1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Register map access API
4 //
5 // Copyright 2011 Wolfson Microelectronics plc
6 //
7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8
9 #include <linux/device.h>
10 #include <linux/slab.h>
11 #include <linux/export.h>
12 #include <linux/mutex.h>
13 #include <linux/err.h>
14 #include <linux/property.h>
15 #include <linux/rbtree.h>
16 #include <linux/sched.h>
17 #include <linux/delay.h>
18 #include <linux/log2.h>
19 #include <linux/hwspinlock.h>
20 #include <asm/unaligned.h>
21
22 #define CREATE_TRACE_POINTS
23 #include "trace.h"
24
25 #include "internal.h"
26
27 /*
28 * Sometimes for failures during very early init the trace
29 * infrastructure isn't available early enough to be used. For this
30 * sort of problem defining LOG_DEVICE will add printks for basic
31 * register I/O on a specific device.
32 */
33 #undef LOG_DEVICE
34
35 #ifdef LOG_DEVICE
regmap_should_log(struct regmap * map)36 static inline bool regmap_should_log(struct regmap *map)
37 {
38 return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
39 }
40 #else
regmap_should_log(struct regmap * map)41 static inline bool regmap_should_log(struct regmap *map) { return false; }
42 #endif
43
44
45 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
46 unsigned int mask, unsigned int val,
47 bool *change, bool force_write);
48
49 static int _regmap_bus_reg_read(void *context, unsigned int reg,
50 unsigned int *val);
51 static int _regmap_bus_read(void *context, unsigned int reg,
52 unsigned int *val);
53 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
54 unsigned int val);
55 static int _regmap_bus_reg_write(void *context, unsigned int reg,
56 unsigned int val);
57 static int _regmap_bus_raw_write(void *context, unsigned int reg,
58 unsigned int val);
59
regmap_reg_in_ranges(unsigned int reg,const struct regmap_range * ranges,unsigned int nranges)60 bool regmap_reg_in_ranges(unsigned int reg,
61 const struct regmap_range *ranges,
62 unsigned int nranges)
63 {
64 const struct regmap_range *r;
65 int i;
66
67 for (i = 0, r = ranges; i < nranges; i++, r++)
68 if (regmap_reg_in_range(reg, r))
69 return true;
70 return false;
71 }
72 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
73
regmap_check_range_table(struct regmap * map,unsigned int reg,const struct regmap_access_table * table)74 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
75 const struct regmap_access_table *table)
76 {
77 /* Check "no ranges" first */
78 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
79 return false;
80
81 /* In case zero "yes ranges" are supplied, any reg is OK */
82 if (!table->n_yes_ranges)
83 return true;
84
85 return regmap_reg_in_ranges(reg, table->yes_ranges,
86 table->n_yes_ranges);
87 }
88 EXPORT_SYMBOL_GPL(regmap_check_range_table);
89
regmap_writeable(struct regmap * map,unsigned int reg)90 bool regmap_writeable(struct regmap *map, unsigned int reg)
91 {
92 if (map->max_register && reg > map->max_register)
93 return false;
94
95 if (map->writeable_reg)
96 return map->writeable_reg(map->dev, reg);
97
98 if (map->wr_table)
99 return regmap_check_range_table(map, reg, map->wr_table);
100
101 return true;
102 }
103
regmap_cached(struct regmap * map,unsigned int reg)104 bool regmap_cached(struct regmap *map, unsigned int reg)
105 {
106 int ret;
107 unsigned int val;
108
109 if (map->cache_type == REGCACHE_NONE)
110 return false;
111
112 if (!map->cache_ops)
113 return false;
114
115 if (map->max_register && reg > map->max_register)
116 return false;
117
118 map->lock(map->lock_arg);
119 ret = regcache_read(map, reg, &val);
120 map->unlock(map->lock_arg);
121 if (ret)
122 return false;
123
124 return true;
125 }
126
regmap_readable(struct regmap * map,unsigned int reg)127 bool regmap_readable(struct regmap *map, unsigned int reg)
128 {
129 if (!map->reg_read)
130 return false;
131
132 if (map->max_register && reg > map->max_register)
133 return false;
134
135 if (map->format.format_write)
136 return false;
137
138 if (map->readable_reg)
139 return map->readable_reg(map->dev, reg);
140
141 if (map->rd_table)
142 return regmap_check_range_table(map, reg, map->rd_table);
143
144 return true;
145 }
146
regmap_volatile(struct regmap * map,unsigned int reg)147 bool regmap_volatile(struct regmap *map, unsigned int reg)
148 {
149 if (!map->format.format_write && !regmap_readable(map, reg))
150 return false;
151
152 if (map->volatile_reg)
153 return map->volatile_reg(map->dev, reg);
154
155 if (map->volatile_table)
156 return regmap_check_range_table(map, reg, map->volatile_table);
157
158 if (map->cache_ops)
159 return false;
160 else
161 return true;
162 }
163
regmap_precious(struct regmap * map,unsigned int reg)164 bool regmap_precious(struct regmap *map, unsigned int reg)
165 {
166 if (!regmap_readable(map, reg))
167 return false;
168
169 if (map->precious_reg)
170 return map->precious_reg(map->dev, reg);
171
172 if (map->precious_table)
173 return regmap_check_range_table(map, reg, map->precious_table);
174
175 return false;
176 }
177
regmap_writeable_noinc(struct regmap * map,unsigned int reg)178 bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
179 {
180 if (map->writeable_noinc_reg)
181 return map->writeable_noinc_reg(map->dev, reg);
182
183 if (map->wr_noinc_table)
184 return regmap_check_range_table(map, reg, map->wr_noinc_table);
185
186 return true;
187 }
188
regmap_readable_noinc(struct regmap * map,unsigned int reg)189 bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
190 {
191 if (map->readable_noinc_reg)
192 return map->readable_noinc_reg(map->dev, reg);
193
194 if (map->rd_noinc_table)
195 return regmap_check_range_table(map, reg, map->rd_noinc_table);
196
197 return true;
198 }
199
regmap_volatile_range(struct regmap * map,unsigned int reg,size_t num)200 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
201 size_t num)
202 {
203 unsigned int i;
204
205 for (i = 0; i < num; i++)
206 if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
207 return false;
208
209 return true;
210 }
211
regmap_format_12_20_write(struct regmap * map,unsigned int reg,unsigned int val)212 static void regmap_format_12_20_write(struct regmap *map,
213 unsigned int reg, unsigned int val)
214 {
215 u8 *out = map->work_buf;
216
217 out[0] = reg >> 4;
218 out[1] = (reg << 4) | (val >> 16);
219 out[2] = val >> 8;
220 out[3] = val;
221 }
222
223
regmap_format_2_6_write(struct regmap * map,unsigned int reg,unsigned int val)224 static void regmap_format_2_6_write(struct regmap *map,
225 unsigned int reg, unsigned int val)
226 {
227 u8 *out = map->work_buf;
228
229 *out = (reg << 6) | val;
230 }
231
regmap_format_4_12_write(struct regmap * map,unsigned int reg,unsigned int val)232 static void regmap_format_4_12_write(struct regmap *map,
233 unsigned int reg, unsigned int val)
234 {
235 __be16 *out = map->work_buf;
236 *out = cpu_to_be16((reg << 12) | val);
237 }
238
regmap_format_7_9_write(struct regmap * map,unsigned int reg,unsigned int val)239 static void regmap_format_7_9_write(struct regmap *map,
240 unsigned int reg, unsigned int val)
241 {
242 __be16 *out = map->work_buf;
243 *out = cpu_to_be16((reg << 9) | val);
244 }
245
regmap_format_7_17_write(struct regmap * map,unsigned int reg,unsigned int val)246 static void regmap_format_7_17_write(struct regmap *map,
247 unsigned int reg, unsigned int val)
248 {
249 u8 *out = map->work_buf;
250
251 out[2] = val;
252 out[1] = val >> 8;
253 out[0] = (val >> 16) | (reg << 1);
254 }
255
regmap_format_10_14_write(struct regmap * map,unsigned int reg,unsigned int val)256 static void regmap_format_10_14_write(struct regmap *map,
257 unsigned int reg, unsigned int val)
258 {
259 u8 *out = map->work_buf;
260
261 out[2] = val;
262 out[1] = (val >> 8) | (reg << 6);
263 out[0] = reg >> 2;
264 }
265
regmap_format_8(void * buf,unsigned int val,unsigned int shift)266 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
267 {
268 u8 *b = buf;
269
270 b[0] = val << shift;
271 }
272
regmap_format_16_be(void * buf,unsigned int val,unsigned int shift)273 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
274 {
275 put_unaligned_be16(val << shift, buf);
276 }
277
regmap_format_16_le(void * buf,unsigned int val,unsigned int shift)278 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
279 {
280 put_unaligned_le16(val << shift, buf);
281 }
282
regmap_format_16_native(void * buf,unsigned int val,unsigned int shift)283 static void regmap_format_16_native(void *buf, unsigned int val,
284 unsigned int shift)
285 {
286 u16 v = val << shift;
287
288 memcpy(buf, &v, sizeof(v));
289 }
290
regmap_format_24(void * buf,unsigned int val,unsigned int shift)291 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
292 {
293 u8 *b = buf;
294
295 val <<= shift;
296
297 b[0] = val >> 16;
298 b[1] = val >> 8;
299 b[2] = val;
300 }
301
regmap_format_32_be(void * buf,unsigned int val,unsigned int shift)302 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
303 {
304 put_unaligned_be32(val << shift, buf);
305 }
306
regmap_format_32_le(void * buf,unsigned int val,unsigned int shift)307 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
308 {
309 put_unaligned_le32(val << shift, buf);
310 }
311
regmap_format_32_native(void * buf,unsigned int val,unsigned int shift)312 static void regmap_format_32_native(void *buf, unsigned int val,
313 unsigned int shift)
314 {
315 u32 v = val << shift;
316
317 memcpy(buf, &v, sizeof(v));
318 }
319
320 #ifdef CONFIG_64BIT
regmap_format_64_be(void * buf,unsigned int val,unsigned int shift)321 static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
322 {
323 put_unaligned_be64((u64) val << shift, buf);
324 }
325
regmap_format_64_le(void * buf,unsigned int val,unsigned int shift)326 static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
327 {
328 put_unaligned_le64((u64) val << shift, buf);
329 }
330
regmap_format_64_native(void * buf,unsigned int val,unsigned int shift)331 static void regmap_format_64_native(void *buf, unsigned int val,
332 unsigned int shift)
333 {
334 u64 v = (u64) val << shift;
335
336 memcpy(buf, &v, sizeof(v));
337 }
338 #endif
339
regmap_parse_inplace_noop(void * buf)340 static void regmap_parse_inplace_noop(void *buf)
341 {
342 }
343
regmap_parse_8(const void * buf)344 static unsigned int regmap_parse_8(const void *buf)
345 {
346 const u8 *b = buf;
347
348 return b[0];
349 }
350
regmap_parse_16_be(const void * buf)351 static unsigned int regmap_parse_16_be(const void *buf)
352 {
353 return get_unaligned_be16(buf);
354 }
355
regmap_parse_16_le(const void * buf)356 static unsigned int regmap_parse_16_le(const void *buf)
357 {
358 return get_unaligned_le16(buf);
359 }
360
regmap_parse_16_be_inplace(void * buf)361 static void regmap_parse_16_be_inplace(void *buf)
362 {
363 u16 v = get_unaligned_be16(buf);
364
365 memcpy(buf, &v, sizeof(v));
366 }
367
regmap_parse_16_le_inplace(void * buf)368 static void regmap_parse_16_le_inplace(void *buf)
369 {
370 u16 v = get_unaligned_le16(buf);
371
372 memcpy(buf, &v, sizeof(v));
373 }
374
regmap_parse_16_native(const void * buf)375 static unsigned int regmap_parse_16_native(const void *buf)
376 {
377 u16 v;
378
379 memcpy(&v, buf, sizeof(v));
380 return v;
381 }
382
regmap_parse_24(const void * buf)383 static unsigned int regmap_parse_24(const void *buf)
384 {
385 const u8 *b = buf;
386 unsigned int ret = b[2];
387 ret |= ((unsigned int)b[1]) << 8;
388 ret |= ((unsigned int)b[0]) << 16;
389
390 return ret;
391 }
392
regmap_parse_32_be(const void * buf)393 static unsigned int regmap_parse_32_be(const void *buf)
394 {
395 return get_unaligned_be32(buf);
396 }
397
regmap_parse_32_le(const void * buf)398 static unsigned int regmap_parse_32_le(const void *buf)
399 {
400 return get_unaligned_le32(buf);
401 }
402
regmap_parse_32_be_inplace(void * buf)403 static void regmap_parse_32_be_inplace(void *buf)
404 {
405 u32 v = get_unaligned_be32(buf);
406
407 memcpy(buf, &v, sizeof(v));
408 }
409
regmap_parse_32_le_inplace(void * buf)410 static void regmap_parse_32_le_inplace(void *buf)
411 {
412 u32 v = get_unaligned_le32(buf);
413
414 memcpy(buf, &v, sizeof(v));
415 }
416
regmap_parse_32_native(const void * buf)417 static unsigned int regmap_parse_32_native(const void *buf)
418 {
419 u32 v;
420
421 memcpy(&v, buf, sizeof(v));
422 return v;
423 }
424
425 #ifdef CONFIG_64BIT
regmap_parse_64_be(const void * buf)426 static unsigned int regmap_parse_64_be(const void *buf)
427 {
428 return get_unaligned_be64(buf);
429 }
430
regmap_parse_64_le(const void * buf)431 static unsigned int regmap_parse_64_le(const void *buf)
432 {
433 return get_unaligned_le64(buf);
434 }
435
regmap_parse_64_be_inplace(void * buf)436 static void regmap_parse_64_be_inplace(void *buf)
437 {
438 u64 v = get_unaligned_be64(buf);
439
440 memcpy(buf, &v, sizeof(v));
441 }
442
regmap_parse_64_le_inplace(void * buf)443 static void regmap_parse_64_le_inplace(void *buf)
444 {
445 u64 v = get_unaligned_le64(buf);
446
447 memcpy(buf, &v, sizeof(v));
448 }
449
regmap_parse_64_native(const void * buf)450 static unsigned int regmap_parse_64_native(const void *buf)
451 {
452 u64 v;
453
454 memcpy(&v, buf, sizeof(v));
455 return v;
456 }
457 #endif
458
regmap_lock_hwlock(void * __map)459 static void regmap_lock_hwlock(void *__map)
460 {
461 struct regmap *map = __map;
462
463 hwspin_lock_timeout(map->hwlock, UINT_MAX);
464 }
465
regmap_lock_hwlock_irq(void * __map)466 static void regmap_lock_hwlock_irq(void *__map)
467 {
468 struct regmap *map = __map;
469
470 hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
471 }
472
regmap_lock_hwlock_irqsave(void * __map)473 static void regmap_lock_hwlock_irqsave(void *__map)
474 {
475 struct regmap *map = __map;
476
477 hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
478 &map->spinlock_flags);
479 }
480
regmap_unlock_hwlock(void * __map)481 static void regmap_unlock_hwlock(void *__map)
482 {
483 struct regmap *map = __map;
484
485 hwspin_unlock(map->hwlock);
486 }
487
regmap_unlock_hwlock_irq(void * __map)488 static void regmap_unlock_hwlock_irq(void *__map)
489 {
490 struct regmap *map = __map;
491
492 hwspin_unlock_irq(map->hwlock);
493 }
494
regmap_unlock_hwlock_irqrestore(void * __map)495 static void regmap_unlock_hwlock_irqrestore(void *__map)
496 {
497 struct regmap *map = __map;
498
499 hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
500 }
501
regmap_lock_unlock_none(void * __map)502 static void regmap_lock_unlock_none(void *__map)
503 {
504
505 }
506
regmap_lock_mutex(void * __map)507 static void regmap_lock_mutex(void *__map)
508 {
509 struct regmap *map = __map;
510 mutex_lock(&map->mutex);
511 }
512
regmap_unlock_mutex(void * __map)513 static void regmap_unlock_mutex(void *__map)
514 {
515 struct regmap *map = __map;
516 mutex_unlock(&map->mutex);
517 }
518
regmap_lock_spinlock(void * __map)519 static void regmap_lock_spinlock(void *__map)
520 __acquires(&map->spinlock)
521 {
522 struct regmap *map = __map;
523 unsigned long flags;
524
525 spin_lock_irqsave(&map->spinlock, flags);
526 map->spinlock_flags = flags;
527 }
528
regmap_unlock_spinlock(void * __map)529 static void regmap_unlock_spinlock(void *__map)
530 __releases(&map->spinlock)
531 {
532 struct regmap *map = __map;
533 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
534 }
535
regmap_lock_raw_spinlock(void * __map)536 static void regmap_lock_raw_spinlock(void *__map)
537 __acquires(&map->raw_spinlock)
538 {
539 struct regmap *map = __map;
540 unsigned long flags;
541
542 raw_spin_lock_irqsave(&map->raw_spinlock, flags);
543 map->raw_spinlock_flags = flags;
544 }
545
regmap_unlock_raw_spinlock(void * __map)546 static void regmap_unlock_raw_spinlock(void *__map)
547 __releases(&map->raw_spinlock)
548 {
549 struct regmap *map = __map;
550 raw_spin_unlock_irqrestore(&map->raw_spinlock, map->raw_spinlock_flags);
551 }
552
dev_get_regmap_release(struct device * dev,void * res)553 static void dev_get_regmap_release(struct device *dev, void *res)
554 {
555 /*
556 * We don't actually have anything to do here; the goal here
557 * is not to manage the regmap but to provide a simple way to
558 * get the regmap back given a struct device.
559 */
560 }
561
_regmap_range_add(struct regmap * map,struct regmap_range_node * data)562 static bool _regmap_range_add(struct regmap *map,
563 struct regmap_range_node *data)
564 {
565 struct rb_root *root = &map->range_tree;
566 struct rb_node **new = &(root->rb_node), *parent = NULL;
567
568 while (*new) {
569 struct regmap_range_node *this =
570 rb_entry(*new, struct regmap_range_node, node);
571
572 parent = *new;
573 if (data->range_max < this->range_min)
574 new = &((*new)->rb_left);
575 else if (data->range_min > this->range_max)
576 new = &((*new)->rb_right);
577 else
578 return false;
579 }
580
581 rb_link_node(&data->node, parent, new);
582 rb_insert_color(&data->node, root);
583
584 return true;
585 }
586
_regmap_range_lookup(struct regmap * map,unsigned int reg)587 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
588 unsigned int reg)
589 {
590 struct rb_node *node = map->range_tree.rb_node;
591
592 while (node) {
593 struct regmap_range_node *this =
594 rb_entry(node, struct regmap_range_node, node);
595
596 if (reg < this->range_min)
597 node = node->rb_left;
598 else if (reg > this->range_max)
599 node = node->rb_right;
600 else
601 return this;
602 }
603
604 return NULL;
605 }
606
regmap_range_exit(struct regmap * map)607 static void regmap_range_exit(struct regmap *map)
608 {
609 struct rb_node *next;
610 struct regmap_range_node *range_node;
611
612 next = rb_first(&map->range_tree);
613 while (next) {
614 range_node = rb_entry(next, struct regmap_range_node, node);
615 next = rb_next(&range_node->node);
616 rb_erase(&range_node->node, &map->range_tree);
617 kfree(range_node);
618 }
619
620 kfree(map->selector_work_buf);
621 }
622
regmap_set_name(struct regmap * map,const struct regmap_config * config)623 static int regmap_set_name(struct regmap *map, const struct regmap_config *config)
624 {
625 if (config->name) {
626 const char *name = kstrdup_const(config->name, GFP_KERNEL);
627
628 if (!name)
629 return -ENOMEM;
630
631 kfree_const(map->name);
632 map->name = name;
633 }
634
635 return 0;
636 }
637
regmap_attach_dev(struct device * dev,struct regmap * map,const struct regmap_config * config)638 int regmap_attach_dev(struct device *dev, struct regmap *map,
639 const struct regmap_config *config)
640 {
641 struct regmap **m;
642 int ret;
643
644 map->dev = dev;
645
646 ret = regmap_set_name(map, config);
647 if (ret)
648 return ret;
649
650 regmap_debugfs_init(map);
651
652 /* Add a devres resource for dev_get_regmap() */
653 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
654 if (!m) {
655 regmap_debugfs_exit(map);
656 return -ENOMEM;
657 }
658 *m = map;
659 devres_add(dev, m);
660
661 return 0;
662 }
663 EXPORT_SYMBOL_GPL(regmap_attach_dev);
664
regmap_get_reg_endian(const struct regmap_bus * bus,const struct regmap_config * config)665 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
666 const struct regmap_config *config)
667 {
668 enum regmap_endian endian;
669
670 /* Retrieve the endianness specification from the regmap config */
671 endian = config->reg_format_endian;
672
673 /* If the regmap config specified a non-default value, use that */
674 if (endian != REGMAP_ENDIAN_DEFAULT)
675 return endian;
676
677 /* Retrieve the endianness specification from the bus config */
678 if (bus && bus->reg_format_endian_default)
679 endian = bus->reg_format_endian_default;
680
681 /* If the bus specified a non-default value, use that */
682 if (endian != REGMAP_ENDIAN_DEFAULT)
683 return endian;
684
685 /* Use this if no other value was found */
686 return REGMAP_ENDIAN_BIG;
687 }
688
regmap_get_val_endian(struct device * dev,const struct regmap_bus * bus,const struct regmap_config * config)689 enum regmap_endian regmap_get_val_endian(struct device *dev,
690 const struct regmap_bus *bus,
691 const struct regmap_config *config)
692 {
693 struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
694 enum regmap_endian endian;
695
696 /* Retrieve the endianness specification from the regmap config */
697 endian = config->val_format_endian;
698
699 /* If the regmap config specified a non-default value, use that */
700 if (endian != REGMAP_ENDIAN_DEFAULT)
701 return endian;
702
703 /* If the firmware node exist try to get endianness from it */
704 if (fwnode_property_read_bool(fwnode, "big-endian"))
705 endian = REGMAP_ENDIAN_BIG;
706 else if (fwnode_property_read_bool(fwnode, "little-endian"))
707 endian = REGMAP_ENDIAN_LITTLE;
708 else if (fwnode_property_read_bool(fwnode, "native-endian"))
709 endian = REGMAP_ENDIAN_NATIVE;
710
711 /* If the endianness was specified in fwnode, use that */
712 if (endian != REGMAP_ENDIAN_DEFAULT)
713 return endian;
714
715 /* Retrieve the endianness specification from the bus config */
716 if (bus && bus->val_format_endian_default)
717 endian = bus->val_format_endian_default;
718
719 /* If the bus specified a non-default value, use that */
720 if (endian != REGMAP_ENDIAN_DEFAULT)
721 return endian;
722
723 /* Use this if no other value was found */
724 return REGMAP_ENDIAN_BIG;
725 }
726 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
727
__regmap_init(struct device * dev,const struct regmap_bus * bus,void * bus_context,const struct regmap_config * config,struct lock_class_key * lock_key,const char * lock_name)728 struct regmap *__regmap_init(struct device *dev,
729 const struct regmap_bus *bus,
730 void *bus_context,
731 const struct regmap_config *config,
732 struct lock_class_key *lock_key,
733 const char *lock_name)
734 {
735 struct regmap *map;
736 int ret = -EINVAL;
737 enum regmap_endian reg_endian, val_endian;
738 int i, j;
739
740 if (!config)
741 goto err;
742
743 map = kzalloc(sizeof(*map), GFP_KERNEL);
744 if (map == NULL) {
745 ret = -ENOMEM;
746 goto err;
747 }
748
749 ret = regmap_set_name(map, config);
750 if (ret)
751 goto err_map;
752
753 ret = -EINVAL; /* Later error paths rely on this */
754
755 if (config->disable_locking) {
756 map->lock = map->unlock = regmap_lock_unlock_none;
757 map->can_sleep = config->can_sleep;
758 regmap_debugfs_disable(map);
759 } else if (config->lock && config->unlock) {
760 map->lock = config->lock;
761 map->unlock = config->unlock;
762 map->lock_arg = config->lock_arg;
763 map->can_sleep = config->can_sleep;
764 } else if (config->use_hwlock) {
765 map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
766 if (!map->hwlock) {
767 ret = -ENXIO;
768 goto err_name;
769 }
770
771 switch (config->hwlock_mode) {
772 case HWLOCK_IRQSTATE:
773 map->lock = regmap_lock_hwlock_irqsave;
774 map->unlock = regmap_unlock_hwlock_irqrestore;
775 break;
776 case HWLOCK_IRQ:
777 map->lock = regmap_lock_hwlock_irq;
778 map->unlock = regmap_unlock_hwlock_irq;
779 break;
780 default:
781 map->lock = regmap_lock_hwlock;
782 map->unlock = regmap_unlock_hwlock;
783 break;
784 }
785
786 map->lock_arg = map;
787 } else {
788 if ((bus && bus->fast_io) ||
789 config->fast_io) {
790 if (config->use_raw_spinlock) {
791 raw_spin_lock_init(&map->raw_spinlock);
792 map->lock = regmap_lock_raw_spinlock;
793 map->unlock = regmap_unlock_raw_spinlock;
794 lockdep_set_class_and_name(&map->raw_spinlock,
795 lock_key, lock_name);
796 } else {
797 spin_lock_init(&map->spinlock);
798 map->lock = regmap_lock_spinlock;
799 map->unlock = regmap_unlock_spinlock;
800 lockdep_set_class_and_name(&map->spinlock,
801 lock_key, lock_name);
802 }
803 } else {
804 mutex_init(&map->mutex);
805 map->lock = regmap_lock_mutex;
806 map->unlock = regmap_unlock_mutex;
807 map->can_sleep = true;
808 lockdep_set_class_and_name(&map->mutex,
809 lock_key, lock_name);
810 }
811 map->lock_arg = map;
812 }
813
814 /*
815 * When we write in fast-paths with regmap_bulk_write() don't allocate
816 * scratch buffers with sleeping allocations.
817 */
818 if ((bus && bus->fast_io) || config->fast_io)
819 map->alloc_flags = GFP_ATOMIC;
820 else
821 map->alloc_flags = GFP_KERNEL;
822
823 map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
824 map->format.pad_bytes = config->pad_bits / 8;
825 map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
826 map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
827 config->val_bits + config->pad_bits, 8);
828 map->reg_shift = config->pad_bits % 8;
829 if (config->reg_stride)
830 map->reg_stride = config->reg_stride;
831 else
832 map->reg_stride = 1;
833 if (is_power_of_2(map->reg_stride))
834 map->reg_stride_order = ilog2(map->reg_stride);
835 else
836 map->reg_stride_order = -1;
837 map->use_single_read = config->use_single_read || !bus || !bus->read;
838 map->use_single_write = config->use_single_write || !bus || !bus->write;
839 map->can_multi_write = config->can_multi_write && bus && bus->write;
840 if (bus) {
841 map->max_raw_read = bus->max_raw_read;
842 map->max_raw_write = bus->max_raw_write;
843 }
844 map->dev = dev;
845 map->bus = bus;
846 map->bus_context = bus_context;
847 map->max_register = config->max_register;
848 map->wr_table = config->wr_table;
849 map->rd_table = config->rd_table;
850 map->volatile_table = config->volatile_table;
851 map->precious_table = config->precious_table;
852 map->wr_noinc_table = config->wr_noinc_table;
853 map->rd_noinc_table = config->rd_noinc_table;
854 map->writeable_reg = config->writeable_reg;
855 map->readable_reg = config->readable_reg;
856 map->volatile_reg = config->volatile_reg;
857 map->precious_reg = config->precious_reg;
858 map->writeable_noinc_reg = config->writeable_noinc_reg;
859 map->readable_noinc_reg = config->readable_noinc_reg;
860 map->cache_type = config->cache_type;
861
862 spin_lock_init(&map->async_lock);
863 INIT_LIST_HEAD(&map->async_list);
864 INIT_LIST_HEAD(&map->async_free);
865 init_waitqueue_head(&map->async_waitq);
866
867 if (config->read_flag_mask ||
868 config->write_flag_mask ||
869 config->zero_flag_mask) {
870 map->read_flag_mask = config->read_flag_mask;
871 map->write_flag_mask = config->write_flag_mask;
872 } else if (bus) {
873 map->read_flag_mask = bus->read_flag_mask;
874 }
875
876 if (!bus) {
877 map->reg_read = config->reg_read;
878 map->reg_write = config->reg_write;
879
880 map->defer_caching = false;
881 goto skip_format_initialization;
882 } else if (!bus->read || !bus->write) {
883 map->reg_read = _regmap_bus_reg_read;
884 map->reg_write = _regmap_bus_reg_write;
885 map->reg_update_bits = bus->reg_update_bits;
886
887 map->defer_caching = false;
888 goto skip_format_initialization;
889 } else {
890 map->reg_read = _regmap_bus_read;
891 map->reg_update_bits = bus->reg_update_bits;
892 }
893
894 reg_endian = regmap_get_reg_endian(bus, config);
895 val_endian = regmap_get_val_endian(dev, bus, config);
896
897 switch (config->reg_bits + map->reg_shift) {
898 case 2:
899 switch (config->val_bits) {
900 case 6:
901 map->format.format_write = regmap_format_2_6_write;
902 break;
903 default:
904 goto err_hwlock;
905 }
906 break;
907
908 case 4:
909 switch (config->val_bits) {
910 case 12:
911 map->format.format_write = regmap_format_4_12_write;
912 break;
913 default:
914 goto err_hwlock;
915 }
916 break;
917
918 case 7:
919 switch (config->val_bits) {
920 case 9:
921 map->format.format_write = regmap_format_7_9_write;
922 break;
923 case 17:
924 map->format.format_write = regmap_format_7_17_write;
925 break;
926 default:
927 goto err_hwlock;
928 }
929 break;
930
931 case 10:
932 switch (config->val_bits) {
933 case 14:
934 map->format.format_write = regmap_format_10_14_write;
935 break;
936 default:
937 goto err_hwlock;
938 }
939 break;
940
941 case 12:
942 switch (config->val_bits) {
943 case 20:
944 map->format.format_write = regmap_format_12_20_write;
945 break;
946 default:
947 goto err_hwlock;
948 }
949 break;
950
951 case 8:
952 map->format.format_reg = regmap_format_8;
953 break;
954
955 case 16:
956 switch (reg_endian) {
957 case REGMAP_ENDIAN_BIG:
958 map->format.format_reg = regmap_format_16_be;
959 break;
960 case REGMAP_ENDIAN_LITTLE:
961 map->format.format_reg = regmap_format_16_le;
962 break;
963 case REGMAP_ENDIAN_NATIVE:
964 map->format.format_reg = regmap_format_16_native;
965 break;
966 default:
967 goto err_hwlock;
968 }
969 break;
970
971 case 24:
972 if (reg_endian != REGMAP_ENDIAN_BIG)
973 goto err_hwlock;
974 map->format.format_reg = regmap_format_24;
975 break;
976
977 case 32:
978 switch (reg_endian) {
979 case REGMAP_ENDIAN_BIG:
980 map->format.format_reg = regmap_format_32_be;
981 break;
982 case REGMAP_ENDIAN_LITTLE:
983 map->format.format_reg = regmap_format_32_le;
984 break;
985 case REGMAP_ENDIAN_NATIVE:
986 map->format.format_reg = regmap_format_32_native;
987 break;
988 default:
989 goto err_hwlock;
990 }
991 break;
992
993 #ifdef CONFIG_64BIT
994 case 64:
995 switch (reg_endian) {
996 case REGMAP_ENDIAN_BIG:
997 map->format.format_reg = regmap_format_64_be;
998 break;
999 case REGMAP_ENDIAN_LITTLE:
1000 map->format.format_reg = regmap_format_64_le;
1001 break;
1002 case REGMAP_ENDIAN_NATIVE:
1003 map->format.format_reg = regmap_format_64_native;
1004 break;
1005 default:
1006 goto err_hwlock;
1007 }
1008 break;
1009 #endif
1010
1011 default:
1012 goto err_hwlock;
1013 }
1014
1015 if (val_endian == REGMAP_ENDIAN_NATIVE)
1016 map->format.parse_inplace = regmap_parse_inplace_noop;
1017
1018 switch (config->val_bits) {
1019 case 8:
1020 map->format.format_val = regmap_format_8;
1021 map->format.parse_val = regmap_parse_8;
1022 map->format.parse_inplace = regmap_parse_inplace_noop;
1023 break;
1024 case 16:
1025 switch (val_endian) {
1026 case REGMAP_ENDIAN_BIG:
1027 map->format.format_val = regmap_format_16_be;
1028 map->format.parse_val = regmap_parse_16_be;
1029 map->format.parse_inplace = regmap_parse_16_be_inplace;
1030 break;
1031 case REGMAP_ENDIAN_LITTLE:
1032 map->format.format_val = regmap_format_16_le;
1033 map->format.parse_val = regmap_parse_16_le;
1034 map->format.parse_inplace = regmap_parse_16_le_inplace;
1035 break;
1036 case REGMAP_ENDIAN_NATIVE:
1037 map->format.format_val = regmap_format_16_native;
1038 map->format.parse_val = regmap_parse_16_native;
1039 break;
1040 default:
1041 goto err_hwlock;
1042 }
1043 break;
1044 case 24:
1045 if (val_endian != REGMAP_ENDIAN_BIG)
1046 goto err_hwlock;
1047 map->format.format_val = regmap_format_24;
1048 map->format.parse_val = regmap_parse_24;
1049 break;
1050 case 32:
1051 switch (val_endian) {
1052 case REGMAP_ENDIAN_BIG:
1053 map->format.format_val = regmap_format_32_be;
1054 map->format.parse_val = regmap_parse_32_be;
1055 map->format.parse_inplace = regmap_parse_32_be_inplace;
1056 break;
1057 case REGMAP_ENDIAN_LITTLE:
1058 map->format.format_val = regmap_format_32_le;
1059 map->format.parse_val = regmap_parse_32_le;
1060 map->format.parse_inplace = regmap_parse_32_le_inplace;
1061 break;
1062 case REGMAP_ENDIAN_NATIVE:
1063 map->format.format_val = regmap_format_32_native;
1064 map->format.parse_val = regmap_parse_32_native;
1065 break;
1066 default:
1067 goto err_hwlock;
1068 }
1069 break;
1070 #ifdef CONFIG_64BIT
1071 case 64:
1072 switch (val_endian) {
1073 case REGMAP_ENDIAN_BIG:
1074 map->format.format_val = regmap_format_64_be;
1075 map->format.parse_val = regmap_parse_64_be;
1076 map->format.parse_inplace = regmap_parse_64_be_inplace;
1077 break;
1078 case REGMAP_ENDIAN_LITTLE:
1079 map->format.format_val = regmap_format_64_le;
1080 map->format.parse_val = regmap_parse_64_le;
1081 map->format.parse_inplace = regmap_parse_64_le_inplace;
1082 break;
1083 case REGMAP_ENDIAN_NATIVE:
1084 map->format.format_val = regmap_format_64_native;
1085 map->format.parse_val = regmap_parse_64_native;
1086 break;
1087 default:
1088 goto err_hwlock;
1089 }
1090 break;
1091 #endif
1092 }
1093
1094 if (map->format.format_write) {
1095 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1096 (val_endian != REGMAP_ENDIAN_BIG))
1097 goto err_hwlock;
1098 map->use_single_write = true;
1099 }
1100
1101 if (!map->format.format_write &&
1102 !(map->format.format_reg && map->format.format_val))
1103 goto err_hwlock;
1104
1105 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1106 if (map->work_buf == NULL) {
1107 ret = -ENOMEM;
1108 goto err_hwlock;
1109 }
1110
1111 if (map->format.format_write) {
1112 map->defer_caching = false;
1113 map->reg_write = _regmap_bus_formatted_write;
1114 } else if (map->format.format_val) {
1115 map->defer_caching = true;
1116 map->reg_write = _regmap_bus_raw_write;
1117 }
1118
1119 skip_format_initialization:
1120
1121 map->range_tree = RB_ROOT;
1122 for (i = 0; i < config->num_ranges; i++) {
1123 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1124 struct regmap_range_node *new;
1125
1126 /* Sanity check */
1127 if (range_cfg->range_max < range_cfg->range_min) {
1128 dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1129 range_cfg->range_max, range_cfg->range_min);
1130 goto err_range;
1131 }
1132
1133 if (range_cfg->range_max > map->max_register) {
1134 dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1135 range_cfg->range_max, map->max_register);
1136 goto err_range;
1137 }
1138
1139 if (range_cfg->selector_reg > map->max_register) {
1140 dev_err(map->dev,
1141 "Invalid range %d: selector out of map\n", i);
1142 goto err_range;
1143 }
1144
1145 if (range_cfg->window_len == 0) {
1146 dev_err(map->dev, "Invalid range %d: window_len 0\n",
1147 i);
1148 goto err_range;
1149 }
1150
1151 /* Make sure, that this register range has no selector
1152 or data window within its boundary */
1153 for (j = 0; j < config->num_ranges; j++) {
1154 unsigned int sel_reg = config->ranges[j].selector_reg;
1155 unsigned int win_min = config->ranges[j].window_start;
1156 unsigned int win_max = win_min +
1157 config->ranges[j].window_len - 1;
1158
1159 /* Allow data window inside its own virtual range */
1160 if (j == i)
1161 continue;
1162
1163 if (range_cfg->range_min <= sel_reg &&
1164 sel_reg <= range_cfg->range_max) {
1165 dev_err(map->dev,
1166 "Range %d: selector for %d in window\n",
1167 i, j);
1168 goto err_range;
1169 }
1170
1171 if (!(win_max < range_cfg->range_min ||
1172 win_min > range_cfg->range_max)) {
1173 dev_err(map->dev,
1174 "Range %d: window for %d in window\n",
1175 i, j);
1176 goto err_range;
1177 }
1178 }
1179
1180 new = kzalloc(sizeof(*new), GFP_KERNEL);
1181 if (new == NULL) {
1182 ret = -ENOMEM;
1183 goto err_range;
1184 }
1185
1186 new->map = map;
1187 new->name = range_cfg->name;
1188 new->range_min = range_cfg->range_min;
1189 new->range_max = range_cfg->range_max;
1190 new->selector_reg = range_cfg->selector_reg;
1191 new->selector_mask = range_cfg->selector_mask;
1192 new->selector_shift = range_cfg->selector_shift;
1193 new->window_start = range_cfg->window_start;
1194 new->window_len = range_cfg->window_len;
1195
1196 if (!_regmap_range_add(map, new)) {
1197 dev_err(map->dev, "Failed to add range %d\n", i);
1198 kfree(new);
1199 goto err_range;
1200 }
1201
1202 if (map->selector_work_buf == NULL) {
1203 map->selector_work_buf =
1204 kzalloc(map->format.buf_size, GFP_KERNEL);
1205 if (map->selector_work_buf == NULL) {
1206 ret = -ENOMEM;
1207 goto err_range;
1208 }
1209 }
1210 }
1211
1212 ret = regcache_init(map, config);
1213 if (ret != 0)
1214 goto err_range;
1215
1216 if (dev) {
1217 ret = regmap_attach_dev(dev, map, config);
1218 if (ret != 0)
1219 goto err_regcache;
1220 } else {
1221 regmap_debugfs_init(map);
1222 }
1223
1224 return map;
1225
1226 err_regcache:
1227 regcache_exit(map);
1228 err_range:
1229 regmap_range_exit(map);
1230 kfree(map->work_buf);
1231 err_hwlock:
1232 if (map->hwlock)
1233 hwspin_lock_free(map->hwlock);
1234 err_name:
1235 kfree_const(map->name);
1236 err_map:
1237 kfree(map);
1238 err:
1239 return ERR_PTR(ret);
1240 }
1241 EXPORT_SYMBOL_GPL(__regmap_init);
1242
devm_regmap_release(struct device * dev,void * res)1243 static void devm_regmap_release(struct device *dev, void *res)
1244 {
1245 regmap_exit(*(struct regmap **)res);
1246 }
1247
__devm_regmap_init(struct device * dev,const struct regmap_bus * bus,void * bus_context,const struct regmap_config * config,struct lock_class_key * lock_key,const char * lock_name)1248 struct regmap *__devm_regmap_init(struct device *dev,
1249 const struct regmap_bus *bus,
1250 void *bus_context,
1251 const struct regmap_config *config,
1252 struct lock_class_key *lock_key,
1253 const char *lock_name)
1254 {
1255 struct regmap **ptr, *regmap;
1256
1257 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1258 if (!ptr)
1259 return ERR_PTR(-ENOMEM);
1260
1261 regmap = __regmap_init(dev, bus, bus_context, config,
1262 lock_key, lock_name);
1263 if (!IS_ERR(regmap)) {
1264 *ptr = regmap;
1265 devres_add(dev, ptr);
1266 } else {
1267 devres_free(ptr);
1268 }
1269
1270 return regmap;
1271 }
1272 EXPORT_SYMBOL_GPL(__devm_regmap_init);
1273
regmap_field_init(struct regmap_field * rm_field,struct regmap * regmap,struct reg_field reg_field)1274 static void regmap_field_init(struct regmap_field *rm_field,
1275 struct regmap *regmap, struct reg_field reg_field)
1276 {
1277 rm_field->regmap = regmap;
1278 rm_field->reg = reg_field.reg;
1279 rm_field->shift = reg_field.lsb;
1280 rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1281 rm_field->id_size = reg_field.id_size;
1282 rm_field->id_offset = reg_field.id_offset;
1283 }
1284
1285 /**
1286 * devm_regmap_field_alloc() - Allocate and initialise a register field.
1287 *
1288 * @dev: Device that will be interacted with
1289 * @regmap: regmap bank in which this register field is located.
1290 * @reg_field: Register field with in the bank.
1291 *
1292 * The return value will be an ERR_PTR() on error or a valid pointer
1293 * to a struct regmap_field. The regmap_field will be automatically freed
1294 * by the device management code.
1295 */
devm_regmap_field_alloc(struct device * dev,struct regmap * regmap,struct reg_field reg_field)1296 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1297 struct regmap *regmap, struct reg_field reg_field)
1298 {
1299 struct regmap_field *rm_field = devm_kzalloc(dev,
1300 sizeof(*rm_field), GFP_KERNEL);
1301 if (!rm_field)
1302 return ERR_PTR(-ENOMEM);
1303
1304 regmap_field_init(rm_field, regmap, reg_field);
1305
1306 return rm_field;
1307
1308 }
1309 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1310
1311
1312 /**
1313 * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field.
1314 *
1315 * @regmap: regmap bank in which this register field is located.
1316 * @rm_field: regmap register fields within the bank.
1317 * @reg_field: Register fields within the bank.
1318 * @num_fields: Number of register fields.
1319 *
1320 * The return value will be an -ENOMEM on error or zero for success.
1321 * Newly allocated regmap_fields should be freed by calling
1322 * regmap_field_bulk_free()
1323 */
regmap_field_bulk_alloc(struct regmap * regmap,struct regmap_field ** rm_field,const struct reg_field * reg_field,int num_fields)1324 int regmap_field_bulk_alloc(struct regmap *regmap,
1325 struct regmap_field **rm_field,
1326 const struct reg_field *reg_field,
1327 int num_fields)
1328 {
1329 struct regmap_field *rf;
1330 int i;
1331
1332 rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL);
1333 if (!rf)
1334 return -ENOMEM;
1335
1336 for (i = 0; i < num_fields; i++) {
1337 regmap_field_init(&rf[i], regmap, reg_field[i]);
1338 rm_field[i] = &rf[i];
1339 }
1340
1341 return 0;
1342 }
1343 EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc);
1344
1345 /**
1346 * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register
1347 * fields.
1348 *
1349 * @dev: Device that will be interacted with
1350 * @regmap: regmap bank in which this register field is located.
1351 * @rm_field: regmap register fields within the bank.
1352 * @reg_field: Register fields within the bank.
1353 * @num_fields: Number of register fields.
1354 *
1355 * The return value will be an -ENOMEM on error or zero for success.
1356 * Newly allocated regmap_fields will be automatically freed by the
1357 * device management code.
1358 */
devm_regmap_field_bulk_alloc(struct device * dev,struct regmap * regmap,struct regmap_field ** rm_field,const struct reg_field * reg_field,int num_fields)1359 int devm_regmap_field_bulk_alloc(struct device *dev,
1360 struct regmap *regmap,
1361 struct regmap_field **rm_field,
1362 const struct reg_field *reg_field,
1363 int num_fields)
1364 {
1365 struct regmap_field *rf;
1366 int i;
1367
1368 rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL);
1369 if (!rf)
1370 return -ENOMEM;
1371
1372 for (i = 0; i < num_fields; i++) {
1373 regmap_field_init(&rf[i], regmap, reg_field[i]);
1374 rm_field[i] = &rf[i];
1375 }
1376
1377 return 0;
1378 }
1379 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc);
1380
1381 /**
1382 * regmap_field_bulk_free() - Free register field allocated using
1383 * regmap_field_bulk_alloc.
1384 *
1385 * @field: regmap fields which should be freed.
1386 */
regmap_field_bulk_free(struct regmap_field * field)1387 void regmap_field_bulk_free(struct regmap_field *field)
1388 {
1389 kfree(field);
1390 }
1391 EXPORT_SYMBOL_GPL(regmap_field_bulk_free);
1392
1393 /**
1394 * devm_regmap_field_bulk_free() - Free a bulk register field allocated using
1395 * devm_regmap_field_bulk_alloc.
1396 *
1397 * @dev: Device that will be interacted with
1398 * @field: regmap field which should be freed.
1399 *
1400 * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually
1401 * drivers need not call this function, as the memory allocated via devm
1402 * will be freed as per device-driver life-cycle.
1403 */
devm_regmap_field_bulk_free(struct device * dev,struct regmap_field * field)1404 void devm_regmap_field_bulk_free(struct device *dev,
1405 struct regmap_field *field)
1406 {
1407 devm_kfree(dev, field);
1408 }
1409 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free);
1410
1411 /**
1412 * devm_regmap_field_free() - Free a register field allocated using
1413 * devm_regmap_field_alloc.
1414 *
1415 * @dev: Device that will be interacted with
1416 * @field: regmap field which should be freed.
1417 *
1418 * Free register field allocated using devm_regmap_field_alloc(). Usually
1419 * drivers need not call this function, as the memory allocated via devm
1420 * will be freed as per device-driver life-cyle.
1421 */
devm_regmap_field_free(struct device * dev,struct regmap_field * field)1422 void devm_regmap_field_free(struct device *dev,
1423 struct regmap_field *field)
1424 {
1425 devm_kfree(dev, field);
1426 }
1427 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1428
1429 /**
1430 * regmap_field_alloc() - Allocate and initialise a register field.
1431 *
1432 * @regmap: regmap bank in which this register field is located.
1433 * @reg_field: Register field with in the bank.
1434 *
1435 * The return value will be an ERR_PTR() on error or a valid pointer
1436 * to a struct regmap_field. The regmap_field should be freed by the
1437 * user once its finished working with it using regmap_field_free().
1438 */
regmap_field_alloc(struct regmap * regmap,struct reg_field reg_field)1439 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1440 struct reg_field reg_field)
1441 {
1442 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1443
1444 if (!rm_field)
1445 return ERR_PTR(-ENOMEM);
1446
1447 regmap_field_init(rm_field, regmap, reg_field);
1448
1449 return rm_field;
1450 }
1451 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1452
1453 /**
1454 * regmap_field_free() - Free register field allocated using
1455 * regmap_field_alloc.
1456 *
1457 * @field: regmap field which should be freed.
1458 */
regmap_field_free(struct regmap_field * field)1459 void regmap_field_free(struct regmap_field *field)
1460 {
1461 kfree(field);
1462 }
1463 EXPORT_SYMBOL_GPL(regmap_field_free);
1464
1465 /**
1466 * regmap_reinit_cache() - Reinitialise the current register cache
1467 *
1468 * @map: Register map to operate on.
1469 * @config: New configuration. Only the cache data will be used.
1470 *
1471 * Discard any existing register cache for the map and initialize a
1472 * new cache. This can be used to restore the cache to defaults or to
1473 * update the cache configuration to reflect runtime discovery of the
1474 * hardware.
1475 *
1476 * No explicit locking is done here, the user needs to ensure that
1477 * this function will not race with other calls to regmap.
1478 */
regmap_reinit_cache(struct regmap * map,const struct regmap_config * config)1479 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1480 {
1481 int ret;
1482
1483 regcache_exit(map);
1484 regmap_debugfs_exit(map);
1485
1486 map->max_register = config->max_register;
1487 map->writeable_reg = config->writeable_reg;
1488 map->readable_reg = config->readable_reg;
1489 map->volatile_reg = config->volatile_reg;
1490 map->precious_reg = config->precious_reg;
1491 map->writeable_noinc_reg = config->writeable_noinc_reg;
1492 map->readable_noinc_reg = config->readable_noinc_reg;
1493 map->cache_type = config->cache_type;
1494
1495 ret = regmap_set_name(map, config);
1496 if (ret)
1497 return ret;
1498
1499 regmap_debugfs_init(map);
1500
1501 map->cache_bypass = false;
1502 map->cache_only = false;
1503
1504 return regcache_init(map, config);
1505 }
1506 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1507
1508 /**
1509 * regmap_exit() - Free a previously allocated register map
1510 *
1511 * @map: Register map to operate on.
1512 */
regmap_exit(struct regmap * map)1513 void regmap_exit(struct regmap *map)
1514 {
1515 struct regmap_async *async;
1516
1517 regcache_exit(map);
1518 regmap_debugfs_exit(map);
1519 regmap_range_exit(map);
1520 if (map->bus && map->bus->free_context)
1521 map->bus->free_context(map->bus_context);
1522 kfree(map->work_buf);
1523 while (!list_empty(&map->async_free)) {
1524 async = list_first_entry_or_null(&map->async_free,
1525 struct regmap_async,
1526 list);
1527 list_del(&async->list);
1528 kfree(async->work_buf);
1529 kfree(async);
1530 }
1531 if (map->hwlock)
1532 hwspin_lock_free(map->hwlock);
1533 if (map->lock == regmap_lock_mutex)
1534 mutex_destroy(&map->mutex);
1535 kfree_const(map->name);
1536 kfree(map->patch);
1537 if (map->bus && map->bus->free_on_exit)
1538 kfree(map->bus);
1539 kfree(map);
1540 }
1541 EXPORT_SYMBOL_GPL(regmap_exit);
1542
dev_get_regmap_match(struct device * dev,void * res,void * data)1543 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1544 {
1545 struct regmap **r = res;
1546 if (!r || !*r) {
1547 WARN_ON(!r || !*r);
1548 return 0;
1549 }
1550
1551 /* If the user didn't specify a name match any */
1552 if (data)
1553 return !strcmp((*r)->name, data);
1554 else
1555 return 1;
1556 }
1557
1558 /**
1559 * dev_get_regmap() - Obtain the regmap (if any) for a device
1560 *
1561 * @dev: Device to retrieve the map for
1562 * @name: Optional name for the register map, usually NULL.
1563 *
1564 * Returns the regmap for the device if one is present, or NULL. If
1565 * name is specified then it must match the name specified when
1566 * registering the device, if it is NULL then the first regmap found
1567 * will be used. Devices with multiple register maps are very rare,
1568 * generic code should normally not need to specify a name.
1569 */
dev_get_regmap(struct device * dev,const char * name)1570 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1571 {
1572 struct regmap **r = devres_find(dev, dev_get_regmap_release,
1573 dev_get_regmap_match, (void *)name);
1574
1575 if (!r)
1576 return NULL;
1577 return *r;
1578 }
1579 EXPORT_SYMBOL_GPL(dev_get_regmap);
1580
1581 /**
1582 * regmap_get_device() - Obtain the device from a regmap
1583 *
1584 * @map: Register map to operate on.
1585 *
1586 * Returns the underlying device that the regmap has been created for.
1587 */
regmap_get_device(struct regmap * map)1588 struct device *regmap_get_device(struct regmap *map)
1589 {
1590 return map->dev;
1591 }
1592 EXPORT_SYMBOL_GPL(regmap_get_device);
1593
_regmap_select_page(struct regmap * map,unsigned int * reg,struct regmap_range_node * range,unsigned int val_num)1594 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1595 struct regmap_range_node *range,
1596 unsigned int val_num)
1597 {
1598 void *orig_work_buf;
1599 unsigned int win_offset;
1600 unsigned int win_page;
1601 bool page_chg;
1602 int ret;
1603
1604 win_offset = (*reg - range->range_min) % range->window_len;
1605 win_page = (*reg - range->range_min) / range->window_len;
1606
1607 if (val_num > 1) {
1608 /* Bulk write shouldn't cross range boundary */
1609 if (*reg + val_num - 1 > range->range_max)
1610 return -EINVAL;
1611
1612 /* ... or single page boundary */
1613 if (val_num > range->window_len - win_offset)
1614 return -EINVAL;
1615 }
1616
1617 /* It is possible to have selector register inside data window.
1618 In that case, selector register is located on every page and
1619 it needs no page switching, when accessed alone. */
1620 if (val_num > 1 ||
1621 range->window_start + win_offset != range->selector_reg) {
1622 /* Use separate work_buf during page switching */
1623 orig_work_buf = map->work_buf;
1624 map->work_buf = map->selector_work_buf;
1625
1626 ret = _regmap_update_bits(map, range->selector_reg,
1627 range->selector_mask,
1628 win_page << range->selector_shift,
1629 &page_chg, false);
1630
1631 map->work_buf = orig_work_buf;
1632
1633 if (ret != 0)
1634 return ret;
1635 }
1636
1637 *reg = range->window_start + win_offset;
1638
1639 return 0;
1640 }
1641
regmap_set_work_buf_flag_mask(struct regmap * map,int max_bytes,unsigned long mask)1642 static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1643 unsigned long mask)
1644 {
1645 u8 *buf;
1646 int i;
1647
1648 if (!mask || !map->work_buf)
1649 return;
1650
1651 buf = map->work_buf;
1652
1653 for (i = 0; i < max_bytes; i++)
1654 buf[i] |= (mask >> (8 * i)) & 0xff;
1655 }
1656
_regmap_raw_write_impl(struct regmap * map,unsigned int reg,const void * val,size_t val_len,bool noinc)1657 static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1658 const void *val, size_t val_len, bool noinc)
1659 {
1660 struct regmap_range_node *range;
1661 unsigned long flags;
1662 void *work_val = map->work_buf + map->format.reg_bytes +
1663 map->format.pad_bytes;
1664 void *buf;
1665 int ret = -ENOTSUPP;
1666 size_t len;
1667 int i;
1668
1669 WARN_ON(!map->bus);
1670
1671 /* Check for unwritable or noinc registers in range
1672 * before we start
1673 */
1674 if (!regmap_writeable_noinc(map, reg)) {
1675 for (i = 0; i < val_len / map->format.val_bytes; i++) {
1676 unsigned int element =
1677 reg + regmap_get_offset(map, i);
1678 if (!regmap_writeable(map, element) ||
1679 regmap_writeable_noinc(map, element))
1680 return -EINVAL;
1681 }
1682 }
1683
1684 if (!map->cache_bypass && map->format.parse_val) {
1685 unsigned int ival;
1686 int val_bytes = map->format.val_bytes;
1687 for (i = 0; i < val_len / val_bytes; i++) {
1688 ival = map->format.parse_val(val + (i * val_bytes));
1689 ret = regcache_write(map,
1690 reg + regmap_get_offset(map, i),
1691 ival);
1692 if (ret) {
1693 dev_err(map->dev,
1694 "Error in caching of register: %x ret: %d\n",
1695 reg + regmap_get_offset(map, i), ret);
1696 return ret;
1697 }
1698 }
1699 if (map->cache_only) {
1700 map->cache_dirty = true;
1701 return 0;
1702 }
1703 }
1704
1705 range = _regmap_range_lookup(map, reg);
1706 if (range) {
1707 int val_num = val_len / map->format.val_bytes;
1708 int win_offset = (reg - range->range_min) % range->window_len;
1709 int win_residue = range->window_len - win_offset;
1710
1711 /* If the write goes beyond the end of the window split it */
1712 while (val_num > win_residue) {
1713 dev_dbg(map->dev, "Writing window %d/%zu\n",
1714 win_residue, val_len / map->format.val_bytes);
1715 ret = _regmap_raw_write_impl(map, reg, val,
1716 win_residue *
1717 map->format.val_bytes, noinc);
1718 if (ret != 0)
1719 return ret;
1720
1721 reg += win_residue;
1722 val_num -= win_residue;
1723 val += win_residue * map->format.val_bytes;
1724 val_len -= win_residue * map->format.val_bytes;
1725
1726 win_offset = (reg - range->range_min) %
1727 range->window_len;
1728 win_residue = range->window_len - win_offset;
1729 }
1730
1731 ret = _regmap_select_page(map, ®, range, noinc ? 1 : val_num);
1732 if (ret != 0)
1733 return ret;
1734 }
1735
1736 map->format.format_reg(map->work_buf, reg, map->reg_shift);
1737 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1738 map->write_flag_mask);
1739
1740 /*
1741 * Essentially all I/O mechanisms will be faster with a single
1742 * buffer to write. Since register syncs often generate raw
1743 * writes of single registers optimise that case.
1744 */
1745 if (val != work_val && val_len == map->format.val_bytes) {
1746 memcpy(work_val, val, map->format.val_bytes);
1747 val = work_val;
1748 }
1749
1750 if (map->async && map->bus->async_write) {
1751 struct regmap_async *async;
1752
1753 trace_regmap_async_write_start(map, reg, val_len);
1754
1755 spin_lock_irqsave(&map->async_lock, flags);
1756 async = list_first_entry_or_null(&map->async_free,
1757 struct regmap_async,
1758 list);
1759 if (async)
1760 list_del(&async->list);
1761 spin_unlock_irqrestore(&map->async_lock, flags);
1762
1763 if (!async) {
1764 async = map->bus->async_alloc();
1765 if (!async)
1766 return -ENOMEM;
1767
1768 async->work_buf = kzalloc(map->format.buf_size,
1769 GFP_KERNEL | GFP_DMA);
1770 if (!async->work_buf) {
1771 kfree(async);
1772 return -ENOMEM;
1773 }
1774 }
1775
1776 async->map = map;
1777
1778 /* If the caller supplied the value we can use it safely. */
1779 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1780 map->format.reg_bytes + map->format.val_bytes);
1781
1782 spin_lock_irqsave(&map->async_lock, flags);
1783 list_add_tail(&async->list, &map->async_list);
1784 spin_unlock_irqrestore(&map->async_lock, flags);
1785
1786 if (val != work_val)
1787 ret = map->bus->async_write(map->bus_context,
1788 async->work_buf,
1789 map->format.reg_bytes +
1790 map->format.pad_bytes,
1791 val, val_len, async);
1792 else
1793 ret = map->bus->async_write(map->bus_context,
1794 async->work_buf,
1795 map->format.reg_bytes +
1796 map->format.pad_bytes +
1797 val_len, NULL, 0, async);
1798
1799 if (ret != 0) {
1800 dev_err(map->dev, "Failed to schedule write: %d\n",
1801 ret);
1802
1803 spin_lock_irqsave(&map->async_lock, flags);
1804 list_move(&async->list, &map->async_free);
1805 spin_unlock_irqrestore(&map->async_lock, flags);
1806 }
1807
1808 return ret;
1809 }
1810
1811 trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1812
1813 /* If we're doing a single register write we can probably just
1814 * send the work_buf directly, otherwise try to do a gather
1815 * write.
1816 */
1817 if (val == work_val)
1818 ret = map->bus->write(map->bus_context, map->work_buf,
1819 map->format.reg_bytes +
1820 map->format.pad_bytes +
1821 val_len);
1822 else if (map->bus->gather_write)
1823 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1824 map->format.reg_bytes +
1825 map->format.pad_bytes,
1826 val, val_len);
1827 else
1828 ret = -ENOTSUPP;
1829
1830 /* If that didn't work fall back on linearising by hand. */
1831 if (ret == -ENOTSUPP) {
1832 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1833 buf = kzalloc(len, GFP_KERNEL);
1834 if (!buf)
1835 return -ENOMEM;
1836
1837 memcpy(buf, map->work_buf, map->format.reg_bytes);
1838 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1839 val, val_len);
1840 ret = map->bus->write(map->bus_context, buf, len);
1841
1842 kfree(buf);
1843 } else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1844 /* regcache_drop_region() takes lock that we already have,
1845 * thus call map->cache_ops->drop() directly
1846 */
1847 if (map->cache_ops && map->cache_ops->drop)
1848 map->cache_ops->drop(map, reg, reg + 1);
1849 }
1850
1851 trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1852
1853 return ret;
1854 }
1855
1856 /**
1857 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1858 *
1859 * @map: Map to check.
1860 */
regmap_can_raw_write(struct regmap * map)1861 bool regmap_can_raw_write(struct regmap *map)
1862 {
1863 return map->bus && map->bus->write && map->format.format_val &&
1864 map->format.format_reg;
1865 }
1866 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1867
1868 /**
1869 * regmap_get_raw_read_max - Get the maximum size we can read
1870 *
1871 * @map: Map to check.
1872 */
regmap_get_raw_read_max(struct regmap * map)1873 size_t regmap_get_raw_read_max(struct regmap *map)
1874 {
1875 return map->max_raw_read;
1876 }
1877 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1878
1879 /**
1880 * regmap_get_raw_write_max - Get the maximum size we can read
1881 *
1882 * @map: Map to check.
1883 */
regmap_get_raw_write_max(struct regmap * map)1884 size_t regmap_get_raw_write_max(struct regmap *map)
1885 {
1886 return map->max_raw_write;
1887 }
1888 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1889
_regmap_bus_formatted_write(void * context,unsigned int reg,unsigned int val)1890 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1891 unsigned int val)
1892 {
1893 int ret;
1894 struct regmap_range_node *range;
1895 struct regmap *map = context;
1896
1897 WARN_ON(!map->bus || !map->format.format_write);
1898
1899 range = _regmap_range_lookup(map, reg);
1900 if (range) {
1901 ret = _regmap_select_page(map, ®, range, 1);
1902 if (ret != 0)
1903 return ret;
1904 }
1905
1906 map->format.format_write(map, reg, val);
1907
1908 trace_regmap_hw_write_start(map, reg, 1);
1909
1910 ret = map->bus->write(map->bus_context, map->work_buf,
1911 map->format.buf_size);
1912
1913 trace_regmap_hw_write_done(map, reg, 1);
1914
1915 return ret;
1916 }
1917
_regmap_bus_reg_write(void * context,unsigned int reg,unsigned int val)1918 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1919 unsigned int val)
1920 {
1921 struct regmap *map = context;
1922
1923 return map->bus->reg_write(map->bus_context, reg, val);
1924 }
1925
_regmap_bus_raw_write(void * context,unsigned int reg,unsigned int val)1926 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1927 unsigned int val)
1928 {
1929 struct regmap *map = context;
1930
1931 WARN_ON(!map->bus || !map->format.format_val);
1932
1933 map->format.format_val(map->work_buf + map->format.reg_bytes
1934 + map->format.pad_bytes, val, 0);
1935 return _regmap_raw_write_impl(map, reg,
1936 map->work_buf +
1937 map->format.reg_bytes +
1938 map->format.pad_bytes,
1939 map->format.val_bytes,
1940 false);
1941 }
1942
_regmap_map_get_context(struct regmap * map)1943 static inline void *_regmap_map_get_context(struct regmap *map)
1944 {
1945 return (map->bus) ? map : map->bus_context;
1946 }
1947
_regmap_write(struct regmap * map,unsigned int reg,unsigned int val)1948 int _regmap_write(struct regmap *map, unsigned int reg,
1949 unsigned int val)
1950 {
1951 int ret;
1952 void *context = _regmap_map_get_context(map);
1953
1954 if (!regmap_writeable(map, reg))
1955 return -EIO;
1956
1957 if (!map->cache_bypass && !map->defer_caching) {
1958 ret = regcache_write(map, reg, val);
1959 if (ret != 0)
1960 return ret;
1961 if (map->cache_only) {
1962 map->cache_dirty = true;
1963 return 0;
1964 }
1965 }
1966
1967 ret = map->reg_write(context, reg, val);
1968 if (ret == 0) {
1969 if (regmap_should_log(map))
1970 dev_info(map->dev, "%x <= %x\n", reg, val);
1971
1972 trace_regmap_reg_write(map, reg, val);
1973 }
1974
1975 return ret;
1976 }
1977
1978 /**
1979 * regmap_write() - Write a value to a single register
1980 *
1981 * @map: Register map to write to
1982 * @reg: Register to write to
1983 * @val: Value to be written
1984 *
1985 * A value of zero will be returned on success, a negative errno will
1986 * be returned in error cases.
1987 */
regmap_write(struct regmap * map,unsigned int reg,unsigned int val)1988 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1989 {
1990 int ret;
1991
1992 if (!IS_ALIGNED(reg, map->reg_stride))
1993 return -EINVAL;
1994
1995 map->lock(map->lock_arg);
1996
1997 ret = _regmap_write(map, reg, val);
1998
1999 map->unlock(map->lock_arg);
2000
2001 return ret;
2002 }
2003 EXPORT_SYMBOL_GPL(regmap_write);
2004
2005 /**
2006 * regmap_write_async() - Write a value to a single register asynchronously
2007 *
2008 * @map: Register map to write to
2009 * @reg: Register to write to
2010 * @val: Value to be written
2011 *
2012 * A value of zero will be returned on success, a negative errno will
2013 * be returned in error cases.
2014 */
regmap_write_async(struct regmap * map,unsigned int reg,unsigned int val)2015 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
2016 {
2017 int ret;
2018
2019 if (!IS_ALIGNED(reg, map->reg_stride))
2020 return -EINVAL;
2021
2022 map->lock(map->lock_arg);
2023
2024 map->async = true;
2025
2026 ret = _regmap_write(map, reg, val);
2027
2028 map->async = false;
2029
2030 map->unlock(map->lock_arg);
2031
2032 return ret;
2033 }
2034 EXPORT_SYMBOL_GPL(regmap_write_async);
2035
_regmap_raw_write(struct regmap * map,unsigned int reg,const void * val,size_t val_len,bool noinc)2036 int _regmap_raw_write(struct regmap *map, unsigned int reg,
2037 const void *val, size_t val_len, bool noinc)
2038 {
2039 size_t val_bytes = map->format.val_bytes;
2040 size_t val_count = val_len / val_bytes;
2041 size_t chunk_count, chunk_bytes;
2042 size_t chunk_regs = val_count;
2043 int ret, i;
2044
2045 if (!val_count)
2046 return -EINVAL;
2047
2048 if (map->use_single_write)
2049 chunk_regs = 1;
2050 else if (map->max_raw_write && val_len > map->max_raw_write)
2051 chunk_regs = map->max_raw_write / val_bytes;
2052
2053 chunk_count = val_count / chunk_regs;
2054 chunk_bytes = chunk_regs * val_bytes;
2055
2056 /* Write as many bytes as possible with chunk_size */
2057 for (i = 0; i < chunk_count; i++) {
2058 ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc);
2059 if (ret)
2060 return ret;
2061
2062 reg += regmap_get_offset(map, chunk_regs);
2063 val += chunk_bytes;
2064 val_len -= chunk_bytes;
2065 }
2066
2067 /* Write remaining bytes */
2068 if (val_len)
2069 ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc);
2070
2071 return ret;
2072 }
2073
2074 /**
2075 * regmap_raw_write() - Write raw values to one or more registers
2076 *
2077 * @map: Register map to write to
2078 * @reg: Initial register to write to
2079 * @val: Block of data to be written, laid out for direct transmission to the
2080 * device
2081 * @val_len: Length of data pointed to by val.
2082 *
2083 * This function is intended to be used for things like firmware
2084 * download where a large block of data needs to be transferred to the
2085 * device. No formatting will be done on the data provided.
2086 *
2087 * A value of zero will be returned on success, a negative errno will
2088 * be returned in error cases.
2089 */
regmap_raw_write(struct regmap * map,unsigned int reg,const void * val,size_t val_len)2090 int regmap_raw_write(struct regmap *map, unsigned int reg,
2091 const void *val, size_t val_len)
2092 {
2093 int ret;
2094
2095 if (!regmap_can_raw_write(map))
2096 return -EINVAL;
2097 if (val_len % map->format.val_bytes)
2098 return -EINVAL;
2099
2100 map->lock(map->lock_arg);
2101
2102 ret = _regmap_raw_write(map, reg, val, val_len, false);
2103
2104 map->unlock(map->lock_arg);
2105
2106 return ret;
2107 }
2108 EXPORT_SYMBOL_GPL(regmap_raw_write);
2109
2110 /**
2111 * regmap_noinc_write(): Write data from a register without incrementing the
2112 * register number
2113 *
2114 * @map: Register map to write to
2115 * @reg: Register to write to
2116 * @val: Pointer to data buffer
2117 * @val_len: Length of output buffer in bytes.
2118 *
2119 * The regmap API usually assumes that bulk bus write operations will write a
2120 * range of registers. Some devices have certain registers for which a write
2121 * operation can write to an internal FIFO.
2122 *
2123 * The target register must be volatile but registers after it can be
2124 * completely unrelated cacheable registers.
2125 *
2126 * This will attempt multiple writes as required to write val_len bytes.
2127 *
2128 * A value of zero will be returned on success, a negative errno will be
2129 * returned in error cases.
2130 */
regmap_noinc_write(struct regmap * map,unsigned int reg,const void * val,size_t val_len)2131 int regmap_noinc_write(struct regmap *map, unsigned int reg,
2132 const void *val, size_t val_len)
2133 {
2134 size_t write_len;
2135 int ret;
2136
2137 if (!map->bus)
2138 return -EINVAL;
2139 if (!map->bus->write)
2140 return -ENOTSUPP;
2141 if (val_len % map->format.val_bytes)
2142 return -EINVAL;
2143 if (!IS_ALIGNED(reg, map->reg_stride))
2144 return -EINVAL;
2145 if (val_len == 0)
2146 return -EINVAL;
2147
2148 map->lock(map->lock_arg);
2149
2150 if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
2151 ret = -EINVAL;
2152 goto out_unlock;
2153 }
2154
2155 while (val_len) {
2156 if (map->max_raw_write && map->max_raw_write < val_len)
2157 write_len = map->max_raw_write;
2158 else
2159 write_len = val_len;
2160 ret = _regmap_raw_write(map, reg, val, write_len, true);
2161 if (ret)
2162 goto out_unlock;
2163 val = ((u8 *)val) + write_len;
2164 val_len -= write_len;
2165 }
2166
2167 out_unlock:
2168 map->unlock(map->lock_arg);
2169 return ret;
2170 }
2171 EXPORT_SYMBOL_GPL(regmap_noinc_write);
2172
2173 /**
2174 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
2175 * register field.
2176 *
2177 * @field: Register field to write to
2178 * @mask: Bitmask to change
2179 * @val: Value to be written
2180 * @change: Boolean indicating if a write was done
2181 * @async: Boolean indicating asynchronously
2182 * @force: Boolean indicating use force update
2183 *
2184 * Perform a read/modify/write cycle on the register field with change,
2185 * async, force option.
2186 *
2187 * A value of zero will be returned on success, a negative errno will
2188 * be returned in error cases.
2189 */
regmap_field_update_bits_base(struct regmap_field * field,unsigned int mask,unsigned int val,bool * change,bool async,bool force)2190 int regmap_field_update_bits_base(struct regmap_field *field,
2191 unsigned int mask, unsigned int val,
2192 bool *change, bool async, bool force)
2193 {
2194 mask = (mask << field->shift) & field->mask;
2195
2196 return regmap_update_bits_base(field->regmap, field->reg,
2197 mask, val << field->shift,
2198 change, async, force);
2199 }
2200 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2201
2202 /**
2203 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2204 * register field with port ID
2205 *
2206 * @field: Register field to write to
2207 * @id: port ID
2208 * @mask: Bitmask to change
2209 * @val: Value to be written
2210 * @change: Boolean indicating if a write was done
2211 * @async: Boolean indicating asynchronously
2212 * @force: Boolean indicating use force update
2213 *
2214 * A value of zero will be returned on success, a negative errno will
2215 * be returned in error cases.
2216 */
regmap_fields_update_bits_base(struct regmap_field * field,unsigned int id,unsigned int mask,unsigned int val,bool * change,bool async,bool force)2217 int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2218 unsigned int mask, unsigned int val,
2219 bool *change, bool async, bool force)
2220 {
2221 if (id >= field->id_size)
2222 return -EINVAL;
2223
2224 mask = (mask << field->shift) & field->mask;
2225
2226 return regmap_update_bits_base(field->regmap,
2227 field->reg + (field->id_offset * id),
2228 mask, val << field->shift,
2229 change, async, force);
2230 }
2231 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2232
2233 /**
2234 * regmap_bulk_write() - Write multiple registers to the device
2235 *
2236 * @map: Register map to write to
2237 * @reg: First register to be write from
2238 * @val: Block of data to be written, in native register size for device
2239 * @val_count: Number of registers to write
2240 *
2241 * This function is intended to be used for writing a large block of
2242 * data to the device either in single transfer or multiple transfer.
2243 *
2244 * A value of zero will be returned on success, a negative errno will
2245 * be returned in error cases.
2246 */
regmap_bulk_write(struct regmap * map,unsigned int reg,const void * val,size_t val_count)2247 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2248 size_t val_count)
2249 {
2250 int ret = 0, i;
2251 size_t val_bytes = map->format.val_bytes;
2252
2253 if (!IS_ALIGNED(reg, map->reg_stride))
2254 return -EINVAL;
2255
2256 /*
2257 * Some devices don't support bulk write, for them we have a series of
2258 * single write operations.
2259 */
2260 if (!map->bus || !map->format.parse_inplace) {
2261 map->lock(map->lock_arg);
2262 for (i = 0; i < val_count; i++) {
2263 unsigned int ival;
2264
2265 switch (val_bytes) {
2266 case 1:
2267 ival = *(u8 *)(val + (i * val_bytes));
2268 break;
2269 case 2:
2270 ival = *(u16 *)(val + (i * val_bytes));
2271 break;
2272 case 4:
2273 ival = *(u32 *)(val + (i * val_bytes));
2274 break;
2275 #ifdef CONFIG_64BIT
2276 case 8:
2277 ival = *(u64 *)(val + (i * val_bytes));
2278 break;
2279 #endif
2280 default:
2281 ret = -EINVAL;
2282 goto out;
2283 }
2284
2285 ret = _regmap_write(map,
2286 reg + regmap_get_offset(map, i),
2287 ival);
2288 if (ret != 0)
2289 goto out;
2290 }
2291 out:
2292 map->unlock(map->lock_arg);
2293 } else {
2294 void *wval;
2295
2296 wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2297 if (!wval)
2298 return -ENOMEM;
2299
2300 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2301 map->format.parse_inplace(wval + i);
2302
2303 ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2304
2305 kfree(wval);
2306 }
2307 return ret;
2308 }
2309 EXPORT_SYMBOL_GPL(regmap_bulk_write);
2310
2311 /*
2312 * _regmap_raw_multi_reg_write()
2313 *
2314 * the (register,newvalue) pairs in regs have not been formatted, but
2315 * they are all in the same page and have been changed to being page
2316 * relative. The page register has been written if that was necessary.
2317 */
_regmap_raw_multi_reg_write(struct regmap * map,const struct reg_sequence * regs,size_t num_regs)2318 static int _regmap_raw_multi_reg_write(struct regmap *map,
2319 const struct reg_sequence *regs,
2320 size_t num_regs)
2321 {
2322 int ret;
2323 void *buf;
2324 int i;
2325 u8 *u8;
2326 size_t val_bytes = map->format.val_bytes;
2327 size_t reg_bytes = map->format.reg_bytes;
2328 size_t pad_bytes = map->format.pad_bytes;
2329 size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2330 size_t len = pair_size * num_regs;
2331
2332 if (!len)
2333 return -EINVAL;
2334
2335 buf = kzalloc(len, GFP_KERNEL);
2336 if (!buf)
2337 return -ENOMEM;
2338
2339 /* We have to linearise by hand. */
2340
2341 u8 = buf;
2342
2343 for (i = 0; i < num_regs; i++) {
2344 unsigned int reg = regs[i].reg;
2345 unsigned int val = regs[i].def;
2346 trace_regmap_hw_write_start(map, reg, 1);
2347 map->format.format_reg(u8, reg, map->reg_shift);
2348 u8 += reg_bytes + pad_bytes;
2349 map->format.format_val(u8, val, 0);
2350 u8 += val_bytes;
2351 }
2352 u8 = buf;
2353 *u8 |= map->write_flag_mask;
2354
2355 ret = map->bus->write(map->bus_context, buf, len);
2356
2357 kfree(buf);
2358
2359 for (i = 0; i < num_regs; i++) {
2360 int reg = regs[i].reg;
2361 trace_regmap_hw_write_done(map, reg, 1);
2362 }
2363 return ret;
2364 }
2365
_regmap_register_page(struct regmap * map,unsigned int reg,struct regmap_range_node * range)2366 static unsigned int _regmap_register_page(struct regmap *map,
2367 unsigned int reg,
2368 struct regmap_range_node *range)
2369 {
2370 unsigned int win_page = (reg - range->range_min) / range->window_len;
2371
2372 return win_page;
2373 }
2374
_regmap_range_multi_paged_reg_write(struct regmap * map,struct reg_sequence * regs,size_t num_regs)2375 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2376 struct reg_sequence *regs,
2377 size_t num_regs)
2378 {
2379 int ret;
2380 int i, n;
2381 struct reg_sequence *base;
2382 unsigned int this_page = 0;
2383 unsigned int page_change = 0;
2384 /*
2385 * the set of registers are not neccessarily in order, but
2386 * since the order of write must be preserved this algorithm
2387 * chops the set each time the page changes. This also applies
2388 * if there is a delay required at any point in the sequence.
2389 */
2390 base = regs;
2391 for (i = 0, n = 0; i < num_regs; i++, n++) {
2392 unsigned int reg = regs[i].reg;
2393 struct regmap_range_node *range;
2394
2395 range = _regmap_range_lookup(map, reg);
2396 if (range) {
2397 unsigned int win_page = _regmap_register_page(map, reg,
2398 range);
2399
2400 if (i == 0)
2401 this_page = win_page;
2402 if (win_page != this_page) {
2403 this_page = win_page;
2404 page_change = 1;
2405 }
2406 }
2407
2408 /* If we have both a page change and a delay make sure to
2409 * write the regs and apply the delay before we change the
2410 * page.
2411 */
2412
2413 if (page_change || regs[i].delay_us) {
2414
2415 /* For situations where the first write requires
2416 * a delay we need to make sure we don't call
2417 * raw_multi_reg_write with n=0
2418 * This can't occur with page breaks as we
2419 * never write on the first iteration
2420 */
2421 if (regs[i].delay_us && i == 0)
2422 n = 1;
2423
2424 ret = _regmap_raw_multi_reg_write(map, base, n);
2425 if (ret != 0)
2426 return ret;
2427
2428 if (regs[i].delay_us) {
2429 if (map->can_sleep)
2430 fsleep(regs[i].delay_us);
2431 else
2432 udelay(regs[i].delay_us);
2433 }
2434
2435 base += n;
2436 n = 0;
2437
2438 if (page_change) {
2439 ret = _regmap_select_page(map,
2440 &base[n].reg,
2441 range, 1);
2442 if (ret != 0)
2443 return ret;
2444
2445 page_change = 0;
2446 }
2447
2448 }
2449
2450 }
2451 if (n > 0)
2452 return _regmap_raw_multi_reg_write(map, base, n);
2453 return 0;
2454 }
2455
_regmap_multi_reg_write(struct regmap * map,const struct reg_sequence * regs,size_t num_regs)2456 static int _regmap_multi_reg_write(struct regmap *map,
2457 const struct reg_sequence *regs,
2458 size_t num_regs)
2459 {
2460 int i;
2461 int ret;
2462
2463 if (!map->can_multi_write) {
2464 for (i = 0; i < num_regs; i++) {
2465 ret = _regmap_write(map, regs[i].reg, regs[i].def);
2466 if (ret != 0)
2467 return ret;
2468
2469 if (regs[i].delay_us) {
2470 if (map->can_sleep)
2471 fsleep(regs[i].delay_us);
2472 else
2473 udelay(regs[i].delay_us);
2474 }
2475 }
2476 return 0;
2477 }
2478
2479 if (!map->format.parse_inplace)
2480 return -EINVAL;
2481
2482 if (map->writeable_reg)
2483 for (i = 0; i < num_regs; i++) {
2484 int reg = regs[i].reg;
2485 if (!map->writeable_reg(map->dev, reg))
2486 return -EINVAL;
2487 if (!IS_ALIGNED(reg, map->reg_stride))
2488 return -EINVAL;
2489 }
2490
2491 if (!map->cache_bypass) {
2492 for (i = 0; i < num_regs; i++) {
2493 unsigned int val = regs[i].def;
2494 unsigned int reg = regs[i].reg;
2495 ret = regcache_write(map, reg, val);
2496 if (ret) {
2497 dev_err(map->dev,
2498 "Error in caching of register: %x ret: %d\n",
2499 reg, ret);
2500 return ret;
2501 }
2502 }
2503 if (map->cache_only) {
2504 map->cache_dirty = true;
2505 return 0;
2506 }
2507 }
2508
2509 WARN_ON(!map->bus);
2510
2511 for (i = 0; i < num_regs; i++) {
2512 unsigned int reg = regs[i].reg;
2513 struct regmap_range_node *range;
2514
2515 /* Coalesce all the writes between a page break or a delay
2516 * in a sequence
2517 */
2518 range = _regmap_range_lookup(map, reg);
2519 if (range || regs[i].delay_us) {
2520 size_t len = sizeof(struct reg_sequence)*num_regs;
2521 struct reg_sequence *base = kmemdup(regs, len,
2522 GFP_KERNEL);
2523 if (!base)
2524 return -ENOMEM;
2525 ret = _regmap_range_multi_paged_reg_write(map, base,
2526 num_regs);
2527 kfree(base);
2528
2529 return ret;
2530 }
2531 }
2532 return _regmap_raw_multi_reg_write(map, regs, num_regs);
2533 }
2534
2535 /**
2536 * regmap_multi_reg_write() - Write multiple registers to the device
2537 *
2538 * @map: Register map to write to
2539 * @regs: Array of structures containing register,value to be written
2540 * @num_regs: Number of registers to write
2541 *
2542 * Write multiple registers to the device where the set of register, value
2543 * pairs are supplied in any order, possibly not all in a single range.
2544 *
2545 * The 'normal' block write mode will send ultimately send data on the
2546 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2547 * addressed. However, this alternative block multi write mode will send
2548 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2549 * must of course support the mode.
2550 *
2551 * A value of zero will be returned on success, a negative errno will be
2552 * returned in error cases.
2553 */
regmap_multi_reg_write(struct regmap * map,const struct reg_sequence * regs,int num_regs)2554 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2555 int num_regs)
2556 {
2557 int ret;
2558
2559 map->lock(map->lock_arg);
2560
2561 ret = _regmap_multi_reg_write(map, regs, num_regs);
2562
2563 map->unlock(map->lock_arg);
2564
2565 return ret;
2566 }
2567 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2568
2569 /**
2570 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2571 * device but not the cache
2572 *
2573 * @map: Register map to write to
2574 * @regs: Array of structures containing register,value to be written
2575 * @num_regs: Number of registers to write
2576 *
2577 * Write multiple registers to the device but not the cache where the set
2578 * of register are supplied in any order.
2579 *
2580 * This function is intended to be used for writing a large block of data
2581 * atomically to the device in single transfer for those I2C client devices
2582 * that implement this alternative block write mode.
2583 *
2584 * A value of zero will be returned on success, a negative errno will
2585 * be returned in error cases.
2586 */
regmap_multi_reg_write_bypassed(struct regmap * map,const struct reg_sequence * regs,int num_regs)2587 int regmap_multi_reg_write_bypassed(struct regmap *map,
2588 const struct reg_sequence *regs,
2589 int num_regs)
2590 {
2591 int ret;
2592 bool bypass;
2593
2594 map->lock(map->lock_arg);
2595
2596 bypass = map->cache_bypass;
2597 map->cache_bypass = true;
2598
2599 ret = _regmap_multi_reg_write(map, regs, num_regs);
2600
2601 map->cache_bypass = bypass;
2602
2603 map->unlock(map->lock_arg);
2604
2605 return ret;
2606 }
2607 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2608
2609 /**
2610 * regmap_raw_write_async() - Write raw values to one or more registers
2611 * asynchronously
2612 *
2613 * @map: Register map to write to
2614 * @reg: Initial register to write to
2615 * @val: Block of data to be written, laid out for direct transmission to the
2616 * device. Must be valid until regmap_async_complete() is called.
2617 * @val_len: Length of data pointed to by val.
2618 *
2619 * This function is intended to be used for things like firmware
2620 * download where a large block of data needs to be transferred to the
2621 * device. No formatting will be done on the data provided.
2622 *
2623 * If supported by the underlying bus the write will be scheduled
2624 * asynchronously, helping maximise I/O speed on higher speed buses
2625 * like SPI. regmap_async_complete() can be called to ensure that all
2626 * asynchrnous writes have been completed.
2627 *
2628 * A value of zero will be returned on success, a negative errno will
2629 * be returned in error cases.
2630 */
regmap_raw_write_async(struct regmap * map,unsigned int reg,const void * val,size_t val_len)2631 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2632 const void *val, size_t val_len)
2633 {
2634 int ret;
2635
2636 if (val_len % map->format.val_bytes)
2637 return -EINVAL;
2638 if (!IS_ALIGNED(reg, map->reg_stride))
2639 return -EINVAL;
2640
2641 map->lock(map->lock_arg);
2642
2643 map->async = true;
2644
2645 ret = _regmap_raw_write(map, reg, val, val_len, false);
2646
2647 map->async = false;
2648
2649 map->unlock(map->lock_arg);
2650
2651 return ret;
2652 }
2653 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2654
_regmap_raw_read(struct regmap * map,unsigned int reg,void * val,unsigned int val_len,bool noinc)2655 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2656 unsigned int val_len, bool noinc)
2657 {
2658 struct regmap_range_node *range;
2659 int ret;
2660
2661 WARN_ON(!map->bus);
2662
2663 if (!map->bus || !map->bus->read)
2664 return -EINVAL;
2665
2666 range = _regmap_range_lookup(map, reg);
2667 if (range) {
2668 ret = _regmap_select_page(map, ®, range,
2669 noinc ? 1 : val_len / map->format.val_bytes);
2670 if (ret != 0)
2671 return ret;
2672 }
2673
2674 map->format.format_reg(map->work_buf, reg, map->reg_shift);
2675 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2676 map->read_flag_mask);
2677 trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2678
2679 ret = map->bus->read(map->bus_context, map->work_buf,
2680 map->format.reg_bytes + map->format.pad_bytes,
2681 val, val_len);
2682
2683 trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2684
2685 return ret;
2686 }
2687
_regmap_bus_reg_read(void * context,unsigned int reg,unsigned int * val)2688 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2689 unsigned int *val)
2690 {
2691 struct regmap *map = context;
2692
2693 return map->bus->reg_read(map->bus_context, reg, val);
2694 }
2695
_regmap_bus_read(void * context,unsigned int reg,unsigned int * val)2696 static int _regmap_bus_read(void *context, unsigned int reg,
2697 unsigned int *val)
2698 {
2699 int ret;
2700 struct regmap *map = context;
2701 void *work_val = map->work_buf + map->format.reg_bytes +
2702 map->format.pad_bytes;
2703
2704 if (!map->format.parse_val)
2705 return -EINVAL;
2706
2707 ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
2708 if (ret == 0)
2709 *val = map->format.parse_val(work_val);
2710
2711 return ret;
2712 }
2713
_regmap_read(struct regmap * map,unsigned int reg,unsigned int * val)2714 static int _regmap_read(struct regmap *map, unsigned int reg,
2715 unsigned int *val)
2716 {
2717 int ret;
2718 void *context = _regmap_map_get_context(map);
2719
2720 if (!map->cache_bypass) {
2721 ret = regcache_read(map, reg, val);
2722 if (ret == 0)
2723 return 0;
2724 }
2725
2726 if (map->cache_only)
2727 return -EBUSY;
2728
2729 if (!regmap_readable(map, reg))
2730 return -EIO;
2731
2732 ret = map->reg_read(context, reg, val);
2733 if (ret == 0) {
2734 if (regmap_should_log(map))
2735 dev_info(map->dev, "%x => %x\n", reg, *val);
2736
2737 trace_regmap_reg_read(map, reg, *val);
2738
2739 if (!map->cache_bypass)
2740 regcache_write(map, reg, *val);
2741 }
2742
2743 return ret;
2744 }
2745
2746 /**
2747 * regmap_read() - Read a value from a single register
2748 *
2749 * @map: Register map to read from
2750 * @reg: Register to be read from
2751 * @val: Pointer to store read value
2752 *
2753 * A value of zero will be returned on success, a negative errno will
2754 * be returned in error cases.
2755 */
regmap_read(struct regmap * map,unsigned int reg,unsigned int * val)2756 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2757 {
2758 int ret;
2759
2760 if (!IS_ALIGNED(reg, map->reg_stride))
2761 return -EINVAL;
2762
2763 map->lock(map->lock_arg);
2764
2765 ret = _regmap_read(map, reg, val);
2766
2767 map->unlock(map->lock_arg);
2768
2769 return ret;
2770 }
2771 EXPORT_SYMBOL_GPL(regmap_read);
2772
2773 /**
2774 * regmap_raw_read() - Read raw data from the device
2775 *
2776 * @map: Register map to read from
2777 * @reg: First register to be read from
2778 * @val: Pointer to store read value
2779 * @val_len: Size of data to read
2780 *
2781 * A value of zero will be returned on success, a negative errno will
2782 * be returned in error cases.
2783 */
regmap_raw_read(struct regmap * map,unsigned int reg,void * val,size_t val_len)2784 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2785 size_t val_len)
2786 {
2787 size_t val_bytes = map->format.val_bytes;
2788 size_t val_count = val_len / val_bytes;
2789 unsigned int v;
2790 int ret, i;
2791
2792 if (!map->bus)
2793 return -EINVAL;
2794 if (val_len % map->format.val_bytes)
2795 return -EINVAL;
2796 if (!IS_ALIGNED(reg, map->reg_stride))
2797 return -EINVAL;
2798 if (val_count == 0)
2799 return -EINVAL;
2800
2801 map->lock(map->lock_arg);
2802
2803 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2804 map->cache_type == REGCACHE_NONE) {
2805 size_t chunk_count, chunk_bytes;
2806 size_t chunk_regs = val_count;
2807
2808 if (!map->bus->read) {
2809 ret = -ENOTSUPP;
2810 goto out;
2811 }
2812
2813 if (map->use_single_read)
2814 chunk_regs = 1;
2815 else if (map->max_raw_read && val_len > map->max_raw_read)
2816 chunk_regs = map->max_raw_read / val_bytes;
2817
2818 chunk_count = val_count / chunk_regs;
2819 chunk_bytes = chunk_regs * val_bytes;
2820
2821 /* Read bytes that fit into whole chunks */
2822 for (i = 0; i < chunk_count; i++) {
2823 ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
2824 if (ret != 0)
2825 goto out;
2826
2827 reg += regmap_get_offset(map, chunk_regs);
2828 val += chunk_bytes;
2829 val_len -= chunk_bytes;
2830 }
2831
2832 /* Read remaining bytes */
2833 if (val_len) {
2834 ret = _regmap_raw_read(map, reg, val, val_len, false);
2835 if (ret != 0)
2836 goto out;
2837 }
2838 } else {
2839 /* Otherwise go word by word for the cache; should be low
2840 * cost as we expect to hit the cache.
2841 */
2842 for (i = 0; i < val_count; i++) {
2843 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2844 &v);
2845 if (ret != 0)
2846 goto out;
2847
2848 map->format.format_val(val + (i * val_bytes), v, 0);
2849 }
2850 }
2851
2852 out:
2853 map->unlock(map->lock_arg);
2854
2855 return ret;
2856 }
2857 EXPORT_SYMBOL_GPL(regmap_raw_read);
2858
2859 /**
2860 * regmap_noinc_read(): Read data from a register without incrementing the
2861 * register number
2862 *
2863 * @map: Register map to read from
2864 * @reg: Register to read from
2865 * @val: Pointer to data buffer
2866 * @val_len: Length of output buffer in bytes.
2867 *
2868 * The regmap API usually assumes that bulk bus read operations will read a
2869 * range of registers. Some devices have certain registers for which a read
2870 * operation read will read from an internal FIFO.
2871 *
2872 * The target register must be volatile but registers after it can be
2873 * completely unrelated cacheable registers.
2874 *
2875 * This will attempt multiple reads as required to read val_len bytes.
2876 *
2877 * A value of zero will be returned on success, a negative errno will be
2878 * returned in error cases.
2879 */
regmap_noinc_read(struct regmap * map,unsigned int reg,void * val,size_t val_len)2880 int regmap_noinc_read(struct regmap *map, unsigned int reg,
2881 void *val, size_t val_len)
2882 {
2883 size_t read_len;
2884 int ret;
2885
2886 if (!map->bus)
2887 return -EINVAL;
2888 if (!map->bus->read)
2889 return -ENOTSUPP;
2890 if (val_len % map->format.val_bytes)
2891 return -EINVAL;
2892 if (!IS_ALIGNED(reg, map->reg_stride))
2893 return -EINVAL;
2894 if (val_len == 0)
2895 return -EINVAL;
2896
2897 map->lock(map->lock_arg);
2898
2899 if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
2900 ret = -EINVAL;
2901 goto out_unlock;
2902 }
2903
2904 while (val_len) {
2905 if (map->max_raw_read && map->max_raw_read < val_len)
2906 read_len = map->max_raw_read;
2907 else
2908 read_len = val_len;
2909 ret = _regmap_raw_read(map, reg, val, read_len, true);
2910 if (ret)
2911 goto out_unlock;
2912 val = ((u8 *)val) + read_len;
2913 val_len -= read_len;
2914 }
2915
2916 out_unlock:
2917 map->unlock(map->lock_arg);
2918 return ret;
2919 }
2920 EXPORT_SYMBOL_GPL(regmap_noinc_read);
2921
2922 /**
2923 * regmap_field_read(): Read a value to a single register field
2924 *
2925 * @field: Register field to read from
2926 * @val: Pointer to store read value
2927 *
2928 * A value of zero will be returned on success, a negative errno will
2929 * be returned in error cases.
2930 */
regmap_field_read(struct regmap_field * field,unsigned int * val)2931 int regmap_field_read(struct regmap_field *field, unsigned int *val)
2932 {
2933 int ret;
2934 unsigned int reg_val;
2935 ret = regmap_read(field->regmap, field->reg, ®_val);
2936 if (ret != 0)
2937 return ret;
2938
2939 reg_val &= field->mask;
2940 reg_val >>= field->shift;
2941 *val = reg_val;
2942
2943 return ret;
2944 }
2945 EXPORT_SYMBOL_GPL(regmap_field_read);
2946
2947 /**
2948 * regmap_fields_read() - Read a value to a single register field with port ID
2949 *
2950 * @field: Register field to read from
2951 * @id: port ID
2952 * @val: Pointer to store read value
2953 *
2954 * A value of zero will be returned on success, a negative errno will
2955 * be returned in error cases.
2956 */
regmap_fields_read(struct regmap_field * field,unsigned int id,unsigned int * val)2957 int regmap_fields_read(struct regmap_field *field, unsigned int id,
2958 unsigned int *val)
2959 {
2960 int ret;
2961 unsigned int reg_val;
2962
2963 if (id >= field->id_size)
2964 return -EINVAL;
2965
2966 ret = regmap_read(field->regmap,
2967 field->reg + (field->id_offset * id),
2968 ®_val);
2969 if (ret != 0)
2970 return ret;
2971
2972 reg_val &= field->mask;
2973 reg_val >>= field->shift;
2974 *val = reg_val;
2975
2976 return ret;
2977 }
2978 EXPORT_SYMBOL_GPL(regmap_fields_read);
2979
2980 /**
2981 * regmap_bulk_read() - Read multiple registers from the device
2982 *
2983 * @map: Register map to read from
2984 * @reg: First register to be read from
2985 * @val: Pointer to store read value, in native register size for device
2986 * @val_count: Number of registers to read
2987 *
2988 * A value of zero will be returned on success, a negative errno will
2989 * be returned in error cases.
2990 */
regmap_bulk_read(struct regmap * map,unsigned int reg,void * val,size_t val_count)2991 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2992 size_t val_count)
2993 {
2994 int ret, i;
2995 size_t val_bytes = map->format.val_bytes;
2996 bool vol = regmap_volatile_range(map, reg, val_count);
2997
2998 if (!IS_ALIGNED(reg, map->reg_stride))
2999 return -EINVAL;
3000 if (val_count == 0)
3001 return -EINVAL;
3002
3003 if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
3004 ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
3005 if (ret != 0)
3006 return ret;
3007
3008 for (i = 0; i < val_count * val_bytes; i += val_bytes)
3009 map->format.parse_inplace(val + i);
3010 } else {
3011 #ifdef CONFIG_64BIT
3012 u64 *u64 = val;
3013 #endif
3014 u32 *u32 = val;
3015 u16 *u16 = val;
3016 u8 *u8 = val;
3017
3018 map->lock(map->lock_arg);
3019
3020 for (i = 0; i < val_count; i++) {
3021 unsigned int ival;
3022
3023 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
3024 &ival);
3025 if (ret != 0)
3026 goto out;
3027
3028 switch (map->format.val_bytes) {
3029 #ifdef CONFIG_64BIT
3030 case 8:
3031 u64[i] = ival;
3032 break;
3033 #endif
3034 case 4:
3035 u32[i] = ival;
3036 break;
3037 case 2:
3038 u16[i] = ival;
3039 break;
3040 case 1:
3041 u8[i] = ival;
3042 break;
3043 default:
3044 ret = -EINVAL;
3045 goto out;
3046 }
3047 }
3048
3049 out:
3050 map->unlock(map->lock_arg);
3051 }
3052
3053 return ret;
3054 }
3055 EXPORT_SYMBOL_GPL(regmap_bulk_read);
3056
_regmap_update_bits(struct regmap * map,unsigned int reg,unsigned int mask,unsigned int val,bool * change,bool force_write)3057 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
3058 unsigned int mask, unsigned int val,
3059 bool *change, bool force_write)
3060 {
3061 int ret;
3062 unsigned int tmp, orig;
3063
3064 if (change)
3065 *change = false;
3066
3067 if (regmap_volatile(map, reg) && map->reg_update_bits) {
3068 ret = map->reg_update_bits(map->bus_context, reg, mask, val);
3069 if (ret == 0 && change)
3070 *change = true;
3071 } else {
3072 ret = _regmap_read(map, reg, &orig);
3073 if (ret != 0)
3074 return ret;
3075
3076 tmp = orig & ~mask;
3077 tmp |= val & mask;
3078
3079 if (force_write || (tmp != orig)) {
3080 ret = _regmap_write(map, reg, tmp);
3081 if (ret == 0 && change)
3082 *change = true;
3083 }
3084 }
3085
3086 return ret;
3087 }
3088
3089 /**
3090 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
3091 *
3092 * @map: Register map to update
3093 * @reg: Register to update
3094 * @mask: Bitmask to change
3095 * @val: New value for bitmask
3096 * @change: Boolean indicating if a write was done
3097 * @async: Boolean indicating asynchronously
3098 * @force: Boolean indicating use force update
3099 *
3100 * Perform a read/modify/write cycle on a register map with change, async, force
3101 * options.
3102 *
3103 * If async is true:
3104 *
3105 * With most buses the read must be done synchronously so this is most useful
3106 * for devices with a cache which do not need to interact with the hardware to
3107 * determine the current register value.
3108 *
3109 * Returns zero for success, a negative number on error.
3110 */
regmap_update_bits_base(struct regmap * map,unsigned int reg,unsigned int mask,unsigned int val,bool * change,bool async,bool force)3111 int regmap_update_bits_base(struct regmap *map, unsigned int reg,
3112 unsigned int mask, unsigned int val,
3113 bool *change, bool async, bool force)
3114 {
3115 int ret;
3116
3117 map->lock(map->lock_arg);
3118
3119 map->async = async;
3120
3121 ret = _regmap_update_bits(map, reg, mask, val, change, force);
3122
3123 map->async = false;
3124
3125 map->unlock(map->lock_arg);
3126
3127 return ret;
3128 }
3129 EXPORT_SYMBOL_GPL(regmap_update_bits_base);
3130
3131 /**
3132 * regmap_test_bits() - Check if all specified bits are set in a register.
3133 *
3134 * @map: Register map to operate on
3135 * @reg: Register to read from
3136 * @bits: Bits to test
3137 *
3138 * Returns 0 if at least one of the tested bits is not set, 1 if all tested
3139 * bits are set and a negative error number if the underlying regmap_read()
3140 * fails.
3141 */
regmap_test_bits(struct regmap * map,unsigned int reg,unsigned int bits)3142 int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
3143 {
3144 unsigned int val, ret;
3145
3146 ret = regmap_read(map, reg, &val);
3147 if (ret)
3148 return ret;
3149
3150 return (val & bits) == bits;
3151 }
3152 EXPORT_SYMBOL_GPL(regmap_test_bits);
3153
regmap_async_complete_cb(struct regmap_async * async,int ret)3154 void regmap_async_complete_cb(struct regmap_async *async, int ret)
3155 {
3156 struct regmap *map = async->map;
3157 bool wake;
3158
3159 trace_regmap_async_io_complete(map);
3160
3161 spin_lock(&map->async_lock);
3162 list_move(&async->list, &map->async_free);
3163 wake = list_empty(&map->async_list);
3164
3165 if (ret != 0)
3166 map->async_ret = ret;
3167
3168 spin_unlock(&map->async_lock);
3169
3170 if (wake)
3171 wake_up(&map->async_waitq);
3172 }
3173 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
3174
regmap_async_is_done(struct regmap * map)3175 static int regmap_async_is_done(struct regmap *map)
3176 {
3177 unsigned long flags;
3178 int ret;
3179
3180 spin_lock_irqsave(&map->async_lock, flags);
3181 ret = list_empty(&map->async_list);
3182 spin_unlock_irqrestore(&map->async_lock, flags);
3183
3184 return ret;
3185 }
3186
3187 /**
3188 * regmap_async_complete - Ensure all asynchronous I/O has completed.
3189 *
3190 * @map: Map to operate on.
3191 *
3192 * Blocks until any pending asynchronous I/O has completed. Returns
3193 * an error code for any failed I/O operations.
3194 */
regmap_async_complete(struct regmap * map)3195 int regmap_async_complete(struct regmap *map)
3196 {
3197 unsigned long flags;
3198 int ret;
3199
3200 /* Nothing to do with no async support */
3201 if (!map->bus || !map->bus->async_write)
3202 return 0;
3203
3204 trace_regmap_async_complete_start(map);
3205
3206 wait_event(map->async_waitq, regmap_async_is_done(map));
3207
3208 spin_lock_irqsave(&map->async_lock, flags);
3209 ret = map->async_ret;
3210 map->async_ret = 0;
3211 spin_unlock_irqrestore(&map->async_lock, flags);
3212
3213 trace_regmap_async_complete_done(map);
3214
3215 return ret;
3216 }
3217 EXPORT_SYMBOL_GPL(regmap_async_complete);
3218
3219 /**
3220 * regmap_register_patch - Register and apply register updates to be applied
3221 * on device initialistion
3222 *
3223 * @map: Register map to apply updates to.
3224 * @regs: Values to update.
3225 * @num_regs: Number of entries in regs.
3226 *
3227 * Register a set of register updates to be applied to the device
3228 * whenever the device registers are synchronised with the cache and
3229 * apply them immediately. Typically this is used to apply
3230 * corrections to be applied to the device defaults on startup, such
3231 * as the updates some vendors provide to undocumented registers.
3232 *
3233 * The caller must ensure that this function cannot be called
3234 * concurrently with either itself or regcache_sync().
3235 */
regmap_register_patch(struct regmap * map,const struct reg_sequence * regs,int num_regs)3236 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3237 int num_regs)
3238 {
3239 struct reg_sequence *p;
3240 int ret;
3241 bool bypass;
3242
3243 if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3244 num_regs))
3245 return 0;
3246
3247 p = krealloc(map->patch,
3248 sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3249 GFP_KERNEL);
3250 if (p) {
3251 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3252 map->patch = p;
3253 map->patch_regs += num_regs;
3254 } else {
3255 return -ENOMEM;
3256 }
3257
3258 map->lock(map->lock_arg);
3259
3260 bypass = map->cache_bypass;
3261
3262 map->cache_bypass = true;
3263 map->async = true;
3264
3265 ret = _regmap_multi_reg_write(map, regs, num_regs);
3266
3267 map->async = false;
3268 map->cache_bypass = bypass;
3269
3270 map->unlock(map->lock_arg);
3271
3272 regmap_async_complete(map);
3273
3274 return ret;
3275 }
3276 EXPORT_SYMBOL_GPL(regmap_register_patch);
3277
3278 /**
3279 * regmap_get_val_bytes() - Report the size of a register value
3280 *
3281 * @map: Register map to operate on.
3282 *
3283 * Report the size of a register value, mainly intended to for use by
3284 * generic infrastructure built on top of regmap.
3285 */
regmap_get_val_bytes(struct regmap * map)3286 int regmap_get_val_bytes(struct regmap *map)
3287 {
3288 if (map->format.format_write)
3289 return -EINVAL;
3290
3291 return map->format.val_bytes;
3292 }
3293 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3294
3295 /**
3296 * regmap_get_max_register() - Report the max register value
3297 *
3298 * @map: Register map to operate on.
3299 *
3300 * Report the max register value, mainly intended to for use by
3301 * generic infrastructure built on top of regmap.
3302 */
regmap_get_max_register(struct regmap * map)3303 int regmap_get_max_register(struct regmap *map)
3304 {
3305 return map->max_register ? map->max_register : -EINVAL;
3306 }
3307 EXPORT_SYMBOL_GPL(regmap_get_max_register);
3308
3309 /**
3310 * regmap_get_reg_stride() - Report the register address stride
3311 *
3312 * @map: Register map to operate on.
3313 *
3314 * Report the register address stride, mainly intended to for use by
3315 * generic infrastructure built on top of regmap.
3316 */
regmap_get_reg_stride(struct regmap * map)3317 int regmap_get_reg_stride(struct regmap *map)
3318 {
3319 return map->reg_stride;
3320 }
3321 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3322
regmap_parse_val(struct regmap * map,const void * buf,unsigned int * val)3323 int regmap_parse_val(struct regmap *map, const void *buf,
3324 unsigned int *val)
3325 {
3326 if (!map->format.parse_val)
3327 return -EINVAL;
3328
3329 *val = map->format.parse_val(buf);
3330
3331 return 0;
3332 }
3333 EXPORT_SYMBOL_GPL(regmap_parse_val);
3334
regmap_initcall(void)3335 static int __init regmap_initcall(void)
3336 {
3337 regmap_debugfs_initcall();
3338
3339 return 0;
3340 }
3341 postcore_initcall(regmap_initcall);
3342