1 /*
2 * Copyright (c) 2006, 2018 Oracle and/or its affiliates. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 *
32 */
33 #include <linux/kernel.h>
34 #include <linux/random.h>
35 #include <linux/export.h>
36
37 #include "rds.h"
38
39 /*
40 * All of connection management is simplified by serializing it through
41 * work queues that execute in a connection managing thread.
42 *
43 * TCP wants to send acks through sendpage() in response to data_ready(),
44 * but it needs a process context to do so.
45 *
46 * The receive paths need to allocate but can't drop packets (!) so we have
47 * a thread around to block allocating if the receive fast path sees an
48 * allocation failure.
49 */
50
51 /* Grand Unified Theory of connection life cycle:
52 * At any point in time, the connection can be in one of these states:
53 * DOWN, CONNECTING, UP, DISCONNECTING, ERROR
54 *
55 * The following transitions are possible:
56 * ANY -> ERROR
57 * UP -> DISCONNECTING
58 * ERROR -> DISCONNECTING
59 * DISCONNECTING -> DOWN
60 * DOWN -> CONNECTING
61 * CONNECTING -> UP
62 *
63 * Transition to state DISCONNECTING/DOWN:
64 * - Inside the shutdown worker; synchronizes with xmit path
65 * through RDS_IN_XMIT, and with connection management callbacks
66 * via c_cm_lock.
67 *
68 * For receive callbacks, we rely on the underlying transport
69 * (TCP, IB/RDMA) to provide the necessary synchronisation.
70 */
71 struct workqueue_struct *rds_wq;
72 EXPORT_SYMBOL_GPL(rds_wq);
73
rds_connect_path_complete(struct rds_conn_path * cp,int curr)74 void rds_connect_path_complete(struct rds_conn_path *cp, int curr)
75 {
76 if (!rds_conn_path_transition(cp, curr, RDS_CONN_UP)) {
77 printk(KERN_WARNING "%s: Cannot transition to state UP, "
78 "current state is %d\n",
79 __func__,
80 atomic_read(&cp->cp_state));
81 rds_conn_path_drop(cp, false);
82 return;
83 }
84
85 rdsdebug("conn %p for %pI6c to %pI6c complete\n",
86 cp->cp_conn, &cp->cp_conn->c_laddr, &cp->cp_conn->c_faddr);
87
88 cp->cp_reconnect_jiffies = 0;
89 set_bit(0, &cp->cp_conn->c_map_queued);
90 rcu_read_lock();
91 if (!rds_destroy_pending(cp->cp_conn)) {
92 queue_delayed_work(rds_wq, &cp->cp_send_w, 0);
93 queue_delayed_work(rds_wq, &cp->cp_recv_w, 0);
94 }
95 rcu_read_unlock();
96 }
97 EXPORT_SYMBOL_GPL(rds_connect_path_complete);
98
rds_connect_complete(struct rds_connection * conn)99 void rds_connect_complete(struct rds_connection *conn)
100 {
101 rds_connect_path_complete(&conn->c_path[0], RDS_CONN_CONNECTING);
102 }
103 EXPORT_SYMBOL_GPL(rds_connect_complete);
104
105 /*
106 * This random exponential backoff is relied on to eventually resolve racing
107 * connects.
108 *
109 * If connect attempts race then both parties drop both connections and come
110 * here to wait for a random amount of time before trying again. Eventually
111 * the backoff range will be so much greater than the time it takes to
112 * establish a connection that one of the pair will establish the connection
113 * before the other's random delay fires.
114 *
115 * Connection attempts that arrive while a connection is already established
116 * are also considered to be racing connects. This lets a connection from
117 * a rebooted machine replace an existing stale connection before the transport
118 * notices that the connection has failed.
119 *
120 * We should *always* start with a random backoff; otherwise a broken connection
121 * will always take several iterations to be re-established.
122 */
rds_queue_reconnect(struct rds_conn_path * cp)123 void rds_queue_reconnect(struct rds_conn_path *cp)
124 {
125 unsigned long rand;
126 struct rds_connection *conn = cp->cp_conn;
127
128 rdsdebug("conn %p for %pI6c to %pI6c reconnect jiffies %lu\n",
129 conn, &conn->c_laddr, &conn->c_faddr,
130 cp->cp_reconnect_jiffies);
131
132 /* let peer with smaller addr initiate reconnect, to avoid duels */
133 if (conn->c_trans->t_type == RDS_TRANS_TCP &&
134 rds_addr_cmp(&conn->c_laddr, &conn->c_faddr) >= 0)
135 return;
136
137 set_bit(RDS_RECONNECT_PENDING, &cp->cp_flags);
138 if (cp->cp_reconnect_jiffies == 0) {
139 cp->cp_reconnect_jiffies = rds_sysctl_reconnect_min_jiffies;
140 rcu_read_lock();
141 if (!rds_destroy_pending(cp->cp_conn))
142 queue_delayed_work(rds_wq, &cp->cp_conn_w, 0);
143 rcu_read_unlock();
144 return;
145 }
146
147 get_random_bytes(&rand, sizeof(rand));
148 rdsdebug("%lu delay %lu ceil conn %p for %pI6c -> %pI6c\n",
149 rand % cp->cp_reconnect_jiffies, cp->cp_reconnect_jiffies,
150 conn, &conn->c_laddr, &conn->c_faddr);
151 rcu_read_lock();
152 if (!rds_destroy_pending(cp->cp_conn))
153 queue_delayed_work(rds_wq, &cp->cp_conn_w,
154 rand % cp->cp_reconnect_jiffies);
155 rcu_read_unlock();
156
157 cp->cp_reconnect_jiffies = min(cp->cp_reconnect_jiffies * 2,
158 rds_sysctl_reconnect_max_jiffies);
159 }
160
rds_connect_worker(struct work_struct * work)161 void rds_connect_worker(struct work_struct *work)
162 {
163 struct rds_conn_path *cp = container_of(work,
164 struct rds_conn_path,
165 cp_conn_w.work);
166 struct rds_connection *conn = cp->cp_conn;
167 int ret;
168
169 if (cp->cp_index > 0 &&
170 rds_addr_cmp(&cp->cp_conn->c_laddr, &cp->cp_conn->c_faddr) >= 0)
171 return;
172 clear_bit(RDS_RECONNECT_PENDING, &cp->cp_flags);
173 ret = rds_conn_path_transition(cp, RDS_CONN_DOWN, RDS_CONN_CONNECTING);
174 if (ret) {
175 ret = conn->c_trans->conn_path_connect(cp);
176 rdsdebug("conn %p for %pI6c to %pI6c dispatched, ret %d\n",
177 conn, &conn->c_laddr, &conn->c_faddr, ret);
178
179 if (ret) {
180 if (rds_conn_path_transition(cp,
181 RDS_CONN_CONNECTING,
182 RDS_CONN_DOWN))
183 rds_queue_reconnect(cp);
184 else
185 rds_conn_path_error(cp, "connect failed\n");
186 }
187 }
188 }
189
rds_send_worker(struct work_struct * work)190 void rds_send_worker(struct work_struct *work)
191 {
192 struct rds_conn_path *cp = container_of(work,
193 struct rds_conn_path,
194 cp_send_w.work);
195 int ret;
196
197 if (rds_conn_path_state(cp) == RDS_CONN_UP) {
198 clear_bit(RDS_LL_SEND_FULL, &cp->cp_flags);
199 ret = rds_send_xmit(cp);
200 cond_resched();
201 rdsdebug("conn %p ret %d\n", cp->cp_conn, ret);
202 switch (ret) {
203 case -EAGAIN:
204 rds_stats_inc(s_send_immediate_retry);
205 queue_delayed_work(rds_wq, &cp->cp_send_w, 0);
206 break;
207 case -ENOMEM:
208 rds_stats_inc(s_send_delayed_retry);
209 queue_delayed_work(rds_wq, &cp->cp_send_w, 2);
210 default:
211 break;
212 }
213 }
214 }
215
rds_recv_worker(struct work_struct * work)216 void rds_recv_worker(struct work_struct *work)
217 {
218 struct rds_conn_path *cp = container_of(work,
219 struct rds_conn_path,
220 cp_recv_w.work);
221 int ret;
222
223 if (rds_conn_path_state(cp) == RDS_CONN_UP) {
224 ret = cp->cp_conn->c_trans->recv_path(cp);
225 rdsdebug("conn %p ret %d\n", cp->cp_conn, ret);
226 switch (ret) {
227 case -EAGAIN:
228 rds_stats_inc(s_recv_immediate_retry);
229 queue_delayed_work(rds_wq, &cp->cp_recv_w, 0);
230 break;
231 case -ENOMEM:
232 rds_stats_inc(s_recv_delayed_retry);
233 queue_delayed_work(rds_wq, &cp->cp_recv_w, 2);
234 default:
235 break;
236 }
237 }
238 }
239
rds_shutdown_worker(struct work_struct * work)240 void rds_shutdown_worker(struct work_struct *work)
241 {
242 struct rds_conn_path *cp = container_of(work,
243 struct rds_conn_path,
244 cp_down_w);
245
246 rds_conn_shutdown(cp);
247 }
248
rds_threads_exit(void)249 void rds_threads_exit(void)
250 {
251 destroy_workqueue(rds_wq);
252 }
253
rds_threads_init(void)254 int rds_threads_init(void)
255 {
256 rds_wq = create_singlethread_workqueue("krdsd");
257 if (!rds_wq)
258 return -ENOMEM;
259
260 return 0;
261 }
262
263 /* Compare two IPv6 addresses. Return 0 if the two addresses are equal.
264 * Return 1 if the first is greater. Return -1 if the second is greater.
265 */
rds_addr_cmp(const struct in6_addr * addr1,const struct in6_addr * addr2)266 int rds_addr_cmp(const struct in6_addr *addr1,
267 const struct in6_addr *addr2)
268 {
269 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
270 const __be64 *a1, *a2;
271 u64 x, y;
272
273 a1 = (__be64 *)addr1;
274 a2 = (__be64 *)addr2;
275
276 if (*a1 != *a2) {
277 if (be64_to_cpu(*a1) < be64_to_cpu(*a2))
278 return -1;
279 else
280 return 1;
281 } else {
282 x = be64_to_cpu(*++a1);
283 y = be64_to_cpu(*++a2);
284 if (x < y)
285 return -1;
286 else if (x > y)
287 return 1;
288 else
289 return 0;
290 }
291 #else
292 u32 a, b;
293 int i;
294
295 for (i = 0; i < 4; i++) {
296 if (addr1->s6_addr32[i] != addr2->s6_addr32[i]) {
297 a = ntohl(addr1->s6_addr32[i]);
298 b = ntohl(addr2->s6_addr32[i]);
299 if (a < b)
300 return -1;
301 else if (a > b)
302 return 1;
303 }
304 }
305 return 0;
306 #endif
307 }
308 EXPORT_SYMBOL_GPL(rds_addr_cmp);
309