)
1012 return 0;
1013
1014 pdd = qpd_to_pdd(qpd);
1015
1016 pr_debug("Restoring from suspend PASID %u queue [%i]\n",
1017 pdd->process->pasid,
1018 q->properties.queue_id);
1019
1020 q->properties.is_suspended = false;
1021
1022 if (QUEUE_IS_ACTIVE(q->properties)) {
1023 if (dqm->dev->kfd->shared_resources.enable_mes) {
1024 int r = add_queue_mes(dqm, q, &pdd->qpd);
1025
1026 if (r)
1027 return r;
1028 }
1029
1030 q->properties.is_active = true;
1031 increment_queue_count(dqm, qpd, q);
1032 }
1033
1034 return 0;
1035 }
1036
evict_process_queues_nocpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1037 static int evict_process_queues_nocpsch(struct device_queue_manager *dqm,
1038 struct qcm_process_device *qpd)
1039 {
1040 struct queue *q;
1041 struct mqd_manager *mqd_mgr;
1042 struct kfd_process_device *pdd;
1043 int retval, ret = 0;
1044
1045 dqm_lock(dqm);
1046 if (qpd->evicted++ > 0) /* already evicted, do nothing */
1047 goto out;
1048
1049 pdd = qpd_to_pdd(qpd);
1050 pr_debug_ratelimited("Evicting PASID 0x%x queues\n",
1051 pdd->process->pasid);
1052
1053 pdd->last_evict_timestamp = get_jiffies_64();
1054 /* Mark all queues as evicted. Deactivate all active queues on
1055 * the qpd.
1056 */
1057 list_for_each_entry(q, &qpd->queues_list, list) {
1058 q->properties.is_evicted = true;
1059 if (!q->properties.is_active)
1060 continue;
1061
1062 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1063 q->properties.type)];
1064 q->properties.is_active = false;
1065 decrement_queue_count(dqm, qpd, q);
1066
1067 if (WARN_ONCE(!dqm->sched_running, "Evict when stopped\n"))
1068 continue;
1069
1070 retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
1071 (dqm->dev->kfd->cwsr_enabled ?
1072 KFD_PREEMPT_TYPE_WAVEFRONT_SAVE :
1073 KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN),
1074 KFD_UNMAP_LATENCY_MS, q->pipe, q->queue);
1075 if (retval && !ret)
1076 /* Return the first error, but keep going to
1077 * maintain a consistent eviction state
1078 */
1079 ret = retval;
1080 }
1081
1082 out:
1083 dqm_unlock(dqm);
1084 return ret;
1085 }
1086
evict_process_queues_cpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1087 static int evict_process_queues_cpsch(struct device_queue_manager *dqm,
1088 struct qcm_process_device *qpd)
1089 {
1090 struct queue *q;
1091 struct kfd_process_device *pdd;
1092 int retval = 0;
1093
1094 dqm_lock(dqm);
1095 if (qpd->evicted++ > 0) /* already evicted, do nothing */
1096 goto out;
1097
1098 pdd = qpd_to_pdd(qpd);
1099
1100 /* The debugger creates processes that temporarily have not acquired
1101 * all VMs for all devices and has no VMs itself.
1102 * Skip queue eviction on process eviction.
1103 */
1104 if (!pdd->drm_priv)
1105 goto out;
1106
1107 pr_debug_ratelimited("Evicting PASID 0x%x queues\n",
1108 pdd->process->pasid);
1109
1110 /* Mark all queues as evicted. Deactivate all active queues on
1111 * the qpd.
1112 */
1113 list_for_each_entry(q, &qpd->queues_list, list) {
1114 q->properties.is_evicted = true;
1115 if (!q->properties.is_active)
1116 continue;
1117
1118 q->properties.is_active = false;
1119 decrement_queue_count(dqm, qpd, q);
1120
1121 if (dqm->dev->kfd->shared_resources.enable_mes) {
1122 retval = remove_queue_mes(dqm, q, qpd);
1123 if (retval) {
1124 pr_err("Failed to evict queue %d\n",
1125 q->properties.queue_id);
1126 goto out;
1127 }
1128 }
1129 }
1130 pdd->last_evict_timestamp = get_jiffies_64();
1131 if (!dqm->dev->kfd->shared_resources.enable_mes)
1132 retval = execute_queues_cpsch(dqm,
1133 qpd->is_debug ?
1134 KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES :
1135 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
1136 USE_DEFAULT_GRACE_PERIOD);
1137
1138 out:
1139 dqm_unlock(dqm);
1140 return retval;
1141 }
1142
restore_process_queues_nocpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1143 static int restore_process_queues_nocpsch(struct device_queue_manager *dqm,
1144 struct qcm_process_device *qpd)
1145 {
1146 struct mm_struct *mm = NULL;
1147 struct queue *q;
1148 struct mqd_manager *mqd_mgr;
1149 struct kfd_process_device *pdd;
1150 uint64_t pd_base;
1151 uint64_t eviction_duration;
1152 int retval, ret = 0;
1153
1154 pdd = qpd_to_pdd(qpd);
1155 /* Retrieve PD base */
1156 pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv);
1157
1158 dqm_lock(dqm);
1159 if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */
1160 goto out;
1161 if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */
1162 qpd->evicted--;
1163 goto out;
1164 }
1165
1166 pr_debug_ratelimited("Restoring PASID 0x%x queues\n",
1167 pdd->process->pasid);
1168
1169 /* Update PD Base in QPD */
1170 qpd->page_table_base = pd_base;
1171 pr_debug("Updated PD address to 0x%llx\n", pd_base);
1172
1173 if (!list_empty(&qpd->queues_list)) {
1174 dqm->dev->kfd2kgd->set_vm_context_page_table_base(
1175 dqm->dev->adev,
1176 qpd->vmid,
1177 qpd->page_table_base);
1178 kfd_flush_tlb(pdd, TLB_FLUSH_LEGACY);
1179 }
1180
1181 /* Take a safe reference to the mm_struct, which may otherwise
1182 * disappear even while the kfd_process is still referenced.
1183 */
1184 mm = get_task_mm(pdd->process->lead_thread);
1185 if (!mm) {
1186 ret = -EFAULT;
1187 goto out;
1188 }
1189
1190 /* Remove the eviction flags. Activate queues that are not
1191 * inactive for other reasons.
1192 */
1193 list_for_each_entry(q, &qpd->queues_list, list) {
1194 q->properties.is_evicted = false;
1195 if (!QUEUE_IS_ACTIVE(q->properties))
1196 continue;
1197
1198 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1199 q->properties.type)];
1200 q->properties.is_active = true;
1201 increment_queue_count(dqm, qpd, q);
1202
1203 if (WARN_ONCE(!dqm->sched_running, "Restore when stopped\n"))
1204 continue;
1205
1206 retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe,
1207 q->queue, &q->properties, mm);
1208 if (retval && !ret)
1209 /* Return the first error, but keep going to
1210 * maintain a consistent eviction state
1211 */
1212 ret = retval;
1213 }
1214 qpd->evicted = 0;
1215 eviction_duration = get_jiffies_64() - pdd->last_evict_timestamp;
1216 atomic64_add(eviction_duration, &pdd->evict_duration_counter);
1217 out:
1218 if (mm)
1219 mmput(mm);
1220 dqm_unlock(dqm);
1221 return ret;
1222 }
1223
restore_process_queues_cpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1224 static int restore_process_queues_cpsch(struct device_queue_manager *dqm,
1225 struct qcm_process_device *qpd)
1226 {
1227 struct queue *q;
1228 struct kfd_process_device *pdd;
1229 uint64_t eviction_duration;
1230 int retval = 0;
1231
1232 pdd = qpd_to_pdd(qpd);
1233
1234 dqm_lock(dqm);
1235 if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */
1236 goto out;
1237 if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */
1238 qpd->evicted--;
1239 goto out;
1240 }
1241
1242 /* The debugger creates processes that temporarily have not acquired
1243 * all VMs for all devices and has no VMs itself.
1244 * Skip queue restore on process restore.
1245 */
1246 if (!pdd->drm_priv)
1247 goto vm_not_acquired;
1248
1249 pr_debug_ratelimited("Restoring PASID 0x%x queues\n",
1250 pdd->process->pasid);
1251
1252 /* Update PD Base in QPD */
1253 qpd->page_table_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv);
1254 pr_debug("Updated PD address to 0x%llx\n", qpd->page_table_base);
1255
1256 /* activate all active queues on the qpd */
1257 list_for_each_entry(q, &qpd->queues_list, list) {
1258 q->properties.is_evicted = false;
1259 if (!QUEUE_IS_ACTIVE(q->properties))
1260 continue;
1261
1262 q->properties.is_active = true;
1263 increment_queue_count(dqm, &pdd->qpd, q);
1264
1265 if (dqm->dev->kfd->shared_resources.enable_mes) {
1266 retval = add_queue_mes(dqm, q, qpd);
1267 if (retval) {
1268 pr_err("Failed to restore queue %d\n",
1269 q->properties.queue_id);
1270 goto out;
1271 }
1272 }
1273 }
1274 if (!dqm->dev->kfd->shared_resources.enable_mes)
1275 retval = execute_queues_cpsch(dqm,
1276 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD);
1277 eviction_duration = get_jiffies_64() - pdd->last_evict_timestamp;
1278 atomic64_add(eviction_duration, &pdd->evict_duration_counter);
1279 vm_not_acquired:
1280 qpd->evicted = 0;
1281 out:
1282 dqm_unlock(dqm);
1283 return retval;
1284 }
1285
register_process(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1286 static int register_process(struct device_queue_manager *dqm,
1287 struct qcm_process_device *qpd)
1288 {
1289 struct device_process_node *n;
1290 struct kfd_process_device *pdd;
1291 uint64_t pd_base;
1292 int retval;
1293
1294 n = kzalloc(sizeof(*n), GFP_KERNEL);
1295 if (!n)
1296 return -ENOMEM;
1297
1298 n->qpd = qpd;
1299
1300 pdd = qpd_to_pdd(qpd);
1301 /* Retrieve PD base */
1302 pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv);
1303
1304 dqm_lock(dqm);
1305 list_add(&n->list, &dqm->queues);
1306
1307 /* Update PD Base in QPD */
1308 qpd->page_table_base = pd_base;
1309 pr_debug("Updated PD address to 0x%llx\n", pd_base);
1310
1311 retval = dqm->asic_ops.update_qpd(dqm, qpd);
1312
1313 dqm->processes_count++;
1314
1315 dqm_unlock(dqm);
1316
1317 /* Outside the DQM lock because under the DQM lock we can't do
1318 * reclaim or take other locks that others hold while reclaiming.
1319 */
1320 kfd_inc_compute_active(dqm->dev);
1321
1322 return retval;
1323 }
1324
unregister_process(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1325 static int unregister_process(struct device_queue_manager *dqm,
1326 struct qcm_process_device *qpd)
1327 {
1328 int retval;
1329 struct device_process_node *cur, *next;
1330
1331 pr_debug("qpd->queues_list is %s\n",
1332 list_empty(&qpd->queues_list) ? "empty" : "not empty");
1333
1334 retval = 0;
1335 dqm_lock(dqm);
1336
1337 list_for_each_entry_safe(cur, next, &dqm->queues, list) {
1338 if (qpd == cur->qpd) {
1339 list_del(&cur->list);
1340 kfree(cur);
1341 dqm->processes_count--;
1342 goto out;
1343 }
1344 }
1345 /* qpd not found in dqm list */
1346 retval = 1;
1347 out:
1348 dqm_unlock(dqm);
1349
1350 /* Outside the DQM lock because under the DQM lock we can't do
1351 * reclaim or take other locks that others hold while reclaiming.
1352 */
1353 if (!retval)
1354 kfd_dec_compute_active(dqm->dev);
1355
1356 return retval;
1357 }
1358
1359 static int
set_pasid_vmid_mapping(struct device_queue_manager * dqm,u32 pasid,unsigned int vmid)1360 set_pasid_vmid_mapping(struct device_queue_manager *dqm, u32 pasid,
1361 unsigned int vmid)
1362 {
1363 uint32_t xcc_mask = dqm->dev->xcc_mask;
1364 int xcc_id, ret;
1365
1366 for_each_inst(xcc_id, xcc_mask) {
1367 ret = dqm->dev->kfd2kgd->set_pasid_vmid_mapping(
1368 dqm->dev->adev, pasid, vmid, xcc_id);
1369 if (ret)
1370 break;
1371 }
1372
1373 return ret;
1374 }
1375
init_interrupts(struct device_queue_manager * dqm)1376 static void init_interrupts(struct device_queue_manager *dqm)
1377 {
1378 uint32_t xcc_mask = dqm->dev->xcc_mask;
1379 unsigned int i, xcc_id;
1380
1381 for_each_inst(xcc_id, xcc_mask) {
1382 for (i = 0 ; i < get_pipes_per_mec(dqm) ; i++) {
1383 if (is_pipe_enabled(dqm, 0, i)) {
1384 dqm->dev->kfd2kgd->init_interrupts(
1385 dqm->dev->adev, i, xcc_id);
1386 }
1387 }
1388 }
1389 }
1390
initialize_nocpsch(struct device_queue_manager * dqm)1391 static int initialize_nocpsch(struct device_queue_manager *dqm)
1392 {
1393 int pipe, queue;
1394
1395 pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm));
1396
1397 dqm->allocated_queues = kcalloc(get_pipes_per_mec(dqm),
1398 sizeof(unsigned int), GFP_KERNEL);
1399 if (!dqm->allocated_queues)
1400 return -ENOMEM;
1401
1402 mutex_init(&dqm->lock_hidden);
1403 INIT_LIST_HEAD(&dqm->queues);
1404 dqm->active_queue_count = dqm->next_pipe_to_allocate = 0;
1405 dqm->active_cp_queue_count = 0;
1406 dqm->gws_queue_count = 0;
1407
1408 for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) {
1409 int pipe_offset = pipe * get_queues_per_pipe(dqm);
1410
1411 for (queue = 0; queue < get_queues_per_pipe(dqm); queue++)
1412 if (test_bit(pipe_offset + queue,
1413 dqm->dev->kfd->shared_resources.cp_queue_bitmap))
1414 dqm->allocated_queues[pipe] |= 1 << queue;
1415 }
1416
1417 memset(dqm->vmid_pasid, 0, sizeof(dqm->vmid_pasid));
1418
1419 init_sdma_bitmaps(dqm);
1420
1421 return 0;
1422 }
1423
uninitialize(struct device_queue_manager * dqm)1424 static void uninitialize(struct device_queue_manager *dqm)
1425 {
1426 int i;
1427
1428 WARN_ON(dqm->active_queue_count > 0 || dqm->processes_count > 0);
1429
1430 kfree(dqm->allocated_queues);
1431 for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++)
1432 kfree(dqm->mqd_mgrs[i]);
1433 mutex_destroy(&dqm->lock_hidden);
1434 }
1435
start_nocpsch(struct device_queue_manager * dqm)1436 static int start_nocpsch(struct device_queue_manager *dqm)
1437 {
1438 int r = 0;
1439
1440 pr_info("SW scheduler is used");
1441 init_interrupts(dqm);
1442
1443 if (dqm->dev->adev->asic_type == CHIP_HAWAII)
1444 r = pm_init(&dqm->packet_mgr, dqm);
1445 if (!r)
1446 dqm->sched_running = true;
1447
1448 return r;
1449 }
1450
stop_nocpsch(struct device_queue_manager * dqm)1451 static int stop_nocpsch(struct device_queue_manager *dqm)
1452 {
1453 dqm_lock(dqm);
1454 if (!dqm->sched_running) {
1455 dqm_unlock(dqm);
1456 return 0;
1457 }
1458
1459 if (dqm->dev->adev->asic_type == CHIP_HAWAII)
1460 pm_uninit(&dqm->packet_mgr, false);
1461 dqm->sched_running = false;
1462 dqm_unlock(dqm);
1463
1464 return 0;
1465 }
1466
pre_reset(struct device_queue_manager * dqm)1467 static void pre_reset(struct device_queue_manager *dqm)
1468 {
1469 dqm_lock(dqm);
1470 dqm->is_resetting = true;
1471 dqm_unlock(dqm);
1472 }
1473
allocate_sdma_queue(struct device_queue_manager * dqm,struct queue * q,const uint32_t * restore_sdma_id)1474 static int allocate_sdma_queue(struct device_queue_manager *dqm,
1475 struct queue *q, const uint32_t *restore_sdma_id)
1476 {
1477 int bit;
1478
1479 if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
1480 if (bitmap_empty(dqm->sdma_bitmap, KFD_MAX_SDMA_QUEUES)) {
1481 pr_err("No more SDMA queue to allocate\n");
1482 return -ENOMEM;
1483 }
1484
1485 if (restore_sdma_id) {
1486 /* Re-use existing sdma_id */
1487 if (!test_bit(*restore_sdma_id, dqm->sdma_bitmap)) {
1488 pr_err("SDMA queue already in use\n");
1489 return -EBUSY;
1490 }
1491 clear_bit(*restore_sdma_id, dqm->sdma_bitmap);
1492 q->sdma_id = *restore_sdma_id;
1493 } else {
1494 /* Find first available sdma_id */
1495 bit = find_first_bit(dqm->sdma_bitmap,
1496 get_num_sdma_queues(dqm));
1497 clear_bit(bit, dqm->sdma_bitmap);
1498 q->sdma_id = bit;
1499 }
1500
1501 q->properties.sdma_engine_id =
1502 q->sdma_id % kfd_get_num_sdma_engines(dqm->dev);
1503 q->properties.sdma_queue_id = q->sdma_id /
1504 kfd_get_num_sdma_engines(dqm->dev);
1505 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1506 if (bitmap_empty(dqm->xgmi_sdma_bitmap, KFD_MAX_SDMA_QUEUES)) {
1507 pr_err("No more XGMI SDMA queue to allocate\n");
1508 return -ENOMEM;
1509 }
1510 if (restore_sdma_id) {
1511 /* Re-use existing sdma_id */
1512 if (!test_bit(*restore_sdma_id, dqm->xgmi_sdma_bitmap)) {
1513 pr_err("SDMA queue already in use\n");
1514 return -EBUSY;
1515 }
1516 clear_bit(*restore_sdma_id, dqm->xgmi_sdma_bitmap);
1517 q->sdma_id = *restore_sdma_id;
1518 } else {
1519 bit = find_first_bit(dqm->xgmi_sdma_bitmap,
1520 get_num_xgmi_sdma_queues(dqm));
1521 clear_bit(bit, dqm->xgmi_sdma_bitmap);
1522 q->sdma_id = bit;
1523 }
1524 /* sdma_engine_id is sdma id including
1525 * both PCIe-optimized SDMAs and XGMI-
1526 * optimized SDMAs. The calculation below
1527 * assumes the first N engines are always
1528 * PCIe-optimized ones
1529 */
1530 q->properties.sdma_engine_id =
1531 kfd_get_num_sdma_engines(dqm->dev) +
1532 q->sdma_id % kfd_get_num_xgmi_sdma_engines(dqm->dev);
1533 q->properties.sdma_queue_id = q->sdma_id /
1534 kfd_get_num_xgmi_sdma_engines(dqm->dev);
1535 }
1536
1537 pr_debug("SDMA engine id: %d\n", q->properties.sdma_engine_id);
1538 pr_debug("SDMA queue id: %d\n", q->properties.sdma_queue_id);
1539
1540 return 0;
1541 }
1542
deallocate_sdma_queue(struct device_queue_manager * dqm,struct queue * q)1543 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
1544 struct queue *q)
1545 {
1546 if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
1547 if (q->sdma_id >= get_num_sdma_queues(dqm))
1548 return;
1549 set_bit(q->sdma_id, dqm->sdma_bitmap);
1550 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1551 if (q->sdma_id >= get_num_xgmi_sdma_queues(dqm))
1552 return;
1553 set_bit(q->sdma_id, dqm->xgmi_sdma_bitmap);
1554 }
1555 }
1556
1557 /*
1558 * Device Queue Manager implementation for cp scheduler
1559 */
1560
set_sched_resources(struct device_queue_manager * dqm)1561 static int set_sched_resources(struct device_queue_manager *dqm)
1562 {
1563 int i, mec;
1564 struct scheduling_resources res;
1565
1566 res.vmid_mask = dqm->dev->compute_vmid_bitmap;
1567
1568 res.queue_mask = 0;
1569 for (i = 0; i < KGD_MAX_QUEUES; ++i) {
1570 mec = (i / dqm->dev->kfd->shared_resources.num_queue_per_pipe)
1571 / dqm->dev->kfd->shared_resources.num_pipe_per_mec;
1572
1573 if (!test_bit(i, dqm->dev->kfd->shared_resources.cp_queue_bitmap))
1574 continue;
1575
1576 /* only acquire queues from the first MEC */
1577 if (mec > 0)
1578 continue;
1579
1580 /* This situation may be hit in the future if a new HW
1581 * generation exposes more than 64 queues. If so, the
1582 * definition of res.queue_mask needs updating
1583 */
1584 if (WARN_ON(i >= (sizeof(res.queue_mask)*8))) {
1585 pr_err("Invalid queue enabled by amdgpu: %d\n", i);
1586 break;
1587 }
1588
1589 res.queue_mask |= 1ull
1590 << amdgpu_queue_mask_bit_to_set_resource_bit(
1591 dqm->dev->adev, i);
1592 }
1593 res.gws_mask = ~0ull;
1594 res.oac_mask = res.gds_heap_base = res.gds_heap_size = 0;
1595
1596 pr_debug("Scheduling resources:\n"
1597 "vmid mask: 0x%8X\n"
1598 "queue mask: 0x%8llX\n",
1599 res.vmid_mask, res.queue_mask);
1600
1601 return pm_send_set_resources(&dqm->packet_mgr, &res);
1602 }
1603
initialize_cpsch(struct device_queue_manager * dqm)1604 static int initialize_cpsch(struct device_queue_manager *dqm)
1605 {
1606 pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm));
1607
1608 mutex_init(&dqm->lock_hidden);
1609 INIT_LIST_HEAD(&dqm->queues);
1610 dqm->active_queue_count = dqm->processes_count = 0;
1611 dqm->active_cp_queue_count = 0;
1612 dqm->gws_queue_count = 0;
1613 dqm->active_runlist = false;
1614 INIT_WORK(&dqm->hw_exception_work, kfd_process_hw_exception);
1615 dqm->trap_debug_vmid = 0;
1616
1617 init_sdma_bitmaps(dqm);
1618
1619 if (dqm->dev->kfd2kgd->get_iq_wait_times)
1620 dqm->dev->kfd2kgd->get_iq_wait_times(dqm->dev->adev,
1621 &dqm->wait_times,
1622 ffs(dqm->dev->xcc_mask) - 1);
1623 return 0;
1624 }
1625
start_cpsch(struct device_queue_manager * dqm)1626 static int start_cpsch(struct device_queue_manager *dqm)
1627 {
1628 int retval;
1629
1630 retval = 0;
1631
1632 dqm_lock(dqm);
1633
1634 if (!dqm->dev->kfd->shared_resources.enable_mes) {
1635 retval = pm_init(&dqm->packet_mgr, dqm);
1636 if (retval)
1637 goto fail_packet_manager_init;
1638
1639 retval = set_sched_resources(dqm);
1640 if (retval)
1641 goto fail_set_sched_resources;
1642 }
1643 pr_debug("Allocating fence memory\n");
1644
1645 /* allocate fence memory on the gart */
1646 retval = kfd_gtt_sa_allocate(dqm->dev, sizeof(*dqm->fence_addr),
1647 &dqm->fence_mem);
1648
1649 if (retval)
1650 goto fail_allocate_vidmem;
1651
1652 dqm->fence_addr = (uint64_t *)dqm->fence_mem->cpu_ptr;
1653 dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr;
1654
1655 init_interrupts(dqm);
1656
1657 /* clear hang status when driver try to start the hw scheduler */
1658 dqm->is_hws_hang = false;
1659 dqm->is_resetting = false;
1660 dqm->sched_running = true;
1661
1662 if (!dqm->dev->kfd->shared_resources.enable_mes)
1663 execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD);
1664
1665 /* Set CWSR grace period to 1x1000 cycle for GFX9.4.3 APU */
1666 if (amdgpu_emu_mode == 0 && dqm->dev->adev->gmc.is_app_apu &&
1667 (KFD_GC_VERSION(dqm->dev) == IP_VERSION(9, 4, 3))) {
1668 uint32_t reg_offset = 0;
1669 uint32_t grace_period = 1;
1670
1671 retval = pm_update_grace_period(&dqm->packet_mgr,
1672 grace_period);
1673 if (retval)
1674 pr_err("Setting grace timeout failed\n");
1675 else if (dqm->dev->kfd2kgd->build_grace_period_packet_info)
1676 /* Update dqm->wait_times maintained in software */
1677 dqm->dev->kfd2kgd->build_grace_period_packet_info(
1678 dqm->dev->adev, dqm->wait_times,
1679 grace_period, ®_offset,
1680 &dqm->wait_times);
1681 }
1682
1683 dqm_unlock(dqm);
1684
1685 return 0;
1686 fail_allocate_vidmem:
1687 fail_set_sched_resources:
1688 if (!dqm->dev->kfd->shared_resources.enable_mes)
1689 pm_uninit(&dqm->packet_mgr, false);
1690 fail_packet_manager_init:
1691 dqm_unlock(dqm);
1692 return retval;
1693 }
1694
stop_cpsch(struct device_queue_manager * dqm)1695 static int stop_cpsch(struct device_queue_manager *dqm)
1696 {
1697 bool hanging;
1698
1699 dqm_lock(dqm);
1700 if (!dqm->sched_running) {
1701 dqm_unlock(dqm);
1702 return 0;
1703 }
1704
1705 if (!dqm->is_hws_hang) {
1706 if (!dqm->dev->kfd->shared_resources.enable_mes)
1707 unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD, false);
1708 else
1709 remove_all_queues_mes(dqm);
1710 }
1711
1712 hanging = dqm->is_hws_hang || dqm->is_resetting;
1713 dqm->sched_running = false;
1714
1715 if (!dqm->dev->kfd->shared_resources.enable_mes)
1716 pm_release_ib(&dqm->packet_mgr);
1717
1718 kfd_gtt_sa_free(dqm->dev, dqm->fence_mem);
1719 if (!dqm->dev->kfd->shared_resources.enable_mes)
1720 pm_uninit(&dqm->packet_mgr, hanging);
1721 dqm_unlock(dqm);
1722
1723 return 0;
1724 }
1725
create_kernel_queue_cpsch(struct device_queue_manager * dqm,struct kernel_queue * kq,struct qcm_process_device * qpd)1726 static int create_kernel_queue_cpsch(struct device_queue_manager *dqm,
1727 struct kernel_queue *kq,
1728 struct qcm_process_device *qpd)
1729 {
1730 dqm_lock(dqm);
1731 if (dqm->total_queue_count >= max_num_of_queues_per_device) {
1732 pr_warn("Can't create new kernel queue because %d queues were already created\n",
1733 dqm->total_queue_count);
1734 dqm_unlock(dqm);
1735 return -EPERM;
1736 }
1737
1738 /*
1739 * Unconditionally increment this counter, regardless of the queue's
1740 * type or whether the queue is active.
1741 */
1742 dqm->total_queue_count++;
1743 pr_debug("Total of %d queues are accountable so far\n",
1744 dqm->total_queue_count);
1745
1746 list_add(&kq->list, &qpd->priv_queue_list);
1747 increment_queue_count(dqm, qpd, kq->queue);
1748 qpd->is_debug = true;
1749 execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
1750 USE_DEFAULT_GRACE_PERIOD);
1751 dqm_unlock(dqm);
1752
1753 return 0;
1754 }
1755
destroy_kernel_queue_cpsch(struct device_queue_manager * dqm,struct kernel_queue * kq,struct qcm_process_device * qpd)1756 static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm,
1757 struct kernel_queue *kq,
1758 struct qcm_process_device *qpd)
1759 {
1760 dqm_lock(dqm);
1761 list_del(&kq->list);
1762 decrement_queue_count(dqm, qpd, kq->queue);
1763 qpd->is_debug = false;
1764 execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0,
1765 USE_DEFAULT_GRACE_PERIOD);
1766 /*
1767 * Unconditionally decrement this counter, regardless of the queue's
1768 * type.
1769 */
1770 dqm->total_queue_count--;
1771 pr_debug("Total of %d queues are accountable so far\n",
1772 dqm->total_queue_count);
1773 dqm_unlock(dqm);
1774 }
1775
create_queue_cpsch(struct device_queue_manager * dqm,struct queue * q,struct qcm_process_device * qpd,const struct kfd_criu_queue_priv_data * qd,const void * restore_mqd,const void * restore_ctl_stack)1776 static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q,
1777 struct qcm_process_device *qpd,
1778 const struct kfd_criu_queue_priv_data *qd,
1779 const void *restore_mqd, const void *restore_ctl_stack)
1780 {
1781 int retval;
1782 struct mqd_manager *mqd_mgr;
1783
1784 if (dqm->total_queue_count >= max_num_of_queues_per_device) {
1785 pr_warn("Can't create new usermode queue because %d queues were already created\n",
1786 dqm->total_queue_count);
1787 retval = -EPERM;
1788 goto out;
1789 }
1790
1791 if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
1792 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1793 dqm_lock(dqm);
1794 retval = allocate_sdma_queue(dqm, q, qd ? &qd->sdma_id : NULL);
1795 dqm_unlock(dqm);
1796 if (retval)
1797 goto out;
1798 }
1799
1800 retval = allocate_doorbell(qpd, q, qd ? &qd->doorbell_id : NULL);
1801 if (retval)
1802 goto out_deallocate_sdma_queue;
1803
1804 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1805 q->properties.type)];
1806
1807 if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
1808 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
1809 dqm->asic_ops.init_sdma_vm(dqm, q, qpd);
1810 q->properties.tba_addr = qpd->tba_addr;
1811 q->properties.tma_addr = qpd->tma_addr;
1812 q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties);
1813 if (!q->mqd_mem_obj) {
1814 retval = -ENOMEM;
1815 goto out_deallocate_doorbell;
1816 }
1817
1818 dqm_lock(dqm);
1819 /*
1820 * Eviction state logic: mark all queues as evicted, even ones
1821 * not currently active. Restoring inactive queues later only
1822 * updates the is_evicted flag but is a no-op otherwise.
1823 */
1824 q->properties.is_evicted = !!qpd->evicted;
1825 q->properties.is_dbg_wa = qpd->pqm->process->debug_trap_enabled &&
1826 kfd_dbg_has_cwsr_workaround(q->device);
1827
1828 if (qd)
1829 mqd_mgr->restore_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, &q->gart_mqd_addr,
1830 &q->properties, restore_mqd, restore_ctl_stack,
1831 qd->ctl_stack_size);
1832 else
1833 mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj,
1834 &q->gart_mqd_addr, &q->properties);
1835
1836 list_add(&q->list, &qpd->queues_list);
1837 qpd->queue_count++;
1838
1839 if (q->properties.is_active) {
1840 increment_queue_count(dqm, qpd, q);
1841
1842 if (!dqm->dev->kfd->shared_resources.enable_mes)
1843 retval = execute_queues_cpsch(dqm,
1844 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD);
1845 else
1846 retval = add_queue_mes(dqm, q, qpd);
1847 if (retval)
1848 goto cleanup_queue;
1849 }
1850
1851 /*
1852 * Unconditionally increment this counter, regardless of the queue's
1853 * type or whether the queue is active.
1854 */
1855 dqm->total_queue_count++;
1856
1857 pr_debug("Total of %d queues are accountable so far\n",
1858 dqm->total_queue_count);
1859
1860 dqm_unlock(dqm);
1861 return retval;
1862
1863 cleanup_queue:
1864 qpd->queue_count--;
1865 list_del(&q->list);
1866 if (q->properties.is_active)
1867 decrement_queue_count(dqm, qpd, q);
1868 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
1869 dqm_unlock(dqm);
1870 out_deallocate_doorbell:
1871 deallocate_doorbell(qpd, q);
1872 out_deallocate_sdma_queue:
1873 if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
1874 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1875 dqm_lock(dqm);
1876 deallocate_sdma_queue(dqm, q);
1877 dqm_unlock(dqm);
1878 }
1879 out:
1880 return retval;
1881 }
1882
amdkfd_fence_wait_timeout(uint64_t * fence_addr,uint64_t fence_value,unsigned int timeout_ms)1883 int amdkfd_fence_wait_timeout(uint64_t *fence_addr,
1884 uint64_t fence_value,
1885 unsigned int timeout_ms)
1886 {
1887 unsigned long end_jiffies = msecs_to_jiffies(timeout_ms) + jiffies;
1888
1889 while (*fence_addr != fence_value) {
1890 if (time_after(jiffies, end_jiffies)) {
1891 pr_err("qcm fence wait loop timeout expired\n");
1892 /* In HWS case, this is used to halt the driver thread
1893 * in order not to mess up CP states before doing
1894 * scandumps for FW debugging.
1895 */
1896 while (halt_if_hws_hang)
1897 schedule();
1898
1899 return -ETIME;
1900 }
1901 schedule();
1902 }
1903
1904 return 0;
1905 }
1906
1907 /* dqm->lock mutex has to be locked before calling this function */
map_queues_cpsch(struct device_queue_manager * dqm)1908 static int map_queues_cpsch(struct device_queue_manager *dqm)
1909 {
1910 int retval;
1911
1912 if (!dqm->sched_running)
1913 return 0;
1914 if (dqm->active_queue_count <= 0 || dqm->processes_count <= 0)
1915 return 0;
1916 if (dqm->active_runlist)
1917 return 0;
1918
1919 retval = pm_send_runlist(&dqm->packet_mgr, &dqm->queues);
1920 pr_debug("%s sent runlist\n", __func__);
1921 if (retval) {
1922 pr_err("failed to execute runlist\n");
1923 return retval;
1924 }
1925 dqm->active_runlist = true;
1926
1927 return retval;
1928 }
1929
1930 /* dqm->lock mutex has to be locked before calling this function */
unmap_queues_cpsch(struct device_queue_manager * dqm,enum kfd_unmap_queues_filter filter,uint32_t filter_param,uint32_t grace_period,bool reset)1931 static int unmap_queues_cpsch(struct device_queue_manager *dqm,
1932 enum kfd_unmap_queues_filter filter,
1933 uint32_t filter_param,
1934 uint32_t grace_period,
1935 bool reset)
1936 {
1937 int retval = 0;
1938 struct mqd_manager *mqd_mgr;
1939
1940 if (!dqm->sched_running)
1941 return 0;
1942 if (dqm->is_hws_hang || dqm->is_resetting)
1943 return -EIO;
1944 if (!dqm->active_runlist)
1945 return retval;
1946
1947 if (grace_period != USE_DEFAULT_GRACE_PERIOD) {
1948 retval = pm_update_grace_period(&dqm->packet_mgr, grace_period);
1949 if (retval)
1950 return retval;
1951 }
1952
1953 retval = pm_send_unmap_queue(&dqm->packet_mgr, filter, filter_param, reset);
1954 if (retval)
1955 return retval;
1956
1957 *dqm->fence_addr = KFD_FENCE_INIT;
1958 pm_send_query_status(&dqm->packet_mgr, dqm->fence_gpu_addr,
1959 KFD_FENCE_COMPLETED);
1960 /* should be timed out */
1961 retval = amdkfd_fence_wait_timeout(dqm->fence_addr, KFD_FENCE_COMPLETED,
1962 queue_preemption_timeout_ms);
1963 if (retval) {
1964 pr_err("The cp might be in an unrecoverable state due to an unsuccessful queues preemption\n");
1965 kfd_hws_hang(dqm);
1966 return retval;
1967 }
1968
1969 /* In the current MEC firmware implementation, if compute queue
1970 * doesn't response to the preemption request in time, HIQ will
1971 * abandon the unmap request without returning any timeout error
1972 * to driver. Instead, MEC firmware will log the doorbell of the
1973 * unresponding compute queue to HIQ.MQD.queue_doorbell_id fields.
1974 * To make sure the queue unmap was successful, driver need to
1975 * check those fields
1976 */
1977 mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ];
1978 if (mqd_mgr->read_doorbell_id(dqm->packet_mgr.priv_queue->queue->mqd)) {
1979 pr_err("HIQ MQD's queue_doorbell_id0 is not 0, Queue preemption time out\n");
1980 while (halt_if_hws_hang)
1981 schedule();
1982 return -ETIME;
1983 }
1984
1985 /* We need to reset the grace period value for this device */
1986 if (grace_period != USE_DEFAULT_GRACE_PERIOD) {
1987 if (pm_update_grace_period(&dqm->packet_mgr,
1988 USE_DEFAULT_GRACE_PERIOD))
1989 pr_err("Failed to reset grace period\n");
1990 }
1991
1992 pm_release_ib(&dqm->packet_mgr);
1993 dqm->active_runlist = false;
1994
1995 return retval;
1996 }
1997
1998 /* only for compute queue */
reset_queues_cpsch(struct device_queue_manager * dqm,uint16_t pasid)1999 static int reset_queues_cpsch(struct device_queue_manager *dqm,
2000 uint16_t pasid)
2001 {
2002 int retval;
2003
2004 dqm_lock(dqm);
2005
2006 retval = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_BY_PASID,
2007 pasid, USE_DEFAULT_GRACE_PERIOD, true);
2008
2009 dqm_unlock(dqm);
2010 return retval;
2011 }
2012
2013 /* dqm->lock mutex has to be locked before calling this function */
execute_queues_cpsch(struct device_queue_manager * dqm,enum kfd_unmap_queues_filter filter,uint32_t filter_param,uint32_t grace_period)2014 static int execute_queues_cpsch(struct device_queue_manager *dqm,
2015 enum kfd_unmap_queues_filter filter,
2016 uint32_t filter_param,
2017 uint32_t grace_period)
2018 {
2019 int retval;
2020
2021 if (dqm->is_hws_hang)
2022 return -EIO;
2023 retval = unmap_queues_cpsch(dqm, filter, filter_param, grace_period, false);
2024 if (retval)
2025 return retval;
2026
2027 return map_queues_cpsch(dqm);
2028 }
2029
wait_on_destroy_queue(struct device_queue_manager * dqm,struct queue * q)2030 static int wait_on_destroy_queue(struct device_queue_manager *dqm,
2031 struct queue *q)
2032 {
2033 struct kfd_process_device *pdd = kfd_get_process_device_data(q->device,
2034 q->process);
2035 int ret = 0;
2036
2037 if (pdd->qpd.is_debug)
2038 return ret;
2039
2040 q->properties.is_being_destroyed = true;
2041
2042 if (pdd->process->debug_trap_enabled && q->properties.is_suspended) {
2043 dqm_unlock(dqm);
2044 mutex_unlock(&q->process->mutex);
2045 ret = wait_event_interruptible(dqm->destroy_wait,
2046 !q->properties.is_suspended);
2047
2048 mutex_lock(&q->process->mutex);
2049 dqm_lock(dqm);
2050 }
2051
2052 return ret;
2053 }
2054
destroy_queue_cpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)2055 static int destroy_queue_cpsch(struct device_queue_manager *dqm,
2056 struct qcm_process_device *qpd,
2057 struct queue *q)
2058 {
2059 int retval;
2060 struct mqd_manager *mqd_mgr;
2061 uint64_t sdma_val = 0;
2062 struct kfd_process_device *pdd = qpd_to_pdd(qpd);
2063
2064 /* Get the SDMA queue stats */
2065 if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
2066 (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
2067 retval = read_sdma_queue_counter((uint64_t __user *)q->properties.read_ptr,
2068 &sdma_val);
2069 if (retval)
2070 pr_err("Failed to read SDMA queue counter for queue: %d\n",
2071 q->properties.queue_id);
2072 }
2073
2074 /* remove queue from list to prevent rescheduling after preemption */
2075 dqm_lock(dqm);
2076
2077 retval = wait_on_destroy_queue(dqm, q);
2078
2079 if (retval) {
2080 dqm_unlock(dqm);
2081 return retval;
2082 }
2083
2084 if (qpd->is_debug) {
2085 /*
2086 * error, currently we do not allow to destroy a queue
2087 * of a currently debugged process
2088 */
2089 retval = -EBUSY;
2090 goto failed_try_destroy_debugged_queue;
2091
2092 }
2093
2094 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
2095 q->properties.type)];
2096
2097 deallocate_doorbell(qpd, q);
2098
2099 if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
2100 (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
2101 deallocate_sdma_queue(dqm, q);
2102 pdd->sdma_past_activity_counter += sdma_val;
2103 }
2104
2105 list_del(&q->list);
2106 qpd->queue_count--;
2107 if (q->properties.is_active) {
2108 decrement_queue_count(dqm, qpd, q);
2109 if (!dqm->dev->kfd->shared_resources.enable_mes) {
2110 retval = execute_queues_cpsch(dqm,
2111 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
2112 USE_DEFAULT_GRACE_PERIOD);
2113 if (retval == -ETIME)
2114 qpd->reset_wavefronts = true;
2115 } else {
2116 retval = remove_queue_mes(dqm, q, qpd);
2117 }
2118 }
2119
2120 /*
2121 * Unconditionally decrement this counter, regardless of the queue's
2122 * type
2123 */
2124 dqm->total_queue_count--;
2125 pr_debug("Total of %d queues are accountable so far\n",
2126 dqm->total_queue_count);
2127
2128 dqm_unlock(dqm);
2129
2130 /*
2131 * Do free_mqd and raise delete event after dqm_unlock(dqm) to avoid
2132 * circular locking
2133 */
2134 kfd_dbg_ev_raise(KFD_EC_MASK(EC_DEVICE_QUEUE_DELETE),
2135 qpd->pqm->process, q->device,
2136 -1, false, NULL, 0);
2137
2138 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
2139
2140 return retval;
2141
2142 failed_try_destroy_debugged_queue:
2143
2144 dqm_unlock(dqm);
2145 return retval;
2146 }
2147
2148 /*
2149 * Low bits must be 0000/FFFF as required by HW, high bits must be 0 to
2150 * stay in user mode.
2151 */
2152 #define APE1_FIXED_BITS_MASK 0xFFFF80000000FFFFULL
2153 /* APE1 limit is inclusive and 64K aligned. */
2154 #define APE1_LIMIT_ALIGNMENT 0xFFFF
2155
set_cache_memory_policy(struct device_queue_manager * dqm,struct qcm_process_device * qpd,enum cache_policy default_policy,enum cache_policy alternate_policy,void __user * alternate_aperture_base,uint64_t alternate_aperture_size)2156 static bool set_cache_memory_policy(struct device_queue_manager *dqm,
2157 struct qcm_process_device *qpd,
2158 enum cache_policy default_policy,
2159 enum cache_policy alternate_policy,
2160 void __user *alternate_aperture_base,
2161 uint64_t alternate_aperture_size)
2162 {
2163 bool retval = true;
2164
2165 if (!dqm->asic_ops.set_cache_memory_policy)
2166 return retval;
2167
2168 dqm_lock(dqm);
2169
2170 if (alternate_aperture_size == 0) {
2171 /* base > limit disables APE1 */
2172 qpd->sh_mem_ape1_base = 1;
2173 qpd->sh_mem_ape1_limit = 0;
2174 } else {
2175 /*
2176 * In FSA64, APE1_Base[63:0] = { 16{SH_MEM_APE1_BASE[31]},
2177 * SH_MEM_APE1_BASE[31:0], 0x0000 }
2178 * APE1_Limit[63:0] = { 16{SH_MEM_APE1_LIMIT[31]},
2179 * SH_MEM_APE1_LIMIT[31:0], 0xFFFF }
2180 * Verify that the base and size parameters can be
2181 * represented in this format and convert them.
2182 * Additionally restrict APE1 to user-mode addresses.
2183 */
2184
2185 uint64_t base = (uintptr_t)alternate_aperture_base;
2186 uint64_t limit = base + alternate_aperture_size - 1;
2187
2188 if (limit <= base || (base & APE1_FIXED_BITS_MASK) != 0 ||
2189 (limit & APE1_FIXED_BITS_MASK) != APE1_LIMIT_ALIGNMENT) {
2190 retval = false;
2191 goto out;
2192 }
2193
2194 qpd->sh_mem_ape1_base = base >> 16;
2195 qpd->sh_mem_ape1_limit = limit >> 16;
2196 }
2197
2198 retval = dqm->asic_ops.set_cache_memory_policy(
2199 dqm,
2200 qpd,
2201 default_policy,
2202 alternate_policy,
2203 alternate_aperture_base,
2204 alternate_aperture_size);
2205
2206 if ((dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0))
2207 program_sh_mem_settings(dqm, qpd);
2208
2209 pr_debug("sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n",
2210 qpd->sh_mem_config, qpd->sh_mem_ape1_base,
2211 qpd->sh_mem_ape1_limit);
2212
2213 out:
2214 dqm_unlock(dqm);
2215 return retval;
2216 }
2217
process_termination_nocpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)2218 static int process_termination_nocpsch(struct device_queue_manager *dqm,
2219 struct qcm_process_device *qpd)
2220 {
2221 struct queue *q;
2222 struct device_process_node *cur, *next_dpn;
2223 int retval = 0;
2224 bool found = false;
2225
2226 dqm_lock(dqm);
2227
2228 /* Clear all user mode queues */
2229 while (!list_empty(&qpd->queues_list)) {
2230 struct mqd_manager *mqd_mgr;
2231 int ret;
2232
2233 q = list_first_entry(&qpd->queues_list, struct queue, list);
2234 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
2235 q->properties.type)];
2236 ret = destroy_queue_nocpsch_locked(dqm, qpd, q);
2237 if (ret)
2238 retval = ret;
2239 dqm_unlock(dqm);
2240 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
2241 dqm_lock(dqm);
2242 }
2243
2244 /* Unregister process */
2245 list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) {
2246 if (qpd == cur->qpd) {
2247 list_del(&cur->list);
2248 kfree(cur);
2249 dqm->processes_count--;
2250 found = true;
2251 break;
2252 }
2253 }
2254
2255 dqm_unlock(dqm);
2256
2257 /* Outside the DQM lock because under the DQM lock we can't do
2258 * reclaim or take other locks that others hold while reclaiming.
2259 */
2260 if (found)
2261 kfd_dec_compute_active(dqm->dev);
2262
2263 return retval;
2264 }
2265
get_wave_state(struct device_queue_manager * dqm,struct queue * q,void __user * ctl_stack,u32 * ctl_stack_used_size,u32 * save_area_used_size)2266 static int get_wave_state(struct device_queue_manager *dqm,
2267 struct queue *q,
2268 void __user *ctl_stack,
2269 u32 *ctl_stack_used_size,
2270 u32 *save_area_used_size)
2271 {
2272 struct mqd_manager *mqd_mgr;
2273
2274 dqm_lock(dqm);
2275
2276 mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_CP];
2277
2278 if (q->properties.type != KFD_QUEUE_TYPE_COMPUTE ||
2279 q->properties.is_active || !q->device->kfd->cwsr_enabled ||
2280 !mqd_mgr->get_wave_state) {
2281 dqm_unlock(dqm);
2282 return -EINVAL;
2283 }
2284
2285 dqm_unlock(dqm);
2286
2287 /*
2288 * get_wave_state is outside the dqm lock to prevent circular locking
2289 * and the queue should be protected against destruction by the process
2290 * lock.
2291 */
2292 return mqd_mgr->get_wave_state(mqd_mgr, q->mqd, &q->properties,
2293 ctl_stack, ctl_stack_used_size, save_area_used_size);
2294 }
2295
get_queue_checkpoint_info(struct device_queue_manager * dqm,const struct queue * q,u32 * mqd_size,u32 * ctl_stack_size)2296 static void get_queue_checkpoint_info(struct device_queue_manager *dqm,
2297 const struct queue *q,
2298 u32 *mqd_size,
2299 u32 *ctl_stack_size)
2300 {
2301 struct mqd_manager *mqd_mgr;
2302 enum KFD_MQD_TYPE mqd_type =
2303 get_mqd_type_from_queue_type(q->properties.type);
2304
2305 dqm_lock(dqm);
2306 mqd_mgr = dqm->mqd_mgrs[mqd_type];
2307 *mqd_size = mqd_mgr->mqd_size;
2308 *ctl_stack_size = 0;
2309
2310 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE && mqd_mgr->get_checkpoint_info)
2311 mqd_mgr->get_checkpoint_info(mqd_mgr, q->mqd, ctl_stack_size);
2312
2313 dqm_unlock(dqm);
2314 }
2315
checkpoint_mqd(struct device_queue_manager * dqm,const struct queue * q,void * mqd,void * ctl_stack)2316 static int checkpoint_mqd(struct device_queue_manager *dqm,
2317 const struct queue *q,
2318 void *mqd,
2319 void *ctl_stack)
2320 {
2321 struct mqd_manager *mqd_mgr;
2322 int r = 0;
2323 enum KFD_MQD_TYPE mqd_type =
2324 get_mqd_type_from_queue_type(q->properties.type);
2325
2326 dqm_lock(dqm);
2327
2328 if (q->properties.is_active || !q->device->kfd->cwsr_enabled) {
2329 r = -EINVAL;
2330 goto dqm_unlock;
2331 }
2332
2333 mqd_mgr = dqm->mqd_mgrs[mqd_type];
2334 if (!mqd_mgr->checkpoint_mqd) {
2335 r = -EOPNOTSUPP;
2336 goto dqm_unlock;
2337 }
2338
2339 mqd_mgr->checkpoint_mqd(mqd_mgr, q->mqd, mqd, ctl_stack);
2340
2341 dqm_unlock:
2342 dqm_unlock(dqm);
2343 return r;
2344 }
2345
process_termination_cpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)2346 static int process_termination_cpsch(struct device_queue_manager *dqm,
2347 struct qcm_process_device *qpd)
2348 {
2349 int retval;
2350 struct queue *q;
2351 struct kernel_queue *kq, *kq_next;
2352 struct mqd_manager *mqd_mgr;
2353 struct device_process_node *cur, *next_dpn;
2354 enum kfd_unmap_queues_filter filter =
2355 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES;
2356 bool found = false;
2357
2358 retval = 0;
2359
2360 dqm_lock(dqm);
2361
2362 /* Clean all kernel queues */
2363 list_for_each_entry_safe(kq, kq_next, &qpd->priv_queue_list, list) {
2364 list_del(&kq->list);
2365 decrement_queue_count(dqm, qpd, kq->queue);
2366 qpd->is_debug = false;
2367 dqm->total_queue_count--;
2368 filter = KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES;
2369 }
2370
2371 /* Clear all user mode queues */
2372 list_for_each_entry(q, &qpd->queues_list, list) {
2373 if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
2374 deallocate_sdma_queue(dqm, q);
2375 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
2376 deallocate_sdma_queue(dqm, q);
2377
2378 if (q->properties.is_active) {
2379 decrement_queue_count(dqm, qpd, q);
2380
2381 if (dqm->dev->kfd->shared_resources.enable_mes) {
2382 retval = remove_queue_mes(dqm, q, qpd);
2383 if (retval)
2384 pr_err("Failed to remove queue %d\n",
2385 q->properties.queue_id);
2386 }
2387 }
2388
2389 dqm->total_queue_count--;
2390 }
2391
2392 /* Unregister process */
2393 list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) {
2394 if (qpd == cur->qpd) {
2395 list_del(&cur->list);
2396 kfree(cur);
2397 dqm->processes_count--;
2398 found = true;
2399 break;
2400 }
2401 }
2402
2403 if (!dqm->dev->kfd->shared_resources.enable_mes)
2404 retval = execute_queues_cpsch(dqm, filter, 0, USE_DEFAULT_GRACE_PERIOD);
2405
2406 if ((!dqm->is_hws_hang) && (retval || qpd->reset_wavefronts)) {
2407 pr_warn("Resetting wave fronts (cpsch) on dev %p\n", dqm->dev);
2408 dbgdev_wave_reset_wavefronts(dqm->dev, qpd->pqm->process);
2409 qpd->reset_wavefronts = false;
2410 }
2411
2412 /* Lastly, free mqd resources.
2413 * Do free_mqd() after dqm_unlock to avoid circular locking.
2414 */
2415 while (!list_empty(&qpd->queues_list)) {
2416 q = list_first_entry(&qpd->queues_list, struct queue, list);
2417 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
2418 q->properties.type)];
2419 list_del(&q->list);
2420 qpd->queue_count--;
2421 dqm_unlock(dqm);
2422 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
2423 dqm_lock(dqm);
2424 }
2425 dqm_unlock(dqm);
2426
2427 /* Outside the DQM lock because under the DQM lock we can't do
2428 * reclaim or take other locks that others hold while reclaiming.
2429 */
2430 if (found)
2431 kfd_dec_compute_active(dqm->dev);
2432
2433 return retval;
2434 }
2435
init_mqd_managers(struct device_queue_manager * dqm)2436 static int init_mqd_managers(struct device_queue_manager *dqm)
2437 {
2438 int i, j;
2439 struct mqd_manager *mqd_mgr;
2440
2441 for (i = 0; i < KFD_MQD_TYPE_MAX; i++) {
2442 mqd_mgr = dqm->asic_ops.mqd_manager_init(i, dqm->dev);
2443 if (!mqd_mgr) {
2444 pr_err("mqd manager [%d] initialization failed\n", i);
2445 goto out_free;
2446 }
2447 dqm->mqd_mgrs[i] = mqd_mgr;
2448 }
2449
2450 return 0;
2451
2452 out_free:
2453 for (j = 0; j < i; j++) {
2454 kfree(dqm->mqd_mgrs[j]);
2455 dqm->mqd_mgrs[j] = NULL;
2456 }
2457
2458 return -ENOMEM;
2459 }
2460
2461 /* Allocate one hiq mqd (HWS) and all SDMA mqd in a continuous trunk*/
allocate_hiq_sdma_mqd(struct device_queue_manager * dqm)2462 static int allocate_hiq_sdma_mqd(struct device_queue_manager *dqm)
2463 {
2464 int retval;
2465 struct kfd_node *dev = dqm->dev;
2466 struct kfd_mem_obj *mem_obj = &dqm->hiq_sdma_mqd;
2467 uint32_t size = dqm->mqd_mgrs[KFD_MQD_TYPE_SDMA]->mqd_size *
2468 get_num_all_sdma_engines(dqm) *
2469 dev->kfd->device_info.num_sdma_queues_per_engine +
2470 (dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ]->mqd_size *
2471 NUM_XCC(dqm->dev->xcc_mask));
2472
2473 retval = amdgpu_amdkfd_alloc_gtt_mem(dev->adev, size,
2474 &(mem_obj->gtt_mem), &(mem_obj->gpu_addr),
2475 (void *)&(mem_obj->cpu_ptr), false);
2476
2477 return retval;
2478 }
2479
device_queue_manager_init(struct kfd_node * dev)2480 struct device_queue_manager *device_queue_manager_init(struct kfd_node *dev)
2481 {
2482 struct device_queue_manager *dqm;
2483
2484 pr_debug("Loading device queue manager\n");
2485
2486 dqm = kzalloc(sizeof(*dqm), GFP_KERNEL);
2487 if (!dqm)
2488 return NULL;
2489
2490 switch (dev->adev->asic_type) {
2491 /* HWS is not available on Hawaii. */
2492 case CHIP_HAWAII:
2493 /* HWS depends on CWSR for timely dequeue. CWSR is not
2494 * available on Tonga.
2495 *
2496 * FIXME: This argument also applies to Kaveri.
2497 */
2498 case CHIP_TONGA:
2499 dqm->sched_policy = KFD_SCHED_POLICY_NO_HWS;
2500 break;
2501 default:
2502 dqm->sched_policy = sched_policy;
2503 break;
2504 }
2505
2506 dqm->dev = dev;
2507 switch (dqm->sched_policy) {
2508 case KFD_SCHED_POLICY_HWS:
2509 case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION:
2510 /* initialize dqm for cp scheduling */
2511 dqm->ops.create_queue = create_queue_cpsch;
2512 dqm->ops.initialize = initialize_cpsch;
2513 dqm->ops.start = start_cpsch;
2514 dqm->ops.stop = stop_cpsch;
2515 dqm->ops.pre_reset = pre_reset;
2516 dqm->ops.destroy_queue = destroy_queue_cpsch;
2517 dqm->ops.update_queue = update_queue;
2518 dqm->ops.register_process = register_process;
2519 dqm->ops.unregister_process = unregister_process;
2520 dqm->ops.uninitialize = uninitialize;
2521 dqm->ops.create_kernel_queue = create_kernel_queue_cpsch;
2522 dqm->ops.destroy_kernel_queue = destroy_kernel_queue_cpsch;
2523 dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
2524 dqm->ops.process_termination = process_termination_cpsch;
2525 dqm->ops.evict_process_queues = evict_process_queues_cpsch;
2526 dqm->ops.restore_process_queues = restore_process_queues_cpsch;
2527 dqm->ops.get_wave_state = get_wave_state;
2528 dqm->ops.reset_queues = reset_queues_cpsch;
2529 dqm->ops.get_queue_checkpoint_info = get_queue_checkpoint_info;
2530 dqm->ops.checkpoint_mqd = checkpoint_mqd;
2531 break;
2532 case KFD_SCHED_POLICY_NO_HWS:
2533 /* initialize dqm for no cp scheduling */
2534 dqm->ops.start = start_nocpsch;
2535 dqm->ops.stop = stop_nocpsch;
2536 dqm->ops.pre_reset = pre_reset;
2537 dqm->ops.create_queue = create_queue_nocpsch;
2538 dqm->ops.destroy_queue = destroy_queue_nocpsch;
2539 dqm->ops.update_queue = update_queue;
2540 dqm->ops.register_process = register_process;
2541 dqm->ops.unregister_process = unregister_process;
2542 dqm->ops.initialize = initialize_nocpsch;
2543 dqm->ops.uninitialize = uninitialize;
2544 dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
2545 dqm->ops.process_termination = process_termination_nocpsch;
2546 dqm->ops.evict_process_queues = evict_process_queues_nocpsch;
2547 dqm->ops.restore_process_queues =
2548 restore_process_queues_nocpsch;
2549 dqm->ops.get_wave_state = get_wave_state;
2550 dqm->ops.get_queue_checkpoint_info = get_queue_checkpoint_info;
2551 dqm->ops.checkpoint_mqd = checkpoint_mqd;
2552 break;
2553 default:
2554 pr_err("Invalid scheduling policy %d\n", dqm->sched_policy);
2555 goto out_free;
2556 }
2557
2558 switch (dev->adev->asic_type) {
2559 case CHIP_KAVERI:
2560 case CHIP_HAWAII:
2561 device_queue_manager_init_cik(&dqm->asic_ops);
2562 break;
2563
2564 case CHIP_CARRIZO:
2565 case CHIP_TONGA:
2566 case CHIP_FIJI:
2567 case CHIP_POLARIS10:
2568 case CHIP_POLARIS11:
2569 case CHIP_POLARIS12:
2570 case CHIP_VEGAM:
2571 device_queue_manager_init_vi(&dqm->asic_ops);
2572 break;
2573
2574 default:
2575 if (KFD_GC_VERSION(dev) >= IP_VERSION(11, 0, 0))
2576 device_queue_manager_init_v11(&dqm->asic_ops);
2577 else if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1))
2578 device_queue_manager_init_v10(&dqm->asic_ops);
2579 else if (KFD_GC_VERSION(dev) >= IP_VERSION(9, 0, 1))
2580 device_queue_manager_init_v9(&dqm->asic_ops);
2581 else {
2582 WARN(1, "Unexpected ASIC family %u",
2583 dev->adev->asic_type);
2584 goto out_free;
2585 }
2586 }
2587
2588 if (init_mqd_managers(dqm))
2589 goto out_free;
2590
2591 if (!dev->kfd->shared_resources.enable_mes && allocate_hiq_sdma_mqd(dqm)) {
2592 pr_err("Failed to allocate hiq sdma mqd trunk buffer\n");
2593 goto out_free;
2594 }
2595
2596 if (!dqm->ops.initialize(dqm)) {
2597 init_waitqueue_head(&dqm->destroy_wait);
2598 return dqm;
2599 }
2600
2601 out_free:
2602 kfree(dqm);
2603 return NULL;
2604 }
2605
deallocate_hiq_sdma_mqd(struct kfd_node * dev,struct kfd_mem_obj * mqd)2606 static void deallocate_hiq_sdma_mqd(struct kfd_node *dev,
2607 struct kfd_mem_obj *mqd)
2608 {
2609 WARN(!mqd, "No hiq sdma mqd trunk to free");
2610
2611 amdgpu_amdkfd_free_gtt_mem(dev->adev, mqd->gtt_mem);
2612 }
2613
device_queue_manager_uninit(struct device_queue_manager * dqm)2614 void device_queue_manager_uninit(struct device_queue_manager *dqm)
2615 {
2616 dqm->ops.stop(dqm);
2617 dqm->ops.uninitialize(dqm);
2618 if (!dqm->dev->kfd->shared_resources.enable_mes)
2619 deallocate_hiq_sdma_mqd(dqm->dev, &dqm->hiq_sdma_mqd);
2620 kfree(dqm);
2621 }
2622
kfd_dqm_evict_pasid(struct device_queue_manager * dqm,u32 pasid)2623 int kfd_dqm_evict_pasid(struct device_queue_manager *dqm, u32 pasid)
2624 {
2625 struct kfd_process_device *pdd;
2626 struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
2627 int ret = 0;
2628
2629 if (!p)
2630 return -EINVAL;
2631 WARN(debug_evictions, "Evicting pid %d", p->lead_thread->pid);
2632 pdd = kfd_get_process_device_data(dqm->dev, p);
2633 if (pdd)
2634 ret = dqm->ops.evict_process_queues(dqm, &pdd->qpd);
2635 kfd_unref_process(p);
2636
2637 return ret;
2638 }
2639
kfd_process_hw_exception(struct work_struct * work)2640 static void kfd_process_hw_exception(struct work_struct *work)
2641 {
2642 struct device_queue_manager *dqm = container_of(work,
2643 struct device_queue_manager, hw_exception_work);
2644 amdgpu_amdkfd_gpu_reset(dqm->dev->adev);
2645 }
2646
reserve_debug_trap_vmid(struct device_queue_manager * dqm,struct qcm_process_device * qpd)2647 int reserve_debug_trap_vmid(struct device_queue_manager *dqm,
2648 struct qcm_process_device *qpd)
2649 {
2650 int r;
2651 int updated_vmid_mask;
2652
2653 if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
2654 pr_err("Unsupported on sched_policy: %i\n", dqm->sched_policy);
2655 return -EINVAL;
2656 }
2657
2658 dqm_lock(dqm);
2659
2660 if (dqm->trap_debug_vmid != 0) {
2661 pr_err("Trap debug id already reserved\n");
2662 r = -EBUSY;
2663 goto out_unlock;
2664 }
2665
2666 r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0,
2667 USE_DEFAULT_GRACE_PERIOD, false);
2668 if (r)
2669 goto out_unlock;
2670
2671 updated_vmid_mask = dqm->dev->kfd->shared_resources.compute_vmid_bitmap;
2672 updated_vmid_mask &= ~(1 << dqm->dev->vm_info.last_vmid_kfd);
2673
2674 dqm->dev->kfd->shared_resources.compute_vmid_bitmap = updated_vmid_mask;
2675 dqm->trap_debug_vmid = dqm->dev->vm_info.last_vmid_kfd;
2676 r = set_sched_resources(dqm);
2677 if (r)
2678 goto out_unlock;
2679
2680 r = map_queues_cpsch(dqm);
2681 if (r)
2682 goto out_unlock;
2683
2684 pr_debug("Reserved VMID for trap debug: %i\n", dqm->trap_debug_vmid);
2685
2686 out_unlock:
2687 dqm_unlock(dqm);
2688 return r;
2689 }
2690
2691 /*
2692 * Releases vmid for the trap debugger
2693 */
release_debug_trap_vmid(struct device_queue_manager * dqm,struct qcm_process_device * qpd)2694 int release_debug_trap_vmid(struct device_queue_manager *dqm,
2695 struct qcm_process_device *qpd)
2696 {
2697 int r;
2698 int updated_vmid_mask;
2699 uint32_t trap_debug_vmid;
2700
2701 if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
2702 pr_err("Unsupported on sched_policy: %i\n", dqm->sched_policy);
2703 return -EINVAL;
2704 }
2705
2706 dqm_lock(dqm);
2707 trap_debug_vmid = dqm->trap_debug_vmid;
2708 if (dqm->trap_debug_vmid == 0) {
2709 pr_err("Trap debug id is not reserved\n");
2710 r = -EINVAL;
2711 goto out_unlock;
2712 }
2713
2714 r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0,
2715 USE_DEFAULT_GRACE_PERIOD, false);
2716 if (r)
2717 goto out_unlock;
2718
2719 updated_vmid_mask = dqm->dev->kfd->shared_resources.compute_vmid_bitmap;
2720 updated_vmid_mask |= (1 << dqm->dev->vm_info.last_vmid_kfd);
2721
2722 dqm->dev->kfd->shared_resources.compute_vmid_bitmap = updated_vmid_mask;
2723 dqm->trap_debug_vmid = 0;
2724 r = set_sched_resources(dqm);
2725 if (r)
2726 goto out_unlock;
2727
2728 r = map_queues_cpsch(dqm);
2729 if (r)
2730 goto out_unlock;
2731
2732 pr_debug("Released VMID for trap debug: %i\n", trap_debug_vmid);
2733
2734 out_unlock:
2735 dqm_unlock(dqm);
2736 return r;
2737 }
2738
2739 #define QUEUE_NOT_FOUND -1
2740 /* invalidate queue operation in array */
q_array_invalidate(uint32_t num_queues,uint32_t * queue_ids)2741 static void q_array_invalidate(uint32_t num_queues, uint32_t *queue_ids)
2742 {
2743 int i;
2744
2745 for (i = 0; i < num_queues; i++)
2746 queue_ids[i] |= KFD_DBG_QUEUE_INVALID_MASK;
2747 }
2748
2749 /* find queue index in array */
q_array_get_index(unsigned int queue_id,uint32_t num_queues,uint32_t * queue_ids)2750 static int q_array_get_index(unsigned int queue_id,
2751 uint32_t num_queues,
2752 uint32_t *queue_ids)
2753 {
2754 int i;
2755
2756 for (i = 0; i < num_queues; i++)
2757 if (queue_id == (queue_ids[i] & ~KFD_DBG_QUEUE_INVALID_MASK))
2758 return i;
2759
2760 return QUEUE_NOT_FOUND;
2761 }
2762
2763 struct copy_context_work_handler_workarea {
2764 struct work_struct copy_context_work;
2765 struct kfd_process *p;
2766 };
2767
copy_context_work_handler(struct work_struct * work)2768 static void copy_context_work_handler (struct work_struct *work)
2769 {
2770 struct copy_context_work_handler_workarea *workarea;
2771 struct mqd_manager *mqd_mgr;
2772 struct queue *q;
2773 struct mm_struct *mm;
2774 struct kfd_process *p;
2775 uint32_t tmp_ctl_stack_used_size, tmp_save_area_used_size;
2776 int i;
2777
2778 workarea = container_of(work,
2779 struct copy_context_work_handler_workarea,
2780 copy_context_work);
2781
2782 p = workarea->p;
2783 mm = get_task_mm(p->lead_thread);
2784
2785 if (!mm)
2786 return;
2787
2788 kthread_use_mm(mm);
2789 for (i = 0; i < p->n_pdds; i++) {
2790 struct kfd_process_device *pdd = p->pdds[i];
2791 struct device_queue_manager *dqm = pdd->dev->dqm;
2792 struct qcm_process_device *qpd = &pdd->qpd;
2793
2794 list_for_each_entry(q, &qpd->queues_list, list) {
2795 mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_CP];
2796
2797 /* We ignore the return value from get_wave_state
2798 * because
2799 * i) right now, it always returns 0, and
2800 * ii) if we hit an error, we would continue to the
2801 * next queue anyway.
2802 */
2803 mqd_mgr->get_wave_state(mqd_mgr,
2804 q->mqd,
2805 &q->properties,
2806 (void __user *) q->properties.ctx_save_restore_area_address,
2807 &tmp_ctl_stack_used_size,
2808 &tmp_save_area_used_size);
2809 }
2810 }
2811 kthread_unuse_mm(mm);
2812 mmput(mm);
2813 }
2814
get_queue_ids(uint32_t num_queues,uint32_t * usr_queue_id_array)2815 static uint32_t *get_queue_ids(uint32_t num_queues, uint32_t *usr_queue_id_array)
2816 {
2817 size_t array_size = num_queues * sizeof(uint32_t);
2818
2819 if (!usr_queue_id_array)
2820 return NULL;
2821
2822 return memdup_user(usr_queue_id_array, array_size);
2823 }
2824
resume_queues(struct kfd_process * p,uint32_t num_queues,uint32_t * usr_queue_id_array)2825 int resume_queues(struct kfd_process *p,
2826 uint32_t num_queues,
2827 uint32_t *usr_queue_id_array)
2828 {
2829 uint32_t *queue_ids = NULL;
2830 int total_resumed = 0;
2831 int i;
2832
2833 if (usr_queue_id_array) {
2834 queue_ids = get_queue_ids(num_queues, usr_queue_id_array);
2835
2836 if (IS_ERR(queue_ids))
2837 return PTR_ERR(queue_ids);
2838
2839 /* mask all queues as invalid. unmask per successful request */
2840 q_array_invalidate(num_queues, queue_ids);
2841 }
2842
2843 for (i = 0; i < p->n_pdds; i++) {
2844 struct kfd_process_device *pdd = p->pdds[i];
2845 struct device_queue_manager *dqm = pdd->dev->dqm;
2846 struct qcm_process_device *qpd = &pdd->qpd;
2847 struct queue *q;
2848 int r, per_device_resumed = 0;
2849
2850 dqm_lock(dqm);
2851
2852 /* unmask queues that resume or already resumed as valid */
2853 list_for_each_entry(q, &qpd->queues_list, list) {
2854 int q_idx = QUEUE_NOT_FOUND;
2855
2856 if (queue_ids)
2857 q_idx = q_array_get_index(
2858 q->properties.queue_id,
2859 num_queues,
2860 queue_ids);
2861
2862 if (!queue_ids || q_idx != QUEUE_NOT_FOUND) {
2863 int err = resume_single_queue(dqm, &pdd->qpd, q);
2864
2865 if (queue_ids) {
2866 if (!err) {
2867 queue_ids[q_idx] &=
2868 ~KFD_DBG_QUEUE_INVALID_MASK;
2869 } else {
2870 queue_ids[q_idx] |=
2871 KFD_DBG_QUEUE_ERROR_MASK;
2872 break;
2873 }
2874 }
2875
2876 if (dqm->dev->kfd->shared_resources.enable_mes) {
2877 wake_up_all(&dqm->destroy_wait);
2878 if (!err)
2879 total_resumed++;
2880 } else {
2881 per_device_resumed++;
2882 }
2883 }
2884 }
2885
2886 if (!per_device_resumed) {
2887 dqm_unlock(dqm);
2888 continue;
2889 }
2890
2891 r = execute_queues_cpsch(dqm,
2892 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES,
2893 0,
2894 USE_DEFAULT_GRACE_PERIOD);
2895 if (r) {
2896 pr_err("Failed to resume process queues\n");
2897 if (queue_ids) {
2898 list_for_each_entry(q, &qpd->queues_list, list) {
2899 int q_idx = q_array_get_index(
2900 q->properties.queue_id,
2901 num_queues,
2902 queue_ids);
2903
2904 /* mask queue as error on resume fail */
2905 if (q_idx != QUEUE_NOT_FOUND)
2906 queue_ids[q_idx] |=
2907 KFD_DBG_QUEUE_ERROR_MASK;
2908 }
2909 }
2910 } else {
2911 wake_up_all(&dqm->destroy_wait);
2912 total_resumed += per_device_resumed;
2913 }
2914
2915 dqm_unlock(dqm);
2916 }
2917
2918 if (queue_ids) {
2919 if (copy_to_user((void __user *)usr_queue_id_array, queue_ids,
2920 num_queues * sizeof(uint32_t)))
2921 pr_err("copy_to_user failed on queue resume\n");
2922
2923 kfree(queue_ids);
2924 }
2925
2926 return total_resumed;
2927 }
2928
suspend_queues(struct kfd_process * p,uint32_t num_queues,uint32_t grace_period,uint64_t exception_clear_mask,uint32_t * usr_queue_id_array)2929 int suspend_queues(struct kfd_process *p,
2930 uint32_t num_queues,
2931 uint32_t grace_period,
2932 uint64_t exception_clear_mask,
2933 uint32_t *usr_queue_id_array)
2934 {
2935 uint32_t *queue_ids = get_queue_ids(num_queues, usr_queue_id_array);
2936 int total_suspended = 0;
2937 int i;
2938
2939 if (IS_ERR(queue_ids))
2940 return PTR_ERR(queue_ids);
2941
2942 /* mask all queues as invalid. umask on successful request */
2943 q_array_invalidate(num_queues, queue_ids);
2944
2945 for (i = 0; i < p->n_pdds; i++) {
2946 struct kfd_process_device *pdd = p->pdds[i];
2947 struct device_queue_manager *dqm = pdd->dev->dqm;
2948 struct qcm_process_device *qpd = &pdd->qpd;
2949 struct queue *q;
2950 int r, per_device_suspended = 0;
2951
2952 mutex_lock(&p->event_mutex);
2953 dqm_lock(dqm);
2954
2955 /* unmask queues that suspend or already suspended */
2956 list_for_each_entry(q, &qpd->queues_list, list) {
2957 int q_idx = q_array_get_index(q->properties.queue_id,
2958 num_queues,
2959 queue_ids);
2960
2961 if (q_idx != QUEUE_NOT_FOUND) {
2962 int err = suspend_single_queue(dqm, pdd, q);
2963 bool is_mes = dqm->dev->kfd->shared_resources.enable_mes;
2964
2965 if (!err) {
2966 queue_ids[q_idx] &= ~KFD_DBG_QUEUE_INVALID_MASK;
2967 if (exception_clear_mask && is_mes)
2968 q->properties.exception_status &=
2969 ~exception_clear_mask;
2970
2971 if (is_mes)
2972 total_suspended++;
2973 else
2974 per_device_suspended++;
2975 } else if (err != -EBUSY) {
2976 r = err;
2977 queue_ids[q_idx] |= KFD_DBG_QUEUE_ERROR_MASK;
2978 break;
2979 }
2980 }
2981 }
2982
2983 if (!per_device_suspended) {
2984 dqm_unlock(dqm);
2985 mutex_unlock(&p->event_mutex);
2986 if (total_suspended)
2987 amdgpu_amdkfd_debug_mem_fence(dqm->dev->adev);
2988 continue;
2989 }
2990
2991 r = execute_queues_cpsch(dqm,
2992 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
2993 grace_period);
2994
2995 if (r)
2996 pr_err("Failed to suspend process queues.\n");
2997 else
2998 total_suspended += per_device_suspended;
2999
3000 list_for_each_entry(q, &qpd->queues_list, list) {
3001 int q_idx = q_array_get_index(q->properties.queue_id,
3002 num_queues, queue_ids);
3003
3004 if (q_idx == QUEUE_NOT_FOUND)
3005 continue;
3006
3007 /* mask queue as error on suspend fail */
3008 if (r)
3009 queue_ids[q_idx] |= KFD_DBG_QUEUE_ERROR_MASK;
3010 else if (exception_clear_mask)
3011 q->properties.exception_status &=
3012 ~exception_clear_mask;
3013 }
3014
3015 dqm_unlock(dqm);
3016 mutex_unlock(&p->event_mutex);
3017 amdgpu_device_flush_hdp(dqm->dev->adev, NULL);
3018 }
3019
3020 if (total_suspended) {
3021 struct copy_context_work_handler_workarea copy_context_worker;
3022
3023 INIT_WORK_ONSTACK(
3024 ©_context_worker.copy_context_work,
3025 copy_context_work_handler);
3026
3027 copy_context_worker.p = p;
3028
3029 schedule_work(©_context_worker.copy_context_work);
3030
3031
3032 flush_work(©_context_worker.copy_context_work);
3033 destroy_work_on_stack(©_context_worker.copy_context_work);
3034 }
3035
3036 if (copy_to_user((void __user *)usr_queue_id_array, queue_ids,
3037 num_queues * sizeof(uint32_t)))
3038 pr_err("copy_to_user failed on queue suspend\n");
3039
3040 kfree(queue_ids);
3041
3042 return total_suspended;
3043 }
3044
set_queue_type_for_user(struct queue_properties * q_props)3045 static uint32_t set_queue_type_for_user(struct queue_properties *q_props)
3046 {
3047 switch (q_props->type) {
3048 case KFD_QUEUE_TYPE_COMPUTE:
3049 return q_props->format == KFD_QUEUE_FORMAT_PM4
3050 ? KFD_IOC_QUEUE_TYPE_COMPUTE
3051 : KFD_IOC_QUEUE_TYPE_COMPUTE_AQL;
3052 case KFD_QUEUE_TYPE_SDMA:
3053 return KFD_IOC_QUEUE_TYPE_SDMA;
3054 case KFD_QUEUE_TYPE_SDMA_XGMI:
3055 return KFD_IOC_QUEUE_TYPE_SDMA_XGMI;
3056 default:
3057 WARN_ONCE(true, "queue type not recognized!");
3058 return 0xffffffff;
3059 };
3060 }
3061
set_queue_snapshot_entry(struct queue * q,uint64_t exception_clear_mask,struct kfd_queue_snapshot_entry * qss_entry)3062 void set_queue_snapshot_entry(struct queue *q,
3063 uint64_t exception_clear_mask,
3064 struct kfd_queue_snapshot_entry *qss_entry)
3065 {
3066 qss_entry->ring_base_address = q->properties.queue_address;
3067 qss_entry->write_pointer_address = (uint64_t)q->properties.write_ptr;
3068 qss_entry->read_pointer_address = (uint64_t)q->properties.read_ptr;
3069 qss_entry->ctx_save_restore_address =
3070 q->properties.ctx_save_restore_area_address;
3071 qss_entry->ctx_save_restore_area_size =
3072 q->properties.ctx_save_restore_area_size;
3073 qss_entry->exception_status = q->properties.exception_status;
3074 qss_entry->queue_id = q->properties.queue_id;
3075 qss_entry->gpu_id = q->device->id;
3076 qss_entry->ring_size = (uint32_t)q->properties.queue_size;
3077 qss_entry->queue_type = set_queue_type_for_user(&q->properties);
3078 q->properties.exception_status &= ~exception_clear_mask;
3079 }
3080
debug_lock_and_unmap(struct device_queue_manager * dqm)3081 int debug_lock_and_unmap(struct device_queue_manager *dqm)
3082 {
3083 int r;
3084
3085 if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
3086 pr_err("Unsupported on sched_policy: %i\n", dqm->sched_policy);
3087 return -EINVAL;
3088 }
3089
3090 if (!kfd_dbg_is_per_vmid_supported(dqm->dev))
3091 return 0;
3092
3093 dqm_lock(dqm);
3094
3095 r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0, 0, false);
3096 if (r)
3097 dqm_unlock(dqm);
3098
3099 return r;
3100 }
3101
debug_map_and_unlock(struct device_queue_manager * dqm)3102 int debug_map_and_unlock(struct device_queue_manager *dqm)
3103 {
3104 int r;
3105
3106 if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
3107 pr_err("Unsupported on sched_policy: %i\n", dqm->sched_policy);
3108 return -EINVAL;
3109 }
3110
3111 if (!kfd_dbg_is_per_vmid_supported(dqm->dev))
3112 return 0;
3113
3114 r = map_queues_cpsch(dqm);
3115
3116 dqm_unlock(dqm);
3117
3118 return r;
3119 }
3120
debug_refresh_runlist(struct device_queue_manager * dqm)3121 int debug_refresh_runlist(struct device_queue_manager *dqm)
3122 {
3123 int r = debug_lock_and_unmap(dqm);
3124
3125 if (r)
3126 return r;
3127
3128 return debug_map_and_unlock(dqm);
3129 }
3130
3131 #if defined(CONFIG_DEBUG_FS)
3132
seq_reg_dump(struct seq_file * m,uint32_t (* dump)[2],uint32_t n_regs)3133 static void seq_reg_dump(struct seq_file *m,
3134 uint32_t (*dump)[2], uint32_t n_regs)
3135 {
3136 uint32_t i, count;
3137
3138 for (i = 0, count = 0; i < n_regs; i++) {
3139 if (count == 0 ||
3140 dump[i-1][0] + sizeof(uint32_t) != dump[i][0]) {
3141 seq_printf(m, "%s %08x: %08x",
3142 i ? "\n" : "",
3143 dump[i][0], dump[i][1]);
3144 count = 7;
3145 } else {
3146 seq_printf(m, " %08x", dump[i][1]);
3147 count--;
3148 }
3149 }
3150
3151 seq_puts(m, "\n");
3152 }
3153
dqm_debugfs_hqds(struct seq_file * m,void * data)3154 int dqm_debugfs_hqds(struct seq_file *m, void *data)
3155 {
3156 struct device_queue_manager *dqm = data;
3157 uint32_t xcc_mask = dqm->dev->xcc_mask;
3158 uint32_t (*dump)[2], n_regs;
3159 int pipe, queue;
3160 int r = 0, xcc_id;
3161 uint32_t sdma_engine_start;
3162
3163 if (!dqm->sched_running) {
3164 seq_puts(m, " Device is stopped\n");
3165 return 0;
3166 }
3167
3168 for_each_inst(xcc_id, xcc_mask) {
3169 r = dqm->dev->kfd2kgd->hqd_dump(dqm->dev->adev,
3170 KFD_CIK_HIQ_PIPE,
3171 KFD_CIK_HIQ_QUEUE, &dump,
3172 &n_regs, xcc_id);
3173 if (!r) {
3174 seq_printf(
3175 m,
3176 " Inst %d, HIQ on MEC %d Pipe %d Queue %d\n",
3177 xcc_id,
3178 KFD_CIK_HIQ_PIPE / get_pipes_per_mec(dqm) + 1,
3179 KFD_CIK_HIQ_PIPE % get_pipes_per_mec(dqm),
3180 KFD_CIK_HIQ_QUEUE);
3181 seq_reg_dump(m, dump, n_regs);
3182
3183 kfree(dump);
3184 }
3185
3186 for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) {
3187 int pipe_offset = pipe * get_queues_per_pipe(dqm);
3188
3189 for (queue = 0; queue < get_queues_per_pipe(dqm); queue++) {
3190 if (!test_bit(pipe_offset + queue,
3191 dqm->dev->kfd->shared_resources.cp_queue_bitmap))
3192 continue;
3193
3194 r = dqm->dev->kfd2kgd->hqd_dump(dqm->dev->adev,
3195 pipe, queue,
3196 &dump, &n_regs,
3197 xcc_id);
3198 if (r)
3199 break;
3200
3201 seq_printf(m,
3202 " Inst %d, CP Pipe %d, Queue %d\n",
3203 xcc_id, pipe, queue);
3204 seq_reg_dump(m, dump, n_regs);
3205
3206 kfree(dump);
3207 }
3208 }
3209 }
3210
3211 sdma_engine_start = dqm->dev->node_id * get_num_all_sdma_engines(dqm);
3212 for (pipe = sdma_engine_start;
3213 pipe < (sdma_engine_start + get_num_all_sdma_engines(dqm));
3214 pipe++) {
3215 for (queue = 0;
3216 queue < dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
3217 queue++) {
3218 r = dqm->dev->kfd2kgd->hqd_sdma_dump(
3219 dqm->dev->adev, pipe, queue, &dump, &n_regs);
3220 if (r)
3221 break;
3222
3223 seq_printf(m, " SDMA Engine %d, RLC %d\n",
3224 pipe, queue);
3225 seq_reg_dump(m, dump, n_regs);
3226
3227 kfree(dump);
3228 }
3229 }
3230
3231 return r;
3232 }
3233
dqm_debugfs_hang_hws(struct device_queue_manager * dqm)3234 int dqm_debugfs_hang_hws(struct device_queue_manager *dqm)
3235 {
3236 int r = 0;
3237
3238 dqm_lock(dqm);
3239 r = pm_debugfs_hang_hws(&dqm->packet_mgr);
3240 if (r) {
3241 dqm_unlock(dqm);
3242 return r;
3243 }
3244 dqm->active_runlist = true;
3245 r = execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES,
3246 0, USE_DEFAULT_GRACE_PERIOD);
3247 dqm_unlock(dqm);
3248
3249 return r;
3250 }
3251
3252 #endif
3253