1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2017 Intel Deutschland GmbH
8 * Copyright (C) 2018 - 2019 Intel Corporation
9 *
10 * Permission to use, copy, modify, and/or distribute this software for any
11 * purpose with or without fee is hereby granted, provided that the above
12 * copyright notice and this permission notice appear in all copies.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21 */
22
23
24 /**
25 * DOC: Wireless regulatory infrastructure
26 *
27 * The usual implementation is for a driver to read a device EEPROM to
28 * determine which regulatory domain it should be operating under, then
29 * looking up the allowable channels in a driver-local table and finally
30 * registering those channels in the wiphy structure.
31 *
32 * Another set of compliance enforcement is for drivers to use their
33 * own compliance limits which can be stored on the EEPROM. The host
34 * driver or firmware may ensure these are used.
35 *
36 * In addition to all this we provide an extra layer of regulatory
37 * conformance. For drivers which do not have any regulatory
38 * information CRDA provides the complete regulatory solution.
39 * For others it provides a community effort on further restrictions
40 * to enhance compliance.
41 *
42 * Note: When number of rules --> infinity we will not be able to
43 * index on alpha2 any more, instead we'll probably have to
44 * rely on some SHA1 checksum of the regdomain for example.
45 *
46 */
47
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <net/cfg80211.h>
61 #include "core.h"
62 #include "reg.h"
63 #include "rdev-ops.h"
64 #include "nl80211.h"
65
66 /*
67 * Grace period we give before making sure all current interfaces reside on
68 * channels allowed by the current regulatory domain.
69 */
70 #define REG_ENFORCE_GRACE_MS 60000
71
72 /**
73 * enum reg_request_treatment - regulatory request treatment
74 *
75 * @REG_REQ_OK: continue processing the regulatory request
76 * @REG_REQ_IGNORE: ignore the regulatory request
77 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78 * be intersected with the current one.
79 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80 * regulatory settings, and no further processing is required.
81 */
82 enum reg_request_treatment {
83 REG_REQ_OK,
84 REG_REQ_IGNORE,
85 REG_REQ_INTERSECT,
86 REG_REQ_ALREADY_SET,
87 };
88
89 static struct regulatory_request core_request_world = {
90 .initiator = NL80211_REGDOM_SET_BY_CORE,
91 .alpha2[0] = '0',
92 .alpha2[1] = '0',
93 .intersect = false,
94 .processed = true,
95 .country_ie_env = ENVIRON_ANY,
96 };
97
98 /*
99 * Receipt of information from last regulatory request,
100 * protected by RTNL (and can be accessed with RCU protection)
101 */
102 static struct regulatory_request __rcu *last_request =
103 (void __force __rcu *)&core_request_world;
104
105 /* To trigger userspace events and load firmware */
106 static struct platform_device *reg_pdev;
107
108 /*
109 * Central wireless core regulatory domains, we only need two,
110 * the current one and a world regulatory domain in case we have no
111 * information to give us an alpha2.
112 * (protected by RTNL, can be read under RCU)
113 */
114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
115
116 /*
117 * Number of devices that registered to the core
118 * that support cellular base station regulatory hints
119 * (protected by RTNL)
120 */
121 static int reg_num_devs_support_basehint;
122
123 /*
124 * State variable indicating if the platform on which the devices
125 * are attached is operating in an indoor environment. The state variable
126 * is relevant for all registered devices.
127 */
128 static bool reg_is_indoor;
129 static spinlock_t reg_indoor_lock;
130
131 /* Used to track the userspace process controlling the indoor setting */
132 static u32 reg_is_indoor_portid;
133
134 static void restore_regulatory_settings(bool reset_user, bool cached);
135 static void print_regdomain(const struct ieee80211_regdomain *rd);
136
get_cfg80211_regdom(void)137 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
138 {
139 return rcu_dereference_rtnl(cfg80211_regdomain);
140 }
141
get_wiphy_regdom(struct wiphy * wiphy)142 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
143 {
144 return rcu_dereference_rtnl(wiphy->regd);
145 }
146
reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)147 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
148 {
149 switch (dfs_region) {
150 case NL80211_DFS_UNSET:
151 return "unset";
152 case NL80211_DFS_FCC:
153 return "FCC";
154 case NL80211_DFS_ETSI:
155 return "ETSI";
156 case NL80211_DFS_JP:
157 return "JP";
158 }
159 return "Unknown";
160 }
161
reg_get_dfs_region(struct wiphy * wiphy)162 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
163 {
164 const struct ieee80211_regdomain *regd = NULL;
165 const struct ieee80211_regdomain *wiphy_regd = NULL;
166
167 regd = get_cfg80211_regdom();
168 if (!wiphy)
169 goto out;
170
171 wiphy_regd = get_wiphy_regdom(wiphy);
172 if (!wiphy_regd)
173 goto out;
174
175 if (wiphy_regd->dfs_region == regd->dfs_region)
176 goto out;
177
178 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
179 dev_name(&wiphy->dev),
180 reg_dfs_region_str(wiphy_regd->dfs_region),
181 reg_dfs_region_str(regd->dfs_region));
182
183 out:
184 return regd->dfs_region;
185 }
186
rcu_free_regdom(const struct ieee80211_regdomain * r)187 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
188 {
189 if (!r)
190 return;
191 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
192 }
193
get_last_request(void)194 static struct regulatory_request *get_last_request(void)
195 {
196 return rcu_dereference_rtnl(last_request);
197 }
198
199 /* Used to queue up regulatory hints */
200 static LIST_HEAD(reg_requests_list);
201 static spinlock_t reg_requests_lock;
202
203 /* Used to queue up beacon hints for review */
204 static LIST_HEAD(reg_pending_beacons);
205 static spinlock_t reg_pending_beacons_lock;
206
207 /* Used to keep track of processed beacon hints */
208 static LIST_HEAD(reg_beacon_list);
209
210 struct reg_beacon {
211 struct list_head list;
212 struct ieee80211_channel chan;
213 };
214
215 static void reg_check_chans_work(struct work_struct *work);
216 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
217
218 static void reg_todo(struct work_struct *work);
219 static DECLARE_WORK(reg_work, reg_todo);
220
221 /* We keep a static world regulatory domain in case of the absence of CRDA */
222 static const struct ieee80211_regdomain world_regdom = {
223 .n_reg_rules = 8,
224 .alpha2 = "00",
225 .reg_rules = {
226 /* IEEE 802.11b/g, channels 1..11 */
227 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
228 /* IEEE 802.11b/g, channels 12..13. */
229 REG_RULE(2467-10, 2472+10, 20, 6, 20,
230 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
231 /* IEEE 802.11 channel 14 - Only JP enables
232 * this and for 802.11b only */
233 REG_RULE(2484-10, 2484+10, 20, 6, 20,
234 NL80211_RRF_NO_IR |
235 NL80211_RRF_NO_OFDM),
236 /* IEEE 802.11a, channel 36..48 */
237 REG_RULE(5180-10, 5240+10, 80, 6, 20,
238 NL80211_RRF_NO_IR |
239 NL80211_RRF_AUTO_BW),
240
241 /* IEEE 802.11a, channel 52..64 - DFS required */
242 REG_RULE(5260-10, 5320+10, 80, 6, 20,
243 NL80211_RRF_NO_IR |
244 NL80211_RRF_AUTO_BW |
245 NL80211_RRF_DFS),
246
247 /* IEEE 802.11a, channel 100..144 - DFS required */
248 REG_RULE(5500-10, 5720+10, 160, 6, 20,
249 NL80211_RRF_NO_IR |
250 NL80211_RRF_DFS),
251
252 /* IEEE 802.11a, channel 149..165 */
253 REG_RULE(5745-10, 5825+10, 80, 6, 20,
254 NL80211_RRF_NO_IR),
255
256 /* IEEE 802.11ad (60GHz), channels 1..3 */
257 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
258 }
259 };
260
261 /* protected by RTNL */
262 static const struct ieee80211_regdomain *cfg80211_world_regdom =
263 &world_regdom;
264
265 static char *ieee80211_regdom = "00";
266 static char user_alpha2[2];
267 static const struct ieee80211_regdomain *cfg80211_user_regdom;
268
269 module_param(ieee80211_regdom, charp, 0444);
270 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
271
reg_free_request(struct regulatory_request * request)272 static void reg_free_request(struct regulatory_request *request)
273 {
274 if (request == &core_request_world)
275 return;
276
277 if (request != get_last_request())
278 kfree(request);
279 }
280
reg_free_last_request(void)281 static void reg_free_last_request(void)
282 {
283 struct regulatory_request *lr = get_last_request();
284
285 if (lr != &core_request_world && lr)
286 kfree_rcu(lr, rcu_head);
287 }
288
reg_update_last_request(struct regulatory_request * request)289 static void reg_update_last_request(struct regulatory_request *request)
290 {
291 struct regulatory_request *lr;
292
293 lr = get_last_request();
294 if (lr == request)
295 return;
296
297 reg_free_last_request();
298 rcu_assign_pointer(last_request, request);
299 }
300
reset_regdomains(bool full_reset,const struct ieee80211_regdomain * new_regdom)301 static void reset_regdomains(bool full_reset,
302 const struct ieee80211_regdomain *new_regdom)
303 {
304 const struct ieee80211_regdomain *r;
305
306 ASSERT_RTNL();
307
308 r = get_cfg80211_regdom();
309
310 /* avoid freeing static information or freeing something twice */
311 if (r == cfg80211_world_regdom)
312 r = NULL;
313 if (cfg80211_world_regdom == &world_regdom)
314 cfg80211_world_regdom = NULL;
315 if (r == &world_regdom)
316 r = NULL;
317
318 rcu_free_regdom(r);
319 rcu_free_regdom(cfg80211_world_regdom);
320
321 cfg80211_world_regdom = &world_regdom;
322 rcu_assign_pointer(cfg80211_regdomain, new_regdom);
323
324 if (!full_reset)
325 return;
326
327 reg_update_last_request(&core_request_world);
328 }
329
330 /*
331 * Dynamic world regulatory domain requested by the wireless
332 * core upon initialization
333 */
update_world_regdomain(const struct ieee80211_regdomain * rd)334 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
335 {
336 struct regulatory_request *lr;
337
338 lr = get_last_request();
339
340 WARN_ON(!lr);
341
342 reset_regdomains(false, rd);
343
344 cfg80211_world_regdom = rd;
345 }
346
is_world_regdom(const char * alpha2)347 bool is_world_regdom(const char *alpha2)
348 {
349 if (!alpha2)
350 return false;
351 return alpha2[0] == '0' && alpha2[1] == '0';
352 }
353
is_alpha2_set(const char * alpha2)354 static bool is_alpha2_set(const char *alpha2)
355 {
356 if (!alpha2)
357 return false;
358 return alpha2[0] && alpha2[1];
359 }
360
is_unknown_alpha2(const char * alpha2)361 static bool is_unknown_alpha2(const char *alpha2)
362 {
363 if (!alpha2)
364 return false;
365 /*
366 * Special case where regulatory domain was built by driver
367 * but a specific alpha2 cannot be determined
368 */
369 return alpha2[0] == '9' && alpha2[1] == '9';
370 }
371
is_intersected_alpha2(const char * alpha2)372 static bool is_intersected_alpha2(const char *alpha2)
373 {
374 if (!alpha2)
375 return false;
376 /*
377 * Special case where regulatory domain is the
378 * result of an intersection between two regulatory domain
379 * structures
380 */
381 return alpha2[0] == '9' && alpha2[1] == '8';
382 }
383
is_an_alpha2(const char * alpha2)384 static bool is_an_alpha2(const char *alpha2)
385 {
386 if (!alpha2)
387 return false;
388 return isalpha(alpha2[0]) && isalpha(alpha2[1]);
389 }
390
alpha2_equal(const char * alpha2_x,const char * alpha2_y)391 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
392 {
393 if (!alpha2_x || !alpha2_y)
394 return false;
395 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
396 }
397
regdom_changes(const char * alpha2)398 static bool regdom_changes(const char *alpha2)
399 {
400 const struct ieee80211_regdomain *r = get_cfg80211_regdom();
401
402 if (!r)
403 return true;
404 return !alpha2_equal(r->alpha2, alpha2);
405 }
406
407 /*
408 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
409 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
410 * has ever been issued.
411 */
is_user_regdom_saved(void)412 static bool is_user_regdom_saved(void)
413 {
414 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
415 return false;
416
417 /* This would indicate a mistake on the design */
418 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
419 "Unexpected user alpha2: %c%c\n",
420 user_alpha2[0], user_alpha2[1]))
421 return false;
422
423 return true;
424 }
425
426 static const struct ieee80211_regdomain *
reg_copy_regd(const struct ieee80211_regdomain * src_regd)427 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
428 {
429 struct ieee80211_regdomain *regd;
430 unsigned int i;
431
432 regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
433 GFP_KERNEL);
434 if (!regd)
435 return ERR_PTR(-ENOMEM);
436
437 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
438
439 for (i = 0; i < src_regd->n_reg_rules; i++)
440 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i],
441 sizeof(struct ieee80211_reg_rule));
442
443 return regd;
444 }
445
cfg80211_save_user_regdom(const struct ieee80211_regdomain * rd)446 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
447 {
448 ASSERT_RTNL();
449
450 if (!IS_ERR(cfg80211_user_regdom))
451 kfree(cfg80211_user_regdom);
452 cfg80211_user_regdom = reg_copy_regd(rd);
453 }
454
455 struct reg_regdb_apply_request {
456 struct list_head list;
457 const struct ieee80211_regdomain *regdom;
458 };
459
460 static LIST_HEAD(reg_regdb_apply_list);
461 static DEFINE_MUTEX(reg_regdb_apply_mutex);
462
reg_regdb_apply(struct work_struct * work)463 static void reg_regdb_apply(struct work_struct *work)
464 {
465 struct reg_regdb_apply_request *request;
466
467 rtnl_lock();
468
469 mutex_lock(®_regdb_apply_mutex);
470 while (!list_empty(®_regdb_apply_list)) {
471 request = list_first_entry(®_regdb_apply_list,
472 struct reg_regdb_apply_request,
473 list);
474 list_del(&request->list);
475
476 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
477 kfree(request);
478 }
479 mutex_unlock(®_regdb_apply_mutex);
480
481 rtnl_unlock();
482 }
483
484 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
485
reg_schedule_apply(const struct ieee80211_regdomain * regdom)486 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
487 {
488 struct reg_regdb_apply_request *request;
489
490 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
491 if (!request) {
492 kfree(regdom);
493 return -ENOMEM;
494 }
495
496 request->regdom = regdom;
497
498 mutex_lock(®_regdb_apply_mutex);
499 list_add_tail(&request->list, ®_regdb_apply_list);
500 mutex_unlock(®_regdb_apply_mutex);
501
502 schedule_work(®_regdb_work);
503 return 0;
504 }
505
506 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
507 /* Max number of consecutive attempts to communicate with CRDA */
508 #define REG_MAX_CRDA_TIMEOUTS 10
509
510 static u32 reg_crda_timeouts;
511
512 static void crda_timeout_work(struct work_struct *work);
513 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
514
crda_timeout_work(struct work_struct * work)515 static void crda_timeout_work(struct work_struct *work)
516 {
517 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
518 rtnl_lock();
519 reg_crda_timeouts++;
520 restore_regulatory_settings(true, false);
521 rtnl_unlock();
522 }
523
cancel_crda_timeout(void)524 static void cancel_crda_timeout(void)
525 {
526 cancel_delayed_work(&crda_timeout);
527 }
528
cancel_crda_timeout_sync(void)529 static void cancel_crda_timeout_sync(void)
530 {
531 cancel_delayed_work_sync(&crda_timeout);
532 }
533
reset_crda_timeouts(void)534 static void reset_crda_timeouts(void)
535 {
536 reg_crda_timeouts = 0;
537 }
538
539 /*
540 * This lets us keep regulatory code which is updated on a regulatory
541 * basis in userspace.
542 */
call_crda(const char * alpha2)543 static int call_crda(const char *alpha2)
544 {
545 char country[12];
546 char *env[] = { country, NULL };
547 int ret;
548
549 snprintf(country, sizeof(country), "COUNTRY=%c%c",
550 alpha2[0], alpha2[1]);
551
552 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
553 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
554 return -EINVAL;
555 }
556
557 if (!is_world_regdom((char *) alpha2))
558 pr_debug("Calling CRDA for country: %c%c\n",
559 alpha2[0], alpha2[1]);
560 else
561 pr_debug("Calling CRDA to update world regulatory domain\n");
562
563 ret = kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, env);
564 if (ret)
565 return ret;
566
567 queue_delayed_work(system_power_efficient_wq,
568 &crda_timeout, msecs_to_jiffies(3142));
569 return 0;
570 }
571 #else
cancel_crda_timeout(void)572 static inline void cancel_crda_timeout(void) {}
cancel_crda_timeout_sync(void)573 static inline void cancel_crda_timeout_sync(void) {}
reset_crda_timeouts(void)574 static inline void reset_crda_timeouts(void) {}
call_crda(const char * alpha2)575 static inline int call_crda(const char *alpha2)
576 {
577 return -ENODATA;
578 }
579 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
580
581 /* code to directly load a firmware database through request_firmware */
582 static const struct fwdb_header *regdb;
583
584 struct fwdb_country {
585 u8 alpha2[2];
586 __be16 coll_ptr;
587 /* this struct cannot be extended */
588 } __packed __aligned(4);
589
590 struct fwdb_collection {
591 u8 len;
592 u8 n_rules;
593 u8 dfs_region;
594 /* no optional data yet */
595 /* aligned to 2, then followed by __be16 array of rule pointers */
596 } __packed __aligned(4);
597
598 enum fwdb_flags {
599 FWDB_FLAG_NO_OFDM = BIT(0),
600 FWDB_FLAG_NO_OUTDOOR = BIT(1),
601 FWDB_FLAG_DFS = BIT(2),
602 FWDB_FLAG_NO_IR = BIT(3),
603 FWDB_FLAG_AUTO_BW = BIT(4),
604 };
605
606 struct fwdb_wmm_ac {
607 u8 ecw;
608 u8 aifsn;
609 __be16 cot;
610 } __packed;
611
612 struct fwdb_wmm_rule {
613 struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
614 struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
615 } __packed;
616
617 struct fwdb_rule {
618 u8 len;
619 u8 flags;
620 __be16 max_eirp;
621 __be32 start, end, max_bw;
622 /* start of optional data */
623 __be16 cac_timeout;
624 __be16 wmm_ptr;
625 } __packed __aligned(4);
626
627 #define FWDB_MAGIC 0x52474442
628 #define FWDB_VERSION 20
629
630 struct fwdb_header {
631 __be32 magic;
632 __be32 version;
633 struct fwdb_country country[];
634 } __packed __aligned(4);
635
ecw2cw(int ecw)636 static int ecw2cw(int ecw)
637 {
638 return (1 << ecw) - 1;
639 }
640
valid_wmm(struct fwdb_wmm_rule * rule)641 static bool valid_wmm(struct fwdb_wmm_rule *rule)
642 {
643 struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
644 int i;
645
646 for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
647 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
648 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
649 u8 aifsn = ac[i].aifsn;
650
651 if (cw_min >= cw_max)
652 return false;
653
654 if (aifsn < 1)
655 return false;
656 }
657
658 return true;
659 }
660
valid_rule(const u8 * data,unsigned int size,u16 rule_ptr)661 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
662 {
663 struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
664
665 if ((u8 *)rule + sizeof(rule->len) > data + size)
666 return false;
667
668 /* mandatory fields */
669 if (rule->len < offsetofend(struct fwdb_rule, max_bw))
670 return false;
671 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
672 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
673 struct fwdb_wmm_rule *wmm;
674
675 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
676 return false;
677
678 wmm = (void *)(data + wmm_ptr);
679
680 if (!valid_wmm(wmm))
681 return false;
682 }
683 return true;
684 }
685
valid_country(const u8 * data,unsigned int size,const struct fwdb_country * country)686 static bool valid_country(const u8 *data, unsigned int size,
687 const struct fwdb_country *country)
688 {
689 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
690 struct fwdb_collection *coll = (void *)(data + ptr);
691 __be16 *rules_ptr;
692 unsigned int i;
693
694 /* make sure we can read len/n_rules */
695 if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
696 return false;
697
698 /* make sure base struct and all rules fit */
699 if ((u8 *)coll + ALIGN(coll->len, 2) +
700 (coll->n_rules * 2) > data + size)
701 return false;
702
703 /* mandatory fields must exist */
704 if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
705 return false;
706
707 rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
708
709 for (i = 0; i < coll->n_rules; i++) {
710 u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
711
712 if (!valid_rule(data, size, rule_ptr))
713 return false;
714 }
715
716 return true;
717 }
718
719 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
720 static struct key *builtin_regdb_keys;
721
load_keys_from_buffer(const u8 * p,unsigned int buflen)722 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen)
723 {
724 const u8 *end = p + buflen;
725 size_t plen;
726 key_ref_t key;
727
728 while (p < end) {
729 /* Each cert begins with an ASN.1 SEQUENCE tag and must be more
730 * than 256 bytes in size.
731 */
732 if (end - p < 4)
733 goto dodgy_cert;
734 if (p[0] != 0x30 &&
735 p[1] != 0x82)
736 goto dodgy_cert;
737 plen = (p[2] << 8) | p[3];
738 plen += 4;
739 if (plen > end - p)
740 goto dodgy_cert;
741
742 key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1),
743 "asymmetric", NULL, p, plen,
744 ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
745 KEY_USR_VIEW | KEY_USR_READ),
746 KEY_ALLOC_NOT_IN_QUOTA |
747 KEY_ALLOC_BUILT_IN |
748 KEY_ALLOC_BYPASS_RESTRICTION);
749 if (IS_ERR(key)) {
750 pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
751 PTR_ERR(key));
752 } else {
753 pr_notice("Loaded X.509 cert '%s'\n",
754 key_ref_to_ptr(key)->description);
755 key_ref_put(key);
756 }
757 p += plen;
758 }
759
760 return;
761
762 dodgy_cert:
763 pr_err("Problem parsing in-kernel X.509 certificate list\n");
764 }
765
load_builtin_regdb_keys(void)766 static int __init load_builtin_regdb_keys(void)
767 {
768 builtin_regdb_keys =
769 keyring_alloc(".builtin_regdb_keys",
770 KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
771 ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
772 KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
773 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
774 if (IS_ERR(builtin_regdb_keys))
775 return PTR_ERR(builtin_regdb_keys);
776
777 pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
778
779 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
780 load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len);
781 #endif
782 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
783 if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
784 load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len);
785 #endif
786
787 return 0;
788 }
789
regdb_has_valid_signature(const u8 * data,unsigned int size)790 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
791 {
792 const struct firmware *sig;
793 bool result;
794
795 if (request_firmware(&sig, "regulatory.db.p7s", ®_pdev->dev))
796 return false;
797
798 result = verify_pkcs7_signature(data, size, sig->data, sig->size,
799 builtin_regdb_keys,
800 VERIFYING_UNSPECIFIED_SIGNATURE,
801 NULL, NULL) == 0;
802
803 release_firmware(sig);
804
805 return result;
806 }
807
free_regdb_keyring(void)808 static void free_regdb_keyring(void)
809 {
810 key_put(builtin_regdb_keys);
811 }
812 #else
load_builtin_regdb_keys(void)813 static int load_builtin_regdb_keys(void)
814 {
815 return 0;
816 }
817
regdb_has_valid_signature(const u8 * data,unsigned int size)818 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
819 {
820 return true;
821 }
822
free_regdb_keyring(void)823 static void free_regdb_keyring(void)
824 {
825 }
826 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
827
valid_regdb(const u8 * data,unsigned int size)828 static bool valid_regdb(const u8 *data, unsigned int size)
829 {
830 const struct fwdb_header *hdr = (void *)data;
831 const struct fwdb_country *country;
832
833 if (size < sizeof(*hdr))
834 return false;
835
836 if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
837 return false;
838
839 if (hdr->version != cpu_to_be32(FWDB_VERSION))
840 return false;
841
842 if (!regdb_has_valid_signature(data, size))
843 return false;
844
845 country = &hdr->country[0];
846 while ((u8 *)(country + 1) <= data + size) {
847 if (!country->coll_ptr)
848 break;
849 if (!valid_country(data, size, country))
850 return false;
851 country++;
852 }
853
854 return true;
855 }
856
set_wmm_rule(const struct fwdb_header * db,const struct fwdb_country * country,const struct fwdb_rule * rule,struct ieee80211_reg_rule * rrule)857 static void set_wmm_rule(const struct fwdb_header *db,
858 const struct fwdb_country *country,
859 const struct fwdb_rule *rule,
860 struct ieee80211_reg_rule *rrule)
861 {
862 struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
863 struct fwdb_wmm_rule *wmm;
864 unsigned int i, wmm_ptr;
865
866 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
867 wmm = (void *)((u8 *)db + wmm_ptr);
868
869 if (!valid_wmm(wmm)) {
870 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
871 be32_to_cpu(rule->start), be32_to_cpu(rule->end),
872 country->alpha2[0], country->alpha2[1]);
873 return;
874 }
875
876 for (i = 0; i < IEEE80211_NUM_ACS; i++) {
877 wmm_rule->client[i].cw_min =
878 ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
879 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
880 wmm_rule->client[i].aifsn = wmm->client[i].aifsn;
881 wmm_rule->client[i].cot =
882 1000 * be16_to_cpu(wmm->client[i].cot);
883 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
884 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
885 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
886 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
887 }
888
889 rrule->has_wmm = true;
890 }
891
__regdb_query_wmm(const struct fwdb_header * db,const struct fwdb_country * country,int freq,struct ieee80211_reg_rule * rrule)892 static int __regdb_query_wmm(const struct fwdb_header *db,
893 const struct fwdb_country *country, int freq,
894 struct ieee80211_reg_rule *rrule)
895 {
896 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
897 struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
898 int i;
899
900 for (i = 0; i < coll->n_rules; i++) {
901 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
902 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
903 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
904
905 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
906 continue;
907
908 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
909 freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
910 set_wmm_rule(db, country, rule, rrule);
911 return 0;
912 }
913 }
914
915 return -ENODATA;
916 }
917
reg_query_regdb_wmm(char * alpha2,int freq,struct ieee80211_reg_rule * rule)918 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
919 {
920 const struct fwdb_header *hdr = regdb;
921 const struct fwdb_country *country;
922
923 if (!regdb)
924 return -ENODATA;
925
926 if (IS_ERR(regdb))
927 return PTR_ERR(regdb);
928
929 country = &hdr->country[0];
930 while (country->coll_ptr) {
931 if (alpha2_equal(alpha2, country->alpha2))
932 return __regdb_query_wmm(regdb, country, freq, rule);
933
934 country++;
935 }
936
937 return -ENODATA;
938 }
939 EXPORT_SYMBOL(reg_query_regdb_wmm);
940
regdb_query_country(const struct fwdb_header * db,const struct fwdb_country * country)941 static int regdb_query_country(const struct fwdb_header *db,
942 const struct fwdb_country *country)
943 {
944 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
945 struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
946 struct ieee80211_regdomain *regdom;
947 unsigned int i;
948
949 regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
950 GFP_KERNEL);
951 if (!regdom)
952 return -ENOMEM;
953
954 regdom->n_reg_rules = coll->n_rules;
955 regdom->alpha2[0] = country->alpha2[0];
956 regdom->alpha2[1] = country->alpha2[1];
957 regdom->dfs_region = coll->dfs_region;
958
959 for (i = 0; i < regdom->n_reg_rules; i++) {
960 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
961 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
962 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
963 struct ieee80211_reg_rule *rrule = ®dom->reg_rules[i];
964
965 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
966 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
967 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
968
969 rrule->power_rule.max_antenna_gain = 0;
970 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
971
972 rrule->flags = 0;
973 if (rule->flags & FWDB_FLAG_NO_OFDM)
974 rrule->flags |= NL80211_RRF_NO_OFDM;
975 if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
976 rrule->flags |= NL80211_RRF_NO_OUTDOOR;
977 if (rule->flags & FWDB_FLAG_DFS)
978 rrule->flags |= NL80211_RRF_DFS;
979 if (rule->flags & FWDB_FLAG_NO_IR)
980 rrule->flags |= NL80211_RRF_NO_IR;
981 if (rule->flags & FWDB_FLAG_AUTO_BW)
982 rrule->flags |= NL80211_RRF_AUTO_BW;
983
984 rrule->dfs_cac_ms = 0;
985
986 /* handle optional data */
987 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
988 rrule->dfs_cac_ms =
989 1000 * be16_to_cpu(rule->cac_timeout);
990 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
991 set_wmm_rule(db, country, rule, rrule);
992 }
993
994 return reg_schedule_apply(regdom);
995 }
996
query_regdb(const char * alpha2)997 static int query_regdb(const char *alpha2)
998 {
999 const struct fwdb_header *hdr = regdb;
1000 const struct fwdb_country *country;
1001
1002 ASSERT_RTNL();
1003
1004 if (IS_ERR(regdb))
1005 return PTR_ERR(regdb);
1006
1007 country = &hdr->country[0];
1008 while (country->coll_ptr) {
1009 if (alpha2_equal(alpha2, country->alpha2))
1010 return regdb_query_country(regdb, country);
1011 country++;
1012 }
1013
1014 return -ENODATA;
1015 }
1016
regdb_fw_cb(const struct firmware * fw,void * context)1017 static void regdb_fw_cb(const struct firmware *fw, void *context)
1018 {
1019 int set_error = 0;
1020 bool restore = true;
1021 void *db;
1022
1023 if (!fw) {
1024 pr_info("failed to load regulatory.db\n");
1025 set_error = -ENODATA;
1026 } else if (!valid_regdb(fw->data, fw->size)) {
1027 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1028 set_error = -EINVAL;
1029 }
1030
1031 rtnl_lock();
1032 if (regdb && !IS_ERR(regdb)) {
1033 /* negative case - a bug
1034 * positive case - can happen due to race in case of multiple cb's in
1035 * queue, due to usage of asynchronous callback
1036 *
1037 * Either case, just restore and free new db.
1038 */
1039 } else if (set_error) {
1040 regdb = ERR_PTR(set_error);
1041 } else if (fw) {
1042 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1043 if (db) {
1044 regdb = db;
1045 restore = context && query_regdb(context);
1046 } else {
1047 restore = true;
1048 }
1049 }
1050
1051 if (restore)
1052 restore_regulatory_settings(true, false);
1053
1054 rtnl_unlock();
1055
1056 kfree(context);
1057
1058 release_firmware(fw);
1059 }
1060
query_regdb_file(const char * alpha2)1061 static int query_regdb_file(const char *alpha2)
1062 {
1063 ASSERT_RTNL();
1064
1065 if (regdb)
1066 return query_regdb(alpha2);
1067
1068 alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1069 if (!alpha2)
1070 return -ENOMEM;
1071
1072 return request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1073 ®_pdev->dev, GFP_KERNEL,
1074 (void *)alpha2, regdb_fw_cb);
1075 }
1076
reg_reload_regdb(void)1077 int reg_reload_regdb(void)
1078 {
1079 const struct firmware *fw;
1080 void *db;
1081 int err;
1082
1083 err = request_firmware(&fw, "regulatory.db", ®_pdev->dev);
1084 if (err)
1085 return err;
1086
1087 if (!valid_regdb(fw->data, fw->size)) {
1088 err = -ENODATA;
1089 goto out;
1090 }
1091
1092 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1093 if (!db) {
1094 err = -ENOMEM;
1095 goto out;
1096 }
1097
1098 rtnl_lock();
1099 if (!IS_ERR_OR_NULL(regdb))
1100 kfree(regdb);
1101 regdb = db;
1102 rtnl_unlock();
1103
1104 out:
1105 release_firmware(fw);
1106 return err;
1107 }
1108
reg_query_database(struct regulatory_request * request)1109 static bool reg_query_database(struct regulatory_request *request)
1110 {
1111 if (query_regdb_file(request->alpha2) == 0)
1112 return true;
1113
1114 if (call_crda(request->alpha2) == 0)
1115 return true;
1116
1117 return false;
1118 }
1119
reg_is_valid_request(const char * alpha2)1120 bool reg_is_valid_request(const char *alpha2)
1121 {
1122 struct regulatory_request *lr = get_last_request();
1123
1124 if (!lr || lr->processed)
1125 return false;
1126
1127 return alpha2_equal(lr->alpha2, alpha2);
1128 }
1129
reg_get_regdomain(struct wiphy * wiphy)1130 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1131 {
1132 struct regulatory_request *lr = get_last_request();
1133
1134 /*
1135 * Follow the driver's regulatory domain, if present, unless a country
1136 * IE has been processed or a user wants to help complaince further
1137 */
1138 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1139 lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1140 wiphy->regd)
1141 return get_wiphy_regdom(wiphy);
1142
1143 return get_cfg80211_regdom();
1144 }
1145
1146 static unsigned int
reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain * rd,const struct ieee80211_reg_rule * rule)1147 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1148 const struct ieee80211_reg_rule *rule)
1149 {
1150 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1151 const struct ieee80211_freq_range *freq_range_tmp;
1152 const struct ieee80211_reg_rule *tmp;
1153 u32 start_freq, end_freq, idx, no;
1154
1155 for (idx = 0; idx < rd->n_reg_rules; idx++)
1156 if (rule == &rd->reg_rules[idx])
1157 break;
1158
1159 if (idx == rd->n_reg_rules)
1160 return 0;
1161
1162 /* get start_freq */
1163 no = idx;
1164
1165 while (no) {
1166 tmp = &rd->reg_rules[--no];
1167 freq_range_tmp = &tmp->freq_range;
1168
1169 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1170 break;
1171
1172 freq_range = freq_range_tmp;
1173 }
1174
1175 start_freq = freq_range->start_freq_khz;
1176
1177 /* get end_freq */
1178 freq_range = &rule->freq_range;
1179 no = idx;
1180
1181 while (no < rd->n_reg_rules - 1) {
1182 tmp = &rd->reg_rules[++no];
1183 freq_range_tmp = &tmp->freq_range;
1184
1185 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1186 break;
1187
1188 freq_range = freq_range_tmp;
1189 }
1190
1191 end_freq = freq_range->end_freq_khz;
1192
1193 return end_freq - start_freq;
1194 }
1195
reg_get_max_bandwidth(const struct ieee80211_regdomain * rd,const struct ieee80211_reg_rule * rule)1196 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1197 const struct ieee80211_reg_rule *rule)
1198 {
1199 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1200
1201 if (rule->flags & NL80211_RRF_NO_160MHZ)
1202 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1203 if (rule->flags & NL80211_RRF_NO_80MHZ)
1204 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1205
1206 /*
1207 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1208 * are not allowed.
1209 */
1210 if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1211 rule->flags & NL80211_RRF_NO_HT40PLUS)
1212 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1213
1214 return bw;
1215 }
1216
1217 /* Sanity check on a regulatory rule */
is_valid_reg_rule(const struct ieee80211_reg_rule * rule)1218 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1219 {
1220 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1221 u32 freq_diff;
1222
1223 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1224 return false;
1225
1226 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1227 return false;
1228
1229 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1230
1231 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1232 freq_range->max_bandwidth_khz > freq_diff)
1233 return false;
1234
1235 return true;
1236 }
1237
is_valid_rd(const struct ieee80211_regdomain * rd)1238 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1239 {
1240 const struct ieee80211_reg_rule *reg_rule = NULL;
1241 unsigned int i;
1242
1243 if (!rd->n_reg_rules)
1244 return false;
1245
1246 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1247 return false;
1248
1249 for (i = 0; i < rd->n_reg_rules; i++) {
1250 reg_rule = &rd->reg_rules[i];
1251 if (!is_valid_reg_rule(reg_rule))
1252 return false;
1253 }
1254
1255 return true;
1256 }
1257
1258 /**
1259 * freq_in_rule_band - tells us if a frequency is in a frequency band
1260 * @freq_range: frequency rule we want to query
1261 * @freq_khz: frequency we are inquiring about
1262 *
1263 * This lets us know if a specific frequency rule is or is not relevant to
1264 * a specific frequency's band. Bands are device specific and artificial
1265 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1266 * however it is safe for now to assume that a frequency rule should not be
1267 * part of a frequency's band if the start freq or end freq are off by more
1268 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1269 * 60 GHz band.
1270 * This resolution can be lowered and should be considered as we add
1271 * regulatory rule support for other "bands".
1272 **/
freq_in_rule_band(const struct ieee80211_freq_range * freq_range,u32 freq_khz)1273 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1274 u32 freq_khz)
1275 {
1276 #define ONE_GHZ_IN_KHZ 1000000
1277 /*
1278 * From 802.11ad: directional multi-gigabit (DMG):
1279 * Pertaining to operation in a frequency band containing a channel
1280 * with the Channel starting frequency above 45 GHz.
1281 */
1282 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1283 20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1284 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1285 return true;
1286 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1287 return true;
1288 return false;
1289 #undef ONE_GHZ_IN_KHZ
1290 }
1291
1292 /*
1293 * Later on we can perhaps use the more restrictive DFS
1294 * region but we don't have information for that yet so
1295 * for now simply disallow conflicts.
1296 */
1297 static enum nl80211_dfs_regions
reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,const enum nl80211_dfs_regions dfs_region2)1298 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1299 const enum nl80211_dfs_regions dfs_region2)
1300 {
1301 if (dfs_region1 != dfs_region2)
1302 return NL80211_DFS_UNSET;
1303 return dfs_region1;
1304 }
1305
reg_wmm_rules_intersect(const struct ieee80211_wmm_ac * wmm_ac1,const struct ieee80211_wmm_ac * wmm_ac2,struct ieee80211_wmm_ac * intersect)1306 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1307 const struct ieee80211_wmm_ac *wmm_ac2,
1308 struct ieee80211_wmm_ac *intersect)
1309 {
1310 intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1311 intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1312 intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1313 intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1314 }
1315
1316 /*
1317 * Helper for regdom_intersect(), this does the real
1318 * mathematical intersection fun
1319 */
reg_rules_intersect(const struct ieee80211_regdomain * rd1,const struct ieee80211_regdomain * rd2,const struct ieee80211_reg_rule * rule1,const struct ieee80211_reg_rule * rule2,struct ieee80211_reg_rule * intersected_rule)1320 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1321 const struct ieee80211_regdomain *rd2,
1322 const struct ieee80211_reg_rule *rule1,
1323 const struct ieee80211_reg_rule *rule2,
1324 struct ieee80211_reg_rule *intersected_rule)
1325 {
1326 const struct ieee80211_freq_range *freq_range1, *freq_range2;
1327 struct ieee80211_freq_range *freq_range;
1328 const struct ieee80211_power_rule *power_rule1, *power_rule2;
1329 struct ieee80211_power_rule *power_rule;
1330 const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1331 struct ieee80211_wmm_rule *wmm_rule;
1332 u32 freq_diff, max_bandwidth1, max_bandwidth2;
1333
1334 freq_range1 = &rule1->freq_range;
1335 freq_range2 = &rule2->freq_range;
1336 freq_range = &intersected_rule->freq_range;
1337
1338 power_rule1 = &rule1->power_rule;
1339 power_rule2 = &rule2->power_rule;
1340 power_rule = &intersected_rule->power_rule;
1341
1342 wmm_rule1 = &rule1->wmm_rule;
1343 wmm_rule2 = &rule2->wmm_rule;
1344 wmm_rule = &intersected_rule->wmm_rule;
1345
1346 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1347 freq_range2->start_freq_khz);
1348 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1349 freq_range2->end_freq_khz);
1350
1351 max_bandwidth1 = freq_range1->max_bandwidth_khz;
1352 max_bandwidth2 = freq_range2->max_bandwidth_khz;
1353
1354 if (rule1->flags & NL80211_RRF_AUTO_BW)
1355 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1356 if (rule2->flags & NL80211_RRF_AUTO_BW)
1357 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1358
1359 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1360
1361 intersected_rule->flags = rule1->flags | rule2->flags;
1362
1363 /*
1364 * In case NL80211_RRF_AUTO_BW requested for both rules
1365 * set AUTO_BW in intersected rule also. Next we will
1366 * calculate BW correctly in handle_channel function.
1367 * In other case remove AUTO_BW flag while we calculate
1368 * maximum bandwidth correctly and auto calculation is
1369 * not required.
1370 */
1371 if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1372 (rule2->flags & NL80211_RRF_AUTO_BW))
1373 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1374 else
1375 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1376
1377 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1378 if (freq_range->max_bandwidth_khz > freq_diff)
1379 freq_range->max_bandwidth_khz = freq_diff;
1380
1381 power_rule->max_eirp = min(power_rule1->max_eirp,
1382 power_rule2->max_eirp);
1383 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1384 power_rule2->max_antenna_gain);
1385
1386 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1387 rule2->dfs_cac_ms);
1388
1389 if (rule1->has_wmm && rule2->has_wmm) {
1390 u8 ac;
1391
1392 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1393 reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1394 &wmm_rule2->client[ac],
1395 &wmm_rule->client[ac]);
1396 reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1397 &wmm_rule2->ap[ac],
1398 &wmm_rule->ap[ac]);
1399 }
1400
1401 intersected_rule->has_wmm = true;
1402 } else if (rule1->has_wmm) {
1403 *wmm_rule = *wmm_rule1;
1404 intersected_rule->has_wmm = true;
1405 } else if (rule2->has_wmm) {
1406 *wmm_rule = *wmm_rule2;
1407 intersected_rule->has_wmm = true;
1408 } else {
1409 intersected_rule->has_wmm = false;
1410 }
1411
1412 if (!is_valid_reg_rule(intersected_rule))
1413 return -EINVAL;
1414
1415 return 0;
1416 }
1417
1418 /* check whether old rule contains new rule */
rule_contains(struct ieee80211_reg_rule * r1,struct ieee80211_reg_rule * r2)1419 static bool rule_contains(struct ieee80211_reg_rule *r1,
1420 struct ieee80211_reg_rule *r2)
1421 {
1422 /* for simplicity, currently consider only same flags */
1423 if (r1->flags != r2->flags)
1424 return false;
1425
1426 /* verify r1 is more restrictive */
1427 if ((r1->power_rule.max_antenna_gain >
1428 r2->power_rule.max_antenna_gain) ||
1429 r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1430 return false;
1431
1432 /* make sure r2's range is contained within r1 */
1433 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1434 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1435 return false;
1436
1437 /* and finally verify that r1.max_bw >= r2.max_bw */
1438 if (r1->freq_range.max_bandwidth_khz <
1439 r2->freq_range.max_bandwidth_khz)
1440 return false;
1441
1442 return true;
1443 }
1444
1445 /* add or extend current rules. do nothing if rule is already contained */
add_rule(struct ieee80211_reg_rule * rule,struct ieee80211_reg_rule * reg_rules,u32 * n_rules)1446 static void add_rule(struct ieee80211_reg_rule *rule,
1447 struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1448 {
1449 struct ieee80211_reg_rule *tmp_rule;
1450 int i;
1451
1452 for (i = 0; i < *n_rules; i++) {
1453 tmp_rule = ®_rules[i];
1454 /* rule is already contained - do nothing */
1455 if (rule_contains(tmp_rule, rule))
1456 return;
1457
1458 /* extend rule if possible */
1459 if (rule_contains(rule, tmp_rule)) {
1460 memcpy(tmp_rule, rule, sizeof(*rule));
1461 return;
1462 }
1463 }
1464
1465 memcpy(®_rules[*n_rules], rule, sizeof(*rule));
1466 (*n_rules)++;
1467 }
1468
1469 /**
1470 * regdom_intersect - do the intersection between two regulatory domains
1471 * @rd1: first regulatory domain
1472 * @rd2: second regulatory domain
1473 *
1474 * Use this function to get the intersection between two regulatory domains.
1475 * Once completed we will mark the alpha2 for the rd as intersected, "98",
1476 * as no one single alpha2 can represent this regulatory domain.
1477 *
1478 * Returns a pointer to the regulatory domain structure which will hold the
1479 * resulting intersection of rules between rd1 and rd2. We will
1480 * kzalloc() this structure for you.
1481 */
1482 static struct ieee80211_regdomain *
regdom_intersect(const struct ieee80211_regdomain * rd1,const struct ieee80211_regdomain * rd2)1483 regdom_intersect(const struct ieee80211_regdomain *rd1,
1484 const struct ieee80211_regdomain *rd2)
1485 {
1486 int r;
1487 unsigned int x, y;
1488 unsigned int num_rules = 0;
1489 const struct ieee80211_reg_rule *rule1, *rule2;
1490 struct ieee80211_reg_rule intersected_rule;
1491 struct ieee80211_regdomain *rd;
1492
1493 if (!rd1 || !rd2)
1494 return NULL;
1495
1496 /*
1497 * First we get a count of the rules we'll need, then we actually
1498 * build them. This is to so we can malloc() and free() a
1499 * regdomain once. The reason we use reg_rules_intersect() here
1500 * is it will return -EINVAL if the rule computed makes no sense.
1501 * All rules that do check out OK are valid.
1502 */
1503
1504 for (x = 0; x < rd1->n_reg_rules; x++) {
1505 rule1 = &rd1->reg_rules[x];
1506 for (y = 0; y < rd2->n_reg_rules; y++) {
1507 rule2 = &rd2->reg_rules[y];
1508 if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1509 &intersected_rule))
1510 num_rules++;
1511 }
1512 }
1513
1514 if (!num_rules)
1515 return NULL;
1516
1517 rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1518 if (!rd)
1519 return NULL;
1520
1521 for (x = 0; x < rd1->n_reg_rules; x++) {
1522 rule1 = &rd1->reg_rules[x];
1523 for (y = 0; y < rd2->n_reg_rules; y++) {
1524 rule2 = &rd2->reg_rules[y];
1525 r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1526 &intersected_rule);
1527 /*
1528 * No need to memset here the intersected rule here as
1529 * we're not using the stack anymore
1530 */
1531 if (r)
1532 continue;
1533
1534 add_rule(&intersected_rule, rd->reg_rules,
1535 &rd->n_reg_rules);
1536 }
1537 }
1538
1539 rd->alpha2[0] = '9';
1540 rd->alpha2[1] = '8';
1541 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1542 rd2->dfs_region);
1543
1544 return rd;
1545 }
1546
1547 /*
1548 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1549 * want to just have the channel structure use these
1550 */
map_regdom_flags(u32 rd_flags)1551 static u32 map_regdom_flags(u32 rd_flags)
1552 {
1553 u32 channel_flags = 0;
1554 if (rd_flags & NL80211_RRF_NO_IR_ALL)
1555 channel_flags |= IEEE80211_CHAN_NO_IR;
1556 if (rd_flags & NL80211_RRF_DFS)
1557 channel_flags |= IEEE80211_CHAN_RADAR;
1558 if (rd_flags & NL80211_RRF_NO_OFDM)
1559 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1560 if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1561 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1562 if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1563 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1564 if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1565 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1566 if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1567 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1568 if (rd_flags & NL80211_RRF_NO_80MHZ)
1569 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1570 if (rd_flags & NL80211_RRF_NO_160MHZ)
1571 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1572 return channel_flags;
1573 }
1574
1575 static const struct ieee80211_reg_rule *
freq_reg_info_regd(u32 center_freq,const struct ieee80211_regdomain * regd,u32 bw)1576 freq_reg_info_regd(u32 center_freq,
1577 const struct ieee80211_regdomain *regd, u32 bw)
1578 {
1579 int i;
1580 bool band_rule_found = false;
1581 bool bw_fits = false;
1582
1583 if (!regd)
1584 return ERR_PTR(-EINVAL);
1585
1586 for (i = 0; i < regd->n_reg_rules; i++) {
1587 const struct ieee80211_reg_rule *rr;
1588 const struct ieee80211_freq_range *fr = NULL;
1589
1590 rr = ®d->reg_rules[i];
1591 fr = &rr->freq_range;
1592
1593 /*
1594 * We only need to know if one frequency rule was
1595 * was in center_freq's band, that's enough, so lets
1596 * not overwrite it once found
1597 */
1598 if (!band_rule_found)
1599 band_rule_found = freq_in_rule_band(fr, center_freq);
1600
1601 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1602
1603 if (band_rule_found && bw_fits)
1604 return rr;
1605 }
1606
1607 if (!band_rule_found)
1608 return ERR_PTR(-ERANGE);
1609
1610 return ERR_PTR(-EINVAL);
1611 }
1612
1613 static const struct ieee80211_reg_rule *
__freq_reg_info(struct wiphy * wiphy,u32 center_freq,u32 min_bw)1614 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1615 {
1616 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1617 const struct ieee80211_reg_rule *reg_rule = NULL;
1618 u32 bw;
1619
1620 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
1621 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1622 if (!IS_ERR(reg_rule))
1623 return reg_rule;
1624 }
1625
1626 return reg_rule;
1627 }
1628
freq_reg_info(struct wiphy * wiphy,u32 center_freq)1629 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1630 u32 center_freq)
1631 {
1632 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20));
1633 }
1634 EXPORT_SYMBOL(freq_reg_info);
1635
reg_initiator_name(enum nl80211_reg_initiator initiator)1636 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1637 {
1638 switch (initiator) {
1639 case NL80211_REGDOM_SET_BY_CORE:
1640 return "core";
1641 case NL80211_REGDOM_SET_BY_USER:
1642 return "user";
1643 case NL80211_REGDOM_SET_BY_DRIVER:
1644 return "driver";
1645 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1646 return "country element";
1647 default:
1648 WARN_ON(1);
1649 return "bug";
1650 }
1651 }
1652 EXPORT_SYMBOL(reg_initiator_name);
1653
reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain * regd,const struct ieee80211_reg_rule * reg_rule,const struct ieee80211_channel * chan)1654 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1655 const struct ieee80211_reg_rule *reg_rule,
1656 const struct ieee80211_channel *chan)
1657 {
1658 const struct ieee80211_freq_range *freq_range = NULL;
1659 u32 max_bandwidth_khz, bw_flags = 0;
1660
1661 freq_range = ®_rule->freq_range;
1662
1663 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1664 /* Check if auto calculation requested */
1665 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1666 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1667
1668 /* If we get a reg_rule we can assume that at least 5Mhz fit */
1669 if (!cfg80211_does_bw_fit_range(freq_range,
1670 MHZ_TO_KHZ(chan->center_freq),
1671 MHZ_TO_KHZ(10)))
1672 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1673 if (!cfg80211_does_bw_fit_range(freq_range,
1674 MHZ_TO_KHZ(chan->center_freq),
1675 MHZ_TO_KHZ(20)))
1676 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1677
1678 if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1679 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1680 if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1681 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1682 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1683 bw_flags |= IEEE80211_CHAN_NO_HT40;
1684 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1685 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1686 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1687 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1688 return bw_flags;
1689 }
1690
1691 /*
1692 * Note that right now we assume the desired channel bandwidth
1693 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1694 * per channel, the primary and the extension channel).
1695 */
handle_channel(struct wiphy * wiphy,enum nl80211_reg_initiator initiator,struct ieee80211_channel * chan)1696 static void handle_channel(struct wiphy *wiphy,
1697 enum nl80211_reg_initiator initiator,
1698 struct ieee80211_channel *chan)
1699 {
1700 u32 flags, bw_flags = 0;
1701 const struct ieee80211_reg_rule *reg_rule = NULL;
1702 const struct ieee80211_power_rule *power_rule = NULL;
1703 struct wiphy *request_wiphy = NULL;
1704 struct regulatory_request *lr = get_last_request();
1705 const struct ieee80211_regdomain *regd;
1706
1707 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1708
1709 flags = chan->orig_flags;
1710
1711 reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1712 if (IS_ERR(reg_rule)) {
1713 /*
1714 * We will disable all channels that do not match our
1715 * received regulatory rule unless the hint is coming
1716 * from a Country IE and the Country IE had no information
1717 * about a band. The IEEE 802.11 spec allows for an AP
1718 * to send only a subset of the regulatory rules allowed,
1719 * so an AP in the US that only supports 2.4 GHz may only send
1720 * a country IE with information for the 2.4 GHz band
1721 * while 5 GHz is still supported.
1722 */
1723 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1724 PTR_ERR(reg_rule) == -ERANGE)
1725 return;
1726
1727 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1728 request_wiphy && request_wiphy == wiphy &&
1729 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1730 pr_debug("Disabling freq %d MHz for good\n",
1731 chan->center_freq);
1732 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1733 chan->flags = chan->orig_flags;
1734 } else {
1735 pr_debug("Disabling freq %d MHz\n",
1736 chan->center_freq);
1737 chan->flags |= IEEE80211_CHAN_DISABLED;
1738 }
1739 return;
1740 }
1741
1742 regd = reg_get_regdomain(wiphy);
1743
1744 power_rule = ®_rule->power_rule;
1745 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1746
1747 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1748 request_wiphy && request_wiphy == wiphy &&
1749 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1750 /*
1751 * This guarantees the driver's requested regulatory domain
1752 * will always be used as a base for further regulatory
1753 * settings
1754 */
1755 chan->flags = chan->orig_flags =
1756 map_regdom_flags(reg_rule->flags) | bw_flags;
1757 chan->max_antenna_gain = chan->orig_mag =
1758 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1759 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1760 (int) MBM_TO_DBM(power_rule->max_eirp);
1761
1762 if (chan->flags & IEEE80211_CHAN_RADAR) {
1763 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1764 if (reg_rule->dfs_cac_ms)
1765 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1766 }
1767
1768 return;
1769 }
1770
1771 chan->dfs_state = NL80211_DFS_USABLE;
1772 chan->dfs_state_entered = jiffies;
1773
1774 chan->beacon_found = false;
1775 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1776 chan->max_antenna_gain =
1777 min_t(int, chan->orig_mag,
1778 MBI_TO_DBI(power_rule->max_antenna_gain));
1779 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1780
1781 if (chan->flags & IEEE80211_CHAN_RADAR) {
1782 if (reg_rule->dfs_cac_ms)
1783 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1784 else
1785 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1786 }
1787
1788 if (chan->orig_mpwr) {
1789 /*
1790 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1791 * will always follow the passed country IE power settings.
1792 */
1793 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1794 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1795 chan->max_power = chan->max_reg_power;
1796 else
1797 chan->max_power = min(chan->orig_mpwr,
1798 chan->max_reg_power);
1799 } else
1800 chan->max_power = chan->max_reg_power;
1801 }
1802
handle_band(struct wiphy * wiphy,enum nl80211_reg_initiator initiator,struct ieee80211_supported_band * sband)1803 static void handle_band(struct wiphy *wiphy,
1804 enum nl80211_reg_initiator initiator,
1805 struct ieee80211_supported_band *sband)
1806 {
1807 unsigned int i;
1808
1809 if (!sband)
1810 return;
1811
1812 for (i = 0; i < sband->n_channels; i++)
1813 handle_channel(wiphy, initiator, &sband->channels[i]);
1814 }
1815
reg_request_cell_base(struct regulatory_request * request)1816 static bool reg_request_cell_base(struct regulatory_request *request)
1817 {
1818 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1819 return false;
1820 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1821 }
1822
reg_last_request_cell_base(void)1823 bool reg_last_request_cell_base(void)
1824 {
1825 return reg_request_cell_base(get_last_request());
1826 }
1827
1828 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1829 /* Core specific check */
1830 static enum reg_request_treatment
reg_ignore_cell_hint(struct regulatory_request * pending_request)1831 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1832 {
1833 struct regulatory_request *lr = get_last_request();
1834
1835 if (!reg_num_devs_support_basehint)
1836 return REG_REQ_IGNORE;
1837
1838 if (reg_request_cell_base(lr) &&
1839 !regdom_changes(pending_request->alpha2))
1840 return REG_REQ_ALREADY_SET;
1841
1842 return REG_REQ_OK;
1843 }
1844
1845 /* Device specific check */
reg_dev_ignore_cell_hint(struct wiphy * wiphy)1846 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1847 {
1848 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1849 }
1850 #else
1851 static enum reg_request_treatment
reg_ignore_cell_hint(struct regulatory_request * pending_request)1852 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1853 {
1854 return REG_REQ_IGNORE;
1855 }
1856
reg_dev_ignore_cell_hint(struct wiphy * wiphy)1857 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1858 {
1859 return true;
1860 }
1861 #endif
1862
wiphy_strict_alpha2_regd(struct wiphy * wiphy)1863 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1864 {
1865 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1866 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1867 return true;
1868 return false;
1869 }
1870
ignore_reg_update(struct wiphy * wiphy,enum nl80211_reg_initiator initiator)1871 static bool ignore_reg_update(struct wiphy *wiphy,
1872 enum nl80211_reg_initiator initiator)
1873 {
1874 struct regulatory_request *lr = get_last_request();
1875
1876 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1877 return true;
1878
1879 if (!lr) {
1880 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
1881 reg_initiator_name(initiator));
1882 return true;
1883 }
1884
1885 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1886 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1887 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
1888 reg_initiator_name(initiator));
1889 return true;
1890 }
1891
1892 /*
1893 * wiphy->regd will be set once the device has its own
1894 * desired regulatory domain set
1895 */
1896 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1897 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1898 !is_world_regdom(lr->alpha2)) {
1899 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
1900 reg_initiator_name(initiator));
1901 return true;
1902 }
1903
1904 if (reg_request_cell_base(lr))
1905 return reg_dev_ignore_cell_hint(wiphy);
1906
1907 return false;
1908 }
1909
reg_is_world_roaming(struct wiphy * wiphy)1910 static bool reg_is_world_roaming(struct wiphy *wiphy)
1911 {
1912 const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1913 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1914 struct regulatory_request *lr = get_last_request();
1915
1916 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1917 return true;
1918
1919 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1920 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1921 return true;
1922
1923 return false;
1924 }
1925
handle_reg_beacon(struct wiphy * wiphy,unsigned int chan_idx,struct reg_beacon * reg_beacon)1926 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1927 struct reg_beacon *reg_beacon)
1928 {
1929 struct ieee80211_supported_band *sband;
1930 struct ieee80211_channel *chan;
1931 bool channel_changed = false;
1932 struct ieee80211_channel chan_before;
1933
1934 sband = wiphy->bands[reg_beacon->chan.band];
1935 chan = &sband->channels[chan_idx];
1936
1937 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1938 return;
1939
1940 if (chan->beacon_found)
1941 return;
1942
1943 chan->beacon_found = true;
1944
1945 if (!reg_is_world_roaming(wiphy))
1946 return;
1947
1948 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1949 return;
1950
1951 chan_before = *chan;
1952
1953 if (chan->flags & IEEE80211_CHAN_NO_IR) {
1954 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1955 channel_changed = true;
1956 }
1957
1958 if (channel_changed)
1959 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1960 }
1961
1962 /*
1963 * Called when a scan on a wiphy finds a beacon on
1964 * new channel
1965 */
wiphy_update_new_beacon(struct wiphy * wiphy,struct reg_beacon * reg_beacon)1966 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1967 struct reg_beacon *reg_beacon)
1968 {
1969 unsigned int i;
1970 struct ieee80211_supported_band *sband;
1971
1972 if (!wiphy->bands[reg_beacon->chan.band])
1973 return;
1974
1975 sband = wiphy->bands[reg_beacon->chan.band];
1976
1977 for (i = 0; i < sband->n_channels; i++)
1978 handle_reg_beacon(wiphy, i, reg_beacon);
1979 }
1980
1981 /*
1982 * Called upon reg changes or a new wiphy is added
1983 */
wiphy_update_beacon_reg(struct wiphy * wiphy)1984 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1985 {
1986 unsigned int i;
1987 struct ieee80211_supported_band *sband;
1988 struct reg_beacon *reg_beacon;
1989
1990 list_for_each_entry(reg_beacon, ®_beacon_list, list) {
1991 if (!wiphy->bands[reg_beacon->chan.band])
1992 continue;
1993 sband = wiphy->bands[reg_beacon->chan.band];
1994 for (i = 0; i < sband->n_channels; i++)
1995 handle_reg_beacon(wiphy, i, reg_beacon);
1996 }
1997 }
1998
1999 /* Reap the advantages of previously found beacons */
reg_process_beacons(struct wiphy * wiphy)2000 static void reg_process_beacons(struct wiphy *wiphy)
2001 {
2002 /*
2003 * Means we are just firing up cfg80211, so no beacons would
2004 * have been processed yet.
2005 */
2006 if (!last_request)
2007 return;
2008 wiphy_update_beacon_reg(wiphy);
2009 }
2010
is_ht40_allowed(struct ieee80211_channel * chan)2011 static bool is_ht40_allowed(struct ieee80211_channel *chan)
2012 {
2013 if (!chan)
2014 return false;
2015 if (chan->flags & IEEE80211_CHAN_DISABLED)
2016 return false;
2017 /* This would happen when regulatory rules disallow HT40 completely */
2018 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2019 return false;
2020 return true;
2021 }
2022
reg_process_ht_flags_channel(struct wiphy * wiphy,struct ieee80211_channel * channel)2023 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2024 struct ieee80211_channel *channel)
2025 {
2026 struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2027 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2028 const struct ieee80211_regdomain *regd;
2029 unsigned int i;
2030 u32 flags;
2031
2032 if (!is_ht40_allowed(channel)) {
2033 channel->flags |= IEEE80211_CHAN_NO_HT40;
2034 return;
2035 }
2036
2037 /*
2038 * We need to ensure the extension channels exist to
2039 * be able to use HT40- or HT40+, this finds them (or not)
2040 */
2041 for (i = 0; i < sband->n_channels; i++) {
2042 struct ieee80211_channel *c = &sband->channels[i];
2043
2044 if (c->center_freq == (channel->center_freq - 20))
2045 channel_before = c;
2046 if (c->center_freq == (channel->center_freq + 20))
2047 channel_after = c;
2048 }
2049
2050 flags = 0;
2051 regd = get_wiphy_regdom(wiphy);
2052 if (regd) {
2053 const struct ieee80211_reg_rule *reg_rule =
2054 freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2055 regd, MHZ_TO_KHZ(20));
2056
2057 if (!IS_ERR(reg_rule))
2058 flags = reg_rule->flags;
2059 }
2060
2061 /*
2062 * Please note that this assumes target bandwidth is 20 MHz,
2063 * if that ever changes we also need to change the below logic
2064 * to include that as well.
2065 */
2066 if (!is_ht40_allowed(channel_before) ||
2067 flags & NL80211_RRF_NO_HT40MINUS)
2068 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2069 else
2070 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2071
2072 if (!is_ht40_allowed(channel_after) ||
2073 flags & NL80211_RRF_NO_HT40PLUS)
2074 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2075 else
2076 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2077 }
2078
reg_process_ht_flags_band(struct wiphy * wiphy,struct ieee80211_supported_band * sband)2079 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2080 struct ieee80211_supported_band *sband)
2081 {
2082 unsigned int i;
2083
2084 if (!sband)
2085 return;
2086
2087 for (i = 0; i < sband->n_channels; i++)
2088 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2089 }
2090
reg_process_ht_flags(struct wiphy * wiphy)2091 static void reg_process_ht_flags(struct wiphy *wiphy)
2092 {
2093 enum nl80211_band band;
2094
2095 if (!wiphy)
2096 return;
2097
2098 for (band = 0; band < NUM_NL80211_BANDS; band++)
2099 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2100 }
2101
reg_call_notifier(struct wiphy * wiphy,struct regulatory_request * request)2102 static void reg_call_notifier(struct wiphy *wiphy,
2103 struct regulatory_request *request)
2104 {
2105 if (wiphy->reg_notifier)
2106 wiphy->reg_notifier(wiphy, request);
2107 }
2108
reg_wdev_chan_valid(struct wiphy * wiphy,struct wireless_dev * wdev)2109 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2110 {
2111 struct cfg80211_chan_def chandef = {};
2112 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2113 enum nl80211_iftype iftype;
2114
2115 wdev_lock(wdev);
2116 iftype = wdev->iftype;
2117
2118 /* make sure the interface is active */
2119 if (!wdev->netdev || !netif_running(wdev->netdev))
2120 goto wdev_inactive_unlock;
2121
2122 switch (iftype) {
2123 case NL80211_IFTYPE_AP:
2124 case NL80211_IFTYPE_P2P_GO:
2125 if (!wdev->beacon_interval)
2126 goto wdev_inactive_unlock;
2127 chandef = wdev->chandef;
2128 break;
2129 case NL80211_IFTYPE_ADHOC:
2130 if (!wdev->ssid_len)
2131 goto wdev_inactive_unlock;
2132 chandef = wdev->chandef;
2133 break;
2134 case NL80211_IFTYPE_STATION:
2135 case NL80211_IFTYPE_P2P_CLIENT:
2136 if (!wdev->current_bss ||
2137 !wdev->current_bss->pub.channel)
2138 goto wdev_inactive_unlock;
2139
2140 if (!rdev->ops->get_channel ||
2141 rdev_get_channel(rdev, wdev, &chandef))
2142 cfg80211_chandef_create(&chandef,
2143 wdev->current_bss->pub.channel,
2144 NL80211_CHAN_NO_HT);
2145 break;
2146 case NL80211_IFTYPE_MONITOR:
2147 case NL80211_IFTYPE_AP_VLAN:
2148 case NL80211_IFTYPE_P2P_DEVICE:
2149 /* no enforcement required */
2150 break;
2151 default:
2152 /* others not implemented for now */
2153 WARN_ON(1);
2154 break;
2155 }
2156
2157 wdev_unlock(wdev);
2158
2159 switch (iftype) {
2160 case NL80211_IFTYPE_AP:
2161 case NL80211_IFTYPE_P2P_GO:
2162 case NL80211_IFTYPE_ADHOC:
2163 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
2164 case NL80211_IFTYPE_STATION:
2165 case NL80211_IFTYPE_P2P_CLIENT:
2166 return cfg80211_chandef_usable(wiphy, &chandef,
2167 IEEE80211_CHAN_DISABLED);
2168 default:
2169 break;
2170 }
2171
2172 return true;
2173
2174 wdev_inactive_unlock:
2175 wdev_unlock(wdev);
2176 return true;
2177 }
2178
reg_leave_invalid_chans(struct wiphy * wiphy)2179 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2180 {
2181 struct wireless_dev *wdev;
2182 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2183
2184 ASSERT_RTNL();
2185
2186 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2187 if (!reg_wdev_chan_valid(wiphy, wdev))
2188 cfg80211_leave(rdev, wdev);
2189 }
2190
reg_check_chans_work(struct work_struct * work)2191 static void reg_check_chans_work(struct work_struct *work)
2192 {
2193 struct cfg80211_registered_device *rdev;
2194
2195 pr_debug("Verifying active interfaces after reg change\n");
2196 rtnl_lock();
2197
2198 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2199 if (!(rdev->wiphy.regulatory_flags &
2200 REGULATORY_IGNORE_STALE_KICKOFF))
2201 reg_leave_invalid_chans(&rdev->wiphy);
2202
2203 rtnl_unlock();
2204 }
2205
reg_check_channels(void)2206 static void reg_check_channels(void)
2207 {
2208 /*
2209 * Give usermode a chance to do something nicer (move to another
2210 * channel, orderly disconnection), before forcing a disconnection.
2211 */
2212 mod_delayed_work(system_power_efficient_wq,
2213 ®_check_chans,
2214 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2215 }
2216
wiphy_update_regulatory(struct wiphy * wiphy,enum nl80211_reg_initiator initiator)2217 static void wiphy_update_regulatory(struct wiphy *wiphy,
2218 enum nl80211_reg_initiator initiator)
2219 {
2220 enum nl80211_band band;
2221 struct regulatory_request *lr = get_last_request();
2222
2223 if (ignore_reg_update(wiphy, initiator)) {
2224 /*
2225 * Regulatory updates set by CORE are ignored for custom
2226 * regulatory cards. Let us notify the changes to the driver,
2227 * as some drivers used this to restore its orig_* reg domain.
2228 */
2229 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2230 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2231 !(wiphy->regulatory_flags &
2232 REGULATORY_WIPHY_SELF_MANAGED))
2233 reg_call_notifier(wiphy, lr);
2234 return;
2235 }
2236
2237 lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2238
2239 for (band = 0; band < NUM_NL80211_BANDS; band++)
2240 handle_band(wiphy, initiator, wiphy->bands[band]);
2241
2242 reg_process_beacons(wiphy);
2243 reg_process_ht_flags(wiphy);
2244 reg_call_notifier(wiphy, lr);
2245 }
2246
update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)2247 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2248 {
2249 struct cfg80211_registered_device *rdev;
2250 struct wiphy *wiphy;
2251
2252 ASSERT_RTNL();
2253
2254 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2255 wiphy = &rdev->wiphy;
2256 wiphy_update_regulatory(wiphy, initiator);
2257 }
2258
2259 reg_check_channels();
2260 }
2261
handle_channel_custom(struct wiphy * wiphy,struct ieee80211_channel * chan,const struct ieee80211_regdomain * regd)2262 static void handle_channel_custom(struct wiphy *wiphy,
2263 struct ieee80211_channel *chan,
2264 const struct ieee80211_regdomain *regd)
2265 {
2266 u32 bw_flags = 0;
2267 const struct ieee80211_reg_rule *reg_rule = NULL;
2268 const struct ieee80211_power_rule *power_rule = NULL;
2269 u32 bw;
2270
2271 for (bw = MHZ_TO_KHZ(20); bw >= MHZ_TO_KHZ(5); bw = bw / 2) {
2272 reg_rule = freq_reg_info_regd(MHZ_TO_KHZ(chan->center_freq),
2273 regd, bw);
2274 if (!IS_ERR(reg_rule))
2275 break;
2276 }
2277
2278 if (IS_ERR(reg_rule)) {
2279 pr_debug("Disabling freq %d MHz as custom regd has no rule that fits it\n",
2280 chan->center_freq);
2281 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2282 chan->flags |= IEEE80211_CHAN_DISABLED;
2283 } else {
2284 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2285 chan->flags = chan->orig_flags;
2286 }
2287 return;
2288 }
2289
2290 power_rule = ®_rule->power_rule;
2291 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2292
2293 chan->dfs_state_entered = jiffies;
2294 chan->dfs_state = NL80211_DFS_USABLE;
2295
2296 chan->beacon_found = false;
2297
2298 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2299 chan->flags = chan->orig_flags | bw_flags |
2300 map_regdom_flags(reg_rule->flags);
2301 else
2302 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2303
2304 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2305 chan->max_reg_power = chan->max_power =
2306 (int) MBM_TO_DBM(power_rule->max_eirp);
2307
2308 if (chan->flags & IEEE80211_CHAN_RADAR) {
2309 if (reg_rule->dfs_cac_ms)
2310 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2311 else
2312 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2313 }
2314
2315 chan->max_power = chan->max_reg_power;
2316 }
2317
handle_band_custom(struct wiphy * wiphy,struct ieee80211_supported_band * sband,const struct ieee80211_regdomain * regd)2318 static void handle_band_custom(struct wiphy *wiphy,
2319 struct ieee80211_supported_band *sband,
2320 const struct ieee80211_regdomain *regd)
2321 {
2322 unsigned int i;
2323
2324 if (!sband)
2325 return;
2326
2327 for (i = 0; i < sband->n_channels; i++)
2328 handle_channel_custom(wiphy, &sband->channels[i], regd);
2329 }
2330
2331 /* Used by drivers prior to wiphy registration */
wiphy_apply_custom_regulatory(struct wiphy * wiphy,const struct ieee80211_regdomain * regd)2332 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2333 const struct ieee80211_regdomain *regd)
2334 {
2335 enum nl80211_band band;
2336 unsigned int bands_set = 0;
2337
2338 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2339 "wiphy should have REGULATORY_CUSTOM_REG\n");
2340 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2341
2342 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2343 if (!wiphy->bands[band])
2344 continue;
2345 handle_band_custom(wiphy, wiphy->bands[band], regd);
2346 bands_set++;
2347 }
2348
2349 /*
2350 * no point in calling this if it won't have any effect
2351 * on your device's supported bands.
2352 */
2353 WARN_ON(!bands_set);
2354 }
2355 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2356
reg_set_request_processed(void)2357 static void reg_set_request_processed(void)
2358 {
2359 bool need_more_processing = false;
2360 struct regulatory_request *lr = get_last_request();
2361
2362 lr->processed = true;
2363
2364 spin_lock(®_requests_lock);
2365 if (!list_empty(®_requests_list))
2366 need_more_processing = true;
2367 spin_unlock(®_requests_lock);
2368
2369 cancel_crda_timeout();
2370
2371 if (need_more_processing)
2372 schedule_work(®_work);
2373 }
2374
2375 /**
2376 * reg_process_hint_core - process core regulatory requests
2377 * @pending_request: a pending core regulatory request
2378 *
2379 * The wireless subsystem can use this function to process
2380 * a regulatory request issued by the regulatory core.
2381 */
2382 static enum reg_request_treatment
reg_process_hint_core(struct regulatory_request * core_request)2383 reg_process_hint_core(struct regulatory_request *core_request)
2384 {
2385 if (reg_query_database(core_request)) {
2386 core_request->intersect = false;
2387 core_request->processed = false;
2388 reg_update_last_request(core_request);
2389 return REG_REQ_OK;
2390 }
2391
2392 return REG_REQ_IGNORE;
2393 }
2394
2395 static enum reg_request_treatment
__reg_process_hint_user(struct regulatory_request * user_request)2396 __reg_process_hint_user(struct regulatory_request *user_request)
2397 {
2398 struct regulatory_request *lr = get_last_request();
2399
2400 if (reg_request_cell_base(user_request))
2401 return reg_ignore_cell_hint(user_request);
2402
2403 if (reg_request_cell_base(lr))
2404 return REG_REQ_IGNORE;
2405
2406 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2407 return REG_REQ_INTERSECT;
2408 /*
2409 * If the user knows better the user should set the regdom
2410 * to their country before the IE is picked up
2411 */
2412 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2413 lr->intersect)
2414 return REG_REQ_IGNORE;
2415 /*
2416 * Process user requests only after previous user/driver/core
2417 * requests have been processed
2418 */
2419 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2420 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2421 lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2422 regdom_changes(lr->alpha2))
2423 return REG_REQ_IGNORE;
2424
2425 if (!regdom_changes(user_request->alpha2))
2426 return REG_REQ_ALREADY_SET;
2427
2428 return REG_REQ_OK;
2429 }
2430
2431 /**
2432 * reg_process_hint_user - process user regulatory requests
2433 * @user_request: a pending user regulatory request
2434 *
2435 * The wireless subsystem can use this function to process
2436 * a regulatory request initiated by userspace.
2437 */
2438 static enum reg_request_treatment
reg_process_hint_user(struct regulatory_request * user_request)2439 reg_process_hint_user(struct regulatory_request *user_request)
2440 {
2441 enum reg_request_treatment treatment;
2442
2443 treatment = __reg_process_hint_user(user_request);
2444 if (treatment == REG_REQ_IGNORE ||
2445 treatment == REG_REQ_ALREADY_SET)
2446 return REG_REQ_IGNORE;
2447
2448 user_request->intersect = treatment == REG_REQ_INTERSECT;
2449 user_request->processed = false;
2450
2451 if (reg_query_database(user_request)) {
2452 reg_update_last_request(user_request);
2453 user_alpha2[0] = user_request->alpha2[0];
2454 user_alpha2[1] = user_request->alpha2[1];
2455 return REG_REQ_OK;
2456 }
2457
2458 return REG_REQ_IGNORE;
2459 }
2460
2461 static enum reg_request_treatment
__reg_process_hint_driver(struct regulatory_request * driver_request)2462 __reg_process_hint_driver(struct regulatory_request *driver_request)
2463 {
2464 struct regulatory_request *lr = get_last_request();
2465
2466 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2467 if (regdom_changes(driver_request->alpha2))
2468 return REG_REQ_OK;
2469 return REG_REQ_ALREADY_SET;
2470 }
2471
2472 /*
2473 * This would happen if you unplug and plug your card
2474 * back in or if you add a new device for which the previously
2475 * loaded card also agrees on the regulatory domain.
2476 */
2477 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2478 !regdom_changes(driver_request->alpha2))
2479 return REG_REQ_ALREADY_SET;
2480
2481 return REG_REQ_INTERSECT;
2482 }
2483
2484 /**
2485 * reg_process_hint_driver - process driver regulatory requests
2486 * @driver_request: a pending driver regulatory request
2487 *
2488 * The wireless subsystem can use this function to process
2489 * a regulatory request issued by an 802.11 driver.
2490 *
2491 * Returns one of the different reg request treatment values.
2492 */
2493 static enum reg_request_treatment
reg_process_hint_driver(struct wiphy * wiphy,struct regulatory_request * driver_request)2494 reg_process_hint_driver(struct wiphy *wiphy,
2495 struct regulatory_request *driver_request)
2496 {
2497 const struct ieee80211_regdomain *regd, *tmp;
2498 enum reg_request_treatment treatment;
2499
2500 treatment = __reg_process_hint_driver(driver_request);
2501
2502 switch (treatment) {
2503 case REG_REQ_OK:
2504 break;
2505 case REG_REQ_IGNORE:
2506 return REG_REQ_IGNORE;
2507 case REG_REQ_INTERSECT:
2508 case REG_REQ_ALREADY_SET:
2509 regd = reg_copy_regd(get_cfg80211_regdom());
2510 if (IS_ERR(regd))
2511 return REG_REQ_IGNORE;
2512
2513 tmp = get_wiphy_regdom(wiphy);
2514 rcu_assign_pointer(wiphy->regd, regd);
2515 rcu_free_regdom(tmp);
2516 }
2517
2518
2519 driver_request->intersect = treatment == REG_REQ_INTERSECT;
2520 driver_request->processed = false;
2521
2522 /*
2523 * Since CRDA will not be called in this case as we already
2524 * have applied the requested regulatory domain before we just
2525 * inform userspace we have processed the request
2526 */
2527 if (treatment == REG_REQ_ALREADY_SET) {
2528 nl80211_send_reg_change_event(driver_request);
2529 reg_update_last_request(driver_request);
2530 reg_set_request_processed();
2531 return REG_REQ_ALREADY_SET;
2532 }
2533
2534 if (reg_query_database(driver_request)) {
2535 reg_update_last_request(driver_request);
2536 return REG_REQ_OK;
2537 }
2538
2539 return REG_REQ_IGNORE;
2540 }
2541
2542 static enum reg_request_treatment
__reg_process_hint_country_ie(struct wiphy * wiphy,struct regulatory_request * country_ie_request)2543 __reg_process_hint_country_ie(struct wiphy *wiphy,
2544 struct regulatory_request *country_ie_request)
2545 {
2546 struct wiphy *last_wiphy = NULL;
2547 struct regulatory_request *lr = get_last_request();
2548
2549 if (reg_request_cell_base(lr)) {
2550 /* Trust a Cell base station over the AP's country IE */
2551 if (regdom_changes(country_ie_request->alpha2))
2552 return REG_REQ_IGNORE;
2553 return REG_REQ_ALREADY_SET;
2554 } else {
2555 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2556 return REG_REQ_IGNORE;
2557 }
2558
2559 if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2560 return -EINVAL;
2561
2562 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2563 return REG_REQ_OK;
2564
2565 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2566
2567 if (last_wiphy != wiphy) {
2568 /*
2569 * Two cards with two APs claiming different
2570 * Country IE alpha2s. We could
2571 * intersect them, but that seems unlikely
2572 * to be correct. Reject second one for now.
2573 */
2574 if (regdom_changes(country_ie_request->alpha2))
2575 return REG_REQ_IGNORE;
2576 return REG_REQ_ALREADY_SET;
2577 }
2578
2579 if (regdom_changes(country_ie_request->alpha2))
2580 return REG_REQ_OK;
2581 return REG_REQ_ALREADY_SET;
2582 }
2583
2584 /**
2585 * reg_process_hint_country_ie - process regulatory requests from country IEs
2586 * @country_ie_request: a regulatory request from a country IE
2587 *
2588 * The wireless subsystem can use this function to process
2589 * a regulatory request issued by a country Information Element.
2590 *
2591 * Returns one of the different reg request treatment values.
2592 */
2593 static enum reg_request_treatment
reg_process_hint_country_ie(struct wiphy * wiphy,struct regulatory_request * country_ie_request)2594 reg_process_hint_country_ie(struct wiphy *wiphy,
2595 struct regulatory_request *country_ie_request)
2596 {
2597 enum reg_request_treatment treatment;
2598
2599 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2600
2601 switch (treatment) {
2602 case REG_REQ_OK:
2603 break;
2604 case REG_REQ_IGNORE:
2605 return REG_REQ_IGNORE;
2606 case REG_REQ_ALREADY_SET:
2607 reg_free_request(country_ie_request);
2608 return REG_REQ_ALREADY_SET;
2609 case REG_REQ_INTERSECT:
2610 /*
2611 * This doesn't happen yet, not sure we
2612 * ever want to support it for this case.
2613 */
2614 WARN_ONCE(1, "Unexpected intersection for country elements");
2615 return REG_REQ_IGNORE;
2616 }
2617
2618 country_ie_request->intersect = false;
2619 country_ie_request->processed = false;
2620
2621 if (reg_query_database(country_ie_request)) {
2622 reg_update_last_request(country_ie_request);
2623 return REG_REQ_OK;
2624 }
2625
2626 return REG_REQ_IGNORE;
2627 }
2628
reg_dfs_domain_same(struct wiphy * wiphy1,struct wiphy * wiphy2)2629 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2630 {
2631 const struct ieee80211_regdomain *wiphy1_regd = NULL;
2632 const struct ieee80211_regdomain *wiphy2_regd = NULL;
2633 const struct ieee80211_regdomain *cfg80211_regd = NULL;
2634 bool dfs_domain_same;
2635
2636 rcu_read_lock();
2637
2638 cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2639 wiphy1_regd = rcu_dereference(wiphy1->regd);
2640 if (!wiphy1_regd)
2641 wiphy1_regd = cfg80211_regd;
2642
2643 wiphy2_regd = rcu_dereference(wiphy2->regd);
2644 if (!wiphy2_regd)
2645 wiphy2_regd = cfg80211_regd;
2646
2647 dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2648
2649 rcu_read_unlock();
2650
2651 return dfs_domain_same;
2652 }
2653
reg_copy_dfs_chan_state(struct ieee80211_channel * dst_chan,struct ieee80211_channel * src_chan)2654 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2655 struct ieee80211_channel *src_chan)
2656 {
2657 if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2658 !(src_chan->flags & IEEE80211_CHAN_RADAR))
2659 return;
2660
2661 if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2662 src_chan->flags & IEEE80211_CHAN_DISABLED)
2663 return;
2664
2665 if (src_chan->center_freq == dst_chan->center_freq &&
2666 dst_chan->dfs_state == NL80211_DFS_USABLE) {
2667 dst_chan->dfs_state = src_chan->dfs_state;
2668 dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2669 }
2670 }
2671
wiphy_share_dfs_chan_state(struct wiphy * dst_wiphy,struct wiphy * src_wiphy)2672 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2673 struct wiphy *src_wiphy)
2674 {
2675 struct ieee80211_supported_band *src_sband, *dst_sband;
2676 struct ieee80211_channel *src_chan, *dst_chan;
2677 int i, j, band;
2678
2679 if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2680 return;
2681
2682 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2683 dst_sband = dst_wiphy->bands[band];
2684 src_sband = src_wiphy->bands[band];
2685 if (!dst_sband || !src_sband)
2686 continue;
2687
2688 for (i = 0; i < dst_sband->n_channels; i++) {
2689 dst_chan = &dst_sband->channels[i];
2690 for (j = 0; j < src_sband->n_channels; j++) {
2691 src_chan = &src_sband->channels[j];
2692 reg_copy_dfs_chan_state(dst_chan, src_chan);
2693 }
2694 }
2695 }
2696 }
2697
wiphy_all_share_dfs_chan_state(struct wiphy * wiphy)2698 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2699 {
2700 struct cfg80211_registered_device *rdev;
2701
2702 ASSERT_RTNL();
2703
2704 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2705 if (wiphy == &rdev->wiphy)
2706 continue;
2707 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2708 }
2709 }
2710
2711 /* This processes *all* regulatory hints */
reg_process_hint(struct regulatory_request * reg_request)2712 static void reg_process_hint(struct regulatory_request *reg_request)
2713 {
2714 struct wiphy *wiphy = NULL;
2715 enum reg_request_treatment treatment;
2716 enum nl80211_reg_initiator initiator = reg_request->initiator;
2717
2718 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2719 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2720
2721 switch (initiator) {
2722 case NL80211_REGDOM_SET_BY_CORE:
2723 treatment = reg_process_hint_core(reg_request);
2724 break;
2725 case NL80211_REGDOM_SET_BY_USER:
2726 treatment = reg_process_hint_user(reg_request);
2727 break;
2728 case NL80211_REGDOM_SET_BY_DRIVER:
2729 if (!wiphy)
2730 goto out_free;
2731 treatment = reg_process_hint_driver(wiphy, reg_request);
2732 break;
2733 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2734 if (!wiphy)
2735 goto out_free;
2736 treatment = reg_process_hint_country_ie(wiphy, reg_request);
2737 break;
2738 default:
2739 WARN(1, "invalid initiator %d\n", initiator);
2740 goto out_free;
2741 }
2742
2743 if (treatment == REG_REQ_IGNORE)
2744 goto out_free;
2745
2746 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
2747 "unexpected treatment value %d\n", treatment);
2748
2749 /* This is required so that the orig_* parameters are saved.
2750 * NOTE: treatment must be set for any case that reaches here!
2751 */
2752 if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2753 wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2754 wiphy_update_regulatory(wiphy, initiator);
2755 wiphy_all_share_dfs_chan_state(wiphy);
2756 reg_check_channels();
2757 }
2758
2759 return;
2760
2761 out_free:
2762 reg_free_request(reg_request);
2763 }
2764
notify_self_managed_wiphys(struct regulatory_request * request)2765 static void notify_self_managed_wiphys(struct regulatory_request *request)
2766 {
2767 struct cfg80211_registered_device *rdev;
2768 struct wiphy *wiphy;
2769
2770 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2771 wiphy = &rdev->wiphy;
2772 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
2773 request->initiator == NL80211_REGDOM_SET_BY_USER)
2774 reg_call_notifier(wiphy, request);
2775 }
2776 }
2777
2778 /*
2779 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2780 * Regulatory hints come on a first come first serve basis and we
2781 * must process each one atomically.
2782 */
reg_process_pending_hints(void)2783 static void reg_process_pending_hints(void)
2784 {
2785 struct regulatory_request *reg_request, *lr;
2786
2787 lr = get_last_request();
2788
2789 /* When last_request->processed becomes true this will be rescheduled */
2790 if (lr && !lr->processed) {
2791 pr_debug("Pending regulatory request, waiting for it to be processed...\n");
2792 return;
2793 }
2794
2795 spin_lock(®_requests_lock);
2796
2797 if (list_empty(®_requests_list)) {
2798 spin_unlock(®_requests_lock);
2799 return;
2800 }
2801
2802 reg_request = list_first_entry(®_requests_list,
2803 struct regulatory_request,
2804 list);
2805 list_del_init(®_request->list);
2806
2807 spin_unlock(®_requests_lock);
2808
2809 notify_self_managed_wiphys(reg_request);
2810
2811 reg_process_hint(reg_request);
2812
2813 lr = get_last_request();
2814
2815 spin_lock(®_requests_lock);
2816 if (!list_empty(®_requests_list) && lr && lr->processed)
2817 schedule_work(®_work);
2818 spin_unlock(®_requests_lock);
2819 }
2820
2821 /* Processes beacon hints -- this has nothing to do with country IEs */
reg_process_pending_beacon_hints(void)2822 static void reg_process_pending_beacon_hints(void)
2823 {
2824 struct cfg80211_registered_device *rdev;
2825 struct reg_beacon *pending_beacon, *tmp;
2826
2827 /* This goes through the _pending_ beacon list */
2828 spin_lock_bh(®_pending_beacons_lock);
2829
2830 list_for_each_entry_safe(pending_beacon, tmp,
2831 ®_pending_beacons, list) {
2832 list_del_init(&pending_beacon->list);
2833
2834 /* Applies the beacon hint to current wiphys */
2835 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2836 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2837
2838 /* Remembers the beacon hint for new wiphys or reg changes */
2839 list_add_tail(&pending_beacon->list, ®_beacon_list);
2840 }
2841
2842 spin_unlock_bh(®_pending_beacons_lock);
2843 }
2844
reg_process_self_managed_hints(void)2845 static void reg_process_self_managed_hints(void)
2846 {
2847 struct cfg80211_registered_device *rdev;
2848 struct wiphy *wiphy;
2849 const struct ieee80211_regdomain *tmp;
2850 const struct ieee80211_regdomain *regd;
2851 enum nl80211_band band;
2852 struct regulatory_request request = {};
2853
2854 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2855 wiphy = &rdev->wiphy;
2856
2857 spin_lock(®_requests_lock);
2858 regd = rdev->requested_regd;
2859 rdev->requested_regd = NULL;
2860 spin_unlock(®_requests_lock);
2861
2862 if (regd == NULL)
2863 continue;
2864
2865 tmp = get_wiphy_regdom(wiphy);
2866 rcu_assign_pointer(wiphy->regd, regd);
2867 rcu_free_regdom(tmp);
2868
2869 for (band = 0; band < NUM_NL80211_BANDS; band++)
2870 handle_band_custom(wiphy, wiphy->bands[band], regd);
2871
2872 reg_process_ht_flags(wiphy);
2873
2874 request.wiphy_idx = get_wiphy_idx(wiphy);
2875 request.alpha2[0] = regd->alpha2[0];
2876 request.alpha2[1] = regd->alpha2[1];
2877 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
2878
2879 nl80211_send_wiphy_reg_change_event(&request);
2880 }
2881
2882 reg_check_channels();
2883 }
2884
reg_todo(struct work_struct * work)2885 static void reg_todo(struct work_struct *work)
2886 {
2887 rtnl_lock();
2888 reg_process_pending_hints();
2889 reg_process_pending_beacon_hints();
2890 reg_process_self_managed_hints();
2891 rtnl_unlock();
2892 }
2893
queue_regulatory_request(struct regulatory_request * request)2894 static void queue_regulatory_request(struct regulatory_request *request)
2895 {
2896 request->alpha2[0] = toupper(request->alpha2[0]);
2897 request->alpha2[1] = toupper(request->alpha2[1]);
2898
2899 spin_lock(®_requests_lock);
2900 list_add_tail(&request->list, ®_requests_list);
2901 spin_unlock(®_requests_lock);
2902
2903 schedule_work(®_work);
2904 }
2905
2906 /*
2907 * Core regulatory hint -- happens during cfg80211_init()
2908 * and when we restore regulatory settings.
2909 */
regulatory_hint_core(const char * alpha2)2910 static int regulatory_hint_core(const char *alpha2)
2911 {
2912 struct regulatory_request *request;
2913
2914 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2915 if (!request)
2916 return -ENOMEM;
2917
2918 request->alpha2[0] = alpha2[0];
2919 request->alpha2[1] = alpha2[1];
2920 request->initiator = NL80211_REGDOM_SET_BY_CORE;
2921 request->wiphy_idx = WIPHY_IDX_INVALID;
2922
2923 queue_regulatory_request(request);
2924
2925 return 0;
2926 }
2927
2928 /* User hints */
regulatory_hint_user(const char * alpha2,enum nl80211_user_reg_hint_type user_reg_hint_type)2929 int regulatory_hint_user(const char *alpha2,
2930 enum nl80211_user_reg_hint_type user_reg_hint_type)
2931 {
2932 struct regulatory_request *request;
2933
2934 if (WARN_ON(!alpha2))
2935 return -EINVAL;
2936
2937 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2938 if (!request)
2939 return -ENOMEM;
2940
2941 request->wiphy_idx = WIPHY_IDX_INVALID;
2942 request->alpha2[0] = alpha2[0];
2943 request->alpha2[1] = alpha2[1];
2944 request->initiator = NL80211_REGDOM_SET_BY_USER;
2945 request->user_reg_hint_type = user_reg_hint_type;
2946
2947 /* Allow calling CRDA again */
2948 reset_crda_timeouts();
2949
2950 queue_regulatory_request(request);
2951
2952 return 0;
2953 }
2954
regulatory_hint_indoor(bool is_indoor,u32 portid)2955 int regulatory_hint_indoor(bool is_indoor, u32 portid)
2956 {
2957 spin_lock(®_indoor_lock);
2958
2959 /* It is possible that more than one user space process is trying to
2960 * configure the indoor setting. To handle such cases, clear the indoor
2961 * setting in case that some process does not think that the device
2962 * is operating in an indoor environment. In addition, if a user space
2963 * process indicates that it is controlling the indoor setting, save its
2964 * portid, i.e., make it the owner.
2965 */
2966 reg_is_indoor = is_indoor;
2967 if (reg_is_indoor) {
2968 if (!reg_is_indoor_portid)
2969 reg_is_indoor_portid = portid;
2970 } else {
2971 reg_is_indoor_portid = 0;
2972 }
2973
2974 spin_unlock(®_indoor_lock);
2975
2976 if (!is_indoor)
2977 reg_check_channels();
2978
2979 return 0;
2980 }
2981
regulatory_netlink_notify(u32 portid)2982 void regulatory_netlink_notify(u32 portid)
2983 {
2984 spin_lock(®_indoor_lock);
2985
2986 if (reg_is_indoor_portid != portid) {
2987 spin_unlock(®_indoor_lock);
2988 return;
2989 }
2990
2991 reg_is_indoor = false;
2992 reg_is_indoor_portid = 0;
2993
2994 spin_unlock(®_indoor_lock);
2995
2996 reg_check_channels();
2997 }
2998
2999 /* Driver hints */
regulatory_hint(struct wiphy * wiphy,const char * alpha2)3000 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3001 {
3002 struct regulatory_request *request;
3003
3004 if (WARN_ON(!alpha2 || !wiphy))
3005 return -EINVAL;
3006
3007 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3008
3009 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3010 if (!request)
3011 return -ENOMEM;
3012
3013 request->wiphy_idx = get_wiphy_idx(wiphy);
3014
3015 request->alpha2[0] = alpha2[0];
3016 request->alpha2[1] = alpha2[1];
3017 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3018
3019 /* Allow calling CRDA again */
3020 reset_crda_timeouts();
3021
3022 queue_regulatory_request(request);
3023
3024 return 0;
3025 }
3026 EXPORT_SYMBOL(regulatory_hint);
3027
regulatory_hint_country_ie(struct wiphy * wiphy,enum nl80211_band band,const u8 * country_ie,u8 country_ie_len)3028 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3029 const u8 *country_ie, u8 country_ie_len)
3030 {
3031 char alpha2[2];
3032 enum environment_cap env = ENVIRON_ANY;
3033 struct regulatory_request *request = NULL, *lr;
3034
3035 /* IE len must be evenly divisible by 2 */
3036 if (country_ie_len & 0x01)
3037 return;
3038
3039 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3040 return;
3041
3042 request = kzalloc(sizeof(*request), GFP_KERNEL);
3043 if (!request)
3044 return;
3045
3046 alpha2[0] = country_ie[0];
3047 alpha2[1] = country_ie[1];
3048
3049 if (country_ie[2] == 'I')
3050 env = ENVIRON_INDOOR;
3051 else if (country_ie[2] == 'O')
3052 env = ENVIRON_OUTDOOR;
3053
3054 rcu_read_lock();
3055 lr = get_last_request();
3056
3057 if (unlikely(!lr))
3058 goto out;
3059
3060 /*
3061 * We will run this only upon a successful connection on cfg80211.
3062 * We leave conflict resolution to the workqueue, where can hold
3063 * the RTNL.
3064 */
3065 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3066 lr->wiphy_idx != WIPHY_IDX_INVALID)
3067 goto out;
3068
3069 request->wiphy_idx = get_wiphy_idx(wiphy);
3070 request->alpha2[0] = alpha2[0];
3071 request->alpha2[1] = alpha2[1];
3072 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3073 request->country_ie_env = env;
3074
3075 /* Allow calling CRDA again */
3076 reset_crda_timeouts();
3077
3078 queue_regulatory_request(request);
3079 request = NULL;
3080 out:
3081 kfree(request);
3082 rcu_read_unlock();
3083 }
3084
restore_alpha2(char * alpha2,bool reset_user)3085 static void restore_alpha2(char *alpha2, bool reset_user)
3086 {
3087 /* indicates there is no alpha2 to consider for restoration */
3088 alpha2[0] = '9';
3089 alpha2[1] = '7';
3090
3091 /* The user setting has precedence over the module parameter */
3092 if (is_user_regdom_saved()) {
3093 /* Unless we're asked to ignore it and reset it */
3094 if (reset_user) {
3095 pr_debug("Restoring regulatory settings including user preference\n");
3096 user_alpha2[0] = '9';
3097 user_alpha2[1] = '7';
3098
3099 /*
3100 * If we're ignoring user settings, we still need to
3101 * check the module parameter to ensure we put things
3102 * back as they were for a full restore.
3103 */
3104 if (!is_world_regdom(ieee80211_regdom)) {
3105 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3106 ieee80211_regdom[0], ieee80211_regdom[1]);
3107 alpha2[0] = ieee80211_regdom[0];
3108 alpha2[1] = ieee80211_regdom[1];
3109 }
3110 } else {
3111 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3112 user_alpha2[0], user_alpha2[1]);
3113 alpha2[0] = user_alpha2[0];
3114 alpha2[1] = user_alpha2[1];
3115 }
3116 } else if (!is_world_regdom(ieee80211_regdom)) {
3117 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3118 ieee80211_regdom[0], ieee80211_regdom[1]);
3119 alpha2[0] = ieee80211_regdom[0];
3120 alpha2[1] = ieee80211_regdom[1];
3121 } else
3122 pr_debug("Restoring regulatory settings\n");
3123 }
3124
restore_custom_reg_settings(struct wiphy * wiphy)3125 static void restore_custom_reg_settings(struct wiphy *wiphy)
3126 {
3127 struct ieee80211_supported_band *sband;
3128 enum nl80211_band band;
3129 struct ieee80211_channel *chan;
3130 int i;
3131
3132 for (band = 0; band < NUM_NL80211_BANDS; band++) {
3133 sband = wiphy->bands[band];
3134 if (!sband)
3135 continue;
3136 for (i = 0; i < sband->n_channels; i++) {
3137 chan = &sband->channels[i];
3138 chan->flags = chan->orig_flags;
3139 chan->max_antenna_gain = chan->orig_mag;
3140 chan->max_power = chan->orig_mpwr;
3141 chan->beacon_found = false;
3142 }
3143 }
3144 }
3145
3146 /*
3147 * Restoring regulatory settings involves ingoring any
3148 * possibly stale country IE information and user regulatory
3149 * settings if so desired, this includes any beacon hints
3150 * learned as we could have traveled outside to another country
3151 * after disconnection. To restore regulatory settings we do
3152 * exactly what we did at bootup:
3153 *
3154 * - send a core regulatory hint
3155 * - send a user regulatory hint if applicable
3156 *
3157 * Device drivers that send a regulatory hint for a specific country
3158 * keep their own regulatory domain on wiphy->regd so that does does
3159 * not need to be remembered.
3160 */
restore_regulatory_settings(bool reset_user,bool cached)3161 static void restore_regulatory_settings(bool reset_user, bool cached)
3162 {
3163 char alpha2[2];
3164 char world_alpha2[2];
3165 struct reg_beacon *reg_beacon, *btmp;
3166 LIST_HEAD(tmp_reg_req_list);
3167 struct cfg80211_registered_device *rdev;
3168
3169 ASSERT_RTNL();
3170
3171 /*
3172 * Clear the indoor setting in case that it is not controlled by user
3173 * space, as otherwise there is no guarantee that the device is still
3174 * operating in an indoor environment.
3175 */
3176 spin_lock(®_indoor_lock);
3177 if (reg_is_indoor && !reg_is_indoor_portid) {
3178 reg_is_indoor = false;
3179 reg_check_channels();
3180 }
3181 spin_unlock(®_indoor_lock);
3182
3183 reset_regdomains(true, &world_regdom);
3184 restore_alpha2(alpha2, reset_user);
3185
3186 /*
3187 * If there's any pending requests we simply
3188 * stash them to a temporary pending queue and
3189 * add then after we've restored regulatory
3190 * settings.
3191 */
3192 spin_lock(®_requests_lock);
3193 list_splice_tail_init(®_requests_list, &tmp_reg_req_list);
3194 spin_unlock(®_requests_lock);
3195
3196 /* Clear beacon hints */
3197 spin_lock_bh(®_pending_beacons_lock);
3198 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) {
3199 list_del(®_beacon->list);
3200 kfree(reg_beacon);
3201 }
3202 spin_unlock_bh(®_pending_beacons_lock);
3203
3204 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) {
3205 list_del(®_beacon->list);
3206 kfree(reg_beacon);
3207 }
3208
3209 /* First restore to the basic regulatory settings */
3210 world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3211 world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3212
3213 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3214 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3215 continue;
3216 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3217 restore_custom_reg_settings(&rdev->wiphy);
3218 }
3219
3220 if (cached && (!is_an_alpha2(alpha2) ||
3221 !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3222 reset_regdomains(false, cfg80211_world_regdom);
3223 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3224 print_regdomain(get_cfg80211_regdom());
3225 nl80211_send_reg_change_event(&core_request_world);
3226 reg_set_request_processed();
3227
3228 if (is_an_alpha2(alpha2) &&
3229 !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3230 struct regulatory_request *ureq;
3231
3232 spin_lock(®_requests_lock);
3233 ureq = list_last_entry(®_requests_list,
3234 struct regulatory_request,
3235 list);
3236 list_del(&ureq->list);
3237 spin_unlock(®_requests_lock);
3238
3239 notify_self_managed_wiphys(ureq);
3240 reg_update_last_request(ureq);
3241 set_regdom(reg_copy_regd(cfg80211_user_regdom),
3242 REGD_SOURCE_CACHED);
3243 }
3244 } else {
3245 regulatory_hint_core(world_alpha2);
3246
3247 /*
3248 * This restores the ieee80211_regdom module parameter
3249 * preference or the last user requested regulatory
3250 * settings, user regulatory settings takes precedence.
3251 */
3252 if (is_an_alpha2(alpha2))
3253 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3254 }
3255
3256 spin_lock(®_requests_lock);
3257 list_splice_tail_init(&tmp_reg_req_list, ®_requests_list);
3258 spin_unlock(®_requests_lock);
3259
3260 pr_debug("Kicking the queue\n");
3261
3262 schedule_work(®_work);
3263 }
3264
is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)3265 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3266 {
3267 struct cfg80211_registered_device *rdev;
3268 struct wireless_dev *wdev;
3269
3270 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3271 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3272 wdev_lock(wdev);
3273 if (!(wdev->wiphy->regulatory_flags & flag)) {
3274 wdev_unlock(wdev);
3275 return false;
3276 }
3277 wdev_unlock(wdev);
3278 }
3279 }
3280
3281 return true;
3282 }
3283
regulatory_hint_disconnect(void)3284 void regulatory_hint_disconnect(void)
3285 {
3286 /* Restore of regulatory settings is not required when wiphy(s)
3287 * ignore IE from connected access point but clearance of beacon hints
3288 * is required when wiphy(s) supports beacon hints.
3289 */
3290 if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3291 struct reg_beacon *reg_beacon, *btmp;
3292
3293 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3294 return;
3295
3296 spin_lock_bh(®_pending_beacons_lock);
3297 list_for_each_entry_safe(reg_beacon, btmp,
3298 ®_pending_beacons, list) {
3299 list_del(®_beacon->list);
3300 kfree(reg_beacon);
3301 }
3302 spin_unlock_bh(®_pending_beacons_lock);
3303
3304 list_for_each_entry_safe(reg_beacon, btmp,
3305 ®_beacon_list, list) {
3306 list_del(®_beacon->list);
3307 kfree(reg_beacon);
3308 }
3309
3310 return;
3311 }
3312
3313 pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3314 restore_regulatory_settings(false, true);
3315 }
3316
freq_is_chan_12_13_14(u32 freq)3317 static bool freq_is_chan_12_13_14(u32 freq)
3318 {
3319 if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3320 freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3321 freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3322 return true;
3323 return false;
3324 }
3325
pending_reg_beacon(struct ieee80211_channel * beacon_chan)3326 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3327 {
3328 struct reg_beacon *pending_beacon;
3329
3330 list_for_each_entry(pending_beacon, ®_pending_beacons, list)
3331 if (beacon_chan->center_freq ==
3332 pending_beacon->chan.center_freq)
3333 return true;
3334 return false;
3335 }
3336
regulatory_hint_found_beacon(struct wiphy * wiphy,struct ieee80211_channel * beacon_chan,gfp_t gfp)3337 int regulatory_hint_found_beacon(struct wiphy *wiphy,
3338 struct ieee80211_channel *beacon_chan,
3339 gfp_t gfp)
3340 {
3341 struct reg_beacon *reg_beacon;
3342 bool processing;
3343
3344 if (beacon_chan->beacon_found ||
3345 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3346 (beacon_chan->band == NL80211_BAND_2GHZ &&
3347 !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3348 return 0;
3349
3350 spin_lock_bh(®_pending_beacons_lock);
3351 processing = pending_reg_beacon(beacon_chan);
3352 spin_unlock_bh(®_pending_beacons_lock);
3353
3354 if (processing)
3355 return 0;
3356
3357 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3358 if (!reg_beacon)
3359 return -ENOMEM;
3360
3361 pr_debug("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
3362 beacon_chan->center_freq,
3363 ieee80211_frequency_to_channel(beacon_chan->center_freq),
3364 wiphy_name(wiphy));
3365
3366 memcpy(®_beacon->chan, beacon_chan,
3367 sizeof(struct ieee80211_channel));
3368
3369 /*
3370 * Since we can be called from BH or and non-BH context
3371 * we must use spin_lock_bh()
3372 */
3373 spin_lock_bh(®_pending_beacons_lock);
3374 list_add_tail(®_beacon->list, ®_pending_beacons);
3375 spin_unlock_bh(®_pending_beacons_lock);
3376
3377 schedule_work(®_work);
3378
3379 return 0;
3380 }
3381
print_rd_rules(const struct ieee80211_regdomain * rd)3382 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3383 {
3384 unsigned int i;
3385 const struct ieee80211_reg_rule *reg_rule = NULL;
3386 const struct ieee80211_freq_range *freq_range = NULL;
3387 const struct ieee80211_power_rule *power_rule = NULL;
3388 char bw[32], cac_time[32];
3389
3390 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3391
3392 for (i = 0; i < rd->n_reg_rules; i++) {
3393 reg_rule = &rd->reg_rules[i];
3394 freq_range = ®_rule->freq_range;
3395 power_rule = ®_rule->power_rule;
3396
3397 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3398 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
3399 freq_range->max_bandwidth_khz,
3400 reg_get_max_bandwidth(rd, reg_rule));
3401 else
3402 snprintf(bw, sizeof(bw), "%d KHz",
3403 freq_range->max_bandwidth_khz);
3404
3405 if (reg_rule->flags & NL80211_RRF_DFS)
3406 scnprintf(cac_time, sizeof(cac_time), "%u s",
3407 reg_rule->dfs_cac_ms/1000);
3408 else
3409 scnprintf(cac_time, sizeof(cac_time), "N/A");
3410
3411
3412 /*
3413 * There may not be documentation for max antenna gain
3414 * in certain regions
3415 */
3416 if (power_rule->max_antenna_gain)
3417 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3418 freq_range->start_freq_khz,
3419 freq_range->end_freq_khz,
3420 bw,
3421 power_rule->max_antenna_gain,
3422 power_rule->max_eirp,
3423 cac_time);
3424 else
3425 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3426 freq_range->start_freq_khz,
3427 freq_range->end_freq_khz,
3428 bw,
3429 power_rule->max_eirp,
3430 cac_time);
3431 }
3432 }
3433
reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)3434 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3435 {
3436 switch (dfs_region) {
3437 case NL80211_DFS_UNSET:
3438 case NL80211_DFS_FCC:
3439 case NL80211_DFS_ETSI:
3440 case NL80211_DFS_JP:
3441 return true;
3442 default:
3443 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3444 return false;
3445 }
3446 }
3447
print_regdomain(const struct ieee80211_regdomain * rd)3448 static void print_regdomain(const struct ieee80211_regdomain *rd)
3449 {
3450 struct regulatory_request *lr = get_last_request();
3451
3452 if (is_intersected_alpha2(rd->alpha2)) {
3453 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3454 struct cfg80211_registered_device *rdev;
3455 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3456 if (rdev) {
3457 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3458 rdev->country_ie_alpha2[0],
3459 rdev->country_ie_alpha2[1]);
3460 } else
3461 pr_debug("Current regulatory domain intersected:\n");
3462 } else
3463 pr_debug("Current regulatory domain intersected:\n");
3464 } else if (is_world_regdom(rd->alpha2)) {
3465 pr_debug("World regulatory domain updated:\n");
3466 } else {
3467 if (is_unknown_alpha2(rd->alpha2))
3468 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3469 else {
3470 if (reg_request_cell_base(lr))
3471 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3472 rd->alpha2[0], rd->alpha2[1]);
3473 else
3474 pr_debug("Regulatory domain changed to country: %c%c\n",
3475 rd->alpha2[0], rd->alpha2[1]);
3476 }
3477 }
3478
3479 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3480 print_rd_rules(rd);
3481 }
3482
print_regdomain_info(const struct ieee80211_regdomain * rd)3483 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3484 {
3485 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3486 print_rd_rules(rd);
3487 }
3488
reg_set_rd_core(const struct ieee80211_regdomain * rd)3489 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3490 {
3491 if (!is_world_regdom(rd->alpha2))
3492 return -EINVAL;
3493 update_world_regdomain(rd);
3494 return 0;
3495 }
3496
reg_set_rd_user(const struct ieee80211_regdomain * rd,struct regulatory_request * user_request)3497 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3498 struct regulatory_request *user_request)
3499 {
3500 const struct ieee80211_regdomain *intersected_rd = NULL;
3501
3502 if (!regdom_changes(rd->alpha2))
3503 return -EALREADY;
3504
3505 if (!is_valid_rd(rd)) {
3506 pr_err("Invalid regulatory domain detected: %c%c\n",
3507 rd->alpha2[0], rd->alpha2[1]);
3508 print_regdomain_info(rd);
3509 return -EINVAL;
3510 }
3511
3512 if (!user_request->intersect) {
3513 reset_regdomains(false, rd);
3514 return 0;
3515 }
3516
3517 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3518 if (!intersected_rd)
3519 return -EINVAL;
3520
3521 kfree(rd);
3522 rd = NULL;
3523 reset_regdomains(false, intersected_rd);
3524
3525 return 0;
3526 }
3527
reg_set_rd_driver(const struct ieee80211_regdomain * rd,struct regulatory_request * driver_request)3528 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3529 struct regulatory_request *driver_request)
3530 {
3531 const struct ieee80211_regdomain *regd;
3532 const struct ieee80211_regdomain *intersected_rd = NULL;
3533 const struct ieee80211_regdomain *tmp;
3534 struct wiphy *request_wiphy;
3535
3536 if (is_world_regdom(rd->alpha2))
3537 return -EINVAL;
3538
3539 if (!regdom_changes(rd->alpha2))
3540 return -EALREADY;
3541
3542 if (!is_valid_rd(rd)) {
3543 pr_err("Invalid regulatory domain detected: %c%c\n",
3544 rd->alpha2[0], rd->alpha2[1]);
3545 print_regdomain_info(rd);
3546 return -EINVAL;
3547 }
3548
3549 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3550 if (!request_wiphy)
3551 return -ENODEV;
3552
3553 if (!driver_request->intersect) {
3554 if (request_wiphy->regd)
3555 return -EALREADY;
3556
3557 regd = reg_copy_regd(rd);
3558 if (IS_ERR(regd))
3559 return PTR_ERR(regd);
3560
3561 rcu_assign_pointer(request_wiphy->regd, regd);
3562 reset_regdomains(false, rd);
3563 return 0;
3564 }
3565
3566 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3567 if (!intersected_rd)
3568 return -EINVAL;
3569
3570 /*
3571 * We can trash what CRDA provided now.
3572 * However if a driver requested this specific regulatory
3573 * domain we keep it for its private use
3574 */
3575 tmp = get_wiphy_regdom(request_wiphy);
3576 rcu_assign_pointer(request_wiphy->regd, rd);
3577 rcu_free_regdom(tmp);
3578
3579 rd = NULL;
3580
3581 reset_regdomains(false, intersected_rd);
3582
3583 return 0;
3584 }
3585
reg_set_rd_country_ie(const struct ieee80211_regdomain * rd,struct regulatory_request * country_ie_request)3586 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3587 struct regulatory_request *country_ie_request)
3588 {
3589 struct wiphy *request_wiphy;
3590
3591 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3592 !is_unknown_alpha2(rd->alpha2))
3593 return -EINVAL;
3594
3595 /*
3596 * Lets only bother proceeding on the same alpha2 if the current
3597 * rd is non static (it means CRDA was present and was used last)
3598 * and the pending request came in from a country IE
3599 */
3600
3601 if (!is_valid_rd(rd)) {
3602 pr_err("Invalid regulatory domain detected: %c%c\n",
3603 rd->alpha2[0], rd->alpha2[1]);
3604 print_regdomain_info(rd);
3605 return -EINVAL;
3606 }
3607
3608 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3609 if (!request_wiphy)
3610 return -ENODEV;
3611
3612 if (country_ie_request->intersect)
3613 return -EINVAL;
3614
3615 reset_regdomains(false, rd);
3616 return 0;
3617 }
3618
3619 /*
3620 * Use this call to set the current regulatory domain. Conflicts with
3621 * multiple drivers can be ironed out later. Caller must've already
3622 * kmalloc'd the rd structure.
3623 */
set_regdom(const struct ieee80211_regdomain * rd,enum ieee80211_regd_source regd_src)3624 int set_regdom(const struct ieee80211_regdomain *rd,
3625 enum ieee80211_regd_source regd_src)
3626 {
3627 struct regulatory_request *lr;
3628 bool user_reset = false;
3629 int r;
3630
3631 if (IS_ERR_OR_NULL(rd))
3632 return -ENODATA;
3633
3634 if (!reg_is_valid_request(rd->alpha2)) {
3635 kfree(rd);
3636 return -EINVAL;
3637 }
3638
3639 if (regd_src == REGD_SOURCE_CRDA)
3640 reset_crda_timeouts();
3641
3642 lr = get_last_request();
3643
3644 /* Note that this doesn't update the wiphys, this is done below */
3645 switch (lr->initiator) {
3646 case NL80211_REGDOM_SET_BY_CORE:
3647 r = reg_set_rd_core(rd);
3648 break;
3649 case NL80211_REGDOM_SET_BY_USER:
3650 cfg80211_save_user_regdom(rd);
3651 r = reg_set_rd_user(rd, lr);
3652 user_reset = true;
3653 break;
3654 case NL80211_REGDOM_SET_BY_DRIVER:
3655 r = reg_set_rd_driver(rd, lr);
3656 break;
3657 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3658 r = reg_set_rd_country_ie(rd, lr);
3659 break;
3660 default:
3661 WARN(1, "invalid initiator %d\n", lr->initiator);
3662 kfree(rd);
3663 return -EINVAL;
3664 }
3665
3666 if (r) {
3667 switch (r) {
3668 case -EALREADY:
3669 reg_set_request_processed();
3670 break;
3671 default:
3672 /* Back to world regulatory in case of errors */
3673 restore_regulatory_settings(user_reset, false);
3674 }
3675
3676 kfree(rd);
3677 return r;
3678 }
3679
3680 /* This would make this whole thing pointless */
3681 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3682 return -EINVAL;
3683
3684 /* update all wiphys now with the new established regulatory domain */
3685 update_all_wiphy_regulatory(lr->initiator);
3686
3687 print_regdomain(get_cfg80211_regdom());
3688
3689 nl80211_send_reg_change_event(lr);
3690
3691 reg_set_request_processed();
3692
3693 return 0;
3694 }
3695
__regulatory_set_wiphy_regd(struct wiphy * wiphy,struct ieee80211_regdomain * rd)3696 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3697 struct ieee80211_regdomain *rd)
3698 {
3699 const struct ieee80211_regdomain *regd;
3700 const struct ieee80211_regdomain *prev_regd;
3701 struct cfg80211_registered_device *rdev;
3702
3703 if (WARN_ON(!wiphy || !rd))
3704 return -EINVAL;
3705
3706 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3707 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3708 return -EPERM;
3709
3710 if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
3711 print_regdomain_info(rd);
3712 return -EINVAL;
3713 }
3714
3715 regd = reg_copy_regd(rd);
3716 if (IS_ERR(regd))
3717 return PTR_ERR(regd);
3718
3719 rdev = wiphy_to_rdev(wiphy);
3720
3721 spin_lock(®_requests_lock);
3722 prev_regd = rdev->requested_regd;
3723 rdev->requested_regd = regd;
3724 spin_unlock(®_requests_lock);
3725
3726 kfree(prev_regd);
3727 return 0;
3728 }
3729
regulatory_set_wiphy_regd(struct wiphy * wiphy,struct ieee80211_regdomain * rd)3730 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3731 struct ieee80211_regdomain *rd)
3732 {
3733 int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3734
3735 if (ret)
3736 return ret;
3737
3738 schedule_work(®_work);
3739 return 0;
3740 }
3741 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3742
regulatory_set_wiphy_regd_sync_rtnl(struct wiphy * wiphy,struct ieee80211_regdomain * rd)3743 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3744 struct ieee80211_regdomain *rd)
3745 {
3746 int ret;
3747
3748 ASSERT_RTNL();
3749
3750 ret = __regulatory_set_wiphy_regd(wiphy, rd);
3751 if (ret)
3752 return ret;
3753
3754 /* process the request immediately */
3755 reg_process_self_managed_hints();
3756 return 0;
3757 }
3758 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3759
wiphy_regulatory_register(struct wiphy * wiphy)3760 void wiphy_regulatory_register(struct wiphy *wiphy)
3761 {
3762 struct regulatory_request *lr = get_last_request();
3763
3764 /* self-managed devices ignore beacon hints and country IE */
3765 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
3766 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3767 REGULATORY_COUNTRY_IE_IGNORE;
3768
3769 /*
3770 * The last request may have been received before this
3771 * registration call. Call the driver notifier if
3772 * initiator is USER.
3773 */
3774 if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
3775 reg_call_notifier(wiphy, lr);
3776 }
3777
3778 if (!reg_dev_ignore_cell_hint(wiphy))
3779 reg_num_devs_support_basehint++;
3780
3781 wiphy_update_regulatory(wiphy, lr->initiator);
3782 wiphy_all_share_dfs_chan_state(wiphy);
3783 }
3784
wiphy_regulatory_deregister(struct wiphy * wiphy)3785 void wiphy_regulatory_deregister(struct wiphy *wiphy)
3786 {
3787 struct wiphy *request_wiphy = NULL;
3788 struct regulatory_request *lr;
3789
3790 lr = get_last_request();
3791
3792 if (!reg_dev_ignore_cell_hint(wiphy))
3793 reg_num_devs_support_basehint--;
3794
3795 rcu_free_regdom(get_wiphy_regdom(wiphy));
3796 RCU_INIT_POINTER(wiphy->regd, NULL);
3797
3798 if (lr)
3799 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
3800
3801 if (!request_wiphy || request_wiphy != wiphy)
3802 return;
3803
3804 lr->wiphy_idx = WIPHY_IDX_INVALID;
3805 lr->country_ie_env = ENVIRON_ANY;
3806 }
3807
3808 /*
3809 * See FCC notices for UNII band definitions
3810 * 5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
3811 * 6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
3812 */
cfg80211_get_unii(int freq)3813 int cfg80211_get_unii(int freq)
3814 {
3815 /* UNII-1 */
3816 if (freq >= 5150 && freq <= 5250)
3817 return 0;
3818
3819 /* UNII-2A */
3820 if (freq > 5250 && freq <= 5350)
3821 return 1;
3822
3823 /* UNII-2B */
3824 if (freq > 5350 && freq <= 5470)
3825 return 2;
3826
3827 /* UNII-2C */
3828 if (freq > 5470 && freq <= 5725)
3829 return 3;
3830
3831 /* UNII-3 */
3832 if (freq > 5725 && freq <= 5825)
3833 return 4;
3834
3835 /* UNII-5 */
3836 if (freq > 5925 && freq <= 6425)
3837 return 5;
3838
3839 /* UNII-6 */
3840 if (freq > 6425 && freq <= 6525)
3841 return 6;
3842
3843 /* UNII-7 */
3844 if (freq > 6525 && freq <= 6875)
3845 return 7;
3846
3847 /* UNII-8 */
3848 if (freq > 6875 && freq <= 7125)
3849 return 8;
3850
3851 return -EINVAL;
3852 }
3853
regulatory_indoor_allowed(void)3854 bool regulatory_indoor_allowed(void)
3855 {
3856 return reg_is_indoor;
3857 }
3858
regulatory_pre_cac_allowed(struct wiphy * wiphy)3859 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
3860 {
3861 const struct ieee80211_regdomain *regd = NULL;
3862 const struct ieee80211_regdomain *wiphy_regd = NULL;
3863 bool pre_cac_allowed = false;
3864
3865 rcu_read_lock();
3866
3867 regd = rcu_dereference(cfg80211_regdomain);
3868 wiphy_regd = rcu_dereference(wiphy->regd);
3869 if (!wiphy_regd) {
3870 if (regd->dfs_region == NL80211_DFS_ETSI)
3871 pre_cac_allowed = true;
3872
3873 rcu_read_unlock();
3874
3875 return pre_cac_allowed;
3876 }
3877
3878 if (regd->dfs_region == wiphy_regd->dfs_region &&
3879 wiphy_regd->dfs_region == NL80211_DFS_ETSI)
3880 pre_cac_allowed = true;
3881
3882 rcu_read_unlock();
3883
3884 return pre_cac_allowed;
3885 }
3886 EXPORT_SYMBOL(regulatory_pre_cac_allowed);
3887
regulatory_propagate_dfs_state(struct wiphy * wiphy,struct cfg80211_chan_def * chandef,enum nl80211_dfs_state dfs_state,enum nl80211_radar_event event)3888 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
3889 struct cfg80211_chan_def *chandef,
3890 enum nl80211_dfs_state dfs_state,
3891 enum nl80211_radar_event event)
3892 {
3893 struct cfg80211_registered_device *rdev;
3894
3895 ASSERT_RTNL();
3896
3897 if (WARN_ON(!cfg80211_chandef_valid(chandef)))
3898 return;
3899
3900 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3901 if (wiphy == &rdev->wiphy)
3902 continue;
3903
3904 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
3905 continue;
3906
3907 if (!ieee80211_get_channel(&rdev->wiphy,
3908 chandef->chan->center_freq))
3909 continue;
3910
3911 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
3912
3913 if (event == NL80211_RADAR_DETECTED ||
3914 event == NL80211_RADAR_CAC_FINISHED)
3915 cfg80211_sched_dfs_chan_update(rdev);
3916
3917 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
3918 }
3919 }
3920
regulatory_init_db(void)3921 static int __init regulatory_init_db(void)
3922 {
3923 int err;
3924
3925 /*
3926 * It's possible that - due to other bugs/issues - cfg80211
3927 * never called regulatory_init() below, or that it failed;
3928 * in that case, don't try to do any further work here as
3929 * it's doomed to lead to crashes.
3930 */
3931 if (IS_ERR_OR_NULL(reg_pdev))
3932 return -EINVAL;
3933
3934 err = load_builtin_regdb_keys();
3935 if (err)
3936 return err;
3937
3938 /* We always try to get an update for the static regdomain */
3939 err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
3940 if (err) {
3941 if (err == -ENOMEM) {
3942 platform_device_unregister(reg_pdev);
3943 return err;
3944 }
3945 /*
3946 * N.B. kobject_uevent_env() can fail mainly for when we're out
3947 * memory which is handled and propagated appropriately above
3948 * but it can also fail during a netlink_broadcast() or during
3949 * early boot for call_usermodehelper(). For now treat these
3950 * errors as non-fatal.
3951 */
3952 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3953 }
3954
3955 /*
3956 * Finally, if the user set the module parameter treat it
3957 * as a user hint.
3958 */
3959 if (!is_world_regdom(ieee80211_regdom))
3960 regulatory_hint_user(ieee80211_regdom,
3961 NL80211_USER_REG_HINT_USER);
3962
3963 return 0;
3964 }
3965 #ifndef MODULE
3966 late_initcall(regulatory_init_db);
3967 #endif
3968
regulatory_init(void)3969 int __init regulatory_init(void)
3970 {
3971 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
3972 if (IS_ERR(reg_pdev))
3973 return PTR_ERR(reg_pdev);
3974
3975 spin_lock_init(®_requests_lock);
3976 spin_lock_init(®_pending_beacons_lock);
3977 spin_lock_init(®_indoor_lock);
3978
3979 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
3980
3981 user_alpha2[0] = '9';
3982 user_alpha2[1] = '7';
3983
3984 #ifdef MODULE
3985 return regulatory_init_db();
3986 #else
3987 return 0;
3988 #endif
3989 }
3990
regulatory_exit(void)3991 void regulatory_exit(void)
3992 {
3993 struct regulatory_request *reg_request, *tmp;
3994 struct reg_beacon *reg_beacon, *btmp;
3995
3996 cancel_work_sync(®_work);
3997 cancel_crda_timeout_sync();
3998 cancel_delayed_work_sync(®_check_chans);
3999
4000 /* Lock to suppress warnings */
4001 rtnl_lock();
4002 reset_regdomains(true, NULL);
4003 rtnl_unlock();
4004
4005 dev_set_uevent_suppress(®_pdev->dev, true);
4006
4007 platform_device_unregister(reg_pdev);
4008
4009 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) {
4010 list_del(®_beacon->list);
4011 kfree(reg_beacon);
4012 }
4013
4014 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) {
4015 list_del(®_beacon->list);
4016 kfree(reg_beacon);
4017 }
4018
4019 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) {
4020 list_del(®_request->list);
4021 kfree(reg_request);
4022 }
4023
4024 if (!IS_ERR_OR_NULL(regdb))
4025 kfree(regdb);
4026 if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4027 kfree(cfg80211_user_regdom);
4028
4029 free_regdb_keyring();
4030 }
4031