1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Register map access API
4 //
5 // Copyright 2011 Wolfson Microelectronics plc
6 //
7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8
9 #include <linux/device.h>
10 #include <linux/slab.h>
11 #include <linux/export.h>
12 #include <linux/mutex.h>
13 #include <linux/err.h>
14 #include <linux/property.h>
15 #include <linux/rbtree.h>
16 #include <linux/sched.h>
17 #include <linux/delay.h>
18 #include <linux/log2.h>
19 #include <linux/hwspinlock.h>
20 #include <asm/unaligned.h>
21
22 #define CREATE_TRACE_POINTS
23 #include "trace.h"
24
25 #include "internal.h"
26
27 /*
28 * Sometimes for failures during very early init the trace
29 * infrastructure isn't available early enough to be used. For this
30 * sort of problem defining LOG_DEVICE will add printks for basic
31 * register I/O on a specific device.
32 */
33 #undef LOG_DEVICE
34
35 #ifdef LOG_DEVICE
regmap_should_log(struct regmap * map)36 static inline bool regmap_should_log(struct regmap *map)
37 {
38 return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
39 }
40 #else
regmap_should_log(struct regmap * map)41 static inline bool regmap_should_log(struct regmap *map) { return false; }
42 #endif
43
44
45 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
46 unsigned int mask, unsigned int val,
47 bool *change, bool force_write);
48
49 static int _regmap_bus_reg_read(void *context, unsigned int reg,
50 unsigned int *val);
51 static int _regmap_bus_read(void *context, unsigned int reg,
52 unsigned int *val);
53 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
54 unsigned int val);
55 static int _regmap_bus_reg_write(void *context, unsigned int reg,
56 unsigned int val);
57 static int _regmap_bus_raw_write(void *context, unsigned int reg,
58 unsigned int val);
59
regmap_reg_in_ranges(unsigned int reg,const struct regmap_range * ranges,unsigned int nranges)60 bool regmap_reg_in_ranges(unsigned int reg,
61 const struct regmap_range *ranges,
62 unsigned int nranges)
63 {
64 const struct regmap_range *r;
65 int i;
66
67 for (i = 0, r = ranges; i < nranges; i++, r++)
68 if (regmap_reg_in_range(reg, r))
69 return true;
70 return false;
71 }
72 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
73
regmap_check_range_table(struct regmap * map,unsigned int reg,const struct regmap_access_table * table)74 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
75 const struct regmap_access_table *table)
76 {
77 /* Check "no ranges" first */
78 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
79 return false;
80
81 /* In case zero "yes ranges" are supplied, any reg is OK */
82 if (!table->n_yes_ranges)
83 return true;
84
85 return regmap_reg_in_ranges(reg, table->yes_ranges,
86 table->n_yes_ranges);
87 }
88 EXPORT_SYMBOL_GPL(regmap_check_range_table);
89
regmap_writeable(struct regmap * map,unsigned int reg)90 bool regmap_writeable(struct regmap *map, unsigned int reg)
91 {
92 if (map->max_register && reg > map->max_register)
93 return false;
94
95 if (map->writeable_reg)
96 return map->writeable_reg(map->dev, reg);
97
98 if (map->wr_table)
99 return regmap_check_range_table(map, reg, map->wr_table);
100
101 return true;
102 }
103
regmap_cached(struct regmap * map,unsigned int reg)104 bool regmap_cached(struct regmap *map, unsigned int reg)
105 {
106 int ret;
107 unsigned int val;
108
109 if (map->cache_type == REGCACHE_NONE)
110 return false;
111
112 if (!map->cache_ops)
113 return false;
114
115 if (map->max_register && reg > map->max_register)
116 return false;
117
118 map->lock(map->lock_arg);
119 ret = regcache_read(map, reg, &val);
120 map->unlock(map->lock_arg);
121 if (ret)
122 return false;
123
124 return true;
125 }
126
regmap_readable(struct regmap * map,unsigned int reg)127 bool regmap_readable(struct regmap *map, unsigned int reg)
128 {
129 if (!map->reg_read)
130 return false;
131
132 if (map->max_register && reg > map->max_register)
133 return false;
134
135 if (map->format.format_write)
136 return false;
137
138 if (map->readable_reg)
139 return map->readable_reg(map->dev, reg);
140
141 if (map->rd_table)
142 return regmap_check_range_table(map, reg, map->rd_table);
143
144 return true;
145 }
146
regmap_volatile(struct regmap * map,unsigned int reg)147 bool regmap_volatile(struct regmap *map, unsigned int reg)
148 {
149 if (!map->format.format_write && !regmap_readable(map, reg))
150 return false;
151
152 if (map->volatile_reg)
153 return map->volatile_reg(map->dev, reg);
154
155 if (map->volatile_table)
156 return regmap_check_range_table(map, reg, map->volatile_table);
157
158 if (map->cache_ops)
159 return false;
160 else
161 return true;
162 }
163
regmap_precious(struct regmap * map,unsigned int reg)164 bool regmap_precious(struct regmap *map, unsigned int reg)
165 {
166 if (!regmap_readable(map, reg))
167 return false;
168
169 if (map->precious_reg)
170 return map->precious_reg(map->dev, reg);
171
172 if (map->precious_table)
173 return regmap_check_range_table(map, reg, map->precious_table);
174
175 return false;
176 }
177
regmap_writeable_noinc(struct regmap * map,unsigned int reg)178 bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
179 {
180 if (map->writeable_noinc_reg)
181 return map->writeable_noinc_reg(map->dev, reg);
182
183 if (map->wr_noinc_table)
184 return regmap_check_range_table(map, reg, map->wr_noinc_table);
185
186 return true;
187 }
188
regmap_readable_noinc(struct regmap * map,unsigned int reg)189 bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
190 {
191 if (map->readable_noinc_reg)
192 return map->readable_noinc_reg(map->dev, reg);
193
194 if (map->rd_noinc_table)
195 return regmap_check_range_table(map, reg, map->rd_noinc_table);
196
197 return true;
198 }
199
regmap_volatile_range(struct regmap * map,unsigned int reg,size_t num)200 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
201 size_t num)
202 {
203 unsigned int i;
204
205 for (i = 0; i < num; i++)
206 if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
207 return false;
208
209 return true;
210 }
211
regmap_format_12_20_write(struct regmap * map,unsigned int reg,unsigned int val)212 static void regmap_format_12_20_write(struct regmap *map,
213 unsigned int reg, unsigned int val)
214 {
215 u8 *out = map->work_buf;
216
217 out[0] = reg >> 4;
218 out[1] = (reg << 4) | (val >> 16);
219 out[2] = val >> 8;
220 out[3] = val;
221 }
222
223
regmap_format_2_6_write(struct regmap * map,unsigned int reg,unsigned int val)224 static void regmap_format_2_6_write(struct regmap *map,
225 unsigned int reg, unsigned int val)
226 {
227 u8 *out = map->work_buf;
228
229 *out = (reg << 6) | val;
230 }
231
regmap_format_4_12_write(struct regmap * map,unsigned int reg,unsigned int val)232 static void regmap_format_4_12_write(struct regmap *map,
233 unsigned int reg, unsigned int val)
234 {
235 __be16 *out = map->work_buf;
236 *out = cpu_to_be16((reg << 12) | val);
237 }
238
regmap_format_7_9_write(struct regmap * map,unsigned int reg,unsigned int val)239 static void regmap_format_7_9_write(struct regmap *map,
240 unsigned int reg, unsigned int val)
241 {
242 __be16 *out = map->work_buf;
243 *out = cpu_to_be16((reg << 9) | val);
244 }
245
regmap_format_7_17_write(struct regmap * map,unsigned int reg,unsigned int val)246 static void regmap_format_7_17_write(struct regmap *map,
247 unsigned int reg, unsigned int val)
248 {
249 u8 *out = map->work_buf;
250
251 out[2] = val;
252 out[1] = val >> 8;
253 out[0] = (val >> 16) | (reg << 1);
254 }
255
regmap_format_10_14_write(struct regmap * map,unsigned int reg,unsigned int val)256 static void regmap_format_10_14_write(struct regmap *map,
257 unsigned int reg, unsigned int val)
258 {
259 u8 *out = map->work_buf;
260
261 out[2] = val;
262 out[1] = (val >> 8) | (reg << 6);
263 out[0] = reg >> 2;
264 }
265
regmap_format_8(void * buf,unsigned int val,unsigned int shift)266 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
267 {
268 u8 *b = buf;
269
270 b[0] = val << shift;
271 }
272
regmap_format_16_be(void * buf,unsigned int val,unsigned int shift)273 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
274 {
275 put_unaligned_be16(val << shift, buf);
276 }
277
regmap_format_16_le(void * buf,unsigned int val,unsigned int shift)278 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
279 {
280 put_unaligned_le16(val << shift, buf);
281 }
282
regmap_format_16_native(void * buf,unsigned int val,unsigned int shift)283 static void regmap_format_16_native(void *buf, unsigned int val,
284 unsigned int shift)
285 {
286 u16 v = val << shift;
287
288 memcpy(buf, &v, sizeof(v));
289 }
290
regmap_format_24_be(void * buf,unsigned int val,unsigned int shift)291 static void regmap_format_24_be(void *buf, unsigned int val, unsigned int shift)
292 {
293 put_unaligned_be24(val << shift, buf);
294 }
295
regmap_format_32_be(void * buf,unsigned int val,unsigned int shift)296 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
297 {
298 put_unaligned_be32(val << shift, buf);
299 }
300
regmap_format_32_le(void * buf,unsigned int val,unsigned int shift)301 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
302 {
303 put_unaligned_le32(val << shift, buf);
304 }
305
regmap_format_32_native(void * buf,unsigned int val,unsigned int shift)306 static void regmap_format_32_native(void *buf, unsigned int val,
307 unsigned int shift)
308 {
309 u32 v = val << shift;
310
311 memcpy(buf, &v, sizeof(v));
312 }
313
regmap_parse_inplace_noop(void * buf)314 static void regmap_parse_inplace_noop(void *buf)
315 {
316 }
317
regmap_parse_8(const void * buf)318 static unsigned int regmap_parse_8(const void *buf)
319 {
320 const u8 *b = buf;
321
322 return b[0];
323 }
324
regmap_parse_16_be(const void * buf)325 static unsigned int regmap_parse_16_be(const void *buf)
326 {
327 return get_unaligned_be16(buf);
328 }
329
regmap_parse_16_le(const void * buf)330 static unsigned int regmap_parse_16_le(const void *buf)
331 {
332 return get_unaligned_le16(buf);
333 }
334
regmap_parse_16_be_inplace(void * buf)335 static void regmap_parse_16_be_inplace(void *buf)
336 {
337 u16 v = get_unaligned_be16(buf);
338
339 memcpy(buf, &v, sizeof(v));
340 }
341
regmap_parse_16_le_inplace(void * buf)342 static void regmap_parse_16_le_inplace(void *buf)
343 {
344 u16 v = get_unaligned_le16(buf);
345
346 memcpy(buf, &v, sizeof(v));
347 }
348
regmap_parse_16_native(const void * buf)349 static unsigned int regmap_parse_16_native(const void *buf)
350 {
351 u16 v;
352
353 memcpy(&v, buf, sizeof(v));
354 return v;
355 }
356
regmap_parse_24_be(const void * buf)357 static unsigned int regmap_parse_24_be(const void *buf)
358 {
359 return get_unaligned_be24(buf);
360 }
361
regmap_parse_32_be(const void * buf)362 static unsigned int regmap_parse_32_be(const void *buf)
363 {
364 return get_unaligned_be32(buf);
365 }
366
regmap_parse_32_le(const void * buf)367 static unsigned int regmap_parse_32_le(const void *buf)
368 {
369 return get_unaligned_le32(buf);
370 }
371
regmap_parse_32_be_inplace(void * buf)372 static void regmap_parse_32_be_inplace(void *buf)
373 {
374 u32 v = get_unaligned_be32(buf);
375
376 memcpy(buf, &v, sizeof(v));
377 }
378
regmap_parse_32_le_inplace(void * buf)379 static void regmap_parse_32_le_inplace(void *buf)
380 {
381 u32 v = get_unaligned_le32(buf);
382
383 memcpy(buf, &v, sizeof(v));
384 }
385
regmap_parse_32_native(const void * buf)386 static unsigned int regmap_parse_32_native(const void *buf)
387 {
388 u32 v;
389
390 memcpy(&v, buf, sizeof(v));
391 return v;
392 }
393
regmap_lock_hwlock(void * __map)394 static void regmap_lock_hwlock(void *__map)
395 {
396 struct regmap *map = __map;
397
398 hwspin_lock_timeout(map->hwlock, UINT_MAX);
399 }
400
regmap_lock_hwlock_irq(void * __map)401 static void regmap_lock_hwlock_irq(void *__map)
402 {
403 struct regmap *map = __map;
404
405 hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
406 }
407
regmap_lock_hwlock_irqsave(void * __map)408 static void regmap_lock_hwlock_irqsave(void *__map)
409 {
410 struct regmap *map = __map;
411
412 hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
413 &map->spinlock_flags);
414 }
415
regmap_unlock_hwlock(void * __map)416 static void regmap_unlock_hwlock(void *__map)
417 {
418 struct regmap *map = __map;
419
420 hwspin_unlock(map->hwlock);
421 }
422
regmap_unlock_hwlock_irq(void * __map)423 static void regmap_unlock_hwlock_irq(void *__map)
424 {
425 struct regmap *map = __map;
426
427 hwspin_unlock_irq(map->hwlock);
428 }
429
regmap_unlock_hwlock_irqrestore(void * __map)430 static void regmap_unlock_hwlock_irqrestore(void *__map)
431 {
432 struct regmap *map = __map;
433
434 hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
435 }
436
regmap_lock_unlock_none(void * __map)437 static void regmap_lock_unlock_none(void *__map)
438 {
439
440 }
441
regmap_lock_mutex(void * __map)442 static void regmap_lock_mutex(void *__map)
443 {
444 struct regmap *map = __map;
445 mutex_lock(&map->mutex);
446 }
447
regmap_unlock_mutex(void * __map)448 static void regmap_unlock_mutex(void *__map)
449 {
450 struct regmap *map = __map;
451 mutex_unlock(&map->mutex);
452 }
453
regmap_lock_spinlock(void * __map)454 static void regmap_lock_spinlock(void *__map)
455 __acquires(&map->spinlock)
456 {
457 struct regmap *map = __map;
458 unsigned long flags;
459
460 spin_lock_irqsave(&map->spinlock, flags);
461 map->spinlock_flags = flags;
462 }
463
regmap_unlock_spinlock(void * __map)464 static void regmap_unlock_spinlock(void *__map)
465 __releases(&map->spinlock)
466 {
467 struct regmap *map = __map;
468 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
469 }
470
regmap_lock_raw_spinlock(void * __map)471 static void regmap_lock_raw_spinlock(void *__map)
472 __acquires(&map->raw_spinlock)
473 {
474 struct regmap *map = __map;
475 unsigned long flags;
476
477 raw_spin_lock_irqsave(&map->raw_spinlock, flags);
478 map->raw_spinlock_flags = flags;
479 }
480
regmap_unlock_raw_spinlock(void * __map)481 static void regmap_unlock_raw_spinlock(void *__map)
482 __releases(&map->raw_spinlock)
483 {
484 struct regmap *map = __map;
485 raw_spin_unlock_irqrestore(&map->raw_spinlock, map->raw_spinlock_flags);
486 }
487
dev_get_regmap_release(struct device * dev,void * res)488 static void dev_get_regmap_release(struct device *dev, void *res)
489 {
490 /*
491 * We don't actually have anything to do here; the goal here
492 * is not to manage the regmap but to provide a simple way to
493 * get the regmap back given a struct device.
494 */
495 }
496
_regmap_range_add(struct regmap * map,struct regmap_range_node * data)497 static bool _regmap_range_add(struct regmap *map,
498 struct regmap_range_node *data)
499 {
500 struct rb_root *root = &map->range_tree;
501 struct rb_node **new = &(root->rb_node), *parent = NULL;
502
503 while (*new) {
504 struct regmap_range_node *this =
505 rb_entry(*new, struct regmap_range_node, node);
506
507 parent = *new;
508 if (data->range_max < this->range_min)
509 new = &((*new)->rb_left);
510 else if (data->range_min > this->range_max)
511 new = &((*new)->rb_right);
512 else
513 return false;
514 }
515
516 rb_link_node(&data->node, parent, new);
517 rb_insert_color(&data->node, root);
518
519 return true;
520 }
521
_regmap_range_lookup(struct regmap * map,unsigned int reg)522 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
523 unsigned int reg)
524 {
525 struct rb_node *node = map->range_tree.rb_node;
526
527 while (node) {
528 struct regmap_range_node *this =
529 rb_entry(node, struct regmap_range_node, node);
530
531 if (reg < this->range_min)
532 node = node->rb_left;
533 else if (reg > this->range_max)
534 node = node->rb_right;
535 else
536 return this;
537 }
538
539 return NULL;
540 }
541
regmap_range_exit(struct regmap * map)542 static void regmap_range_exit(struct regmap *map)
543 {
544 struct rb_node *next;
545 struct regmap_range_node *range_node;
546
547 next = rb_first(&map->range_tree);
548 while (next) {
549 range_node = rb_entry(next, struct regmap_range_node, node);
550 next = rb_next(&range_node->node);
551 rb_erase(&range_node->node, &map->range_tree);
552 kfree(range_node);
553 }
554
555 kfree(map->selector_work_buf);
556 }
557
regmap_set_name(struct regmap * map,const struct regmap_config * config)558 static int regmap_set_name(struct regmap *map, const struct regmap_config *config)
559 {
560 if (config->name) {
561 const char *name = kstrdup_const(config->name, GFP_KERNEL);
562
563 if (!name)
564 return -ENOMEM;
565
566 kfree_const(map->name);
567 map->name = name;
568 }
569
570 return 0;
571 }
572
regmap_attach_dev(struct device * dev,struct regmap * map,const struct regmap_config * config)573 int regmap_attach_dev(struct device *dev, struct regmap *map,
574 const struct regmap_config *config)
575 {
576 struct regmap **m;
577 int ret;
578
579 map->dev = dev;
580
581 ret = regmap_set_name(map, config);
582 if (ret)
583 return ret;
584
585 regmap_debugfs_exit(map);
586 regmap_debugfs_init(map);
587
588 /* Add a devres resource for dev_get_regmap() */
589 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
590 if (!m) {
591 regmap_debugfs_exit(map);
592 return -ENOMEM;
593 }
594 *m = map;
595 devres_add(dev, m);
596
597 return 0;
598 }
599 EXPORT_SYMBOL_GPL(regmap_attach_dev);
600
regmap_get_reg_endian(const struct regmap_bus * bus,const struct regmap_config * config)601 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
602 const struct regmap_config *config)
603 {
604 enum regmap_endian endian;
605
606 /* Retrieve the endianness specification from the regmap config */
607 endian = config->reg_format_endian;
608
609 /* If the regmap config specified a non-default value, use that */
610 if (endian != REGMAP_ENDIAN_DEFAULT)
611 return endian;
612
613 /* Retrieve the endianness specification from the bus config */
614 if (bus && bus->reg_format_endian_default)
615 endian = bus->reg_format_endian_default;
616
617 /* If the bus specified a non-default value, use that */
618 if (endian != REGMAP_ENDIAN_DEFAULT)
619 return endian;
620
621 /* Use this if no other value was found */
622 return REGMAP_ENDIAN_BIG;
623 }
624
regmap_get_val_endian(struct device * dev,const struct regmap_bus * bus,const struct regmap_config * config)625 enum regmap_endian regmap_get_val_endian(struct device *dev,
626 const struct regmap_bus *bus,
627 const struct regmap_config *config)
628 {
629 struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
630 enum regmap_endian endian;
631
632 /* Retrieve the endianness specification from the regmap config */
633 endian = config->val_format_endian;
634
635 /* If the regmap config specified a non-default value, use that */
636 if (endian != REGMAP_ENDIAN_DEFAULT)
637 return endian;
638
639 /* If the firmware node exist try to get endianness from it */
640 if (fwnode_property_read_bool(fwnode, "big-endian"))
641 endian = REGMAP_ENDIAN_BIG;
642 else if (fwnode_property_read_bool(fwnode, "little-endian"))
643 endian = REGMAP_ENDIAN_LITTLE;
644 else if (fwnode_property_read_bool(fwnode, "native-endian"))
645 endian = REGMAP_ENDIAN_NATIVE;
646
647 /* If the endianness was specified in fwnode, use that */
648 if (endian != REGMAP_ENDIAN_DEFAULT)
649 return endian;
650
651 /* Retrieve the endianness specification from the bus config */
652 if (bus && bus->val_format_endian_default)
653 endian = bus->val_format_endian_default;
654
655 /* If the bus specified a non-default value, use that */
656 if (endian != REGMAP_ENDIAN_DEFAULT)
657 return endian;
658
659 /* Use this if no other value was found */
660 return REGMAP_ENDIAN_BIG;
661 }
662 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
663
__regmap_init(struct device * dev,const struct regmap_bus * bus,void * bus_context,const struct regmap_config * config,struct lock_class_key * lock_key,const char * lock_name)664 struct regmap *__regmap_init(struct device *dev,
665 const struct regmap_bus *bus,
666 void *bus_context,
667 const struct regmap_config *config,
668 struct lock_class_key *lock_key,
669 const char *lock_name)
670 {
671 struct regmap *map;
672 int ret = -EINVAL;
673 enum regmap_endian reg_endian, val_endian;
674 int i, j;
675
676 if (!config)
677 goto err;
678
679 map = kzalloc(sizeof(*map), GFP_KERNEL);
680 if (map == NULL) {
681 ret = -ENOMEM;
682 goto err;
683 }
684
685 ret = regmap_set_name(map, config);
686 if (ret)
687 goto err_map;
688
689 ret = -EINVAL; /* Later error paths rely on this */
690
691 if (config->disable_locking) {
692 map->lock = map->unlock = regmap_lock_unlock_none;
693 map->can_sleep = config->can_sleep;
694 regmap_debugfs_disable(map);
695 } else if (config->lock && config->unlock) {
696 map->lock = config->lock;
697 map->unlock = config->unlock;
698 map->lock_arg = config->lock_arg;
699 map->can_sleep = config->can_sleep;
700 } else if (config->use_hwlock) {
701 map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
702 if (!map->hwlock) {
703 ret = -ENXIO;
704 goto err_name;
705 }
706
707 switch (config->hwlock_mode) {
708 case HWLOCK_IRQSTATE:
709 map->lock = regmap_lock_hwlock_irqsave;
710 map->unlock = regmap_unlock_hwlock_irqrestore;
711 break;
712 case HWLOCK_IRQ:
713 map->lock = regmap_lock_hwlock_irq;
714 map->unlock = regmap_unlock_hwlock_irq;
715 break;
716 default:
717 map->lock = regmap_lock_hwlock;
718 map->unlock = regmap_unlock_hwlock;
719 break;
720 }
721
722 map->lock_arg = map;
723 } else {
724 if ((bus && bus->fast_io) ||
725 config->fast_io) {
726 if (config->use_raw_spinlock) {
727 raw_spin_lock_init(&map->raw_spinlock);
728 map->lock = regmap_lock_raw_spinlock;
729 map->unlock = regmap_unlock_raw_spinlock;
730 lockdep_set_class_and_name(&map->raw_spinlock,
731 lock_key, lock_name);
732 } else {
733 spin_lock_init(&map->spinlock);
734 map->lock = regmap_lock_spinlock;
735 map->unlock = regmap_unlock_spinlock;
736 lockdep_set_class_and_name(&map->spinlock,
737 lock_key, lock_name);
738 }
739 } else {
740 mutex_init(&map->mutex);
741 map->lock = regmap_lock_mutex;
742 map->unlock = regmap_unlock_mutex;
743 map->can_sleep = true;
744 lockdep_set_class_and_name(&map->mutex,
745 lock_key, lock_name);
746 }
747 map->lock_arg = map;
748 }
749
750 /*
751 * When we write in fast-paths with regmap_bulk_write() don't allocate
752 * scratch buffers with sleeping allocations.
753 */
754 if ((bus && bus->fast_io) || config->fast_io)
755 map->alloc_flags = GFP_ATOMIC;
756 else
757 map->alloc_flags = GFP_KERNEL;
758
759 map->reg_base = config->reg_base;
760
761 map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
762 map->format.pad_bytes = config->pad_bits / 8;
763 map->format.reg_shift = config->reg_shift;
764 map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
765 map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
766 config->val_bits + config->pad_bits, 8);
767 map->reg_shift = config->pad_bits % 8;
768 if (config->reg_stride)
769 map->reg_stride = config->reg_stride;
770 else
771 map->reg_stride = 1;
772 if (is_power_of_2(map->reg_stride))
773 map->reg_stride_order = ilog2(map->reg_stride);
774 else
775 map->reg_stride_order = -1;
776 map->use_single_read = config->use_single_read || !(config->read || (bus && bus->read));
777 map->use_single_write = config->use_single_write || !(config->write || (bus && bus->write));
778 map->can_multi_write = config->can_multi_write && (config->write || (bus && bus->write));
779 if (bus) {
780 map->max_raw_read = bus->max_raw_read;
781 map->max_raw_write = bus->max_raw_write;
782 } else if (config->max_raw_read && config->max_raw_write) {
783 map->max_raw_read = config->max_raw_read;
784 map->max_raw_write = config->max_raw_write;
785 }
786 map->dev = dev;
787 map->bus = bus;
788 map->bus_context = bus_context;
789 map->max_register = config->max_register;
790 map->wr_table = config->wr_table;
791 map->rd_table = config->rd_table;
792 map->volatile_table = config->volatile_table;
793 map->precious_table = config->precious_table;
794 map->wr_noinc_table = config->wr_noinc_table;
795 map->rd_noinc_table = config->rd_noinc_table;
796 map->writeable_reg = config->writeable_reg;
797 map->readable_reg = config->readable_reg;
798 map->volatile_reg = config->volatile_reg;
799 map->precious_reg = config->precious_reg;
800 map->writeable_noinc_reg = config->writeable_noinc_reg;
801 map->readable_noinc_reg = config->readable_noinc_reg;
802 map->cache_type = config->cache_type;
803
804 spin_lock_init(&map->async_lock);
805 INIT_LIST_HEAD(&map->async_list);
806 INIT_LIST_HEAD(&map->async_free);
807 init_waitqueue_head(&map->async_waitq);
808
809 if (config->read_flag_mask ||
810 config->write_flag_mask ||
811 config->zero_flag_mask) {
812 map->read_flag_mask = config->read_flag_mask;
813 map->write_flag_mask = config->write_flag_mask;
814 } else if (bus) {
815 map->read_flag_mask = bus->read_flag_mask;
816 }
817
818 if (config && config->read && config->write) {
819 map->reg_read = _regmap_bus_read;
820 if (config->reg_update_bits)
821 map->reg_update_bits = config->reg_update_bits;
822
823 /* Bulk read/write */
824 map->read = config->read;
825 map->write = config->write;
826
827 reg_endian = REGMAP_ENDIAN_NATIVE;
828 val_endian = REGMAP_ENDIAN_NATIVE;
829 } else if (!bus) {
830 map->reg_read = config->reg_read;
831 map->reg_write = config->reg_write;
832 map->reg_update_bits = config->reg_update_bits;
833
834 map->defer_caching = false;
835 goto skip_format_initialization;
836 } else if (!bus->read || !bus->write) {
837 map->reg_read = _regmap_bus_reg_read;
838 map->reg_write = _regmap_bus_reg_write;
839 map->reg_update_bits = bus->reg_update_bits;
840
841 map->defer_caching = false;
842 goto skip_format_initialization;
843 } else {
844 map->reg_read = _regmap_bus_read;
845 map->reg_update_bits = bus->reg_update_bits;
846 /* Bulk read/write */
847 map->read = bus->read;
848 map->write = bus->write;
849
850 reg_endian = regmap_get_reg_endian(bus, config);
851 val_endian = regmap_get_val_endian(dev, bus, config);
852 }
853
854 switch (config->reg_bits + map->reg_shift) {
855 case 2:
856 switch (config->val_bits) {
857 case 6:
858 map->format.format_write = regmap_format_2_6_write;
859 break;
860 default:
861 goto err_hwlock;
862 }
863 break;
864
865 case 4:
866 switch (config->val_bits) {
867 case 12:
868 map->format.format_write = regmap_format_4_12_write;
869 break;
870 default:
871 goto err_hwlock;
872 }
873 break;
874
875 case 7:
876 switch (config->val_bits) {
877 case 9:
878 map->format.format_write = regmap_format_7_9_write;
879 break;
880 case 17:
881 map->format.format_write = regmap_format_7_17_write;
882 break;
883 default:
884 goto err_hwlock;
885 }
886 break;
887
888 case 10:
889 switch (config->val_bits) {
890 case 14:
891 map->format.format_write = regmap_format_10_14_write;
892 break;
893 default:
894 goto err_hwlock;
895 }
896 break;
897
898 case 12:
899 switch (config->val_bits) {
900 case 20:
901 map->format.format_write = regmap_format_12_20_write;
902 break;
903 default:
904 goto err_hwlock;
905 }
906 break;
907
908 case 8:
909 map->format.format_reg = regmap_format_8;
910 break;
911
912 case 16:
913 switch (reg_endian) {
914 case REGMAP_ENDIAN_BIG:
915 map->format.format_reg = regmap_format_16_be;
916 break;
917 case REGMAP_ENDIAN_LITTLE:
918 map->format.format_reg = regmap_format_16_le;
919 break;
920 case REGMAP_ENDIAN_NATIVE:
921 map->format.format_reg = regmap_format_16_native;
922 break;
923 default:
924 goto err_hwlock;
925 }
926 break;
927
928 case 24:
929 switch (reg_endian) {
930 case REGMAP_ENDIAN_BIG:
931 map->format.format_reg = regmap_format_24_be;
932 break;
933 default:
934 goto err_hwlock;
935 }
936 break;
937
938 case 32:
939 switch (reg_endian) {
940 case REGMAP_ENDIAN_BIG:
941 map->format.format_reg = regmap_format_32_be;
942 break;
943 case REGMAP_ENDIAN_LITTLE:
944 map->format.format_reg = regmap_format_32_le;
945 break;
946 case REGMAP_ENDIAN_NATIVE:
947 map->format.format_reg = regmap_format_32_native;
948 break;
949 default:
950 goto err_hwlock;
951 }
952 break;
953
954 default:
955 goto err_hwlock;
956 }
957
958 if (val_endian == REGMAP_ENDIAN_NATIVE)
959 map->format.parse_inplace = regmap_parse_inplace_noop;
960
961 switch (config->val_bits) {
962 case 8:
963 map->format.format_val = regmap_format_8;
964 map->format.parse_val = regmap_parse_8;
965 map->format.parse_inplace = regmap_parse_inplace_noop;
966 break;
967 case 16:
968 switch (val_endian) {
969 case REGMAP_ENDIAN_BIG:
970 map->format.format_val = regmap_format_16_be;
971 map->format.parse_val = regmap_parse_16_be;
972 map->format.parse_inplace = regmap_parse_16_be_inplace;
973 break;
974 case REGMAP_ENDIAN_LITTLE:
975 map->format.format_val = regmap_format_16_le;
976 map->format.parse_val = regmap_parse_16_le;
977 map->format.parse_inplace = regmap_parse_16_le_inplace;
978 break;
979 case REGMAP_ENDIAN_NATIVE:
980 map->format.format_val = regmap_format_16_native;
981 map->format.parse_val = regmap_parse_16_native;
982 break;
983 default:
984 goto err_hwlock;
985 }
986 break;
987 case 24:
988 switch (val_endian) {
989 case REGMAP_ENDIAN_BIG:
990 map->format.format_val = regmap_format_24_be;
991 map->format.parse_val = regmap_parse_24_be;
992 break;
993 default:
994 goto err_hwlock;
995 }
996 break;
997 case 32:
998 switch (val_endian) {
999 case REGMAP_ENDIAN_BIG:
1000 map->format.format_val = regmap_format_32_be;
1001 map->format.parse_val = regmap_parse_32_be;
1002 map->format.parse_inplace = regmap_parse_32_be_inplace;
1003 break;
1004 case REGMAP_ENDIAN_LITTLE:
1005 map->format.format_val = regmap_format_32_le;
1006 map->format.parse_val = regmap_parse_32_le;
1007 map->format.parse_inplace = regmap_parse_32_le_inplace;
1008 break;
1009 case REGMAP_ENDIAN_NATIVE:
1010 map->format.format_val = regmap_format_32_native;
1011 map->format.parse_val = regmap_parse_32_native;
1012 break;
1013 default:
1014 goto err_hwlock;
1015 }
1016 break;
1017 }
1018
1019 if (map->format.format_write) {
1020 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1021 (val_endian != REGMAP_ENDIAN_BIG))
1022 goto err_hwlock;
1023 map->use_single_write = true;
1024 }
1025
1026 if (!map->format.format_write &&
1027 !(map->format.format_reg && map->format.format_val))
1028 goto err_hwlock;
1029
1030 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1031 if (map->work_buf == NULL) {
1032 ret = -ENOMEM;
1033 goto err_hwlock;
1034 }
1035
1036 if (map->format.format_write) {
1037 map->defer_caching = false;
1038 map->reg_write = _regmap_bus_formatted_write;
1039 } else if (map->format.format_val) {
1040 map->defer_caching = true;
1041 map->reg_write = _regmap_bus_raw_write;
1042 }
1043
1044 skip_format_initialization:
1045
1046 map->range_tree = RB_ROOT;
1047 for (i = 0; i < config->num_ranges; i++) {
1048 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1049 struct regmap_range_node *new;
1050
1051 /* Sanity check */
1052 if (range_cfg->range_max < range_cfg->range_min) {
1053 dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1054 range_cfg->range_max, range_cfg->range_min);
1055 goto err_range;
1056 }
1057
1058 if (range_cfg->range_max > map->max_register) {
1059 dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1060 range_cfg->range_max, map->max_register);
1061 goto err_range;
1062 }
1063
1064 if (range_cfg->selector_reg > map->max_register) {
1065 dev_err(map->dev,
1066 "Invalid range %d: selector out of map\n", i);
1067 goto err_range;
1068 }
1069
1070 if (range_cfg->window_len == 0) {
1071 dev_err(map->dev, "Invalid range %d: window_len 0\n",
1072 i);
1073 goto err_range;
1074 }
1075
1076 /* Make sure, that this register range has no selector
1077 or data window within its boundary */
1078 for (j = 0; j < config->num_ranges; j++) {
1079 unsigned int sel_reg = config->ranges[j].selector_reg;
1080 unsigned int win_min = config->ranges[j].window_start;
1081 unsigned int win_max = win_min +
1082 config->ranges[j].window_len - 1;
1083
1084 /* Allow data window inside its own virtual range */
1085 if (j == i)
1086 continue;
1087
1088 if (range_cfg->range_min <= sel_reg &&
1089 sel_reg <= range_cfg->range_max) {
1090 dev_err(map->dev,
1091 "Range %d: selector for %d in window\n",
1092 i, j);
1093 goto err_range;
1094 }
1095
1096 if (!(win_max < range_cfg->range_min ||
1097 win_min > range_cfg->range_max)) {
1098 dev_err(map->dev,
1099 "Range %d: window for %d in window\n",
1100 i, j);
1101 goto err_range;
1102 }
1103 }
1104
1105 new = kzalloc(sizeof(*new), GFP_KERNEL);
1106 if (new == NULL) {
1107 ret = -ENOMEM;
1108 goto err_range;
1109 }
1110
1111 new->map = map;
1112 new->name = range_cfg->name;
1113 new->range_min = range_cfg->range_min;
1114 new->range_max = range_cfg->range_max;
1115 new->selector_reg = range_cfg->selector_reg;
1116 new->selector_mask = range_cfg->selector_mask;
1117 new->selector_shift = range_cfg->selector_shift;
1118 new->window_start = range_cfg->window_start;
1119 new->window_len = range_cfg->window_len;
1120
1121 if (!_regmap_range_add(map, new)) {
1122 dev_err(map->dev, "Failed to add range %d\n", i);
1123 kfree(new);
1124 goto err_range;
1125 }
1126
1127 if (map->selector_work_buf == NULL) {
1128 map->selector_work_buf =
1129 kzalloc(map->format.buf_size, GFP_KERNEL);
1130 if (map->selector_work_buf == NULL) {
1131 ret = -ENOMEM;
1132 goto err_range;
1133 }
1134 }
1135 }
1136
1137 ret = regcache_init(map, config);
1138 if (ret != 0)
1139 goto err_range;
1140
1141 if (dev) {
1142 ret = regmap_attach_dev(dev, map, config);
1143 if (ret != 0)
1144 goto err_regcache;
1145 } else {
1146 regmap_debugfs_init(map);
1147 }
1148
1149 return map;
1150
1151 err_regcache:
1152 regcache_exit(map);
1153 err_range:
1154 regmap_range_exit(map);
1155 kfree(map->work_buf);
1156 err_hwlock:
1157 if (map->hwlock)
1158 hwspin_lock_free(map->hwlock);
1159 err_name:
1160 kfree_const(map->name);
1161 err_map:
1162 kfree(map);
1163 err:
1164 return ERR_PTR(ret);
1165 }
1166 EXPORT_SYMBOL_GPL(__regmap_init);
1167
devm_regmap_release(struct device * dev,void * res)1168 static void devm_regmap_release(struct device *dev, void *res)
1169 {
1170 regmap_exit(*(struct regmap **)res);
1171 }
1172
__devm_regmap_init(struct device * dev,const struct regmap_bus * bus,void * bus_context,const struct regmap_config * config,struct lock_class_key * lock_key,const char * lock_name)1173 struct regmap *__devm_regmap_init(struct device *dev,
1174 const struct regmap_bus *bus,
1175 void *bus_context,
1176 const struct regmap_config *config,
1177 struct lock_class_key *lock_key,
1178 const char *lock_name)
1179 {
1180 struct regmap **ptr, *regmap;
1181
1182 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1183 if (!ptr)
1184 return ERR_PTR(-ENOMEM);
1185
1186 regmap = __regmap_init(dev, bus, bus_context, config,
1187 lock_key, lock_name);
1188 if (!IS_ERR(regmap)) {
1189 *ptr = regmap;
1190 devres_add(dev, ptr);
1191 } else {
1192 devres_free(ptr);
1193 }
1194
1195 return regmap;
1196 }
1197 EXPORT_SYMBOL_GPL(__devm_regmap_init);
1198
regmap_field_init(struct regmap_field * rm_field,struct regmap * regmap,struct reg_field reg_field)1199 static void regmap_field_init(struct regmap_field *rm_field,
1200 struct regmap *regmap, struct reg_field reg_field)
1201 {
1202 rm_field->regmap = regmap;
1203 rm_field->reg = reg_field.reg;
1204 rm_field->shift = reg_field.lsb;
1205 rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1206
1207 WARN_ONCE(rm_field->mask == 0, "invalid empty mask defined\n");
1208
1209 rm_field->id_size = reg_field.id_size;
1210 rm_field->id_offset = reg_field.id_offset;
1211 }
1212
1213 /**
1214 * devm_regmap_field_alloc() - Allocate and initialise a register field.
1215 *
1216 * @dev: Device that will be interacted with
1217 * @regmap: regmap bank in which this register field is located.
1218 * @reg_field: Register field with in the bank.
1219 *
1220 * The return value will be an ERR_PTR() on error or a valid pointer
1221 * to a struct regmap_field. The regmap_field will be automatically freed
1222 * by the device management code.
1223 */
devm_regmap_field_alloc(struct device * dev,struct regmap * regmap,struct reg_field reg_field)1224 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1225 struct regmap *regmap, struct reg_field reg_field)
1226 {
1227 struct regmap_field *rm_field = devm_kzalloc(dev,
1228 sizeof(*rm_field), GFP_KERNEL);
1229 if (!rm_field)
1230 return ERR_PTR(-ENOMEM);
1231
1232 regmap_field_init(rm_field, regmap, reg_field);
1233
1234 return rm_field;
1235
1236 }
1237 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1238
1239
1240 /**
1241 * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field.
1242 *
1243 * @regmap: regmap bank in which this register field is located.
1244 * @rm_field: regmap register fields within the bank.
1245 * @reg_field: Register fields within the bank.
1246 * @num_fields: Number of register fields.
1247 *
1248 * The return value will be an -ENOMEM on error or zero for success.
1249 * Newly allocated regmap_fields should be freed by calling
1250 * regmap_field_bulk_free()
1251 */
regmap_field_bulk_alloc(struct regmap * regmap,struct regmap_field ** rm_field,const struct reg_field * reg_field,int num_fields)1252 int regmap_field_bulk_alloc(struct regmap *regmap,
1253 struct regmap_field **rm_field,
1254 const struct reg_field *reg_field,
1255 int num_fields)
1256 {
1257 struct regmap_field *rf;
1258 int i;
1259
1260 rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL);
1261 if (!rf)
1262 return -ENOMEM;
1263
1264 for (i = 0; i < num_fields; i++) {
1265 regmap_field_init(&rf[i], regmap, reg_field[i]);
1266 rm_field[i] = &rf[i];
1267 }
1268
1269 return 0;
1270 }
1271 EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc);
1272
1273 /**
1274 * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register
1275 * fields.
1276 *
1277 * @dev: Device that will be interacted with
1278 * @regmap: regmap bank in which this register field is located.
1279 * @rm_field: regmap register fields within the bank.
1280 * @reg_field: Register fields within the bank.
1281 * @num_fields: Number of register fields.
1282 *
1283 * The return value will be an -ENOMEM on error or zero for success.
1284 * Newly allocated regmap_fields will be automatically freed by the
1285 * device management code.
1286 */
devm_regmap_field_bulk_alloc(struct device * dev,struct regmap * regmap,struct regmap_field ** rm_field,const struct reg_field * reg_field,int num_fields)1287 int devm_regmap_field_bulk_alloc(struct device *dev,
1288 struct regmap *regmap,
1289 struct regmap_field **rm_field,
1290 const struct reg_field *reg_field,
1291 int num_fields)
1292 {
1293 struct regmap_field *rf;
1294 int i;
1295
1296 rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL);
1297 if (!rf)
1298 return -ENOMEM;
1299
1300 for (i = 0; i < num_fields; i++) {
1301 regmap_field_init(&rf[i], regmap, reg_field[i]);
1302 rm_field[i] = &rf[i];
1303 }
1304
1305 return 0;
1306 }
1307 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc);
1308
1309 /**
1310 * regmap_field_bulk_free() - Free register field allocated using
1311 * regmap_field_bulk_alloc.
1312 *
1313 * @field: regmap fields which should be freed.
1314 */
regmap_field_bulk_free(struct regmap_field * field)1315 void regmap_field_bulk_free(struct regmap_field *field)
1316 {
1317 kfree(field);
1318 }
1319 EXPORT_SYMBOL_GPL(regmap_field_bulk_free);
1320
1321 /**
1322 * devm_regmap_field_bulk_free() - Free a bulk register field allocated using
1323 * devm_regmap_field_bulk_alloc.
1324 *
1325 * @dev: Device that will be interacted with
1326 * @field: regmap field which should be freed.
1327 *
1328 * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually
1329 * drivers need not call this function, as the memory allocated via devm
1330 * will be freed as per device-driver life-cycle.
1331 */
devm_regmap_field_bulk_free(struct device * dev,struct regmap_field * field)1332 void devm_regmap_field_bulk_free(struct device *dev,
1333 struct regmap_field *field)
1334 {
1335 devm_kfree(dev, field);
1336 }
1337 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free);
1338
1339 /**
1340 * devm_regmap_field_free() - Free a register field allocated using
1341 * devm_regmap_field_alloc.
1342 *
1343 * @dev: Device that will be interacted with
1344 * @field: regmap field which should be freed.
1345 *
1346 * Free register field allocated using devm_regmap_field_alloc(). Usually
1347 * drivers need not call this function, as the memory allocated via devm
1348 * will be freed as per device-driver life-cyle.
1349 */
devm_regmap_field_free(struct device * dev,struct regmap_field * field)1350 void devm_regmap_field_free(struct device *dev,
1351 struct regmap_field *field)
1352 {
1353 devm_kfree(dev, field);
1354 }
1355 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1356
1357 /**
1358 * regmap_field_alloc() - Allocate and initialise a register field.
1359 *
1360 * @regmap: regmap bank in which this register field is located.
1361 * @reg_field: Register field with in the bank.
1362 *
1363 * The return value will be an ERR_PTR() on error or a valid pointer
1364 * to a struct regmap_field. The regmap_field should be freed by the
1365 * user once its finished working with it using regmap_field_free().
1366 */
regmap_field_alloc(struct regmap * regmap,struct reg_field reg_field)1367 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1368 struct reg_field reg_field)
1369 {
1370 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1371
1372 if (!rm_field)
1373 return ERR_PTR(-ENOMEM);
1374
1375 regmap_field_init(rm_field, regmap, reg_field);
1376
1377 return rm_field;
1378 }
1379 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1380
1381 /**
1382 * regmap_field_free() - Free register field allocated using
1383 * regmap_field_alloc.
1384 *
1385 * @field: regmap field which should be freed.
1386 */
regmap_field_free(struct regmap_field * field)1387 void regmap_field_free(struct regmap_field *field)
1388 {
1389 kfree(field);
1390 }
1391 EXPORT_SYMBOL_GPL(regmap_field_free);
1392
1393 /**
1394 * regmap_reinit_cache() - Reinitialise the current register cache
1395 *
1396 * @map: Register map to operate on.
1397 * @config: New configuration. Only the cache data will be used.
1398 *
1399 * Discard any existing register cache for the map and initialize a
1400 * new cache. This can be used to restore the cache to defaults or to
1401 * update the cache configuration to reflect runtime discovery of the
1402 * hardware.
1403 *
1404 * No explicit locking is done here, the user needs to ensure that
1405 * this function will not race with other calls to regmap.
1406 */
regmap_reinit_cache(struct regmap * map,const struct regmap_config * config)1407 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1408 {
1409 int ret;
1410
1411 regcache_exit(map);
1412 regmap_debugfs_exit(map);
1413
1414 map->max_register = config->max_register;
1415 map->writeable_reg = config->writeable_reg;
1416 map->readable_reg = config->readable_reg;
1417 map->volatile_reg = config->volatile_reg;
1418 map->precious_reg = config->precious_reg;
1419 map->writeable_noinc_reg = config->writeable_noinc_reg;
1420 map->readable_noinc_reg = config->readable_noinc_reg;
1421 map->cache_type = config->cache_type;
1422
1423 ret = regmap_set_name(map, config);
1424 if (ret)
1425 return ret;
1426
1427 regmap_debugfs_init(map);
1428
1429 map->cache_bypass = false;
1430 map->cache_only = false;
1431
1432 return regcache_init(map, config);
1433 }
1434 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1435
1436 /**
1437 * regmap_exit() - Free a previously allocated register map
1438 *
1439 * @map: Register map to operate on.
1440 */
regmap_exit(struct regmap * map)1441 void regmap_exit(struct regmap *map)
1442 {
1443 struct regmap_async *async;
1444
1445 regcache_exit(map);
1446 regmap_debugfs_exit(map);
1447 regmap_range_exit(map);
1448 if (map->bus && map->bus->free_context)
1449 map->bus->free_context(map->bus_context);
1450 kfree(map->work_buf);
1451 while (!list_empty(&map->async_free)) {
1452 async = list_first_entry_or_null(&map->async_free,
1453 struct regmap_async,
1454 list);
1455 list_del(&async->list);
1456 kfree(async->work_buf);
1457 kfree(async);
1458 }
1459 if (map->hwlock)
1460 hwspin_lock_free(map->hwlock);
1461 if (map->lock == regmap_lock_mutex)
1462 mutex_destroy(&map->mutex);
1463 kfree_const(map->name);
1464 kfree(map->patch);
1465 if (map->bus && map->bus->free_on_exit)
1466 kfree(map->bus);
1467 kfree(map);
1468 }
1469 EXPORT_SYMBOL_GPL(regmap_exit);
1470
dev_get_regmap_match(struct device * dev,void * res,void * data)1471 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1472 {
1473 struct regmap **r = res;
1474 if (!r || !*r) {
1475 WARN_ON(!r || !*r);
1476 return 0;
1477 }
1478
1479 /* If the user didn't specify a name match any */
1480 if (data)
1481 return (*r)->name && !strcmp((*r)->name, data);
1482 else
1483 return 1;
1484 }
1485
1486 /**
1487 * dev_get_regmap() - Obtain the regmap (if any) for a device
1488 *
1489 * @dev: Device to retrieve the map for
1490 * @name: Optional name for the register map, usually NULL.
1491 *
1492 * Returns the regmap for the device if one is present, or NULL. If
1493 * name is specified then it must match the name specified when
1494 * registering the device, if it is NULL then the first regmap found
1495 * will be used. Devices with multiple register maps are very rare,
1496 * generic code should normally not need to specify a name.
1497 */
dev_get_regmap(struct device * dev,const char * name)1498 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1499 {
1500 struct regmap **r = devres_find(dev, dev_get_regmap_release,
1501 dev_get_regmap_match, (void *)name);
1502
1503 if (!r)
1504 return NULL;
1505 return *r;
1506 }
1507 EXPORT_SYMBOL_GPL(dev_get_regmap);
1508
1509 /**
1510 * regmap_get_device() - Obtain the device from a regmap
1511 *
1512 * @map: Register map to operate on.
1513 *
1514 * Returns the underlying device that the regmap has been created for.
1515 */
regmap_get_device(struct regmap * map)1516 struct device *regmap_get_device(struct regmap *map)
1517 {
1518 return map->dev;
1519 }
1520 EXPORT_SYMBOL_GPL(regmap_get_device);
1521
_regmap_select_page(struct regmap * map,unsigned int * reg,struct regmap_range_node * range,unsigned int val_num)1522 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1523 struct regmap_range_node *range,
1524 unsigned int val_num)
1525 {
1526 void *orig_work_buf;
1527 unsigned int win_offset;
1528 unsigned int win_page;
1529 bool page_chg;
1530 int ret;
1531
1532 win_offset = (*reg - range->range_min) % range->window_len;
1533 win_page = (*reg - range->range_min) / range->window_len;
1534
1535 if (val_num > 1) {
1536 /* Bulk write shouldn't cross range boundary */
1537 if (*reg + val_num - 1 > range->range_max)
1538 return -EINVAL;
1539
1540 /* ... or single page boundary */
1541 if (val_num > range->window_len - win_offset)
1542 return -EINVAL;
1543 }
1544
1545 /* It is possible to have selector register inside data window.
1546 In that case, selector register is located on every page and
1547 it needs no page switching, when accessed alone. */
1548 if (val_num > 1 ||
1549 range->window_start + win_offset != range->selector_reg) {
1550 /* Use separate work_buf during page switching */
1551 orig_work_buf = map->work_buf;
1552 map->work_buf = map->selector_work_buf;
1553
1554 ret = _regmap_update_bits(map, range->selector_reg,
1555 range->selector_mask,
1556 win_page << range->selector_shift,
1557 &page_chg, false);
1558
1559 map->work_buf = orig_work_buf;
1560
1561 if (ret != 0)
1562 return ret;
1563 }
1564
1565 *reg = range->window_start + win_offset;
1566
1567 return 0;
1568 }
1569
regmap_set_work_buf_flag_mask(struct regmap * map,int max_bytes,unsigned long mask)1570 static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1571 unsigned long mask)
1572 {
1573 u8 *buf;
1574 int i;
1575
1576 if (!mask || !map->work_buf)
1577 return;
1578
1579 buf = map->work_buf;
1580
1581 for (i = 0; i < max_bytes; i++)
1582 buf[i] |= (mask >> (8 * i)) & 0xff;
1583 }
1584
regmap_reg_addr(struct regmap * map,unsigned int reg)1585 static unsigned int regmap_reg_addr(struct regmap *map, unsigned int reg)
1586 {
1587 reg += map->reg_base;
1588
1589 if (map->format.reg_shift > 0)
1590 reg >>= map->format.reg_shift;
1591 else if (map->format.reg_shift < 0)
1592 reg <<= -(map->format.reg_shift);
1593
1594 return reg;
1595 }
1596
_regmap_raw_write_impl(struct regmap * map,unsigned int reg,const void * val,size_t val_len,bool noinc)1597 static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1598 const void *val, size_t val_len, bool noinc)
1599 {
1600 struct regmap_range_node *range;
1601 unsigned long flags;
1602 void *work_val = map->work_buf + map->format.reg_bytes +
1603 map->format.pad_bytes;
1604 void *buf;
1605 int ret = -ENOTSUPP;
1606 size_t len;
1607 int i;
1608
1609 /* Check for unwritable or noinc registers in range
1610 * before we start
1611 */
1612 if (!regmap_writeable_noinc(map, reg)) {
1613 for (i = 0; i < val_len / map->format.val_bytes; i++) {
1614 unsigned int element =
1615 reg + regmap_get_offset(map, i);
1616 if (!regmap_writeable(map, element) ||
1617 regmap_writeable_noinc(map, element))
1618 return -EINVAL;
1619 }
1620 }
1621
1622 if (!map->cache_bypass && map->format.parse_val) {
1623 unsigned int ival;
1624 int val_bytes = map->format.val_bytes;
1625 for (i = 0; i < val_len / val_bytes; i++) {
1626 ival = map->format.parse_val(val + (i * val_bytes));
1627 ret = regcache_write(map,
1628 reg + regmap_get_offset(map, i),
1629 ival);
1630 if (ret) {
1631 dev_err(map->dev,
1632 "Error in caching of register: %x ret: %d\n",
1633 reg + regmap_get_offset(map, i), ret);
1634 return ret;
1635 }
1636 }
1637 if (map->cache_only) {
1638 map->cache_dirty = true;
1639 return 0;
1640 }
1641 }
1642
1643 range = _regmap_range_lookup(map, reg);
1644 if (range) {
1645 int val_num = val_len / map->format.val_bytes;
1646 int win_offset = (reg - range->range_min) % range->window_len;
1647 int win_residue = range->window_len - win_offset;
1648
1649 /* If the write goes beyond the end of the window split it */
1650 while (val_num > win_residue) {
1651 dev_dbg(map->dev, "Writing window %d/%zu\n",
1652 win_residue, val_len / map->format.val_bytes);
1653 ret = _regmap_raw_write_impl(map, reg, val,
1654 win_residue *
1655 map->format.val_bytes, noinc);
1656 if (ret != 0)
1657 return ret;
1658
1659 reg += win_residue;
1660 val_num -= win_residue;
1661 val += win_residue * map->format.val_bytes;
1662 val_len -= win_residue * map->format.val_bytes;
1663
1664 win_offset = (reg - range->range_min) %
1665 range->window_len;
1666 win_residue = range->window_len - win_offset;
1667 }
1668
1669 ret = _regmap_select_page(map, ®, range, noinc ? 1 : val_num);
1670 if (ret != 0)
1671 return ret;
1672 }
1673
1674 reg = regmap_reg_addr(map, reg);
1675 map->format.format_reg(map->work_buf, reg, map->reg_shift);
1676 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1677 map->write_flag_mask);
1678
1679 /*
1680 * Essentially all I/O mechanisms will be faster with a single
1681 * buffer to write. Since register syncs often generate raw
1682 * writes of single registers optimise that case.
1683 */
1684 if (val != work_val && val_len == map->format.val_bytes) {
1685 memcpy(work_val, val, map->format.val_bytes);
1686 val = work_val;
1687 }
1688
1689 if (map->async && map->bus && map->bus->async_write) {
1690 struct regmap_async *async;
1691
1692 trace_regmap_async_write_start(map, reg, val_len);
1693
1694 spin_lock_irqsave(&map->async_lock, flags);
1695 async = list_first_entry_or_null(&map->async_free,
1696 struct regmap_async,
1697 list);
1698 if (async)
1699 list_del(&async->list);
1700 spin_unlock_irqrestore(&map->async_lock, flags);
1701
1702 if (!async) {
1703 async = map->bus->async_alloc();
1704 if (!async)
1705 return -ENOMEM;
1706
1707 async->work_buf = kzalloc(map->format.buf_size,
1708 GFP_KERNEL | GFP_DMA);
1709 if (!async->work_buf) {
1710 kfree(async);
1711 return -ENOMEM;
1712 }
1713 }
1714
1715 async->map = map;
1716
1717 /* If the caller supplied the value we can use it safely. */
1718 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1719 map->format.reg_bytes + map->format.val_bytes);
1720
1721 spin_lock_irqsave(&map->async_lock, flags);
1722 list_add_tail(&async->list, &map->async_list);
1723 spin_unlock_irqrestore(&map->async_lock, flags);
1724
1725 if (val != work_val)
1726 ret = map->bus->async_write(map->bus_context,
1727 async->work_buf,
1728 map->format.reg_bytes +
1729 map->format.pad_bytes,
1730 val, val_len, async);
1731 else
1732 ret = map->bus->async_write(map->bus_context,
1733 async->work_buf,
1734 map->format.reg_bytes +
1735 map->format.pad_bytes +
1736 val_len, NULL, 0, async);
1737
1738 if (ret != 0) {
1739 dev_err(map->dev, "Failed to schedule write: %d\n",
1740 ret);
1741
1742 spin_lock_irqsave(&map->async_lock, flags);
1743 list_move(&async->list, &map->async_free);
1744 spin_unlock_irqrestore(&map->async_lock, flags);
1745 }
1746
1747 return ret;
1748 }
1749
1750 trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1751
1752 /* If we're doing a single register write we can probably just
1753 * send the work_buf directly, otherwise try to do a gather
1754 * write.
1755 */
1756 if (val == work_val)
1757 ret = map->write(map->bus_context, map->work_buf,
1758 map->format.reg_bytes +
1759 map->format.pad_bytes +
1760 val_len);
1761 else if (map->bus && map->bus->gather_write)
1762 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1763 map->format.reg_bytes +
1764 map->format.pad_bytes,
1765 val, val_len);
1766 else
1767 ret = -ENOTSUPP;
1768
1769 /* If that didn't work fall back on linearising by hand. */
1770 if (ret == -ENOTSUPP) {
1771 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1772 buf = kzalloc(len, GFP_KERNEL);
1773 if (!buf)
1774 return -ENOMEM;
1775
1776 memcpy(buf, map->work_buf, map->format.reg_bytes);
1777 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1778 val, val_len);
1779 ret = map->write(map->bus_context, buf, len);
1780
1781 kfree(buf);
1782 } else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1783 /* regcache_drop_region() takes lock that we already have,
1784 * thus call map->cache_ops->drop() directly
1785 */
1786 if (map->cache_ops && map->cache_ops->drop)
1787 map->cache_ops->drop(map, reg, reg + 1);
1788 }
1789
1790 trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1791
1792 return ret;
1793 }
1794
1795 /**
1796 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1797 *
1798 * @map: Map to check.
1799 */
regmap_can_raw_write(struct regmap * map)1800 bool regmap_can_raw_write(struct regmap *map)
1801 {
1802 return map->write && map->format.format_val && map->format.format_reg;
1803 }
1804 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1805
1806 /**
1807 * regmap_get_raw_read_max - Get the maximum size we can read
1808 *
1809 * @map: Map to check.
1810 */
regmap_get_raw_read_max(struct regmap * map)1811 size_t regmap_get_raw_read_max(struct regmap *map)
1812 {
1813 return map->max_raw_read;
1814 }
1815 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1816
1817 /**
1818 * regmap_get_raw_write_max - Get the maximum size we can read
1819 *
1820 * @map: Map to check.
1821 */
regmap_get_raw_write_max(struct regmap * map)1822 size_t regmap_get_raw_write_max(struct regmap *map)
1823 {
1824 return map->max_raw_write;
1825 }
1826 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1827
_regmap_bus_formatted_write(void * context,unsigned int reg,unsigned int val)1828 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1829 unsigned int val)
1830 {
1831 int ret;
1832 struct regmap_range_node *range;
1833 struct regmap *map = context;
1834
1835 WARN_ON(!map->format.format_write);
1836
1837 range = _regmap_range_lookup(map, reg);
1838 if (range) {
1839 ret = _regmap_select_page(map, ®, range, 1);
1840 if (ret != 0)
1841 return ret;
1842 }
1843
1844 reg = regmap_reg_addr(map, reg);
1845 map->format.format_write(map, reg, val);
1846
1847 trace_regmap_hw_write_start(map, reg, 1);
1848
1849 ret = map->write(map->bus_context, map->work_buf, map->format.buf_size);
1850
1851 trace_regmap_hw_write_done(map, reg, 1);
1852
1853 return ret;
1854 }
1855
_regmap_bus_reg_write(void * context,unsigned int reg,unsigned int val)1856 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1857 unsigned int val)
1858 {
1859 struct regmap *map = context;
1860 struct regmap_range_node *range;
1861 int ret;
1862
1863 range = _regmap_range_lookup(map, reg);
1864 if (range) {
1865 ret = _regmap_select_page(map, ®, range, 1);
1866 if (ret != 0)
1867 return ret;
1868 }
1869
1870 reg = regmap_reg_addr(map, reg);
1871 return map->bus->reg_write(map->bus_context, reg, val);
1872 }
1873
_regmap_bus_raw_write(void * context,unsigned int reg,unsigned int val)1874 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1875 unsigned int val)
1876 {
1877 struct regmap *map = context;
1878
1879 WARN_ON(!map->format.format_val);
1880
1881 map->format.format_val(map->work_buf + map->format.reg_bytes
1882 + map->format.pad_bytes, val, 0);
1883 return _regmap_raw_write_impl(map, reg,
1884 map->work_buf +
1885 map->format.reg_bytes +
1886 map->format.pad_bytes,
1887 map->format.val_bytes,
1888 false);
1889 }
1890
_regmap_map_get_context(struct regmap * map)1891 static inline void *_regmap_map_get_context(struct regmap *map)
1892 {
1893 return (map->bus || (!map->bus && map->read)) ? map : map->bus_context;
1894 }
1895
_regmap_write(struct regmap * map,unsigned int reg,unsigned int val)1896 int _regmap_write(struct regmap *map, unsigned int reg,
1897 unsigned int val)
1898 {
1899 int ret;
1900 void *context = _regmap_map_get_context(map);
1901
1902 if (!regmap_writeable(map, reg))
1903 return -EIO;
1904
1905 if (!map->cache_bypass && !map->defer_caching) {
1906 ret = regcache_write(map, reg, val);
1907 if (ret != 0)
1908 return ret;
1909 if (map->cache_only) {
1910 map->cache_dirty = true;
1911 return 0;
1912 }
1913 }
1914
1915 ret = map->reg_write(context, reg, val);
1916 if (ret == 0) {
1917 if (regmap_should_log(map))
1918 dev_info(map->dev, "%x <= %x\n", reg, val);
1919
1920 trace_regmap_reg_write(map, reg, val);
1921 }
1922
1923 return ret;
1924 }
1925
1926 /**
1927 * regmap_write() - Write a value to a single register
1928 *
1929 * @map: Register map to write to
1930 * @reg: Register to write to
1931 * @val: Value to be written
1932 *
1933 * A value of zero will be returned on success, a negative errno will
1934 * be returned in error cases.
1935 */
regmap_write(struct regmap * map,unsigned int reg,unsigned int val)1936 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1937 {
1938 int ret;
1939
1940 if (!IS_ALIGNED(reg, map->reg_stride))
1941 return -EINVAL;
1942
1943 map->lock(map->lock_arg);
1944
1945 ret = _regmap_write(map, reg, val);
1946
1947 map->unlock(map->lock_arg);
1948
1949 return ret;
1950 }
1951 EXPORT_SYMBOL_GPL(regmap_write);
1952
1953 /**
1954 * regmap_write_async() - Write a value to a single register asynchronously
1955 *
1956 * @map: Register map to write to
1957 * @reg: Register to write to
1958 * @val: Value to be written
1959 *
1960 * A value of zero will be returned on success, a negative errno will
1961 * be returned in error cases.
1962 */
regmap_write_async(struct regmap * map,unsigned int reg,unsigned int val)1963 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1964 {
1965 int ret;
1966
1967 if (!IS_ALIGNED(reg, map->reg_stride))
1968 return -EINVAL;
1969
1970 map->lock(map->lock_arg);
1971
1972 map->async = true;
1973
1974 ret = _regmap_write(map, reg, val);
1975
1976 map->async = false;
1977
1978 map->unlock(map->lock_arg);
1979
1980 return ret;
1981 }
1982 EXPORT_SYMBOL_GPL(regmap_write_async);
1983
_regmap_raw_write(struct regmap * map,unsigned int reg,const void * val,size_t val_len,bool noinc)1984 int _regmap_raw_write(struct regmap *map, unsigned int reg,
1985 const void *val, size_t val_len, bool noinc)
1986 {
1987 size_t val_bytes = map->format.val_bytes;
1988 size_t val_count = val_len / val_bytes;
1989 size_t chunk_count, chunk_bytes;
1990 size_t chunk_regs = val_count;
1991 int ret, i;
1992
1993 if (!val_count)
1994 return -EINVAL;
1995
1996 if (map->use_single_write)
1997 chunk_regs = 1;
1998 else if (map->max_raw_write && val_len > map->max_raw_write)
1999 chunk_regs = map->max_raw_write / val_bytes;
2000
2001 chunk_count = val_count / chunk_regs;
2002 chunk_bytes = chunk_regs * val_bytes;
2003
2004 /* Write as many bytes as possible with chunk_size */
2005 for (i = 0; i < chunk_count; i++) {
2006 ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc);
2007 if (ret)
2008 return ret;
2009
2010 reg += regmap_get_offset(map, chunk_regs);
2011 val += chunk_bytes;
2012 val_len -= chunk_bytes;
2013 }
2014
2015 /* Write remaining bytes */
2016 if (val_len)
2017 ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc);
2018
2019 return ret;
2020 }
2021
2022 /**
2023 * regmap_raw_write() - Write raw values to one or more registers
2024 *
2025 * @map: Register map to write to
2026 * @reg: Initial register to write to
2027 * @val: Block of data to be written, laid out for direct transmission to the
2028 * device
2029 * @val_len: Length of data pointed to by val.
2030 *
2031 * This function is intended to be used for things like firmware
2032 * download where a large block of data needs to be transferred to the
2033 * device. No formatting will be done on the data provided.
2034 *
2035 * A value of zero will be returned on success, a negative errno will
2036 * be returned in error cases.
2037 */
regmap_raw_write(struct regmap * map,unsigned int reg,const void * val,size_t val_len)2038 int regmap_raw_write(struct regmap *map, unsigned int reg,
2039 const void *val, size_t val_len)
2040 {
2041 int ret;
2042
2043 if (!regmap_can_raw_write(map))
2044 return -EINVAL;
2045 if (val_len % map->format.val_bytes)
2046 return -EINVAL;
2047
2048 map->lock(map->lock_arg);
2049
2050 ret = _regmap_raw_write(map, reg, val, val_len, false);
2051
2052 map->unlock(map->lock_arg);
2053
2054 return ret;
2055 }
2056 EXPORT_SYMBOL_GPL(regmap_raw_write);
2057
regmap_noinc_readwrite(struct regmap * map,unsigned int reg,void * val,unsigned int val_len,bool write)2058 static int regmap_noinc_readwrite(struct regmap *map, unsigned int reg,
2059 void *val, unsigned int val_len, bool write)
2060 {
2061 size_t val_bytes = map->format.val_bytes;
2062 size_t val_count = val_len / val_bytes;
2063 unsigned int lastval;
2064 u8 *u8p;
2065 u16 *u16p;
2066 u32 *u32p;
2067 int ret;
2068 int i;
2069
2070 switch (val_bytes) {
2071 case 1:
2072 u8p = val;
2073 if (write)
2074 lastval = (unsigned int)u8p[val_count - 1];
2075 break;
2076 case 2:
2077 u16p = val;
2078 if (write)
2079 lastval = (unsigned int)u16p[val_count - 1];
2080 break;
2081 case 4:
2082 u32p = val;
2083 if (write)
2084 lastval = (unsigned int)u32p[val_count - 1];
2085 break;
2086 default:
2087 return -EINVAL;
2088 }
2089
2090 /*
2091 * Update the cache with the last value we write, the rest is just
2092 * gone down in the hardware FIFO. We can't cache FIFOs. This makes
2093 * sure a single read from the cache will work.
2094 */
2095 if (write) {
2096 if (!map->cache_bypass && !map->defer_caching) {
2097 ret = regcache_write(map, reg, lastval);
2098 if (ret != 0)
2099 return ret;
2100 if (map->cache_only) {
2101 map->cache_dirty = true;
2102 return 0;
2103 }
2104 }
2105 ret = map->bus->reg_noinc_write(map->bus_context, reg, val, val_count);
2106 } else {
2107 ret = map->bus->reg_noinc_read(map->bus_context, reg, val, val_count);
2108 }
2109
2110 if (!ret && regmap_should_log(map)) {
2111 dev_info(map->dev, "%x %s [", reg, write ? "<=" : "=>");
2112 for (i = 0; i < val_count; i++) {
2113 switch (val_bytes) {
2114 case 1:
2115 pr_cont("%x", u8p[i]);
2116 break;
2117 case 2:
2118 pr_cont("%x", u16p[i]);
2119 break;
2120 case 4:
2121 pr_cont("%x", u32p[i]);
2122 break;
2123 default:
2124 break;
2125 }
2126 if (i == (val_count - 1))
2127 pr_cont("]\n");
2128 else
2129 pr_cont(",");
2130 }
2131 }
2132
2133 return 0;
2134 }
2135
2136 /**
2137 * regmap_noinc_write(): Write data from a register without incrementing the
2138 * register number
2139 *
2140 * @map: Register map to write to
2141 * @reg: Register to write to
2142 * @val: Pointer to data buffer
2143 * @val_len: Length of output buffer in bytes.
2144 *
2145 * The regmap API usually assumes that bulk bus write operations will write a
2146 * range of registers. Some devices have certain registers for which a write
2147 * operation can write to an internal FIFO.
2148 *
2149 * The target register must be volatile but registers after it can be
2150 * completely unrelated cacheable registers.
2151 *
2152 * This will attempt multiple writes as required to write val_len bytes.
2153 *
2154 * A value of zero will be returned on success, a negative errno will be
2155 * returned in error cases.
2156 */
regmap_noinc_write(struct regmap * map,unsigned int reg,const void * val,size_t val_len)2157 int regmap_noinc_write(struct regmap *map, unsigned int reg,
2158 const void *val, size_t val_len)
2159 {
2160 size_t write_len;
2161 int ret;
2162
2163 if (!map->write && !(map->bus && map->bus->reg_noinc_write))
2164 return -EINVAL;
2165 if (val_len % map->format.val_bytes)
2166 return -EINVAL;
2167 if (!IS_ALIGNED(reg, map->reg_stride))
2168 return -EINVAL;
2169 if (val_len == 0)
2170 return -EINVAL;
2171
2172 map->lock(map->lock_arg);
2173
2174 if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
2175 ret = -EINVAL;
2176 goto out_unlock;
2177 }
2178
2179 /*
2180 * Use the accelerated operation if we can. The val drops the const
2181 * typing in order to facilitate code reuse in regmap_noinc_readwrite().
2182 */
2183 if (map->bus->reg_noinc_write) {
2184 ret = regmap_noinc_readwrite(map, reg, (void *)val, val_len, true);
2185 goto out_unlock;
2186 }
2187
2188 while (val_len) {
2189 if (map->max_raw_write && map->max_raw_write < val_len)
2190 write_len = map->max_raw_write;
2191 else
2192 write_len = val_len;
2193 ret = _regmap_raw_write(map, reg, val, write_len, true);
2194 if (ret)
2195 goto out_unlock;
2196 val = ((u8 *)val) + write_len;
2197 val_len -= write_len;
2198 }
2199
2200 out_unlock:
2201 map->unlock(map->lock_arg);
2202 return ret;
2203 }
2204 EXPORT_SYMBOL_GPL(regmap_noinc_write);
2205
2206 /**
2207 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
2208 * register field.
2209 *
2210 * @field: Register field to write to
2211 * @mask: Bitmask to change
2212 * @val: Value to be written
2213 * @change: Boolean indicating if a write was done
2214 * @async: Boolean indicating asynchronously
2215 * @force: Boolean indicating use force update
2216 *
2217 * Perform a read/modify/write cycle on the register field with change,
2218 * async, force option.
2219 *
2220 * A value of zero will be returned on success, a negative errno will
2221 * be returned in error cases.
2222 */
regmap_field_update_bits_base(struct regmap_field * field,unsigned int mask,unsigned int val,bool * change,bool async,bool force)2223 int regmap_field_update_bits_base(struct regmap_field *field,
2224 unsigned int mask, unsigned int val,
2225 bool *change, bool async, bool force)
2226 {
2227 mask = (mask << field->shift) & field->mask;
2228
2229 return regmap_update_bits_base(field->regmap, field->reg,
2230 mask, val << field->shift,
2231 change, async, force);
2232 }
2233 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2234
2235 /**
2236 * regmap_field_test_bits() - Check if all specified bits are set in a
2237 * register field.
2238 *
2239 * @field: Register field to operate on
2240 * @bits: Bits to test
2241 *
2242 * Returns -1 if the underlying regmap_field_read() fails, 0 if at least one of the
2243 * tested bits is not set and 1 if all tested bits are set.
2244 */
regmap_field_test_bits(struct regmap_field * field,unsigned int bits)2245 int regmap_field_test_bits(struct regmap_field *field, unsigned int bits)
2246 {
2247 unsigned int val, ret;
2248
2249 ret = regmap_field_read(field, &val);
2250 if (ret)
2251 return ret;
2252
2253 return (val & bits) == bits;
2254 }
2255 EXPORT_SYMBOL_GPL(regmap_field_test_bits);
2256
2257 /**
2258 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2259 * register field with port ID
2260 *
2261 * @field: Register field to write to
2262 * @id: port ID
2263 * @mask: Bitmask to change
2264 * @val: Value to be written
2265 * @change: Boolean indicating if a write was done
2266 * @async: Boolean indicating asynchronously
2267 * @force: Boolean indicating use force update
2268 *
2269 * A value of zero will be returned on success, a negative errno will
2270 * be returned in error cases.
2271 */
regmap_fields_update_bits_base(struct regmap_field * field,unsigned int id,unsigned int mask,unsigned int val,bool * change,bool async,bool force)2272 int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2273 unsigned int mask, unsigned int val,
2274 bool *change, bool async, bool force)
2275 {
2276 if (id >= field->id_size)
2277 return -EINVAL;
2278
2279 mask = (mask << field->shift) & field->mask;
2280
2281 return regmap_update_bits_base(field->regmap,
2282 field->reg + (field->id_offset * id),
2283 mask, val << field->shift,
2284 change, async, force);
2285 }
2286 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2287
2288 /**
2289 * regmap_bulk_write() - Write multiple registers to the device
2290 *
2291 * @map: Register map to write to
2292 * @reg: First register to be write from
2293 * @val: Block of data to be written, in native register size for device
2294 * @val_count: Number of registers to write
2295 *
2296 * This function is intended to be used for writing a large block of
2297 * data to the device either in single transfer or multiple transfer.
2298 *
2299 * A value of zero will be returned on success, a negative errno will
2300 * be returned in error cases.
2301 */
regmap_bulk_write(struct regmap * map,unsigned int reg,const void * val,size_t val_count)2302 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2303 size_t val_count)
2304 {
2305 int ret = 0, i;
2306 size_t val_bytes = map->format.val_bytes;
2307
2308 if (!IS_ALIGNED(reg, map->reg_stride))
2309 return -EINVAL;
2310
2311 /*
2312 * Some devices don't support bulk write, for them we have a series of
2313 * single write operations.
2314 */
2315 if (!map->write || !map->format.parse_inplace) {
2316 map->lock(map->lock_arg);
2317 for (i = 0; i < val_count; i++) {
2318 unsigned int ival;
2319
2320 switch (val_bytes) {
2321 case 1:
2322 ival = *(u8 *)(val + (i * val_bytes));
2323 break;
2324 case 2:
2325 ival = *(u16 *)(val + (i * val_bytes));
2326 break;
2327 case 4:
2328 ival = *(u32 *)(val + (i * val_bytes));
2329 break;
2330 default:
2331 ret = -EINVAL;
2332 goto out;
2333 }
2334
2335 ret = _regmap_write(map,
2336 reg + regmap_get_offset(map, i),
2337 ival);
2338 if (ret != 0)
2339 goto out;
2340 }
2341 out:
2342 map->unlock(map->lock_arg);
2343 } else {
2344 void *wval;
2345
2346 wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2347 if (!wval)
2348 return -ENOMEM;
2349
2350 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2351 map->format.parse_inplace(wval + i);
2352
2353 ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2354
2355 kfree(wval);
2356 }
2357
2358 if (!ret)
2359 trace_regmap_bulk_write(map, reg, val, val_bytes * val_count);
2360
2361 return ret;
2362 }
2363 EXPORT_SYMBOL_GPL(regmap_bulk_write);
2364
2365 /*
2366 * _regmap_raw_multi_reg_write()
2367 *
2368 * the (register,newvalue) pairs in regs have not been formatted, but
2369 * they are all in the same page and have been changed to being page
2370 * relative. The page register has been written if that was necessary.
2371 */
_regmap_raw_multi_reg_write(struct regmap * map,const struct reg_sequence * regs,size_t num_regs)2372 static int _regmap_raw_multi_reg_write(struct regmap *map,
2373 const struct reg_sequence *regs,
2374 size_t num_regs)
2375 {
2376 int ret;
2377 void *buf;
2378 int i;
2379 u8 *u8;
2380 size_t val_bytes = map->format.val_bytes;
2381 size_t reg_bytes = map->format.reg_bytes;
2382 size_t pad_bytes = map->format.pad_bytes;
2383 size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2384 size_t len = pair_size * num_regs;
2385
2386 if (!len)
2387 return -EINVAL;
2388
2389 buf = kzalloc(len, GFP_KERNEL);
2390 if (!buf)
2391 return -ENOMEM;
2392
2393 /* We have to linearise by hand. */
2394
2395 u8 = buf;
2396
2397 for (i = 0; i < num_regs; i++) {
2398 unsigned int reg = regs[i].reg;
2399 unsigned int val = regs[i].def;
2400 trace_regmap_hw_write_start(map, reg, 1);
2401 reg = regmap_reg_addr(map, reg);
2402 map->format.format_reg(u8, reg, map->reg_shift);
2403 u8 += reg_bytes + pad_bytes;
2404 map->format.format_val(u8, val, 0);
2405 u8 += val_bytes;
2406 }
2407 u8 = buf;
2408 *u8 |= map->write_flag_mask;
2409
2410 ret = map->write(map->bus_context, buf, len);
2411
2412 kfree(buf);
2413
2414 for (i = 0; i < num_regs; i++) {
2415 int reg = regs[i].reg;
2416 trace_regmap_hw_write_done(map, reg, 1);
2417 }
2418 return ret;
2419 }
2420
_regmap_register_page(struct regmap * map,unsigned int reg,struct regmap_range_node * range)2421 static unsigned int _regmap_register_page(struct regmap *map,
2422 unsigned int reg,
2423 struct regmap_range_node *range)
2424 {
2425 unsigned int win_page = (reg - range->range_min) / range->window_len;
2426
2427 return win_page;
2428 }
2429
_regmap_range_multi_paged_reg_write(struct regmap * map,struct reg_sequence * regs,size_t num_regs)2430 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2431 struct reg_sequence *regs,
2432 size_t num_regs)
2433 {
2434 int ret;
2435 int i, n;
2436 struct reg_sequence *base;
2437 unsigned int this_page = 0;
2438 unsigned int page_change = 0;
2439 /*
2440 * the set of registers are not neccessarily in order, but
2441 * since the order of write must be preserved this algorithm
2442 * chops the set each time the page changes. This also applies
2443 * if there is a delay required at any point in the sequence.
2444 */
2445 base = regs;
2446 for (i = 0, n = 0; i < num_regs; i++, n++) {
2447 unsigned int reg = regs[i].reg;
2448 struct regmap_range_node *range;
2449
2450 range = _regmap_range_lookup(map, reg);
2451 if (range) {
2452 unsigned int win_page = _regmap_register_page(map, reg,
2453 range);
2454
2455 if (i == 0)
2456 this_page = win_page;
2457 if (win_page != this_page) {
2458 this_page = win_page;
2459 page_change = 1;
2460 }
2461 }
2462
2463 /* If we have both a page change and a delay make sure to
2464 * write the regs and apply the delay before we change the
2465 * page.
2466 */
2467
2468 if (page_change || regs[i].delay_us) {
2469
2470 /* For situations where the first write requires
2471 * a delay we need to make sure we don't call
2472 * raw_multi_reg_write with n=0
2473 * This can't occur with page breaks as we
2474 * never write on the first iteration
2475 */
2476 if (regs[i].delay_us && i == 0)
2477 n = 1;
2478
2479 ret = _regmap_raw_multi_reg_write(map, base, n);
2480 if (ret != 0)
2481 return ret;
2482
2483 if (regs[i].delay_us) {
2484 if (map->can_sleep)
2485 fsleep(regs[i].delay_us);
2486 else
2487 udelay(regs[i].delay_us);
2488 }
2489
2490 base += n;
2491 n = 0;
2492
2493 if (page_change) {
2494 ret = _regmap_select_page(map,
2495 &base[n].reg,
2496 range, 1);
2497 if (ret != 0)
2498 return ret;
2499
2500 page_change = 0;
2501 }
2502
2503 }
2504
2505 }
2506 if (n > 0)
2507 return _regmap_raw_multi_reg_write(map, base, n);
2508 return 0;
2509 }
2510
_regmap_multi_reg_write(struct regmap * map,const struct reg_sequence * regs,size_t num_regs)2511 static int _regmap_multi_reg_write(struct regmap *map,
2512 const struct reg_sequence *regs,
2513 size_t num_regs)
2514 {
2515 int i;
2516 int ret;
2517
2518 if (!map->can_multi_write) {
2519 for (i = 0; i < num_regs; i++) {
2520 ret = _regmap_write(map, regs[i].reg, regs[i].def);
2521 if (ret != 0)
2522 return ret;
2523
2524 if (regs[i].delay_us) {
2525 if (map->can_sleep)
2526 fsleep(regs[i].delay_us);
2527 else
2528 udelay(regs[i].delay_us);
2529 }
2530 }
2531 return 0;
2532 }
2533
2534 if (!map->format.parse_inplace)
2535 return -EINVAL;
2536
2537 if (map->writeable_reg)
2538 for (i = 0; i < num_regs; i++) {
2539 int reg = regs[i].reg;
2540 if (!map->writeable_reg(map->dev, reg))
2541 return -EINVAL;
2542 if (!IS_ALIGNED(reg, map->reg_stride))
2543 return -EINVAL;
2544 }
2545
2546 if (!map->cache_bypass) {
2547 for (i = 0; i < num_regs; i++) {
2548 unsigned int val = regs[i].def;
2549 unsigned int reg = regs[i].reg;
2550 ret = regcache_write(map, reg, val);
2551 if (ret) {
2552 dev_err(map->dev,
2553 "Error in caching of register: %x ret: %d\n",
2554 reg, ret);
2555 return ret;
2556 }
2557 }
2558 if (map->cache_only) {
2559 map->cache_dirty = true;
2560 return 0;
2561 }
2562 }
2563
2564 WARN_ON(!map->bus);
2565
2566 for (i = 0; i < num_regs; i++) {
2567 unsigned int reg = regs[i].reg;
2568 struct regmap_range_node *range;
2569
2570 /* Coalesce all the writes between a page break or a delay
2571 * in a sequence
2572 */
2573 range = _regmap_range_lookup(map, reg);
2574 if (range || regs[i].delay_us) {
2575 size_t len = sizeof(struct reg_sequence)*num_regs;
2576 struct reg_sequence *base = kmemdup(regs, len,
2577 GFP_KERNEL);
2578 if (!base)
2579 return -ENOMEM;
2580 ret = _regmap_range_multi_paged_reg_write(map, base,
2581 num_regs);
2582 kfree(base);
2583
2584 return ret;
2585 }
2586 }
2587 return _regmap_raw_multi_reg_write(map, regs, num_regs);
2588 }
2589
2590 /**
2591 * regmap_multi_reg_write() - Write multiple registers to the device
2592 *
2593 * @map: Register map to write to
2594 * @regs: Array of structures containing register,value to be written
2595 * @num_regs: Number of registers to write
2596 *
2597 * Write multiple registers to the device where the set of register, value
2598 * pairs are supplied in any order, possibly not all in a single range.
2599 *
2600 * The 'normal' block write mode will send ultimately send data on the
2601 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2602 * addressed. However, this alternative block multi write mode will send
2603 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2604 * must of course support the mode.
2605 *
2606 * A value of zero will be returned on success, a negative errno will be
2607 * returned in error cases.
2608 */
regmap_multi_reg_write(struct regmap * map,const struct reg_sequence * regs,int num_regs)2609 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2610 int num_regs)
2611 {
2612 int ret;
2613
2614 map->lock(map->lock_arg);
2615
2616 ret = _regmap_multi_reg_write(map, regs, num_regs);
2617
2618 map->unlock(map->lock_arg);
2619
2620 return ret;
2621 }
2622 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2623
2624 /**
2625 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2626 * device but not the cache
2627 *
2628 * @map: Register map to write to
2629 * @regs: Array of structures containing register,value to be written
2630 * @num_regs: Number of registers to write
2631 *
2632 * Write multiple registers to the device but not the cache where the set
2633 * of register are supplied in any order.
2634 *
2635 * This function is intended to be used for writing a large block of data
2636 * atomically to the device in single transfer for those I2C client devices
2637 * that implement this alternative block write mode.
2638 *
2639 * A value of zero will be returned on success, a negative errno will
2640 * be returned in error cases.
2641 */
regmap_multi_reg_write_bypassed(struct regmap * map,const struct reg_sequence * regs,int num_regs)2642 int regmap_multi_reg_write_bypassed(struct regmap *map,
2643 const struct reg_sequence *regs,
2644 int num_regs)
2645 {
2646 int ret;
2647 bool bypass;
2648
2649 map->lock(map->lock_arg);
2650
2651 bypass = map->cache_bypass;
2652 map->cache_bypass = true;
2653
2654 ret = _regmap_multi_reg_write(map, regs, num_regs);
2655
2656 map->cache_bypass = bypass;
2657
2658 map->unlock(map->lock_arg);
2659
2660 return ret;
2661 }
2662 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2663
2664 /**
2665 * regmap_raw_write_async() - Write raw values to one or more registers
2666 * asynchronously
2667 *
2668 * @map: Register map to write to
2669 * @reg: Initial register to write to
2670 * @val: Block of data to be written, laid out for direct transmission to the
2671 * device. Must be valid until regmap_async_complete() is called.
2672 * @val_len: Length of data pointed to by val.
2673 *
2674 * This function is intended to be used for things like firmware
2675 * download where a large block of data needs to be transferred to the
2676 * device. No formatting will be done on the data provided.
2677 *
2678 * If supported by the underlying bus the write will be scheduled
2679 * asynchronously, helping maximise I/O speed on higher speed buses
2680 * like SPI. regmap_async_complete() can be called to ensure that all
2681 * asynchrnous writes have been completed.
2682 *
2683 * A value of zero will be returned on success, a negative errno will
2684 * be returned in error cases.
2685 */
regmap_raw_write_async(struct regmap * map,unsigned int reg,const void * val,size_t val_len)2686 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2687 const void *val, size_t val_len)
2688 {
2689 int ret;
2690
2691 if (val_len % map->format.val_bytes)
2692 return -EINVAL;
2693 if (!IS_ALIGNED(reg, map->reg_stride))
2694 return -EINVAL;
2695
2696 map->lock(map->lock_arg);
2697
2698 map->async = true;
2699
2700 ret = _regmap_raw_write(map, reg, val, val_len, false);
2701
2702 map->async = false;
2703
2704 map->unlock(map->lock_arg);
2705
2706 return ret;
2707 }
2708 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2709
_regmap_raw_read(struct regmap * map,unsigned int reg,void * val,unsigned int val_len,bool noinc)2710 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2711 unsigned int val_len, bool noinc)
2712 {
2713 struct regmap_range_node *range;
2714 int ret;
2715
2716 if (!map->read)
2717 return -EINVAL;
2718
2719 range = _regmap_range_lookup(map, reg);
2720 if (range) {
2721 ret = _regmap_select_page(map, ®, range,
2722 noinc ? 1 : val_len / map->format.val_bytes);
2723 if (ret != 0)
2724 return ret;
2725 }
2726
2727 reg = regmap_reg_addr(map, reg);
2728 map->format.format_reg(map->work_buf, reg, map->reg_shift);
2729 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2730 map->read_flag_mask);
2731 trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2732
2733 ret = map->read(map->bus_context, map->work_buf,
2734 map->format.reg_bytes + map->format.pad_bytes,
2735 val, val_len);
2736
2737 trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2738
2739 return ret;
2740 }
2741
_regmap_bus_reg_read(void * context,unsigned int reg,unsigned int * val)2742 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2743 unsigned int *val)
2744 {
2745 struct regmap *map = context;
2746 struct regmap_range_node *range;
2747 int ret;
2748
2749 range = _regmap_range_lookup(map, reg);
2750 if (range) {
2751 ret = _regmap_select_page(map, ®, range, 1);
2752 if (ret != 0)
2753 return ret;
2754 }
2755
2756 reg = regmap_reg_addr(map, reg);
2757 return map->bus->reg_read(map->bus_context, reg, val);
2758 }
2759
_regmap_bus_read(void * context,unsigned int reg,unsigned int * val)2760 static int _regmap_bus_read(void *context, unsigned int reg,
2761 unsigned int *val)
2762 {
2763 int ret;
2764 struct regmap *map = context;
2765 void *work_val = map->work_buf + map->format.reg_bytes +
2766 map->format.pad_bytes;
2767
2768 if (!map->format.parse_val)
2769 return -EINVAL;
2770
2771 ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
2772 if (ret == 0)
2773 *val = map->format.parse_val(work_val);
2774
2775 return ret;
2776 }
2777
_regmap_read(struct regmap * map,unsigned int reg,unsigned int * val)2778 static int _regmap_read(struct regmap *map, unsigned int reg,
2779 unsigned int *val)
2780 {
2781 int ret;
2782 void *context = _regmap_map_get_context(map);
2783
2784 if (!map->cache_bypass) {
2785 ret = regcache_read(map, reg, val);
2786 if (ret == 0)
2787 return 0;
2788 }
2789
2790 if (map->cache_only)
2791 return -EBUSY;
2792
2793 if (!regmap_readable(map, reg))
2794 return -EIO;
2795
2796 ret = map->reg_read(context, reg, val);
2797 if (ret == 0) {
2798 if (regmap_should_log(map))
2799 dev_info(map->dev, "%x => %x\n", reg, *val);
2800
2801 trace_regmap_reg_read(map, reg, *val);
2802
2803 if (!map->cache_bypass)
2804 regcache_write(map, reg, *val);
2805 }
2806
2807 return ret;
2808 }
2809
2810 /**
2811 * regmap_read() - Read a value from a single register
2812 *
2813 * @map: Register map to read from
2814 * @reg: Register to be read from
2815 * @val: Pointer to store read value
2816 *
2817 * A value of zero will be returned on success, a negative errno will
2818 * be returned in error cases.
2819 */
regmap_read(struct regmap * map,unsigned int reg,unsigned int * val)2820 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2821 {
2822 int ret;
2823
2824 if (!IS_ALIGNED(reg, map->reg_stride))
2825 return -EINVAL;
2826
2827 map->lock(map->lock_arg);
2828
2829 ret = _regmap_read(map, reg, val);
2830
2831 map->unlock(map->lock_arg);
2832
2833 return ret;
2834 }
2835 EXPORT_SYMBOL_GPL(regmap_read);
2836
2837 /**
2838 * regmap_raw_read() - Read raw data from the device
2839 *
2840 * @map: Register map to read from
2841 * @reg: First register to be read from
2842 * @val: Pointer to store read value
2843 * @val_len: Size of data to read
2844 *
2845 * A value of zero will be returned on success, a negative errno will
2846 * be returned in error cases.
2847 */
regmap_raw_read(struct regmap * map,unsigned int reg,void * val,size_t val_len)2848 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2849 size_t val_len)
2850 {
2851 size_t val_bytes = map->format.val_bytes;
2852 size_t val_count = val_len / val_bytes;
2853 unsigned int v;
2854 int ret, i;
2855
2856 if (val_len % map->format.val_bytes)
2857 return -EINVAL;
2858 if (!IS_ALIGNED(reg, map->reg_stride))
2859 return -EINVAL;
2860 if (val_count == 0)
2861 return -EINVAL;
2862
2863 map->lock(map->lock_arg);
2864
2865 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2866 map->cache_type == REGCACHE_NONE) {
2867 size_t chunk_count, chunk_bytes;
2868 size_t chunk_regs = val_count;
2869
2870 if (!map->cache_bypass && map->cache_only) {
2871 ret = -EBUSY;
2872 goto out;
2873 }
2874
2875 if (!map->read) {
2876 ret = -ENOTSUPP;
2877 goto out;
2878 }
2879
2880 if (map->use_single_read)
2881 chunk_regs = 1;
2882 else if (map->max_raw_read && val_len > map->max_raw_read)
2883 chunk_regs = map->max_raw_read / val_bytes;
2884
2885 chunk_count = val_count / chunk_regs;
2886 chunk_bytes = chunk_regs * val_bytes;
2887
2888 /* Read bytes that fit into whole chunks */
2889 for (i = 0; i < chunk_count; i++) {
2890 ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
2891 if (ret != 0)
2892 goto out;
2893
2894 reg += regmap_get_offset(map, chunk_regs);
2895 val += chunk_bytes;
2896 val_len -= chunk_bytes;
2897 }
2898
2899 /* Read remaining bytes */
2900 if (val_len) {
2901 ret = _regmap_raw_read(map, reg, val, val_len, false);
2902 if (ret != 0)
2903 goto out;
2904 }
2905 } else {
2906 /* Otherwise go word by word for the cache; should be low
2907 * cost as we expect to hit the cache.
2908 */
2909 for (i = 0; i < val_count; i++) {
2910 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2911 &v);
2912 if (ret != 0)
2913 goto out;
2914
2915 map->format.format_val(val + (i * val_bytes), v, 0);
2916 }
2917 }
2918
2919 out:
2920 map->unlock(map->lock_arg);
2921
2922 return ret;
2923 }
2924 EXPORT_SYMBOL_GPL(regmap_raw_read);
2925
2926 /**
2927 * regmap_noinc_read(): Read data from a register without incrementing the
2928 * register number
2929 *
2930 * @map: Register map to read from
2931 * @reg: Register to read from
2932 * @val: Pointer to data buffer
2933 * @val_len: Length of output buffer in bytes.
2934 *
2935 * The regmap API usually assumes that bulk read operations will read a
2936 * range of registers. Some devices have certain registers for which a read
2937 * operation read will read from an internal FIFO.
2938 *
2939 * The target register must be volatile but registers after it can be
2940 * completely unrelated cacheable registers.
2941 *
2942 * This will attempt multiple reads as required to read val_len bytes.
2943 *
2944 * A value of zero will be returned on success, a negative errno will be
2945 * returned in error cases.
2946 */
regmap_noinc_read(struct regmap * map,unsigned int reg,void * val,size_t val_len)2947 int regmap_noinc_read(struct regmap *map, unsigned int reg,
2948 void *val, size_t val_len)
2949 {
2950 size_t read_len;
2951 int ret;
2952
2953 if (!map->read)
2954 return -ENOTSUPP;
2955
2956 if (val_len % map->format.val_bytes)
2957 return -EINVAL;
2958 if (!IS_ALIGNED(reg, map->reg_stride))
2959 return -EINVAL;
2960 if (val_len == 0)
2961 return -EINVAL;
2962
2963 map->lock(map->lock_arg);
2964
2965 if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
2966 ret = -EINVAL;
2967 goto out_unlock;
2968 }
2969
2970 /*
2971 * We have not defined the FIFO semantics for cache, as the
2972 * cache is just one value deep. Should we return the last
2973 * written value? Just avoid this by always reading the FIFO
2974 * even when using cache. Cache only will not work.
2975 */
2976 if (!map->cache_bypass && map->cache_only) {
2977 ret = -EBUSY;
2978 goto out_unlock;
2979 }
2980
2981 /* Use the accelerated operation if we can */
2982 if (map->bus->reg_noinc_read) {
2983 ret = regmap_noinc_readwrite(map, reg, val, val_len, false);
2984 goto out_unlock;
2985 }
2986
2987 while (val_len) {
2988 if (map->max_raw_read && map->max_raw_read < val_len)
2989 read_len = map->max_raw_read;
2990 else
2991 read_len = val_len;
2992 ret = _regmap_raw_read(map, reg, val, read_len, true);
2993 if (ret)
2994 goto out_unlock;
2995 val = ((u8 *)val) + read_len;
2996 val_len -= read_len;
2997 }
2998
2999 out_unlock:
3000 map->unlock(map->lock_arg);
3001 return ret;
3002 }
3003 EXPORT_SYMBOL_GPL(regmap_noinc_read);
3004
3005 /**
3006 * regmap_field_read(): Read a value to a single register field
3007 *
3008 * @field: Register field to read from
3009 * @val: Pointer to store read value
3010 *
3011 * A value of zero will be returned on success, a negative errno will
3012 * be returned in error cases.
3013 */
regmap_field_read(struct regmap_field * field,unsigned int * val)3014 int regmap_field_read(struct regmap_field *field, unsigned int *val)
3015 {
3016 int ret;
3017 unsigned int reg_val;
3018 ret = regmap_read(field->regmap, field->reg, ®_val);
3019 if (ret != 0)
3020 return ret;
3021
3022 reg_val &= field->mask;
3023 reg_val >>= field->shift;
3024 *val = reg_val;
3025
3026 return ret;
3027 }
3028 EXPORT_SYMBOL_GPL(regmap_field_read);
3029
3030 /**
3031 * regmap_fields_read() - Read a value to a single register field with port ID
3032 *
3033 * @field: Register field to read from
3034 * @id: port ID
3035 * @val: Pointer to store read value
3036 *
3037 * A value of zero will be returned on success, a negative errno will
3038 * be returned in error cases.
3039 */
regmap_fields_read(struct regmap_field * field,unsigned int id,unsigned int * val)3040 int regmap_fields_read(struct regmap_field *field, unsigned int id,
3041 unsigned int *val)
3042 {
3043 int ret;
3044 unsigned int reg_val;
3045
3046 if (id >= field->id_size)
3047 return -EINVAL;
3048
3049 ret = regmap_read(field->regmap,
3050 field->reg + (field->id_offset * id),
3051 ®_val);
3052 if (ret != 0)
3053 return ret;
3054
3055 reg_val &= field->mask;
3056 reg_val >>= field->shift;
3057 *val = reg_val;
3058
3059 return ret;
3060 }
3061 EXPORT_SYMBOL_GPL(regmap_fields_read);
3062
3063 /**
3064 * regmap_bulk_read() - Read multiple registers from the device
3065 *
3066 * @map: Register map to read from
3067 * @reg: First register to be read from
3068 * @val: Pointer to store read value, in native register size for device
3069 * @val_count: Number of registers to read
3070 *
3071 * A value of zero will be returned on success, a negative errno will
3072 * be returned in error cases.
3073 */
regmap_bulk_read(struct regmap * map,unsigned int reg,void * val,size_t val_count)3074 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
3075 size_t val_count)
3076 {
3077 int ret, i;
3078 size_t val_bytes = map->format.val_bytes;
3079 bool vol = regmap_volatile_range(map, reg, val_count);
3080
3081 if (!IS_ALIGNED(reg, map->reg_stride))
3082 return -EINVAL;
3083 if (val_count == 0)
3084 return -EINVAL;
3085
3086 if (map->read && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
3087 ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
3088 if (ret != 0)
3089 return ret;
3090
3091 for (i = 0; i < val_count * val_bytes; i += val_bytes)
3092 map->format.parse_inplace(val + i);
3093 } else {
3094 u32 *u32 = val;
3095 u16 *u16 = val;
3096 u8 *u8 = val;
3097
3098 map->lock(map->lock_arg);
3099
3100 for (i = 0; i < val_count; i++) {
3101 unsigned int ival;
3102
3103 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
3104 &ival);
3105 if (ret != 0)
3106 goto out;
3107
3108 switch (map->format.val_bytes) {
3109 case 4:
3110 u32[i] = ival;
3111 break;
3112 case 2:
3113 u16[i] = ival;
3114 break;
3115 case 1:
3116 u8[i] = ival;
3117 break;
3118 default:
3119 ret = -EINVAL;
3120 goto out;
3121 }
3122 }
3123
3124 out:
3125 map->unlock(map->lock_arg);
3126 }
3127
3128 if (!ret)
3129 trace_regmap_bulk_read(map, reg, val, val_bytes * val_count);
3130
3131 return ret;
3132 }
3133 EXPORT_SYMBOL_GPL(regmap_bulk_read);
3134
_regmap_update_bits(struct regmap * map,unsigned int reg,unsigned int mask,unsigned int val,bool * change,bool force_write)3135 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
3136 unsigned int mask, unsigned int val,
3137 bool *change, bool force_write)
3138 {
3139 int ret;
3140 unsigned int tmp, orig;
3141
3142 if (change)
3143 *change = false;
3144
3145 if (regmap_volatile(map, reg) && map->reg_update_bits) {
3146 reg = regmap_reg_addr(map, reg);
3147 ret = map->reg_update_bits(map->bus_context, reg, mask, val);
3148 if (ret == 0 && change)
3149 *change = true;
3150 } else {
3151 ret = _regmap_read(map, reg, &orig);
3152 if (ret != 0)
3153 return ret;
3154
3155 tmp = orig & ~mask;
3156 tmp |= val & mask;
3157
3158 if (force_write || (tmp != orig) || map->force_write_field) {
3159 ret = _regmap_write(map, reg, tmp);
3160 if (ret == 0 && change)
3161 *change = true;
3162 }
3163 }
3164
3165 return ret;
3166 }
3167
3168 /**
3169 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
3170 *
3171 * @map: Register map to update
3172 * @reg: Register to update
3173 * @mask: Bitmask to change
3174 * @val: New value for bitmask
3175 * @change: Boolean indicating if a write was done
3176 * @async: Boolean indicating asynchronously
3177 * @force: Boolean indicating use force update
3178 *
3179 * Perform a read/modify/write cycle on a register map with change, async, force
3180 * options.
3181 *
3182 * If async is true:
3183 *
3184 * With most buses the read must be done synchronously so this is most useful
3185 * for devices with a cache which do not need to interact with the hardware to
3186 * determine the current register value.
3187 *
3188 * Returns zero for success, a negative number on error.
3189 */
regmap_update_bits_base(struct regmap * map,unsigned int reg,unsigned int mask,unsigned int val,bool * change,bool async,bool force)3190 int regmap_update_bits_base(struct regmap *map, unsigned int reg,
3191 unsigned int mask, unsigned int val,
3192 bool *change, bool async, bool force)
3193 {
3194 int ret;
3195
3196 map->lock(map->lock_arg);
3197
3198 map->async = async;
3199
3200 ret = _regmap_update_bits(map, reg, mask, val, change, force);
3201
3202 map->async = false;
3203
3204 map->unlock(map->lock_arg);
3205
3206 return ret;
3207 }
3208 EXPORT_SYMBOL_GPL(regmap_update_bits_base);
3209
3210 /**
3211 * regmap_test_bits() - Check if all specified bits are set in a register.
3212 *
3213 * @map: Register map to operate on
3214 * @reg: Register to read from
3215 * @bits: Bits to test
3216 *
3217 * Returns 0 if at least one of the tested bits is not set, 1 if all tested
3218 * bits are set and a negative error number if the underlying regmap_read()
3219 * fails.
3220 */
regmap_test_bits(struct regmap * map,unsigned int reg,unsigned int bits)3221 int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
3222 {
3223 unsigned int val, ret;
3224
3225 ret = regmap_read(map, reg, &val);
3226 if (ret)
3227 return ret;
3228
3229 return (val & bits) == bits;
3230 }
3231 EXPORT_SYMBOL_GPL(regmap_test_bits);
3232
regmap_async_complete_cb(struct regmap_async * async,int ret)3233 void regmap_async_complete_cb(struct regmap_async *async, int ret)
3234 {
3235 struct regmap *map = async->map;
3236 bool wake;
3237
3238 trace_regmap_async_io_complete(map);
3239
3240 spin_lock(&map->async_lock);
3241 list_move(&async->list, &map->async_free);
3242 wake = list_empty(&map->async_list);
3243
3244 if (ret != 0)
3245 map->async_ret = ret;
3246
3247 spin_unlock(&map->async_lock);
3248
3249 if (wake)
3250 wake_up(&map->async_waitq);
3251 }
3252 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
3253
regmap_async_is_done(struct regmap * map)3254 static int regmap_async_is_done(struct regmap *map)
3255 {
3256 unsigned long flags;
3257 int ret;
3258
3259 spin_lock_irqsave(&map->async_lock, flags);
3260 ret = list_empty(&map->async_list);
3261 spin_unlock_irqrestore(&map->async_lock, flags);
3262
3263 return ret;
3264 }
3265
3266 /**
3267 * regmap_async_complete - Ensure all asynchronous I/O has completed.
3268 *
3269 * @map: Map to operate on.
3270 *
3271 * Blocks until any pending asynchronous I/O has completed. Returns
3272 * an error code for any failed I/O operations.
3273 */
regmap_async_complete(struct regmap * map)3274 int regmap_async_complete(struct regmap *map)
3275 {
3276 unsigned long flags;
3277 int ret;
3278
3279 /* Nothing to do with no async support */
3280 if (!map->bus || !map->bus->async_write)
3281 return 0;
3282
3283 trace_regmap_async_complete_start(map);
3284
3285 wait_event(map->async_waitq, regmap_async_is_done(map));
3286
3287 spin_lock_irqsave(&map->async_lock, flags);
3288 ret = map->async_ret;
3289 map->async_ret = 0;
3290 spin_unlock_irqrestore(&map->async_lock, flags);
3291
3292 trace_regmap_async_complete_done(map);
3293
3294 return ret;
3295 }
3296 EXPORT_SYMBOL_GPL(regmap_async_complete);
3297
3298 /**
3299 * regmap_register_patch - Register and apply register updates to be applied
3300 * on device initialistion
3301 *
3302 * @map: Register map to apply updates to.
3303 * @regs: Values to update.
3304 * @num_regs: Number of entries in regs.
3305 *
3306 * Register a set of register updates to be applied to the device
3307 * whenever the device registers are synchronised with the cache and
3308 * apply them immediately. Typically this is used to apply
3309 * corrections to be applied to the device defaults on startup, such
3310 * as the updates some vendors provide to undocumented registers.
3311 *
3312 * The caller must ensure that this function cannot be called
3313 * concurrently with either itself or regcache_sync().
3314 */
regmap_register_patch(struct regmap * map,const struct reg_sequence * regs,int num_regs)3315 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3316 int num_regs)
3317 {
3318 struct reg_sequence *p;
3319 int ret;
3320 bool bypass;
3321
3322 if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3323 num_regs))
3324 return 0;
3325
3326 p = krealloc(map->patch,
3327 sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3328 GFP_KERNEL);
3329 if (p) {
3330 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3331 map->patch = p;
3332 map->patch_regs += num_regs;
3333 } else {
3334 return -ENOMEM;
3335 }
3336
3337 map->lock(map->lock_arg);
3338
3339 bypass = map->cache_bypass;
3340
3341 map->cache_bypass = true;
3342 map->async = true;
3343
3344 ret = _regmap_multi_reg_write(map, regs, num_regs);
3345
3346 map->async = false;
3347 map->cache_bypass = bypass;
3348
3349 map->unlock(map->lock_arg);
3350
3351 regmap_async_complete(map);
3352
3353 return ret;
3354 }
3355 EXPORT_SYMBOL_GPL(regmap_register_patch);
3356
3357 /**
3358 * regmap_get_val_bytes() - Report the size of a register value
3359 *
3360 * @map: Register map to operate on.
3361 *
3362 * Report the size of a register value, mainly intended to for use by
3363 * generic infrastructure built on top of regmap.
3364 */
regmap_get_val_bytes(struct regmap * map)3365 int regmap_get_val_bytes(struct regmap *map)
3366 {
3367 if (map->format.format_write)
3368 return -EINVAL;
3369
3370 return map->format.val_bytes;
3371 }
3372 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3373
3374 /**
3375 * regmap_get_max_register() - Report the max register value
3376 *
3377 * @map: Register map to operate on.
3378 *
3379 * Report the max register value, mainly intended to for use by
3380 * generic infrastructure built on top of regmap.
3381 */
regmap_get_max_register(struct regmap * map)3382 int regmap_get_max_register(struct regmap *map)
3383 {
3384 return map->max_register ? map->max_register : -EINVAL;
3385 }
3386 EXPORT_SYMBOL_GPL(regmap_get_max_register);
3387
3388 /**
3389 * regmap_get_reg_stride() - Report the register address stride
3390 *
3391 * @map: Register map to operate on.
3392 *
3393 * Report the register address stride, mainly intended to for use by
3394 * generic infrastructure built on top of regmap.
3395 */
regmap_get_reg_stride(struct regmap * map)3396 int regmap_get_reg_stride(struct regmap *map)
3397 {
3398 return map->reg_stride;
3399 }
3400 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3401
3402 /**
3403 * regmap_might_sleep() - Returns whether a regmap access might sleep.
3404 *
3405 * @map: Register map to operate on.
3406 *
3407 * Returns true if an access to the register might sleep, else false.
3408 */
regmap_might_sleep(struct regmap * map)3409 bool regmap_might_sleep(struct regmap *map)
3410 {
3411 return map->can_sleep;
3412 }
3413 EXPORT_SYMBOL_GPL(regmap_might_sleep);
3414
regmap_parse_val(struct regmap * map,const void * buf,unsigned int * val)3415 int regmap_parse_val(struct regmap *map, const void *buf,
3416 unsigned int *val)
3417 {
3418 if (!map->format.parse_val)
3419 return -EINVAL;
3420
3421 *val = map->format.parse_val(buf);
3422
3423 return 0;
3424 }
3425 EXPORT_SYMBOL_GPL(regmap_parse_val);
3426
regmap_initcall(void)3427 static int __init regmap_initcall(void)
3428 {
3429 regmap_debugfs_initcall();
3430
3431 return 0;
3432 }
3433 postcore_initcall(regmap_initcall);
3434