1 // SPDX-License-Identifier: GPL-2.0-or-later
2 //
3 // core.c -- Voltage/Current Regulator framework.
4 //
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
7 //
8 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
9
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/async.h>
16 #include <linux/err.h>
17 #include <linux/mutex.h>
18 #include <linux/suspend.h>
19 #include <linux/delay.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/of.h>
22 #include <linux/regmap.h>
23 #include <linux/regulator/of_regulator.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/regulator/coupler.h>
26 #include <linux/regulator/driver.h>
27 #include <linux/regulator/machine.h>
28 #include <linux/module.h>
29
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/regulator.h>
32
33 #include "dummy.h"
34 #include "internal.h"
35
36 #define rdev_crit(rdev, fmt, ...) \
37 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
38 #define rdev_err(rdev, fmt, ...) \
39 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40 #define rdev_warn(rdev, fmt, ...) \
41 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_info(rdev, fmt, ...) \
43 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_dbg(rdev, fmt, ...) \
45 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46
47 static DEFINE_WW_CLASS(regulator_ww_class);
48 static DEFINE_MUTEX(regulator_nesting_mutex);
49 static DEFINE_MUTEX(regulator_list_mutex);
50 static LIST_HEAD(regulator_map_list);
51 static LIST_HEAD(regulator_ena_gpio_list);
52 static LIST_HEAD(regulator_supply_alias_list);
53 static LIST_HEAD(regulator_coupler_list);
54 static bool has_full_constraints;
55
56 static struct dentry *debugfs_root;
57
58 /*
59 * struct regulator_map
60 *
61 * Used to provide symbolic supply names to devices.
62 */
63 struct regulator_map {
64 struct list_head list;
65 const char *dev_name; /* The dev_name() for the consumer */
66 const char *supply;
67 struct regulator_dev *regulator;
68 };
69
70 /*
71 * struct regulator_enable_gpio
72 *
73 * Management for shared enable GPIO pin
74 */
75 struct regulator_enable_gpio {
76 struct list_head list;
77 struct gpio_desc *gpiod;
78 u32 enable_count; /* a number of enabled shared GPIO */
79 u32 request_count; /* a number of requested shared GPIO */
80 };
81
82 /*
83 * struct regulator_supply_alias
84 *
85 * Used to map lookups for a supply onto an alternative device.
86 */
87 struct regulator_supply_alias {
88 struct list_head list;
89 struct device *src_dev;
90 const char *src_supply;
91 struct device *alias_dev;
92 const char *alias_supply;
93 };
94
95 static int _regulator_is_enabled(struct regulator_dev *rdev);
96 static int _regulator_disable(struct regulator *regulator);
97 static int _regulator_get_current_limit(struct regulator_dev *rdev);
98 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
99 static int _notifier_call_chain(struct regulator_dev *rdev,
100 unsigned long event, void *data);
101 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
102 int min_uV, int max_uV);
103 static int regulator_balance_voltage(struct regulator_dev *rdev,
104 suspend_state_t state);
105 static struct regulator *create_regulator(struct regulator_dev *rdev,
106 struct device *dev,
107 const char *supply_name);
108 static void destroy_regulator(struct regulator *regulator);
109 static void _regulator_put(struct regulator *regulator);
110
rdev_get_name(struct regulator_dev * rdev)111 const char *rdev_get_name(struct regulator_dev *rdev)
112 {
113 if (rdev->constraints && rdev->constraints->name)
114 return rdev->constraints->name;
115 else if (rdev->desc->name)
116 return rdev->desc->name;
117 else
118 return "";
119 }
120
have_full_constraints(void)121 static bool have_full_constraints(void)
122 {
123 return has_full_constraints || of_have_populated_dt();
124 }
125
regulator_ops_is_valid(struct regulator_dev * rdev,int ops)126 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
127 {
128 if (!rdev->constraints) {
129 rdev_err(rdev, "no constraints\n");
130 return false;
131 }
132
133 if (rdev->constraints->valid_ops_mask & ops)
134 return true;
135
136 return false;
137 }
138
139 /**
140 * regulator_lock_nested - lock a single regulator
141 * @rdev: regulator source
142 * @ww_ctx: w/w mutex acquire context
143 *
144 * This function can be called many times by one task on
145 * a single regulator and its mutex will be locked only
146 * once. If a task, which is calling this function is other
147 * than the one, which initially locked the mutex, it will
148 * wait on mutex.
149 */
regulator_lock_nested(struct regulator_dev * rdev,struct ww_acquire_ctx * ww_ctx)150 static inline int regulator_lock_nested(struct regulator_dev *rdev,
151 struct ww_acquire_ctx *ww_ctx)
152 {
153 bool lock = false;
154 int ret = 0;
155
156 mutex_lock(®ulator_nesting_mutex);
157
158 if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
159 if (rdev->mutex_owner == current)
160 rdev->ref_cnt++;
161 else
162 lock = true;
163
164 if (lock) {
165 mutex_unlock(®ulator_nesting_mutex);
166 ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
167 mutex_lock(®ulator_nesting_mutex);
168 }
169 } else {
170 lock = true;
171 }
172
173 if (lock && ret != -EDEADLK) {
174 rdev->ref_cnt++;
175 rdev->mutex_owner = current;
176 }
177
178 mutex_unlock(®ulator_nesting_mutex);
179
180 return ret;
181 }
182
183 /**
184 * regulator_lock - lock a single regulator
185 * @rdev: regulator source
186 *
187 * This function can be called many times by one task on
188 * a single regulator and its mutex will be locked only
189 * once. If a task, which is calling this function is other
190 * than the one, which initially locked the mutex, it will
191 * wait on mutex.
192 */
regulator_lock(struct regulator_dev * rdev)193 static void regulator_lock(struct regulator_dev *rdev)
194 {
195 regulator_lock_nested(rdev, NULL);
196 }
197
198 /**
199 * regulator_unlock - unlock a single regulator
200 * @rdev: regulator_source
201 *
202 * This function unlocks the mutex when the
203 * reference counter reaches 0.
204 */
regulator_unlock(struct regulator_dev * rdev)205 static void regulator_unlock(struct regulator_dev *rdev)
206 {
207 mutex_lock(®ulator_nesting_mutex);
208
209 if (--rdev->ref_cnt == 0) {
210 rdev->mutex_owner = NULL;
211 ww_mutex_unlock(&rdev->mutex);
212 }
213
214 WARN_ON_ONCE(rdev->ref_cnt < 0);
215
216 mutex_unlock(®ulator_nesting_mutex);
217 }
218
regulator_supply_is_couple(struct regulator_dev * rdev)219 static bool regulator_supply_is_couple(struct regulator_dev *rdev)
220 {
221 struct regulator_dev *c_rdev;
222 int i;
223
224 for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
225 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
226
227 if (rdev->supply->rdev == c_rdev)
228 return true;
229 }
230
231 return false;
232 }
233
regulator_unlock_recursive(struct regulator_dev * rdev,unsigned int n_coupled)234 static void regulator_unlock_recursive(struct regulator_dev *rdev,
235 unsigned int n_coupled)
236 {
237 struct regulator_dev *c_rdev, *supply_rdev;
238 int i, supply_n_coupled;
239
240 for (i = n_coupled; i > 0; i--) {
241 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
242
243 if (!c_rdev)
244 continue;
245
246 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
247 supply_rdev = c_rdev->supply->rdev;
248 supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
249
250 regulator_unlock_recursive(supply_rdev,
251 supply_n_coupled);
252 }
253
254 regulator_unlock(c_rdev);
255 }
256 }
257
regulator_lock_recursive(struct regulator_dev * rdev,struct regulator_dev ** new_contended_rdev,struct regulator_dev ** old_contended_rdev,struct ww_acquire_ctx * ww_ctx)258 static int regulator_lock_recursive(struct regulator_dev *rdev,
259 struct regulator_dev **new_contended_rdev,
260 struct regulator_dev **old_contended_rdev,
261 struct ww_acquire_ctx *ww_ctx)
262 {
263 struct regulator_dev *c_rdev;
264 int i, err;
265
266 for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
267 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
268
269 if (!c_rdev)
270 continue;
271
272 if (c_rdev != *old_contended_rdev) {
273 err = regulator_lock_nested(c_rdev, ww_ctx);
274 if (err) {
275 if (err == -EDEADLK) {
276 *new_contended_rdev = c_rdev;
277 goto err_unlock;
278 }
279
280 /* shouldn't happen */
281 WARN_ON_ONCE(err != -EALREADY);
282 }
283 } else {
284 *old_contended_rdev = NULL;
285 }
286
287 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
288 err = regulator_lock_recursive(c_rdev->supply->rdev,
289 new_contended_rdev,
290 old_contended_rdev,
291 ww_ctx);
292 if (err) {
293 regulator_unlock(c_rdev);
294 goto err_unlock;
295 }
296 }
297 }
298
299 return 0;
300
301 err_unlock:
302 regulator_unlock_recursive(rdev, i);
303
304 return err;
305 }
306
307 /**
308 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
309 * regulators
310 * @rdev: regulator source
311 * @ww_ctx: w/w mutex acquire context
312 *
313 * Unlock all regulators related with rdev by coupling or supplying.
314 */
regulator_unlock_dependent(struct regulator_dev * rdev,struct ww_acquire_ctx * ww_ctx)315 static void regulator_unlock_dependent(struct regulator_dev *rdev,
316 struct ww_acquire_ctx *ww_ctx)
317 {
318 regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
319 ww_acquire_fini(ww_ctx);
320 }
321
322 /**
323 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
324 * @rdev: regulator source
325 * @ww_ctx: w/w mutex acquire context
326 *
327 * This function as a wrapper on regulator_lock_recursive(), which locks
328 * all regulators related with rdev by coupling or supplying.
329 */
regulator_lock_dependent(struct regulator_dev * rdev,struct ww_acquire_ctx * ww_ctx)330 static void regulator_lock_dependent(struct regulator_dev *rdev,
331 struct ww_acquire_ctx *ww_ctx)
332 {
333 struct regulator_dev *new_contended_rdev = NULL;
334 struct regulator_dev *old_contended_rdev = NULL;
335 int err;
336
337 mutex_lock(®ulator_list_mutex);
338
339 ww_acquire_init(ww_ctx, ®ulator_ww_class);
340
341 do {
342 if (new_contended_rdev) {
343 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
344 old_contended_rdev = new_contended_rdev;
345 old_contended_rdev->ref_cnt++;
346 }
347
348 err = regulator_lock_recursive(rdev,
349 &new_contended_rdev,
350 &old_contended_rdev,
351 ww_ctx);
352
353 if (old_contended_rdev)
354 regulator_unlock(old_contended_rdev);
355
356 } while (err == -EDEADLK);
357
358 ww_acquire_done(ww_ctx);
359
360 mutex_unlock(®ulator_list_mutex);
361 }
362
363 /**
364 * of_get_child_regulator - get a child regulator device node
365 * based on supply name
366 * @parent: Parent device node
367 * @prop_name: Combination regulator supply name and "-supply"
368 *
369 * Traverse all child nodes.
370 * Extract the child regulator device node corresponding to the supply name.
371 * returns the device node corresponding to the regulator if found, else
372 * returns NULL.
373 */
of_get_child_regulator(struct device_node * parent,const char * prop_name)374 static struct device_node *of_get_child_regulator(struct device_node *parent,
375 const char *prop_name)
376 {
377 struct device_node *regnode = NULL;
378 struct device_node *child = NULL;
379
380 for_each_child_of_node(parent, child) {
381 regnode = of_parse_phandle(child, prop_name, 0);
382
383 if (!regnode) {
384 regnode = of_get_child_regulator(child, prop_name);
385 if (regnode)
386 goto err_node_put;
387 } else {
388 goto err_node_put;
389 }
390 }
391 return NULL;
392
393 err_node_put:
394 of_node_put(child);
395 return regnode;
396 }
397
398 /**
399 * of_get_regulator - get a regulator device node based on supply name
400 * @dev: Device pointer for the consumer (of regulator) device
401 * @supply: regulator supply name
402 *
403 * Extract the regulator device node corresponding to the supply name.
404 * returns the device node corresponding to the regulator if found, else
405 * returns NULL.
406 */
of_get_regulator(struct device * dev,const char * supply)407 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
408 {
409 struct device_node *regnode = NULL;
410 char prop_name[64]; /* 64 is max size of property name */
411
412 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
413
414 snprintf(prop_name, 64, "%s-supply", supply);
415 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
416
417 if (!regnode) {
418 regnode = of_get_child_regulator(dev->of_node, prop_name);
419 if (regnode)
420 return regnode;
421
422 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
423 prop_name, dev->of_node);
424 return NULL;
425 }
426 return regnode;
427 }
428
429 /* Platform voltage constraint check */
regulator_check_voltage(struct regulator_dev * rdev,int * min_uV,int * max_uV)430 int regulator_check_voltage(struct regulator_dev *rdev,
431 int *min_uV, int *max_uV)
432 {
433 BUG_ON(*min_uV > *max_uV);
434
435 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
436 rdev_err(rdev, "voltage operation not allowed\n");
437 return -EPERM;
438 }
439
440 if (*max_uV > rdev->constraints->max_uV)
441 *max_uV = rdev->constraints->max_uV;
442 if (*min_uV < rdev->constraints->min_uV)
443 *min_uV = rdev->constraints->min_uV;
444
445 if (*min_uV > *max_uV) {
446 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
447 *min_uV, *max_uV);
448 return -EINVAL;
449 }
450
451 return 0;
452 }
453
454 /* return 0 if the state is valid */
regulator_check_states(suspend_state_t state)455 static int regulator_check_states(suspend_state_t state)
456 {
457 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
458 }
459
460 /* Make sure we select a voltage that suits the needs of all
461 * regulator consumers
462 */
regulator_check_consumers(struct regulator_dev * rdev,int * min_uV,int * max_uV,suspend_state_t state)463 int regulator_check_consumers(struct regulator_dev *rdev,
464 int *min_uV, int *max_uV,
465 suspend_state_t state)
466 {
467 struct regulator *regulator;
468 struct regulator_voltage *voltage;
469
470 list_for_each_entry(regulator, &rdev->consumer_list, list) {
471 voltage = ®ulator->voltage[state];
472 /*
473 * Assume consumers that didn't say anything are OK
474 * with anything in the constraint range.
475 */
476 if (!voltage->min_uV && !voltage->max_uV)
477 continue;
478
479 if (*max_uV > voltage->max_uV)
480 *max_uV = voltage->max_uV;
481 if (*min_uV < voltage->min_uV)
482 *min_uV = voltage->min_uV;
483 }
484
485 if (*min_uV > *max_uV) {
486 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
487 *min_uV, *max_uV);
488 return -EINVAL;
489 }
490
491 return 0;
492 }
493
494 /* current constraint check */
regulator_check_current_limit(struct regulator_dev * rdev,int * min_uA,int * max_uA)495 static int regulator_check_current_limit(struct regulator_dev *rdev,
496 int *min_uA, int *max_uA)
497 {
498 BUG_ON(*min_uA > *max_uA);
499
500 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
501 rdev_err(rdev, "current operation not allowed\n");
502 return -EPERM;
503 }
504
505 if (*max_uA > rdev->constraints->max_uA)
506 *max_uA = rdev->constraints->max_uA;
507 if (*min_uA < rdev->constraints->min_uA)
508 *min_uA = rdev->constraints->min_uA;
509
510 if (*min_uA > *max_uA) {
511 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
512 *min_uA, *max_uA);
513 return -EINVAL;
514 }
515
516 return 0;
517 }
518
519 /* operating mode constraint check */
regulator_mode_constrain(struct regulator_dev * rdev,unsigned int * mode)520 static int regulator_mode_constrain(struct regulator_dev *rdev,
521 unsigned int *mode)
522 {
523 switch (*mode) {
524 case REGULATOR_MODE_FAST:
525 case REGULATOR_MODE_NORMAL:
526 case REGULATOR_MODE_IDLE:
527 case REGULATOR_MODE_STANDBY:
528 break;
529 default:
530 rdev_err(rdev, "invalid mode %x specified\n", *mode);
531 return -EINVAL;
532 }
533
534 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
535 rdev_err(rdev, "mode operation not allowed\n");
536 return -EPERM;
537 }
538
539 /* The modes are bitmasks, the most power hungry modes having
540 * the lowest values. If the requested mode isn't supported
541 * try higher modes. */
542 while (*mode) {
543 if (rdev->constraints->valid_modes_mask & *mode)
544 return 0;
545 *mode /= 2;
546 }
547
548 return -EINVAL;
549 }
550
551 static inline struct regulator_state *
regulator_get_suspend_state(struct regulator_dev * rdev,suspend_state_t state)552 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
553 {
554 if (rdev->constraints == NULL)
555 return NULL;
556
557 switch (state) {
558 case PM_SUSPEND_STANDBY:
559 return &rdev->constraints->state_standby;
560 case PM_SUSPEND_MEM:
561 return &rdev->constraints->state_mem;
562 case PM_SUSPEND_MAX:
563 return &rdev->constraints->state_disk;
564 default:
565 return NULL;
566 }
567 }
568
569 static const struct regulator_state *
regulator_get_suspend_state_check(struct regulator_dev * rdev,suspend_state_t state)570 regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
571 {
572 const struct regulator_state *rstate;
573
574 rstate = regulator_get_suspend_state(rdev, state);
575 if (rstate == NULL)
576 return NULL;
577
578 /* If we have no suspend mode configuration don't set anything;
579 * only warn if the driver implements set_suspend_voltage or
580 * set_suspend_mode callback.
581 */
582 if (rstate->enabled != ENABLE_IN_SUSPEND &&
583 rstate->enabled != DISABLE_IN_SUSPEND) {
584 if (rdev->desc->ops->set_suspend_voltage ||
585 rdev->desc->ops->set_suspend_mode)
586 rdev_warn(rdev, "No configuration\n");
587 return NULL;
588 }
589
590 return rstate;
591 }
592
regulator_uV_show(struct device * dev,struct device_attribute * attr,char * buf)593 static ssize_t regulator_uV_show(struct device *dev,
594 struct device_attribute *attr, char *buf)
595 {
596 struct regulator_dev *rdev = dev_get_drvdata(dev);
597 int uV;
598
599 regulator_lock(rdev);
600 uV = regulator_get_voltage_rdev(rdev);
601 regulator_unlock(rdev);
602
603 if (uV < 0)
604 return uV;
605 return sprintf(buf, "%d\n", uV);
606 }
607 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
608
regulator_uA_show(struct device * dev,struct device_attribute * attr,char * buf)609 static ssize_t regulator_uA_show(struct device *dev,
610 struct device_attribute *attr, char *buf)
611 {
612 struct regulator_dev *rdev = dev_get_drvdata(dev);
613
614 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
615 }
616 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
617
name_show(struct device * dev,struct device_attribute * attr,char * buf)618 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
619 char *buf)
620 {
621 struct regulator_dev *rdev = dev_get_drvdata(dev);
622
623 return sprintf(buf, "%s\n", rdev_get_name(rdev));
624 }
625 static DEVICE_ATTR_RO(name);
626
regulator_opmode_to_str(int mode)627 static const char *regulator_opmode_to_str(int mode)
628 {
629 switch (mode) {
630 case REGULATOR_MODE_FAST:
631 return "fast";
632 case REGULATOR_MODE_NORMAL:
633 return "normal";
634 case REGULATOR_MODE_IDLE:
635 return "idle";
636 case REGULATOR_MODE_STANDBY:
637 return "standby";
638 }
639 return "unknown";
640 }
641
regulator_print_opmode(char * buf,int mode)642 static ssize_t regulator_print_opmode(char *buf, int mode)
643 {
644 return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
645 }
646
regulator_opmode_show(struct device * dev,struct device_attribute * attr,char * buf)647 static ssize_t regulator_opmode_show(struct device *dev,
648 struct device_attribute *attr, char *buf)
649 {
650 struct regulator_dev *rdev = dev_get_drvdata(dev);
651
652 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
653 }
654 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
655
regulator_print_state(char * buf,int state)656 static ssize_t regulator_print_state(char *buf, int state)
657 {
658 if (state > 0)
659 return sprintf(buf, "enabled\n");
660 else if (state == 0)
661 return sprintf(buf, "disabled\n");
662 else
663 return sprintf(buf, "unknown\n");
664 }
665
regulator_state_show(struct device * dev,struct device_attribute * attr,char * buf)666 static ssize_t regulator_state_show(struct device *dev,
667 struct device_attribute *attr, char *buf)
668 {
669 struct regulator_dev *rdev = dev_get_drvdata(dev);
670 ssize_t ret;
671
672 regulator_lock(rdev);
673 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
674 regulator_unlock(rdev);
675
676 return ret;
677 }
678 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
679
regulator_status_show(struct device * dev,struct device_attribute * attr,char * buf)680 static ssize_t regulator_status_show(struct device *dev,
681 struct device_attribute *attr, char *buf)
682 {
683 struct regulator_dev *rdev = dev_get_drvdata(dev);
684 int status;
685 char *label;
686
687 status = rdev->desc->ops->get_status(rdev);
688 if (status < 0)
689 return status;
690
691 switch (status) {
692 case REGULATOR_STATUS_OFF:
693 label = "off";
694 break;
695 case REGULATOR_STATUS_ON:
696 label = "on";
697 break;
698 case REGULATOR_STATUS_ERROR:
699 label = "error";
700 break;
701 case REGULATOR_STATUS_FAST:
702 label = "fast";
703 break;
704 case REGULATOR_STATUS_NORMAL:
705 label = "normal";
706 break;
707 case REGULATOR_STATUS_IDLE:
708 label = "idle";
709 break;
710 case REGULATOR_STATUS_STANDBY:
711 label = "standby";
712 break;
713 case REGULATOR_STATUS_BYPASS:
714 label = "bypass";
715 break;
716 case REGULATOR_STATUS_UNDEFINED:
717 label = "undefined";
718 break;
719 default:
720 return -ERANGE;
721 }
722
723 return sprintf(buf, "%s\n", label);
724 }
725 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
726
regulator_min_uA_show(struct device * dev,struct device_attribute * attr,char * buf)727 static ssize_t regulator_min_uA_show(struct device *dev,
728 struct device_attribute *attr, char *buf)
729 {
730 struct regulator_dev *rdev = dev_get_drvdata(dev);
731
732 if (!rdev->constraints)
733 return sprintf(buf, "constraint not defined\n");
734
735 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
736 }
737 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
738
regulator_max_uA_show(struct device * dev,struct device_attribute * attr,char * buf)739 static ssize_t regulator_max_uA_show(struct device *dev,
740 struct device_attribute *attr, char *buf)
741 {
742 struct regulator_dev *rdev = dev_get_drvdata(dev);
743
744 if (!rdev->constraints)
745 return sprintf(buf, "constraint not defined\n");
746
747 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
748 }
749 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
750
regulator_min_uV_show(struct device * dev,struct device_attribute * attr,char * buf)751 static ssize_t regulator_min_uV_show(struct device *dev,
752 struct device_attribute *attr, char *buf)
753 {
754 struct regulator_dev *rdev = dev_get_drvdata(dev);
755
756 if (!rdev->constraints)
757 return sprintf(buf, "constraint not defined\n");
758
759 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
760 }
761 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
762
regulator_max_uV_show(struct device * dev,struct device_attribute * attr,char * buf)763 static ssize_t regulator_max_uV_show(struct device *dev,
764 struct device_attribute *attr, char *buf)
765 {
766 struct regulator_dev *rdev = dev_get_drvdata(dev);
767
768 if (!rdev->constraints)
769 return sprintf(buf, "constraint not defined\n");
770
771 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
772 }
773 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
774
regulator_total_uA_show(struct device * dev,struct device_attribute * attr,char * buf)775 static ssize_t regulator_total_uA_show(struct device *dev,
776 struct device_attribute *attr, char *buf)
777 {
778 struct regulator_dev *rdev = dev_get_drvdata(dev);
779 struct regulator *regulator;
780 int uA = 0;
781
782 regulator_lock(rdev);
783 list_for_each_entry(regulator, &rdev->consumer_list, list) {
784 if (regulator->enable_count)
785 uA += regulator->uA_load;
786 }
787 regulator_unlock(rdev);
788 return sprintf(buf, "%d\n", uA);
789 }
790 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
791
num_users_show(struct device * dev,struct device_attribute * attr,char * buf)792 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
793 char *buf)
794 {
795 struct regulator_dev *rdev = dev_get_drvdata(dev);
796 return sprintf(buf, "%d\n", rdev->use_count);
797 }
798 static DEVICE_ATTR_RO(num_users);
799
type_show(struct device * dev,struct device_attribute * attr,char * buf)800 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
801 char *buf)
802 {
803 struct regulator_dev *rdev = dev_get_drvdata(dev);
804
805 switch (rdev->desc->type) {
806 case REGULATOR_VOLTAGE:
807 return sprintf(buf, "voltage\n");
808 case REGULATOR_CURRENT:
809 return sprintf(buf, "current\n");
810 }
811 return sprintf(buf, "unknown\n");
812 }
813 static DEVICE_ATTR_RO(type);
814
regulator_suspend_mem_uV_show(struct device * dev,struct device_attribute * attr,char * buf)815 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
816 struct device_attribute *attr, char *buf)
817 {
818 struct regulator_dev *rdev = dev_get_drvdata(dev);
819
820 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
821 }
822 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
823 regulator_suspend_mem_uV_show, NULL);
824
regulator_suspend_disk_uV_show(struct device * dev,struct device_attribute * attr,char * buf)825 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
826 struct device_attribute *attr, char *buf)
827 {
828 struct regulator_dev *rdev = dev_get_drvdata(dev);
829
830 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
831 }
832 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
833 regulator_suspend_disk_uV_show, NULL);
834
regulator_suspend_standby_uV_show(struct device * dev,struct device_attribute * attr,char * buf)835 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
836 struct device_attribute *attr, char *buf)
837 {
838 struct regulator_dev *rdev = dev_get_drvdata(dev);
839
840 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
841 }
842 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
843 regulator_suspend_standby_uV_show, NULL);
844
regulator_suspend_mem_mode_show(struct device * dev,struct device_attribute * attr,char * buf)845 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
846 struct device_attribute *attr, char *buf)
847 {
848 struct regulator_dev *rdev = dev_get_drvdata(dev);
849
850 return regulator_print_opmode(buf,
851 rdev->constraints->state_mem.mode);
852 }
853 static DEVICE_ATTR(suspend_mem_mode, 0444,
854 regulator_suspend_mem_mode_show, NULL);
855
regulator_suspend_disk_mode_show(struct device * dev,struct device_attribute * attr,char * buf)856 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
857 struct device_attribute *attr, char *buf)
858 {
859 struct regulator_dev *rdev = dev_get_drvdata(dev);
860
861 return regulator_print_opmode(buf,
862 rdev->constraints->state_disk.mode);
863 }
864 static DEVICE_ATTR(suspend_disk_mode, 0444,
865 regulator_suspend_disk_mode_show, NULL);
866
regulator_suspend_standby_mode_show(struct device * dev,struct device_attribute * attr,char * buf)867 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
868 struct device_attribute *attr, char *buf)
869 {
870 struct regulator_dev *rdev = dev_get_drvdata(dev);
871
872 return regulator_print_opmode(buf,
873 rdev->constraints->state_standby.mode);
874 }
875 static DEVICE_ATTR(suspend_standby_mode, 0444,
876 regulator_suspend_standby_mode_show, NULL);
877
regulator_suspend_mem_state_show(struct device * dev,struct device_attribute * attr,char * buf)878 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
879 struct device_attribute *attr, char *buf)
880 {
881 struct regulator_dev *rdev = dev_get_drvdata(dev);
882
883 return regulator_print_state(buf,
884 rdev->constraints->state_mem.enabled);
885 }
886 static DEVICE_ATTR(suspend_mem_state, 0444,
887 regulator_suspend_mem_state_show, NULL);
888
regulator_suspend_disk_state_show(struct device * dev,struct device_attribute * attr,char * buf)889 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
890 struct device_attribute *attr, char *buf)
891 {
892 struct regulator_dev *rdev = dev_get_drvdata(dev);
893
894 return regulator_print_state(buf,
895 rdev->constraints->state_disk.enabled);
896 }
897 static DEVICE_ATTR(suspend_disk_state, 0444,
898 regulator_suspend_disk_state_show, NULL);
899
regulator_suspend_standby_state_show(struct device * dev,struct device_attribute * attr,char * buf)900 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
901 struct device_attribute *attr, char *buf)
902 {
903 struct regulator_dev *rdev = dev_get_drvdata(dev);
904
905 return regulator_print_state(buf,
906 rdev->constraints->state_standby.enabled);
907 }
908 static DEVICE_ATTR(suspend_standby_state, 0444,
909 regulator_suspend_standby_state_show, NULL);
910
regulator_bypass_show(struct device * dev,struct device_attribute * attr,char * buf)911 static ssize_t regulator_bypass_show(struct device *dev,
912 struct device_attribute *attr, char *buf)
913 {
914 struct regulator_dev *rdev = dev_get_drvdata(dev);
915 const char *report;
916 bool bypass;
917 int ret;
918
919 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
920
921 if (ret != 0)
922 report = "unknown";
923 else if (bypass)
924 report = "enabled";
925 else
926 report = "disabled";
927
928 return sprintf(buf, "%s\n", report);
929 }
930 static DEVICE_ATTR(bypass, 0444,
931 regulator_bypass_show, NULL);
932
933 /* Calculate the new optimum regulator operating mode based on the new total
934 * consumer load. All locks held by caller */
drms_uA_update(struct regulator_dev * rdev)935 static int drms_uA_update(struct regulator_dev *rdev)
936 {
937 struct regulator *sibling;
938 int current_uA = 0, output_uV, input_uV, err;
939 unsigned int mode;
940
941 /*
942 * first check to see if we can set modes at all, otherwise just
943 * tell the consumer everything is OK.
944 */
945 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
946 rdev_dbg(rdev, "DRMS operation not allowed\n");
947 return 0;
948 }
949
950 if (!rdev->desc->ops->get_optimum_mode &&
951 !rdev->desc->ops->set_load)
952 return 0;
953
954 if (!rdev->desc->ops->set_mode &&
955 !rdev->desc->ops->set_load)
956 return -EINVAL;
957
958 /* calc total requested load */
959 list_for_each_entry(sibling, &rdev->consumer_list, list) {
960 if (sibling->enable_count)
961 current_uA += sibling->uA_load;
962 }
963
964 current_uA += rdev->constraints->system_load;
965
966 if (rdev->desc->ops->set_load) {
967 /* set the optimum mode for our new total regulator load */
968 err = rdev->desc->ops->set_load(rdev, current_uA);
969 if (err < 0)
970 rdev_err(rdev, "failed to set load %d: %pe\n",
971 current_uA, ERR_PTR(err));
972 } else {
973 /* get output voltage */
974 output_uV = regulator_get_voltage_rdev(rdev);
975 if (output_uV <= 0) {
976 rdev_err(rdev, "invalid output voltage found\n");
977 return -EINVAL;
978 }
979
980 /* get input voltage */
981 input_uV = 0;
982 if (rdev->supply)
983 input_uV = regulator_get_voltage(rdev->supply);
984 if (input_uV <= 0)
985 input_uV = rdev->constraints->input_uV;
986 if (input_uV <= 0) {
987 rdev_err(rdev, "invalid input voltage found\n");
988 return -EINVAL;
989 }
990
991 /* now get the optimum mode for our new total regulator load */
992 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
993 output_uV, current_uA);
994
995 /* check the new mode is allowed */
996 err = regulator_mode_constrain(rdev, &mode);
997 if (err < 0) {
998 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
999 current_uA, input_uV, output_uV, ERR_PTR(err));
1000 return err;
1001 }
1002
1003 err = rdev->desc->ops->set_mode(rdev, mode);
1004 if (err < 0)
1005 rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1006 mode, ERR_PTR(err));
1007 }
1008
1009 return err;
1010 }
1011
__suspend_set_state(struct regulator_dev * rdev,const struct regulator_state * rstate)1012 static int __suspend_set_state(struct regulator_dev *rdev,
1013 const struct regulator_state *rstate)
1014 {
1015 int ret = 0;
1016
1017 if (rstate->enabled == ENABLE_IN_SUSPEND &&
1018 rdev->desc->ops->set_suspend_enable)
1019 ret = rdev->desc->ops->set_suspend_enable(rdev);
1020 else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1021 rdev->desc->ops->set_suspend_disable)
1022 ret = rdev->desc->ops->set_suspend_disable(rdev);
1023 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1024 ret = 0;
1025
1026 if (ret < 0) {
1027 rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1028 return ret;
1029 }
1030
1031 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1032 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1033 if (ret < 0) {
1034 rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1035 return ret;
1036 }
1037 }
1038
1039 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1040 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1041 if (ret < 0) {
1042 rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1043 return ret;
1044 }
1045 }
1046
1047 return ret;
1048 }
1049
suspend_set_initial_state(struct regulator_dev * rdev)1050 static int suspend_set_initial_state(struct regulator_dev *rdev)
1051 {
1052 const struct regulator_state *rstate;
1053
1054 rstate = regulator_get_suspend_state_check(rdev,
1055 rdev->constraints->initial_state);
1056 if (!rstate)
1057 return 0;
1058
1059 return __suspend_set_state(rdev, rstate);
1060 }
1061
1062 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
print_constraints_debug(struct regulator_dev * rdev)1063 static void print_constraints_debug(struct regulator_dev *rdev)
1064 {
1065 struct regulation_constraints *constraints = rdev->constraints;
1066 char buf[160] = "";
1067 size_t len = sizeof(buf) - 1;
1068 int count = 0;
1069 int ret;
1070
1071 if (constraints->min_uV && constraints->max_uV) {
1072 if (constraints->min_uV == constraints->max_uV)
1073 count += scnprintf(buf + count, len - count, "%d mV ",
1074 constraints->min_uV / 1000);
1075 else
1076 count += scnprintf(buf + count, len - count,
1077 "%d <--> %d mV ",
1078 constraints->min_uV / 1000,
1079 constraints->max_uV / 1000);
1080 }
1081
1082 if (!constraints->min_uV ||
1083 constraints->min_uV != constraints->max_uV) {
1084 ret = regulator_get_voltage_rdev(rdev);
1085 if (ret > 0)
1086 count += scnprintf(buf + count, len - count,
1087 "at %d mV ", ret / 1000);
1088 }
1089
1090 if (constraints->uV_offset)
1091 count += scnprintf(buf + count, len - count, "%dmV offset ",
1092 constraints->uV_offset / 1000);
1093
1094 if (constraints->min_uA && constraints->max_uA) {
1095 if (constraints->min_uA == constraints->max_uA)
1096 count += scnprintf(buf + count, len - count, "%d mA ",
1097 constraints->min_uA / 1000);
1098 else
1099 count += scnprintf(buf + count, len - count,
1100 "%d <--> %d mA ",
1101 constraints->min_uA / 1000,
1102 constraints->max_uA / 1000);
1103 }
1104
1105 if (!constraints->min_uA ||
1106 constraints->min_uA != constraints->max_uA) {
1107 ret = _regulator_get_current_limit(rdev);
1108 if (ret > 0)
1109 count += scnprintf(buf + count, len - count,
1110 "at %d mA ", ret / 1000);
1111 }
1112
1113 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1114 count += scnprintf(buf + count, len - count, "fast ");
1115 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1116 count += scnprintf(buf + count, len - count, "normal ");
1117 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1118 count += scnprintf(buf + count, len - count, "idle ");
1119 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1120 count += scnprintf(buf + count, len - count, "standby ");
1121
1122 if (!count)
1123 count = scnprintf(buf, len, "no parameters");
1124 else
1125 --count;
1126
1127 count += scnprintf(buf + count, len - count, ", %s",
1128 _regulator_is_enabled(rdev) ? "enabled" : "disabled");
1129
1130 rdev_dbg(rdev, "%s\n", buf);
1131 }
1132 #else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
print_constraints_debug(struct regulator_dev * rdev)1133 static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1134 #endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1135
print_constraints(struct regulator_dev * rdev)1136 static void print_constraints(struct regulator_dev *rdev)
1137 {
1138 struct regulation_constraints *constraints = rdev->constraints;
1139
1140 print_constraints_debug(rdev);
1141
1142 if ((constraints->min_uV != constraints->max_uV) &&
1143 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1144 rdev_warn(rdev,
1145 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1146 }
1147
machine_constraints_voltage(struct regulator_dev * rdev,struct regulation_constraints * constraints)1148 static int machine_constraints_voltage(struct regulator_dev *rdev,
1149 struct regulation_constraints *constraints)
1150 {
1151 const struct regulator_ops *ops = rdev->desc->ops;
1152 int ret;
1153
1154 /* do we need to apply the constraint voltage */
1155 if (rdev->constraints->apply_uV &&
1156 rdev->constraints->min_uV && rdev->constraints->max_uV) {
1157 int target_min, target_max;
1158 int current_uV = regulator_get_voltage_rdev(rdev);
1159
1160 if (current_uV == -ENOTRECOVERABLE) {
1161 /* This regulator can't be read and must be initialized */
1162 rdev_info(rdev, "Setting %d-%duV\n",
1163 rdev->constraints->min_uV,
1164 rdev->constraints->max_uV);
1165 _regulator_do_set_voltage(rdev,
1166 rdev->constraints->min_uV,
1167 rdev->constraints->max_uV);
1168 current_uV = regulator_get_voltage_rdev(rdev);
1169 }
1170
1171 if (current_uV < 0) {
1172 rdev_err(rdev,
1173 "failed to get the current voltage: %pe\n",
1174 ERR_PTR(current_uV));
1175 return current_uV;
1176 }
1177
1178 /*
1179 * If we're below the minimum voltage move up to the
1180 * minimum voltage, if we're above the maximum voltage
1181 * then move down to the maximum.
1182 */
1183 target_min = current_uV;
1184 target_max = current_uV;
1185
1186 if (current_uV < rdev->constraints->min_uV) {
1187 target_min = rdev->constraints->min_uV;
1188 target_max = rdev->constraints->min_uV;
1189 }
1190
1191 if (current_uV > rdev->constraints->max_uV) {
1192 target_min = rdev->constraints->max_uV;
1193 target_max = rdev->constraints->max_uV;
1194 }
1195
1196 if (target_min != current_uV || target_max != current_uV) {
1197 rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1198 current_uV, target_min, target_max);
1199 ret = _regulator_do_set_voltage(
1200 rdev, target_min, target_max);
1201 if (ret < 0) {
1202 rdev_err(rdev,
1203 "failed to apply %d-%duV constraint: %pe\n",
1204 target_min, target_max, ERR_PTR(ret));
1205 return ret;
1206 }
1207 }
1208 }
1209
1210 /* constrain machine-level voltage specs to fit
1211 * the actual range supported by this regulator.
1212 */
1213 if (ops->list_voltage && rdev->desc->n_voltages) {
1214 int count = rdev->desc->n_voltages;
1215 int i;
1216 int min_uV = INT_MAX;
1217 int max_uV = INT_MIN;
1218 int cmin = constraints->min_uV;
1219 int cmax = constraints->max_uV;
1220
1221 /* it's safe to autoconfigure fixed-voltage supplies
1222 and the constraints are used by list_voltage. */
1223 if (count == 1 && !cmin) {
1224 cmin = 1;
1225 cmax = INT_MAX;
1226 constraints->min_uV = cmin;
1227 constraints->max_uV = cmax;
1228 }
1229
1230 /* voltage constraints are optional */
1231 if ((cmin == 0) && (cmax == 0))
1232 return 0;
1233
1234 /* else require explicit machine-level constraints */
1235 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1236 rdev_err(rdev, "invalid voltage constraints\n");
1237 return -EINVAL;
1238 }
1239
1240 /* no need to loop voltages if range is continuous */
1241 if (rdev->desc->continuous_voltage_range)
1242 return 0;
1243
1244 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1245 for (i = 0; i < count; i++) {
1246 int value;
1247
1248 value = ops->list_voltage(rdev, i);
1249 if (value <= 0)
1250 continue;
1251
1252 /* maybe adjust [min_uV..max_uV] */
1253 if (value >= cmin && value < min_uV)
1254 min_uV = value;
1255 if (value <= cmax && value > max_uV)
1256 max_uV = value;
1257 }
1258
1259 /* final: [min_uV..max_uV] valid iff constraints valid */
1260 if (max_uV < min_uV) {
1261 rdev_err(rdev,
1262 "unsupportable voltage constraints %u-%uuV\n",
1263 min_uV, max_uV);
1264 return -EINVAL;
1265 }
1266
1267 /* use regulator's subset of machine constraints */
1268 if (constraints->min_uV < min_uV) {
1269 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1270 constraints->min_uV, min_uV);
1271 constraints->min_uV = min_uV;
1272 }
1273 if (constraints->max_uV > max_uV) {
1274 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1275 constraints->max_uV, max_uV);
1276 constraints->max_uV = max_uV;
1277 }
1278 }
1279
1280 return 0;
1281 }
1282
machine_constraints_current(struct regulator_dev * rdev,struct regulation_constraints * constraints)1283 static int machine_constraints_current(struct regulator_dev *rdev,
1284 struct regulation_constraints *constraints)
1285 {
1286 const struct regulator_ops *ops = rdev->desc->ops;
1287 int ret;
1288
1289 if (!constraints->min_uA && !constraints->max_uA)
1290 return 0;
1291
1292 if (constraints->min_uA > constraints->max_uA) {
1293 rdev_err(rdev, "Invalid current constraints\n");
1294 return -EINVAL;
1295 }
1296
1297 if (!ops->set_current_limit || !ops->get_current_limit) {
1298 rdev_warn(rdev, "Operation of current configuration missing\n");
1299 return 0;
1300 }
1301
1302 /* Set regulator current in constraints range */
1303 ret = ops->set_current_limit(rdev, constraints->min_uA,
1304 constraints->max_uA);
1305 if (ret < 0) {
1306 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1307 return ret;
1308 }
1309
1310 return 0;
1311 }
1312
1313 static int _regulator_do_enable(struct regulator_dev *rdev);
1314
1315 /**
1316 * set_machine_constraints - sets regulator constraints
1317 * @rdev: regulator source
1318 *
1319 * Allows platform initialisation code to define and constrain
1320 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1321 * Constraints *must* be set by platform code in order for some
1322 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1323 * set_mode.
1324 */
set_machine_constraints(struct regulator_dev * rdev)1325 static int set_machine_constraints(struct regulator_dev *rdev)
1326 {
1327 int ret = 0;
1328 const struct regulator_ops *ops = rdev->desc->ops;
1329
1330 ret = machine_constraints_voltage(rdev, rdev->constraints);
1331 if (ret != 0)
1332 return ret;
1333
1334 ret = machine_constraints_current(rdev, rdev->constraints);
1335 if (ret != 0)
1336 return ret;
1337
1338 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1339 ret = ops->set_input_current_limit(rdev,
1340 rdev->constraints->ilim_uA);
1341 if (ret < 0) {
1342 rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1343 return ret;
1344 }
1345 }
1346
1347 /* do we need to setup our suspend state */
1348 if (rdev->constraints->initial_state) {
1349 ret = suspend_set_initial_state(rdev);
1350 if (ret < 0) {
1351 rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1352 return ret;
1353 }
1354 }
1355
1356 if (rdev->constraints->initial_mode) {
1357 if (!ops->set_mode) {
1358 rdev_err(rdev, "no set_mode operation\n");
1359 return -EINVAL;
1360 }
1361
1362 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1363 if (ret < 0) {
1364 rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1365 return ret;
1366 }
1367 } else if (rdev->constraints->system_load) {
1368 /*
1369 * We'll only apply the initial system load if an
1370 * initial mode wasn't specified.
1371 */
1372 drms_uA_update(rdev);
1373 }
1374
1375 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1376 && ops->set_ramp_delay) {
1377 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1378 if (ret < 0) {
1379 rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1380 return ret;
1381 }
1382 }
1383
1384 if (rdev->constraints->pull_down && ops->set_pull_down) {
1385 ret = ops->set_pull_down(rdev);
1386 if (ret < 0) {
1387 rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1388 return ret;
1389 }
1390 }
1391
1392 if (rdev->constraints->soft_start && ops->set_soft_start) {
1393 ret = ops->set_soft_start(rdev);
1394 if (ret < 0) {
1395 rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1396 return ret;
1397 }
1398 }
1399
1400 if (rdev->constraints->over_current_protection
1401 && ops->set_over_current_protection) {
1402 ret = ops->set_over_current_protection(rdev);
1403 if (ret < 0) {
1404 rdev_err(rdev, "failed to set over current protection: %pe\n",
1405 ERR_PTR(ret));
1406 return ret;
1407 }
1408 }
1409
1410 if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1411 bool ad_state = (rdev->constraints->active_discharge ==
1412 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1413
1414 ret = ops->set_active_discharge(rdev, ad_state);
1415 if (ret < 0) {
1416 rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1417 return ret;
1418 }
1419 }
1420
1421 /* If the constraints say the regulator should be on at this point
1422 * and we have control then make sure it is enabled.
1423 */
1424 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1425 if (rdev->supply) {
1426 ret = regulator_enable(rdev->supply);
1427 if (ret < 0) {
1428 _regulator_put(rdev->supply);
1429 rdev->supply = NULL;
1430 return ret;
1431 }
1432 }
1433
1434 ret = _regulator_do_enable(rdev);
1435 if (ret < 0 && ret != -EINVAL) {
1436 rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1437 return ret;
1438 }
1439
1440 if (rdev->constraints->always_on)
1441 rdev->use_count++;
1442 }
1443
1444 print_constraints(rdev);
1445 return 0;
1446 }
1447
1448 /**
1449 * set_supply - set regulator supply regulator
1450 * @rdev: regulator name
1451 * @supply_rdev: supply regulator name
1452 *
1453 * Called by platform initialisation code to set the supply regulator for this
1454 * regulator. This ensures that a regulators supply will also be enabled by the
1455 * core if it's child is enabled.
1456 */
set_supply(struct regulator_dev * rdev,struct regulator_dev * supply_rdev)1457 static int set_supply(struct regulator_dev *rdev,
1458 struct regulator_dev *supply_rdev)
1459 {
1460 int err;
1461
1462 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1463
1464 if (!try_module_get(supply_rdev->owner))
1465 return -ENODEV;
1466
1467 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1468 if (rdev->supply == NULL) {
1469 err = -ENOMEM;
1470 return err;
1471 }
1472 supply_rdev->open_count++;
1473
1474 return 0;
1475 }
1476
1477 /**
1478 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1479 * @rdev: regulator source
1480 * @consumer_dev_name: dev_name() string for device supply applies to
1481 * @supply: symbolic name for supply
1482 *
1483 * Allows platform initialisation code to map physical regulator
1484 * sources to symbolic names for supplies for use by devices. Devices
1485 * should use these symbolic names to request regulators, avoiding the
1486 * need to provide board-specific regulator names as platform data.
1487 */
set_consumer_device_supply(struct regulator_dev * rdev,const char * consumer_dev_name,const char * supply)1488 static int set_consumer_device_supply(struct regulator_dev *rdev,
1489 const char *consumer_dev_name,
1490 const char *supply)
1491 {
1492 struct regulator_map *node, *new_node;
1493 int has_dev;
1494
1495 if (supply == NULL)
1496 return -EINVAL;
1497
1498 if (consumer_dev_name != NULL)
1499 has_dev = 1;
1500 else
1501 has_dev = 0;
1502
1503 new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1504 if (new_node == NULL)
1505 return -ENOMEM;
1506
1507 new_node->regulator = rdev;
1508 new_node->supply = supply;
1509
1510 if (has_dev) {
1511 new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1512 if (new_node->dev_name == NULL) {
1513 kfree(new_node);
1514 return -ENOMEM;
1515 }
1516 }
1517
1518 mutex_lock(®ulator_list_mutex);
1519 list_for_each_entry(node, ®ulator_map_list, list) {
1520 if (node->dev_name && consumer_dev_name) {
1521 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1522 continue;
1523 } else if (node->dev_name || consumer_dev_name) {
1524 continue;
1525 }
1526
1527 if (strcmp(node->supply, supply) != 0)
1528 continue;
1529
1530 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1531 consumer_dev_name,
1532 dev_name(&node->regulator->dev),
1533 node->regulator->desc->name,
1534 supply,
1535 dev_name(&rdev->dev), rdev_get_name(rdev));
1536 goto fail;
1537 }
1538
1539 list_add(&new_node->list, ®ulator_map_list);
1540 mutex_unlock(®ulator_list_mutex);
1541
1542 return 0;
1543
1544 fail:
1545 mutex_unlock(®ulator_list_mutex);
1546 kfree(new_node->dev_name);
1547 kfree(new_node);
1548 return -EBUSY;
1549 }
1550
unset_regulator_supplies(struct regulator_dev * rdev)1551 static void unset_regulator_supplies(struct regulator_dev *rdev)
1552 {
1553 struct regulator_map *node, *n;
1554
1555 list_for_each_entry_safe(node, n, ®ulator_map_list, list) {
1556 if (rdev == node->regulator) {
1557 list_del(&node->list);
1558 kfree(node->dev_name);
1559 kfree(node);
1560 }
1561 }
1562 }
1563
1564 #ifdef CONFIG_DEBUG_FS
constraint_flags_read_file(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)1565 static ssize_t constraint_flags_read_file(struct file *file,
1566 char __user *user_buf,
1567 size_t count, loff_t *ppos)
1568 {
1569 const struct regulator *regulator = file->private_data;
1570 const struct regulation_constraints *c = regulator->rdev->constraints;
1571 char *buf;
1572 ssize_t ret;
1573
1574 if (!c)
1575 return 0;
1576
1577 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1578 if (!buf)
1579 return -ENOMEM;
1580
1581 ret = snprintf(buf, PAGE_SIZE,
1582 "always_on: %u\n"
1583 "boot_on: %u\n"
1584 "apply_uV: %u\n"
1585 "ramp_disable: %u\n"
1586 "soft_start: %u\n"
1587 "pull_down: %u\n"
1588 "over_current_protection: %u\n",
1589 c->always_on,
1590 c->boot_on,
1591 c->apply_uV,
1592 c->ramp_disable,
1593 c->soft_start,
1594 c->pull_down,
1595 c->over_current_protection);
1596
1597 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1598 kfree(buf);
1599
1600 return ret;
1601 }
1602
1603 #endif
1604
1605 static const struct file_operations constraint_flags_fops = {
1606 #ifdef CONFIG_DEBUG_FS
1607 .open = simple_open,
1608 .read = constraint_flags_read_file,
1609 .llseek = default_llseek,
1610 #endif
1611 };
1612
1613 #define REG_STR_SIZE 64
1614
create_regulator(struct regulator_dev * rdev,struct device * dev,const char * supply_name)1615 static struct regulator *create_regulator(struct regulator_dev *rdev,
1616 struct device *dev,
1617 const char *supply_name)
1618 {
1619 struct regulator *regulator;
1620 int err;
1621
1622 if (dev) {
1623 char buf[REG_STR_SIZE];
1624 int size;
1625
1626 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1627 dev->kobj.name, supply_name);
1628 if (size >= REG_STR_SIZE)
1629 return NULL;
1630
1631 supply_name = kstrdup(buf, GFP_KERNEL);
1632 if (supply_name == NULL)
1633 return NULL;
1634 } else {
1635 supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1636 if (supply_name == NULL)
1637 return NULL;
1638 }
1639
1640 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1641 if (regulator == NULL) {
1642 kfree(supply_name);
1643 return NULL;
1644 }
1645
1646 regulator->rdev = rdev;
1647 regulator->supply_name = supply_name;
1648
1649 regulator_lock(rdev);
1650 list_add(®ulator->list, &rdev->consumer_list);
1651 regulator_unlock(rdev);
1652
1653 if (dev) {
1654 regulator->dev = dev;
1655
1656 /* Add a link to the device sysfs entry */
1657 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1658 supply_name);
1659 if (err) {
1660 rdev_dbg(rdev, "could not add device link %s: %pe\n",
1661 dev->kobj.name, ERR_PTR(err));
1662 /* non-fatal */
1663 }
1664 }
1665
1666 regulator->debugfs = debugfs_create_dir(supply_name,
1667 rdev->debugfs);
1668 if (!regulator->debugfs) {
1669 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1670 } else {
1671 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1672 ®ulator->uA_load);
1673 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1674 ®ulator->voltage[PM_SUSPEND_ON].min_uV);
1675 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1676 ®ulator->voltage[PM_SUSPEND_ON].max_uV);
1677 debugfs_create_file("constraint_flags", 0444,
1678 regulator->debugfs, regulator,
1679 &constraint_flags_fops);
1680 }
1681
1682 /*
1683 * Check now if the regulator is an always on regulator - if
1684 * it is then we don't need to do nearly so much work for
1685 * enable/disable calls.
1686 */
1687 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1688 _regulator_is_enabled(rdev))
1689 regulator->always_on = true;
1690
1691 return regulator;
1692 }
1693
_regulator_get_enable_time(struct regulator_dev * rdev)1694 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1695 {
1696 if (rdev->constraints && rdev->constraints->enable_time)
1697 return rdev->constraints->enable_time;
1698 if (rdev->desc->ops->enable_time)
1699 return rdev->desc->ops->enable_time(rdev);
1700 return rdev->desc->enable_time;
1701 }
1702
regulator_find_supply_alias(struct device * dev,const char * supply)1703 static struct regulator_supply_alias *regulator_find_supply_alias(
1704 struct device *dev, const char *supply)
1705 {
1706 struct regulator_supply_alias *map;
1707
1708 list_for_each_entry(map, ®ulator_supply_alias_list, list)
1709 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1710 return map;
1711
1712 return NULL;
1713 }
1714
regulator_supply_alias(struct device ** dev,const char ** supply)1715 static void regulator_supply_alias(struct device **dev, const char **supply)
1716 {
1717 struct regulator_supply_alias *map;
1718
1719 map = regulator_find_supply_alias(*dev, *supply);
1720 if (map) {
1721 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1722 *supply, map->alias_supply,
1723 dev_name(map->alias_dev));
1724 *dev = map->alias_dev;
1725 *supply = map->alias_supply;
1726 }
1727 }
1728
regulator_match(struct device * dev,const void * data)1729 static int regulator_match(struct device *dev, const void *data)
1730 {
1731 struct regulator_dev *r = dev_to_rdev(dev);
1732
1733 return strcmp(rdev_get_name(r), data) == 0;
1734 }
1735
regulator_lookup_by_name(const char * name)1736 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1737 {
1738 struct device *dev;
1739
1740 dev = class_find_device(®ulator_class, NULL, name, regulator_match);
1741
1742 return dev ? dev_to_rdev(dev) : NULL;
1743 }
1744
1745 /**
1746 * regulator_dev_lookup - lookup a regulator device.
1747 * @dev: device for regulator "consumer".
1748 * @supply: Supply name or regulator ID.
1749 *
1750 * If successful, returns a struct regulator_dev that corresponds to the name
1751 * @supply and with the embedded struct device refcount incremented by one.
1752 * The refcount must be dropped by calling put_device().
1753 * On failure one of the following ERR-PTR-encoded values is returned:
1754 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1755 * in the future.
1756 */
regulator_dev_lookup(struct device * dev,const char * supply)1757 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1758 const char *supply)
1759 {
1760 struct regulator_dev *r = NULL;
1761 struct device_node *node;
1762 struct regulator_map *map;
1763 const char *devname = NULL;
1764
1765 regulator_supply_alias(&dev, &supply);
1766
1767 /* first do a dt based lookup */
1768 if (dev && dev->of_node) {
1769 node = of_get_regulator(dev, supply);
1770 if (node) {
1771 r = of_find_regulator_by_node(node);
1772 if (r)
1773 return r;
1774
1775 /*
1776 * We have a node, but there is no device.
1777 * assume it has not registered yet.
1778 */
1779 return ERR_PTR(-EPROBE_DEFER);
1780 }
1781 }
1782
1783 /* if not found, try doing it non-dt way */
1784 if (dev)
1785 devname = dev_name(dev);
1786
1787 mutex_lock(®ulator_list_mutex);
1788 list_for_each_entry(map, ®ulator_map_list, list) {
1789 /* If the mapping has a device set up it must match */
1790 if (map->dev_name &&
1791 (!devname || strcmp(map->dev_name, devname)))
1792 continue;
1793
1794 if (strcmp(map->supply, supply) == 0 &&
1795 get_device(&map->regulator->dev)) {
1796 r = map->regulator;
1797 break;
1798 }
1799 }
1800 mutex_unlock(®ulator_list_mutex);
1801
1802 if (r)
1803 return r;
1804
1805 r = regulator_lookup_by_name(supply);
1806 if (r)
1807 return r;
1808
1809 return ERR_PTR(-ENODEV);
1810 }
1811
regulator_resolve_supply(struct regulator_dev * rdev)1812 static int regulator_resolve_supply(struct regulator_dev *rdev)
1813 {
1814 struct regulator_dev *r;
1815 struct device *dev = rdev->dev.parent;
1816 int ret;
1817
1818 /* No supply to resolve? */
1819 if (!rdev->supply_name)
1820 return 0;
1821
1822 /* Supply already resolved? */
1823 if (rdev->supply)
1824 return 0;
1825
1826 r = regulator_dev_lookup(dev, rdev->supply_name);
1827 if (IS_ERR(r)) {
1828 ret = PTR_ERR(r);
1829
1830 /* Did the lookup explicitly defer for us? */
1831 if (ret == -EPROBE_DEFER)
1832 return ret;
1833
1834 if (have_full_constraints()) {
1835 r = dummy_regulator_rdev;
1836 get_device(&r->dev);
1837 } else {
1838 dev_err(dev, "Failed to resolve %s-supply for %s\n",
1839 rdev->supply_name, rdev->desc->name);
1840 return -EPROBE_DEFER;
1841 }
1842 }
1843
1844 if (r == rdev) {
1845 dev_err(dev, "Supply for %s (%s) resolved to itself\n",
1846 rdev->desc->name, rdev->supply_name);
1847 if (!have_full_constraints())
1848 return -EINVAL;
1849 r = dummy_regulator_rdev;
1850 get_device(&r->dev);
1851 }
1852
1853 /*
1854 * If the supply's parent device is not the same as the
1855 * regulator's parent device, then ensure the parent device
1856 * is bound before we resolve the supply, in case the parent
1857 * device get probe deferred and unregisters the supply.
1858 */
1859 if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1860 if (!device_is_bound(r->dev.parent)) {
1861 put_device(&r->dev);
1862 return -EPROBE_DEFER;
1863 }
1864 }
1865
1866 /* Recursively resolve the supply of the supply */
1867 ret = regulator_resolve_supply(r);
1868 if (ret < 0) {
1869 put_device(&r->dev);
1870 return ret;
1871 }
1872
1873 ret = set_supply(rdev, r);
1874 if (ret < 0) {
1875 put_device(&r->dev);
1876 return ret;
1877 }
1878
1879 /*
1880 * In set_machine_constraints() we may have turned this regulator on
1881 * but we couldn't propagate to the supply if it hadn't been resolved
1882 * yet. Do it now.
1883 */
1884 if (rdev->use_count) {
1885 ret = regulator_enable(rdev->supply);
1886 if (ret < 0) {
1887 _regulator_put(rdev->supply);
1888 rdev->supply = NULL;
1889 return ret;
1890 }
1891 }
1892
1893 return 0;
1894 }
1895
1896 /* Internal regulator request function */
_regulator_get(struct device * dev,const char * id,enum regulator_get_type get_type)1897 struct regulator *_regulator_get(struct device *dev, const char *id,
1898 enum regulator_get_type get_type)
1899 {
1900 struct regulator_dev *rdev;
1901 struct regulator *regulator;
1902 struct device_link *link;
1903 int ret;
1904
1905 if (get_type >= MAX_GET_TYPE) {
1906 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1907 return ERR_PTR(-EINVAL);
1908 }
1909
1910 if (id == NULL) {
1911 pr_err("get() with no identifier\n");
1912 return ERR_PTR(-EINVAL);
1913 }
1914
1915 rdev = regulator_dev_lookup(dev, id);
1916 if (IS_ERR(rdev)) {
1917 ret = PTR_ERR(rdev);
1918
1919 /*
1920 * If regulator_dev_lookup() fails with error other
1921 * than -ENODEV our job here is done, we simply return it.
1922 */
1923 if (ret != -ENODEV)
1924 return ERR_PTR(ret);
1925
1926 if (!have_full_constraints()) {
1927 dev_warn(dev,
1928 "incomplete constraints, dummy supplies not allowed\n");
1929 return ERR_PTR(-ENODEV);
1930 }
1931
1932 switch (get_type) {
1933 case NORMAL_GET:
1934 /*
1935 * Assume that a regulator is physically present and
1936 * enabled, even if it isn't hooked up, and just
1937 * provide a dummy.
1938 */
1939 dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
1940 rdev = dummy_regulator_rdev;
1941 get_device(&rdev->dev);
1942 break;
1943
1944 case EXCLUSIVE_GET:
1945 dev_warn(dev,
1946 "dummy supplies not allowed for exclusive requests\n");
1947 fallthrough;
1948
1949 default:
1950 return ERR_PTR(-ENODEV);
1951 }
1952 }
1953
1954 if (rdev->exclusive) {
1955 regulator = ERR_PTR(-EPERM);
1956 put_device(&rdev->dev);
1957 return regulator;
1958 }
1959
1960 if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1961 regulator = ERR_PTR(-EBUSY);
1962 put_device(&rdev->dev);
1963 return regulator;
1964 }
1965
1966 mutex_lock(®ulator_list_mutex);
1967 ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
1968 mutex_unlock(®ulator_list_mutex);
1969
1970 if (ret != 0) {
1971 regulator = ERR_PTR(-EPROBE_DEFER);
1972 put_device(&rdev->dev);
1973 return regulator;
1974 }
1975
1976 ret = regulator_resolve_supply(rdev);
1977 if (ret < 0) {
1978 regulator = ERR_PTR(ret);
1979 put_device(&rdev->dev);
1980 return regulator;
1981 }
1982
1983 if (!try_module_get(rdev->owner)) {
1984 regulator = ERR_PTR(-EPROBE_DEFER);
1985 put_device(&rdev->dev);
1986 return regulator;
1987 }
1988
1989 regulator = create_regulator(rdev, dev, id);
1990 if (regulator == NULL) {
1991 regulator = ERR_PTR(-ENOMEM);
1992 module_put(rdev->owner);
1993 put_device(&rdev->dev);
1994 return regulator;
1995 }
1996
1997 rdev->open_count++;
1998 if (get_type == EXCLUSIVE_GET) {
1999 rdev->exclusive = 1;
2000
2001 ret = _regulator_is_enabled(rdev);
2002 if (ret > 0)
2003 rdev->use_count = 1;
2004 else
2005 rdev->use_count = 0;
2006 }
2007
2008 link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2009 if (!IS_ERR_OR_NULL(link))
2010 regulator->device_link = true;
2011
2012 return regulator;
2013 }
2014
2015 /**
2016 * regulator_get - lookup and obtain a reference to a regulator.
2017 * @dev: device for regulator "consumer"
2018 * @id: Supply name or regulator ID.
2019 *
2020 * Returns a struct regulator corresponding to the regulator producer,
2021 * or IS_ERR() condition containing errno.
2022 *
2023 * Use of supply names configured via regulator_set_device_supply() is
2024 * strongly encouraged. It is recommended that the supply name used
2025 * should match the name used for the supply and/or the relevant
2026 * device pins in the datasheet.
2027 */
regulator_get(struct device * dev,const char * id)2028 struct regulator *regulator_get(struct device *dev, const char *id)
2029 {
2030 return _regulator_get(dev, id, NORMAL_GET);
2031 }
2032 EXPORT_SYMBOL_GPL(regulator_get);
2033
2034 /**
2035 * regulator_get_exclusive - obtain exclusive access to a regulator.
2036 * @dev: device for regulator "consumer"
2037 * @id: Supply name or regulator ID.
2038 *
2039 * Returns a struct regulator corresponding to the regulator producer,
2040 * or IS_ERR() condition containing errno. Other consumers will be
2041 * unable to obtain this regulator while this reference is held and the
2042 * use count for the regulator will be initialised to reflect the current
2043 * state of the regulator.
2044 *
2045 * This is intended for use by consumers which cannot tolerate shared
2046 * use of the regulator such as those which need to force the
2047 * regulator off for correct operation of the hardware they are
2048 * controlling.
2049 *
2050 * Use of supply names configured via regulator_set_device_supply() is
2051 * strongly encouraged. It is recommended that the supply name used
2052 * should match the name used for the supply and/or the relevant
2053 * device pins in the datasheet.
2054 */
regulator_get_exclusive(struct device * dev,const char * id)2055 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2056 {
2057 return _regulator_get(dev, id, EXCLUSIVE_GET);
2058 }
2059 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2060
2061 /**
2062 * regulator_get_optional - obtain optional access to a regulator.
2063 * @dev: device for regulator "consumer"
2064 * @id: Supply name or regulator ID.
2065 *
2066 * Returns a struct regulator corresponding to the regulator producer,
2067 * or IS_ERR() condition containing errno.
2068 *
2069 * This is intended for use by consumers for devices which can have
2070 * some supplies unconnected in normal use, such as some MMC devices.
2071 * It can allow the regulator core to provide stub supplies for other
2072 * supplies requested using normal regulator_get() calls without
2073 * disrupting the operation of drivers that can handle absent
2074 * supplies.
2075 *
2076 * Use of supply names configured via regulator_set_device_supply() is
2077 * strongly encouraged. It is recommended that the supply name used
2078 * should match the name used for the supply and/or the relevant
2079 * device pins in the datasheet.
2080 */
regulator_get_optional(struct device * dev,const char * id)2081 struct regulator *regulator_get_optional(struct device *dev, const char *id)
2082 {
2083 return _regulator_get(dev, id, OPTIONAL_GET);
2084 }
2085 EXPORT_SYMBOL_GPL(regulator_get_optional);
2086
destroy_regulator(struct regulator * regulator)2087 static void destroy_regulator(struct regulator *regulator)
2088 {
2089 struct regulator_dev *rdev = regulator->rdev;
2090
2091 debugfs_remove_recursive(regulator->debugfs);
2092
2093 if (regulator->dev) {
2094 if (regulator->device_link)
2095 device_link_remove(regulator->dev, &rdev->dev);
2096
2097 /* remove any sysfs entries */
2098 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2099 }
2100
2101 regulator_lock(rdev);
2102 list_del(®ulator->list);
2103
2104 rdev->open_count--;
2105 rdev->exclusive = 0;
2106 regulator_unlock(rdev);
2107
2108 kfree_const(regulator->supply_name);
2109 kfree(regulator);
2110 }
2111
2112 /* regulator_list_mutex lock held by regulator_put() */
_regulator_put(struct regulator * regulator)2113 static void _regulator_put(struct regulator *regulator)
2114 {
2115 struct regulator_dev *rdev;
2116
2117 if (IS_ERR_OR_NULL(regulator))
2118 return;
2119
2120 lockdep_assert_held_once(®ulator_list_mutex);
2121
2122 /* Docs say you must disable before calling regulator_put() */
2123 WARN_ON(regulator->enable_count);
2124
2125 rdev = regulator->rdev;
2126
2127 destroy_regulator(regulator);
2128
2129 module_put(rdev->owner);
2130 put_device(&rdev->dev);
2131 }
2132
2133 /**
2134 * regulator_put - "free" the regulator source
2135 * @regulator: regulator source
2136 *
2137 * Note: drivers must ensure that all regulator_enable calls made on this
2138 * regulator source are balanced by regulator_disable calls prior to calling
2139 * this function.
2140 */
regulator_put(struct regulator * regulator)2141 void regulator_put(struct regulator *regulator)
2142 {
2143 mutex_lock(®ulator_list_mutex);
2144 _regulator_put(regulator);
2145 mutex_unlock(®ulator_list_mutex);
2146 }
2147 EXPORT_SYMBOL_GPL(regulator_put);
2148
2149 /**
2150 * regulator_register_supply_alias - Provide device alias for supply lookup
2151 *
2152 * @dev: device that will be given as the regulator "consumer"
2153 * @id: Supply name or regulator ID
2154 * @alias_dev: device that should be used to lookup the supply
2155 * @alias_id: Supply name or regulator ID that should be used to lookup the
2156 * supply
2157 *
2158 * All lookups for id on dev will instead be conducted for alias_id on
2159 * alias_dev.
2160 */
regulator_register_supply_alias(struct device * dev,const char * id,struct device * alias_dev,const char * alias_id)2161 int regulator_register_supply_alias(struct device *dev, const char *id,
2162 struct device *alias_dev,
2163 const char *alias_id)
2164 {
2165 struct regulator_supply_alias *map;
2166
2167 map = regulator_find_supply_alias(dev, id);
2168 if (map)
2169 return -EEXIST;
2170
2171 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2172 if (!map)
2173 return -ENOMEM;
2174
2175 map->src_dev = dev;
2176 map->src_supply = id;
2177 map->alias_dev = alias_dev;
2178 map->alias_supply = alias_id;
2179
2180 list_add(&map->list, ®ulator_supply_alias_list);
2181
2182 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2183 id, dev_name(dev), alias_id, dev_name(alias_dev));
2184
2185 return 0;
2186 }
2187 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2188
2189 /**
2190 * regulator_unregister_supply_alias - Remove device alias
2191 *
2192 * @dev: device that will be given as the regulator "consumer"
2193 * @id: Supply name or regulator ID
2194 *
2195 * Remove a lookup alias if one exists for id on dev.
2196 */
regulator_unregister_supply_alias(struct device * dev,const char * id)2197 void regulator_unregister_supply_alias(struct device *dev, const char *id)
2198 {
2199 struct regulator_supply_alias *map;
2200
2201 map = regulator_find_supply_alias(dev, id);
2202 if (map) {
2203 list_del(&map->list);
2204 kfree(map);
2205 }
2206 }
2207 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2208
2209 /**
2210 * regulator_bulk_register_supply_alias - register multiple aliases
2211 *
2212 * @dev: device that will be given as the regulator "consumer"
2213 * @id: List of supply names or regulator IDs
2214 * @alias_dev: device that should be used to lookup the supply
2215 * @alias_id: List of supply names or regulator IDs that should be used to
2216 * lookup the supply
2217 * @num_id: Number of aliases to register
2218 *
2219 * @return 0 on success, an errno on failure.
2220 *
2221 * This helper function allows drivers to register several supply
2222 * aliases in one operation. If any of the aliases cannot be
2223 * registered any aliases that were registered will be removed
2224 * before returning to the caller.
2225 */
regulator_bulk_register_supply_alias(struct device * dev,const char * const * id,struct device * alias_dev,const char * const * alias_id,int num_id)2226 int regulator_bulk_register_supply_alias(struct device *dev,
2227 const char *const *id,
2228 struct device *alias_dev,
2229 const char *const *alias_id,
2230 int num_id)
2231 {
2232 int i;
2233 int ret;
2234
2235 for (i = 0; i < num_id; ++i) {
2236 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2237 alias_id[i]);
2238 if (ret < 0)
2239 goto err;
2240 }
2241
2242 return 0;
2243
2244 err:
2245 dev_err(dev,
2246 "Failed to create supply alias %s,%s -> %s,%s\n",
2247 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2248
2249 while (--i >= 0)
2250 regulator_unregister_supply_alias(dev, id[i]);
2251
2252 return ret;
2253 }
2254 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2255
2256 /**
2257 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2258 *
2259 * @dev: device that will be given as the regulator "consumer"
2260 * @id: List of supply names or regulator IDs
2261 * @num_id: Number of aliases to unregister
2262 *
2263 * This helper function allows drivers to unregister several supply
2264 * aliases in one operation.
2265 */
regulator_bulk_unregister_supply_alias(struct device * dev,const char * const * id,int num_id)2266 void regulator_bulk_unregister_supply_alias(struct device *dev,
2267 const char *const *id,
2268 int num_id)
2269 {
2270 int i;
2271
2272 for (i = 0; i < num_id; ++i)
2273 regulator_unregister_supply_alias(dev, id[i]);
2274 }
2275 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2276
2277
2278 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
regulator_ena_gpio_request(struct regulator_dev * rdev,const struct regulator_config * config)2279 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2280 const struct regulator_config *config)
2281 {
2282 struct regulator_enable_gpio *pin, *new_pin;
2283 struct gpio_desc *gpiod;
2284
2285 gpiod = config->ena_gpiod;
2286 new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2287
2288 mutex_lock(®ulator_list_mutex);
2289
2290 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) {
2291 if (pin->gpiod == gpiod) {
2292 rdev_dbg(rdev, "GPIO is already used\n");
2293 goto update_ena_gpio_to_rdev;
2294 }
2295 }
2296
2297 if (new_pin == NULL) {
2298 mutex_unlock(®ulator_list_mutex);
2299 return -ENOMEM;
2300 }
2301
2302 pin = new_pin;
2303 new_pin = NULL;
2304
2305 pin->gpiod = gpiod;
2306 list_add(&pin->list, ®ulator_ena_gpio_list);
2307
2308 update_ena_gpio_to_rdev:
2309 pin->request_count++;
2310 rdev->ena_pin = pin;
2311
2312 mutex_unlock(®ulator_list_mutex);
2313 kfree(new_pin);
2314
2315 return 0;
2316 }
2317
regulator_ena_gpio_free(struct regulator_dev * rdev)2318 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2319 {
2320 struct regulator_enable_gpio *pin, *n;
2321
2322 if (!rdev->ena_pin)
2323 return;
2324
2325 /* Free the GPIO only in case of no use */
2326 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) {
2327 if (pin != rdev->ena_pin)
2328 continue;
2329
2330 if (--pin->request_count)
2331 break;
2332
2333 gpiod_put(pin->gpiod);
2334 list_del(&pin->list);
2335 kfree(pin);
2336 break;
2337 }
2338
2339 rdev->ena_pin = NULL;
2340 }
2341
2342 /**
2343 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2344 * @rdev: regulator_dev structure
2345 * @enable: enable GPIO at initial use?
2346 *
2347 * GPIO is enabled in case of initial use. (enable_count is 0)
2348 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2349 */
regulator_ena_gpio_ctrl(struct regulator_dev * rdev,bool enable)2350 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2351 {
2352 struct regulator_enable_gpio *pin = rdev->ena_pin;
2353
2354 if (!pin)
2355 return -EINVAL;
2356
2357 if (enable) {
2358 /* Enable GPIO at initial use */
2359 if (pin->enable_count == 0)
2360 gpiod_set_value_cansleep(pin->gpiod, 1);
2361
2362 pin->enable_count++;
2363 } else {
2364 if (pin->enable_count > 1) {
2365 pin->enable_count--;
2366 return 0;
2367 }
2368
2369 /* Disable GPIO if not used */
2370 if (pin->enable_count <= 1) {
2371 gpiod_set_value_cansleep(pin->gpiod, 0);
2372 pin->enable_count = 0;
2373 }
2374 }
2375
2376 return 0;
2377 }
2378
2379 /**
2380 * _regulator_enable_delay - a delay helper function
2381 * @delay: time to delay in microseconds
2382 *
2383 * Delay for the requested amount of time as per the guidelines in:
2384 *
2385 * Documentation/timers/timers-howto.rst
2386 *
2387 * The assumption here is that regulators will never be enabled in
2388 * atomic context and therefore sleeping functions can be used.
2389 */
_regulator_enable_delay(unsigned int delay)2390 static void _regulator_enable_delay(unsigned int delay)
2391 {
2392 unsigned int ms = delay / 1000;
2393 unsigned int us = delay % 1000;
2394
2395 if (ms > 0) {
2396 /*
2397 * For small enough values, handle super-millisecond
2398 * delays in the usleep_range() call below.
2399 */
2400 if (ms < 20)
2401 us += ms * 1000;
2402 else
2403 msleep(ms);
2404 }
2405
2406 /*
2407 * Give the scheduler some room to coalesce with any other
2408 * wakeup sources. For delays shorter than 10 us, don't even
2409 * bother setting up high-resolution timers and just busy-
2410 * loop.
2411 */
2412 if (us >= 10)
2413 usleep_range(us, us + 100);
2414 else
2415 udelay(us);
2416 }
2417
2418 /**
2419 * _regulator_check_status_enabled
2420 *
2421 * A helper function to check if the regulator status can be interpreted
2422 * as 'regulator is enabled'.
2423 * @rdev: the regulator device to check
2424 *
2425 * Return:
2426 * * 1 - if status shows regulator is in enabled state
2427 * * 0 - if not enabled state
2428 * * Error Value - as received from ops->get_status()
2429 */
_regulator_check_status_enabled(struct regulator_dev * rdev)2430 static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2431 {
2432 int ret = rdev->desc->ops->get_status(rdev);
2433
2434 if (ret < 0) {
2435 rdev_info(rdev, "get_status returned error: %d\n", ret);
2436 return ret;
2437 }
2438
2439 switch (ret) {
2440 case REGULATOR_STATUS_OFF:
2441 case REGULATOR_STATUS_ERROR:
2442 case REGULATOR_STATUS_UNDEFINED:
2443 return 0;
2444 default:
2445 return 1;
2446 }
2447 }
2448
_regulator_do_enable(struct regulator_dev * rdev)2449 static int _regulator_do_enable(struct regulator_dev *rdev)
2450 {
2451 int ret, delay;
2452
2453 /* Query before enabling in case configuration dependent. */
2454 ret = _regulator_get_enable_time(rdev);
2455 if (ret >= 0) {
2456 delay = ret;
2457 } else {
2458 rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2459 delay = 0;
2460 }
2461
2462 trace_regulator_enable(rdev_get_name(rdev));
2463
2464 if (rdev->desc->off_on_delay) {
2465 /* if needed, keep a distance of off_on_delay from last time
2466 * this regulator was disabled.
2467 */
2468 unsigned long start_jiffy = jiffies;
2469 unsigned long intended, max_delay, remaining;
2470
2471 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2472 intended = rdev->last_off_jiffy + max_delay;
2473
2474 if (time_before(start_jiffy, intended)) {
2475 /* calc remaining jiffies to deal with one-time
2476 * timer wrapping.
2477 * in case of multiple timer wrapping, either it can be
2478 * detected by out-of-range remaining, or it cannot be
2479 * detected and we get a penalty of
2480 * _regulator_enable_delay().
2481 */
2482 remaining = intended - start_jiffy;
2483 if (remaining <= max_delay)
2484 _regulator_enable_delay(
2485 jiffies_to_usecs(remaining));
2486 }
2487 }
2488
2489 if (rdev->ena_pin) {
2490 if (!rdev->ena_gpio_state) {
2491 ret = regulator_ena_gpio_ctrl(rdev, true);
2492 if (ret < 0)
2493 return ret;
2494 rdev->ena_gpio_state = 1;
2495 }
2496 } else if (rdev->desc->ops->enable) {
2497 ret = rdev->desc->ops->enable(rdev);
2498 if (ret < 0)
2499 return ret;
2500 } else {
2501 return -EINVAL;
2502 }
2503
2504 /* Allow the regulator to ramp; it would be useful to extend
2505 * this for bulk operations so that the regulators can ramp
2506 * together. */
2507 trace_regulator_enable_delay(rdev_get_name(rdev));
2508
2509 /* If poll_enabled_time is set, poll upto the delay calculated
2510 * above, delaying poll_enabled_time uS to check if the regulator
2511 * actually got enabled.
2512 * If the regulator isn't enabled after enable_delay has
2513 * expired, return -ETIMEDOUT.
2514 */
2515 if (rdev->desc->poll_enabled_time) {
2516 unsigned int time_remaining = delay;
2517
2518 while (time_remaining > 0) {
2519 _regulator_enable_delay(rdev->desc->poll_enabled_time);
2520
2521 if (rdev->desc->ops->get_status) {
2522 ret = _regulator_check_status_enabled(rdev);
2523 if (ret < 0)
2524 return ret;
2525 else if (ret)
2526 break;
2527 } else if (rdev->desc->ops->is_enabled(rdev))
2528 break;
2529
2530 time_remaining -= rdev->desc->poll_enabled_time;
2531 }
2532
2533 if (time_remaining <= 0) {
2534 rdev_err(rdev, "Enabled check timed out\n");
2535 return -ETIMEDOUT;
2536 }
2537 } else {
2538 _regulator_enable_delay(delay);
2539 }
2540
2541 trace_regulator_enable_complete(rdev_get_name(rdev));
2542
2543 return 0;
2544 }
2545
2546 /**
2547 * _regulator_handle_consumer_enable - handle that a consumer enabled
2548 * @regulator: regulator source
2549 *
2550 * Some things on a regulator consumer (like the contribution towards total
2551 * load on the regulator) only have an effect when the consumer wants the
2552 * regulator enabled. Explained in example with two consumers of the same
2553 * regulator:
2554 * consumer A: set_load(100); => total load = 0
2555 * consumer A: regulator_enable(); => total load = 100
2556 * consumer B: set_load(1000); => total load = 100
2557 * consumer B: regulator_enable(); => total load = 1100
2558 * consumer A: regulator_disable(); => total_load = 1000
2559 *
2560 * This function (together with _regulator_handle_consumer_disable) is
2561 * responsible for keeping track of the refcount for a given regulator consumer
2562 * and applying / unapplying these things.
2563 *
2564 * Returns 0 upon no error; -error upon error.
2565 */
_regulator_handle_consumer_enable(struct regulator * regulator)2566 static int _regulator_handle_consumer_enable(struct regulator *regulator)
2567 {
2568 struct regulator_dev *rdev = regulator->rdev;
2569
2570 lockdep_assert_held_once(&rdev->mutex.base);
2571
2572 regulator->enable_count++;
2573 if (regulator->uA_load && regulator->enable_count == 1)
2574 return drms_uA_update(rdev);
2575
2576 return 0;
2577 }
2578
2579 /**
2580 * _regulator_handle_consumer_disable - handle that a consumer disabled
2581 * @regulator: regulator source
2582 *
2583 * The opposite of _regulator_handle_consumer_enable().
2584 *
2585 * Returns 0 upon no error; -error upon error.
2586 */
_regulator_handle_consumer_disable(struct regulator * regulator)2587 static int _regulator_handle_consumer_disable(struct regulator *regulator)
2588 {
2589 struct regulator_dev *rdev = regulator->rdev;
2590
2591 lockdep_assert_held_once(&rdev->mutex.base);
2592
2593 if (!regulator->enable_count) {
2594 rdev_err(rdev, "Underflow of regulator enable count\n");
2595 return -EINVAL;
2596 }
2597
2598 regulator->enable_count--;
2599 if (regulator->uA_load && regulator->enable_count == 0)
2600 return drms_uA_update(rdev);
2601
2602 return 0;
2603 }
2604
2605 /* locks held by regulator_enable() */
_regulator_enable(struct regulator * regulator)2606 static int _regulator_enable(struct regulator *regulator)
2607 {
2608 struct regulator_dev *rdev = regulator->rdev;
2609 int ret;
2610
2611 lockdep_assert_held_once(&rdev->mutex.base);
2612
2613 if (rdev->use_count == 0 && rdev->supply) {
2614 ret = _regulator_enable(rdev->supply);
2615 if (ret < 0)
2616 return ret;
2617 }
2618
2619 /* balance only if there are regulators coupled */
2620 if (rdev->coupling_desc.n_coupled > 1) {
2621 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2622 if (ret < 0)
2623 goto err_disable_supply;
2624 }
2625
2626 ret = _regulator_handle_consumer_enable(regulator);
2627 if (ret < 0)
2628 goto err_disable_supply;
2629
2630 if (rdev->use_count == 0) {
2631 /* The regulator may on if it's not switchable or left on */
2632 ret = _regulator_is_enabled(rdev);
2633 if (ret == -EINVAL || ret == 0) {
2634 if (!regulator_ops_is_valid(rdev,
2635 REGULATOR_CHANGE_STATUS)) {
2636 ret = -EPERM;
2637 goto err_consumer_disable;
2638 }
2639
2640 ret = _regulator_do_enable(rdev);
2641 if (ret < 0)
2642 goto err_consumer_disable;
2643
2644 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2645 NULL);
2646 } else if (ret < 0) {
2647 rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2648 goto err_consumer_disable;
2649 }
2650 /* Fallthrough on positive return values - already enabled */
2651 }
2652
2653 rdev->use_count++;
2654
2655 return 0;
2656
2657 err_consumer_disable:
2658 _regulator_handle_consumer_disable(regulator);
2659
2660 err_disable_supply:
2661 if (rdev->use_count == 0 && rdev->supply)
2662 _regulator_disable(rdev->supply);
2663
2664 return ret;
2665 }
2666
2667 /**
2668 * regulator_enable - enable regulator output
2669 * @regulator: regulator source
2670 *
2671 * Request that the regulator be enabled with the regulator output at
2672 * the predefined voltage or current value. Calls to regulator_enable()
2673 * must be balanced with calls to regulator_disable().
2674 *
2675 * NOTE: the output value can be set by other drivers, boot loader or may be
2676 * hardwired in the regulator.
2677 */
regulator_enable(struct regulator * regulator)2678 int regulator_enable(struct regulator *regulator)
2679 {
2680 struct regulator_dev *rdev = regulator->rdev;
2681 struct ww_acquire_ctx ww_ctx;
2682 int ret;
2683
2684 regulator_lock_dependent(rdev, &ww_ctx);
2685 ret = _regulator_enable(regulator);
2686 regulator_unlock_dependent(rdev, &ww_ctx);
2687
2688 return ret;
2689 }
2690 EXPORT_SYMBOL_GPL(regulator_enable);
2691
_regulator_do_disable(struct regulator_dev * rdev)2692 static int _regulator_do_disable(struct regulator_dev *rdev)
2693 {
2694 int ret;
2695
2696 trace_regulator_disable(rdev_get_name(rdev));
2697
2698 if (rdev->ena_pin) {
2699 if (rdev->ena_gpio_state) {
2700 ret = regulator_ena_gpio_ctrl(rdev, false);
2701 if (ret < 0)
2702 return ret;
2703 rdev->ena_gpio_state = 0;
2704 }
2705
2706 } else if (rdev->desc->ops->disable) {
2707 ret = rdev->desc->ops->disable(rdev);
2708 if (ret != 0)
2709 return ret;
2710 }
2711
2712 /* cares about last_off_jiffy only if off_on_delay is required by
2713 * device.
2714 */
2715 if (rdev->desc->off_on_delay)
2716 rdev->last_off_jiffy = jiffies;
2717
2718 trace_regulator_disable_complete(rdev_get_name(rdev));
2719
2720 return 0;
2721 }
2722
2723 /* locks held by regulator_disable() */
_regulator_disable(struct regulator * regulator)2724 static int _regulator_disable(struct regulator *regulator)
2725 {
2726 struct regulator_dev *rdev = regulator->rdev;
2727 int ret = 0;
2728
2729 lockdep_assert_held_once(&rdev->mutex.base);
2730
2731 if (WARN(rdev->use_count <= 0,
2732 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2733 return -EIO;
2734
2735 /* are we the last user and permitted to disable ? */
2736 if (rdev->use_count == 1 &&
2737 (rdev->constraints && !rdev->constraints->always_on)) {
2738
2739 /* we are last user */
2740 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2741 ret = _notifier_call_chain(rdev,
2742 REGULATOR_EVENT_PRE_DISABLE,
2743 NULL);
2744 if (ret & NOTIFY_STOP_MASK)
2745 return -EINVAL;
2746
2747 ret = _regulator_do_disable(rdev);
2748 if (ret < 0) {
2749 rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
2750 _notifier_call_chain(rdev,
2751 REGULATOR_EVENT_ABORT_DISABLE,
2752 NULL);
2753 return ret;
2754 }
2755 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2756 NULL);
2757 }
2758
2759 rdev->use_count = 0;
2760 } else if (rdev->use_count > 1) {
2761 rdev->use_count--;
2762 }
2763
2764 if (ret == 0)
2765 ret = _regulator_handle_consumer_disable(regulator);
2766
2767 if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2768 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2769
2770 if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2771 ret = _regulator_disable(rdev->supply);
2772
2773 return ret;
2774 }
2775
2776 /**
2777 * regulator_disable - disable regulator output
2778 * @regulator: regulator source
2779 *
2780 * Disable the regulator output voltage or current. Calls to
2781 * regulator_enable() must be balanced with calls to
2782 * regulator_disable().
2783 *
2784 * NOTE: this will only disable the regulator output if no other consumer
2785 * devices have it enabled, the regulator device supports disabling and
2786 * machine constraints permit this operation.
2787 */
regulator_disable(struct regulator * regulator)2788 int regulator_disable(struct regulator *regulator)
2789 {
2790 struct regulator_dev *rdev = regulator->rdev;
2791 struct ww_acquire_ctx ww_ctx;
2792 int ret;
2793
2794 regulator_lock_dependent(rdev, &ww_ctx);
2795 ret = _regulator_disable(regulator);
2796 regulator_unlock_dependent(rdev, &ww_ctx);
2797
2798 return ret;
2799 }
2800 EXPORT_SYMBOL_GPL(regulator_disable);
2801
2802 /* locks held by regulator_force_disable() */
_regulator_force_disable(struct regulator_dev * rdev)2803 static int _regulator_force_disable(struct regulator_dev *rdev)
2804 {
2805 int ret = 0;
2806
2807 lockdep_assert_held_once(&rdev->mutex.base);
2808
2809 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2810 REGULATOR_EVENT_PRE_DISABLE, NULL);
2811 if (ret & NOTIFY_STOP_MASK)
2812 return -EINVAL;
2813
2814 ret = _regulator_do_disable(rdev);
2815 if (ret < 0) {
2816 rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
2817 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2818 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2819 return ret;
2820 }
2821
2822 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2823 REGULATOR_EVENT_DISABLE, NULL);
2824
2825 return 0;
2826 }
2827
2828 /**
2829 * regulator_force_disable - force disable regulator output
2830 * @regulator: regulator source
2831 *
2832 * Forcibly disable the regulator output voltage or current.
2833 * NOTE: this *will* disable the regulator output even if other consumer
2834 * devices have it enabled. This should be used for situations when device
2835 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2836 */
regulator_force_disable(struct regulator * regulator)2837 int regulator_force_disable(struct regulator *regulator)
2838 {
2839 struct regulator_dev *rdev = regulator->rdev;
2840 struct ww_acquire_ctx ww_ctx;
2841 int ret;
2842
2843 regulator_lock_dependent(rdev, &ww_ctx);
2844
2845 ret = _regulator_force_disable(regulator->rdev);
2846
2847 if (rdev->coupling_desc.n_coupled > 1)
2848 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2849
2850 if (regulator->uA_load) {
2851 regulator->uA_load = 0;
2852 ret = drms_uA_update(rdev);
2853 }
2854
2855 if (rdev->use_count != 0 && rdev->supply)
2856 _regulator_disable(rdev->supply);
2857
2858 regulator_unlock_dependent(rdev, &ww_ctx);
2859
2860 return ret;
2861 }
2862 EXPORT_SYMBOL_GPL(regulator_force_disable);
2863
regulator_disable_work(struct work_struct * work)2864 static void regulator_disable_work(struct work_struct *work)
2865 {
2866 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2867 disable_work.work);
2868 struct ww_acquire_ctx ww_ctx;
2869 int count, i, ret;
2870 struct regulator *regulator;
2871 int total_count = 0;
2872
2873 regulator_lock_dependent(rdev, &ww_ctx);
2874
2875 /*
2876 * Workqueue functions queue the new work instance while the previous
2877 * work instance is being processed. Cancel the queued work instance
2878 * as the work instance under processing does the job of the queued
2879 * work instance.
2880 */
2881 cancel_delayed_work(&rdev->disable_work);
2882
2883 list_for_each_entry(regulator, &rdev->consumer_list, list) {
2884 count = regulator->deferred_disables;
2885
2886 if (!count)
2887 continue;
2888
2889 total_count += count;
2890 regulator->deferred_disables = 0;
2891
2892 for (i = 0; i < count; i++) {
2893 ret = _regulator_disable(regulator);
2894 if (ret != 0)
2895 rdev_err(rdev, "Deferred disable failed: %pe\n",
2896 ERR_PTR(ret));
2897 }
2898 }
2899 WARN_ON(!total_count);
2900
2901 if (rdev->coupling_desc.n_coupled > 1)
2902 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2903
2904 regulator_unlock_dependent(rdev, &ww_ctx);
2905 }
2906
2907 /**
2908 * regulator_disable_deferred - disable regulator output with delay
2909 * @regulator: regulator source
2910 * @ms: milliseconds until the regulator is disabled
2911 *
2912 * Execute regulator_disable() on the regulator after a delay. This
2913 * is intended for use with devices that require some time to quiesce.
2914 *
2915 * NOTE: this will only disable the regulator output if no other consumer
2916 * devices have it enabled, the regulator device supports disabling and
2917 * machine constraints permit this operation.
2918 */
regulator_disable_deferred(struct regulator * regulator,int ms)2919 int regulator_disable_deferred(struct regulator *regulator, int ms)
2920 {
2921 struct regulator_dev *rdev = regulator->rdev;
2922
2923 if (!ms)
2924 return regulator_disable(regulator);
2925
2926 regulator_lock(rdev);
2927 regulator->deferred_disables++;
2928 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2929 msecs_to_jiffies(ms));
2930 regulator_unlock(rdev);
2931
2932 return 0;
2933 }
2934 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2935
_regulator_is_enabled(struct regulator_dev * rdev)2936 static int _regulator_is_enabled(struct regulator_dev *rdev)
2937 {
2938 /* A GPIO control always takes precedence */
2939 if (rdev->ena_pin)
2940 return rdev->ena_gpio_state;
2941
2942 /* If we don't know then assume that the regulator is always on */
2943 if (!rdev->desc->ops->is_enabled)
2944 return 1;
2945
2946 return rdev->desc->ops->is_enabled(rdev);
2947 }
2948
_regulator_list_voltage(struct regulator_dev * rdev,unsigned selector,int lock)2949 static int _regulator_list_voltage(struct regulator_dev *rdev,
2950 unsigned selector, int lock)
2951 {
2952 const struct regulator_ops *ops = rdev->desc->ops;
2953 int ret;
2954
2955 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2956 return rdev->desc->fixed_uV;
2957
2958 if (ops->list_voltage) {
2959 if (selector >= rdev->desc->n_voltages)
2960 return -EINVAL;
2961 if (lock)
2962 regulator_lock(rdev);
2963 ret = ops->list_voltage(rdev, selector);
2964 if (lock)
2965 regulator_unlock(rdev);
2966 } else if (rdev->is_switch && rdev->supply) {
2967 ret = _regulator_list_voltage(rdev->supply->rdev,
2968 selector, lock);
2969 } else {
2970 return -EINVAL;
2971 }
2972
2973 if (ret > 0) {
2974 if (ret < rdev->constraints->min_uV)
2975 ret = 0;
2976 else if (ret > rdev->constraints->max_uV)
2977 ret = 0;
2978 }
2979
2980 return ret;
2981 }
2982
2983 /**
2984 * regulator_is_enabled - is the regulator output enabled
2985 * @regulator: regulator source
2986 *
2987 * Returns positive if the regulator driver backing the source/client
2988 * has requested that the device be enabled, zero if it hasn't, else a
2989 * negative errno code.
2990 *
2991 * Note that the device backing this regulator handle can have multiple
2992 * users, so it might be enabled even if regulator_enable() was never
2993 * called for this particular source.
2994 */
regulator_is_enabled(struct regulator * regulator)2995 int regulator_is_enabled(struct regulator *regulator)
2996 {
2997 int ret;
2998
2999 if (regulator->always_on)
3000 return 1;
3001
3002 regulator_lock(regulator->rdev);
3003 ret = _regulator_is_enabled(regulator->rdev);
3004 regulator_unlock(regulator->rdev);
3005
3006 return ret;
3007 }
3008 EXPORT_SYMBOL_GPL(regulator_is_enabled);
3009
3010 /**
3011 * regulator_count_voltages - count regulator_list_voltage() selectors
3012 * @regulator: regulator source
3013 *
3014 * Returns number of selectors, or negative errno. Selectors are
3015 * numbered starting at zero, and typically correspond to bitfields
3016 * in hardware registers.
3017 */
regulator_count_voltages(struct regulator * regulator)3018 int regulator_count_voltages(struct regulator *regulator)
3019 {
3020 struct regulator_dev *rdev = regulator->rdev;
3021
3022 if (rdev->desc->n_voltages)
3023 return rdev->desc->n_voltages;
3024
3025 if (!rdev->is_switch || !rdev->supply)
3026 return -EINVAL;
3027
3028 return regulator_count_voltages(rdev->supply);
3029 }
3030 EXPORT_SYMBOL_GPL(regulator_count_voltages);
3031
3032 /**
3033 * regulator_list_voltage - enumerate supported voltages
3034 * @regulator: regulator source
3035 * @selector: identify voltage to list
3036 * Context: can sleep
3037 *
3038 * Returns a voltage that can be passed to @regulator_set_voltage(),
3039 * zero if this selector code can't be used on this system, or a
3040 * negative errno.
3041 */
regulator_list_voltage(struct regulator * regulator,unsigned selector)3042 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3043 {
3044 return _regulator_list_voltage(regulator->rdev, selector, 1);
3045 }
3046 EXPORT_SYMBOL_GPL(regulator_list_voltage);
3047
3048 /**
3049 * regulator_get_regmap - get the regulator's register map
3050 * @regulator: regulator source
3051 *
3052 * Returns the register map for the given regulator, or an ERR_PTR value
3053 * if the regulator doesn't use regmap.
3054 */
regulator_get_regmap(struct regulator * regulator)3055 struct regmap *regulator_get_regmap(struct regulator *regulator)
3056 {
3057 struct regmap *map = regulator->rdev->regmap;
3058
3059 return map ? map : ERR_PTR(-EOPNOTSUPP);
3060 }
3061
3062 /**
3063 * regulator_get_hardware_vsel_register - get the HW voltage selector register
3064 * @regulator: regulator source
3065 * @vsel_reg: voltage selector register, output parameter
3066 * @vsel_mask: mask for voltage selector bitfield, output parameter
3067 *
3068 * Returns the hardware register offset and bitmask used for setting the
3069 * regulator voltage. This might be useful when configuring voltage-scaling
3070 * hardware or firmware that can make I2C requests behind the kernel's back,
3071 * for example.
3072 *
3073 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3074 * and 0 is returned, otherwise a negative errno is returned.
3075 */
regulator_get_hardware_vsel_register(struct regulator * regulator,unsigned * vsel_reg,unsigned * vsel_mask)3076 int regulator_get_hardware_vsel_register(struct regulator *regulator,
3077 unsigned *vsel_reg,
3078 unsigned *vsel_mask)
3079 {
3080 struct regulator_dev *rdev = regulator->rdev;
3081 const struct regulator_ops *ops = rdev->desc->ops;
3082
3083 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3084 return -EOPNOTSUPP;
3085
3086 *vsel_reg = rdev->desc->vsel_reg;
3087 *vsel_mask = rdev->desc->vsel_mask;
3088
3089 return 0;
3090 }
3091 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3092
3093 /**
3094 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3095 * @regulator: regulator source
3096 * @selector: identify voltage to list
3097 *
3098 * Converts the selector to a hardware-specific voltage selector that can be
3099 * directly written to the regulator registers. The address of the voltage
3100 * register can be determined by calling @regulator_get_hardware_vsel_register.
3101 *
3102 * On error a negative errno is returned.
3103 */
regulator_list_hardware_vsel(struct regulator * regulator,unsigned selector)3104 int regulator_list_hardware_vsel(struct regulator *regulator,
3105 unsigned selector)
3106 {
3107 struct regulator_dev *rdev = regulator->rdev;
3108 const struct regulator_ops *ops = rdev->desc->ops;
3109
3110 if (selector >= rdev->desc->n_voltages)
3111 return -EINVAL;
3112 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3113 return -EOPNOTSUPP;
3114
3115 return selector;
3116 }
3117 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3118
3119 /**
3120 * regulator_get_linear_step - return the voltage step size between VSEL values
3121 * @regulator: regulator source
3122 *
3123 * Returns the voltage step size between VSEL values for linear
3124 * regulators, or return 0 if the regulator isn't a linear regulator.
3125 */
regulator_get_linear_step(struct regulator * regulator)3126 unsigned int regulator_get_linear_step(struct regulator *regulator)
3127 {
3128 struct regulator_dev *rdev = regulator->rdev;
3129
3130 return rdev->desc->uV_step;
3131 }
3132 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3133
3134 /**
3135 * regulator_is_supported_voltage - check if a voltage range can be supported
3136 *
3137 * @regulator: Regulator to check.
3138 * @min_uV: Minimum required voltage in uV.
3139 * @max_uV: Maximum required voltage in uV.
3140 *
3141 * Returns a boolean.
3142 */
regulator_is_supported_voltage(struct regulator * regulator,int min_uV,int max_uV)3143 int regulator_is_supported_voltage(struct regulator *regulator,
3144 int min_uV, int max_uV)
3145 {
3146 struct regulator_dev *rdev = regulator->rdev;
3147 int i, voltages, ret;
3148
3149 /* If we can't change voltage check the current voltage */
3150 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3151 ret = regulator_get_voltage(regulator);
3152 if (ret >= 0)
3153 return min_uV <= ret && ret <= max_uV;
3154 else
3155 return ret;
3156 }
3157
3158 /* Any voltage within constrains range is fine? */
3159 if (rdev->desc->continuous_voltage_range)
3160 return min_uV >= rdev->constraints->min_uV &&
3161 max_uV <= rdev->constraints->max_uV;
3162
3163 ret = regulator_count_voltages(regulator);
3164 if (ret < 0)
3165 return 0;
3166 voltages = ret;
3167
3168 for (i = 0; i < voltages; i++) {
3169 ret = regulator_list_voltage(regulator, i);
3170
3171 if (ret >= min_uV && ret <= max_uV)
3172 return 1;
3173 }
3174
3175 return 0;
3176 }
3177 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3178
regulator_map_voltage(struct regulator_dev * rdev,int min_uV,int max_uV)3179 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3180 int max_uV)
3181 {
3182 const struct regulator_desc *desc = rdev->desc;
3183
3184 if (desc->ops->map_voltage)
3185 return desc->ops->map_voltage(rdev, min_uV, max_uV);
3186
3187 if (desc->ops->list_voltage == regulator_list_voltage_linear)
3188 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3189
3190 if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3191 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3192
3193 if (desc->ops->list_voltage ==
3194 regulator_list_voltage_pickable_linear_range)
3195 return regulator_map_voltage_pickable_linear_range(rdev,
3196 min_uV, max_uV);
3197
3198 return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3199 }
3200
_regulator_call_set_voltage(struct regulator_dev * rdev,int min_uV,int max_uV,unsigned * selector)3201 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3202 int min_uV, int max_uV,
3203 unsigned *selector)
3204 {
3205 struct pre_voltage_change_data data;
3206 int ret;
3207
3208 data.old_uV = regulator_get_voltage_rdev(rdev);
3209 data.min_uV = min_uV;
3210 data.max_uV = max_uV;
3211 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3212 &data);
3213 if (ret & NOTIFY_STOP_MASK)
3214 return -EINVAL;
3215
3216 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3217 if (ret >= 0)
3218 return ret;
3219
3220 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3221 (void *)data.old_uV);
3222
3223 return ret;
3224 }
3225
_regulator_call_set_voltage_sel(struct regulator_dev * rdev,int uV,unsigned selector)3226 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3227 int uV, unsigned selector)
3228 {
3229 struct pre_voltage_change_data data;
3230 int ret;
3231
3232 data.old_uV = regulator_get_voltage_rdev(rdev);
3233 data.min_uV = uV;
3234 data.max_uV = uV;
3235 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3236 &data);
3237 if (ret & NOTIFY_STOP_MASK)
3238 return -EINVAL;
3239
3240 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3241 if (ret >= 0)
3242 return ret;
3243
3244 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3245 (void *)data.old_uV);
3246
3247 return ret;
3248 }
3249
_regulator_set_voltage_sel_step(struct regulator_dev * rdev,int uV,int new_selector)3250 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3251 int uV, int new_selector)
3252 {
3253 const struct regulator_ops *ops = rdev->desc->ops;
3254 int diff, old_sel, curr_sel, ret;
3255
3256 /* Stepping is only needed if the regulator is enabled. */
3257 if (!_regulator_is_enabled(rdev))
3258 goto final_set;
3259
3260 if (!ops->get_voltage_sel)
3261 return -EINVAL;
3262
3263 old_sel = ops->get_voltage_sel(rdev);
3264 if (old_sel < 0)
3265 return old_sel;
3266
3267 diff = new_selector - old_sel;
3268 if (diff == 0)
3269 return 0; /* No change needed. */
3270
3271 if (diff > 0) {
3272 /* Stepping up. */
3273 for (curr_sel = old_sel + rdev->desc->vsel_step;
3274 curr_sel < new_selector;
3275 curr_sel += rdev->desc->vsel_step) {
3276 /*
3277 * Call the callback directly instead of using
3278 * _regulator_call_set_voltage_sel() as we don't
3279 * want to notify anyone yet. Same in the branch
3280 * below.
3281 */
3282 ret = ops->set_voltage_sel(rdev, curr_sel);
3283 if (ret)
3284 goto try_revert;
3285 }
3286 } else {
3287 /* Stepping down. */
3288 for (curr_sel = old_sel - rdev->desc->vsel_step;
3289 curr_sel > new_selector;
3290 curr_sel -= rdev->desc->vsel_step) {
3291 ret = ops->set_voltage_sel(rdev, curr_sel);
3292 if (ret)
3293 goto try_revert;
3294 }
3295 }
3296
3297 final_set:
3298 /* The final selector will trigger the notifiers. */
3299 return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3300
3301 try_revert:
3302 /*
3303 * At least try to return to the previous voltage if setting a new
3304 * one failed.
3305 */
3306 (void)ops->set_voltage_sel(rdev, old_sel);
3307 return ret;
3308 }
3309
_regulator_set_voltage_time(struct regulator_dev * rdev,int old_uV,int new_uV)3310 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3311 int old_uV, int new_uV)
3312 {
3313 unsigned int ramp_delay = 0;
3314
3315 if (rdev->constraints->ramp_delay)
3316 ramp_delay = rdev->constraints->ramp_delay;
3317 else if (rdev->desc->ramp_delay)
3318 ramp_delay = rdev->desc->ramp_delay;
3319 else if (rdev->constraints->settling_time)
3320 return rdev->constraints->settling_time;
3321 else if (rdev->constraints->settling_time_up &&
3322 (new_uV > old_uV))
3323 return rdev->constraints->settling_time_up;
3324 else if (rdev->constraints->settling_time_down &&
3325 (new_uV < old_uV))
3326 return rdev->constraints->settling_time_down;
3327
3328 if (ramp_delay == 0) {
3329 rdev_dbg(rdev, "ramp_delay not set\n");
3330 return 0;
3331 }
3332
3333 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3334 }
3335
_regulator_do_set_voltage(struct regulator_dev * rdev,int min_uV,int max_uV)3336 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3337 int min_uV, int max_uV)
3338 {
3339 int ret;
3340 int delay = 0;
3341 int best_val = 0;
3342 unsigned int selector;
3343 int old_selector = -1;
3344 const struct regulator_ops *ops = rdev->desc->ops;
3345 int old_uV = regulator_get_voltage_rdev(rdev);
3346
3347 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3348
3349 min_uV += rdev->constraints->uV_offset;
3350 max_uV += rdev->constraints->uV_offset;
3351
3352 /*
3353 * If we can't obtain the old selector there is not enough
3354 * info to call set_voltage_time_sel().
3355 */
3356 if (_regulator_is_enabled(rdev) &&
3357 ops->set_voltage_time_sel && ops->get_voltage_sel) {
3358 old_selector = ops->get_voltage_sel(rdev);
3359 if (old_selector < 0)
3360 return old_selector;
3361 }
3362
3363 if (ops->set_voltage) {
3364 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3365 &selector);
3366
3367 if (ret >= 0) {
3368 if (ops->list_voltage)
3369 best_val = ops->list_voltage(rdev,
3370 selector);
3371 else
3372 best_val = regulator_get_voltage_rdev(rdev);
3373 }
3374
3375 } else if (ops->set_voltage_sel) {
3376 ret = regulator_map_voltage(rdev, min_uV, max_uV);
3377 if (ret >= 0) {
3378 best_val = ops->list_voltage(rdev, ret);
3379 if (min_uV <= best_val && max_uV >= best_val) {
3380 selector = ret;
3381 if (old_selector == selector)
3382 ret = 0;
3383 else if (rdev->desc->vsel_step)
3384 ret = _regulator_set_voltage_sel_step(
3385 rdev, best_val, selector);
3386 else
3387 ret = _regulator_call_set_voltage_sel(
3388 rdev, best_val, selector);
3389 } else {
3390 ret = -EINVAL;
3391 }
3392 }
3393 } else {
3394 ret = -EINVAL;
3395 }
3396
3397 if (ret)
3398 goto out;
3399
3400 if (ops->set_voltage_time_sel) {
3401 /*
3402 * Call set_voltage_time_sel if successfully obtained
3403 * old_selector
3404 */
3405 if (old_selector >= 0 && old_selector != selector)
3406 delay = ops->set_voltage_time_sel(rdev, old_selector,
3407 selector);
3408 } else {
3409 if (old_uV != best_val) {
3410 if (ops->set_voltage_time)
3411 delay = ops->set_voltage_time(rdev, old_uV,
3412 best_val);
3413 else
3414 delay = _regulator_set_voltage_time(rdev,
3415 old_uV,
3416 best_val);
3417 }
3418 }
3419
3420 if (delay < 0) {
3421 rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3422 delay = 0;
3423 }
3424
3425 /* Insert any necessary delays */
3426 if (delay >= 1000) {
3427 mdelay(delay / 1000);
3428 udelay(delay % 1000);
3429 } else if (delay) {
3430 udelay(delay);
3431 }
3432
3433 if (best_val >= 0) {
3434 unsigned long data = best_val;
3435
3436 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3437 (void *)data);
3438 }
3439
3440 out:
3441 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3442
3443 return ret;
3444 }
3445
_regulator_do_set_suspend_voltage(struct regulator_dev * rdev,int min_uV,int max_uV,suspend_state_t state)3446 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3447 int min_uV, int max_uV, suspend_state_t state)
3448 {
3449 struct regulator_state *rstate;
3450 int uV, sel;
3451
3452 rstate = regulator_get_suspend_state(rdev, state);
3453 if (rstate == NULL)
3454 return -EINVAL;
3455
3456 if (min_uV < rstate->min_uV)
3457 min_uV = rstate->min_uV;
3458 if (max_uV > rstate->max_uV)
3459 max_uV = rstate->max_uV;
3460
3461 sel = regulator_map_voltage(rdev, min_uV, max_uV);
3462 if (sel < 0)
3463 return sel;
3464
3465 uV = rdev->desc->ops->list_voltage(rdev, sel);
3466 if (uV >= min_uV && uV <= max_uV)
3467 rstate->uV = uV;
3468
3469 return 0;
3470 }
3471
regulator_set_voltage_unlocked(struct regulator * regulator,int min_uV,int max_uV,suspend_state_t state)3472 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3473 int min_uV, int max_uV,
3474 suspend_state_t state)
3475 {
3476 struct regulator_dev *rdev = regulator->rdev;
3477 struct regulator_voltage *voltage = ®ulator->voltage[state];
3478 int ret = 0;
3479 int old_min_uV, old_max_uV;
3480 int current_uV;
3481
3482 /* If we're setting the same range as last time the change
3483 * should be a noop (some cpufreq implementations use the same
3484 * voltage for multiple frequencies, for example).
3485 */
3486 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3487 goto out;
3488
3489 /* If we're trying to set a range that overlaps the current voltage,
3490 * return successfully even though the regulator does not support
3491 * changing the voltage.
3492 */
3493 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3494 current_uV = regulator_get_voltage_rdev(rdev);
3495 if (min_uV <= current_uV && current_uV <= max_uV) {
3496 voltage->min_uV = min_uV;
3497 voltage->max_uV = max_uV;
3498 goto out;
3499 }
3500 }
3501
3502 /* sanity check */
3503 if (!rdev->desc->ops->set_voltage &&
3504 !rdev->desc->ops->set_voltage_sel) {
3505 ret = -EINVAL;
3506 goto out;
3507 }
3508
3509 /* constraints check */
3510 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3511 if (ret < 0)
3512 goto out;
3513
3514 /* restore original values in case of error */
3515 old_min_uV = voltage->min_uV;
3516 old_max_uV = voltage->max_uV;
3517 voltage->min_uV = min_uV;
3518 voltage->max_uV = max_uV;
3519
3520 /* for not coupled regulators this will just set the voltage */
3521 ret = regulator_balance_voltage(rdev, state);
3522 if (ret < 0) {
3523 voltage->min_uV = old_min_uV;
3524 voltage->max_uV = old_max_uV;
3525 }
3526
3527 out:
3528 return ret;
3529 }
3530
regulator_set_voltage_rdev(struct regulator_dev * rdev,int min_uV,int max_uV,suspend_state_t state)3531 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3532 int max_uV, suspend_state_t state)
3533 {
3534 int best_supply_uV = 0;
3535 int supply_change_uV = 0;
3536 int ret;
3537
3538 if (rdev->supply &&
3539 regulator_ops_is_valid(rdev->supply->rdev,
3540 REGULATOR_CHANGE_VOLTAGE) &&
3541 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3542 rdev->desc->ops->get_voltage_sel))) {
3543 int current_supply_uV;
3544 int selector;
3545
3546 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3547 if (selector < 0) {
3548 ret = selector;
3549 goto out;
3550 }
3551
3552 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3553 if (best_supply_uV < 0) {
3554 ret = best_supply_uV;
3555 goto out;
3556 }
3557
3558 best_supply_uV += rdev->desc->min_dropout_uV;
3559
3560 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3561 if (current_supply_uV < 0) {
3562 ret = current_supply_uV;
3563 goto out;
3564 }
3565
3566 supply_change_uV = best_supply_uV - current_supply_uV;
3567 }
3568
3569 if (supply_change_uV > 0) {
3570 ret = regulator_set_voltage_unlocked(rdev->supply,
3571 best_supply_uV, INT_MAX, state);
3572 if (ret) {
3573 dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3574 ERR_PTR(ret));
3575 goto out;
3576 }
3577 }
3578
3579 if (state == PM_SUSPEND_ON)
3580 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3581 else
3582 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3583 max_uV, state);
3584 if (ret < 0)
3585 goto out;
3586
3587 if (supply_change_uV < 0) {
3588 ret = regulator_set_voltage_unlocked(rdev->supply,
3589 best_supply_uV, INT_MAX, state);
3590 if (ret)
3591 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3592 ERR_PTR(ret));
3593 /* No need to fail here */
3594 ret = 0;
3595 }
3596
3597 out:
3598 return ret;
3599 }
3600 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3601
regulator_limit_voltage_step(struct regulator_dev * rdev,int * current_uV,int * min_uV)3602 static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3603 int *current_uV, int *min_uV)
3604 {
3605 struct regulation_constraints *constraints = rdev->constraints;
3606
3607 /* Limit voltage change only if necessary */
3608 if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3609 return 1;
3610
3611 if (*current_uV < 0) {
3612 *current_uV = regulator_get_voltage_rdev(rdev);
3613
3614 if (*current_uV < 0)
3615 return *current_uV;
3616 }
3617
3618 if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3619 return 1;
3620
3621 /* Clamp target voltage within the given step */
3622 if (*current_uV < *min_uV)
3623 *min_uV = min(*current_uV + constraints->max_uV_step,
3624 *min_uV);
3625 else
3626 *min_uV = max(*current_uV - constraints->max_uV_step,
3627 *min_uV);
3628
3629 return 0;
3630 }
3631
regulator_get_optimal_voltage(struct regulator_dev * rdev,int * current_uV,int * min_uV,int * max_uV,suspend_state_t state,int n_coupled)3632 static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3633 int *current_uV,
3634 int *min_uV, int *max_uV,
3635 suspend_state_t state,
3636 int n_coupled)
3637 {
3638 struct coupling_desc *c_desc = &rdev->coupling_desc;
3639 struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3640 struct regulation_constraints *constraints = rdev->constraints;
3641 int desired_min_uV = 0, desired_max_uV = INT_MAX;
3642 int max_current_uV = 0, min_current_uV = INT_MAX;
3643 int highest_min_uV = 0, target_uV, possible_uV;
3644 int i, ret, max_spread;
3645 bool done;
3646
3647 *current_uV = -1;
3648
3649 /*
3650 * If there are no coupled regulators, simply set the voltage
3651 * demanded by consumers.
3652 */
3653 if (n_coupled == 1) {
3654 /*
3655 * If consumers don't provide any demands, set voltage
3656 * to min_uV
3657 */
3658 desired_min_uV = constraints->min_uV;
3659 desired_max_uV = constraints->max_uV;
3660
3661 ret = regulator_check_consumers(rdev,
3662 &desired_min_uV,
3663 &desired_max_uV, state);
3664 if (ret < 0)
3665 return ret;
3666
3667 possible_uV = desired_min_uV;
3668 done = true;
3669
3670 goto finish;
3671 }
3672
3673 /* Find highest min desired voltage */
3674 for (i = 0; i < n_coupled; i++) {
3675 int tmp_min = 0;
3676 int tmp_max = INT_MAX;
3677
3678 lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3679
3680 ret = regulator_check_consumers(c_rdevs[i],
3681 &tmp_min,
3682 &tmp_max, state);
3683 if (ret < 0)
3684 return ret;
3685
3686 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3687 if (ret < 0)
3688 return ret;
3689
3690 highest_min_uV = max(highest_min_uV, tmp_min);
3691
3692 if (i == 0) {
3693 desired_min_uV = tmp_min;
3694 desired_max_uV = tmp_max;
3695 }
3696 }
3697
3698 max_spread = constraints->max_spread[0];
3699
3700 /*
3701 * Let target_uV be equal to the desired one if possible.
3702 * If not, set it to minimum voltage, allowed by other coupled
3703 * regulators.
3704 */
3705 target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3706
3707 /*
3708 * Find min and max voltages, which currently aren't violating
3709 * max_spread.
3710 */
3711 for (i = 1; i < n_coupled; i++) {
3712 int tmp_act;
3713
3714 if (!_regulator_is_enabled(c_rdevs[i]))
3715 continue;
3716
3717 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3718 if (tmp_act < 0)
3719 return tmp_act;
3720
3721 min_current_uV = min(tmp_act, min_current_uV);
3722 max_current_uV = max(tmp_act, max_current_uV);
3723 }
3724
3725 /* There aren't any other regulators enabled */
3726 if (max_current_uV == 0) {
3727 possible_uV = target_uV;
3728 } else {
3729 /*
3730 * Correct target voltage, so as it currently isn't
3731 * violating max_spread
3732 */
3733 possible_uV = max(target_uV, max_current_uV - max_spread);
3734 possible_uV = min(possible_uV, min_current_uV + max_spread);
3735 }
3736
3737 if (possible_uV > desired_max_uV)
3738 return -EINVAL;
3739
3740 done = (possible_uV == target_uV);
3741 desired_min_uV = possible_uV;
3742
3743 finish:
3744 /* Apply max_uV_step constraint if necessary */
3745 if (state == PM_SUSPEND_ON) {
3746 ret = regulator_limit_voltage_step(rdev, current_uV,
3747 &desired_min_uV);
3748 if (ret < 0)
3749 return ret;
3750
3751 if (ret == 0)
3752 done = false;
3753 }
3754
3755 /* Set current_uV if wasn't done earlier in the code and if necessary */
3756 if (n_coupled > 1 && *current_uV == -1) {
3757
3758 if (_regulator_is_enabled(rdev)) {
3759 ret = regulator_get_voltage_rdev(rdev);
3760 if (ret < 0)
3761 return ret;
3762
3763 *current_uV = ret;
3764 } else {
3765 *current_uV = desired_min_uV;
3766 }
3767 }
3768
3769 *min_uV = desired_min_uV;
3770 *max_uV = desired_max_uV;
3771
3772 return done;
3773 }
3774
regulator_do_balance_voltage(struct regulator_dev * rdev,suspend_state_t state,bool skip_coupled)3775 int regulator_do_balance_voltage(struct regulator_dev *rdev,
3776 suspend_state_t state, bool skip_coupled)
3777 {
3778 struct regulator_dev **c_rdevs;
3779 struct regulator_dev *best_rdev;
3780 struct coupling_desc *c_desc = &rdev->coupling_desc;
3781 int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3782 unsigned int delta, best_delta;
3783 unsigned long c_rdev_done = 0;
3784 bool best_c_rdev_done;
3785
3786 c_rdevs = c_desc->coupled_rdevs;
3787 n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
3788
3789 /*
3790 * Find the best possible voltage change on each loop. Leave the loop
3791 * if there isn't any possible change.
3792 */
3793 do {
3794 best_c_rdev_done = false;
3795 best_delta = 0;
3796 best_min_uV = 0;
3797 best_max_uV = 0;
3798 best_c_rdev = 0;
3799 best_rdev = NULL;
3800
3801 /*
3802 * Find highest difference between optimal voltage
3803 * and current voltage.
3804 */
3805 for (i = 0; i < n_coupled; i++) {
3806 /*
3807 * optimal_uV is the best voltage that can be set for
3808 * i-th regulator at the moment without violating
3809 * max_spread constraint in order to balance
3810 * the coupled voltages.
3811 */
3812 int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
3813
3814 if (test_bit(i, &c_rdev_done))
3815 continue;
3816
3817 ret = regulator_get_optimal_voltage(c_rdevs[i],
3818 ¤t_uV,
3819 &optimal_uV,
3820 &optimal_max_uV,
3821 state, n_coupled);
3822 if (ret < 0)
3823 goto out;
3824
3825 delta = abs(optimal_uV - current_uV);
3826
3827 if (delta && best_delta <= delta) {
3828 best_c_rdev_done = ret;
3829 best_delta = delta;
3830 best_rdev = c_rdevs[i];
3831 best_min_uV = optimal_uV;
3832 best_max_uV = optimal_max_uV;
3833 best_c_rdev = i;
3834 }
3835 }
3836
3837 /* Nothing to change, return successfully */
3838 if (!best_rdev) {
3839 ret = 0;
3840 goto out;
3841 }
3842
3843 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
3844 best_max_uV, state);
3845
3846 if (ret < 0)
3847 goto out;
3848
3849 if (best_c_rdev_done)
3850 set_bit(best_c_rdev, &c_rdev_done);
3851
3852 } while (n_coupled > 1);
3853
3854 out:
3855 return ret;
3856 }
3857
regulator_balance_voltage(struct regulator_dev * rdev,suspend_state_t state)3858 static int regulator_balance_voltage(struct regulator_dev *rdev,
3859 suspend_state_t state)
3860 {
3861 struct coupling_desc *c_desc = &rdev->coupling_desc;
3862 struct regulator_coupler *coupler = c_desc->coupler;
3863 bool skip_coupled = false;
3864
3865 /*
3866 * If system is in a state other than PM_SUSPEND_ON, don't check
3867 * other coupled regulators.
3868 */
3869 if (state != PM_SUSPEND_ON)
3870 skip_coupled = true;
3871
3872 if (c_desc->n_resolved < c_desc->n_coupled) {
3873 rdev_err(rdev, "Not all coupled regulators registered\n");
3874 return -EPERM;
3875 }
3876
3877 /* Invoke custom balancer for customized couplers */
3878 if (coupler && coupler->balance_voltage)
3879 return coupler->balance_voltage(coupler, rdev, state);
3880
3881 return regulator_do_balance_voltage(rdev, state, skip_coupled);
3882 }
3883
3884 /**
3885 * regulator_set_voltage - set regulator output voltage
3886 * @regulator: regulator source
3887 * @min_uV: Minimum required voltage in uV
3888 * @max_uV: Maximum acceptable voltage in uV
3889 *
3890 * Sets a voltage regulator to the desired output voltage. This can be set
3891 * during any regulator state. IOW, regulator can be disabled or enabled.
3892 *
3893 * If the regulator is enabled then the voltage will change to the new value
3894 * immediately otherwise if the regulator is disabled the regulator will
3895 * output at the new voltage when enabled.
3896 *
3897 * NOTE: If the regulator is shared between several devices then the lowest
3898 * request voltage that meets the system constraints will be used.
3899 * Regulator system constraints must be set for this regulator before
3900 * calling this function otherwise this call will fail.
3901 */
regulator_set_voltage(struct regulator * regulator,int min_uV,int max_uV)3902 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3903 {
3904 struct ww_acquire_ctx ww_ctx;
3905 int ret;
3906
3907 regulator_lock_dependent(regulator->rdev, &ww_ctx);
3908
3909 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
3910 PM_SUSPEND_ON);
3911
3912 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3913
3914 return ret;
3915 }
3916 EXPORT_SYMBOL_GPL(regulator_set_voltage);
3917
regulator_suspend_toggle(struct regulator_dev * rdev,suspend_state_t state,bool en)3918 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
3919 suspend_state_t state, bool en)
3920 {
3921 struct regulator_state *rstate;
3922
3923 rstate = regulator_get_suspend_state(rdev, state);
3924 if (rstate == NULL)
3925 return -EINVAL;
3926
3927 if (!rstate->changeable)
3928 return -EPERM;
3929
3930 rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3931
3932 return 0;
3933 }
3934
regulator_suspend_enable(struct regulator_dev * rdev,suspend_state_t state)3935 int regulator_suspend_enable(struct regulator_dev *rdev,
3936 suspend_state_t state)
3937 {
3938 return regulator_suspend_toggle(rdev, state, true);
3939 }
3940 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
3941
regulator_suspend_disable(struct regulator_dev * rdev,suspend_state_t state)3942 int regulator_suspend_disable(struct regulator_dev *rdev,
3943 suspend_state_t state)
3944 {
3945 struct regulator *regulator;
3946 struct regulator_voltage *voltage;
3947
3948 /*
3949 * if any consumer wants this regulator device keeping on in
3950 * suspend states, don't set it as disabled.
3951 */
3952 list_for_each_entry(regulator, &rdev->consumer_list, list) {
3953 voltage = ®ulator->voltage[state];
3954 if (voltage->min_uV || voltage->max_uV)
3955 return 0;
3956 }
3957
3958 return regulator_suspend_toggle(rdev, state, false);
3959 }
3960 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
3961
_regulator_set_suspend_voltage(struct regulator * regulator,int min_uV,int max_uV,suspend_state_t state)3962 static int _regulator_set_suspend_voltage(struct regulator *regulator,
3963 int min_uV, int max_uV,
3964 suspend_state_t state)
3965 {
3966 struct regulator_dev *rdev = regulator->rdev;
3967 struct regulator_state *rstate;
3968
3969 rstate = regulator_get_suspend_state(rdev, state);
3970 if (rstate == NULL)
3971 return -EINVAL;
3972
3973 if (rstate->min_uV == rstate->max_uV) {
3974 rdev_err(rdev, "The suspend voltage can't be changed!\n");
3975 return -EPERM;
3976 }
3977
3978 return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
3979 }
3980
regulator_set_suspend_voltage(struct regulator * regulator,int min_uV,int max_uV,suspend_state_t state)3981 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
3982 int max_uV, suspend_state_t state)
3983 {
3984 struct ww_acquire_ctx ww_ctx;
3985 int ret;
3986
3987 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
3988 if (regulator_check_states(state) || state == PM_SUSPEND_ON)
3989 return -EINVAL;
3990
3991 regulator_lock_dependent(regulator->rdev, &ww_ctx);
3992
3993 ret = _regulator_set_suspend_voltage(regulator, min_uV,
3994 max_uV, state);
3995
3996 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3997
3998 return ret;
3999 }
4000 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4001
4002 /**
4003 * regulator_set_voltage_time - get raise/fall time
4004 * @regulator: regulator source
4005 * @old_uV: starting voltage in microvolts
4006 * @new_uV: target voltage in microvolts
4007 *
4008 * Provided with the starting and ending voltage, this function attempts to
4009 * calculate the time in microseconds required to rise or fall to this new
4010 * voltage.
4011 */
regulator_set_voltage_time(struct regulator * regulator,int old_uV,int new_uV)4012 int regulator_set_voltage_time(struct regulator *regulator,
4013 int old_uV, int new_uV)
4014 {
4015 struct regulator_dev *rdev = regulator->rdev;
4016 const struct regulator_ops *ops = rdev->desc->ops;
4017 int old_sel = -1;
4018 int new_sel = -1;
4019 int voltage;
4020 int i;
4021
4022 if (ops->set_voltage_time)
4023 return ops->set_voltage_time(rdev, old_uV, new_uV);
4024 else if (!ops->set_voltage_time_sel)
4025 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4026
4027 /* Currently requires operations to do this */
4028 if (!ops->list_voltage || !rdev->desc->n_voltages)
4029 return -EINVAL;
4030
4031 for (i = 0; i < rdev->desc->n_voltages; i++) {
4032 /* We only look for exact voltage matches here */
4033 voltage = regulator_list_voltage(regulator, i);
4034 if (voltage < 0)
4035 return -EINVAL;
4036 if (voltage == 0)
4037 continue;
4038 if (voltage == old_uV)
4039 old_sel = i;
4040 if (voltage == new_uV)
4041 new_sel = i;
4042 }
4043
4044 if (old_sel < 0 || new_sel < 0)
4045 return -EINVAL;
4046
4047 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4048 }
4049 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4050
4051 /**
4052 * regulator_set_voltage_time_sel - get raise/fall time
4053 * @rdev: regulator source device
4054 * @old_selector: selector for starting voltage
4055 * @new_selector: selector for target voltage
4056 *
4057 * Provided with the starting and target voltage selectors, this function
4058 * returns time in microseconds required to rise or fall to this new voltage
4059 *
4060 * Drivers providing ramp_delay in regulation_constraints can use this as their
4061 * set_voltage_time_sel() operation.
4062 */
regulator_set_voltage_time_sel(struct regulator_dev * rdev,unsigned int old_selector,unsigned int new_selector)4063 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4064 unsigned int old_selector,
4065 unsigned int new_selector)
4066 {
4067 int old_volt, new_volt;
4068
4069 /* sanity check */
4070 if (!rdev->desc->ops->list_voltage)
4071 return -EINVAL;
4072
4073 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4074 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4075
4076 if (rdev->desc->ops->set_voltage_time)
4077 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4078 new_volt);
4079 else
4080 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4081 }
4082 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4083
4084 /**
4085 * regulator_sync_voltage - re-apply last regulator output voltage
4086 * @regulator: regulator source
4087 *
4088 * Re-apply the last configured voltage. This is intended to be used
4089 * where some external control source the consumer is cooperating with
4090 * has caused the configured voltage to change.
4091 */
regulator_sync_voltage(struct regulator * regulator)4092 int regulator_sync_voltage(struct regulator *regulator)
4093 {
4094 struct regulator_dev *rdev = regulator->rdev;
4095 struct regulator_voltage *voltage = ®ulator->voltage[PM_SUSPEND_ON];
4096 int ret, min_uV, max_uV;
4097
4098 regulator_lock(rdev);
4099
4100 if (!rdev->desc->ops->set_voltage &&
4101 !rdev->desc->ops->set_voltage_sel) {
4102 ret = -EINVAL;
4103 goto out;
4104 }
4105
4106 /* This is only going to work if we've had a voltage configured. */
4107 if (!voltage->min_uV && !voltage->max_uV) {
4108 ret = -EINVAL;
4109 goto out;
4110 }
4111
4112 min_uV = voltage->min_uV;
4113 max_uV = voltage->max_uV;
4114
4115 /* This should be a paranoia check... */
4116 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4117 if (ret < 0)
4118 goto out;
4119
4120 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4121 if (ret < 0)
4122 goto out;
4123
4124 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4125
4126 out:
4127 regulator_unlock(rdev);
4128 return ret;
4129 }
4130 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4131
regulator_get_voltage_rdev(struct regulator_dev * rdev)4132 int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4133 {
4134 int sel, ret;
4135 bool bypassed;
4136
4137 if (rdev->desc->ops->get_bypass) {
4138 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4139 if (ret < 0)
4140 return ret;
4141 if (bypassed) {
4142 /* if bypassed the regulator must have a supply */
4143 if (!rdev->supply) {
4144 rdev_err(rdev,
4145 "bypassed regulator has no supply!\n");
4146 return -EPROBE_DEFER;
4147 }
4148
4149 return regulator_get_voltage_rdev(rdev->supply->rdev);
4150 }
4151 }
4152
4153 if (rdev->desc->ops->get_voltage_sel) {
4154 sel = rdev->desc->ops->get_voltage_sel(rdev);
4155 if (sel < 0)
4156 return sel;
4157 ret = rdev->desc->ops->list_voltage(rdev, sel);
4158 } else if (rdev->desc->ops->get_voltage) {
4159 ret = rdev->desc->ops->get_voltage(rdev);
4160 } else if (rdev->desc->ops->list_voltage) {
4161 ret = rdev->desc->ops->list_voltage(rdev, 0);
4162 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4163 ret = rdev->desc->fixed_uV;
4164 } else if (rdev->supply) {
4165 ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4166 } else if (rdev->supply_name) {
4167 return -EPROBE_DEFER;
4168 } else {
4169 return -EINVAL;
4170 }
4171
4172 if (ret < 0)
4173 return ret;
4174 return ret - rdev->constraints->uV_offset;
4175 }
4176 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4177
4178 /**
4179 * regulator_get_voltage - get regulator output voltage
4180 * @regulator: regulator source
4181 *
4182 * This returns the current regulator voltage in uV.
4183 *
4184 * NOTE: If the regulator is disabled it will return the voltage value. This
4185 * function should not be used to determine regulator state.
4186 */
regulator_get_voltage(struct regulator * regulator)4187 int regulator_get_voltage(struct regulator *regulator)
4188 {
4189 struct ww_acquire_ctx ww_ctx;
4190 int ret;
4191
4192 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4193 ret = regulator_get_voltage_rdev(regulator->rdev);
4194 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4195
4196 return ret;
4197 }
4198 EXPORT_SYMBOL_GPL(regulator_get_voltage);
4199
4200 /**
4201 * regulator_set_current_limit - set regulator output current limit
4202 * @regulator: regulator source
4203 * @min_uA: Minimum supported current in uA
4204 * @max_uA: Maximum supported current in uA
4205 *
4206 * Sets current sink to the desired output current. This can be set during
4207 * any regulator state. IOW, regulator can be disabled or enabled.
4208 *
4209 * If the regulator is enabled then the current will change to the new value
4210 * immediately otherwise if the regulator is disabled the regulator will
4211 * output at the new current when enabled.
4212 *
4213 * NOTE: Regulator system constraints must be set for this regulator before
4214 * calling this function otherwise this call will fail.
4215 */
regulator_set_current_limit(struct regulator * regulator,int min_uA,int max_uA)4216 int regulator_set_current_limit(struct regulator *regulator,
4217 int min_uA, int max_uA)
4218 {
4219 struct regulator_dev *rdev = regulator->rdev;
4220 int ret;
4221
4222 regulator_lock(rdev);
4223
4224 /* sanity check */
4225 if (!rdev->desc->ops->set_current_limit) {
4226 ret = -EINVAL;
4227 goto out;
4228 }
4229
4230 /* constraints check */
4231 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4232 if (ret < 0)
4233 goto out;
4234
4235 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4236 out:
4237 regulator_unlock(rdev);
4238 return ret;
4239 }
4240 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4241
_regulator_get_current_limit_unlocked(struct regulator_dev * rdev)4242 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4243 {
4244 /* sanity check */
4245 if (!rdev->desc->ops->get_current_limit)
4246 return -EINVAL;
4247
4248 return rdev->desc->ops->get_current_limit(rdev);
4249 }
4250
_regulator_get_current_limit(struct regulator_dev * rdev)4251 static int _regulator_get_current_limit(struct regulator_dev *rdev)
4252 {
4253 int ret;
4254
4255 regulator_lock(rdev);
4256 ret = _regulator_get_current_limit_unlocked(rdev);
4257 regulator_unlock(rdev);
4258
4259 return ret;
4260 }
4261
4262 /**
4263 * regulator_get_current_limit - get regulator output current
4264 * @regulator: regulator source
4265 *
4266 * This returns the current supplied by the specified current sink in uA.
4267 *
4268 * NOTE: If the regulator is disabled it will return the current value. This
4269 * function should not be used to determine regulator state.
4270 */
regulator_get_current_limit(struct regulator * regulator)4271 int regulator_get_current_limit(struct regulator *regulator)
4272 {
4273 return _regulator_get_current_limit(regulator->rdev);
4274 }
4275 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4276
4277 /**
4278 * regulator_set_mode - set regulator operating mode
4279 * @regulator: regulator source
4280 * @mode: operating mode - one of the REGULATOR_MODE constants
4281 *
4282 * Set regulator operating mode to increase regulator efficiency or improve
4283 * regulation performance.
4284 *
4285 * NOTE: Regulator system constraints must be set for this regulator before
4286 * calling this function otherwise this call will fail.
4287 */
regulator_set_mode(struct regulator * regulator,unsigned int mode)4288 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4289 {
4290 struct regulator_dev *rdev = regulator->rdev;
4291 int ret;
4292 int regulator_curr_mode;
4293
4294 regulator_lock(rdev);
4295
4296 /* sanity check */
4297 if (!rdev->desc->ops->set_mode) {
4298 ret = -EINVAL;
4299 goto out;
4300 }
4301
4302 /* return if the same mode is requested */
4303 if (rdev->desc->ops->get_mode) {
4304 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4305 if (regulator_curr_mode == mode) {
4306 ret = 0;
4307 goto out;
4308 }
4309 }
4310
4311 /* constraints check */
4312 ret = regulator_mode_constrain(rdev, &mode);
4313 if (ret < 0)
4314 goto out;
4315
4316 ret = rdev->desc->ops->set_mode(rdev, mode);
4317 out:
4318 regulator_unlock(rdev);
4319 return ret;
4320 }
4321 EXPORT_SYMBOL_GPL(regulator_set_mode);
4322
_regulator_get_mode_unlocked(struct regulator_dev * rdev)4323 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4324 {
4325 /* sanity check */
4326 if (!rdev->desc->ops->get_mode)
4327 return -EINVAL;
4328
4329 return rdev->desc->ops->get_mode(rdev);
4330 }
4331
_regulator_get_mode(struct regulator_dev * rdev)4332 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4333 {
4334 int ret;
4335
4336 regulator_lock(rdev);
4337 ret = _regulator_get_mode_unlocked(rdev);
4338 regulator_unlock(rdev);
4339
4340 return ret;
4341 }
4342
4343 /**
4344 * regulator_get_mode - get regulator operating mode
4345 * @regulator: regulator source
4346 *
4347 * Get the current regulator operating mode.
4348 */
regulator_get_mode(struct regulator * regulator)4349 unsigned int regulator_get_mode(struct regulator *regulator)
4350 {
4351 return _regulator_get_mode(regulator->rdev);
4352 }
4353 EXPORT_SYMBOL_GPL(regulator_get_mode);
4354
_regulator_get_error_flags(struct regulator_dev * rdev,unsigned int * flags)4355 static int _regulator_get_error_flags(struct regulator_dev *rdev,
4356 unsigned int *flags)
4357 {
4358 int ret;
4359
4360 regulator_lock(rdev);
4361
4362 /* sanity check */
4363 if (!rdev->desc->ops->get_error_flags) {
4364 ret = -EINVAL;
4365 goto out;
4366 }
4367
4368 ret = rdev->desc->ops->get_error_flags(rdev, flags);
4369 out:
4370 regulator_unlock(rdev);
4371 return ret;
4372 }
4373
4374 /**
4375 * regulator_get_error_flags - get regulator error information
4376 * @regulator: regulator source
4377 * @flags: pointer to store error flags
4378 *
4379 * Get the current regulator error information.
4380 */
regulator_get_error_flags(struct regulator * regulator,unsigned int * flags)4381 int regulator_get_error_flags(struct regulator *regulator,
4382 unsigned int *flags)
4383 {
4384 return _regulator_get_error_flags(regulator->rdev, flags);
4385 }
4386 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4387
4388 /**
4389 * regulator_set_load - set regulator load
4390 * @regulator: regulator source
4391 * @uA_load: load current
4392 *
4393 * Notifies the regulator core of a new device load. This is then used by
4394 * DRMS (if enabled by constraints) to set the most efficient regulator
4395 * operating mode for the new regulator loading.
4396 *
4397 * Consumer devices notify their supply regulator of the maximum power
4398 * they will require (can be taken from device datasheet in the power
4399 * consumption tables) when they change operational status and hence power
4400 * state. Examples of operational state changes that can affect power
4401 * consumption are :-
4402 *
4403 * o Device is opened / closed.
4404 * o Device I/O is about to begin or has just finished.
4405 * o Device is idling in between work.
4406 *
4407 * This information is also exported via sysfs to userspace.
4408 *
4409 * DRMS will sum the total requested load on the regulator and change
4410 * to the most efficient operating mode if platform constraints allow.
4411 *
4412 * NOTE: when a regulator consumer requests to have a regulator
4413 * disabled then any load that consumer requested no longer counts
4414 * toward the total requested load. If the regulator is re-enabled
4415 * then the previously requested load will start counting again.
4416 *
4417 * If a regulator is an always-on regulator then an individual consumer's
4418 * load will still be removed if that consumer is fully disabled.
4419 *
4420 * On error a negative errno is returned.
4421 */
regulator_set_load(struct regulator * regulator,int uA_load)4422 int regulator_set_load(struct regulator *regulator, int uA_load)
4423 {
4424 struct regulator_dev *rdev = regulator->rdev;
4425 int old_uA_load;
4426 int ret = 0;
4427
4428 regulator_lock(rdev);
4429 old_uA_load = regulator->uA_load;
4430 regulator->uA_load = uA_load;
4431 if (regulator->enable_count && old_uA_load != uA_load) {
4432 ret = drms_uA_update(rdev);
4433 if (ret < 0)
4434 regulator->uA_load = old_uA_load;
4435 }
4436 regulator_unlock(rdev);
4437
4438 return ret;
4439 }
4440 EXPORT_SYMBOL_GPL(regulator_set_load);
4441
4442 /**
4443 * regulator_allow_bypass - allow the regulator to go into bypass mode
4444 *
4445 * @regulator: Regulator to configure
4446 * @enable: enable or disable bypass mode
4447 *
4448 * Allow the regulator to go into bypass mode if all other consumers
4449 * for the regulator also enable bypass mode and the machine
4450 * constraints allow this. Bypass mode means that the regulator is
4451 * simply passing the input directly to the output with no regulation.
4452 */
regulator_allow_bypass(struct regulator * regulator,bool enable)4453 int regulator_allow_bypass(struct regulator *regulator, bool enable)
4454 {
4455 struct regulator_dev *rdev = regulator->rdev;
4456 const char *name = rdev_get_name(rdev);
4457 int ret = 0;
4458
4459 if (!rdev->desc->ops->set_bypass)
4460 return 0;
4461
4462 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4463 return 0;
4464
4465 regulator_lock(rdev);
4466
4467 if (enable && !regulator->bypass) {
4468 rdev->bypass_count++;
4469
4470 if (rdev->bypass_count == rdev->open_count) {
4471 trace_regulator_bypass_enable(name);
4472
4473 ret = rdev->desc->ops->set_bypass(rdev, enable);
4474 if (ret != 0)
4475 rdev->bypass_count--;
4476 else
4477 trace_regulator_bypass_enable_complete(name);
4478 }
4479
4480 } else if (!enable && regulator->bypass) {
4481 rdev->bypass_count--;
4482
4483 if (rdev->bypass_count != rdev->open_count) {
4484 trace_regulator_bypass_disable(name);
4485
4486 ret = rdev->desc->ops->set_bypass(rdev, enable);
4487 if (ret != 0)
4488 rdev->bypass_count++;
4489 else
4490 trace_regulator_bypass_disable_complete(name);
4491 }
4492 }
4493
4494 if (ret == 0)
4495 regulator->bypass = enable;
4496
4497 regulator_unlock(rdev);
4498
4499 return ret;
4500 }
4501 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4502
4503 /**
4504 * regulator_register_notifier - register regulator event notifier
4505 * @regulator: regulator source
4506 * @nb: notifier block
4507 *
4508 * Register notifier block to receive regulator events.
4509 */
regulator_register_notifier(struct regulator * regulator,struct notifier_block * nb)4510 int regulator_register_notifier(struct regulator *regulator,
4511 struct notifier_block *nb)
4512 {
4513 return blocking_notifier_chain_register(®ulator->rdev->notifier,
4514 nb);
4515 }
4516 EXPORT_SYMBOL_GPL(regulator_register_notifier);
4517
4518 /**
4519 * regulator_unregister_notifier - unregister regulator event notifier
4520 * @regulator: regulator source
4521 * @nb: notifier block
4522 *
4523 * Unregister regulator event notifier block.
4524 */
regulator_unregister_notifier(struct regulator * regulator,struct notifier_block * nb)4525 int regulator_unregister_notifier(struct regulator *regulator,
4526 struct notifier_block *nb)
4527 {
4528 return blocking_notifier_chain_unregister(®ulator->rdev->notifier,
4529 nb);
4530 }
4531 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4532
4533 /* notify regulator consumers and downstream regulator consumers.
4534 * Note mutex must be held by caller.
4535 */
_notifier_call_chain(struct regulator_dev * rdev,unsigned long event,void * data)4536 static int _notifier_call_chain(struct regulator_dev *rdev,
4537 unsigned long event, void *data)
4538 {
4539 /* call rdev chain first */
4540 return blocking_notifier_call_chain(&rdev->notifier, event, data);
4541 }
4542
4543 /**
4544 * regulator_bulk_get - get multiple regulator consumers
4545 *
4546 * @dev: Device to supply
4547 * @num_consumers: Number of consumers to register
4548 * @consumers: Configuration of consumers; clients are stored here.
4549 *
4550 * @return 0 on success, an errno on failure.
4551 *
4552 * This helper function allows drivers to get several regulator
4553 * consumers in one operation. If any of the regulators cannot be
4554 * acquired then any regulators that were allocated will be freed
4555 * before returning to the caller.
4556 */
regulator_bulk_get(struct device * dev,int num_consumers,struct regulator_bulk_data * consumers)4557 int regulator_bulk_get(struct device *dev, int num_consumers,
4558 struct regulator_bulk_data *consumers)
4559 {
4560 int i;
4561 int ret;
4562
4563 for (i = 0; i < num_consumers; i++)
4564 consumers[i].consumer = NULL;
4565
4566 for (i = 0; i < num_consumers; i++) {
4567 consumers[i].consumer = regulator_get(dev,
4568 consumers[i].supply);
4569 if (IS_ERR(consumers[i].consumer)) {
4570 ret = PTR_ERR(consumers[i].consumer);
4571 consumers[i].consumer = NULL;
4572 goto err;
4573 }
4574 }
4575
4576 return 0;
4577
4578 err:
4579 if (ret != -EPROBE_DEFER)
4580 dev_err(dev, "Failed to get supply '%s': %pe\n",
4581 consumers[i].supply, ERR_PTR(ret));
4582 else
4583 dev_dbg(dev, "Failed to get supply '%s', deferring\n",
4584 consumers[i].supply);
4585
4586 while (--i >= 0)
4587 regulator_put(consumers[i].consumer);
4588
4589 return ret;
4590 }
4591 EXPORT_SYMBOL_GPL(regulator_bulk_get);
4592
regulator_bulk_enable_async(void * data,async_cookie_t cookie)4593 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4594 {
4595 struct regulator_bulk_data *bulk = data;
4596
4597 bulk->ret = regulator_enable(bulk->consumer);
4598 }
4599
4600 /**
4601 * regulator_bulk_enable - enable multiple regulator consumers
4602 *
4603 * @num_consumers: Number of consumers
4604 * @consumers: Consumer data; clients are stored here.
4605 * @return 0 on success, an errno on failure
4606 *
4607 * This convenience API allows consumers to enable multiple regulator
4608 * clients in a single API call. If any consumers cannot be enabled
4609 * then any others that were enabled will be disabled again prior to
4610 * return.
4611 */
regulator_bulk_enable(int num_consumers,struct regulator_bulk_data * consumers)4612 int regulator_bulk_enable(int num_consumers,
4613 struct regulator_bulk_data *consumers)
4614 {
4615 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4616 int i;
4617 int ret = 0;
4618
4619 for (i = 0; i < num_consumers; i++) {
4620 async_schedule_domain(regulator_bulk_enable_async,
4621 &consumers[i], &async_domain);
4622 }
4623
4624 async_synchronize_full_domain(&async_domain);
4625
4626 /* If any consumer failed we need to unwind any that succeeded */
4627 for (i = 0; i < num_consumers; i++) {
4628 if (consumers[i].ret != 0) {
4629 ret = consumers[i].ret;
4630 goto err;
4631 }
4632 }
4633
4634 return 0;
4635
4636 err:
4637 for (i = 0; i < num_consumers; i++) {
4638 if (consumers[i].ret < 0)
4639 pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
4640 ERR_PTR(consumers[i].ret));
4641 else
4642 regulator_disable(consumers[i].consumer);
4643 }
4644
4645 return ret;
4646 }
4647 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4648
4649 /**
4650 * regulator_bulk_disable - disable multiple regulator consumers
4651 *
4652 * @num_consumers: Number of consumers
4653 * @consumers: Consumer data; clients are stored here.
4654 * @return 0 on success, an errno on failure
4655 *
4656 * This convenience API allows consumers to disable multiple regulator
4657 * clients in a single API call. If any consumers cannot be disabled
4658 * then any others that were disabled will be enabled again prior to
4659 * return.
4660 */
regulator_bulk_disable(int num_consumers,struct regulator_bulk_data * consumers)4661 int regulator_bulk_disable(int num_consumers,
4662 struct regulator_bulk_data *consumers)
4663 {
4664 int i;
4665 int ret, r;
4666
4667 for (i = num_consumers - 1; i >= 0; --i) {
4668 ret = regulator_disable(consumers[i].consumer);
4669 if (ret != 0)
4670 goto err;
4671 }
4672
4673 return 0;
4674
4675 err:
4676 pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
4677 for (++i; i < num_consumers; ++i) {
4678 r = regulator_enable(consumers[i].consumer);
4679 if (r != 0)
4680 pr_err("Failed to re-enable %s: %pe\n",
4681 consumers[i].supply, ERR_PTR(r));
4682 }
4683
4684 return ret;
4685 }
4686 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4687
4688 /**
4689 * regulator_bulk_force_disable - force disable multiple regulator consumers
4690 *
4691 * @num_consumers: Number of consumers
4692 * @consumers: Consumer data; clients are stored here.
4693 * @return 0 on success, an errno on failure
4694 *
4695 * This convenience API allows consumers to forcibly disable multiple regulator
4696 * clients in a single API call.
4697 * NOTE: This should be used for situations when device damage will
4698 * likely occur if the regulators are not disabled (e.g. over temp).
4699 * Although regulator_force_disable function call for some consumers can
4700 * return error numbers, the function is called for all consumers.
4701 */
regulator_bulk_force_disable(int num_consumers,struct regulator_bulk_data * consumers)4702 int regulator_bulk_force_disable(int num_consumers,
4703 struct regulator_bulk_data *consumers)
4704 {
4705 int i;
4706 int ret = 0;
4707
4708 for (i = 0; i < num_consumers; i++) {
4709 consumers[i].ret =
4710 regulator_force_disable(consumers[i].consumer);
4711
4712 /* Store first error for reporting */
4713 if (consumers[i].ret && !ret)
4714 ret = consumers[i].ret;
4715 }
4716
4717 return ret;
4718 }
4719 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4720
4721 /**
4722 * regulator_bulk_free - free multiple regulator consumers
4723 *
4724 * @num_consumers: Number of consumers
4725 * @consumers: Consumer data; clients are stored here.
4726 *
4727 * This convenience API allows consumers to free multiple regulator
4728 * clients in a single API call.
4729 */
regulator_bulk_free(int num_consumers,struct regulator_bulk_data * consumers)4730 void regulator_bulk_free(int num_consumers,
4731 struct regulator_bulk_data *consumers)
4732 {
4733 int i;
4734
4735 for (i = 0; i < num_consumers; i++) {
4736 regulator_put(consumers[i].consumer);
4737 consumers[i].consumer = NULL;
4738 }
4739 }
4740 EXPORT_SYMBOL_GPL(regulator_bulk_free);
4741
4742 /**
4743 * regulator_notifier_call_chain - call regulator event notifier
4744 * @rdev: regulator source
4745 * @event: notifier block
4746 * @data: callback-specific data.
4747 *
4748 * Called by regulator drivers to notify clients a regulator event has
4749 * occurred.
4750 */
regulator_notifier_call_chain(struct regulator_dev * rdev,unsigned long event,void * data)4751 int regulator_notifier_call_chain(struct regulator_dev *rdev,
4752 unsigned long event, void *data)
4753 {
4754 _notifier_call_chain(rdev, event, data);
4755 return NOTIFY_DONE;
4756
4757 }
4758 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4759
4760 /**
4761 * regulator_mode_to_status - convert a regulator mode into a status
4762 *
4763 * @mode: Mode to convert
4764 *
4765 * Convert a regulator mode into a status.
4766 */
regulator_mode_to_status(unsigned int mode)4767 int regulator_mode_to_status(unsigned int mode)
4768 {
4769 switch (mode) {
4770 case REGULATOR_MODE_FAST:
4771 return REGULATOR_STATUS_FAST;
4772 case REGULATOR_MODE_NORMAL:
4773 return REGULATOR_STATUS_NORMAL;
4774 case REGULATOR_MODE_IDLE:
4775 return REGULATOR_STATUS_IDLE;
4776 case REGULATOR_MODE_STANDBY:
4777 return REGULATOR_STATUS_STANDBY;
4778 default:
4779 return REGULATOR_STATUS_UNDEFINED;
4780 }
4781 }
4782 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
4783
4784 static struct attribute *regulator_dev_attrs[] = {
4785 &dev_attr_name.attr,
4786 &dev_attr_num_users.attr,
4787 &dev_attr_type.attr,
4788 &dev_attr_microvolts.attr,
4789 &dev_attr_microamps.attr,
4790 &dev_attr_opmode.attr,
4791 &dev_attr_state.attr,
4792 &dev_attr_status.attr,
4793 &dev_attr_bypass.attr,
4794 &dev_attr_requested_microamps.attr,
4795 &dev_attr_min_microvolts.attr,
4796 &dev_attr_max_microvolts.attr,
4797 &dev_attr_min_microamps.attr,
4798 &dev_attr_max_microamps.attr,
4799 &dev_attr_suspend_standby_state.attr,
4800 &dev_attr_suspend_mem_state.attr,
4801 &dev_attr_suspend_disk_state.attr,
4802 &dev_attr_suspend_standby_microvolts.attr,
4803 &dev_attr_suspend_mem_microvolts.attr,
4804 &dev_attr_suspend_disk_microvolts.attr,
4805 &dev_attr_suspend_standby_mode.attr,
4806 &dev_attr_suspend_mem_mode.attr,
4807 &dev_attr_suspend_disk_mode.attr,
4808 NULL
4809 };
4810
4811 /*
4812 * To avoid cluttering sysfs (and memory) with useless state, only
4813 * create attributes that can be meaningfully displayed.
4814 */
regulator_attr_is_visible(struct kobject * kobj,struct attribute * attr,int idx)4815 static umode_t regulator_attr_is_visible(struct kobject *kobj,
4816 struct attribute *attr, int idx)
4817 {
4818 struct device *dev = kobj_to_dev(kobj);
4819 struct regulator_dev *rdev = dev_to_rdev(dev);
4820 const struct regulator_ops *ops = rdev->desc->ops;
4821 umode_t mode = attr->mode;
4822
4823 /* these three are always present */
4824 if (attr == &dev_attr_name.attr ||
4825 attr == &dev_attr_num_users.attr ||
4826 attr == &dev_attr_type.attr)
4827 return mode;
4828
4829 /* some attributes need specific methods to be displayed */
4830 if (attr == &dev_attr_microvolts.attr) {
4831 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
4832 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
4833 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
4834 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
4835 return mode;
4836 return 0;
4837 }
4838
4839 if (attr == &dev_attr_microamps.attr)
4840 return ops->get_current_limit ? mode : 0;
4841
4842 if (attr == &dev_attr_opmode.attr)
4843 return ops->get_mode ? mode : 0;
4844
4845 if (attr == &dev_attr_state.attr)
4846 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
4847
4848 if (attr == &dev_attr_status.attr)
4849 return ops->get_status ? mode : 0;
4850
4851 if (attr == &dev_attr_bypass.attr)
4852 return ops->get_bypass ? mode : 0;
4853
4854 /* constraints need specific supporting methods */
4855 if (attr == &dev_attr_min_microvolts.attr ||
4856 attr == &dev_attr_max_microvolts.attr)
4857 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
4858
4859 if (attr == &dev_attr_min_microamps.attr ||
4860 attr == &dev_attr_max_microamps.attr)
4861 return ops->set_current_limit ? mode : 0;
4862
4863 if (attr == &dev_attr_suspend_standby_state.attr ||
4864 attr == &dev_attr_suspend_mem_state.attr ||
4865 attr == &dev_attr_suspend_disk_state.attr)
4866 return mode;
4867
4868 if (attr == &dev_attr_suspend_standby_microvolts.attr ||
4869 attr == &dev_attr_suspend_mem_microvolts.attr ||
4870 attr == &dev_attr_suspend_disk_microvolts.attr)
4871 return ops->set_suspend_voltage ? mode : 0;
4872
4873 if (attr == &dev_attr_suspend_standby_mode.attr ||
4874 attr == &dev_attr_suspend_mem_mode.attr ||
4875 attr == &dev_attr_suspend_disk_mode.attr)
4876 return ops->set_suspend_mode ? mode : 0;
4877
4878 return mode;
4879 }
4880
4881 static const struct attribute_group regulator_dev_group = {
4882 .attrs = regulator_dev_attrs,
4883 .is_visible = regulator_attr_is_visible,
4884 };
4885
4886 static const struct attribute_group *regulator_dev_groups[] = {
4887 ®ulator_dev_group,
4888 NULL
4889 };
4890
regulator_dev_release(struct device * dev)4891 static void regulator_dev_release(struct device *dev)
4892 {
4893 struct regulator_dev *rdev = dev_get_drvdata(dev);
4894
4895 kfree(rdev->constraints);
4896 of_node_put(rdev->dev.of_node);
4897 kfree(rdev);
4898 }
4899
rdev_init_debugfs(struct regulator_dev * rdev)4900 static void rdev_init_debugfs(struct regulator_dev *rdev)
4901 {
4902 struct device *parent = rdev->dev.parent;
4903 const char *rname = rdev_get_name(rdev);
4904 char name[NAME_MAX];
4905
4906 /* Avoid duplicate debugfs directory names */
4907 if (parent && rname == rdev->desc->name) {
4908 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4909 rname);
4910 rname = name;
4911 }
4912
4913 rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4914 if (!rdev->debugfs) {
4915 rdev_warn(rdev, "Failed to create debugfs directory\n");
4916 return;
4917 }
4918
4919 debugfs_create_u32("use_count", 0444, rdev->debugfs,
4920 &rdev->use_count);
4921 debugfs_create_u32("open_count", 0444, rdev->debugfs,
4922 &rdev->open_count);
4923 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
4924 &rdev->bypass_count);
4925 }
4926
regulator_register_resolve_supply(struct device * dev,void * data)4927 static int regulator_register_resolve_supply(struct device *dev, void *data)
4928 {
4929 struct regulator_dev *rdev = dev_to_rdev(dev);
4930
4931 if (regulator_resolve_supply(rdev))
4932 rdev_dbg(rdev, "unable to resolve supply\n");
4933
4934 return 0;
4935 }
4936
regulator_coupler_register(struct regulator_coupler * coupler)4937 int regulator_coupler_register(struct regulator_coupler *coupler)
4938 {
4939 mutex_lock(®ulator_list_mutex);
4940 list_add_tail(&coupler->list, ®ulator_coupler_list);
4941 mutex_unlock(®ulator_list_mutex);
4942
4943 return 0;
4944 }
4945
4946 static struct regulator_coupler *
regulator_find_coupler(struct regulator_dev * rdev)4947 regulator_find_coupler(struct regulator_dev *rdev)
4948 {
4949 struct regulator_coupler *coupler;
4950 int err;
4951
4952 /*
4953 * Note that regulators are appended to the list and the generic
4954 * coupler is registered first, hence it will be attached at last
4955 * if nobody cared.
4956 */
4957 list_for_each_entry_reverse(coupler, ®ulator_coupler_list, list) {
4958 err = coupler->attach_regulator(coupler, rdev);
4959 if (!err) {
4960 if (!coupler->balance_voltage &&
4961 rdev->coupling_desc.n_coupled > 2)
4962 goto err_unsupported;
4963
4964 return coupler;
4965 }
4966
4967 if (err < 0)
4968 return ERR_PTR(err);
4969
4970 if (err == 1)
4971 continue;
4972
4973 break;
4974 }
4975
4976 return ERR_PTR(-EINVAL);
4977
4978 err_unsupported:
4979 if (coupler->detach_regulator)
4980 coupler->detach_regulator(coupler, rdev);
4981
4982 rdev_err(rdev,
4983 "Voltage balancing for multiple regulator couples is unimplemented\n");
4984
4985 return ERR_PTR(-EPERM);
4986 }
4987
regulator_resolve_coupling(struct regulator_dev * rdev)4988 static void regulator_resolve_coupling(struct regulator_dev *rdev)
4989 {
4990 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4991 struct coupling_desc *c_desc = &rdev->coupling_desc;
4992 int n_coupled = c_desc->n_coupled;
4993 struct regulator_dev *c_rdev;
4994 int i;
4995
4996 for (i = 1; i < n_coupled; i++) {
4997 /* already resolved */
4998 if (c_desc->coupled_rdevs[i])
4999 continue;
5000
5001 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5002
5003 if (!c_rdev)
5004 continue;
5005
5006 if (c_rdev->coupling_desc.coupler != coupler) {
5007 rdev_err(rdev, "coupler mismatch with %s\n",
5008 rdev_get_name(c_rdev));
5009 return;
5010 }
5011
5012 c_desc->coupled_rdevs[i] = c_rdev;
5013 c_desc->n_resolved++;
5014
5015 regulator_resolve_coupling(c_rdev);
5016 }
5017 }
5018
regulator_remove_coupling(struct regulator_dev * rdev)5019 static void regulator_remove_coupling(struct regulator_dev *rdev)
5020 {
5021 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5022 struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5023 struct regulator_dev *__c_rdev, *c_rdev;
5024 unsigned int __n_coupled, n_coupled;
5025 int i, k;
5026 int err;
5027
5028 n_coupled = c_desc->n_coupled;
5029
5030 for (i = 1; i < n_coupled; i++) {
5031 c_rdev = c_desc->coupled_rdevs[i];
5032
5033 if (!c_rdev)
5034 continue;
5035
5036 regulator_lock(c_rdev);
5037
5038 __c_desc = &c_rdev->coupling_desc;
5039 __n_coupled = __c_desc->n_coupled;
5040
5041 for (k = 1; k < __n_coupled; k++) {
5042 __c_rdev = __c_desc->coupled_rdevs[k];
5043
5044 if (__c_rdev == rdev) {
5045 __c_desc->coupled_rdevs[k] = NULL;
5046 __c_desc->n_resolved--;
5047 break;
5048 }
5049 }
5050
5051 regulator_unlock(c_rdev);
5052
5053 c_desc->coupled_rdevs[i] = NULL;
5054 c_desc->n_resolved--;
5055 }
5056
5057 if (coupler && coupler->detach_regulator) {
5058 err = coupler->detach_regulator(coupler, rdev);
5059 if (err)
5060 rdev_err(rdev, "failed to detach from coupler: %pe\n",
5061 ERR_PTR(err));
5062 }
5063
5064 kfree(rdev->coupling_desc.coupled_rdevs);
5065 rdev->coupling_desc.coupled_rdevs = NULL;
5066 }
5067
regulator_init_coupling(struct regulator_dev * rdev)5068 static int regulator_init_coupling(struct regulator_dev *rdev)
5069 {
5070 struct regulator_dev **coupled;
5071 int err, n_phandles;
5072
5073 if (!IS_ENABLED(CONFIG_OF))
5074 n_phandles = 0;
5075 else
5076 n_phandles = of_get_n_coupled(rdev);
5077
5078 coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5079 if (!coupled)
5080 return -ENOMEM;
5081
5082 rdev->coupling_desc.coupled_rdevs = coupled;
5083
5084 /*
5085 * Every regulator should always have coupling descriptor filled with
5086 * at least pointer to itself.
5087 */
5088 rdev->coupling_desc.coupled_rdevs[0] = rdev;
5089 rdev->coupling_desc.n_coupled = n_phandles + 1;
5090 rdev->coupling_desc.n_resolved++;
5091
5092 /* regulator isn't coupled */
5093 if (n_phandles == 0)
5094 return 0;
5095
5096 if (!of_check_coupling_data(rdev))
5097 return -EPERM;
5098
5099 mutex_lock(®ulator_list_mutex);
5100 rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5101 mutex_unlock(®ulator_list_mutex);
5102
5103 if (IS_ERR(rdev->coupling_desc.coupler)) {
5104 err = PTR_ERR(rdev->coupling_desc.coupler);
5105 rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5106 return err;
5107 }
5108
5109 return 0;
5110 }
5111
generic_coupler_attach(struct regulator_coupler * coupler,struct regulator_dev * rdev)5112 static int generic_coupler_attach(struct regulator_coupler *coupler,
5113 struct regulator_dev *rdev)
5114 {
5115 if (rdev->coupling_desc.n_coupled > 2) {
5116 rdev_err(rdev,
5117 "Voltage balancing for multiple regulator couples is unimplemented\n");
5118 return -EPERM;
5119 }
5120
5121 if (!rdev->constraints->always_on) {
5122 rdev_err(rdev,
5123 "Coupling of a non always-on regulator is unimplemented\n");
5124 return -ENOTSUPP;
5125 }
5126
5127 return 0;
5128 }
5129
5130 static struct regulator_coupler generic_regulator_coupler = {
5131 .attach_regulator = generic_coupler_attach,
5132 };
5133
5134 /**
5135 * regulator_register - register regulator
5136 * @regulator_desc: regulator to register
5137 * @cfg: runtime configuration for regulator
5138 *
5139 * Called by regulator drivers to register a regulator.
5140 * Returns a valid pointer to struct regulator_dev on success
5141 * or an ERR_PTR() on error.
5142 */
5143 struct regulator_dev *
regulator_register(const struct regulator_desc * regulator_desc,const struct regulator_config * cfg)5144 regulator_register(const struct regulator_desc *regulator_desc,
5145 const struct regulator_config *cfg)
5146 {
5147 const struct regulator_init_data *init_data;
5148 struct regulator_config *config = NULL;
5149 static atomic_t regulator_no = ATOMIC_INIT(-1);
5150 struct regulator_dev *rdev;
5151 bool dangling_cfg_gpiod = false;
5152 bool dangling_of_gpiod = false;
5153 struct device *dev;
5154 int ret, i;
5155
5156 if (cfg == NULL)
5157 return ERR_PTR(-EINVAL);
5158 if (cfg->ena_gpiod)
5159 dangling_cfg_gpiod = true;
5160 if (regulator_desc == NULL) {
5161 ret = -EINVAL;
5162 goto rinse;
5163 }
5164
5165 dev = cfg->dev;
5166 WARN_ON(!dev);
5167
5168 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5169 ret = -EINVAL;
5170 goto rinse;
5171 }
5172
5173 if (regulator_desc->type != REGULATOR_VOLTAGE &&
5174 regulator_desc->type != REGULATOR_CURRENT) {
5175 ret = -EINVAL;
5176 goto rinse;
5177 }
5178
5179 /* Only one of each should be implemented */
5180 WARN_ON(regulator_desc->ops->get_voltage &&
5181 regulator_desc->ops->get_voltage_sel);
5182 WARN_ON(regulator_desc->ops->set_voltage &&
5183 regulator_desc->ops->set_voltage_sel);
5184
5185 /* If we're using selectors we must implement list_voltage. */
5186 if (regulator_desc->ops->get_voltage_sel &&
5187 !regulator_desc->ops->list_voltage) {
5188 ret = -EINVAL;
5189 goto rinse;
5190 }
5191 if (regulator_desc->ops->set_voltage_sel &&
5192 !regulator_desc->ops->list_voltage) {
5193 ret = -EINVAL;
5194 goto rinse;
5195 }
5196
5197 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5198 if (rdev == NULL) {
5199 ret = -ENOMEM;
5200 goto rinse;
5201 }
5202 device_initialize(&rdev->dev);
5203
5204 /*
5205 * Duplicate the config so the driver could override it after
5206 * parsing init data.
5207 */
5208 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5209 if (config == NULL) {
5210 ret = -ENOMEM;
5211 goto clean;
5212 }
5213
5214 init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5215 &rdev->dev.of_node);
5216
5217 /*
5218 * Sometimes not all resources are probed already so we need to take
5219 * that into account. This happens most the time if the ena_gpiod comes
5220 * from a gpio extender or something else.
5221 */
5222 if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5223 ret = -EPROBE_DEFER;
5224 goto clean;
5225 }
5226
5227 /*
5228 * We need to keep track of any GPIO descriptor coming from the
5229 * device tree until we have handled it over to the core. If the
5230 * config that was passed in to this function DOES NOT contain
5231 * a descriptor, and the config after this call DOES contain
5232 * a descriptor, we definitely got one from parsing the device
5233 * tree.
5234 */
5235 if (!cfg->ena_gpiod && config->ena_gpiod)
5236 dangling_of_gpiod = true;
5237 if (!init_data) {
5238 init_data = config->init_data;
5239 rdev->dev.of_node = of_node_get(config->of_node);
5240 }
5241
5242 ww_mutex_init(&rdev->mutex, ®ulator_ww_class);
5243 rdev->reg_data = config->driver_data;
5244 rdev->owner = regulator_desc->owner;
5245 rdev->desc = regulator_desc;
5246 if (config->regmap)
5247 rdev->regmap = config->regmap;
5248 else if (dev_get_regmap(dev, NULL))
5249 rdev->regmap = dev_get_regmap(dev, NULL);
5250 else if (dev->parent)
5251 rdev->regmap = dev_get_regmap(dev->parent, NULL);
5252 INIT_LIST_HEAD(&rdev->consumer_list);
5253 INIT_LIST_HEAD(&rdev->list);
5254 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5255 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5256
5257 /* preform any regulator specific init */
5258 if (init_data && init_data->regulator_init) {
5259 ret = init_data->regulator_init(rdev->reg_data);
5260 if (ret < 0)
5261 goto clean;
5262 }
5263
5264 if (config->ena_gpiod) {
5265 ret = regulator_ena_gpio_request(rdev, config);
5266 if (ret != 0) {
5267 rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5268 ERR_PTR(ret));
5269 goto clean;
5270 }
5271 /* The regulator core took over the GPIO descriptor */
5272 dangling_cfg_gpiod = false;
5273 dangling_of_gpiod = false;
5274 }
5275
5276 /* register with sysfs */
5277 rdev->dev.class = ®ulator_class;
5278 rdev->dev.parent = dev;
5279 dev_set_name(&rdev->dev, "regulator.%lu",
5280 (unsigned long) atomic_inc_return(®ulator_no));
5281 dev_set_drvdata(&rdev->dev, rdev);
5282
5283 /* set regulator constraints */
5284 if (init_data)
5285 rdev->constraints = kmemdup(&init_data->constraints,
5286 sizeof(*rdev->constraints),
5287 GFP_KERNEL);
5288 else
5289 rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5290 GFP_KERNEL);
5291 if (!rdev->constraints) {
5292 ret = -ENOMEM;
5293 goto wash;
5294 }
5295
5296 if (init_data && init_data->supply_regulator)
5297 rdev->supply_name = init_data->supply_regulator;
5298 else if (regulator_desc->supply_name)
5299 rdev->supply_name = regulator_desc->supply_name;
5300
5301 ret = set_machine_constraints(rdev);
5302 if (ret == -EPROBE_DEFER) {
5303 /* Regulator might be in bypass mode and so needs its supply
5304 * to set the constraints */
5305 /* FIXME: this currently triggers a chicken-and-egg problem
5306 * when creating -SUPPLY symlink in sysfs to a regulator
5307 * that is just being created */
5308 ret = regulator_resolve_supply(rdev);
5309 if (!ret)
5310 ret = set_machine_constraints(rdev);
5311 else
5312 rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5313 ERR_PTR(ret));
5314 }
5315 if (ret < 0)
5316 goto wash;
5317
5318 ret = regulator_init_coupling(rdev);
5319 if (ret < 0)
5320 goto wash;
5321
5322 /* add consumers devices */
5323 if (init_data) {
5324 for (i = 0; i < init_data->num_consumer_supplies; i++) {
5325 ret = set_consumer_device_supply(rdev,
5326 init_data->consumer_supplies[i].dev_name,
5327 init_data->consumer_supplies[i].supply);
5328 if (ret < 0) {
5329 dev_err(dev, "Failed to set supply %s\n",
5330 init_data->consumer_supplies[i].supply);
5331 goto unset_supplies;
5332 }
5333 }
5334 }
5335
5336 if (!rdev->desc->ops->get_voltage &&
5337 !rdev->desc->ops->list_voltage &&
5338 !rdev->desc->fixed_uV)
5339 rdev->is_switch = true;
5340
5341 ret = device_add(&rdev->dev);
5342 if (ret != 0)
5343 goto unset_supplies;
5344
5345 rdev_init_debugfs(rdev);
5346
5347 /* try to resolve regulators coupling since a new one was registered */
5348 mutex_lock(®ulator_list_mutex);
5349 regulator_resolve_coupling(rdev);
5350 mutex_unlock(®ulator_list_mutex);
5351
5352 /* try to resolve regulators supply since a new one was registered */
5353 class_for_each_device(®ulator_class, NULL, NULL,
5354 regulator_register_resolve_supply);
5355 kfree(config);
5356 return rdev;
5357
5358 unset_supplies:
5359 mutex_lock(®ulator_list_mutex);
5360 unset_regulator_supplies(rdev);
5361 regulator_remove_coupling(rdev);
5362 mutex_unlock(®ulator_list_mutex);
5363 wash:
5364 kfree(rdev->coupling_desc.coupled_rdevs);
5365 mutex_lock(®ulator_list_mutex);
5366 regulator_ena_gpio_free(rdev);
5367 mutex_unlock(®ulator_list_mutex);
5368 clean:
5369 if (dangling_of_gpiod)
5370 gpiod_put(config->ena_gpiod);
5371 kfree(config);
5372 put_device(&rdev->dev);
5373 rinse:
5374 if (dangling_cfg_gpiod)
5375 gpiod_put(cfg->ena_gpiod);
5376 return ERR_PTR(ret);
5377 }
5378 EXPORT_SYMBOL_GPL(regulator_register);
5379
5380 /**
5381 * regulator_unregister - unregister regulator
5382 * @rdev: regulator to unregister
5383 *
5384 * Called by regulator drivers to unregister a regulator.
5385 */
regulator_unregister(struct regulator_dev * rdev)5386 void regulator_unregister(struct regulator_dev *rdev)
5387 {
5388 if (rdev == NULL)
5389 return;
5390
5391 if (rdev->supply) {
5392 while (rdev->use_count--)
5393 regulator_disable(rdev->supply);
5394 regulator_put(rdev->supply);
5395 }
5396
5397 flush_work(&rdev->disable_work.work);
5398
5399 mutex_lock(®ulator_list_mutex);
5400
5401 debugfs_remove_recursive(rdev->debugfs);
5402 WARN_ON(rdev->open_count);
5403 regulator_remove_coupling(rdev);
5404 unset_regulator_supplies(rdev);
5405 list_del(&rdev->list);
5406 regulator_ena_gpio_free(rdev);
5407 device_unregister(&rdev->dev);
5408
5409 mutex_unlock(®ulator_list_mutex);
5410 }
5411 EXPORT_SYMBOL_GPL(regulator_unregister);
5412
5413 #ifdef CONFIG_SUSPEND
5414 /**
5415 * regulator_suspend - prepare regulators for system wide suspend
5416 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5417 *
5418 * Configure each regulator with it's suspend operating parameters for state.
5419 */
regulator_suspend(struct device * dev)5420 static int regulator_suspend(struct device *dev)
5421 {
5422 struct regulator_dev *rdev = dev_to_rdev(dev);
5423 suspend_state_t state = pm_suspend_target_state;
5424 int ret;
5425 const struct regulator_state *rstate;
5426
5427 rstate = regulator_get_suspend_state_check(rdev, state);
5428 if (!rstate)
5429 return 0;
5430
5431 regulator_lock(rdev);
5432 ret = __suspend_set_state(rdev, rstate);
5433 regulator_unlock(rdev);
5434
5435 return ret;
5436 }
5437
regulator_resume(struct device * dev)5438 static int regulator_resume(struct device *dev)
5439 {
5440 suspend_state_t state = pm_suspend_target_state;
5441 struct regulator_dev *rdev = dev_to_rdev(dev);
5442 struct regulator_state *rstate;
5443 int ret = 0;
5444
5445 rstate = regulator_get_suspend_state(rdev, state);
5446 if (rstate == NULL)
5447 return 0;
5448
5449 /* Avoid grabbing the lock if we don't need to */
5450 if (!rdev->desc->ops->resume)
5451 return 0;
5452
5453 regulator_lock(rdev);
5454
5455 if (rstate->enabled == ENABLE_IN_SUSPEND ||
5456 rstate->enabled == DISABLE_IN_SUSPEND)
5457 ret = rdev->desc->ops->resume(rdev);
5458
5459 regulator_unlock(rdev);
5460
5461 return ret;
5462 }
5463 #else /* !CONFIG_SUSPEND */
5464
5465 #define regulator_suspend NULL
5466 #define regulator_resume NULL
5467
5468 #endif /* !CONFIG_SUSPEND */
5469
5470 #ifdef CONFIG_PM
5471 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5472 .suspend = regulator_suspend,
5473 .resume = regulator_resume,
5474 };
5475 #endif
5476
5477 struct class regulator_class = {
5478 .name = "regulator",
5479 .dev_release = regulator_dev_release,
5480 .dev_groups = regulator_dev_groups,
5481 #ifdef CONFIG_PM
5482 .pm = ®ulator_pm_ops,
5483 #endif
5484 };
5485 /**
5486 * regulator_has_full_constraints - the system has fully specified constraints
5487 *
5488 * Calling this function will cause the regulator API to disable all
5489 * regulators which have a zero use count and don't have an always_on
5490 * constraint in a late_initcall.
5491 *
5492 * The intention is that this will become the default behaviour in a
5493 * future kernel release so users are encouraged to use this facility
5494 * now.
5495 */
regulator_has_full_constraints(void)5496 void regulator_has_full_constraints(void)
5497 {
5498 has_full_constraints = 1;
5499 }
5500 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5501
5502 /**
5503 * rdev_get_drvdata - get rdev regulator driver data
5504 * @rdev: regulator
5505 *
5506 * Get rdev regulator driver private data. This call can be used in the
5507 * regulator driver context.
5508 */
rdev_get_drvdata(struct regulator_dev * rdev)5509 void *rdev_get_drvdata(struct regulator_dev *rdev)
5510 {
5511 return rdev->reg_data;
5512 }
5513 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5514
5515 /**
5516 * regulator_get_drvdata - get regulator driver data
5517 * @regulator: regulator
5518 *
5519 * Get regulator driver private data. This call can be used in the consumer
5520 * driver context when non API regulator specific functions need to be called.
5521 */
regulator_get_drvdata(struct regulator * regulator)5522 void *regulator_get_drvdata(struct regulator *regulator)
5523 {
5524 return regulator->rdev->reg_data;
5525 }
5526 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5527
5528 /**
5529 * regulator_set_drvdata - set regulator driver data
5530 * @regulator: regulator
5531 * @data: data
5532 */
regulator_set_drvdata(struct regulator * regulator,void * data)5533 void regulator_set_drvdata(struct regulator *regulator, void *data)
5534 {
5535 regulator->rdev->reg_data = data;
5536 }
5537 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5538
5539 /**
5540 * regulator_get_id - get regulator ID
5541 * @rdev: regulator
5542 */
rdev_get_id(struct regulator_dev * rdev)5543 int rdev_get_id(struct regulator_dev *rdev)
5544 {
5545 return rdev->desc->id;
5546 }
5547 EXPORT_SYMBOL_GPL(rdev_get_id);
5548
rdev_get_dev(struct regulator_dev * rdev)5549 struct device *rdev_get_dev(struct regulator_dev *rdev)
5550 {
5551 return &rdev->dev;
5552 }
5553 EXPORT_SYMBOL_GPL(rdev_get_dev);
5554
rdev_get_regmap(struct regulator_dev * rdev)5555 struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5556 {
5557 return rdev->regmap;
5558 }
5559 EXPORT_SYMBOL_GPL(rdev_get_regmap);
5560
regulator_get_init_drvdata(struct regulator_init_data * reg_init_data)5561 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5562 {
5563 return reg_init_data->driver_data;
5564 }
5565 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5566
5567 #ifdef CONFIG_DEBUG_FS
supply_map_show(struct seq_file * sf,void * data)5568 static int supply_map_show(struct seq_file *sf, void *data)
5569 {
5570 struct regulator_map *map;
5571
5572 list_for_each_entry(map, ®ulator_map_list, list) {
5573 seq_printf(sf, "%s -> %s.%s\n",
5574 rdev_get_name(map->regulator), map->dev_name,
5575 map->supply);
5576 }
5577
5578 return 0;
5579 }
5580 DEFINE_SHOW_ATTRIBUTE(supply_map);
5581
5582 struct summary_data {
5583 struct seq_file *s;
5584 struct regulator_dev *parent;
5585 int level;
5586 };
5587
5588 static void regulator_summary_show_subtree(struct seq_file *s,
5589 struct regulator_dev *rdev,
5590 int level);
5591
regulator_summary_show_children(struct device * dev,void * data)5592 static int regulator_summary_show_children(struct device *dev, void *data)
5593 {
5594 struct regulator_dev *rdev = dev_to_rdev(dev);
5595 struct summary_data *summary_data = data;
5596
5597 if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5598 regulator_summary_show_subtree(summary_data->s, rdev,
5599 summary_data->level + 1);
5600
5601 return 0;
5602 }
5603
regulator_summary_show_subtree(struct seq_file * s,struct regulator_dev * rdev,int level)5604 static void regulator_summary_show_subtree(struct seq_file *s,
5605 struct regulator_dev *rdev,
5606 int level)
5607 {
5608 struct regulation_constraints *c;
5609 struct regulator *consumer;
5610 struct summary_data summary_data;
5611 unsigned int opmode;
5612
5613 if (!rdev)
5614 return;
5615
5616 opmode = _regulator_get_mode_unlocked(rdev);
5617 seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5618 level * 3 + 1, "",
5619 30 - level * 3, rdev_get_name(rdev),
5620 rdev->use_count, rdev->open_count, rdev->bypass_count,
5621 regulator_opmode_to_str(opmode));
5622
5623 seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5624 seq_printf(s, "%5dmA ",
5625 _regulator_get_current_limit_unlocked(rdev) / 1000);
5626
5627 c = rdev->constraints;
5628 if (c) {
5629 switch (rdev->desc->type) {
5630 case REGULATOR_VOLTAGE:
5631 seq_printf(s, "%5dmV %5dmV ",
5632 c->min_uV / 1000, c->max_uV / 1000);
5633 break;
5634 case REGULATOR_CURRENT:
5635 seq_printf(s, "%5dmA %5dmA ",
5636 c->min_uA / 1000, c->max_uA / 1000);
5637 break;
5638 }
5639 }
5640
5641 seq_puts(s, "\n");
5642
5643 list_for_each_entry(consumer, &rdev->consumer_list, list) {
5644 if (consumer->dev && consumer->dev->class == ®ulator_class)
5645 continue;
5646
5647 seq_printf(s, "%*s%-*s ",
5648 (level + 1) * 3 + 1, "",
5649 30 - (level + 1) * 3,
5650 consumer->supply_name ? consumer->supply_name :
5651 consumer->dev ? dev_name(consumer->dev) : "deviceless");
5652
5653 switch (rdev->desc->type) {
5654 case REGULATOR_VOLTAGE:
5655 seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5656 consumer->enable_count,
5657 consumer->uA_load / 1000,
5658 consumer->uA_load && !consumer->enable_count ?
5659 '*' : ' ',
5660 consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5661 consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5662 break;
5663 case REGULATOR_CURRENT:
5664 break;
5665 }
5666
5667 seq_puts(s, "\n");
5668 }
5669
5670 summary_data.s = s;
5671 summary_data.level = level;
5672 summary_data.parent = rdev;
5673
5674 class_for_each_device(®ulator_class, NULL, &summary_data,
5675 regulator_summary_show_children);
5676 }
5677
5678 struct summary_lock_data {
5679 struct ww_acquire_ctx *ww_ctx;
5680 struct regulator_dev **new_contended_rdev;
5681 struct regulator_dev **old_contended_rdev;
5682 };
5683
regulator_summary_lock_one(struct device * dev,void * data)5684 static int regulator_summary_lock_one(struct device *dev, void *data)
5685 {
5686 struct regulator_dev *rdev = dev_to_rdev(dev);
5687 struct summary_lock_data *lock_data = data;
5688 int ret = 0;
5689
5690 if (rdev != *lock_data->old_contended_rdev) {
5691 ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5692
5693 if (ret == -EDEADLK)
5694 *lock_data->new_contended_rdev = rdev;
5695 else
5696 WARN_ON_ONCE(ret);
5697 } else {
5698 *lock_data->old_contended_rdev = NULL;
5699 }
5700
5701 return ret;
5702 }
5703
regulator_summary_unlock_one(struct device * dev,void * data)5704 static int regulator_summary_unlock_one(struct device *dev, void *data)
5705 {
5706 struct regulator_dev *rdev = dev_to_rdev(dev);
5707 struct summary_lock_data *lock_data = data;
5708
5709 if (lock_data) {
5710 if (rdev == *lock_data->new_contended_rdev)
5711 return -EDEADLK;
5712 }
5713
5714 regulator_unlock(rdev);
5715
5716 return 0;
5717 }
5718
regulator_summary_lock_all(struct ww_acquire_ctx * ww_ctx,struct regulator_dev ** new_contended_rdev,struct regulator_dev ** old_contended_rdev)5719 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
5720 struct regulator_dev **new_contended_rdev,
5721 struct regulator_dev **old_contended_rdev)
5722 {
5723 struct summary_lock_data lock_data;
5724 int ret;
5725
5726 lock_data.ww_ctx = ww_ctx;
5727 lock_data.new_contended_rdev = new_contended_rdev;
5728 lock_data.old_contended_rdev = old_contended_rdev;
5729
5730 ret = class_for_each_device(®ulator_class, NULL, &lock_data,
5731 regulator_summary_lock_one);
5732 if (ret)
5733 class_for_each_device(®ulator_class, NULL, &lock_data,
5734 regulator_summary_unlock_one);
5735
5736 return ret;
5737 }
5738
regulator_summary_lock(struct ww_acquire_ctx * ww_ctx)5739 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
5740 {
5741 struct regulator_dev *new_contended_rdev = NULL;
5742 struct regulator_dev *old_contended_rdev = NULL;
5743 int err;
5744
5745 mutex_lock(®ulator_list_mutex);
5746
5747 ww_acquire_init(ww_ctx, ®ulator_ww_class);
5748
5749 do {
5750 if (new_contended_rdev) {
5751 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
5752 old_contended_rdev = new_contended_rdev;
5753 old_contended_rdev->ref_cnt++;
5754 }
5755
5756 err = regulator_summary_lock_all(ww_ctx,
5757 &new_contended_rdev,
5758 &old_contended_rdev);
5759
5760 if (old_contended_rdev)
5761 regulator_unlock(old_contended_rdev);
5762
5763 } while (err == -EDEADLK);
5764
5765 ww_acquire_done(ww_ctx);
5766 }
5767
regulator_summary_unlock(struct ww_acquire_ctx * ww_ctx)5768 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
5769 {
5770 class_for_each_device(®ulator_class, NULL, NULL,
5771 regulator_summary_unlock_one);
5772 ww_acquire_fini(ww_ctx);
5773
5774 mutex_unlock(®ulator_list_mutex);
5775 }
5776
regulator_summary_show_roots(struct device * dev,void * data)5777 static int regulator_summary_show_roots(struct device *dev, void *data)
5778 {
5779 struct regulator_dev *rdev = dev_to_rdev(dev);
5780 struct seq_file *s = data;
5781
5782 if (!rdev->supply)
5783 regulator_summary_show_subtree(s, rdev, 0);
5784
5785 return 0;
5786 }
5787
regulator_summary_show(struct seq_file * s,void * data)5788 static int regulator_summary_show(struct seq_file *s, void *data)
5789 {
5790 struct ww_acquire_ctx ww_ctx;
5791
5792 seq_puts(s, " regulator use open bypass opmode voltage current min max\n");
5793 seq_puts(s, "---------------------------------------------------------------------------------------\n");
5794
5795 regulator_summary_lock(&ww_ctx);
5796
5797 class_for_each_device(®ulator_class, NULL, s,
5798 regulator_summary_show_roots);
5799
5800 regulator_summary_unlock(&ww_ctx);
5801
5802 return 0;
5803 }
5804 DEFINE_SHOW_ATTRIBUTE(regulator_summary);
5805 #endif /* CONFIG_DEBUG_FS */
5806
regulator_init(void)5807 static int __init regulator_init(void)
5808 {
5809 int ret;
5810
5811 ret = class_register(®ulator_class);
5812
5813 debugfs_root = debugfs_create_dir("regulator", NULL);
5814 if (!debugfs_root)
5815 pr_warn("regulator: Failed to create debugfs directory\n");
5816
5817 #ifdef CONFIG_DEBUG_FS
5818 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
5819 &supply_map_fops);
5820
5821 debugfs_create_file("regulator_summary", 0444, debugfs_root,
5822 NULL, ®ulator_summary_fops);
5823 #endif
5824 regulator_dummy_init();
5825
5826 regulator_coupler_register(&generic_regulator_coupler);
5827
5828 return ret;
5829 }
5830
5831 /* init early to allow our consumers to complete system booting */
5832 core_initcall(regulator_init);
5833
regulator_late_cleanup(struct device * dev,void * data)5834 static int regulator_late_cleanup(struct device *dev, void *data)
5835 {
5836 struct regulator_dev *rdev = dev_to_rdev(dev);
5837 const struct regulator_ops *ops = rdev->desc->ops;
5838 struct regulation_constraints *c = rdev->constraints;
5839 int enabled, ret;
5840
5841 if (c && c->always_on)
5842 return 0;
5843
5844 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5845 return 0;
5846
5847 regulator_lock(rdev);
5848
5849 if (rdev->use_count)
5850 goto unlock;
5851
5852 /* If we can't read the status assume it's always on. */
5853 if (ops->is_enabled)
5854 enabled = ops->is_enabled(rdev);
5855 else
5856 enabled = 1;
5857
5858 /* But if reading the status failed, assume that it's off. */
5859 if (enabled <= 0)
5860 goto unlock;
5861
5862 if (have_full_constraints()) {
5863 /* We log since this may kill the system if it goes
5864 * wrong. */
5865 rdev_info(rdev, "disabling\n");
5866 ret = _regulator_do_disable(rdev);
5867 if (ret != 0)
5868 rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
5869 } else {
5870 /* The intention is that in future we will
5871 * assume that full constraints are provided
5872 * so warn even if we aren't going to do
5873 * anything here.
5874 */
5875 rdev_warn(rdev, "incomplete constraints, leaving on\n");
5876 }
5877
5878 unlock:
5879 regulator_unlock(rdev);
5880
5881 return 0;
5882 }
5883
regulator_init_complete_work_function(struct work_struct * work)5884 static void regulator_init_complete_work_function(struct work_struct *work)
5885 {
5886 /*
5887 * Regulators may had failed to resolve their input supplies
5888 * when were registered, either because the input supply was
5889 * not registered yet or because its parent device was not
5890 * bound yet. So attempt to resolve the input supplies for
5891 * pending regulators before trying to disable unused ones.
5892 */
5893 class_for_each_device(®ulator_class, NULL, NULL,
5894 regulator_register_resolve_supply);
5895
5896 /* If we have a full configuration then disable any regulators
5897 * we have permission to change the status for and which are
5898 * not in use or always_on. This is effectively the default
5899 * for DT and ACPI as they have full constraints.
5900 */
5901 class_for_each_device(®ulator_class, NULL, NULL,
5902 regulator_late_cleanup);
5903 }
5904
5905 static DECLARE_DELAYED_WORK(regulator_init_complete_work,
5906 regulator_init_complete_work_function);
5907
regulator_init_complete(void)5908 static int __init regulator_init_complete(void)
5909 {
5910 /*
5911 * Since DT doesn't provide an idiomatic mechanism for
5912 * enabling full constraints and since it's much more natural
5913 * with DT to provide them just assume that a DT enabled
5914 * system has full constraints.
5915 */
5916 if (of_have_populated_dt())
5917 has_full_constraints = true;
5918
5919 /*
5920 * We punt completion for an arbitrary amount of time since
5921 * systems like distros will load many drivers from userspace
5922 * so consumers might not always be ready yet, this is
5923 * particularly an issue with laptops where this might bounce
5924 * the display off then on. Ideally we'd get a notification
5925 * from userspace when this happens but we don't so just wait
5926 * a bit and hope we waited long enough. It'd be better if
5927 * we'd only do this on systems that need it, and a kernel
5928 * command line option might be useful.
5929 */
5930 schedule_delayed_work(®ulator_init_complete_work,
5931 msecs_to_jiffies(30000));
5932
5933 return 0;
5934 }
5935 late_initcall_sync(regulator_init_complete);
5936