1 /*
2 * Copyright (c) 2006, 2018 Oracle and/or its affiliates. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 *
32 */
33 #include <linux/module.h>
34 #include <linux/errno.h>
35 #include <linux/kernel.h>
36 #include <linux/gfp.h>
37 #include <linux/in.h>
38 #include <linux/ipv6.h>
39 #include <linux/poll.h>
40 #include <net/sock.h>
41
42 #include "rds.h"
43
44 /* this is just used for stats gathering :/ */
45 static DEFINE_SPINLOCK(rds_sock_lock);
46 static unsigned long rds_sock_count;
47 static LIST_HEAD(rds_sock_list);
48 DECLARE_WAIT_QUEUE_HEAD(rds_poll_waitq);
49
50 /*
51 * This is called as the final descriptor referencing this socket is closed.
52 * We have to unbind the socket so that another socket can be bound to the
53 * address it was using.
54 *
55 * We have to be careful about racing with the incoming path. sock_orphan()
56 * sets SOCK_DEAD and we use that as an indicator to the rx path that new
57 * messages shouldn't be queued.
58 */
rds_release(struct socket * sock)59 static int rds_release(struct socket *sock)
60 {
61 struct sock *sk = sock->sk;
62 struct rds_sock *rs;
63
64 if (!sk)
65 goto out;
66
67 rs = rds_sk_to_rs(sk);
68
69 sock_orphan(sk);
70 /* Note - rds_clear_recv_queue grabs rs_recv_lock, so
71 * that ensures the recv path has completed messing
72 * with the socket. */
73 rds_clear_recv_queue(rs);
74 rds_cong_remove_socket(rs);
75
76 rds_remove_bound(rs);
77
78 rds_send_drop_to(rs, NULL);
79 rds_rdma_drop_keys(rs);
80 rds_notify_queue_get(rs, NULL);
81 rds_notify_msg_zcopy_purge(&rs->rs_zcookie_queue);
82
83 spin_lock_bh(&rds_sock_lock);
84 list_del_init(&rs->rs_item);
85 rds_sock_count--;
86 spin_unlock_bh(&rds_sock_lock);
87
88 rds_trans_put(rs->rs_transport);
89
90 sock->sk = NULL;
91 sock_put(sk);
92 out:
93 return 0;
94 }
95
96 /*
97 * Careful not to race with rds_release -> sock_orphan which clears sk_sleep.
98 * _bh() isn't OK here, we're called from interrupt handlers. It's probably OK
99 * to wake the waitqueue after sk_sleep is clear as we hold a sock ref, but
100 * this seems more conservative.
101 * NB - normally, one would use sk_callback_lock for this, but we can
102 * get here from interrupts, whereas the network code grabs sk_callback_lock
103 * with _lock_bh only - so relying on sk_callback_lock introduces livelocks.
104 */
rds_wake_sk_sleep(struct rds_sock * rs)105 void rds_wake_sk_sleep(struct rds_sock *rs)
106 {
107 unsigned long flags;
108
109 read_lock_irqsave(&rs->rs_recv_lock, flags);
110 __rds_wake_sk_sleep(rds_rs_to_sk(rs));
111 read_unlock_irqrestore(&rs->rs_recv_lock, flags);
112 }
113
rds_getname(struct socket * sock,struct sockaddr * uaddr,int peer)114 static int rds_getname(struct socket *sock, struct sockaddr *uaddr,
115 int peer)
116 {
117 struct rds_sock *rs = rds_sk_to_rs(sock->sk);
118 struct sockaddr_in6 *sin6;
119 struct sockaddr_in *sin;
120 int uaddr_len;
121
122 /* racey, don't care */
123 if (peer) {
124 if (ipv6_addr_any(&rs->rs_conn_addr))
125 return -ENOTCONN;
126
127 if (ipv6_addr_v4mapped(&rs->rs_conn_addr)) {
128 sin = (struct sockaddr_in *)uaddr;
129 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
130 sin->sin_family = AF_INET;
131 sin->sin_port = rs->rs_conn_port;
132 sin->sin_addr.s_addr = rs->rs_conn_addr_v4;
133 uaddr_len = sizeof(*sin);
134 } else {
135 sin6 = (struct sockaddr_in6 *)uaddr;
136 sin6->sin6_family = AF_INET6;
137 sin6->sin6_port = rs->rs_conn_port;
138 sin6->sin6_addr = rs->rs_conn_addr;
139 sin6->sin6_flowinfo = 0;
140 /* scope_id is the same as in the bound address. */
141 sin6->sin6_scope_id = rs->rs_bound_scope_id;
142 uaddr_len = sizeof(*sin6);
143 }
144 } else {
145 /* If socket is not yet bound and the socket is connected,
146 * set the return address family to be the same as the
147 * connected address, but with 0 address value. If it is not
148 * connected, set the family to be AF_UNSPEC (value 0) and
149 * the address size to be that of an IPv4 address.
150 */
151 if (ipv6_addr_any(&rs->rs_bound_addr)) {
152 if (ipv6_addr_any(&rs->rs_conn_addr)) {
153 sin = (struct sockaddr_in *)uaddr;
154 memset(sin, 0, sizeof(*sin));
155 sin->sin_family = AF_UNSPEC;
156 return sizeof(*sin);
157 }
158
159 #if IS_ENABLED(CONFIG_IPV6)
160 if (!(ipv6_addr_type(&rs->rs_conn_addr) &
161 IPV6_ADDR_MAPPED)) {
162 sin6 = (struct sockaddr_in6 *)uaddr;
163 memset(sin6, 0, sizeof(*sin6));
164 sin6->sin6_family = AF_INET6;
165 return sizeof(*sin6);
166 }
167 #endif
168
169 sin = (struct sockaddr_in *)uaddr;
170 memset(sin, 0, sizeof(*sin));
171 sin->sin_family = AF_INET;
172 return sizeof(*sin);
173 }
174 if (ipv6_addr_v4mapped(&rs->rs_bound_addr)) {
175 sin = (struct sockaddr_in *)uaddr;
176 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
177 sin->sin_family = AF_INET;
178 sin->sin_port = rs->rs_bound_port;
179 sin->sin_addr.s_addr = rs->rs_bound_addr_v4;
180 uaddr_len = sizeof(*sin);
181 } else {
182 sin6 = (struct sockaddr_in6 *)uaddr;
183 sin6->sin6_family = AF_INET6;
184 sin6->sin6_port = rs->rs_bound_port;
185 sin6->sin6_addr = rs->rs_bound_addr;
186 sin6->sin6_flowinfo = 0;
187 sin6->sin6_scope_id = rs->rs_bound_scope_id;
188 uaddr_len = sizeof(*sin6);
189 }
190 }
191
192 return uaddr_len;
193 }
194
195 /*
196 * RDS' poll is without a doubt the least intuitive part of the interface,
197 * as EPOLLIN and EPOLLOUT do not behave entirely as you would expect from
198 * a network protocol.
199 *
200 * EPOLLIN is asserted if
201 * - there is data on the receive queue.
202 * - to signal that a previously congested destination may have become
203 * uncongested
204 * - A notification has been queued to the socket (this can be a congestion
205 * update, or a RDMA completion, or a MSG_ZEROCOPY completion).
206 *
207 * EPOLLOUT is asserted if there is room on the send queue. This does not mean
208 * however, that the next sendmsg() call will succeed. If the application tries
209 * to send to a congested destination, the system call may still fail (and
210 * return ENOBUFS).
211 */
rds_poll(struct file * file,struct socket * sock,poll_table * wait)212 static __poll_t rds_poll(struct file *file, struct socket *sock,
213 poll_table *wait)
214 {
215 struct sock *sk = sock->sk;
216 struct rds_sock *rs = rds_sk_to_rs(sk);
217 __poll_t mask = 0;
218 unsigned long flags;
219
220 poll_wait(file, sk_sleep(sk), wait);
221
222 if (rs->rs_seen_congestion)
223 poll_wait(file, &rds_poll_waitq, wait);
224
225 read_lock_irqsave(&rs->rs_recv_lock, flags);
226 if (!rs->rs_cong_monitor) {
227 /* When a congestion map was updated, we signal EPOLLIN for
228 * "historical" reasons. Applications can also poll for
229 * WRBAND instead. */
230 if (rds_cong_updated_since(&rs->rs_cong_track))
231 mask |= (EPOLLIN | EPOLLRDNORM | EPOLLWRBAND);
232 } else {
233 spin_lock(&rs->rs_lock);
234 if (rs->rs_cong_notify)
235 mask |= (EPOLLIN | EPOLLRDNORM);
236 spin_unlock(&rs->rs_lock);
237 }
238 if (!list_empty(&rs->rs_recv_queue) ||
239 !list_empty(&rs->rs_notify_queue) ||
240 !list_empty(&rs->rs_zcookie_queue.zcookie_head))
241 mask |= (EPOLLIN | EPOLLRDNORM);
242 if (rs->rs_snd_bytes < rds_sk_sndbuf(rs))
243 mask |= (EPOLLOUT | EPOLLWRNORM);
244 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
245 mask |= POLLERR;
246 read_unlock_irqrestore(&rs->rs_recv_lock, flags);
247
248 /* clear state any time we wake a seen-congested socket */
249 if (mask)
250 rs->rs_seen_congestion = 0;
251
252 return mask;
253 }
254
rds_ioctl(struct socket * sock,unsigned int cmd,unsigned long arg)255 static int rds_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
256 {
257 return -ENOIOCTLCMD;
258 }
259
rds_cancel_sent_to(struct rds_sock * rs,char __user * optval,int len)260 static int rds_cancel_sent_to(struct rds_sock *rs, char __user *optval,
261 int len)
262 {
263 struct sockaddr_in6 sin6;
264 struct sockaddr_in sin;
265 int ret = 0;
266
267 /* racing with another thread binding seems ok here */
268 if (ipv6_addr_any(&rs->rs_bound_addr)) {
269 ret = -ENOTCONN; /* XXX not a great errno */
270 goto out;
271 }
272
273 if (len < sizeof(struct sockaddr_in)) {
274 ret = -EINVAL;
275 goto out;
276 } else if (len < sizeof(struct sockaddr_in6)) {
277 /* Assume IPv4 */
278 if (copy_from_user(&sin, optval, sizeof(struct sockaddr_in))) {
279 ret = -EFAULT;
280 goto out;
281 }
282 ipv6_addr_set_v4mapped(sin.sin_addr.s_addr, &sin6.sin6_addr);
283 sin6.sin6_port = sin.sin_port;
284 } else {
285 if (copy_from_user(&sin6, optval,
286 sizeof(struct sockaddr_in6))) {
287 ret = -EFAULT;
288 goto out;
289 }
290 }
291
292 rds_send_drop_to(rs, &sin6);
293 out:
294 return ret;
295 }
296
rds_set_bool_option(unsigned char * optvar,char __user * optval,int optlen)297 static int rds_set_bool_option(unsigned char *optvar, char __user *optval,
298 int optlen)
299 {
300 int value;
301
302 if (optlen < sizeof(int))
303 return -EINVAL;
304 if (get_user(value, (int __user *) optval))
305 return -EFAULT;
306 *optvar = !!value;
307 return 0;
308 }
309
rds_cong_monitor(struct rds_sock * rs,char __user * optval,int optlen)310 static int rds_cong_monitor(struct rds_sock *rs, char __user *optval,
311 int optlen)
312 {
313 int ret;
314
315 ret = rds_set_bool_option(&rs->rs_cong_monitor, optval, optlen);
316 if (ret == 0) {
317 if (rs->rs_cong_monitor) {
318 rds_cong_add_socket(rs);
319 } else {
320 rds_cong_remove_socket(rs);
321 rs->rs_cong_mask = 0;
322 rs->rs_cong_notify = 0;
323 }
324 }
325 return ret;
326 }
327
rds_set_transport(struct rds_sock * rs,char __user * optval,int optlen)328 static int rds_set_transport(struct rds_sock *rs, char __user *optval,
329 int optlen)
330 {
331 int t_type;
332
333 if (rs->rs_transport)
334 return -EOPNOTSUPP; /* previously attached to transport */
335
336 if (optlen != sizeof(int))
337 return -EINVAL;
338
339 if (copy_from_user(&t_type, (int __user *)optval, sizeof(t_type)))
340 return -EFAULT;
341
342 if (t_type < 0 || t_type >= RDS_TRANS_COUNT)
343 return -EINVAL;
344
345 rs->rs_transport = rds_trans_get(t_type);
346
347 return rs->rs_transport ? 0 : -ENOPROTOOPT;
348 }
349
rds_enable_recvtstamp(struct sock * sk,char __user * optval,int optlen)350 static int rds_enable_recvtstamp(struct sock *sk, char __user *optval,
351 int optlen)
352 {
353 int val, valbool;
354
355 if (optlen != sizeof(int))
356 return -EFAULT;
357
358 if (get_user(val, (int __user *)optval))
359 return -EFAULT;
360
361 valbool = val ? 1 : 0;
362
363 if (valbool)
364 sock_set_flag(sk, SOCK_RCVTSTAMP);
365 else
366 sock_reset_flag(sk, SOCK_RCVTSTAMP);
367
368 return 0;
369 }
370
rds_recv_track_latency(struct rds_sock * rs,char __user * optval,int optlen)371 static int rds_recv_track_latency(struct rds_sock *rs, char __user *optval,
372 int optlen)
373 {
374 struct rds_rx_trace_so trace;
375 int i;
376
377 if (optlen != sizeof(struct rds_rx_trace_so))
378 return -EFAULT;
379
380 if (copy_from_user(&trace, optval, sizeof(trace)))
381 return -EFAULT;
382
383 if (trace.rx_traces > RDS_MSG_RX_DGRAM_TRACE_MAX)
384 return -EFAULT;
385
386 rs->rs_rx_traces = trace.rx_traces;
387 for (i = 0; i < rs->rs_rx_traces; i++) {
388 if (trace.rx_trace_pos[i] > RDS_MSG_RX_DGRAM_TRACE_MAX) {
389 rs->rs_rx_traces = 0;
390 return -EFAULT;
391 }
392 rs->rs_rx_trace[i] = trace.rx_trace_pos[i];
393 }
394
395 return 0;
396 }
397
rds_setsockopt(struct socket * sock,int level,int optname,char __user * optval,unsigned int optlen)398 static int rds_setsockopt(struct socket *sock, int level, int optname,
399 char __user *optval, unsigned int optlen)
400 {
401 struct rds_sock *rs = rds_sk_to_rs(sock->sk);
402 int ret;
403
404 if (level != SOL_RDS) {
405 ret = -ENOPROTOOPT;
406 goto out;
407 }
408
409 switch (optname) {
410 case RDS_CANCEL_SENT_TO:
411 ret = rds_cancel_sent_to(rs, optval, optlen);
412 break;
413 case RDS_GET_MR:
414 ret = rds_get_mr(rs, optval, optlen);
415 break;
416 case RDS_GET_MR_FOR_DEST:
417 ret = rds_get_mr_for_dest(rs, optval, optlen);
418 break;
419 case RDS_FREE_MR:
420 ret = rds_free_mr(rs, optval, optlen);
421 break;
422 case RDS_RECVERR:
423 ret = rds_set_bool_option(&rs->rs_recverr, optval, optlen);
424 break;
425 case RDS_CONG_MONITOR:
426 ret = rds_cong_monitor(rs, optval, optlen);
427 break;
428 case SO_RDS_TRANSPORT:
429 lock_sock(sock->sk);
430 ret = rds_set_transport(rs, optval, optlen);
431 release_sock(sock->sk);
432 break;
433 case SO_TIMESTAMP:
434 lock_sock(sock->sk);
435 ret = rds_enable_recvtstamp(sock->sk, optval, optlen);
436 release_sock(sock->sk);
437 break;
438 case SO_RDS_MSG_RXPATH_LATENCY:
439 ret = rds_recv_track_latency(rs, optval, optlen);
440 break;
441 default:
442 ret = -ENOPROTOOPT;
443 }
444 out:
445 return ret;
446 }
447
rds_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)448 static int rds_getsockopt(struct socket *sock, int level, int optname,
449 char __user *optval, int __user *optlen)
450 {
451 struct rds_sock *rs = rds_sk_to_rs(sock->sk);
452 int ret = -ENOPROTOOPT, len;
453 int trans;
454
455 if (level != SOL_RDS)
456 goto out;
457
458 if (get_user(len, optlen)) {
459 ret = -EFAULT;
460 goto out;
461 }
462
463 switch (optname) {
464 case RDS_INFO_FIRST ... RDS_INFO_LAST:
465 ret = rds_info_getsockopt(sock, optname, optval,
466 optlen);
467 break;
468
469 case RDS_RECVERR:
470 if (len < sizeof(int))
471 ret = -EINVAL;
472 else
473 if (put_user(rs->rs_recverr, (int __user *) optval) ||
474 put_user(sizeof(int), optlen))
475 ret = -EFAULT;
476 else
477 ret = 0;
478 break;
479 case SO_RDS_TRANSPORT:
480 if (len < sizeof(int)) {
481 ret = -EINVAL;
482 break;
483 }
484 trans = (rs->rs_transport ? rs->rs_transport->t_type :
485 RDS_TRANS_NONE); /* unbound */
486 if (put_user(trans, (int __user *)optval) ||
487 put_user(sizeof(int), optlen))
488 ret = -EFAULT;
489 else
490 ret = 0;
491 break;
492 default:
493 break;
494 }
495
496 out:
497 return ret;
498
499 }
500
rds_connect(struct socket * sock,struct sockaddr * uaddr,int addr_len,int flags)501 static int rds_connect(struct socket *sock, struct sockaddr *uaddr,
502 int addr_len, int flags)
503 {
504 struct sock *sk = sock->sk;
505 struct sockaddr_in *sin;
506 struct rds_sock *rs = rds_sk_to_rs(sk);
507 int ret = 0;
508
509 lock_sock(sk);
510
511 switch (uaddr->sa_family) {
512 case AF_INET:
513 sin = (struct sockaddr_in *)uaddr;
514 if (addr_len < sizeof(struct sockaddr_in)) {
515 ret = -EINVAL;
516 break;
517 }
518 if (sin->sin_addr.s_addr == htonl(INADDR_ANY)) {
519 ret = -EDESTADDRREQ;
520 break;
521 }
522 if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) ||
523 sin->sin_addr.s_addr == htonl(INADDR_BROADCAST)) {
524 ret = -EINVAL;
525 break;
526 }
527 ipv6_addr_set_v4mapped(sin->sin_addr.s_addr, &rs->rs_conn_addr);
528 rs->rs_conn_port = sin->sin_port;
529 break;
530
531 #if IS_ENABLED(CONFIG_IPV6)
532 case AF_INET6: {
533 struct sockaddr_in6 *sin6;
534 int addr_type;
535
536 sin6 = (struct sockaddr_in6 *)uaddr;
537 if (addr_len < sizeof(struct sockaddr_in6)) {
538 ret = -EINVAL;
539 break;
540 }
541 addr_type = ipv6_addr_type(&sin6->sin6_addr);
542 if (!(addr_type & IPV6_ADDR_UNICAST)) {
543 __be32 addr4;
544
545 if (!(addr_type & IPV6_ADDR_MAPPED)) {
546 ret = -EPROTOTYPE;
547 break;
548 }
549
550 /* It is a mapped address. Need to do some sanity
551 * checks.
552 */
553 addr4 = sin6->sin6_addr.s6_addr32[3];
554 if (addr4 == htonl(INADDR_ANY) ||
555 addr4 == htonl(INADDR_BROADCAST) ||
556 IN_MULTICAST(ntohl(addr4))) {
557 ret = -EPROTOTYPE;
558 break;
559 }
560 }
561
562 if (addr_type & IPV6_ADDR_LINKLOCAL) {
563 /* If socket is arleady bound to a link local address,
564 * the peer address must be on the same link.
565 */
566 if (sin6->sin6_scope_id == 0 ||
567 (!ipv6_addr_any(&rs->rs_bound_addr) &&
568 rs->rs_bound_scope_id &&
569 sin6->sin6_scope_id != rs->rs_bound_scope_id)) {
570 ret = -EINVAL;
571 break;
572 }
573 /* Remember the connected address scope ID. It will
574 * be checked against the binding local address when
575 * the socket is bound.
576 */
577 rs->rs_bound_scope_id = sin6->sin6_scope_id;
578 }
579 rs->rs_conn_addr = sin6->sin6_addr;
580 rs->rs_conn_port = sin6->sin6_port;
581 break;
582 }
583 #endif
584
585 default:
586 ret = -EAFNOSUPPORT;
587 break;
588 }
589
590 release_sock(sk);
591 return ret;
592 }
593
594 static struct proto rds_proto = {
595 .name = "RDS",
596 .owner = THIS_MODULE,
597 .obj_size = sizeof(struct rds_sock),
598 };
599
600 static const struct proto_ops rds_proto_ops = {
601 .family = AF_RDS,
602 .owner = THIS_MODULE,
603 .release = rds_release,
604 .bind = rds_bind,
605 .connect = rds_connect,
606 .socketpair = sock_no_socketpair,
607 .accept = sock_no_accept,
608 .getname = rds_getname,
609 .poll = rds_poll,
610 .ioctl = rds_ioctl,
611 .listen = sock_no_listen,
612 .shutdown = sock_no_shutdown,
613 .setsockopt = rds_setsockopt,
614 .getsockopt = rds_getsockopt,
615 .sendmsg = rds_sendmsg,
616 .recvmsg = rds_recvmsg,
617 .mmap = sock_no_mmap,
618 .sendpage = sock_no_sendpage,
619 };
620
rds_sock_destruct(struct sock * sk)621 static void rds_sock_destruct(struct sock *sk)
622 {
623 struct rds_sock *rs = rds_sk_to_rs(sk);
624
625 WARN_ON((&rs->rs_item != rs->rs_item.next ||
626 &rs->rs_item != rs->rs_item.prev));
627 }
628
__rds_create(struct socket * sock,struct sock * sk,int protocol)629 static int __rds_create(struct socket *sock, struct sock *sk, int protocol)
630 {
631 struct rds_sock *rs;
632
633 sock_init_data(sock, sk);
634 sock->ops = &rds_proto_ops;
635 sk->sk_protocol = protocol;
636 sk->sk_destruct = rds_sock_destruct;
637
638 rs = rds_sk_to_rs(sk);
639 spin_lock_init(&rs->rs_lock);
640 rwlock_init(&rs->rs_recv_lock);
641 INIT_LIST_HEAD(&rs->rs_send_queue);
642 INIT_LIST_HEAD(&rs->rs_recv_queue);
643 INIT_LIST_HEAD(&rs->rs_notify_queue);
644 INIT_LIST_HEAD(&rs->rs_cong_list);
645 rds_message_zcopy_queue_init(&rs->rs_zcookie_queue);
646 spin_lock_init(&rs->rs_rdma_lock);
647 rs->rs_rdma_keys = RB_ROOT;
648 rs->rs_rx_traces = 0;
649
650 spin_lock_bh(&rds_sock_lock);
651 list_add_tail(&rs->rs_item, &rds_sock_list);
652 rds_sock_count++;
653 spin_unlock_bh(&rds_sock_lock);
654
655 return 0;
656 }
657
rds_create(struct net * net,struct socket * sock,int protocol,int kern)658 static int rds_create(struct net *net, struct socket *sock, int protocol,
659 int kern)
660 {
661 struct sock *sk;
662
663 if (sock->type != SOCK_SEQPACKET || protocol)
664 return -ESOCKTNOSUPPORT;
665
666 sk = sk_alloc(net, AF_RDS, GFP_ATOMIC, &rds_proto, kern);
667 if (!sk)
668 return -ENOMEM;
669
670 return __rds_create(sock, sk, protocol);
671 }
672
rds_sock_addref(struct rds_sock * rs)673 void rds_sock_addref(struct rds_sock *rs)
674 {
675 sock_hold(rds_rs_to_sk(rs));
676 }
677
rds_sock_put(struct rds_sock * rs)678 void rds_sock_put(struct rds_sock *rs)
679 {
680 sock_put(rds_rs_to_sk(rs));
681 }
682
683 static const struct net_proto_family rds_family_ops = {
684 .family = AF_RDS,
685 .create = rds_create,
686 .owner = THIS_MODULE,
687 };
688
rds_sock_inc_info(struct socket * sock,unsigned int len,struct rds_info_iterator * iter,struct rds_info_lengths * lens)689 static void rds_sock_inc_info(struct socket *sock, unsigned int len,
690 struct rds_info_iterator *iter,
691 struct rds_info_lengths *lens)
692 {
693 struct rds_sock *rs;
694 struct rds_incoming *inc;
695 unsigned int total = 0;
696
697 len /= sizeof(struct rds_info_message);
698
699 spin_lock_bh(&rds_sock_lock);
700
701 list_for_each_entry(rs, &rds_sock_list, rs_item) {
702 read_lock(&rs->rs_recv_lock);
703
704 /* XXX too lazy to maintain counts.. */
705 list_for_each_entry(inc, &rs->rs_recv_queue, i_item) {
706 total++;
707 if (total <= len)
708 rds_inc_info_copy(inc, iter,
709 inc->i_saddr.s6_addr32[3],
710 rs->rs_bound_addr_v4,
711 1);
712 }
713
714 read_unlock(&rs->rs_recv_lock);
715 }
716
717 spin_unlock_bh(&rds_sock_lock);
718
719 lens->nr = total;
720 lens->each = sizeof(struct rds_info_message);
721 }
722
rds_sock_info(struct socket * sock,unsigned int len,struct rds_info_iterator * iter,struct rds_info_lengths * lens)723 static void rds_sock_info(struct socket *sock, unsigned int len,
724 struct rds_info_iterator *iter,
725 struct rds_info_lengths *lens)
726 {
727 struct rds_info_socket sinfo;
728 struct rds_sock *rs;
729
730 len /= sizeof(struct rds_info_socket);
731
732 spin_lock_bh(&rds_sock_lock);
733
734 if (len < rds_sock_count)
735 goto out;
736
737 list_for_each_entry(rs, &rds_sock_list, rs_item) {
738 sinfo.sndbuf = rds_sk_sndbuf(rs);
739 sinfo.rcvbuf = rds_sk_rcvbuf(rs);
740 sinfo.bound_addr = rs->rs_bound_addr_v4;
741 sinfo.connected_addr = rs->rs_conn_addr_v4;
742 sinfo.bound_port = rs->rs_bound_port;
743 sinfo.connected_port = rs->rs_conn_port;
744 sinfo.inum = sock_i_ino(rds_rs_to_sk(rs));
745
746 rds_info_copy(iter, &sinfo, sizeof(sinfo));
747 }
748
749 out:
750 lens->nr = rds_sock_count;
751 lens->each = sizeof(struct rds_info_socket);
752
753 spin_unlock_bh(&rds_sock_lock);
754 }
755
rds_exit(void)756 static void rds_exit(void)
757 {
758 sock_unregister(rds_family_ops.family);
759 proto_unregister(&rds_proto);
760 rds_conn_exit();
761 rds_cong_exit();
762 rds_sysctl_exit();
763 rds_threads_exit();
764 rds_stats_exit();
765 rds_page_exit();
766 rds_bind_lock_destroy();
767 rds_info_deregister_func(RDS_INFO_SOCKETS, rds_sock_info);
768 rds_info_deregister_func(RDS_INFO_RECV_MESSAGES, rds_sock_inc_info);
769 }
770 module_exit(rds_exit);
771
772 u32 rds_gen_num;
773
rds_init(void)774 static int rds_init(void)
775 {
776 int ret;
777
778 net_get_random_once(&rds_gen_num, sizeof(rds_gen_num));
779
780 ret = rds_bind_lock_init();
781 if (ret)
782 goto out;
783
784 ret = rds_conn_init();
785 if (ret)
786 goto out_bind;
787
788 ret = rds_threads_init();
789 if (ret)
790 goto out_conn;
791 ret = rds_sysctl_init();
792 if (ret)
793 goto out_threads;
794 ret = rds_stats_init();
795 if (ret)
796 goto out_sysctl;
797 ret = proto_register(&rds_proto, 1);
798 if (ret)
799 goto out_stats;
800 ret = sock_register(&rds_family_ops);
801 if (ret)
802 goto out_proto;
803
804 rds_info_register_func(RDS_INFO_SOCKETS, rds_sock_info);
805 rds_info_register_func(RDS_INFO_RECV_MESSAGES, rds_sock_inc_info);
806
807 goto out;
808
809 out_proto:
810 proto_unregister(&rds_proto);
811 out_stats:
812 rds_stats_exit();
813 out_sysctl:
814 rds_sysctl_exit();
815 out_threads:
816 rds_threads_exit();
817 out_conn:
818 rds_conn_exit();
819 rds_cong_exit();
820 rds_page_exit();
821 out_bind:
822 rds_bind_lock_destroy();
823 out:
824 return ret;
825 }
826 module_init(rds_init);
827
828 #define DRV_VERSION "4.0"
829 #define DRV_RELDATE "Feb 12, 2009"
830
831 MODULE_AUTHOR("Oracle Corporation <rds-devel@oss.oracle.com>");
832 MODULE_DESCRIPTION("RDS: Reliable Datagram Sockets"
833 " v" DRV_VERSION " (" DRV_RELDATE ")");
834 MODULE_VERSION(DRV_VERSION);
835 MODULE_LICENSE("Dual BSD/GPL");
836 MODULE_ALIAS_NETPROTO(PF_RDS);
837