1 // SPDX-License-Identifier: GPL-2.0-or-later
2 //
3 // helpers.c  --  Voltage/Current Regulator framework helper functions.
4 //
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
7 
8 #include <linux/kernel.h>
9 #include <linux/err.h>
10 #include <linux/delay.h>
11 #include <linux/regmap.h>
12 #include <linux/regulator/consumer.h>
13 #include <linux/regulator/driver.h>
14 #include <linux/module.h>
15 
16 #include "internal.h"
17 
18 /**
19  * regulator_is_enabled_regmap - standard is_enabled() for regmap users
20  *
21  * @rdev: regulator to operate on
22  *
23  * Regulators that use regmap for their register I/O can set the
24  * enable_reg and enable_mask fields in their descriptor and then use
25  * this as their is_enabled operation, saving some code.
26  */
regulator_is_enabled_regmap(struct regulator_dev * rdev)27 int regulator_is_enabled_regmap(struct regulator_dev *rdev)
28 {
29 	unsigned int val;
30 	int ret;
31 
32 	ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
33 	if (ret != 0)
34 		return ret;
35 
36 	val &= rdev->desc->enable_mask;
37 
38 	if (rdev->desc->enable_is_inverted) {
39 		if (rdev->desc->enable_val)
40 			return val != rdev->desc->enable_val;
41 		return val == 0;
42 	} else {
43 		if (rdev->desc->enable_val)
44 			return val == rdev->desc->enable_val;
45 		return val != 0;
46 	}
47 }
48 EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
49 
50 /**
51  * regulator_enable_regmap - standard enable() for regmap users
52  *
53  * @rdev: regulator to operate on
54  *
55  * Regulators that use regmap for their register I/O can set the
56  * enable_reg and enable_mask fields in their descriptor and then use
57  * this as their enable() operation, saving some code.
58  */
regulator_enable_regmap(struct regulator_dev * rdev)59 int regulator_enable_regmap(struct regulator_dev *rdev)
60 {
61 	unsigned int val;
62 
63 	if (rdev->desc->enable_is_inverted) {
64 		val = rdev->desc->disable_val;
65 	} else {
66 		val = rdev->desc->enable_val;
67 		if (!val)
68 			val = rdev->desc->enable_mask;
69 	}
70 
71 	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
72 				  rdev->desc->enable_mask, val);
73 }
74 EXPORT_SYMBOL_GPL(regulator_enable_regmap);
75 
76 /**
77  * regulator_disable_regmap - standard disable() for regmap users
78  *
79  * @rdev: regulator to operate on
80  *
81  * Regulators that use regmap for their register I/O can set the
82  * enable_reg and enable_mask fields in their descriptor and then use
83  * this as their disable() operation, saving some code.
84  */
regulator_disable_regmap(struct regulator_dev * rdev)85 int regulator_disable_regmap(struct regulator_dev *rdev)
86 {
87 	unsigned int val;
88 
89 	if (rdev->desc->enable_is_inverted) {
90 		val = rdev->desc->enable_val;
91 		if (!val)
92 			val = rdev->desc->enable_mask;
93 	} else {
94 		val = rdev->desc->disable_val;
95 	}
96 
97 	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
98 				  rdev->desc->enable_mask, val);
99 }
100 EXPORT_SYMBOL_GPL(regulator_disable_regmap);
101 
regulator_range_selector_to_index(struct regulator_dev * rdev,unsigned int rval)102 static int regulator_range_selector_to_index(struct regulator_dev *rdev,
103 					     unsigned int rval)
104 {
105 	int i;
106 
107 	if (!rdev->desc->linear_range_selectors)
108 		return -EINVAL;
109 
110 	rval &= rdev->desc->vsel_range_mask;
111 
112 	for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
113 		if (rdev->desc->linear_range_selectors[i] == rval)
114 			return i;
115 	}
116 	return -EINVAL;
117 }
118 
119 /**
120  * regulator_get_voltage_sel_pickable_regmap - pickable range get_voltage_sel
121  *
122  * @rdev: regulator to operate on
123  *
124  * Regulators that use regmap for their register I/O and use pickable
125  * ranges can set the vsel_reg, vsel_mask, vsel_range_reg and vsel_range_mask
126  * fields in their descriptor and then use this as their get_voltage_vsel
127  * operation, saving some code.
128  */
regulator_get_voltage_sel_pickable_regmap(struct regulator_dev * rdev)129 int regulator_get_voltage_sel_pickable_regmap(struct regulator_dev *rdev)
130 {
131 	unsigned int r_val;
132 	int range;
133 	unsigned int val;
134 	int ret;
135 	unsigned int voltages = 0;
136 	const struct linear_range *r = rdev->desc->linear_ranges;
137 
138 	if (!r)
139 		return -EINVAL;
140 
141 	ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
142 	if (ret != 0)
143 		return ret;
144 
145 	ret = regmap_read(rdev->regmap, rdev->desc->vsel_range_reg, &r_val);
146 	if (ret != 0)
147 		return ret;
148 
149 	val &= rdev->desc->vsel_mask;
150 	val >>= ffs(rdev->desc->vsel_mask) - 1;
151 
152 	range = regulator_range_selector_to_index(rdev, r_val);
153 	if (range < 0)
154 		return -EINVAL;
155 
156 	voltages = linear_range_values_in_range_array(r, range);
157 
158 	return val + voltages;
159 }
160 EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_pickable_regmap);
161 
162 /**
163  * regulator_set_voltage_sel_pickable_regmap - pickable range set_voltage_sel
164  *
165  * @rdev: regulator to operate on
166  * @sel: Selector to set
167  *
168  * Regulators that use regmap for their register I/O and use pickable
169  * ranges can set the vsel_reg, vsel_mask, vsel_range_reg and vsel_range_mask
170  * fields in their descriptor and then use this as their set_voltage_vsel
171  * operation, saving some code.
172  */
regulator_set_voltage_sel_pickable_regmap(struct regulator_dev * rdev,unsigned int sel)173 int regulator_set_voltage_sel_pickable_regmap(struct regulator_dev *rdev,
174 					      unsigned int sel)
175 {
176 	unsigned int range;
177 	int ret, i;
178 	unsigned int voltages_in_range = 0;
179 
180 	for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
181 		const struct linear_range *r;
182 
183 		r = &rdev->desc->linear_ranges[i];
184 		voltages_in_range = linear_range_values_in_range(r);
185 
186 		if (sel < voltages_in_range)
187 			break;
188 		sel -= voltages_in_range;
189 	}
190 
191 	if (i == rdev->desc->n_linear_ranges)
192 		return -EINVAL;
193 
194 	sel <<= ffs(rdev->desc->vsel_mask) - 1;
195 	sel += rdev->desc->linear_ranges[i].min_sel;
196 
197 	range = rdev->desc->linear_range_selectors[i];
198 
199 	if (rdev->desc->vsel_reg == rdev->desc->vsel_range_reg) {
200 		ret = regmap_update_bits(rdev->regmap,
201 					 rdev->desc->vsel_reg,
202 					 rdev->desc->vsel_range_mask |
203 					 rdev->desc->vsel_mask, sel | range);
204 	} else {
205 		ret = regmap_update_bits(rdev->regmap,
206 					 rdev->desc->vsel_range_reg,
207 					 rdev->desc->vsel_range_mask, range);
208 		if (ret)
209 			return ret;
210 
211 		ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
212 				  rdev->desc->vsel_mask, sel);
213 	}
214 
215 	if (ret)
216 		return ret;
217 
218 	if (rdev->desc->apply_bit)
219 		ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg,
220 					 rdev->desc->apply_bit,
221 					 rdev->desc->apply_bit);
222 	return ret;
223 }
224 EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_pickable_regmap);
225 
226 /**
227  * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
228  *
229  * @rdev: regulator to operate on
230  *
231  * Regulators that use regmap for their register I/O can set the
232  * vsel_reg and vsel_mask fields in their descriptor and then use this
233  * as their get_voltage_vsel operation, saving some code.
234  */
regulator_get_voltage_sel_regmap(struct regulator_dev * rdev)235 int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
236 {
237 	unsigned int val;
238 	int ret;
239 
240 	ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
241 	if (ret != 0)
242 		return ret;
243 
244 	val &= rdev->desc->vsel_mask;
245 	val >>= ffs(rdev->desc->vsel_mask) - 1;
246 
247 	return val;
248 }
249 EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
250 
251 /**
252  * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
253  *
254  * @rdev: regulator to operate on
255  * @sel: Selector to set
256  *
257  * Regulators that use regmap for their register I/O can set the
258  * vsel_reg and vsel_mask fields in their descriptor and then use this
259  * as their set_voltage_vsel operation, saving some code.
260  */
regulator_set_voltage_sel_regmap(struct regulator_dev * rdev,unsigned sel)261 int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
262 {
263 	int ret;
264 
265 	sel <<= ffs(rdev->desc->vsel_mask) - 1;
266 
267 	ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
268 				  rdev->desc->vsel_mask, sel);
269 	if (ret)
270 		return ret;
271 
272 	if (rdev->desc->apply_bit)
273 		ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg,
274 					 rdev->desc->apply_bit,
275 					 rdev->desc->apply_bit);
276 	return ret;
277 }
278 EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
279 
280 /**
281  * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
282  *
283  * @rdev: Regulator to operate on
284  * @min_uV: Lower bound for voltage
285  * @max_uV: Upper bound for voltage
286  *
287  * Drivers implementing set_voltage_sel() and list_voltage() can use
288  * this as their map_voltage() operation.  It will find a suitable
289  * voltage by calling list_voltage() until it gets something in bounds
290  * for the requested voltages.
291  */
regulator_map_voltage_iterate(struct regulator_dev * rdev,int min_uV,int max_uV)292 int regulator_map_voltage_iterate(struct regulator_dev *rdev,
293 				  int min_uV, int max_uV)
294 {
295 	int best_val = INT_MAX;
296 	int selector = 0;
297 	int i, ret;
298 
299 	/* Find the smallest voltage that falls within the specified
300 	 * range.
301 	 */
302 	for (i = 0; i < rdev->desc->n_voltages; i++) {
303 		ret = rdev->desc->ops->list_voltage(rdev, i);
304 		if (ret < 0)
305 			continue;
306 
307 		if (ret < best_val && ret >= min_uV && ret <= max_uV) {
308 			best_val = ret;
309 			selector = i;
310 		}
311 	}
312 
313 	if (best_val != INT_MAX)
314 		return selector;
315 	else
316 		return -EINVAL;
317 }
318 EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
319 
320 /**
321  * regulator_map_voltage_ascend - map_voltage() for ascendant voltage list
322  *
323  * @rdev: Regulator to operate on
324  * @min_uV: Lower bound for voltage
325  * @max_uV: Upper bound for voltage
326  *
327  * Drivers that have ascendant voltage list can use this as their
328  * map_voltage() operation.
329  */
regulator_map_voltage_ascend(struct regulator_dev * rdev,int min_uV,int max_uV)330 int regulator_map_voltage_ascend(struct regulator_dev *rdev,
331 				 int min_uV, int max_uV)
332 {
333 	int i, ret;
334 
335 	for (i = 0; i < rdev->desc->n_voltages; i++) {
336 		ret = rdev->desc->ops->list_voltage(rdev, i);
337 		if (ret < 0)
338 			continue;
339 
340 		if (ret > max_uV)
341 			break;
342 
343 		if (ret >= min_uV && ret <= max_uV)
344 			return i;
345 	}
346 
347 	return -EINVAL;
348 }
349 EXPORT_SYMBOL_GPL(regulator_map_voltage_ascend);
350 
351 /**
352  * regulator_map_voltage_linear - map_voltage() for simple linear mappings
353  *
354  * @rdev: Regulator to operate on
355  * @min_uV: Lower bound for voltage
356  * @max_uV: Upper bound for voltage
357  *
358  * Drivers providing min_uV and uV_step in their regulator_desc can
359  * use this as their map_voltage() operation.
360  */
regulator_map_voltage_linear(struct regulator_dev * rdev,int min_uV,int max_uV)361 int regulator_map_voltage_linear(struct regulator_dev *rdev,
362 				 int min_uV, int max_uV)
363 {
364 	int ret, voltage;
365 
366 	/* Allow uV_step to be 0 for fixed voltage */
367 	if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
368 		if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
369 			return 0;
370 		else
371 			return -EINVAL;
372 	}
373 
374 	if (!rdev->desc->uV_step) {
375 		BUG_ON(!rdev->desc->uV_step);
376 		return -EINVAL;
377 	}
378 
379 	if (min_uV < rdev->desc->min_uV)
380 		min_uV = rdev->desc->min_uV;
381 
382 	ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
383 	if (ret < 0)
384 		return ret;
385 
386 	ret += rdev->desc->linear_min_sel;
387 
388 	/* Map back into a voltage to verify we're still in bounds */
389 	voltage = rdev->desc->ops->list_voltage(rdev, ret);
390 	if (voltage < min_uV || voltage > max_uV)
391 		return -EINVAL;
392 
393 	return ret;
394 }
395 EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
396 
397 /**
398  * regulator_map_voltage_linear_range - map_voltage() for multiple linear ranges
399  *
400  * @rdev: Regulator to operate on
401  * @min_uV: Lower bound for voltage
402  * @max_uV: Upper bound for voltage
403  *
404  * Drivers providing linear_ranges in their descriptor can use this as
405  * their map_voltage() callback.
406  */
regulator_map_voltage_linear_range(struct regulator_dev * rdev,int min_uV,int max_uV)407 int regulator_map_voltage_linear_range(struct regulator_dev *rdev,
408 				       int min_uV, int max_uV)
409 {
410 	const struct linear_range *range;
411 	int ret = -EINVAL;
412 	unsigned int sel;
413 	bool found;
414 	int voltage, i;
415 
416 	if (!rdev->desc->n_linear_ranges) {
417 		BUG_ON(!rdev->desc->n_linear_ranges);
418 		return -EINVAL;
419 	}
420 
421 	for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
422 		range = &rdev->desc->linear_ranges[i];
423 
424 		ret = linear_range_get_selector_high(range, min_uV, &sel,
425 						     &found);
426 		if (ret)
427 			continue;
428 		ret = sel;
429 
430 		/*
431 		 * Map back into a voltage to verify we're still in bounds.
432 		 * If we are not, then continue checking rest of the ranges.
433 		 */
434 		voltage = rdev->desc->ops->list_voltage(rdev, sel);
435 		if (voltage >= min_uV && voltage <= max_uV)
436 			break;
437 	}
438 
439 	if (i == rdev->desc->n_linear_ranges)
440 		return -EINVAL;
441 
442 	return ret;
443 }
444 EXPORT_SYMBOL_GPL(regulator_map_voltage_linear_range);
445 
446 /**
447  * regulator_map_voltage_pickable_linear_range - map_voltage, pickable ranges
448  *
449  * @rdev: Regulator to operate on
450  * @min_uV: Lower bound for voltage
451  * @max_uV: Upper bound for voltage
452  *
453  * Drivers providing pickable linear_ranges in their descriptor can use
454  * this as their map_voltage() callback.
455  */
regulator_map_voltage_pickable_linear_range(struct regulator_dev * rdev,int min_uV,int max_uV)456 int regulator_map_voltage_pickable_linear_range(struct regulator_dev *rdev,
457 						int min_uV, int max_uV)
458 {
459 	const struct linear_range *range;
460 	int ret = -EINVAL;
461 	int voltage, i;
462 	unsigned int selector = 0;
463 
464 	if (!rdev->desc->n_linear_ranges) {
465 		BUG_ON(!rdev->desc->n_linear_ranges);
466 		return -EINVAL;
467 	}
468 
469 	for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
470 		int linear_max_uV;
471 		bool found;
472 		unsigned int sel;
473 
474 		range = &rdev->desc->linear_ranges[i];
475 		linear_max_uV = linear_range_get_max_value(range);
476 
477 		if (!(min_uV <= linear_max_uV && max_uV >= range->min)) {
478 			selector += linear_range_values_in_range(range);
479 			continue;
480 		}
481 
482 		ret = linear_range_get_selector_high(range, min_uV, &sel,
483 						     &found);
484 		if (ret) {
485 			selector += linear_range_values_in_range(range);
486 			continue;
487 		}
488 
489 		ret = selector + sel - range->min_sel;
490 
491 		voltage = rdev->desc->ops->list_voltage(rdev, ret);
492 
493 		/*
494 		 * Map back into a voltage to verify we're still in bounds.
495 		 * We may have overlapping voltage ranges. Hence we don't
496 		 * exit but retry until we have checked all ranges.
497 		 */
498 		if (voltage < min_uV || voltage > max_uV)
499 			selector += linear_range_values_in_range(range);
500 		else
501 			break;
502 	}
503 
504 	if (i == rdev->desc->n_linear_ranges)
505 		return -EINVAL;
506 
507 	return ret;
508 }
509 EXPORT_SYMBOL_GPL(regulator_map_voltage_pickable_linear_range);
510 
511 /**
512  * regulator_list_voltage_linear - List voltages with simple calculation
513  *
514  * @rdev: Regulator device
515  * @selector: Selector to convert into a voltage
516  *
517  * Regulators with a simple linear mapping between voltages and
518  * selectors can set min_uV and uV_step in the regulator descriptor
519  * and then use this function as their list_voltage() operation,
520  */
regulator_list_voltage_linear(struct regulator_dev * rdev,unsigned int selector)521 int regulator_list_voltage_linear(struct regulator_dev *rdev,
522 				  unsigned int selector)
523 {
524 	if (selector >= rdev->desc->n_voltages)
525 		return -EINVAL;
526 	if (selector < rdev->desc->linear_min_sel)
527 		return 0;
528 
529 	selector -= rdev->desc->linear_min_sel;
530 
531 	return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
532 }
533 EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
534 
535 /**
536  * regulator_list_voltage_pickable_linear_range - pickable range list voltages
537  *
538  * @rdev: Regulator device
539  * @selector: Selector to convert into a voltage
540  *
541  * list_voltage() operation, intended to be used by drivers utilizing pickable
542  * ranges helpers.
543  */
regulator_list_voltage_pickable_linear_range(struct regulator_dev * rdev,unsigned int selector)544 int regulator_list_voltage_pickable_linear_range(struct regulator_dev *rdev,
545 						 unsigned int selector)
546 {
547 	const struct linear_range *range;
548 	int i;
549 	unsigned int all_sels = 0;
550 
551 	if (!rdev->desc->n_linear_ranges) {
552 		BUG_ON(!rdev->desc->n_linear_ranges);
553 		return -EINVAL;
554 	}
555 
556 	for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
557 		unsigned int sel_indexes;
558 
559 		range = &rdev->desc->linear_ranges[i];
560 
561 		sel_indexes = linear_range_values_in_range(range) - 1;
562 
563 		if (all_sels + sel_indexes >= selector) {
564 			selector -= all_sels;
565 			/*
566 			 * As we see here, pickable ranges work only as
567 			 * long as the first selector for each pickable
568 			 * range is 0, and the each subsequent range for
569 			 * this 'pick' follow immediately at next unused
570 			 * selector (Eg. there is no gaps between ranges).
571 			 * I think this is fine but it probably should be
572 			 * documented. OTOH, whole pickable range stuff
573 			 * might benefit from some documentation
574 			 */
575 			return range->min + (range->step * selector);
576 		}
577 
578 		all_sels += (sel_indexes + 1);
579 	}
580 
581 	return -EINVAL;
582 }
583 EXPORT_SYMBOL_GPL(regulator_list_voltage_pickable_linear_range);
584 
585 /**
586  * regulator_desc_list_voltage_linear_range - List voltages for linear ranges
587  *
588  * @desc: Regulator desc for regulator which volatges are to be listed
589  * @selector: Selector to convert into a voltage
590  *
591  * Regulators with a series of simple linear mappings between voltages
592  * and selectors who have set linear_ranges in the regulator descriptor
593  * can use this function prior regulator registration to list voltages.
594  * This is useful when voltages need to be listed during device-tree
595  * parsing.
596  */
regulator_desc_list_voltage_linear_range(const struct regulator_desc * desc,unsigned int selector)597 int regulator_desc_list_voltage_linear_range(const struct regulator_desc *desc,
598 					     unsigned int selector)
599 {
600 	unsigned int val;
601 	int ret;
602 
603 	BUG_ON(!desc->n_linear_ranges);
604 
605 	ret = linear_range_get_value_array(desc->linear_ranges,
606 					   desc->n_linear_ranges, selector,
607 					   &val);
608 	if (ret)
609 		return ret;
610 
611 	return val;
612 }
613 EXPORT_SYMBOL_GPL(regulator_desc_list_voltage_linear_range);
614 
615 /**
616  * regulator_list_voltage_linear_range - List voltages for linear ranges
617  *
618  * @rdev: Regulator device
619  * @selector: Selector to convert into a voltage
620  *
621  * Regulators with a series of simple linear mappings between voltages
622  * and selectors can set linear_ranges in the regulator descriptor and
623  * then use this function as their list_voltage() operation,
624  */
regulator_list_voltage_linear_range(struct regulator_dev * rdev,unsigned int selector)625 int regulator_list_voltage_linear_range(struct regulator_dev *rdev,
626 					unsigned int selector)
627 {
628 	return regulator_desc_list_voltage_linear_range(rdev->desc, selector);
629 }
630 EXPORT_SYMBOL_GPL(regulator_list_voltage_linear_range);
631 
632 /**
633  * regulator_list_voltage_table - List voltages with table based mapping
634  *
635  * @rdev: Regulator device
636  * @selector: Selector to convert into a voltage
637  *
638  * Regulators with table based mapping between voltages and
639  * selectors can set volt_table in the regulator descriptor
640  * and then use this function as their list_voltage() operation.
641  */
regulator_list_voltage_table(struct regulator_dev * rdev,unsigned int selector)642 int regulator_list_voltage_table(struct regulator_dev *rdev,
643 				 unsigned int selector)
644 {
645 	if (!rdev->desc->volt_table) {
646 		BUG_ON(!rdev->desc->volt_table);
647 		return -EINVAL;
648 	}
649 
650 	if (selector >= rdev->desc->n_voltages)
651 		return -EINVAL;
652 
653 	return rdev->desc->volt_table[selector];
654 }
655 EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
656 
657 /**
658  * regulator_set_bypass_regmap - Default set_bypass() using regmap
659  *
660  * @rdev: device to operate on.
661  * @enable: state to set.
662  */
regulator_set_bypass_regmap(struct regulator_dev * rdev,bool enable)663 int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable)
664 {
665 	unsigned int val;
666 
667 	if (enable) {
668 		val = rdev->desc->bypass_val_on;
669 		if (!val)
670 			val = rdev->desc->bypass_mask;
671 	} else {
672 		val = rdev->desc->bypass_val_off;
673 	}
674 
675 	return regmap_update_bits(rdev->regmap, rdev->desc->bypass_reg,
676 				  rdev->desc->bypass_mask, val);
677 }
678 EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap);
679 
680 /**
681  * regulator_set_soft_start_regmap - Default set_soft_start() using regmap
682  *
683  * @rdev: device to operate on.
684  */
regulator_set_soft_start_regmap(struct regulator_dev * rdev)685 int regulator_set_soft_start_regmap(struct regulator_dev *rdev)
686 {
687 	unsigned int val;
688 
689 	val = rdev->desc->soft_start_val_on;
690 	if (!val)
691 		val = rdev->desc->soft_start_mask;
692 
693 	return regmap_update_bits(rdev->regmap, rdev->desc->soft_start_reg,
694 				  rdev->desc->soft_start_mask, val);
695 }
696 EXPORT_SYMBOL_GPL(regulator_set_soft_start_regmap);
697 
698 /**
699  * regulator_set_pull_down_regmap - Default set_pull_down() using regmap
700  *
701  * @rdev: device to operate on.
702  */
regulator_set_pull_down_regmap(struct regulator_dev * rdev)703 int regulator_set_pull_down_regmap(struct regulator_dev *rdev)
704 {
705 	unsigned int val;
706 
707 	val = rdev->desc->pull_down_val_on;
708 	if (!val)
709 		val = rdev->desc->pull_down_mask;
710 
711 	return regmap_update_bits(rdev->regmap, rdev->desc->pull_down_reg,
712 				  rdev->desc->pull_down_mask, val);
713 }
714 EXPORT_SYMBOL_GPL(regulator_set_pull_down_regmap);
715 
716 /**
717  * regulator_get_bypass_regmap - Default get_bypass() using regmap
718  *
719  * @rdev: device to operate on.
720  * @enable: current state.
721  */
regulator_get_bypass_regmap(struct regulator_dev * rdev,bool * enable)722 int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable)
723 {
724 	unsigned int val;
725 	unsigned int val_on = rdev->desc->bypass_val_on;
726 	int ret;
727 
728 	ret = regmap_read(rdev->regmap, rdev->desc->bypass_reg, &val);
729 	if (ret != 0)
730 		return ret;
731 
732 	if (!val_on)
733 		val_on = rdev->desc->bypass_mask;
734 
735 	*enable = (val & rdev->desc->bypass_mask) == val_on;
736 
737 	return 0;
738 }
739 EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap);
740 
741 /**
742  * regulator_set_active_discharge_regmap - Default set_active_discharge()
743  *					   using regmap
744  *
745  * @rdev: device to operate on.
746  * @enable: state to set, 0 to disable and 1 to enable.
747  */
regulator_set_active_discharge_regmap(struct regulator_dev * rdev,bool enable)748 int regulator_set_active_discharge_regmap(struct regulator_dev *rdev,
749 					  bool enable)
750 {
751 	unsigned int val;
752 
753 	if (enable)
754 		val = rdev->desc->active_discharge_on;
755 	else
756 		val = rdev->desc->active_discharge_off;
757 
758 	return regmap_update_bits(rdev->regmap,
759 				  rdev->desc->active_discharge_reg,
760 				  rdev->desc->active_discharge_mask, val);
761 }
762 EXPORT_SYMBOL_GPL(regulator_set_active_discharge_regmap);
763 
764 /**
765  * regulator_set_current_limit_regmap - set_current_limit for regmap users
766  *
767  * @rdev: regulator to operate on
768  * @min_uA: Lower bound for current limit
769  * @max_uA: Upper bound for current limit
770  *
771  * Regulators that use regmap for their register I/O can set curr_table,
772  * csel_reg and csel_mask fields in their descriptor and then use this
773  * as their set_current_limit operation, saving some code.
774  */
regulator_set_current_limit_regmap(struct regulator_dev * rdev,int min_uA,int max_uA)775 int regulator_set_current_limit_regmap(struct regulator_dev *rdev,
776 				       int min_uA, int max_uA)
777 {
778 	unsigned int n_currents = rdev->desc->n_current_limits;
779 	int i, sel = -1;
780 
781 	if (n_currents == 0)
782 		return -EINVAL;
783 
784 	if (rdev->desc->curr_table) {
785 		const unsigned int *curr_table = rdev->desc->curr_table;
786 		bool ascend = curr_table[n_currents - 1] > curr_table[0];
787 
788 		/* search for closest to maximum */
789 		if (ascend) {
790 			for (i = n_currents - 1; i >= 0; i--) {
791 				if (min_uA <= curr_table[i] &&
792 				    curr_table[i] <= max_uA) {
793 					sel = i;
794 					break;
795 				}
796 			}
797 		} else {
798 			for (i = 0; i < n_currents; i++) {
799 				if (min_uA <= curr_table[i] &&
800 				    curr_table[i] <= max_uA) {
801 					sel = i;
802 					break;
803 				}
804 			}
805 		}
806 	}
807 
808 	if (sel < 0)
809 		return -EINVAL;
810 
811 	sel <<= ffs(rdev->desc->csel_mask) - 1;
812 
813 	return regmap_update_bits(rdev->regmap, rdev->desc->csel_reg,
814 				  rdev->desc->csel_mask, sel);
815 }
816 EXPORT_SYMBOL_GPL(regulator_set_current_limit_regmap);
817 
818 /**
819  * regulator_get_current_limit_regmap - get_current_limit for regmap users
820  *
821  * @rdev: regulator to operate on
822  *
823  * Regulators that use regmap for their register I/O can set the
824  * csel_reg and csel_mask fields in their descriptor and then use this
825  * as their get_current_limit operation, saving some code.
826  */
regulator_get_current_limit_regmap(struct regulator_dev * rdev)827 int regulator_get_current_limit_regmap(struct regulator_dev *rdev)
828 {
829 	unsigned int val;
830 	int ret;
831 
832 	ret = regmap_read(rdev->regmap, rdev->desc->csel_reg, &val);
833 	if (ret != 0)
834 		return ret;
835 
836 	val &= rdev->desc->csel_mask;
837 	val >>= ffs(rdev->desc->csel_mask) - 1;
838 
839 	if (rdev->desc->curr_table) {
840 		if (val >= rdev->desc->n_current_limits)
841 			return -EINVAL;
842 
843 		return rdev->desc->curr_table[val];
844 	}
845 
846 	return -EINVAL;
847 }
848 EXPORT_SYMBOL_GPL(regulator_get_current_limit_regmap);
849 
850 /**
851  * regulator_bulk_set_supply_names - initialize the 'supply' fields in an array
852  *                                   of regulator_bulk_data structs
853  *
854  * @consumers: array of regulator_bulk_data entries to initialize
855  * @supply_names: array of supply name strings
856  * @num_supplies: number of supply names to initialize
857  *
858  * Note: the 'consumers' array must be the size of 'num_supplies'.
859  */
regulator_bulk_set_supply_names(struct regulator_bulk_data * consumers,const char * const * supply_names,unsigned int num_supplies)860 void regulator_bulk_set_supply_names(struct regulator_bulk_data *consumers,
861 				     const char *const *supply_names,
862 				     unsigned int num_supplies)
863 {
864 	unsigned int i;
865 
866 	for (i = 0; i < num_supplies; i++)
867 		consumers[i].supply = supply_names[i];
868 }
869 EXPORT_SYMBOL_GPL(regulator_bulk_set_supply_names);
870 
871 /**
872  * regulator_is_equal - test whether two regulators are the same
873  *
874  * @reg1: first regulator to operate on
875  * @reg2: second regulator to operate on
876  */
regulator_is_equal(struct regulator * reg1,struct regulator * reg2)877 bool regulator_is_equal(struct regulator *reg1, struct regulator *reg2)
878 {
879 	return reg1->rdev == reg2->rdev;
880 }
881 EXPORT_SYMBOL_GPL(regulator_is_equal);
882