1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // regmap based irq_chip
4 //
5 // Copyright 2011 Wolfson Microelectronics plc
6 //
7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8 
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/interrupt.h>
12 #include <linux/irq.h>
13 #include <linux/irqdomain.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/regmap.h>
16 #include <linux/slab.h>
17 
18 #include "internal.h"
19 
20 struct regmap_irq_chip_data {
21 	struct mutex lock;
22 	struct irq_chip irq_chip;
23 
24 	struct regmap *map;
25 	const struct regmap_irq_chip *chip;
26 
27 	int irq_base;
28 	struct irq_domain *domain;
29 
30 	int irq;
31 	int wake_count;
32 
33 	void *status_reg_buf;
34 	unsigned int *main_status_buf;
35 	unsigned int *status_buf;
36 	unsigned int *mask_buf;
37 	unsigned int *mask_buf_def;
38 	unsigned int *wake_buf;
39 	unsigned int *type_buf;
40 	unsigned int *type_buf_def;
41 	unsigned int **config_buf;
42 
43 	unsigned int irq_reg_stride;
44 
45 	unsigned int (*get_irq_reg)(struct regmap_irq_chip_data *data,
46 				    unsigned int base, int index);
47 
48 	unsigned int clear_status:1;
49 };
50 
51 static inline const
irq_to_regmap_irq(struct regmap_irq_chip_data * data,int irq)52 struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
53 				     int irq)
54 {
55 	return &data->chip->irqs[irq];
56 }
57 
regmap_irq_can_bulk_read_status(struct regmap_irq_chip_data * data)58 static bool regmap_irq_can_bulk_read_status(struct regmap_irq_chip_data *data)
59 {
60 	struct regmap *map = data->map;
61 
62 	/*
63 	 * While possible that a user-defined ->get_irq_reg() callback might
64 	 * be linear enough to support bulk reads, most of the time it won't.
65 	 * Therefore only allow them if the default callback is being used.
66 	 */
67 	return data->irq_reg_stride == 1 && map->reg_stride == 1 &&
68 	       data->get_irq_reg == regmap_irq_get_irq_reg_linear &&
69 	       !map->use_single_read;
70 }
71 
regmap_irq_lock(struct irq_data * data)72 static void regmap_irq_lock(struct irq_data *data)
73 {
74 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
75 
76 	mutex_lock(&d->lock);
77 }
78 
regmap_irq_sync_unlock(struct irq_data * data)79 static void regmap_irq_sync_unlock(struct irq_data *data)
80 {
81 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
82 	struct regmap *map = d->map;
83 	int i, j, ret;
84 	u32 reg;
85 	u32 val;
86 
87 	if (d->chip->runtime_pm) {
88 		ret = pm_runtime_get_sync(map->dev);
89 		if (ret < 0)
90 			dev_err(map->dev, "IRQ sync failed to resume: %d\n",
91 				ret);
92 	}
93 
94 	if (d->clear_status) {
95 		for (i = 0; i < d->chip->num_regs; i++) {
96 			reg = d->get_irq_reg(d, d->chip->status_base, i);
97 
98 			ret = regmap_read(map, reg, &val);
99 			if (ret)
100 				dev_err(d->map->dev,
101 					"Failed to clear the interrupt status bits\n");
102 		}
103 
104 		d->clear_status = false;
105 	}
106 
107 	/*
108 	 * If there's been a change in the mask write it back to the
109 	 * hardware.  We rely on the use of the regmap core cache to
110 	 * suppress pointless writes.
111 	 */
112 	for (i = 0; i < d->chip->num_regs; i++) {
113 		if (d->chip->handle_mask_sync)
114 			d->chip->handle_mask_sync(i, d->mask_buf_def[i],
115 						  d->mask_buf[i],
116 						  d->chip->irq_drv_data);
117 
118 		if (d->chip->mask_base && !d->chip->handle_mask_sync) {
119 			reg = d->get_irq_reg(d, d->chip->mask_base, i);
120 			ret = regmap_update_bits(d->map, reg,
121 						 d->mask_buf_def[i],
122 						 d->mask_buf[i]);
123 			if (ret)
124 				dev_err(d->map->dev, "Failed to sync masks in %x\n", reg);
125 		}
126 
127 		if (d->chip->unmask_base && !d->chip->handle_mask_sync) {
128 			reg = d->get_irq_reg(d, d->chip->unmask_base, i);
129 			ret = regmap_update_bits(d->map, reg,
130 					d->mask_buf_def[i], ~d->mask_buf[i]);
131 			if (ret)
132 				dev_err(d->map->dev, "Failed to sync masks in %x\n",
133 					reg);
134 		}
135 
136 		reg = d->get_irq_reg(d, d->chip->wake_base, i);
137 		if (d->wake_buf) {
138 			if (d->chip->wake_invert)
139 				ret = regmap_update_bits(d->map, reg,
140 							 d->mask_buf_def[i],
141 							 ~d->wake_buf[i]);
142 			else
143 				ret = regmap_update_bits(d->map, reg,
144 							 d->mask_buf_def[i],
145 							 d->wake_buf[i]);
146 			if (ret != 0)
147 				dev_err(d->map->dev,
148 					"Failed to sync wakes in %x: %d\n",
149 					reg, ret);
150 		}
151 
152 		if (!d->chip->init_ack_masked)
153 			continue;
154 		/*
155 		 * Ack all the masked interrupts unconditionally,
156 		 * OR if there is masked interrupt which hasn't been Acked,
157 		 * it'll be ignored in irq handler, then may introduce irq storm
158 		 */
159 		if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
160 			reg = d->get_irq_reg(d, d->chip->ack_base, i);
161 
162 			/* some chips ack by write 0 */
163 			if (d->chip->ack_invert)
164 				ret = regmap_write(map, reg, ~d->mask_buf[i]);
165 			else
166 				ret = regmap_write(map, reg, d->mask_buf[i]);
167 			if (d->chip->clear_ack) {
168 				if (d->chip->ack_invert && !ret)
169 					ret = regmap_write(map, reg, UINT_MAX);
170 				else if (!ret)
171 					ret = regmap_write(map, reg, 0);
172 			}
173 			if (ret != 0)
174 				dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
175 					reg, ret);
176 		}
177 	}
178 
179 	for (i = 0; i < d->chip->num_config_bases; i++) {
180 		for (j = 0; j < d->chip->num_config_regs; j++) {
181 			reg = d->get_irq_reg(d, d->chip->config_base[i], j);
182 			ret = regmap_write(map, reg, d->config_buf[i][j]);
183 			if (ret)
184 				dev_err(d->map->dev,
185 					"Failed to write config %x: %d\n",
186 					reg, ret);
187 		}
188 	}
189 
190 	if (d->chip->runtime_pm)
191 		pm_runtime_put(map->dev);
192 
193 	/* If we've changed our wakeup count propagate it to the parent */
194 	if (d->wake_count < 0)
195 		for (i = d->wake_count; i < 0; i++)
196 			irq_set_irq_wake(d->irq, 0);
197 	else if (d->wake_count > 0)
198 		for (i = 0; i < d->wake_count; i++)
199 			irq_set_irq_wake(d->irq, 1);
200 
201 	d->wake_count = 0;
202 
203 	mutex_unlock(&d->lock);
204 }
205 
regmap_irq_enable(struct irq_data * data)206 static void regmap_irq_enable(struct irq_data *data)
207 {
208 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
209 	struct regmap *map = d->map;
210 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
211 	unsigned int reg = irq_data->reg_offset / map->reg_stride;
212 	unsigned int mask;
213 
214 	/*
215 	 * The type_in_mask flag means that the underlying hardware uses
216 	 * separate mask bits for each interrupt trigger type, but we want
217 	 * to have a single logical interrupt with a configurable type.
218 	 *
219 	 * If the interrupt we're enabling defines any supported types
220 	 * then instead of using the regular mask bits for this interrupt,
221 	 * use the value previously written to the type buffer at the
222 	 * corresponding offset in regmap_irq_set_type().
223 	 */
224 	if (d->chip->type_in_mask && irq_data->type.types_supported)
225 		mask = d->type_buf[reg] & irq_data->mask;
226 	else
227 		mask = irq_data->mask;
228 
229 	if (d->chip->clear_on_unmask)
230 		d->clear_status = true;
231 
232 	d->mask_buf[reg] &= ~mask;
233 }
234 
regmap_irq_disable(struct irq_data * data)235 static void regmap_irq_disable(struct irq_data *data)
236 {
237 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
238 	struct regmap *map = d->map;
239 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
240 
241 	d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
242 }
243 
regmap_irq_set_type(struct irq_data * data,unsigned int type)244 static int regmap_irq_set_type(struct irq_data *data, unsigned int type)
245 {
246 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
247 	struct regmap *map = d->map;
248 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
249 	int reg, ret;
250 	const struct regmap_irq_type *t = &irq_data->type;
251 
252 	if ((t->types_supported & type) != type)
253 		return 0;
254 
255 	reg = t->type_reg_offset / map->reg_stride;
256 
257 	if (d->chip->type_in_mask) {
258 		ret = regmap_irq_set_type_config_simple(&d->type_buf, type,
259 							irq_data, reg, d->chip->irq_drv_data);
260 		if (ret)
261 			return ret;
262 	}
263 
264 	if (d->chip->set_type_config) {
265 		ret = d->chip->set_type_config(d->config_buf, type, irq_data,
266 					       reg, d->chip->irq_drv_data);
267 		if (ret)
268 			return ret;
269 	}
270 
271 	return 0;
272 }
273 
regmap_irq_set_wake(struct irq_data * data,unsigned int on)274 static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
275 {
276 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
277 	struct regmap *map = d->map;
278 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
279 
280 	if (on) {
281 		if (d->wake_buf)
282 			d->wake_buf[irq_data->reg_offset / map->reg_stride]
283 				&= ~irq_data->mask;
284 		d->wake_count++;
285 	} else {
286 		if (d->wake_buf)
287 			d->wake_buf[irq_data->reg_offset / map->reg_stride]
288 				|= irq_data->mask;
289 		d->wake_count--;
290 	}
291 
292 	return 0;
293 }
294 
295 static const struct irq_chip regmap_irq_chip = {
296 	.irq_bus_lock		= regmap_irq_lock,
297 	.irq_bus_sync_unlock	= regmap_irq_sync_unlock,
298 	.irq_disable		= regmap_irq_disable,
299 	.irq_enable		= regmap_irq_enable,
300 	.irq_set_type		= regmap_irq_set_type,
301 	.irq_set_wake		= regmap_irq_set_wake,
302 };
303 
read_sub_irq_data(struct regmap_irq_chip_data * data,unsigned int b)304 static inline int read_sub_irq_data(struct regmap_irq_chip_data *data,
305 					   unsigned int b)
306 {
307 	const struct regmap_irq_chip *chip = data->chip;
308 	struct regmap *map = data->map;
309 	struct regmap_irq_sub_irq_map *subreg;
310 	unsigned int reg;
311 	int i, ret = 0;
312 
313 	if (!chip->sub_reg_offsets) {
314 		reg = data->get_irq_reg(data, chip->status_base, b);
315 		ret = regmap_read(map, reg, &data->status_buf[b]);
316 	} else {
317 		/*
318 		 * Note we can't use ->get_irq_reg() here because the offsets
319 		 * in 'subreg' are *not* interchangeable with indices.
320 		 */
321 		subreg = &chip->sub_reg_offsets[b];
322 		for (i = 0; i < subreg->num_regs; i++) {
323 			unsigned int offset = subreg->offset[i];
324 			unsigned int index = offset / map->reg_stride;
325 
326 			ret = regmap_read(map, chip->status_base + offset,
327 					  &data->status_buf[index]);
328 			if (ret)
329 				break;
330 		}
331 	}
332 	return ret;
333 }
334 
regmap_irq_thread(int irq,void * d)335 static irqreturn_t regmap_irq_thread(int irq, void *d)
336 {
337 	struct regmap_irq_chip_data *data = d;
338 	const struct regmap_irq_chip *chip = data->chip;
339 	struct regmap *map = data->map;
340 	int ret, i;
341 	bool handled = false;
342 	u32 reg;
343 
344 	if (chip->handle_pre_irq)
345 		chip->handle_pre_irq(chip->irq_drv_data);
346 
347 	if (chip->runtime_pm) {
348 		ret = pm_runtime_get_sync(map->dev);
349 		if (ret < 0) {
350 			dev_err(map->dev, "IRQ thread failed to resume: %d\n",
351 				ret);
352 			goto exit;
353 		}
354 	}
355 
356 	/*
357 	 * Read only registers with active IRQs if the chip has 'main status
358 	 * register'. Else read in the statuses, using a single bulk read if
359 	 * possible in order to reduce the I/O overheads.
360 	 */
361 
362 	if (chip->no_status) {
363 		/* no status register so default to all active */
364 		memset32(data->status_buf, GENMASK(31, 0), chip->num_regs);
365 	} else if (chip->num_main_regs) {
366 		unsigned int max_main_bits;
367 		unsigned long size;
368 
369 		size = chip->num_regs * sizeof(unsigned int);
370 
371 		max_main_bits = (chip->num_main_status_bits) ?
372 				 chip->num_main_status_bits : chip->num_regs;
373 		/* Clear the status buf as we don't read all status regs */
374 		memset(data->status_buf, 0, size);
375 
376 		/* We could support bulk read for main status registers
377 		 * but I don't expect to see devices with really many main
378 		 * status registers so let's only support single reads for the
379 		 * sake of simplicity. and add bulk reads only if needed
380 		 */
381 		for (i = 0; i < chip->num_main_regs; i++) {
382 			reg = data->get_irq_reg(data, chip->main_status, i);
383 			ret = regmap_read(map, reg, &data->main_status_buf[i]);
384 			if (ret) {
385 				dev_err(map->dev,
386 					"Failed to read IRQ status %d\n",
387 					ret);
388 				goto exit;
389 			}
390 		}
391 
392 		/* Read sub registers with active IRQs */
393 		for (i = 0; i < chip->num_main_regs; i++) {
394 			unsigned int b;
395 			const unsigned long mreg = data->main_status_buf[i];
396 
397 			for_each_set_bit(b, &mreg, map->format.val_bytes * 8) {
398 				if (i * map->format.val_bytes * 8 + b >
399 				    max_main_bits)
400 					break;
401 				ret = read_sub_irq_data(data, b);
402 
403 				if (ret != 0) {
404 					dev_err(map->dev,
405 						"Failed to read IRQ status %d\n",
406 						ret);
407 					goto exit;
408 				}
409 			}
410 
411 		}
412 	} else if (regmap_irq_can_bulk_read_status(data)) {
413 
414 		u8 *buf8 = data->status_reg_buf;
415 		u16 *buf16 = data->status_reg_buf;
416 		u32 *buf32 = data->status_reg_buf;
417 
418 		BUG_ON(!data->status_reg_buf);
419 
420 		ret = regmap_bulk_read(map, chip->status_base,
421 				       data->status_reg_buf,
422 				       chip->num_regs);
423 		if (ret != 0) {
424 			dev_err(map->dev, "Failed to read IRQ status: %d\n",
425 				ret);
426 			goto exit;
427 		}
428 
429 		for (i = 0; i < data->chip->num_regs; i++) {
430 			switch (map->format.val_bytes) {
431 			case 1:
432 				data->status_buf[i] = buf8[i];
433 				break;
434 			case 2:
435 				data->status_buf[i] = buf16[i];
436 				break;
437 			case 4:
438 				data->status_buf[i] = buf32[i];
439 				break;
440 			default:
441 				BUG();
442 				goto exit;
443 			}
444 		}
445 
446 	} else {
447 		for (i = 0; i < data->chip->num_regs; i++) {
448 			unsigned int reg = data->get_irq_reg(data,
449 					data->chip->status_base, i);
450 			ret = regmap_read(map, reg, &data->status_buf[i]);
451 
452 			if (ret != 0) {
453 				dev_err(map->dev,
454 					"Failed to read IRQ status: %d\n",
455 					ret);
456 				goto exit;
457 			}
458 		}
459 	}
460 
461 	if (chip->status_invert)
462 		for (i = 0; i < data->chip->num_regs; i++)
463 			data->status_buf[i] = ~data->status_buf[i];
464 
465 	/*
466 	 * Ignore masked IRQs and ack if we need to; we ack early so
467 	 * there is no race between handling and acknowledging the
468 	 * interrupt.  We assume that typically few of the interrupts
469 	 * will fire simultaneously so don't worry about overhead from
470 	 * doing a write per register.
471 	 */
472 	for (i = 0; i < data->chip->num_regs; i++) {
473 		data->status_buf[i] &= ~data->mask_buf[i];
474 
475 		if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
476 			reg = data->get_irq_reg(data, data->chip->ack_base, i);
477 
478 			if (chip->ack_invert)
479 				ret = regmap_write(map, reg,
480 						~data->status_buf[i]);
481 			else
482 				ret = regmap_write(map, reg,
483 						data->status_buf[i]);
484 			if (chip->clear_ack) {
485 				if (chip->ack_invert && !ret)
486 					ret = regmap_write(map, reg, UINT_MAX);
487 				else if (!ret)
488 					ret = regmap_write(map, reg, 0);
489 			}
490 			if (ret != 0)
491 				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
492 					reg, ret);
493 		}
494 	}
495 
496 	for (i = 0; i < chip->num_irqs; i++) {
497 		if (data->status_buf[chip->irqs[i].reg_offset /
498 				     map->reg_stride] & chip->irqs[i].mask) {
499 			handle_nested_irq(irq_find_mapping(data->domain, i));
500 			handled = true;
501 		}
502 	}
503 
504 exit:
505 	if (chip->handle_post_irq)
506 		chip->handle_post_irq(chip->irq_drv_data);
507 
508 	if (chip->runtime_pm)
509 		pm_runtime_put(map->dev);
510 
511 	if (handled)
512 		return IRQ_HANDLED;
513 	else
514 		return IRQ_NONE;
515 }
516 
regmap_irq_map(struct irq_domain * h,unsigned int virq,irq_hw_number_t hw)517 static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
518 			  irq_hw_number_t hw)
519 {
520 	struct regmap_irq_chip_data *data = h->host_data;
521 
522 	irq_set_chip_data(virq, data);
523 	irq_set_chip(virq, &data->irq_chip);
524 	irq_set_nested_thread(virq, 1);
525 	irq_set_parent(virq, data->irq);
526 	irq_set_noprobe(virq);
527 
528 	return 0;
529 }
530 
531 static const struct irq_domain_ops regmap_domain_ops = {
532 	.map	= regmap_irq_map,
533 	.xlate	= irq_domain_xlate_onetwocell,
534 };
535 
536 /**
537  * regmap_irq_get_irq_reg_linear() - Linear IRQ register mapping callback.
538  * @data: Data for the &struct regmap_irq_chip
539  * @base: Base register
540  * @index: Register index
541  *
542  * Returns the register address corresponding to the given @base and @index
543  * by the formula ``base + index * regmap_stride * irq_reg_stride``.
544  */
regmap_irq_get_irq_reg_linear(struct regmap_irq_chip_data * data,unsigned int base,int index)545 unsigned int regmap_irq_get_irq_reg_linear(struct regmap_irq_chip_data *data,
546 					   unsigned int base, int index)
547 {
548 	struct regmap *map = data->map;
549 
550 	return base + index * map->reg_stride * data->irq_reg_stride;
551 }
552 EXPORT_SYMBOL_GPL(regmap_irq_get_irq_reg_linear);
553 
554 /**
555  * regmap_irq_set_type_config_simple() - Simple IRQ type configuration callback.
556  * @buf: Buffer containing configuration register values, this is a 2D array of
557  *       `num_config_bases` rows, each of `num_config_regs` elements.
558  * @type: The requested IRQ type.
559  * @irq_data: The IRQ being configured.
560  * @idx: Index of the irq's config registers within each array `buf[i]`
561  * @irq_drv_data: Driver specific IRQ data
562  *
563  * This is a &struct regmap_irq_chip->set_type_config callback suitable for
564  * chips with one config register. Register values are updated according to
565  * the &struct regmap_irq_type data associated with an IRQ.
566  */
regmap_irq_set_type_config_simple(unsigned int ** buf,unsigned int type,const struct regmap_irq * irq_data,int idx,void * irq_drv_data)567 int regmap_irq_set_type_config_simple(unsigned int **buf, unsigned int type,
568 				      const struct regmap_irq *irq_data,
569 				      int idx, void *irq_drv_data)
570 {
571 	const struct regmap_irq_type *t = &irq_data->type;
572 
573 	if (t->type_reg_mask)
574 		buf[0][idx] &= ~t->type_reg_mask;
575 	else
576 		buf[0][idx] &= ~(t->type_falling_val |
577 				 t->type_rising_val |
578 				 t->type_level_low_val |
579 				 t->type_level_high_val);
580 
581 	switch (type) {
582 	case IRQ_TYPE_EDGE_FALLING:
583 		buf[0][idx] |= t->type_falling_val;
584 		break;
585 
586 	case IRQ_TYPE_EDGE_RISING:
587 		buf[0][idx] |= t->type_rising_val;
588 		break;
589 
590 	case IRQ_TYPE_EDGE_BOTH:
591 		buf[0][idx] |= (t->type_falling_val |
592 				t->type_rising_val);
593 		break;
594 
595 	case IRQ_TYPE_LEVEL_HIGH:
596 		buf[0][idx] |= t->type_level_high_val;
597 		break;
598 
599 	case IRQ_TYPE_LEVEL_LOW:
600 		buf[0][idx] |= t->type_level_low_val;
601 		break;
602 
603 	default:
604 		return -EINVAL;
605 	}
606 
607 	return 0;
608 }
609 EXPORT_SYMBOL_GPL(regmap_irq_set_type_config_simple);
610 
611 /**
612  * regmap_add_irq_chip_fwnode() - Use standard regmap IRQ controller handling
613  *
614  * @fwnode: The firmware node where the IRQ domain should be added to.
615  * @map: The regmap for the device.
616  * @irq: The IRQ the device uses to signal interrupts.
617  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
618  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
619  * @chip: Configuration for the interrupt controller.
620  * @data: Runtime data structure for the controller, allocated on success.
621  *
622  * Returns 0 on success or an errno on failure.
623  *
624  * In order for this to be efficient the chip really should use a
625  * register cache.  The chip driver is responsible for restoring the
626  * register values used by the IRQ controller over suspend and resume.
627  */
regmap_add_irq_chip_fwnode(struct fwnode_handle * fwnode,struct regmap * map,int irq,int irq_flags,int irq_base,const struct regmap_irq_chip * chip,struct regmap_irq_chip_data ** data)628 int regmap_add_irq_chip_fwnode(struct fwnode_handle *fwnode,
629 			       struct regmap *map, int irq,
630 			       int irq_flags, int irq_base,
631 			       const struct regmap_irq_chip *chip,
632 			       struct regmap_irq_chip_data **data)
633 {
634 	struct regmap_irq_chip_data *d;
635 	int i;
636 	int ret = -ENOMEM;
637 	u32 reg;
638 
639 	if (chip->num_regs <= 0)
640 		return -EINVAL;
641 
642 	if (chip->clear_on_unmask && (chip->ack_base || chip->use_ack))
643 		return -EINVAL;
644 
645 	if (chip->mask_base && chip->unmask_base && !chip->mask_unmask_non_inverted)
646 		return -EINVAL;
647 
648 	for (i = 0; i < chip->num_irqs; i++) {
649 		if (chip->irqs[i].reg_offset % map->reg_stride)
650 			return -EINVAL;
651 		if (chip->irqs[i].reg_offset / map->reg_stride >=
652 		    chip->num_regs)
653 			return -EINVAL;
654 	}
655 
656 	if (irq_base) {
657 		irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
658 		if (irq_base < 0) {
659 			dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
660 				 irq_base);
661 			return irq_base;
662 		}
663 	}
664 
665 	d = kzalloc(sizeof(*d), GFP_KERNEL);
666 	if (!d)
667 		return -ENOMEM;
668 
669 	if (chip->num_main_regs) {
670 		d->main_status_buf = kcalloc(chip->num_main_regs,
671 					     sizeof(*d->main_status_buf),
672 					     GFP_KERNEL);
673 
674 		if (!d->main_status_buf)
675 			goto err_alloc;
676 	}
677 
678 	d->status_buf = kcalloc(chip->num_regs, sizeof(*d->status_buf),
679 				GFP_KERNEL);
680 	if (!d->status_buf)
681 		goto err_alloc;
682 
683 	d->mask_buf = kcalloc(chip->num_regs, sizeof(*d->mask_buf),
684 			      GFP_KERNEL);
685 	if (!d->mask_buf)
686 		goto err_alloc;
687 
688 	d->mask_buf_def = kcalloc(chip->num_regs, sizeof(*d->mask_buf_def),
689 				  GFP_KERNEL);
690 	if (!d->mask_buf_def)
691 		goto err_alloc;
692 
693 	if (chip->wake_base) {
694 		d->wake_buf = kcalloc(chip->num_regs, sizeof(*d->wake_buf),
695 				      GFP_KERNEL);
696 		if (!d->wake_buf)
697 			goto err_alloc;
698 	}
699 
700 	if (chip->type_in_mask) {
701 		d->type_buf_def = kcalloc(chip->num_regs,
702 					  sizeof(*d->type_buf_def), GFP_KERNEL);
703 		if (!d->type_buf_def)
704 			goto err_alloc;
705 
706 		d->type_buf = kcalloc(chip->num_regs, sizeof(*d->type_buf), GFP_KERNEL);
707 		if (!d->type_buf)
708 			goto err_alloc;
709 	}
710 
711 	if (chip->num_config_bases && chip->num_config_regs) {
712 		/*
713 		 * Create config_buf[num_config_bases][num_config_regs]
714 		 */
715 		d->config_buf = kcalloc(chip->num_config_bases,
716 					sizeof(*d->config_buf), GFP_KERNEL);
717 		if (!d->config_buf)
718 			goto err_alloc;
719 
720 		for (i = 0; i < chip->num_config_bases; i++) {
721 			d->config_buf[i] = kcalloc(chip->num_config_regs,
722 						   sizeof(**d->config_buf),
723 						   GFP_KERNEL);
724 			if (!d->config_buf[i])
725 				goto err_alloc;
726 		}
727 	}
728 
729 	d->irq_chip = regmap_irq_chip;
730 	d->irq_chip.name = chip->name;
731 	d->irq = irq;
732 	d->map = map;
733 	d->chip = chip;
734 	d->irq_base = irq_base;
735 
736 	if (chip->irq_reg_stride)
737 		d->irq_reg_stride = chip->irq_reg_stride;
738 	else
739 		d->irq_reg_stride = 1;
740 
741 	if (chip->get_irq_reg)
742 		d->get_irq_reg = chip->get_irq_reg;
743 	else
744 		d->get_irq_reg = regmap_irq_get_irq_reg_linear;
745 
746 	if (regmap_irq_can_bulk_read_status(d)) {
747 		d->status_reg_buf = kmalloc_array(chip->num_regs,
748 						  map->format.val_bytes,
749 						  GFP_KERNEL);
750 		if (!d->status_reg_buf)
751 			goto err_alloc;
752 	}
753 
754 	mutex_init(&d->lock);
755 
756 	for (i = 0; i < chip->num_irqs; i++)
757 		d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
758 			|= chip->irqs[i].mask;
759 
760 	/* Mask all the interrupts by default */
761 	for (i = 0; i < chip->num_regs; i++) {
762 		d->mask_buf[i] = d->mask_buf_def[i];
763 
764 		if (chip->handle_mask_sync) {
765 			ret = chip->handle_mask_sync(i, d->mask_buf_def[i],
766 						     d->mask_buf[i],
767 						     chip->irq_drv_data);
768 			if (ret)
769 				goto err_alloc;
770 		}
771 
772 		if (chip->mask_base && !chip->handle_mask_sync) {
773 			reg = d->get_irq_reg(d, chip->mask_base, i);
774 			ret = regmap_update_bits(d->map, reg,
775 						 d->mask_buf_def[i],
776 						 d->mask_buf[i]);
777 			if (ret) {
778 				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
779 					reg, ret);
780 				goto err_alloc;
781 			}
782 		}
783 
784 		if (chip->unmask_base && !chip->handle_mask_sync) {
785 			reg = d->get_irq_reg(d, chip->unmask_base, i);
786 			ret = regmap_update_bits(d->map, reg,
787 					d->mask_buf_def[i], ~d->mask_buf[i]);
788 			if (ret) {
789 				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
790 					reg, ret);
791 				goto err_alloc;
792 			}
793 		}
794 
795 		if (!chip->init_ack_masked)
796 			continue;
797 
798 		/* Ack masked but set interrupts */
799 		if (d->chip->no_status) {
800 			/* no status register so default to all active */
801 			d->status_buf[i] = GENMASK(31, 0);
802 		} else {
803 			reg = d->get_irq_reg(d, d->chip->status_base, i);
804 			ret = regmap_read(map, reg, &d->status_buf[i]);
805 			if (ret != 0) {
806 				dev_err(map->dev, "Failed to read IRQ status: %d\n",
807 					ret);
808 				goto err_alloc;
809 			}
810 		}
811 
812 		if (chip->status_invert)
813 			d->status_buf[i] = ~d->status_buf[i];
814 
815 		if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
816 			reg = d->get_irq_reg(d, d->chip->ack_base, i);
817 			if (chip->ack_invert)
818 				ret = regmap_write(map, reg,
819 					~(d->status_buf[i] & d->mask_buf[i]));
820 			else
821 				ret = regmap_write(map, reg,
822 					d->status_buf[i] & d->mask_buf[i]);
823 			if (chip->clear_ack) {
824 				if (chip->ack_invert && !ret)
825 					ret = regmap_write(map, reg, UINT_MAX);
826 				else if (!ret)
827 					ret = regmap_write(map, reg, 0);
828 			}
829 			if (ret != 0) {
830 				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
831 					reg, ret);
832 				goto err_alloc;
833 			}
834 		}
835 	}
836 
837 	/* Wake is disabled by default */
838 	if (d->wake_buf) {
839 		for (i = 0; i < chip->num_regs; i++) {
840 			d->wake_buf[i] = d->mask_buf_def[i];
841 			reg = d->get_irq_reg(d, d->chip->wake_base, i);
842 
843 			if (chip->wake_invert)
844 				ret = regmap_update_bits(d->map, reg,
845 							 d->mask_buf_def[i],
846 							 0);
847 			else
848 				ret = regmap_update_bits(d->map, reg,
849 							 d->mask_buf_def[i],
850 							 d->wake_buf[i]);
851 			if (ret != 0) {
852 				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
853 					reg, ret);
854 				goto err_alloc;
855 			}
856 		}
857 	}
858 
859 	if (irq_base)
860 		d->domain = irq_domain_create_legacy(fwnode, chip->num_irqs,
861 						     irq_base, 0,
862 						     &regmap_domain_ops, d);
863 	else
864 		d->domain = irq_domain_create_linear(fwnode, chip->num_irqs,
865 						     &regmap_domain_ops, d);
866 	if (!d->domain) {
867 		dev_err(map->dev, "Failed to create IRQ domain\n");
868 		ret = -ENOMEM;
869 		goto err_alloc;
870 	}
871 
872 	ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
873 				   irq_flags | IRQF_ONESHOT,
874 				   chip->name, d);
875 	if (ret != 0) {
876 		dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
877 			irq, chip->name, ret);
878 		goto err_domain;
879 	}
880 
881 	*data = d;
882 
883 	return 0;
884 
885 err_domain:
886 	/* Should really dispose of the domain but... */
887 err_alloc:
888 	kfree(d->type_buf);
889 	kfree(d->type_buf_def);
890 	kfree(d->wake_buf);
891 	kfree(d->mask_buf_def);
892 	kfree(d->mask_buf);
893 	kfree(d->status_buf);
894 	kfree(d->status_reg_buf);
895 	if (d->config_buf) {
896 		for (i = 0; i < chip->num_config_bases; i++)
897 			kfree(d->config_buf[i]);
898 		kfree(d->config_buf);
899 	}
900 	kfree(d);
901 	return ret;
902 }
903 EXPORT_SYMBOL_GPL(regmap_add_irq_chip_fwnode);
904 
905 /**
906  * regmap_add_irq_chip() - Use standard regmap IRQ controller handling
907  *
908  * @map: The regmap for the device.
909  * @irq: The IRQ the device uses to signal interrupts.
910  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
911  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
912  * @chip: Configuration for the interrupt controller.
913  * @data: Runtime data structure for the controller, allocated on success.
914  *
915  * Returns 0 on success or an errno on failure.
916  *
917  * This is the same as regmap_add_irq_chip_fwnode, except that the firmware
918  * node of the regmap is used.
919  */
regmap_add_irq_chip(struct regmap * map,int irq,int irq_flags,int irq_base,const struct regmap_irq_chip * chip,struct regmap_irq_chip_data ** data)920 int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
921 			int irq_base, const struct regmap_irq_chip *chip,
922 			struct regmap_irq_chip_data **data)
923 {
924 	return regmap_add_irq_chip_fwnode(dev_fwnode(map->dev), map, irq,
925 					  irq_flags, irq_base, chip, data);
926 }
927 EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
928 
929 /**
930  * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip
931  *
932  * @irq: Primary IRQ for the device
933  * @d: &regmap_irq_chip_data allocated by regmap_add_irq_chip()
934  *
935  * This function also disposes of all mapped IRQs on the chip.
936  */
regmap_del_irq_chip(int irq,struct regmap_irq_chip_data * d)937 void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
938 {
939 	unsigned int virq;
940 	int i, hwirq;
941 
942 	if (!d)
943 		return;
944 
945 	free_irq(irq, d);
946 
947 	/* Dispose all virtual irq from irq domain before removing it */
948 	for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) {
949 		/* Ignore hwirq if holes in the IRQ list */
950 		if (!d->chip->irqs[hwirq].mask)
951 			continue;
952 
953 		/*
954 		 * Find the virtual irq of hwirq on chip and if it is
955 		 * there then dispose it
956 		 */
957 		virq = irq_find_mapping(d->domain, hwirq);
958 		if (virq)
959 			irq_dispose_mapping(virq);
960 	}
961 
962 	irq_domain_remove(d->domain);
963 	kfree(d->type_buf);
964 	kfree(d->type_buf_def);
965 	kfree(d->wake_buf);
966 	kfree(d->mask_buf_def);
967 	kfree(d->mask_buf);
968 	kfree(d->status_reg_buf);
969 	kfree(d->status_buf);
970 	if (d->config_buf) {
971 		for (i = 0; i < d->chip->num_config_bases; i++)
972 			kfree(d->config_buf[i]);
973 		kfree(d->config_buf);
974 	}
975 	kfree(d);
976 }
977 EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
978 
devm_regmap_irq_chip_release(struct device * dev,void * res)979 static void devm_regmap_irq_chip_release(struct device *dev, void *res)
980 {
981 	struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res;
982 
983 	regmap_del_irq_chip(d->irq, d);
984 }
985 
devm_regmap_irq_chip_match(struct device * dev,void * res,void * data)986 static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data)
987 
988 {
989 	struct regmap_irq_chip_data **r = res;
990 
991 	if (!r || !*r) {
992 		WARN_ON(!r || !*r);
993 		return 0;
994 	}
995 	return *r == data;
996 }
997 
998 /**
999  * devm_regmap_add_irq_chip_fwnode() - Resource managed regmap_add_irq_chip_fwnode()
1000  *
1001  * @dev: The device pointer on which irq_chip belongs to.
1002  * @fwnode: The firmware node where the IRQ domain should be added to.
1003  * @map: The regmap for the device.
1004  * @irq: The IRQ the device uses to signal interrupts
1005  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1006  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1007  * @chip: Configuration for the interrupt controller.
1008  * @data: Runtime data structure for the controller, allocated on success
1009  *
1010  * Returns 0 on success or an errno on failure.
1011  *
1012  * The &regmap_irq_chip_data will be automatically released when the device is
1013  * unbound.
1014  */
devm_regmap_add_irq_chip_fwnode(struct device * dev,struct fwnode_handle * fwnode,struct regmap * map,int irq,int irq_flags,int irq_base,const struct regmap_irq_chip * chip,struct regmap_irq_chip_data ** data)1015 int devm_regmap_add_irq_chip_fwnode(struct device *dev,
1016 				    struct fwnode_handle *fwnode,
1017 				    struct regmap *map, int irq,
1018 				    int irq_flags, int irq_base,
1019 				    const struct regmap_irq_chip *chip,
1020 				    struct regmap_irq_chip_data **data)
1021 {
1022 	struct regmap_irq_chip_data **ptr, *d;
1023 	int ret;
1024 
1025 	ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr),
1026 			   GFP_KERNEL);
1027 	if (!ptr)
1028 		return -ENOMEM;
1029 
1030 	ret = regmap_add_irq_chip_fwnode(fwnode, map, irq, irq_flags, irq_base,
1031 					 chip, &d);
1032 	if (ret < 0) {
1033 		devres_free(ptr);
1034 		return ret;
1035 	}
1036 
1037 	*ptr = d;
1038 	devres_add(dev, ptr);
1039 	*data = d;
1040 	return 0;
1041 }
1042 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip_fwnode);
1043 
1044 /**
1045  * devm_regmap_add_irq_chip() - Resource managed regmap_add_irq_chip()
1046  *
1047  * @dev: The device pointer on which irq_chip belongs to.
1048  * @map: The regmap for the device.
1049  * @irq: The IRQ the device uses to signal interrupts
1050  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1051  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1052  * @chip: Configuration for the interrupt controller.
1053  * @data: Runtime data structure for the controller, allocated on success
1054  *
1055  * Returns 0 on success or an errno on failure.
1056  *
1057  * The &regmap_irq_chip_data will be automatically released when the device is
1058  * unbound.
1059  */
devm_regmap_add_irq_chip(struct device * dev,struct regmap * map,int irq,int irq_flags,int irq_base,const struct regmap_irq_chip * chip,struct regmap_irq_chip_data ** data)1060 int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq,
1061 			     int irq_flags, int irq_base,
1062 			     const struct regmap_irq_chip *chip,
1063 			     struct regmap_irq_chip_data **data)
1064 {
1065 	return devm_regmap_add_irq_chip_fwnode(dev, dev_fwnode(map->dev), map,
1066 					       irq, irq_flags, irq_base, chip,
1067 					       data);
1068 }
1069 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip);
1070 
1071 /**
1072  * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip()
1073  *
1074  * @dev: Device for which the resource was allocated.
1075  * @irq: Primary IRQ for the device.
1076  * @data: &regmap_irq_chip_data allocated by regmap_add_irq_chip().
1077  *
1078  * A resource managed version of regmap_del_irq_chip().
1079  */
devm_regmap_del_irq_chip(struct device * dev,int irq,struct regmap_irq_chip_data * data)1080 void devm_regmap_del_irq_chip(struct device *dev, int irq,
1081 			      struct regmap_irq_chip_data *data)
1082 {
1083 	int rc;
1084 
1085 	WARN_ON(irq != data->irq);
1086 	rc = devres_release(dev, devm_regmap_irq_chip_release,
1087 			    devm_regmap_irq_chip_match, data);
1088 
1089 	if (rc != 0)
1090 		WARN_ON(rc);
1091 }
1092 EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip);
1093 
1094 /**
1095  * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip
1096  *
1097  * @data: regmap irq controller to operate on.
1098  *
1099  * Useful for drivers to request their own IRQs.
1100  */
regmap_irq_chip_get_base(struct regmap_irq_chip_data * data)1101 int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
1102 {
1103 	WARN_ON(!data->irq_base);
1104 	return data->irq_base;
1105 }
1106 EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
1107 
1108 /**
1109  * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ
1110  *
1111  * @data: regmap irq controller to operate on.
1112  * @irq: index of the interrupt requested in the chip IRQs.
1113  *
1114  * Useful for drivers to request their own IRQs.
1115  */
regmap_irq_get_virq(struct regmap_irq_chip_data * data,int irq)1116 int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
1117 {
1118 	/* Handle holes in the IRQ list */
1119 	if (!data->chip->irqs[irq].mask)
1120 		return -EINVAL;
1121 
1122 	return irq_create_mapping(data->domain, irq);
1123 }
1124 EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
1125 
1126 /**
1127  * regmap_irq_get_domain() - Retrieve the irq_domain for the chip
1128  *
1129  * @data: regmap_irq controller to operate on.
1130  *
1131  * Useful for drivers to request their own IRQs and for integration
1132  * with subsystems.  For ease of integration NULL is accepted as a
1133  * domain, allowing devices to just call this even if no domain is
1134  * allocated.
1135  */
regmap_irq_get_domain(struct regmap_irq_chip_data * data)1136 struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
1137 {
1138 	if (data)
1139 		return data->domain;
1140 	else
1141 		return NULL;
1142 }
1143 EXPORT_SYMBOL_GPL(regmap_irq_get_domain);
1144