1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Resource Director Technology (RDT)
4  *
5  * Pseudo-locking support built on top of Cache Allocation Technology (CAT)
6  *
7  * Copyright (C) 2018 Intel Corporation
8  *
9  * Author: Reinette Chatre <reinette.chatre@intel.com>
10  */
11 
12 #define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt
13 
14 #include <linux/cacheinfo.h>
15 #include <linux/cpu.h>
16 #include <linux/cpumask.h>
17 #include <linux/debugfs.h>
18 #include <linux/kthread.h>
19 #include <linux/mman.h>
20 #include <linux/pm_qos.h>
21 #include <linux/slab.h>
22 #include <linux/uaccess.h>
23 
24 #include <asm/cacheflush.h>
25 #include <asm/intel-family.h>
26 #include <asm/intel_rdt_sched.h>
27 #include <asm/perf_event.h>
28 
29 #include "intel_rdt.h"
30 
31 #define CREATE_TRACE_POINTS
32 #include "intel_rdt_pseudo_lock_event.h"
33 
34 /*
35  * MSR_MISC_FEATURE_CONTROL register enables the modification of hardware
36  * prefetcher state. Details about this register can be found in the MSR
37  * tables for specific platforms found in Intel's SDM.
38  */
39 #define MSR_MISC_FEATURE_CONTROL	0x000001a4
40 
41 /*
42  * The bits needed to disable hardware prefetching varies based on the
43  * platform. During initialization we will discover which bits to use.
44  */
45 static u64 prefetch_disable_bits;
46 
47 /*
48  * Major number assigned to and shared by all devices exposing
49  * pseudo-locked regions.
50  */
51 static unsigned int pseudo_lock_major;
52 static unsigned long pseudo_lock_minor_avail = GENMASK(MINORBITS, 0);
53 static struct class *pseudo_lock_class;
54 
55 /**
56  * get_prefetch_disable_bits - prefetch disable bits of supported platforms
57  *
58  * Capture the list of platforms that have been validated to support
59  * pseudo-locking. This includes testing to ensure pseudo-locked regions
60  * with low cache miss rates can be created under variety of load conditions
61  * as well as that these pseudo-locked regions can maintain their low cache
62  * miss rates under variety of load conditions for significant lengths of time.
63  *
64  * After a platform has been validated to support pseudo-locking its
65  * hardware prefetch disable bits are included here as they are documented
66  * in the SDM.
67  *
68  * When adding a platform here also add support for its cache events to
69  * measure_cycles_perf_fn()
70  *
71  * Return:
72  * If platform is supported, the bits to disable hardware prefetchers, 0
73  * if platform is not supported.
74  */
get_prefetch_disable_bits(void)75 static u64 get_prefetch_disable_bits(void)
76 {
77 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL ||
78 	    boot_cpu_data.x86 != 6)
79 		return 0;
80 
81 	switch (boot_cpu_data.x86_model) {
82 	case INTEL_FAM6_BROADWELL_X:
83 		/*
84 		 * SDM defines bits of MSR_MISC_FEATURE_CONTROL register
85 		 * as:
86 		 * 0    L2 Hardware Prefetcher Disable (R/W)
87 		 * 1    L2 Adjacent Cache Line Prefetcher Disable (R/W)
88 		 * 2    DCU Hardware Prefetcher Disable (R/W)
89 		 * 3    DCU IP Prefetcher Disable (R/W)
90 		 * 63:4 Reserved
91 		 */
92 		return 0xF;
93 	case INTEL_FAM6_ATOM_GOLDMONT:
94 	case INTEL_FAM6_ATOM_GEMINI_LAKE:
95 		/*
96 		 * SDM defines bits of MSR_MISC_FEATURE_CONTROL register
97 		 * as:
98 		 * 0     L2 Hardware Prefetcher Disable (R/W)
99 		 * 1     Reserved
100 		 * 2     DCU Hardware Prefetcher Disable (R/W)
101 		 * 63:3  Reserved
102 		 */
103 		return 0x5;
104 	}
105 
106 	return 0;
107 }
108 
109 /*
110  * Helper to write 64bit value to MSR without tracing. Used when
111  * use of the cache should be restricted and use of registers used
112  * for local variables avoided.
113  */
pseudo_wrmsrl_notrace(unsigned int msr,u64 val)114 static inline void pseudo_wrmsrl_notrace(unsigned int msr, u64 val)
115 {
116 	__wrmsr(msr, (u32)(val & 0xffffffffULL), (u32)(val >> 32));
117 }
118 
119 /**
120  * pseudo_lock_minor_get - Obtain available minor number
121  * @minor: Pointer to where new minor number will be stored
122  *
123  * A bitmask is used to track available minor numbers. Here the next free
124  * minor number is marked as unavailable and returned.
125  *
126  * Return: 0 on success, <0 on failure.
127  */
pseudo_lock_minor_get(unsigned int * minor)128 static int pseudo_lock_minor_get(unsigned int *minor)
129 {
130 	unsigned long first_bit;
131 
132 	first_bit = find_first_bit(&pseudo_lock_minor_avail, MINORBITS);
133 
134 	if (first_bit == MINORBITS)
135 		return -ENOSPC;
136 
137 	__clear_bit(first_bit, &pseudo_lock_minor_avail);
138 	*minor = first_bit;
139 
140 	return 0;
141 }
142 
143 /**
144  * pseudo_lock_minor_release - Return minor number to available
145  * @minor: The minor number made available
146  */
pseudo_lock_minor_release(unsigned int minor)147 static void pseudo_lock_minor_release(unsigned int minor)
148 {
149 	__set_bit(minor, &pseudo_lock_minor_avail);
150 }
151 
152 /**
153  * region_find_by_minor - Locate a pseudo-lock region by inode minor number
154  * @minor: The minor number of the device representing pseudo-locked region
155  *
156  * When the character device is accessed we need to determine which
157  * pseudo-locked region it belongs to. This is done by matching the minor
158  * number of the device to the pseudo-locked region it belongs.
159  *
160  * Minor numbers are assigned at the time a pseudo-locked region is associated
161  * with a cache instance.
162  *
163  * Return: On success return pointer to resource group owning the pseudo-locked
164  *         region, NULL on failure.
165  */
region_find_by_minor(unsigned int minor)166 static struct rdtgroup *region_find_by_minor(unsigned int minor)
167 {
168 	struct rdtgroup *rdtgrp, *rdtgrp_match = NULL;
169 
170 	list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
171 		if (rdtgrp->plr && rdtgrp->plr->minor == minor) {
172 			rdtgrp_match = rdtgrp;
173 			break;
174 		}
175 	}
176 	return rdtgrp_match;
177 }
178 
179 /**
180  * pseudo_lock_pm_req - A power management QoS request list entry
181  * @list:	Entry within the @pm_reqs list for a pseudo-locked region
182  * @req:	PM QoS request
183  */
184 struct pseudo_lock_pm_req {
185 	struct list_head list;
186 	struct dev_pm_qos_request req;
187 };
188 
pseudo_lock_cstates_relax(struct pseudo_lock_region * plr)189 static void pseudo_lock_cstates_relax(struct pseudo_lock_region *plr)
190 {
191 	struct pseudo_lock_pm_req *pm_req, *next;
192 
193 	list_for_each_entry_safe(pm_req, next, &plr->pm_reqs, list) {
194 		dev_pm_qos_remove_request(&pm_req->req);
195 		list_del(&pm_req->list);
196 		kfree(pm_req);
197 	}
198 }
199 
200 /**
201  * pseudo_lock_cstates_constrain - Restrict cores from entering C6
202  *
203  * To prevent the cache from being affected by power management entering
204  * C6 has to be avoided. This is accomplished by requesting a latency
205  * requirement lower than lowest C6 exit latency of all supported
206  * platforms as found in the cpuidle state tables in the intel_idle driver.
207  * At this time it is possible to do so with a single latency requirement
208  * for all supported platforms.
209  *
210  * Since Goldmont is supported, which is affected by X86_BUG_MONITOR,
211  * the ACPI latencies need to be considered while keeping in mind that C2
212  * may be set to map to deeper sleep states. In this case the latency
213  * requirement needs to prevent entering C2 also.
214  */
pseudo_lock_cstates_constrain(struct pseudo_lock_region * plr)215 static int pseudo_lock_cstates_constrain(struct pseudo_lock_region *plr)
216 {
217 	struct pseudo_lock_pm_req *pm_req;
218 	int cpu;
219 	int ret;
220 
221 	for_each_cpu(cpu, &plr->d->cpu_mask) {
222 		pm_req = kzalloc(sizeof(*pm_req), GFP_KERNEL);
223 		if (!pm_req) {
224 			rdt_last_cmd_puts("fail allocating mem for PM QoS\n");
225 			ret = -ENOMEM;
226 			goto out_err;
227 		}
228 		ret = dev_pm_qos_add_request(get_cpu_device(cpu),
229 					     &pm_req->req,
230 					     DEV_PM_QOS_RESUME_LATENCY,
231 					     30);
232 		if (ret < 0) {
233 			rdt_last_cmd_printf("fail to add latency req cpu%d\n",
234 					    cpu);
235 			kfree(pm_req);
236 			ret = -1;
237 			goto out_err;
238 		}
239 		list_add(&pm_req->list, &plr->pm_reqs);
240 	}
241 
242 	return 0;
243 
244 out_err:
245 	pseudo_lock_cstates_relax(plr);
246 	return ret;
247 }
248 
249 /**
250  * pseudo_lock_region_clear - Reset pseudo-lock region data
251  * @plr: pseudo-lock region
252  *
253  * All content of the pseudo-locked region is reset - any memory allocated
254  * freed.
255  *
256  * Return: void
257  */
pseudo_lock_region_clear(struct pseudo_lock_region * plr)258 static void pseudo_lock_region_clear(struct pseudo_lock_region *plr)
259 {
260 	plr->size = 0;
261 	plr->line_size = 0;
262 	kfree(plr->kmem);
263 	plr->kmem = NULL;
264 	plr->r = NULL;
265 	if (plr->d)
266 		plr->d->plr = NULL;
267 	plr->d = NULL;
268 	plr->cbm = 0;
269 	plr->debugfs_dir = NULL;
270 }
271 
272 /**
273  * pseudo_lock_region_init - Initialize pseudo-lock region information
274  * @plr: pseudo-lock region
275  *
276  * Called after user provided a schemata to be pseudo-locked. From the
277  * schemata the &struct pseudo_lock_region is on entry already initialized
278  * with the resource, domain, and capacity bitmask. Here the information
279  * required for pseudo-locking is deduced from this data and &struct
280  * pseudo_lock_region initialized further. This information includes:
281  * - size in bytes of the region to be pseudo-locked
282  * - cache line size to know the stride with which data needs to be accessed
283  *   to be pseudo-locked
284  * - a cpu associated with the cache instance on which the pseudo-locking
285  *   flow can be executed
286  *
287  * Return: 0 on success, <0 on failure. Descriptive error will be written
288  * to last_cmd_status buffer.
289  */
pseudo_lock_region_init(struct pseudo_lock_region * plr)290 static int pseudo_lock_region_init(struct pseudo_lock_region *plr)
291 {
292 	struct cpu_cacheinfo *ci;
293 	int ret;
294 	int i;
295 
296 	/* Pick the first cpu we find that is associated with the cache. */
297 	plr->cpu = cpumask_first(&plr->d->cpu_mask);
298 
299 	if (!cpu_online(plr->cpu)) {
300 		rdt_last_cmd_printf("cpu %u associated with cache not online\n",
301 				    plr->cpu);
302 		ret = -ENODEV;
303 		goto out_region;
304 	}
305 
306 	ci = get_cpu_cacheinfo(plr->cpu);
307 
308 	plr->size = rdtgroup_cbm_to_size(plr->r, plr->d, plr->cbm);
309 
310 	for (i = 0; i < ci->num_leaves; i++) {
311 		if (ci->info_list[i].level == plr->r->cache_level) {
312 			plr->line_size = ci->info_list[i].coherency_line_size;
313 			return 0;
314 		}
315 	}
316 
317 	ret = -1;
318 	rdt_last_cmd_puts("unable to determine cache line size\n");
319 out_region:
320 	pseudo_lock_region_clear(plr);
321 	return ret;
322 }
323 
324 /**
325  * pseudo_lock_init - Initialize a pseudo-lock region
326  * @rdtgrp: resource group to which new pseudo-locked region will belong
327  *
328  * A pseudo-locked region is associated with a resource group. When this
329  * association is created the pseudo-locked region is initialized. The
330  * details of the pseudo-locked region are not known at this time so only
331  * allocation is done and association established.
332  *
333  * Return: 0 on success, <0 on failure
334  */
pseudo_lock_init(struct rdtgroup * rdtgrp)335 static int pseudo_lock_init(struct rdtgroup *rdtgrp)
336 {
337 	struct pseudo_lock_region *plr;
338 
339 	plr = kzalloc(sizeof(*plr), GFP_KERNEL);
340 	if (!plr)
341 		return -ENOMEM;
342 
343 	init_waitqueue_head(&plr->lock_thread_wq);
344 	INIT_LIST_HEAD(&plr->pm_reqs);
345 	rdtgrp->plr = plr;
346 	return 0;
347 }
348 
349 /**
350  * pseudo_lock_region_alloc - Allocate kernel memory that will be pseudo-locked
351  * @plr: pseudo-lock region
352  *
353  * Initialize the details required to set up the pseudo-locked region and
354  * allocate the contiguous memory that will be pseudo-locked to the cache.
355  *
356  * Return: 0 on success, <0 on failure.  Descriptive error will be written
357  * to last_cmd_status buffer.
358  */
pseudo_lock_region_alloc(struct pseudo_lock_region * plr)359 static int pseudo_lock_region_alloc(struct pseudo_lock_region *plr)
360 {
361 	int ret;
362 
363 	ret = pseudo_lock_region_init(plr);
364 	if (ret < 0)
365 		return ret;
366 
367 	/*
368 	 * We do not yet support contiguous regions larger than
369 	 * KMALLOC_MAX_SIZE.
370 	 */
371 	if (plr->size > KMALLOC_MAX_SIZE) {
372 		rdt_last_cmd_puts("requested region exceeds maximum size\n");
373 		ret = -E2BIG;
374 		goto out_region;
375 	}
376 
377 	plr->kmem = kzalloc(plr->size, GFP_KERNEL);
378 	if (!plr->kmem) {
379 		rdt_last_cmd_puts("unable to allocate memory\n");
380 		ret = -ENOMEM;
381 		goto out_region;
382 	}
383 
384 	ret = 0;
385 	goto out;
386 out_region:
387 	pseudo_lock_region_clear(plr);
388 out:
389 	return ret;
390 }
391 
392 /**
393  * pseudo_lock_free - Free a pseudo-locked region
394  * @rdtgrp: resource group to which pseudo-locked region belonged
395  *
396  * The pseudo-locked region's resources have already been released, or not
397  * yet created at this point. Now it can be freed and disassociated from the
398  * resource group.
399  *
400  * Return: void
401  */
pseudo_lock_free(struct rdtgroup * rdtgrp)402 static void pseudo_lock_free(struct rdtgroup *rdtgrp)
403 {
404 	pseudo_lock_region_clear(rdtgrp->plr);
405 	kfree(rdtgrp->plr);
406 	rdtgrp->plr = NULL;
407 }
408 
409 /**
410  * pseudo_lock_fn - Load kernel memory into cache
411  * @_rdtgrp: resource group to which pseudo-lock region belongs
412  *
413  * This is the core pseudo-locking flow.
414  *
415  * First we ensure that the kernel memory cannot be found in the cache.
416  * Then, while taking care that there will be as little interference as
417  * possible, the memory to be loaded is accessed while core is running
418  * with class of service set to the bitmask of the pseudo-locked region.
419  * After this is complete no future CAT allocations will be allowed to
420  * overlap with this bitmask.
421  *
422  * Local register variables are utilized to ensure that the memory region
423  * to be locked is the only memory access made during the critical locking
424  * loop.
425  *
426  * Return: 0. Waiter on waitqueue will be woken on completion.
427  */
pseudo_lock_fn(void * _rdtgrp)428 static int pseudo_lock_fn(void *_rdtgrp)
429 {
430 	struct rdtgroup *rdtgrp = _rdtgrp;
431 	struct pseudo_lock_region *plr = rdtgrp->plr;
432 	u32 rmid_p, closid_p;
433 	unsigned long i;
434 #ifdef CONFIG_KASAN
435 	/*
436 	 * The registers used for local register variables are also used
437 	 * when KASAN is active. When KASAN is active we use a regular
438 	 * variable to ensure we always use a valid pointer, but the cost
439 	 * is that this variable will enter the cache through evicting the
440 	 * memory we are trying to lock into the cache. Thus expect lower
441 	 * pseudo-locking success rate when KASAN is active.
442 	 */
443 	unsigned int line_size;
444 	unsigned int size;
445 	void *mem_r;
446 #else
447 	register unsigned int line_size asm("esi");
448 	register unsigned int size asm("edi");
449 #ifdef CONFIG_X86_64
450 	register void *mem_r asm("rbx");
451 #else
452 	register void *mem_r asm("ebx");
453 #endif /* CONFIG_X86_64 */
454 #endif /* CONFIG_KASAN */
455 
456 	/*
457 	 * Make sure none of the allocated memory is cached. If it is we
458 	 * will get a cache hit in below loop from outside of pseudo-locked
459 	 * region.
460 	 * wbinvd (as opposed to clflush/clflushopt) is required to
461 	 * increase likelihood that allocated cache portion will be filled
462 	 * with associated memory.
463 	 */
464 	native_wbinvd();
465 
466 	/*
467 	 * Always called with interrupts enabled. By disabling interrupts
468 	 * ensure that we will not be preempted during this critical section.
469 	 */
470 	local_irq_disable();
471 
472 	/*
473 	 * Call wrmsr and rdmsr as directly as possible to avoid tracing
474 	 * clobbering local register variables or affecting cache accesses.
475 	 *
476 	 * Disable the hardware prefetcher so that when the end of the memory
477 	 * being pseudo-locked is reached the hardware will not read beyond
478 	 * the buffer and evict pseudo-locked memory read earlier from the
479 	 * cache.
480 	 */
481 	__wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0);
482 	closid_p = this_cpu_read(pqr_state.cur_closid);
483 	rmid_p = this_cpu_read(pqr_state.cur_rmid);
484 	mem_r = plr->kmem;
485 	size = plr->size;
486 	line_size = plr->line_size;
487 	/*
488 	 * Critical section begin: start by writing the closid associated
489 	 * with the capacity bitmask of the cache region being
490 	 * pseudo-locked followed by reading of kernel memory to load it
491 	 * into the cache.
492 	 */
493 	__wrmsr(IA32_PQR_ASSOC, rmid_p, rdtgrp->closid);
494 	/*
495 	 * Cache was flushed earlier. Now access kernel memory to read it
496 	 * into cache region associated with just activated plr->closid.
497 	 * Loop over data twice:
498 	 * - In first loop the cache region is shared with the page walker
499 	 *   as it populates the paging structure caches (including TLB).
500 	 * - In the second loop the paging structure caches are used and
501 	 *   cache region is populated with the memory being referenced.
502 	 */
503 	for (i = 0; i < size; i += PAGE_SIZE) {
504 		/*
505 		 * Add a barrier to prevent speculative execution of this
506 		 * loop reading beyond the end of the buffer.
507 		 */
508 		rmb();
509 		asm volatile("mov (%0,%1,1), %%eax\n\t"
510 			:
511 			: "r" (mem_r), "r" (i)
512 			: "%eax", "memory");
513 	}
514 	for (i = 0; i < size; i += line_size) {
515 		/*
516 		 * Add a barrier to prevent speculative execution of this
517 		 * loop reading beyond the end of the buffer.
518 		 */
519 		rmb();
520 		asm volatile("mov (%0,%1,1), %%eax\n\t"
521 			:
522 			: "r" (mem_r), "r" (i)
523 			: "%eax", "memory");
524 	}
525 	/*
526 	 * Critical section end: restore closid with capacity bitmask that
527 	 * does not overlap with pseudo-locked region.
528 	 */
529 	__wrmsr(IA32_PQR_ASSOC, rmid_p, closid_p);
530 
531 	/* Re-enable the hardware prefetcher(s) */
532 	wrmsr(MSR_MISC_FEATURE_CONTROL, 0x0, 0x0);
533 	local_irq_enable();
534 
535 	plr->thread_done = 1;
536 	wake_up_interruptible(&plr->lock_thread_wq);
537 	return 0;
538 }
539 
540 /**
541  * rdtgroup_monitor_in_progress - Test if monitoring in progress
542  * @r: resource group being queried
543  *
544  * Return: 1 if monitor groups have been created for this resource
545  * group, 0 otherwise.
546  */
rdtgroup_monitor_in_progress(struct rdtgroup * rdtgrp)547 static int rdtgroup_monitor_in_progress(struct rdtgroup *rdtgrp)
548 {
549 	return !list_empty(&rdtgrp->mon.crdtgrp_list);
550 }
551 
552 /**
553  * rdtgroup_locksetup_user_restrict - Restrict user access to group
554  * @rdtgrp: resource group needing access restricted
555  *
556  * A resource group used for cache pseudo-locking cannot have cpus or tasks
557  * assigned to it. This is communicated to the user by restricting access
558  * to all the files that can be used to make such changes.
559  *
560  * Permissions restored with rdtgroup_locksetup_user_restore()
561  *
562  * Return: 0 on success, <0 on failure. If a failure occurs during the
563  * restriction of access an attempt will be made to restore permissions but
564  * the state of the mode of these files will be uncertain when a failure
565  * occurs.
566  */
rdtgroup_locksetup_user_restrict(struct rdtgroup * rdtgrp)567 static int rdtgroup_locksetup_user_restrict(struct rdtgroup *rdtgrp)
568 {
569 	int ret;
570 
571 	ret = rdtgroup_kn_mode_restrict(rdtgrp, "tasks");
572 	if (ret)
573 		return ret;
574 
575 	ret = rdtgroup_kn_mode_restrict(rdtgrp, "cpus");
576 	if (ret)
577 		goto err_tasks;
578 
579 	ret = rdtgroup_kn_mode_restrict(rdtgrp, "cpus_list");
580 	if (ret)
581 		goto err_cpus;
582 
583 	if (rdt_mon_capable) {
584 		ret = rdtgroup_kn_mode_restrict(rdtgrp, "mon_groups");
585 		if (ret)
586 			goto err_cpus_list;
587 	}
588 
589 	ret = 0;
590 	goto out;
591 
592 err_cpus_list:
593 	rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0777);
594 err_cpus:
595 	rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0777);
596 err_tasks:
597 	rdtgroup_kn_mode_restore(rdtgrp, "tasks", 0777);
598 out:
599 	return ret;
600 }
601 
602 /**
603  * rdtgroup_locksetup_user_restore - Restore user access to group
604  * @rdtgrp: resource group needing access restored
605  *
606  * Restore all file access previously removed using
607  * rdtgroup_locksetup_user_restrict()
608  *
609  * Return: 0 on success, <0 on failure.  If a failure occurs during the
610  * restoration of access an attempt will be made to restrict permissions
611  * again but the state of the mode of these files will be uncertain when
612  * a failure occurs.
613  */
rdtgroup_locksetup_user_restore(struct rdtgroup * rdtgrp)614 static int rdtgroup_locksetup_user_restore(struct rdtgroup *rdtgrp)
615 {
616 	int ret;
617 
618 	ret = rdtgroup_kn_mode_restore(rdtgrp, "tasks", 0777);
619 	if (ret)
620 		return ret;
621 
622 	ret = rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0777);
623 	if (ret)
624 		goto err_tasks;
625 
626 	ret = rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0777);
627 	if (ret)
628 		goto err_cpus;
629 
630 	if (rdt_mon_capable) {
631 		ret = rdtgroup_kn_mode_restore(rdtgrp, "mon_groups", 0777);
632 		if (ret)
633 			goto err_cpus_list;
634 	}
635 
636 	ret = 0;
637 	goto out;
638 
639 err_cpus_list:
640 	rdtgroup_kn_mode_restrict(rdtgrp, "cpus_list");
641 err_cpus:
642 	rdtgroup_kn_mode_restrict(rdtgrp, "cpus");
643 err_tasks:
644 	rdtgroup_kn_mode_restrict(rdtgrp, "tasks");
645 out:
646 	return ret;
647 }
648 
649 /**
650  * rdtgroup_locksetup_enter - Resource group enters locksetup mode
651  * @rdtgrp: resource group requested to enter locksetup mode
652  *
653  * A resource group enters locksetup mode to reflect that it would be used
654  * to represent a pseudo-locked region and is in the process of being set
655  * up to do so. A resource group used for a pseudo-locked region would
656  * lose the closid associated with it so we cannot allow it to have any
657  * tasks or cpus assigned nor permit tasks or cpus to be assigned in the
658  * future. Monitoring of a pseudo-locked region is not allowed either.
659  *
660  * The above and more restrictions on a pseudo-locked region are checked
661  * for and enforced before the resource group enters the locksetup mode.
662  *
663  * Returns: 0 if the resource group successfully entered locksetup mode, <0
664  * on failure. On failure the last_cmd_status buffer is updated with text to
665  * communicate details of failure to the user.
666  */
rdtgroup_locksetup_enter(struct rdtgroup * rdtgrp)667 int rdtgroup_locksetup_enter(struct rdtgroup *rdtgrp)
668 {
669 	int ret;
670 
671 	/*
672 	 * The default resource group can neither be removed nor lose the
673 	 * default closid associated with it.
674 	 */
675 	if (rdtgrp == &rdtgroup_default) {
676 		rdt_last_cmd_puts("cannot pseudo-lock default group\n");
677 		return -EINVAL;
678 	}
679 
680 	/*
681 	 * Cache Pseudo-locking not supported when CDP is enabled.
682 	 *
683 	 * Some things to consider if you would like to enable this
684 	 * support (using L3 CDP as example):
685 	 * - When CDP is enabled two separate resources are exposed,
686 	 *   L3DATA and L3CODE, but they are actually on the same cache.
687 	 *   The implication for pseudo-locking is that if a
688 	 *   pseudo-locked region is created on a domain of one
689 	 *   resource (eg. L3CODE), then a pseudo-locked region cannot
690 	 *   be created on that same domain of the other resource
691 	 *   (eg. L3DATA). This is because the creation of a
692 	 *   pseudo-locked region involves a call to wbinvd that will
693 	 *   affect all cache allocations on particular domain.
694 	 * - Considering the previous, it may be possible to only
695 	 *   expose one of the CDP resources to pseudo-locking and
696 	 *   hide the other. For example, we could consider to only
697 	 *   expose L3DATA and since the L3 cache is unified it is
698 	 *   still possible to place instructions there are execute it.
699 	 * - If only one region is exposed to pseudo-locking we should
700 	 *   still keep in mind that availability of a portion of cache
701 	 *   for pseudo-locking should take into account both resources.
702 	 *   Similarly, if a pseudo-locked region is created in one
703 	 *   resource, the portion of cache used by it should be made
704 	 *   unavailable to all future allocations from both resources.
705 	 */
706 	if (rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled ||
707 	    rdt_resources_all[RDT_RESOURCE_L2DATA].alloc_enabled) {
708 		rdt_last_cmd_puts("CDP enabled\n");
709 		return -EINVAL;
710 	}
711 
712 	/*
713 	 * Not knowing the bits to disable prefetching implies that this
714 	 * platform does not support Cache Pseudo-Locking.
715 	 */
716 	prefetch_disable_bits = get_prefetch_disable_bits();
717 	if (prefetch_disable_bits == 0) {
718 		rdt_last_cmd_puts("pseudo-locking not supported\n");
719 		return -EINVAL;
720 	}
721 
722 	if (rdtgroup_monitor_in_progress(rdtgrp)) {
723 		rdt_last_cmd_puts("monitoring in progress\n");
724 		return -EINVAL;
725 	}
726 
727 	if (rdtgroup_tasks_assigned(rdtgrp)) {
728 		rdt_last_cmd_puts("tasks assigned to resource group\n");
729 		return -EINVAL;
730 	}
731 
732 	if (!cpumask_empty(&rdtgrp->cpu_mask)) {
733 		rdt_last_cmd_puts("CPUs assigned to resource group\n");
734 		return -EINVAL;
735 	}
736 
737 	if (rdtgroup_locksetup_user_restrict(rdtgrp)) {
738 		rdt_last_cmd_puts("unable to modify resctrl permissions\n");
739 		return -EIO;
740 	}
741 
742 	ret = pseudo_lock_init(rdtgrp);
743 	if (ret) {
744 		rdt_last_cmd_puts("unable to init pseudo-lock region\n");
745 		goto out_release;
746 	}
747 
748 	/*
749 	 * If this system is capable of monitoring a rmid would have been
750 	 * allocated when the control group was created. This is not needed
751 	 * anymore when this group would be used for pseudo-locking. This
752 	 * is safe to call on platforms not capable of monitoring.
753 	 */
754 	free_rmid(rdtgrp->mon.rmid);
755 
756 	ret = 0;
757 	goto out;
758 
759 out_release:
760 	rdtgroup_locksetup_user_restore(rdtgrp);
761 out:
762 	return ret;
763 }
764 
765 /**
766  * rdtgroup_locksetup_exit - resource group exist locksetup mode
767  * @rdtgrp: resource group
768  *
769  * When a resource group exits locksetup mode the earlier restrictions are
770  * lifted.
771  *
772  * Return: 0 on success, <0 on failure
773  */
rdtgroup_locksetup_exit(struct rdtgroup * rdtgrp)774 int rdtgroup_locksetup_exit(struct rdtgroup *rdtgrp)
775 {
776 	int ret;
777 
778 	if (rdt_mon_capable) {
779 		ret = alloc_rmid();
780 		if (ret < 0) {
781 			rdt_last_cmd_puts("out of RMIDs\n");
782 			return ret;
783 		}
784 		rdtgrp->mon.rmid = ret;
785 	}
786 
787 	ret = rdtgroup_locksetup_user_restore(rdtgrp);
788 	if (ret) {
789 		free_rmid(rdtgrp->mon.rmid);
790 		return ret;
791 	}
792 
793 	pseudo_lock_free(rdtgrp);
794 	return 0;
795 }
796 
797 /**
798  * rdtgroup_cbm_overlaps_pseudo_locked - Test if CBM or portion is pseudo-locked
799  * @d: RDT domain
800  * @cbm: CBM to test
801  *
802  * @d represents a cache instance and @cbm a capacity bitmask that is
803  * considered for it. Determine if @cbm overlaps with any existing
804  * pseudo-locked region on @d.
805  *
806  * @cbm is unsigned long, even if only 32 bits are used, to make the
807  * bitmap functions work correctly.
808  *
809  * Return: true if @cbm overlaps with pseudo-locked region on @d, false
810  * otherwise.
811  */
rdtgroup_cbm_overlaps_pseudo_locked(struct rdt_domain * d,unsigned long cbm)812 bool rdtgroup_cbm_overlaps_pseudo_locked(struct rdt_domain *d, unsigned long cbm)
813 {
814 	unsigned int cbm_len;
815 	unsigned long cbm_b;
816 
817 	if (d->plr) {
818 		cbm_len = d->plr->r->cache.cbm_len;
819 		cbm_b = d->plr->cbm;
820 		if (bitmap_intersects(&cbm, &cbm_b, cbm_len))
821 			return true;
822 	}
823 	return false;
824 }
825 
826 /**
827  * rdtgroup_pseudo_locked_in_hierarchy - Pseudo-locked region in cache hierarchy
828  * @d: RDT domain under test
829  *
830  * The setup of a pseudo-locked region affects all cache instances within
831  * the hierarchy of the region. It is thus essential to know if any
832  * pseudo-locked regions exist within a cache hierarchy to prevent any
833  * attempts to create new pseudo-locked regions in the same hierarchy.
834  *
835  * Return: true if a pseudo-locked region exists in the hierarchy of @d or
836  *         if it is not possible to test due to memory allocation issue,
837  *         false otherwise.
838  */
rdtgroup_pseudo_locked_in_hierarchy(struct rdt_domain * d)839 bool rdtgroup_pseudo_locked_in_hierarchy(struct rdt_domain *d)
840 {
841 	cpumask_var_t cpu_with_psl;
842 	struct rdt_resource *r;
843 	struct rdt_domain *d_i;
844 	bool ret = false;
845 
846 	if (!zalloc_cpumask_var(&cpu_with_psl, GFP_KERNEL))
847 		return true;
848 
849 	/*
850 	 * First determine which cpus have pseudo-locked regions
851 	 * associated with them.
852 	 */
853 	for_each_alloc_enabled_rdt_resource(r) {
854 		list_for_each_entry(d_i, &r->domains, list) {
855 			if (d_i->plr)
856 				cpumask_or(cpu_with_psl, cpu_with_psl,
857 					   &d_i->cpu_mask);
858 		}
859 	}
860 
861 	/*
862 	 * Next test if new pseudo-locked region would intersect with
863 	 * existing region.
864 	 */
865 	if (cpumask_intersects(&d->cpu_mask, cpu_with_psl))
866 		ret = true;
867 
868 	free_cpumask_var(cpu_with_psl);
869 	return ret;
870 }
871 
872 /**
873  * measure_cycles_lat_fn - Measure cycle latency to read pseudo-locked memory
874  * @_plr: pseudo-lock region to measure
875  *
876  * There is no deterministic way to test if a memory region is cached. One
877  * way is to measure how long it takes to read the memory, the speed of
878  * access is a good way to learn how close to the cpu the data was. Even
879  * more, if the prefetcher is disabled and the memory is read at a stride
880  * of half the cache line, then a cache miss will be easy to spot since the
881  * read of the first half would be significantly slower than the read of
882  * the second half.
883  *
884  * Return: 0. Waiter on waitqueue will be woken on completion.
885  */
measure_cycles_lat_fn(void * _plr)886 static int measure_cycles_lat_fn(void *_plr)
887 {
888 	struct pseudo_lock_region *plr = _plr;
889 	unsigned long i;
890 	u64 start, end;
891 #ifdef CONFIG_KASAN
892 	/*
893 	 * The registers used for local register variables are also used
894 	 * when KASAN is active. When KASAN is active we use a regular
895 	 * variable to ensure we always use a valid pointer to access memory.
896 	 * The cost is that accessing this pointer, which could be in
897 	 * cache, will be included in the measurement of memory read latency.
898 	 */
899 	void *mem_r;
900 #else
901 #ifdef CONFIG_X86_64
902 	register void *mem_r asm("rbx");
903 #else
904 	register void *mem_r asm("ebx");
905 #endif /* CONFIG_X86_64 */
906 #endif /* CONFIG_KASAN */
907 
908 	local_irq_disable();
909 	/*
910 	 * The wrmsr call may be reordered with the assignment below it.
911 	 * Call wrmsr as directly as possible to avoid tracing clobbering
912 	 * local register variable used for memory pointer.
913 	 */
914 	__wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0);
915 	mem_r = plr->kmem;
916 	/*
917 	 * Dummy execute of the time measurement to load the needed
918 	 * instructions into the L1 instruction cache.
919 	 */
920 	start = rdtsc_ordered();
921 	for (i = 0; i < plr->size; i += 32) {
922 		start = rdtsc_ordered();
923 		asm volatile("mov (%0,%1,1), %%eax\n\t"
924 			     :
925 			     : "r" (mem_r), "r" (i)
926 			     : "%eax", "memory");
927 		end = rdtsc_ordered();
928 		trace_pseudo_lock_mem_latency((u32)(end - start));
929 	}
930 	wrmsr(MSR_MISC_FEATURE_CONTROL, 0x0, 0x0);
931 	local_irq_enable();
932 	plr->thread_done = 1;
933 	wake_up_interruptible(&plr->lock_thread_wq);
934 	return 0;
935 }
936 
measure_cycles_perf_fn(void * _plr)937 static int measure_cycles_perf_fn(void *_plr)
938 {
939 	unsigned long long l3_hits = 0, l3_miss = 0;
940 	u64 l3_hit_bits = 0, l3_miss_bits = 0;
941 	struct pseudo_lock_region *plr = _plr;
942 	unsigned long long l2_hits, l2_miss;
943 	u64 l2_hit_bits, l2_miss_bits;
944 	unsigned long i;
945 #ifdef CONFIG_KASAN
946 	/*
947 	 * The registers used for local register variables are also used
948 	 * when KASAN is active. When KASAN is active we use regular variables
949 	 * at the cost of including cache access latency to these variables
950 	 * in the measurements.
951 	 */
952 	unsigned int line_size;
953 	unsigned int size;
954 	void *mem_r;
955 #else
956 	register unsigned int line_size asm("esi");
957 	register unsigned int size asm("edi");
958 #ifdef CONFIG_X86_64
959 	register void *mem_r asm("rbx");
960 #else
961 	register void *mem_r asm("ebx");
962 #endif /* CONFIG_X86_64 */
963 #endif /* CONFIG_KASAN */
964 
965 	/*
966 	 * Non-architectural event for the Goldmont Microarchitecture
967 	 * from Intel x86 Architecture Software Developer Manual (SDM):
968 	 * MEM_LOAD_UOPS_RETIRED D1H (event number)
969 	 * Umask values:
970 	 *     L1_HIT   01H
971 	 *     L2_HIT   02H
972 	 *     L1_MISS  08H
973 	 *     L2_MISS  10H
974 	 *
975 	 * On Broadwell Microarchitecture the MEM_LOAD_UOPS_RETIRED event
976 	 * has two "no fix" errata associated with it: BDM35 and BDM100. On
977 	 * this platform we use the following events instead:
978 	 *  L2_RQSTS 24H (Documented in https://download.01.org/perfmon/BDW/)
979 	 *       REFERENCES FFH
980 	 *       MISS       3FH
981 	 *  LONGEST_LAT_CACHE 2EH (Documented in SDM)
982 	 *       REFERENCE 4FH
983 	 *       MISS      41H
984 	 */
985 
986 	/*
987 	 * Start by setting flags for IA32_PERFEVTSELx:
988 	 *     OS  (Operating system mode)  0x2
989 	 *     INT (APIC interrupt enable)  0x10
990 	 *     EN  (Enable counter)         0x40
991 	 *
992 	 * Then add the Umask value and event number to select performance
993 	 * event.
994 	 */
995 
996 	switch (boot_cpu_data.x86_model) {
997 	case INTEL_FAM6_ATOM_GOLDMONT:
998 	case INTEL_FAM6_ATOM_GEMINI_LAKE:
999 		l2_hit_bits = (0x52ULL << 16) | (0x2 << 8) | 0xd1;
1000 		l2_miss_bits = (0x52ULL << 16) | (0x10 << 8) | 0xd1;
1001 		break;
1002 	case INTEL_FAM6_BROADWELL_X:
1003 		/* On BDW the l2_hit_bits count references, not hits */
1004 		l2_hit_bits = (0x52ULL << 16) | (0xff << 8) | 0x24;
1005 		l2_miss_bits = (0x52ULL << 16) | (0x3f << 8) | 0x24;
1006 		/* On BDW the l3_hit_bits count references, not hits */
1007 		l3_hit_bits = (0x52ULL << 16) | (0x4f << 8) | 0x2e;
1008 		l3_miss_bits = (0x52ULL << 16) | (0x41 << 8) | 0x2e;
1009 		break;
1010 	default:
1011 		goto out;
1012 	}
1013 
1014 	local_irq_disable();
1015 	/*
1016 	 * Call wrmsr direcly to avoid the local register variables from
1017 	 * being overwritten due to reordering of their assignment with
1018 	 * the wrmsr calls.
1019 	 */
1020 	__wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0);
1021 	/* Disable events and reset counters */
1022 	pseudo_wrmsrl_notrace(MSR_ARCH_PERFMON_EVENTSEL0, 0x0);
1023 	pseudo_wrmsrl_notrace(MSR_ARCH_PERFMON_EVENTSEL0 + 1, 0x0);
1024 	pseudo_wrmsrl_notrace(MSR_ARCH_PERFMON_PERFCTR0, 0x0);
1025 	pseudo_wrmsrl_notrace(MSR_ARCH_PERFMON_PERFCTR0 + 1, 0x0);
1026 	if (l3_hit_bits > 0) {
1027 		pseudo_wrmsrl_notrace(MSR_ARCH_PERFMON_EVENTSEL0 + 2, 0x0);
1028 		pseudo_wrmsrl_notrace(MSR_ARCH_PERFMON_EVENTSEL0 + 3, 0x0);
1029 		pseudo_wrmsrl_notrace(MSR_ARCH_PERFMON_PERFCTR0 + 2, 0x0);
1030 		pseudo_wrmsrl_notrace(MSR_ARCH_PERFMON_PERFCTR0 + 3, 0x0);
1031 	}
1032 	/* Set and enable the L2 counters */
1033 	pseudo_wrmsrl_notrace(MSR_ARCH_PERFMON_EVENTSEL0, l2_hit_bits);
1034 	pseudo_wrmsrl_notrace(MSR_ARCH_PERFMON_EVENTSEL0 + 1, l2_miss_bits);
1035 	if (l3_hit_bits > 0) {
1036 		pseudo_wrmsrl_notrace(MSR_ARCH_PERFMON_EVENTSEL0 + 2,
1037 				      l3_hit_bits);
1038 		pseudo_wrmsrl_notrace(MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1039 				      l3_miss_bits);
1040 	}
1041 	mem_r = plr->kmem;
1042 	size = plr->size;
1043 	line_size = plr->line_size;
1044 	for (i = 0; i < size; i += line_size) {
1045 		asm volatile("mov (%0,%1,1), %%eax\n\t"
1046 			     :
1047 			     : "r" (mem_r), "r" (i)
1048 			     : "%eax", "memory");
1049 	}
1050 	/*
1051 	 * Call wrmsr directly (no tracing) to not influence
1052 	 * the cache access counters as they are disabled.
1053 	 */
1054 	pseudo_wrmsrl_notrace(MSR_ARCH_PERFMON_EVENTSEL0,
1055 			      l2_hit_bits & ~(0x40ULL << 16));
1056 	pseudo_wrmsrl_notrace(MSR_ARCH_PERFMON_EVENTSEL0 + 1,
1057 			      l2_miss_bits & ~(0x40ULL << 16));
1058 	if (l3_hit_bits > 0) {
1059 		pseudo_wrmsrl_notrace(MSR_ARCH_PERFMON_EVENTSEL0 + 2,
1060 				      l3_hit_bits & ~(0x40ULL << 16));
1061 		pseudo_wrmsrl_notrace(MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1062 				      l3_miss_bits & ~(0x40ULL << 16));
1063 	}
1064 	l2_hits = native_read_pmc(0);
1065 	l2_miss = native_read_pmc(1);
1066 	if (l3_hit_bits > 0) {
1067 		l3_hits = native_read_pmc(2);
1068 		l3_miss = native_read_pmc(3);
1069 	}
1070 	wrmsr(MSR_MISC_FEATURE_CONTROL, 0x0, 0x0);
1071 	local_irq_enable();
1072 	/*
1073 	 * On BDW we count references and misses, need to adjust. Sometimes
1074 	 * the "hits" counter is a bit more than the references, for
1075 	 * example, x references but x + 1 hits. To not report invalid
1076 	 * hit values in this case we treat that as misses eaqual to
1077 	 * references.
1078 	 */
1079 	if (boot_cpu_data.x86_model == INTEL_FAM6_BROADWELL_X)
1080 		l2_hits -= (l2_miss > l2_hits ? l2_hits : l2_miss);
1081 	trace_pseudo_lock_l2(l2_hits, l2_miss);
1082 	if (l3_hit_bits > 0) {
1083 		if (boot_cpu_data.x86_model == INTEL_FAM6_BROADWELL_X)
1084 			l3_hits -= (l3_miss > l3_hits ? l3_hits : l3_miss);
1085 		trace_pseudo_lock_l3(l3_hits, l3_miss);
1086 	}
1087 
1088 out:
1089 	plr->thread_done = 1;
1090 	wake_up_interruptible(&plr->lock_thread_wq);
1091 	return 0;
1092 }
1093 
1094 /**
1095  * pseudo_lock_measure_cycles - Trigger latency measure to pseudo-locked region
1096  *
1097  * The measurement of latency to access a pseudo-locked region should be
1098  * done from a cpu that is associated with that pseudo-locked region.
1099  * Determine which cpu is associated with this region and start a thread on
1100  * that cpu to perform the measurement, wait for that thread to complete.
1101  *
1102  * Return: 0 on success, <0 on failure
1103  */
pseudo_lock_measure_cycles(struct rdtgroup * rdtgrp,int sel)1104 static int pseudo_lock_measure_cycles(struct rdtgroup *rdtgrp, int sel)
1105 {
1106 	struct pseudo_lock_region *plr = rdtgrp->plr;
1107 	struct task_struct *thread;
1108 	unsigned int cpu;
1109 	int ret = -1;
1110 
1111 	cpus_read_lock();
1112 	mutex_lock(&rdtgroup_mutex);
1113 
1114 	if (rdtgrp->flags & RDT_DELETED) {
1115 		ret = -ENODEV;
1116 		goto out;
1117 	}
1118 
1119 	plr->thread_done = 0;
1120 	cpu = cpumask_first(&plr->d->cpu_mask);
1121 	if (!cpu_online(cpu)) {
1122 		ret = -ENODEV;
1123 		goto out;
1124 	}
1125 
1126 	if (sel == 1)
1127 		thread = kthread_create_on_node(measure_cycles_lat_fn, plr,
1128 						cpu_to_node(cpu),
1129 						"pseudo_lock_measure/%u",
1130 						cpu);
1131 	else if (sel == 2)
1132 		thread = kthread_create_on_node(measure_cycles_perf_fn, plr,
1133 						cpu_to_node(cpu),
1134 						"pseudo_lock_measure/%u",
1135 						cpu);
1136 	else
1137 		goto out;
1138 
1139 	if (IS_ERR(thread)) {
1140 		ret = PTR_ERR(thread);
1141 		goto out;
1142 	}
1143 	kthread_bind(thread, cpu);
1144 	wake_up_process(thread);
1145 
1146 	ret = wait_event_interruptible(plr->lock_thread_wq,
1147 				       plr->thread_done == 1);
1148 	if (ret < 0)
1149 		goto out;
1150 
1151 	ret = 0;
1152 
1153 out:
1154 	mutex_unlock(&rdtgroup_mutex);
1155 	cpus_read_unlock();
1156 	return ret;
1157 }
1158 
pseudo_lock_measure_trigger(struct file * file,const char __user * user_buf,size_t count,loff_t * ppos)1159 static ssize_t pseudo_lock_measure_trigger(struct file *file,
1160 					   const char __user *user_buf,
1161 					   size_t count, loff_t *ppos)
1162 {
1163 	struct rdtgroup *rdtgrp = file->private_data;
1164 	size_t buf_size;
1165 	char buf[32];
1166 	int ret;
1167 	int sel;
1168 
1169 	buf_size = min(count, (sizeof(buf) - 1));
1170 	if (copy_from_user(buf, user_buf, buf_size))
1171 		return -EFAULT;
1172 
1173 	buf[buf_size] = '\0';
1174 	ret = kstrtoint(buf, 10, &sel);
1175 	if (ret == 0) {
1176 		if (sel != 1)
1177 			return -EINVAL;
1178 		ret = debugfs_file_get(file->f_path.dentry);
1179 		if (ret)
1180 			return ret;
1181 		ret = pseudo_lock_measure_cycles(rdtgrp, sel);
1182 		if (ret == 0)
1183 			ret = count;
1184 		debugfs_file_put(file->f_path.dentry);
1185 	}
1186 
1187 	return ret;
1188 }
1189 
1190 static const struct file_operations pseudo_measure_fops = {
1191 	.write = pseudo_lock_measure_trigger,
1192 	.open = simple_open,
1193 	.llseek = default_llseek,
1194 };
1195 
1196 /**
1197  * rdtgroup_pseudo_lock_create - Create a pseudo-locked region
1198  * @rdtgrp: resource group to which pseudo-lock region belongs
1199  *
1200  * Called when a resource group in the pseudo-locksetup mode receives a
1201  * valid schemata that should be pseudo-locked. Since the resource group is
1202  * in pseudo-locksetup mode the &struct pseudo_lock_region has already been
1203  * allocated and initialized with the essential information. If a failure
1204  * occurs the resource group remains in the pseudo-locksetup mode with the
1205  * &struct pseudo_lock_region associated with it, but cleared from all
1206  * information and ready for the user to re-attempt pseudo-locking by
1207  * writing the schemata again.
1208  *
1209  * Return: 0 if the pseudo-locked region was successfully pseudo-locked, <0
1210  * on failure. Descriptive error will be written to last_cmd_status buffer.
1211  */
rdtgroup_pseudo_lock_create(struct rdtgroup * rdtgrp)1212 int rdtgroup_pseudo_lock_create(struct rdtgroup *rdtgrp)
1213 {
1214 	struct pseudo_lock_region *plr = rdtgrp->plr;
1215 	struct task_struct *thread;
1216 	unsigned int new_minor;
1217 	struct device *dev;
1218 	int ret;
1219 
1220 	ret = pseudo_lock_region_alloc(plr);
1221 	if (ret < 0)
1222 		return ret;
1223 
1224 	ret = pseudo_lock_cstates_constrain(plr);
1225 	if (ret < 0) {
1226 		ret = -EINVAL;
1227 		goto out_region;
1228 	}
1229 
1230 	plr->thread_done = 0;
1231 
1232 	thread = kthread_create_on_node(pseudo_lock_fn, rdtgrp,
1233 					cpu_to_node(plr->cpu),
1234 					"pseudo_lock/%u", plr->cpu);
1235 	if (IS_ERR(thread)) {
1236 		ret = PTR_ERR(thread);
1237 		rdt_last_cmd_printf("locking thread returned error %d\n", ret);
1238 		goto out_cstates;
1239 	}
1240 
1241 	kthread_bind(thread, plr->cpu);
1242 	wake_up_process(thread);
1243 
1244 	ret = wait_event_interruptible(plr->lock_thread_wq,
1245 				       plr->thread_done == 1);
1246 	if (ret < 0) {
1247 		/*
1248 		 * If the thread does not get on the CPU for whatever
1249 		 * reason and the process which sets up the region is
1250 		 * interrupted then this will leave the thread in runnable
1251 		 * state and once it gets on the CPU it will derefence
1252 		 * the cleared, but not freed, plr struct resulting in an
1253 		 * empty pseudo-locking loop.
1254 		 */
1255 		rdt_last_cmd_puts("locking thread interrupted\n");
1256 		goto out_cstates;
1257 	}
1258 
1259 	ret = pseudo_lock_minor_get(&new_minor);
1260 	if (ret < 0) {
1261 		rdt_last_cmd_puts("unable to obtain a new minor number\n");
1262 		goto out_cstates;
1263 	}
1264 
1265 	/*
1266 	 * Unlock access but do not release the reference. The
1267 	 * pseudo-locked region will still be here on return.
1268 	 *
1269 	 * The mutex has to be released temporarily to avoid a potential
1270 	 * deadlock with the mm->mmap_sem semaphore which is obtained in
1271 	 * the device_create() and debugfs_create_dir() callpath below
1272 	 * as well as before the mmap() callback is called.
1273 	 */
1274 	mutex_unlock(&rdtgroup_mutex);
1275 
1276 	if (!IS_ERR_OR_NULL(debugfs_resctrl)) {
1277 		plr->debugfs_dir = debugfs_create_dir(rdtgrp->kn->name,
1278 						      debugfs_resctrl);
1279 		if (!IS_ERR_OR_NULL(plr->debugfs_dir))
1280 			debugfs_create_file("pseudo_lock_measure", 0200,
1281 					    plr->debugfs_dir, rdtgrp,
1282 					    &pseudo_measure_fops);
1283 	}
1284 
1285 	dev = device_create(pseudo_lock_class, NULL,
1286 			    MKDEV(pseudo_lock_major, new_minor),
1287 			    rdtgrp, "%s", rdtgrp->kn->name);
1288 
1289 	mutex_lock(&rdtgroup_mutex);
1290 
1291 	if (IS_ERR(dev)) {
1292 		ret = PTR_ERR(dev);
1293 		rdt_last_cmd_printf("failed to create character device: %d\n",
1294 				    ret);
1295 		goto out_debugfs;
1296 	}
1297 
1298 	/* We released the mutex - check if group was removed while we did so */
1299 	if (rdtgrp->flags & RDT_DELETED) {
1300 		ret = -ENODEV;
1301 		goto out_device;
1302 	}
1303 
1304 	plr->minor = new_minor;
1305 
1306 	rdtgrp->mode = RDT_MODE_PSEUDO_LOCKED;
1307 	closid_free(rdtgrp->closid);
1308 	rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0444);
1309 	rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0444);
1310 
1311 	ret = 0;
1312 	goto out;
1313 
1314 out_device:
1315 	device_destroy(pseudo_lock_class, MKDEV(pseudo_lock_major, new_minor));
1316 out_debugfs:
1317 	debugfs_remove_recursive(plr->debugfs_dir);
1318 	pseudo_lock_minor_release(new_minor);
1319 out_cstates:
1320 	pseudo_lock_cstates_relax(plr);
1321 out_region:
1322 	pseudo_lock_region_clear(plr);
1323 out:
1324 	return ret;
1325 }
1326 
1327 /**
1328  * rdtgroup_pseudo_lock_remove - Remove a pseudo-locked region
1329  * @rdtgrp: resource group to which the pseudo-locked region belongs
1330  *
1331  * The removal of a pseudo-locked region can be initiated when the resource
1332  * group is removed from user space via a "rmdir" from userspace or the
1333  * unmount of the resctrl filesystem. On removal the resource group does
1334  * not go back to pseudo-locksetup mode before it is removed, instead it is
1335  * removed directly. There is thus assymmetry with the creation where the
1336  * &struct pseudo_lock_region is removed here while it was not created in
1337  * rdtgroup_pseudo_lock_create().
1338  *
1339  * Return: void
1340  */
rdtgroup_pseudo_lock_remove(struct rdtgroup * rdtgrp)1341 void rdtgroup_pseudo_lock_remove(struct rdtgroup *rdtgrp)
1342 {
1343 	struct pseudo_lock_region *plr = rdtgrp->plr;
1344 
1345 	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1346 		/*
1347 		 * Default group cannot be a pseudo-locked region so we can
1348 		 * free closid here.
1349 		 */
1350 		closid_free(rdtgrp->closid);
1351 		goto free;
1352 	}
1353 
1354 	pseudo_lock_cstates_relax(plr);
1355 	debugfs_remove_recursive(rdtgrp->plr->debugfs_dir);
1356 	device_destroy(pseudo_lock_class, MKDEV(pseudo_lock_major, plr->minor));
1357 	pseudo_lock_minor_release(plr->minor);
1358 
1359 free:
1360 	pseudo_lock_free(rdtgrp);
1361 }
1362 
pseudo_lock_dev_open(struct inode * inode,struct file * filp)1363 static int pseudo_lock_dev_open(struct inode *inode, struct file *filp)
1364 {
1365 	struct rdtgroup *rdtgrp;
1366 
1367 	mutex_lock(&rdtgroup_mutex);
1368 
1369 	rdtgrp = region_find_by_minor(iminor(inode));
1370 	if (!rdtgrp) {
1371 		mutex_unlock(&rdtgroup_mutex);
1372 		return -ENODEV;
1373 	}
1374 
1375 	filp->private_data = rdtgrp;
1376 	atomic_inc(&rdtgrp->waitcount);
1377 	/* Perform a non-seekable open - llseek is not supported */
1378 	filp->f_mode &= ~(FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE);
1379 
1380 	mutex_unlock(&rdtgroup_mutex);
1381 
1382 	return 0;
1383 }
1384 
pseudo_lock_dev_release(struct inode * inode,struct file * filp)1385 static int pseudo_lock_dev_release(struct inode *inode, struct file *filp)
1386 {
1387 	struct rdtgroup *rdtgrp;
1388 
1389 	mutex_lock(&rdtgroup_mutex);
1390 	rdtgrp = filp->private_data;
1391 	WARN_ON(!rdtgrp);
1392 	if (!rdtgrp) {
1393 		mutex_unlock(&rdtgroup_mutex);
1394 		return -ENODEV;
1395 	}
1396 	filp->private_data = NULL;
1397 	atomic_dec(&rdtgrp->waitcount);
1398 	mutex_unlock(&rdtgroup_mutex);
1399 	return 0;
1400 }
1401 
pseudo_lock_dev_mremap(struct vm_area_struct * area)1402 static int pseudo_lock_dev_mremap(struct vm_area_struct *area)
1403 {
1404 	/* Not supported */
1405 	return -EINVAL;
1406 }
1407 
1408 static const struct vm_operations_struct pseudo_mmap_ops = {
1409 	.mremap = pseudo_lock_dev_mremap,
1410 };
1411 
pseudo_lock_dev_mmap(struct file * filp,struct vm_area_struct * vma)1412 static int pseudo_lock_dev_mmap(struct file *filp, struct vm_area_struct *vma)
1413 {
1414 	unsigned long vsize = vma->vm_end - vma->vm_start;
1415 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
1416 	struct pseudo_lock_region *plr;
1417 	struct rdtgroup *rdtgrp;
1418 	unsigned long physical;
1419 	unsigned long psize;
1420 
1421 	mutex_lock(&rdtgroup_mutex);
1422 
1423 	rdtgrp = filp->private_data;
1424 	WARN_ON(!rdtgrp);
1425 	if (!rdtgrp) {
1426 		mutex_unlock(&rdtgroup_mutex);
1427 		return -ENODEV;
1428 	}
1429 
1430 	plr = rdtgrp->plr;
1431 
1432 	/*
1433 	 * Task is required to run with affinity to the cpus associated
1434 	 * with the pseudo-locked region. If this is not the case the task
1435 	 * may be scheduled elsewhere and invalidate entries in the
1436 	 * pseudo-locked region.
1437 	 */
1438 	if (!cpumask_subset(&current->cpus_allowed, &plr->d->cpu_mask)) {
1439 		mutex_unlock(&rdtgroup_mutex);
1440 		return -EINVAL;
1441 	}
1442 
1443 	physical = __pa(plr->kmem) >> PAGE_SHIFT;
1444 	psize = plr->size - off;
1445 
1446 	if (off > plr->size) {
1447 		mutex_unlock(&rdtgroup_mutex);
1448 		return -ENOSPC;
1449 	}
1450 
1451 	/*
1452 	 * Ensure changes are carried directly to the memory being mapped,
1453 	 * do not allow copy-on-write mapping.
1454 	 */
1455 	if (!(vma->vm_flags & VM_SHARED)) {
1456 		mutex_unlock(&rdtgroup_mutex);
1457 		return -EINVAL;
1458 	}
1459 
1460 	if (vsize > psize) {
1461 		mutex_unlock(&rdtgroup_mutex);
1462 		return -ENOSPC;
1463 	}
1464 
1465 	memset(plr->kmem + off, 0, vsize);
1466 
1467 	if (remap_pfn_range(vma, vma->vm_start, physical + vma->vm_pgoff,
1468 			    vsize, vma->vm_page_prot)) {
1469 		mutex_unlock(&rdtgroup_mutex);
1470 		return -EAGAIN;
1471 	}
1472 	vma->vm_ops = &pseudo_mmap_ops;
1473 	mutex_unlock(&rdtgroup_mutex);
1474 	return 0;
1475 }
1476 
1477 static const struct file_operations pseudo_lock_dev_fops = {
1478 	.owner =	THIS_MODULE,
1479 	.llseek =	no_llseek,
1480 	.read =		NULL,
1481 	.write =	NULL,
1482 	.open =		pseudo_lock_dev_open,
1483 	.release =	pseudo_lock_dev_release,
1484 	.mmap =		pseudo_lock_dev_mmap,
1485 };
1486 
pseudo_lock_devnode(struct device * dev,umode_t * mode)1487 static char *pseudo_lock_devnode(struct device *dev, umode_t *mode)
1488 {
1489 	struct rdtgroup *rdtgrp;
1490 
1491 	rdtgrp = dev_get_drvdata(dev);
1492 	if (mode)
1493 		*mode = 0600;
1494 	return kasprintf(GFP_KERNEL, "pseudo_lock/%s", rdtgrp->kn->name);
1495 }
1496 
rdt_pseudo_lock_init(void)1497 int rdt_pseudo_lock_init(void)
1498 {
1499 	int ret;
1500 
1501 	ret = register_chrdev(0, "pseudo_lock", &pseudo_lock_dev_fops);
1502 	if (ret < 0)
1503 		return ret;
1504 
1505 	pseudo_lock_major = ret;
1506 
1507 	pseudo_lock_class = class_create(THIS_MODULE, "pseudo_lock");
1508 	if (IS_ERR(pseudo_lock_class)) {
1509 		ret = PTR_ERR(pseudo_lock_class);
1510 		unregister_chrdev(pseudo_lock_major, "pseudo_lock");
1511 		return ret;
1512 	}
1513 
1514 	pseudo_lock_class->devnode = pseudo_lock_devnode;
1515 	return 0;
1516 }
1517 
rdt_pseudo_lock_release(void)1518 void rdt_pseudo_lock_release(void)
1519 {
1520 	class_destroy(pseudo_lock_class);
1521 	pseudo_lock_class = NULL;
1522 	unregister_chrdev(pseudo_lock_major, "pseudo_lock");
1523 	pseudo_lock_major = 0;
1524 }
1525