1 /*
2  * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
3  * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
4  * Copyright (c) 2004 Intel Corporation.  All rights reserved.
5  * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
6  * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
7  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8  * Copyright (c) 2005, 2006, 2007 Cisco Systems.  All rights reserved.
9  *
10  * This software is available to you under a choice of one of two
11  * licenses.  You may choose to be licensed under the terms of the GNU
12  * General Public License (GPL) Version 2, available from the file
13  * COPYING in the main directory of this source tree, or the
14  * OpenIB.org BSD license below:
15  *
16  *     Redistribution and use in source and binary forms, with or
17  *     without modification, are permitted provided that the following
18  *     conditions are met:
19  *
20  *      - Redistributions of source code must retain the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer.
23  *
24  *      - Redistributions in binary form must reproduce the above
25  *        copyright notice, this list of conditions and the following
26  *        disclaimer in the documentation and/or other materials
27  *        provided with the distribution.
28  *
29  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36  * SOFTWARE.
37  */
38 
39 #if !defined(IB_VERBS_H)
40 #define IB_VERBS_H
41 
42 #include <linux/types.h>
43 #include <linux/device.h>
44 #include <linux/dma-mapping.h>
45 #include <linux/kref.h>
46 #include <linux/list.h>
47 #include <linux/rwsem.h>
48 #include <linux/workqueue.h>
49 #include <linux/irq_poll.h>
50 #include <uapi/linux/if_ether.h>
51 #include <net/ipv6.h>
52 #include <net/ip.h>
53 #include <linux/string.h>
54 #include <linux/slab.h>
55 #include <linux/netdevice.h>
56 #include <linux/refcount.h>
57 #include <linux/if_link.h>
58 #include <linux/atomic.h>
59 #include <linux/mmu_notifier.h>
60 #include <linux/uaccess.h>
61 #include <linux/cgroup_rdma.h>
62 #include <linux/irqflags.h>
63 #include <linux/preempt.h>
64 #include <linux/dim.h>
65 #include <uapi/rdma/ib_user_verbs.h>
66 #include <rdma/rdma_counter.h>
67 #include <rdma/restrack.h>
68 #include <rdma/signature.h>
69 #include <uapi/rdma/rdma_user_ioctl.h>
70 #include <uapi/rdma/ib_user_ioctl_verbs.h>
71 
72 #define IB_FW_VERSION_NAME_MAX	ETHTOOL_FWVERS_LEN
73 
74 struct ib_umem_odp;
75 
76 extern struct workqueue_struct *ib_wq;
77 extern struct workqueue_struct *ib_comp_wq;
78 extern struct workqueue_struct *ib_comp_unbound_wq;
79 
80 __printf(3, 4) __cold
81 void ibdev_printk(const char *level, const struct ib_device *ibdev,
82 		  const char *format, ...);
83 __printf(2, 3) __cold
84 void ibdev_emerg(const struct ib_device *ibdev, const char *format, ...);
85 __printf(2, 3) __cold
86 void ibdev_alert(const struct ib_device *ibdev, const char *format, ...);
87 __printf(2, 3) __cold
88 void ibdev_crit(const struct ib_device *ibdev, const char *format, ...);
89 __printf(2, 3) __cold
90 void ibdev_err(const struct ib_device *ibdev, const char *format, ...);
91 __printf(2, 3) __cold
92 void ibdev_warn(const struct ib_device *ibdev, const char *format, ...);
93 __printf(2, 3) __cold
94 void ibdev_notice(const struct ib_device *ibdev, const char *format, ...);
95 __printf(2, 3) __cold
96 void ibdev_info(const struct ib_device *ibdev, const char *format, ...);
97 
98 #if defined(CONFIG_DYNAMIC_DEBUG)
99 #define ibdev_dbg(__dev, format, args...)                       \
100 	dynamic_ibdev_dbg(__dev, format, ##args)
101 #else
102 __printf(2, 3) __cold
103 static inline
ibdev_dbg(const struct ib_device * ibdev,const char * format,...)104 void ibdev_dbg(const struct ib_device *ibdev, const char *format, ...) {}
105 #endif
106 
107 #define ibdev_level_ratelimited(ibdev_level, ibdev, fmt, ...)           \
108 do {                                                                    \
109 	static DEFINE_RATELIMIT_STATE(_rs,                              \
110 				      DEFAULT_RATELIMIT_INTERVAL,       \
111 				      DEFAULT_RATELIMIT_BURST);         \
112 	if (__ratelimit(&_rs))                                          \
113 		ibdev_level(ibdev, fmt, ##__VA_ARGS__);                 \
114 } while (0)
115 
116 #define ibdev_emerg_ratelimited(ibdev, fmt, ...) \
117 	ibdev_level_ratelimited(ibdev_emerg, ibdev, fmt, ##__VA_ARGS__)
118 #define ibdev_alert_ratelimited(ibdev, fmt, ...) \
119 	ibdev_level_ratelimited(ibdev_alert, ibdev, fmt, ##__VA_ARGS__)
120 #define ibdev_crit_ratelimited(ibdev, fmt, ...) \
121 	ibdev_level_ratelimited(ibdev_crit, ibdev, fmt, ##__VA_ARGS__)
122 #define ibdev_err_ratelimited(ibdev, fmt, ...) \
123 	ibdev_level_ratelimited(ibdev_err, ibdev, fmt, ##__VA_ARGS__)
124 #define ibdev_warn_ratelimited(ibdev, fmt, ...) \
125 	ibdev_level_ratelimited(ibdev_warn, ibdev, fmt, ##__VA_ARGS__)
126 #define ibdev_notice_ratelimited(ibdev, fmt, ...) \
127 	ibdev_level_ratelimited(ibdev_notice, ibdev, fmt, ##__VA_ARGS__)
128 #define ibdev_info_ratelimited(ibdev, fmt, ...) \
129 	ibdev_level_ratelimited(ibdev_info, ibdev, fmt, ##__VA_ARGS__)
130 
131 #if defined(CONFIG_DYNAMIC_DEBUG)
132 /* descriptor check is first to prevent flooding with "callbacks suppressed" */
133 #define ibdev_dbg_ratelimited(ibdev, fmt, ...)                          \
134 do {                                                                    \
135 	static DEFINE_RATELIMIT_STATE(_rs,                              \
136 				      DEFAULT_RATELIMIT_INTERVAL,       \
137 				      DEFAULT_RATELIMIT_BURST);         \
138 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, fmt);                 \
139 	if (DYNAMIC_DEBUG_BRANCH(descriptor) && __ratelimit(&_rs))      \
140 		__dynamic_ibdev_dbg(&descriptor, ibdev, fmt,            \
141 				    ##__VA_ARGS__);                     \
142 } while (0)
143 #else
144 __printf(2, 3) __cold
145 static inline
ibdev_dbg_ratelimited(const struct ib_device * ibdev,const char * format,...)146 void ibdev_dbg_ratelimited(const struct ib_device *ibdev, const char *format, ...) {}
147 #endif
148 
149 union ib_gid {
150 	u8	raw[16];
151 	struct {
152 		__be64	subnet_prefix;
153 		__be64	interface_id;
154 	} global;
155 };
156 
157 extern union ib_gid zgid;
158 
159 enum ib_gid_type {
160 	/* If link layer is Ethernet, this is RoCE V1 */
161 	IB_GID_TYPE_IB        = 0,
162 	IB_GID_TYPE_ROCE      = 0,
163 	IB_GID_TYPE_ROCE_UDP_ENCAP = 1,
164 	IB_GID_TYPE_SIZE
165 };
166 
167 #define ROCE_V2_UDP_DPORT      4791
168 struct ib_gid_attr {
169 	struct net_device __rcu	*ndev;
170 	struct ib_device	*device;
171 	union ib_gid		gid;
172 	enum ib_gid_type	gid_type;
173 	u16			index;
174 	u8			port_num;
175 };
176 
177 enum {
178 	/* set the local administered indication */
179 	IB_SA_WELL_KNOWN_GUID	= BIT_ULL(57) | 2,
180 };
181 
182 enum rdma_transport_type {
183 	RDMA_TRANSPORT_IB,
184 	RDMA_TRANSPORT_IWARP,
185 	RDMA_TRANSPORT_USNIC,
186 	RDMA_TRANSPORT_USNIC_UDP,
187 	RDMA_TRANSPORT_UNSPECIFIED,
188 };
189 
190 enum rdma_protocol_type {
191 	RDMA_PROTOCOL_IB,
192 	RDMA_PROTOCOL_IBOE,
193 	RDMA_PROTOCOL_IWARP,
194 	RDMA_PROTOCOL_USNIC_UDP
195 };
196 
197 __attribute_const__ enum rdma_transport_type
198 rdma_node_get_transport(unsigned int node_type);
199 
200 enum rdma_network_type {
201 	RDMA_NETWORK_IB,
202 	RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB,
203 	RDMA_NETWORK_IPV4,
204 	RDMA_NETWORK_IPV6
205 };
206 
ib_network_to_gid_type(enum rdma_network_type network_type)207 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
208 {
209 	if (network_type == RDMA_NETWORK_IPV4 ||
210 	    network_type == RDMA_NETWORK_IPV6)
211 		return IB_GID_TYPE_ROCE_UDP_ENCAP;
212 
213 	/* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */
214 	return IB_GID_TYPE_IB;
215 }
216 
217 static inline enum rdma_network_type
rdma_gid_attr_network_type(const struct ib_gid_attr * attr)218 rdma_gid_attr_network_type(const struct ib_gid_attr *attr)
219 {
220 	if (attr->gid_type == IB_GID_TYPE_IB)
221 		return RDMA_NETWORK_IB;
222 
223 	if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid))
224 		return RDMA_NETWORK_IPV4;
225 	else
226 		return RDMA_NETWORK_IPV6;
227 }
228 
229 enum rdma_link_layer {
230 	IB_LINK_LAYER_UNSPECIFIED,
231 	IB_LINK_LAYER_INFINIBAND,
232 	IB_LINK_LAYER_ETHERNET,
233 };
234 
235 enum ib_device_cap_flags {
236 	IB_DEVICE_RESIZE_MAX_WR			= (1 << 0),
237 	IB_DEVICE_BAD_PKEY_CNTR			= (1 << 1),
238 	IB_DEVICE_BAD_QKEY_CNTR			= (1 << 2),
239 	IB_DEVICE_RAW_MULTI			= (1 << 3),
240 	IB_DEVICE_AUTO_PATH_MIG			= (1 << 4),
241 	IB_DEVICE_CHANGE_PHY_PORT		= (1 << 5),
242 	IB_DEVICE_UD_AV_PORT_ENFORCE		= (1 << 6),
243 	IB_DEVICE_CURR_QP_STATE_MOD		= (1 << 7),
244 	IB_DEVICE_SHUTDOWN_PORT			= (1 << 8),
245 	/* Not in use, former INIT_TYPE		= (1 << 9),*/
246 	IB_DEVICE_PORT_ACTIVE_EVENT		= (1 << 10),
247 	IB_DEVICE_SYS_IMAGE_GUID		= (1 << 11),
248 	IB_DEVICE_RC_RNR_NAK_GEN		= (1 << 12),
249 	IB_DEVICE_SRQ_RESIZE			= (1 << 13),
250 	IB_DEVICE_N_NOTIFY_CQ			= (1 << 14),
251 
252 	/*
253 	 * This device supports a per-device lkey or stag that can be
254 	 * used without performing a memory registration for the local
255 	 * memory.  Note that ULPs should never check this flag, but
256 	 * instead of use the local_dma_lkey flag in the ib_pd structure,
257 	 * which will always contain a usable lkey.
258 	 */
259 	IB_DEVICE_LOCAL_DMA_LKEY		= (1 << 15),
260 	/* Reserved, old SEND_W_INV		= (1 << 16),*/
261 	IB_DEVICE_MEM_WINDOW			= (1 << 17),
262 	/*
263 	 * Devices should set IB_DEVICE_UD_IP_SUM if they support
264 	 * insertion of UDP and TCP checksum on outgoing UD IPoIB
265 	 * messages and can verify the validity of checksum for
266 	 * incoming messages.  Setting this flag implies that the
267 	 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
268 	 */
269 	IB_DEVICE_UD_IP_CSUM			= (1 << 18),
270 	IB_DEVICE_UD_TSO			= (1 << 19),
271 	IB_DEVICE_XRC				= (1 << 20),
272 
273 	/*
274 	 * This device supports the IB "base memory management extension",
275 	 * which includes support for fast registrations (IB_WR_REG_MR,
276 	 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs).  This flag should
277 	 * also be set by any iWarp device which must support FRs to comply
278 	 * to the iWarp verbs spec.  iWarp devices also support the
279 	 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
280 	 * stag.
281 	 */
282 	IB_DEVICE_MEM_MGT_EXTENSIONS		= (1 << 21),
283 	IB_DEVICE_BLOCK_MULTICAST_LOOPBACK	= (1 << 22),
284 	IB_DEVICE_MEM_WINDOW_TYPE_2A		= (1 << 23),
285 	IB_DEVICE_MEM_WINDOW_TYPE_2B		= (1 << 24),
286 	IB_DEVICE_RC_IP_CSUM			= (1 << 25),
287 	/* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */
288 	IB_DEVICE_RAW_IP_CSUM			= (1 << 26),
289 	/*
290 	 * Devices should set IB_DEVICE_CROSS_CHANNEL if they
291 	 * support execution of WQEs that involve synchronization
292 	 * of I/O operations with single completion queue managed
293 	 * by hardware.
294 	 */
295 	IB_DEVICE_CROSS_CHANNEL			= (1 << 27),
296 	IB_DEVICE_MANAGED_FLOW_STEERING		= (1 << 29),
297 	IB_DEVICE_INTEGRITY_HANDOVER		= (1 << 30),
298 	IB_DEVICE_ON_DEMAND_PAGING		= (1ULL << 31),
299 	IB_DEVICE_SG_GAPS_REG			= (1ULL << 32),
300 	IB_DEVICE_VIRTUAL_FUNCTION		= (1ULL << 33),
301 	/* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */
302 	IB_DEVICE_RAW_SCATTER_FCS		= (1ULL << 34),
303 	IB_DEVICE_RDMA_NETDEV_OPA_VNIC		= (1ULL << 35),
304 	/* The device supports padding incoming writes to cacheline. */
305 	IB_DEVICE_PCI_WRITE_END_PADDING		= (1ULL << 36),
306 	IB_DEVICE_ALLOW_USER_UNREG		= (1ULL << 37),
307 };
308 
309 enum ib_atomic_cap {
310 	IB_ATOMIC_NONE,
311 	IB_ATOMIC_HCA,
312 	IB_ATOMIC_GLOB
313 };
314 
315 enum ib_odp_general_cap_bits {
316 	IB_ODP_SUPPORT		= 1 << 0,
317 	IB_ODP_SUPPORT_IMPLICIT = 1 << 1,
318 };
319 
320 enum ib_odp_transport_cap_bits {
321 	IB_ODP_SUPPORT_SEND	= 1 << 0,
322 	IB_ODP_SUPPORT_RECV	= 1 << 1,
323 	IB_ODP_SUPPORT_WRITE	= 1 << 2,
324 	IB_ODP_SUPPORT_READ	= 1 << 3,
325 	IB_ODP_SUPPORT_ATOMIC	= 1 << 4,
326 	IB_ODP_SUPPORT_SRQ_RECV	= 1 << 5,
327 };
328 
329 struct ib_odp_caps {
330 	uint64_t general_caps;
331 	struct {
332 		uint32_t  rc_odp_caps;
333 		uint32_t  uc_odp_caps;
334 		uint32_t  ud_odp_caps;
335 		uint32_t  xrc_odp_caps;
336 	} per_transport_caps;
337 };
338 
339 struct ib_rss_caps {
340 	/* Corresponding bit will be set if qp type from
341 	 * 'enum ib_qp_type' is supported, e.g.
342 	 * supported_qpts |= 1 << IB_QPT_UD
343 	 */
344 	u32 supported_qpts;
345 	u32 max_rwq_indirection_tables;
346 	u32 max_rwq_indirection_table_size;
347 };
348 
349 enum ib_tm_cap_flags {
350 	/*  Support tag matching with rendezvous offload for RC transport */
351 	IB_TM_CAP_RNDV_RC = 1 << 0,
352 };
353 
354 struct ib_tm_caps {
355 	/* Max size of RNDV header */
356 	u32 max_rndv_hdr_size;
357 	/* Max number of entries in tag matching list */
358 	u32 max_num_tags;
359 	/* From enum ib_tm_cap_flags */
360 	u32 flags;
361 	/* Max number of outstanding list operations */
362 	u32 max_ops;
363 	/* Max number of SGE in tag matching entry */
364 	u32 max_sge;
365 };
366 
367 struct ib_cq_init_attr {
368 	unsigned int	cqe;
369 	u32		comp_vector;
370 	u32		flags;
371 };
372 
373 enum ib_cq_attr_mask {
374 	IB_CQ_MODERATE = 1 << 0,
375 };
376 
377 struct ib_cq_caps {
378 	u16     max_cq_moderation_count;
379 	u16     max_cq_moderation_period;
380 };
381 
382 struct ib_dm_mr_attr {
383 	u64		length;
384 	u64		offset;
385 	u32		access_flags;
386 };
387 
388 struct ib_dm_alloc_attr {
389 	u64	length;
390 	u32	alignment;
391 	u32	flags;
392 };
393 
394 struct ib_device_attr {
395 	u64			fw_ver;
396 	__be64			sys_image_guid;
397 	u64			max_mr_size;
398 	u64			page_size_cap;
399 	u32			vendor_id;
400 	u32			vendor_part_id;
401 	u32			hw_ver;
402 	int			max_qp;
403 	int			max_qp_wr;
404 	u64			device_cap_flags;
405 	int			max_send_sge;
406 	int			max_recv_sge;
407 	int			max_sge_rd;
408 	int			max_cq;
409 	int			max_cqe;
410 	int			max_mr;
411 	int			max_pd;
412 	int			max_qp_rd_atom;
413 	int			max_ee_rd_atom;
414 	int			max_res_rd_atom;
415 	int			max_qp_init_rd_atom;
416 	int			max_ee_init_rd_atom;
417 	enum ib_atomic_cap	atomic_cap;
418 	enum ib_atomic_cap	masked_atomic_cap;
419 	int			max_ee;
420 	int			max_rdd;
421 	int			max_mw;
422 	int			max_raw_ipv6_qp;
423 	int			max_raw_ethy_qp;
424 	int			max_mcast_grp;
425 	int			max_mcast_qp_attach;
426 	int			max_total_mcast_qp_attach;
427 	int			max_ah;
428 	int			max_fmr;
429 	int			max_map_per_fmr;
430 	int			max_srq;
431 	int			max_srq_wr;
432 	int			max_srq_sge;
433 	unsigned int		max_fast_reg_page_list_len;
434 	unsigned int		max_pi_fast_reg_page_list_len;
435 	u16			max_pkeys;
436 	u8			local_ca_ack_delay;
437 	int			sig_prot_cap;
438 	int			sig_guard_cap;
439 	struct ib_odp_caps	odp_caps;
440 	uint64_t		timestamp_mask;
441 	uint64_t		hca_core_clock; /* in KHZ */
442 	struct ib_rss_caps	rss_caps;
443 	u32			max_wq_type_rq;
444 	u32			raw_packet_caps; /* Use ib_raw_packet_caps enum */
445 	struct ib_tm_caps	tm_caps;
446 	struct ib_cq_caps       cq_caps;
447 	u64			max_dm_size;
448 };
449 
450 enum ib_mtu {
451 	IB_MTU_256  = 1,
452 	IB_MTU_512  = 2,
453 	IB_MTU_1024 = 3,
454 	IB_MTU_2048 = 4,
455 	IB_MTU_4096 = 5
456 };
457 
ib_mtu_enum_to_int(enum ib_mtu mtu)458 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
459 {
460 	switch (mtu) {
461 	case IB_MTU_256:  return  256;
462 	case IB_MTU_512:  return  512;
463 	case IB_MTU_1024: return 1024;
464 	case IB_MTU_2048: return 2048;
465 	case IB_MTU_4096: return 4096;
466 	default: 	  return -1;
467 	}
468 }
469 
ib_mtu_int_to_enum(int mtu)470 static inline enum ib_mtu ib_mtu_int_to_enum(int mtu)
471 {
472 	if (mtu >= 4096)
473 		return IB_MTU_4096;
474 	else if (mtu >= 2048)
475 		return IB_MTU_2048;
476 	else if (mtu >= 1024)
477 		return IB_MTU_1024;
478 	else if (mtu >= 512)
479 		return IB_MTU_512;
480 	else
481 		return IB_MTU_256;
482 }
483 
484 enum ib_port_state {
485 	IB_PORT_NOP		= 0,
486 	IB_PORT_DOWN		= 1,
487 	IB_PORT_INIT		= 2,
488 	IB_PORT_ARMED		= 3,
489 	IB_PORT_ACTIVE		= 4,
490 	IB_PORT_ACTIVE_DEFER	= 5
491 };
492 
493 enum ib_port_phys_state {
494 	IB_PORT_PHYS_STATE_SLEEP = 1,
495 	IB_PORT_PHYS_STATE_POLLING = 2,
496 	IB_PORT_PHYS_STATE_DISABLED = 3,
497 	IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING = 4,
498 	IB_PORT_PHYS_STATE_LINK_UP = 5,
499 	IB_PORT_PHYS_STATE_LINK_ERROR_RECOVERY = 6,
500 	IB_PORT_PHYS_STATE_PHY_TEST = 7,
501 };
502 
503 enum ib_port_width {
504 	IB_WIDTH_1X	= 1,
505 	IB_WIDTH_2X	= 16,
506 	IB_WIDTH_4X	= 2,
507 	IB_WIDTH_8X	= 4,
508 	IB_WIDTH_12X	= 8
509 };
510 
ib_width_enum_to_int(enum ib_port_width width)511 static inline int ib_width_enum_to_int(enum ib_port_width width)
512 {
513 	switch (width) {
514 	case IB_WIDTH_1X:  return  1;
515 	case IB_WIDTH_2X:  return  2;
516 	case IB_WIDTH_4X:  return  4;
517 	case IB_WIDTH_8X:  return  8;
518 	case IB_WIDTH_12X: return 12;
519 	default: 	  return -1;
520 	}
521 }
522 
523 enum ib_port_speed {
524 	IB_SPEED_SDR	= 1,
525 	IB_SPEED_DDR	= 2,
526 	IB_SPEED_QDR	= 4,
527 	IB_SPEED_FDR10	= 8,
528 	IB_SPEED_FDR	= 16,
529 	IB_SPEED_EDR	= 32,
530 	IB_SPEED_HDR	= 64
531 };
532 
533 /**
534  * struct rdma_hw_stats
535  * @lock - Mutex to protect parallel write access to lifespan and values
536  *    of counters, which are 64bits and not guaranteeed to be written
537  *    atomicaly on 32bits systems.
538  * @timestamp - Used by the core code to track when the last update was
539  * @lifespan - Used by the core code to determine how old the counters
540  *   should be before being updated again.  Stored in jiffies, defaults
541  *   to 10 milliseconds, drivers can override the default be specifying
542  *   their own value during their allocation routine.
543  * @name - Array of pointers to static names used for the counters in
544  *   directory.
545  * @num_counters - How many hardware counters there are.  If name is
546  *   shorter than this number, a kernel oops will result.  Driver authors
547  *   are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
548  *   in their code to prevent this.
549  * @value - Array of u64 counters that are accessed by the sysfs code and
550  *   filled in by the drivers get_stats routine
551  */
552 struct rdma_hw_stats {
553 	struct mutex	lock; /* Protect lifespan and values[] */
554 	unsigned long	timestamp;
555 	unsigned long	lifespan;
556 	const char * const *names;
557 	int		num_counters;
558 	u64		value[];
559 };
560 
561 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
562 /**
563  * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
564  *   for drivers.
565  * @names - Array of static const char *
566  * @num_counters - How many elements in array
567  * @lifespan - How many milliseconds between updates
568  */
rdma_alloc_hw_stats_struct(const char * const * names,int num_counters,unsigned long lifespan)569 static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
570 		const char * const *names, int num_counters,
571 		unsigned long lifespan)
572 {
573 	struct rdma_hw_stats *stats;
574 
575 	stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64),
576 			GFP_KERNEL);
577 	if (!stats)
578 		return NULL;
579 	stats->names = names;
580 	stats->num_counters = num_counters;
581 	stats->lifespan = msecs_to_jiffies(lifespan);
582 
583 	return stats;
584 }
585 
586 
587 /* Define bits for the various functionality this port needs to be supported by
588  * the core.
589  */
590 /* Management                           0x00000FFF */
591 #define RDMA_CORE_CAP_IB_MAD            0x00000001
592 #define RDMA_CORE_CAP_IB_SMI            0x00000002
593 #define RDMA_CORE_CAP_IB_CM             0x00000004
594 #define RDMA_CORE_CAP_IW_CM             0x00000008
595 #define RDMA_CORE_CAP_IB_SA             0x00000010
596 #define RDMA_CORE_CAP_OPA_MAD           0x00000020
597 
598 /* Address format                       0x000FF000 */
599 #define RDMA_CORE_CAP_AF_IB             0x00001000
600 #define RDMA_CORE_CAP_ETH_AH            0x00002000
601 #define RDMA_CORE_CAP_OPA_AH            0x00004000
602 #define RDMA_CORE_CAP_IB_GRH_REQUIRED   0x00008000
603 
604 /* Protocol                             0xFFF00000 */
605 #define RDMA_CORE_CAP_PROT_IB           0x00100000
606 #define RDMA_CORE_CAP_PROT_ROCE         0x00200000
607 #define RDMA_CORE_CAP_PROT_IWARP        0x00400000
608 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
609 #define RDMA_CORE_CAP_PROT_RAW_PACKET   0x01000000
610 #define RDMA_CORE_CAP_PROT_USNIC        0x02000000
611 
612 #define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \
613 					| RDMA_CORE_CAP_PROT_ROCE     \
614 					| RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP)
615 
616 #define RDMA_CORE_PORT_IBA_IB          (RDMA_CORE_CAP_PROT_IB  \
617 					| RDMA_CORE_CAP_IB_MAD \
618 					| RDMA_CORE_CAP_IB_SMI \
619 					| RDMA_CORE_CAP_IB_CM  \
620 					| RDMA_CORE_CAP_IB_SA  \
621 					| RDMA_CORE_CAP_AF_IB)
622 #define RDMA_CORE_PORT_IBA_ROCE        (RDMA_CORE_CAP_PROT_ROCE \
623 					| RDMA_CORE_CAP_IB_MAD  \
624 					| RDMA_CORE_CAP_IB_CM   \
625 					| RDMA_CORE_CAP_AF_IB   \
626 					| RDMA_CORE_CAP_ETH_AH)
627 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP			\
628 					(RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
629 					| RDMA_CORE_CAP_IB_MAD  \
630 					| RDMA_CORE_CAP_IB_CM   \
631 					| RDMA_CORE_CAP_AF_IB   \
632 					| RDMA_CORE_CAP_ETH_AH)
633 #define RDMA_CORE_PORT_IWARP           (RDMA_CORE_CAP_PROT_IWARP \
634 					| RDMA_CORE_CAP_IW_CM)
635 #define RDMA_CORE_PORT_INTEL_OPA       (RDMA_CORE_PORT_IBA_IB  \
636 					| RDMA_CORE_CAP_OPA_MAD)
637 
638 #define RDMA_CORE_PORT_RAW_PACKET	(RDMA_CORE_CAP_PROT_RAW_PACKET)
639 
640 #define RDMA_CORE_PORT_USNIC		(RDMA_CORE_CAP_PROT_USNIC)
641 
642 struct ib_port_attr {
643 	u64			subnet_prefix;
644 	enum ib_port_state	state;
645 	enum ib_mtu		max_mtu;
646 	enum ib_mtu		active_mtu;
647 	int			gid_tbl_len;
648 	unsigned int		ip_gids:1;
649 	/* This is the value from PortInfo CapabilityMask, defined by IBA */
650 	u32			port_cap_flags;
651 	u32			max_msg_sz;
652 	u32			bad_pkey_cntr;
653 	u32			qkey_viol_cntr;
654 	u16			pkey_tbl_len;
655 	u32			sm_lid;
656 	u32			lid;
657 	u8			lmc;
658 	u8			max_vl_num;
659 	u8			sm_sl;
660 	u8			subnet_timeout;
661 	u8			init_type_reply;
662 	u8			active_width;
663 	u8			active_speed;
664 	u8                      phys_state;
665 	u16			port_cap_flags2;
666 };
667 
668 enum ib_device_modify_flags {
669 	IB_DEVICE_MODIFY_SYS_IMAGE_GUID	= 1 << 0,
670 	IB_DEVICE_MODIFY_NODE_DESC	= 1 << 1
671 };
672 
673 #define IB_DEVICE_NODE_DESC_MAX 64
674 
675 struct ib_device_modify {
676 	u64	sys_image_guid;
677 	char	node_desc[IB_DEVICE_NODE_DESC_MAX];
678 };
679 
680 enum ib_port_modify_flags {
681 	IB_PORT_SHUTDOWN		= 1,
682 	IB_PORT_INIT_TYPE		= (1<<2),
683 	IB_PORT_RESET_QKEY_CNTR		= (1<<3),
684 	IB_PORT_OPA_MASK_CHG		= (1<<4)
685 };
686 
687 struct ib_port_modify {
688 	u32	set_port_cap_mask;
689 	u32	clr_port_cap_mask;
690 	u8	init_type;
691 };
692 
693 enum ib_event_type {
694 	IB_EVENT_CQ_ERR,
695 	IB_EVENT_QP_FATAL,
696 	IB_EVENT_QP_REQ_ERR,
697 	IB_EVENT_QP_ACCESS_ERR,
698 	IB_EVENT_COMM_EST,
699 	IB_EVENT_SQ_DRAINED,
700 	IB_EVENT_PATH_MIG,
701 	IB_EVENT_PATH_MIG_ERR,
702 	IB_EVENT_DEVICE_FATAL,
703 	IB_EVENT_PORT_ACTIVE,
704 	IB_EVENT_PORT_ERR,
705 	IB_EVENT_LID_CHANGE,
706 	IB_EVENT_PKEY_CHANGE,
707 	IB_EVENT_SM_CHANGE,
708 	IB_EVENT_SRQ_ERR,
709 	IB_EVENT_SRQ_LIMIT_REACHED,
710 	IB_EVENT_QP_LAST_WQE_REACHED,
711 	IB_EVENT_CLIENT_REREGISTER,
712 	IB_EVENT_GID_CHANGE,
713 	IB_EVENT_WQ_FATAL,
714 };
715 
716 const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
717 
718 struct ib_event {
719 	struct ib_device	*device;
720 	union {
721 		struct ib_cq	*cq;
722 		struct ib_qp	*qp;
723 		struct ib_srq	*srq;
724 		struct ib_wq	*wq;
725 		u8		port_num;
726 	} element;
727 	enum ib_event_type	event;
728 };
729 
730 struct ib_event_handler {
731 	struct ib_device *device;
732 	void            (*handler)(struct ib_event_handler *, struct ib_event *);
733 	struct list_head  list;
734 };
735 
736 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler)		\
737 	do {							\
738 		(_ptr)->device  = _device;			\
739 		(_ptr)->handler = _handler;			\
740 		INIT_LIST_HEAD(&(_ptr)->list);			\
741 	} while (0)
742 
743 struct ib_global_route {
744 	const struct ib_gid_attr *sgid_attr;
745 	union ib_gid	dgid;
746 	u32		flow_label;
747 	u8		sgid_index;
748 	u8		hop_limit;
749 	u8		traffic_class;
750 };
751 
752 struct ib_grh {
753 	__be32		version_tclass_flow;
754 	__be16		paylen;
755 	u8		next_hdr;
756 	u8		hop_limit;
757 	union ib_gid	sgid;
758 	union ib_gid	dgid;
759 };
760 
761 union rdma_network_hdr {
762 	struct ib_grh ibgrh;
763 	struct {
764 		/* The IB spec states that if it's IPv4, the header
765 		 * is located in the last 20 bytes of the header.
766 		 */
767 		u8		reserved[20];
768 		struct iphdr	roce4grh;
769 	};
770 };
771 
772 #define IB_QPN_MASK		0xFFFFFF
773 
774 enum {
775 	IB_MULTICAST_QPN = 0xffffff
776 };
777 
778 #define IB_LID_PERMISSIVE	cpu_to_be16(0xFFFF)
779 #define IB_MULTICAST_LID_BASE	cpu_to_be16(0xC000)
780 
781 enum ib_ah_flags {
782 	IB_AH_GRH	= 1
783 };
784 
785 enum ib_rate {
786 	IB_RATE_PORT_CURRENT = 0,
787 	IB_RATE_2_5_GBPS = 2,
788 	IB_RATE_5_GBPS   = 5,
789 	IB_RATE_10_GBPS  = 3,
790 	IB_RATE_20_GBPS  = 6,
791 	IB_RATE_30_GBPS  = 4,
792 	IB_RATE_40_GBPS  = 7,
793 	IB_RATE_60_GBPS  = 8,
794 	IB_RATE_80_GBPS  = 9,
795 	IB_RATE_120_GBPS = 10,
796 	IB_RATE_14_GBPS  = 11,
797 	IB_RATE_56_GBPS  = 12,
798 	IB_RATE_112_GBPS = 13,
799 	IB_RATE_168_GBPS = 14,
800 	IB_RATE_25_GBPS  = 15,
801 	IB_RATE_100_GBPS = 16,
802 	IB_RATE_200_GBPS = 17,
803 	IB_RATE_300_GBPS = 18,
804 	IB_RATE_28_GBPS  = 19,
805 	IB_RATE_50_GBPS  = 20,
806 	IB_RATE_400_GBPS = 21,
807 	IB_RATE_600_GBPS = 22,
808 };
809 
810 /**
811  * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
812  * base rate of 2.5 Gbit/sec.  For example, IB_RATE_5_GBPS will be
813  * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
814  * @rate: rate to convert.
815  */
816 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
817 
818 /**
819  * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
820  * For example, IB_RATE_2_5_GBPS will be converted to 2500.
821  * @rate: rate to convert.
822  */
823 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
824 
825 
826 /**
827  * enum ib_mr_type - memory region type
828  * @IB_MR_TYPE_MEM_REG:       memory region that is used for
829  *                            normal registration
830  * @IB_MR_TYPE_SG_GAPS:       memory region that is capable to
831  *                            register any arbitrary sg lists (without
832  *                            the normal mr constraints - see
833  *                            ib_map_mr_sg)
834  * @IB_MR_TYPE_DM:            memory region that is used for device
835  *                            memory registration
836  * @IB_MR_TYPE_USER:          memory region that is used for the user-space
837  *                            application
838  * @IB_MR_TYPE_DMA:           memory region that is used for DMA operations
839  *                            without address translations (VA=PA)
840  * @IB_MR_TYPE_INTEGRITY:     memory region that is used for
841  *                            data integrity operations
842  */
843 enum ib_mr_type {
844 	IB_MR_TYPE_MEM_REG,
845 	IB_MR_TYPE_SG_GAPS,
846 	IB_MR_TYPE_DM,
847 	IB_MR_TYPE_USER,
848 	IB_MR_TYPE_DMA,
849 	IB_MR_TYPE_INTEGRITY,
850 };
851 
852 enum ib_mr_status_check {
853 	IB_MR_CHECK_SIG_STATUS = 1,
854 };
855 
856 /**
857  * struct ib_mr_status - Memory region status container
858  *
859  * @fail_status: Bitmask of MR checks status. For each
860  *     failed check a corresponding status bit is set.
861  * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
862  *     failure.
863  */
864 struct ib_mr_status {
865 	u32		    fail_status;
866 	struct ib_sig_err   sig_err;
867 };
868 
869 /**
870  * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
871  * enum.
872  * @mult: multiple to convert.
873  */
874 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
875 
876 enum rdma_ah_attr_type {
877 	RDMA_AH_ATTR_TYPE_UNDEFINED,
878 	RDMA_AH_ATTR_TYPE_IB,
879 	RDMA_AH_ATTR_TYPE_ROCE,
880 	RDMA_AH_ATTR_TYPE_OPA,
881 };
882 
883 struct ib_ah_attr {
884 	u16			dlid;
885 	u8			src_path_bits;
886 };
887 
888 struct roce_ah_attr {
889 	u8			dmac[ETH_ALEN];
890 };
891 
892 struct opa_ah_attr {
893 	u32			dlid;
894 	u8			src_path_bits;
895 	bool			make_grd;
896 };
897 
898 struct rdma_ah_attr {
899 	struct ib_global_route	grh;
900 	u8			sl;
901 	u8			static_rate;
902 	u8			port_num;
903 	u8			ah_flags;
904 	enum rdma_ah_attr_type type;
905 	union {
906 		struct ib_ah_attr ib;
907 		struct roce_ah_attr roce;
908 		struct opa_ah_attr opa;
909 	};
910 };
911 
912 enum ib_wc_status {
913 	IB_WC_SUCCESS,
914 	IB_WC_LOC_LEN_ERR,
915 	IB_WC_LOC_QP_OP_ERR,
916 	IB_WC_LOC_EEC_OP_ERR,
917 	IB_WC_LOC_PROT_ERR,
918 	IB_WC_WR_FLUSH_ERR,
919 	IB_WC_MW_BIND_ERR,
920 	IB_WC_BAD_RESP_ERR,
921 	IB_WC_LOC_ACCESS_ERR,
922 	IB_WC_REM_INV_REQ_ERR,
923 	IB_WC_REM_ACCESS_ERR,
924 	IB_WC_REM_OP_ERR,
925 	IB_WC_RETRY_EXC_ERR,
926 	IB_WC_RNR_RETRY_EXC_ERR,
927 	IB_WC_LOC_RDD_VIOL_ERR,
928 	IB_WC_REM_INV_RD_REQ_ERR,
929 	IB_WC_REM_ABORT_ERR,
930 	IB_WC_INV_EECN_ERR,
931 	IB_WC_INV_EEC_STATE_ERR,
932 	IB_WC_FATAL_ERR,
933 	IB_WC_RESP_TIMEOUT_ERR,
934 	IB_WC_GENERAL_ERR
935 };
936 
937 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
938 
939 enum ib_wc_opcode {
940 	IB_WC_SEND,
941 	IB_WC_RDMA_WRITE,
942 	IB_WC_RDMA_READ,
943 	IB_WC_COMP_SWAP,
944 	IB_WC_FETCH_ADD,
945 	IB_WC_LSO,
946 	IB_WC_LOCAL_INV,
947 	IB_WC_REG_MR,
948 	IB_WC_MASKED_COMP_SWAP,
949 	IB_WC_MASKED_FETCH_ADD,
950 /*
951  * Set value of IB_WC_RECV so consumers can test if a completion is a
952  * receive by testing (opcode & IB_WC_RECV).
953  */
954 	IB_WC_RECV			= 1 << 7,
955 	IB_WC_RECV_RDMA_WITH_IMM
956 };
957 
958 enum ib_wc_flags {
959 	IB_WC_GRH		= 1,
960 	IB_WC_WITH_IMM		= (1<<1),
961 	IB_WC_WITH_INVALIDATE	= (1<<2),
962 	IB_WC_IP_CSUM_OK	= (1<<3),
963 	IB_WC_WITH_SMAC		= (1<<4),
964 	IB_WC_WITH_VLAN		= (1<<5),
965 	IB_WC_WITH_NETWORK_HDR_TYPE	= (1<<6),
966 };
967 
968 struct ib_wc {
969 	union {
970 		u64		wr_id;
971 		struct ib_cqe	*wr_cqe;
972 	};
973 	enum ib_wc_status	status;
974 	enum ib_wc_opcode	opcode;
975 	u32			vendor_err;
976 	u32			byte_len;
977 	struct ib_qp	       *qp;
978 	union {
979 		__be32		imm_data;
980 		u32		invalidate_rkey;
981 	} ex;
982 	u32			src_qp;
983 	u32			slid;
984 	int			wc_flags;
985 	u16			pkey_index;
986 	u8			sl;
987 	u8			dlid_path_bits;
988 	u8			port_num;	/* valid only for DR SMPs on switches */
989 	u8			smac[ETH_ALEN];
990 	u16			vlan_id;
991 	u8			network_hdr_type;
992 };
993 
994 enum ib_cq_notify_flags {
995 	IB_CQ_SOLICITED			= 1 << 0,
996 	IB_CQ_NEXT_COMP			= 1 << 1,
997 	IB_CQ_SOLICITED_MASK		= IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
998 	IB_CQ_REPORT_MISSED_EVENTS	= 1 << 2,
999 };
1000 
1001 enum ib_srq_type {
1002 	IB_SRQT_BASIC,
1003 	IB_SRQT_XRC,
1004 	IB_SRQT_TM,
1005 };
1006 
ib_srq_has_cq(enum ib_srq_type srq_type)1007 static inline bool ib_srq_has_cq(enum ib_srq_type srq_type)
1008 {
1009 	return srq_type == IB_SRQT_XRC ||
1010 	       srq_type == IB_SRQT_TM;
1011 }
1012 
1013 enum ib_srq_attr_mask {
1014 	IB_SRQ_MAX_WR	= 1 << 0,
1015 	IB_SRQ_LIMIT	= 1 << 1,
1016 };
1017 
1018 struct ib_srq_attr {
1019 	u32	max_wr;
1020 	u32	max_sge;
1021 	u32	srq_limit;
1022 };
1023 
1024 struct ib_srq_init_attr {
1025 	void		      (*event_handler)(struct ib_event *, void *);
1026 	void		       *srq_context;
1027 	struct ib_srq_attr	attr;
1028 	enum ib_srq_type	srq_type;
1029 
1030 	struct {
1031 		struct ib_cq   *cq;
1032 		union {
1033 			struct {
1034 				struct ib_xrcd *xrcd;
1035 			} xrc;
1036 
1037 			struct {
1038 				u32		max_num_tags;
1039 			} tag_matching;
1040 		};
1041 	} ext;
1042 };
1043 
1044 struct ib_qp_cap {
1045 	u32	max_send_wr;
1046 	u32	max_recv_wr;
1047 	u32	max_send_sge;
1048 	u32	max_recv_sge;
1049 	u32	max_inline_data;
1050 
1051 	/*
1052 	 * Maximum number of rdma_rw_ctx structures in flight at a time.
1053 	 * ib_create_qp() will calculate the right amount of neededed WRs
1054 	 * and MRs based on this.
1055 	 */
1056 	u32	max_rdma_ctxs;
1057 };
1058 
1059 enum ib_sig_type {
1060 	IB_SIGNAL_ALL_WR,
1061 	IB_SIGNAL_REQ_WR
1062 };
1063 
1064 enum ib_qp_type {
1065 	/*
1066 	 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
1067 	 * here (and in that order) since the MAD layer uses them as
1068 	 * indices into a 2-entry table.
1069 	 */
1070 	IB_QPT_SMI,
1071 	IB_QPT_GSI,
1072 
1073 	IB_QPT_RC,
1074 	IB_QPT_UC,
1075 	IB_QPT_UD,
1076 	IB_QPT_RAW_IPV6,
1077 	IB_QPT_RAW_ETHERTYPE,
1078 	IB_QPT_RAW_PACKET = 8,
1079 	IB_QPT_XRC_INI = 9,
1080 	IB_QPT_XRC_TGT,
1081 	IB_QPT_MAX,
1082 	IB_QPT_DRIVER = 0xFF,
1083 	/* Reserve a range for qp types internal to the low level driver.
1084 	 * These qp types will not be visible at the IB core layer, so the
1085 	 * IB_QPT_MAX usages should not be affected in the core layer
1086 	 */
1087 	IB_QPT_RESERVED1 = 0x1000,
1088 	IB_QPT_RESERVED2,
1089 	IB_QPT_RESERVED3,
1090 	IB_QPT_RESERVED4,
1091 	IB_QPT_RESERVED5,
1092 	IB_QPT_RESERVED6,
1093 	IB_QPT_RESERVED7,
1094 	IB_QPT_RESERVED8,
1095 	IB_QPT_RESERVED9,
1096 	IB_QPT_RESERVED10,
1097 };
1098 
1099 enum ib_qp_create_flags {
1100 	IB_QP_CREATE_IPOIB_UD_LSO		= 1 << 0,
1101 	IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK	= 1 << 1,
1102 	IB_QP_CREATE_CROSS_CHANNEL              = 1 << 2,
1103 	IB_QP_CREATE_MANAGED_SEND               = 1 << 3,
1104 	IB_QP_CREATE_MANAGED_RECV               = 1 << 4,
1105 	IB_QP_CREATE_NETIF_QP			= 1 << 5,
1106 	IB_QP_CREATE_INTEGRITY_EN		= 1 << 6,
1107 	/* FREE					= 1 << 7, */
1108 	IB_QP_CREATE_SCATTER_FCS		= 1 << 8,
1109 	IB_QP_CREATE_CVLAN_STRIPPING		= 1 << 9,
1110 	IB_QP_CREATE_SOURCE_QPN			= 1 << 10,
1111 	IB_QP_CREATE_PCI_WRITE_END_PADDING	= 1 << 11,
1112 	/* reserve bits 26-31 for low level drivers' internal use */
1113 	IB_QP_CREATE_RESERVED_START		= 1 << 26,
1114 	IB_QP_CREATE_RESERVED_END		= 1 << 31,
1115 };
1116 
1117 /*
1118  * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1119  * callback to destroy the passed in QP.
1120  */
1121 
1122 struct ib_qp_init_attr {
1123 	/* Consumer's event_handler callback must not block */
1124 	void                  (*event_handler)(struct ib_event *, void *);
1125 
1126 	void		       *qp_context;
1127 	struct ib_cq	       *send_cq;
1128 	struct ib_cq	       *recv_cq;
1129 	struct ib_srq	       *srq;
1130 	struct ib_xrcd	       *xrcd;     /* XRC TGT QPs only */
1131 	struct ib_qp_cap	cap;
1132 	enum ib_sig_type	sq_sig_type;
1133 	enum ib_qp_type		qp_type;
1134 	u32			create_flags;
1135 
1136 	/*
1137 	 * Only needed for special QP types, or when using the RW API.
1138 	 */
1139 	u8			port_num;
1140 	struct ib_rwq_ind_table *rwq_ind_tbl;
1141 	u32			source_qpn;
1142 };
1143 
1144 struct ib_qp_open_attr {
1145 	void                  (*event_handler)(struct ib_event *, void *);
1146 	void		       *qp_context;
1147 	u32			qp_num;
1148 	enum ib_qp_type		qp_type;
1149 };
1150 
1151 enum ib_rnr_timeout {
1152 	IB_RNR_TIMER_655_36 =  0,
1153 	IB_RNR_TIMER_000_01 =  1,
1154 	IB_RNR_TIMER_000_02 =  2,
1155 	IB_RNR_TIMER_000_03 =  3,
1156 	IB_RNR_TIMER_000_04 =  4,
1157 	IB_RNR_TIMER_000_06 =  5,
1158 	IB_RNR_TIMER_000_08 =  6,
1159 	IB_RNR_TIMER_000_12 =  7,
1160 	IB_RNR_TIMER_000_16 =  8,
1161 	IB_RNR_TIMER_000_24 =  9,
1162 	IB_RNR_TIMER_000_32 = 10,
1163 	IB_RNR_TIMER_000_48 = 11,
1164 	IB_RNR_TIMER_000_64 = 12,
1165 	IB_RNR_TIMER_000_96 = 13,
1166 	IB_RNR_TIMER_001_28 = 14,
1167 	IB_RNR_TIMER_001_92 = 15,
1168 	IB_RNR_TIMER_002_56 = 16,
1169 	IB_RNR_TIMER_003_84 = 17,
1170 	IB_RNR_TIMER_005_12 = 18,
1171 	IB_RNR_TIMER_007_68 = 19,
1172 	IB_RNR_TIMER_010_24 = 20,
1173 	IB_RNR_TIMER_015_36 = 21,
1174 	IB_RNR_TIMER_020_48 = 22,
1175 	IB_RNR_TIMER_030_72 = 23,
1176 	IB_RNR_TIMER_040_96 = 24,
1177 	IB_RNR_TIMER_061_44 = 25,
1178 	IB_RNR_TIMER_081_92 = 26,
1179 	IB_RNR_TIMER_122_88 = 27,
1180 	IB_RNR_TIMER_163_84 = 28,
1181 	IB_RNR_TIMER_245_76 = 29,
1182 	IB_RNR_TIMER_327_68 = 30,
1183 	IB_RNR_TIMER_491_52 = 31
1184 };
1185 
1186 enum ib_qp_attr_mask {
1187 	IB_QP_STATE			= 1,
1188 	IB_QP_CUR_STATE			= (1<<1),
1189 	IB_QP_EN_SQD_ASYNC_NOTIFY	= (1<<2),
1190 	IB_QP_ACCESS_FLAGS		= (1<<3),
1191 	IB_QP_PKEY_INDEX		= (1<<4),
1192 	IB_QP_PORT			= (1<<5),
1193 	IB_QP_QKEY			= (1<<6),
1194 	IB_QP_AV			= (1<<7),
1195 	IB_QP_PATH_MTU			= (1<<8),
1196 	IB_QP_TIMEOUT			= (1<<9),
1197 	IB_QP_RETRY_CNT			= (1<<10),
1198 	IB_QP_RNR_RETRY			= (1<<11),
1199 	IB_QP_RQ_PSN			= (1<<12),
1200 	IB_QP_MAX_QP_RD_ATOMIC		= (1<<13),
1201 	IB_QP_ALT_PATH			= (1<<14),
1202 	IB_QP_MIN_RNR_TIMER		= (1<<15),
1203 	IB_QP_SQ_PSN			= (1<<16),
1204 	IB_QP_MAX_DEST_RD_ATOMIC	= (1<<17),
1205 	IB_QP_PATH_MIG_STATE		= (1<<18),
1206 	IB_QP_CAP			= (1<<19),
1207 	IB_QP_DEST_QPN			= (1<<20),
1208 	IB_QP_RESERVED1			= (1<<21),
1209 	IB_QP_RESERVED2			= (1<<22),
1210 	IB_QP_RESERVED3			= (1<<23),
1211 	IB_QP_RESERVED4			= (1<<24),
1212 	IB_QP_RATE_LIMIT		= (1<<25),
1213 };
1214 
1215 enum ib_qp_state {
1216 	IB_QPS_RESET,
1217 	IB_QPS_INIT,
1218 	IB_QPS_RTR,
1219 	IB_QPS_RTS,
1220 	IB_QPS_SQD,
1221 	IB_QPS_SQE,
1222 	IB_QPS_ERR
1223 };
1224 
1225 enum ib_mig_state {
1226 	IB_MIG_MIGRATED,
1227 	IB_MIG_REARM,
1228 	IB_MIG_ARMED
1229 };
1230 
1231 enum ib_mw_type {
1232 	IB_MW_TYPE_1 = 1,
1233 	IB_MW_TYPE_2 = 2
1234 };
1235 
1236 struct ib_qp_attr {
1237 	enum ib_qp_state	qp_state;
1238 	enum ib_qp_state	cur_qp_state;
1239 	enum ib_mtu		path_mtu;
1240 	enum ib_mig_state	path_mig_state;
1241 	u32			qkey;
1242 	u32			rq_psn;
1243 	u32			sq_psn;
1244 	u32			dest_qp_num;
1245 	int			qp_access_flags;
1246 	struct ib_qp_cap	cap;
1247 	struct rdma_ah_attr	ah_attr;
1248 	struct rdma_ah_attr	alt_ah_attr;
1249 	u16			pkey_index;
1250 	u16			alt_pkey_index;
1251 	u8			en_sqd_async_notify;
1252 	u8			sq_draining;
1253 	u8			max_rd_atomic;
1254 	u8			max_dest_rd_atomic;
1255 	u8			min_rnr_timer;
1256 	u8			port_num;
1257 	u8			timeout;
1258 	u8			retry_cnt;
1259 	u8			rnr_retry;
1260 	u8			alt_port_num;
1261 	u8			alt_timeout;
1262 	u32			rate_limit;
1263 };
1264 
1265 enum ib_wr_opcode {
1266 	/* These are shared with userspace */
1267 	IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE,
1268 	IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM,
1269 	IB_WR_SEND = IB_UVERBS_WR_SEND,
1270 	IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM,
1271 	IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ,
1272 	IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP,
1273 	IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD,
1274 	IB_WR_LSO = IB_UVERBS_WR_TSO,
1275 	IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV,
1276 	IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV,
1277 	IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV,
1278 	IB_WR_MASKED_ATOMIC_CMP_AND_SWP =
1279 		IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP,
1280 	IB_WR_MASKED_ATOMIC_FETCH_AND_ADD =
1281 		IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1282 
1283 	/* These are kernel only and can not be issued by userspace */
1284 	IB_WR_REG_MR = 0x20,
1285 	IB_WR_REG_MR_INTEGRITY,
1286 
1287 	/* reserve values for low level drivers' internal use.
1288 	 * These values will not be used at all in the ib core layer.
1289 	 */
1290 	IB_WR_RESERVED1 = 0xf0,
1291 	IB_WR_RESERVED2,
1292 	IB_WR_RESERVED3,
1293 	IB_WR_RESERVED4,
1294 	IB_WR_RESERVED5,
1295 	IB_WR_RESERVED6,
1296 	IB_WR_RESERVED7,
1297 	IB_WR_RESERVED8,
1298 	IB_WR_RESERVED9,
1299 	IB_WR_RESERVED10,
1300 };
1301 
1302 enum ib_send_flags {
1303 	IB_SEND_FENCE		= 1,
1304 	IB_SEND_SIGNALED	= (1<<1),
1305 	IB_SEND_SOLICITED	= (1<<2),
1306 	IB_SEND_INLINE		= (1<<3),
1307 	IB_SEND_IP_CSUM		= (1<<4),
1308 
1309 	/* reserve bits 26-31 for low level drivers' internal use */
1310 	IB_SEND_RESERVED_START	= (1 << 26),
1311 	IB_SEND_RESERVED_END	= (1 << 31),
1312 };
1313 
1314 struct ib_sge {
1315 	u64	addr;
1316 	u32	length;
1317 	u32	lkey;
1318 };
1319 
1320 struct ib_cqe {
1321 	void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1322 };
1323 
1324 struct ib_send_wr {
1325 	struct ib_send_wr      *next;
1326 	union {
1327 		u64		wr_id;
1328 		struct ib_cqe	*wr_cqe;
1329 	};
1330 	struct ib_sge	       *sg_list;
1331 	int			num_sge;
1332 	enum ib_wr_opcode	opcode;
1333 	int			send_flags;
1334 	union {
1335 		__be32		imm_data;
1336 		u32		invalidate_rkey;
1337 	} ex;
1338 };
1339 
1340 struct ib_rdma_wr {
1341 	struct ib_send_wr	wr;
1342 	u64			remote_addr;
1343 	u32			rkey;
1344 };
1345 
rdma_wr(const struct ib_send_wr * wr)1346 static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr)
1347 {
1348 	return container_of(wr, struct ib_rdma_wr, wr);
1349 }
1350 
1351 struct ib_atomic_wr {
1352 	struct ib_send_wr	wr;
1353 	u64			remote_addr;
1354 	u64			compare_add;
1355 	u64			swap;
1356 	u64			compare_add_mask;
1357 	u64			swap_mask;
1358 	u32			rkey;
1359 };
1360 
atomic_wr(const struct ib_send_wr * wr)1361 static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr)
1362 {
1363 	return container_of(wr, struct ib_atomic_wr, wr);
1364 }
1365 
1366 struct ib_ud_wr {
1367 	struct ib_send_wr	wr;
1368 	struct ib_ah		*ah;
1369 	void			*header;
1370 	int			hlen;
1371 	int			mss;
1372 	u32			remote_qpn;
1373 	u32			remote_qkey;
1374 	u16			pkey_index; /* valid for GSI only */
1375 	u8			port_num;   /* valid for DR SMPs on switch only */
1376 };
1377 
ud_wr(const struct ib_send_wr * wr)1378 static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr)
1379 {
1380 	return container_of(wr, struct ib_ud_wr, wr);
1381 }
1382 
1383 struct ib_reg_wr {
1384 	struct ib_send_wr	wr;
1385 	struct ib_mr		*mr;
1386 	u32			key;
1387 	int			access;
1388 };
1389 
reg_wr(const struct ib_send_wr * wr)1390 static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr)
1391 {
1392 	return container_of(wr, struct ib_reg_wr, wr);
1393 }
1394 
1395 struct ib_recv_wr {
1396 	struct ib_recv_wr      *next;
1397 	union {
1398 		u64		wr_id;
1399 		struct ib_cqe	*wr_cqe;
1400 	};
1401 	struct ib_sge	       *sg_list;
1402 	int			num_sge;
1403 };
1404 
1405 enum ib_access_flags {
1406 	IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE,
1407 	IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE,
1408 	IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ,
1409 	IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC,
1410 	IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND,
1411 	IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED,
1412 	IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND,
1413 	IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB,
1414 
1415 	IB_ACCESS_SUPPORTED = ((IB_ACCESS_HUGETLB << 1) - 1)
1416 };
1417 
1418 /*
1419  * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1420  * are hidden here instead of a uapi header!
1421  */
1422 enum ib_mr_rereg_flags {
1423 	IB_MR_REREG_TRANS	= 1,
1424 	IB_MR_REREG_PD		= (1<<1),
1425 	IB_MR_REREG_ACCESS	= (1<<2),
1426 	IB_MR_REREG_SUPPORTED	= ((IB_MR_REREG_ACCESS << 1) - 1)
1427 };
1428 
1429 struct ib_fmr_attr {
1430 	int	max_pages;
1431 	int	max_maps;
1432 	u8	page_shift;
1433 };
1434 
1435 struct ib_umem;
1436 
1437 enum rdma_remove_reason {
1438 	/*
1439 	 * Userspace requested uobject deletion or initial try
1440 	 * to remove uobject via cleanup. Call could fail
1441 	 */
1442 	RDMA_REMOVE_DESTROY,
1443 	/* Context deletion. This call should delete the actual object itself */
1444 	RDMA_REMOVE_CLOSE,
1445 	/* Driver is being hot-unplugged. This call should delete the actual object itself */
1446 	RDMA_REMOVE_DRIVER_REMOVE,
1447 	/* uobj is being cleaned-up before being committed */
1448 	RDMA_REMOVE_ABORT,
1449 };
1450 
1451 struct ib_rdmacg_object {
1452 #ifdef CONFIG_CGROUP_RDMA
1453 	struct rdma_cgroup	*cg;		/* owner rdma cgroup */
1454 #endif
1455 };
1456 
1457 struct ib_ucontext {
1458 	struct ib_device       *device;
1459 	struct ib_uverbs_file  *ufile;
1460 	/*
1461 	 * 'closing' can be read by the driver only during a destroy callback,
1462 	 * it is set when we are closing the file descriptor and indicates
1463 	 * that mm_sem may be locked.
1464 	 */
1465 	bool closing;
1466 
1467 	bool cleanup_retryable;
1468 
1469 	struct ib_rdmacg_object	cg_obj;
1470 	/*
1471 	 * Implementation details of the RDMA core, don't use in drivers:
1472 	 */
1473 	struct rdma_restrack_entry res;
1474 };
1475 
1476 struct ib_uobject {
1477 	u64			user_handle;	/* handle given to us by userspace */
1478 	/* ufile & ucontext owning this object */
1479 	struct ib_uverbs_file  *ufile;
1480 	/* FIXME, save memory: ufile->context == context */
1481 	struct ib_ucontext     *context;	/* associated user context */
1482 	void		       *object;		/* containing object */
1483 	struct list_head	list;		/* link to context's list */
1484 	struct ib_rdmacg_object	cg_obj;		/* rdmacg object */
1485 	int			id;		/* index into kernel idr */
1486 	struct kref		ref;
1487 	atomic_t		usecnt;		/* protects exclusive access */
1488 	struct rcu_head		rcu;		/* kfree_rcu() overhead */
1489 
1490 	const struct uverbs_api_object *uapi_object;
1491 };
1492 
1493 struct ib_udata {
1494 	const void __user *inbuf;
1495 	void __user *outbuf;
1496 	size_t       inlen;
1497 	size_t       outlen;
1498 };
1499 
1500 struct ib_pd {
1501 	u32			local_dma_lkey;
1502 	u32			flags;
1503 	struct ib_device       *device;
1504 	struct ib_uobject      *uobject;
1505 	atomic_t          	usecnt; /* count all resources */
1506 
1507 	u32			unsafe_global_rkey;
1508 
1509 	/*
1510 	 * Implementation details of the RDMA core, don't use in drivers:
1511 	 */
1512 	struct ib_mr	       *__internal_mr;
1513 	struct rdma_restrack_entry res;
1514 };
1515 
1516 struct ib_xrcd {
1517 	struct ib_device       *device;
1518 	atomic_t		usecnt; /* count all exposed resources */
1519 	struct inode	       *inode;
1520 
1521 	struct mutex		tgt_qp_mutex;
1522 	struct list_head	tgt_qp_list;
1523 };
1524 
1525 struct ib_ah {
1526 	struct ib_device	*device;
1527 	struct ib_pd		*pd;
1528 	struct ib_uobject	*uobject;
1529 	const struct ib_gid_attr *sgid_attr;
1530 	enum rdma_ah_attr_type	type;
1531 };
1532 
1533 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1534 
1535 enum ib_poll_context {
1536 	IB_POLL_DIRECT,		   /* caller context, no hw completions */
1537 	IB_POLL_SOFTIRQ,	   /* poll from softirq context */
1538 	IB_POLL_WORKQUEUE,	   /* poll from workqueue */
1539 	IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */
1540 };
1541 
1542 struct ib_cq {
1543 	struct ib_device       *device;
1544 	struct ib_uobject      *uobject;
1545 	ib_comp_handler   	comp_handler;
1546 	void                  (*event_handler)(struct ib_event *, void *);
1547 	void                   *cq_context;
1548 	int               	cqe;
1549 	atomic_t          	usecnt; /* count number of work queues */
1550 	enum ib_poll_context	poll_ctx;
1551 	struct ib_wc		*wc;
1552 	union {
1553 		struct irq_poll		iop;
1554 		struct work_struct	work;
1555 	};
1556 	struct workqueue_struct *comp_wq;
1557 	struct dim *dim;
1558 	/*
1559 	 * Implementation details of the RDMA core, don't use in drivers:
1560 	 */
1561 	struct rdma_restrack_entry res;
1562 };
1563 
1564 struct ib_srq {
1565 	struct ib_device       *device;
1566 	struct ib_pd	       *pd;
1567 	struct ib_uobject      *uobject;
1568 	void		      (*event_handler)(struct ib_event *, void *);
1569 	void		       *srq_context;
1570 	enum ib_srq_type	srq_type;
1571 	atomic_t		usecnt;
1572 
1573 	struct {
1574 		struct ib_cq   *cq;
1575 		union {
1576 			struct {
1577 				struct ib_xrcd *xrcd;
1578 				u32		srq_num;
1579 			} xrc;
1580 		};
1581 	} ext;
1582 };
1583 
1584 enum ib_raw_packet_caps {
1585 	/* Strip cvlan from incoming packet and report it in the matching work
1586 	 * completion is supported.
1587 	 */
1588 	IB_RAW_PACKET_CAP_CVLAN_STRIPPING	= (1 << 0),
1589 	/* Scatter FCS field of an incoming packet to host memory is supported.
1590 	 */
1591 	IB_RAW_PACKET_CAP_SCATTER_FCS		= (1 << 1),
1592 	/* Checksum offloads are supported (for both send and receive). */
1593 	IB_RAW_PACKET_CAP_IP_CSUM		= (1 << 2),
1594 	/* When a packet is received for an RQ with no receive WQEs, the
1595 	 * packet processing is delayed.
1596 	 */
1597 	IB_RAW_PACKET_CAP_DELAY_DROP		= (1 << 3),
1598 };
1599 
1600 enum ib_wq_type {
1601 	IB_WQT_RQ
1602 };
1603 
1604 enum ib_wq_state {
1605 	IB_WQS_RESET,
1606 	IB_WQS_RDY,
1607 	IB_WQS_ERR
1608 };
1609 
1610 struct ib_wq {
1611 	struct ib_device       *device;
1612 	struct ib_uobject      *uobject;
1613 	void		    *wq_context;
1614 	void		    (*event_handler)(struct ib_event *, void *);
1615 	struct ib_pd	       *pd;
1616 	struct ib_cq	       *cq;
1617 	u32		wq_num;
1618 	enum ib_wq_state       state;
1619 	enum ib_wq_type	wq_type;
1620 	atomic_t		usecnt;
1621 };
1622 
1623 enum ib_wq_flags {
1624 	IB_WQ_FLAGS_CVLAN_STRIPPING	= 1 << 0,
1625 	IB_WQ_FLAGS_SCATTER_FCS		= 1 << 1,
1626 	IB_WQ_FLAGS_DELAY_DROP		= 1 << 2,
1627 	IB_WQ_FLAGS_PCI_WRITE_END_PADDING = 1 << 3,
1628 };
1629 
1630 struct ib_wq_init_attr {
1631 	void		       *wq_context;
1632 	enum ib_wq_type	wq_type;
1633 	u32		max_wr;
1634 	u32		max_sge;
1635 	struct	ib_cq	       *cq;
1636 	void		    (*event_handler)(struct ib_event *, void *);
1637 	u32		create_flags; /* Use enum ib_wq_flags */
1638 };
1639 
1640 enum ib_wq_attr_mask {
1641 	IB_WQ_STATE		= 1 << 0,
1642 	IB_WQ_CUR_STATE		= 1 << 1,
1643 	IB_WQ_FLAGS		= 1 << 2,
1644 };
1645 
1646 struct ib_wq_attr {
1647 	enum	ib_wq_state	wq_state;
1648 	enum	ib_wq_state	curr_wq_state;
1649 	u32			flags; /* Use enum ib_wq_flags */
1650 	u32			flags_mask; /* Use enum ib_wq_flags */
1651 };
1652 
1653 struct ib_rwq_ind_table {
1654 	struct ib_device	*device;
1655 	struct ib_uobject      *uobject;
1656 	atomic_t		usecnt;
1657 	u32		ind_tbl_num;
1658 	u32		log_ind_tbl_size;
1659 	struct ib_wq	**ind_tbl;
1660 };
1661 
1662 struct ib_rwq_ind_table_init_attr {
1663 	u32		log_ind_tbl_size;
1664 	/* Each entry is a pointer to Receive Work Queue */
1665 	struct ib_wq	**ind_tbl;
1666 };
1667 
1668 enum port_pkey_state {
1669 	IB_PORT_PKEY_NOT_VALID = 0,
1670 	IB_PORT_PKEY_VALID = 1,
1671 	IB_PORT_PKEY_LISTED = 2,
1672 };
1673 
1674 struct ib_qp_security;
1675 
1676 struct ib_port_pkey {
1677 	enum port_pkey_state	state;
1678 	u16			pkey_index;
1679 	u8			port_num;
1680 	struct list_head	qp_list;
1681 	struct list_head	to_error_list;
1682 	struct ib_qp_security  *sec;
1683 };
1684 
1685 struct ib_ports_pkeys {
1686 	struct ib_port_pkey	main;
1687 	struct ib_port_pkey	alt;
1688 };
1689 
1690 struct ib_qp_security {
1691 	struct ib_qp	       *qp;
1692 	struct ib_device       *dev;
1693 	/* Hold this mutex when changing port and pkey settings. */
1694 	struct mutex		mutex;
1695 	struct ib_ports_pkeys  *ports_pkeys;
1696 	/* A list of all open shared QP handles.  Required to enforce security
1697 	 * properly for all users of a shared QP.
1698 	 */
1699 	struct list_head        shared_qp_list;
1700 	void                   *security;
1701 	bool			destroying;
1702 	atomic_t		error_list_count;
1703 	struct completion	error_complete;
1704 	int			error_comps_pending;
1705 };
1706 
1707 /*
1708  * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1709  * @max_read_sge:  Maximum SGE elements per RDMA READ request.
1710  */
1711 struct ib_qp {
1712 	struct ib_device       *device;
1713 	struct ib_pd	       *pd;
1714 	struct ib_cq	       *send_cq;
1715 	struct ib_cq	       *recv_cq;
1716 	spinlock_t		mr_lock;
1717 	int			mrs_used;
1718 	struct list_head	rdma_mrs;
1719 	struct list_head	sig_mrs;
1720 	struct ib_srq	       *srq;
1721 	struct ib_xrcd	       *xrcd; /* XRC TGT QPs only */
1722 	struct list_head	xrcd_list;
1723 
1724 	/* count times opened, mcast attaches, flow attaches */
1725 	atomic_t		usecnt;
1726 	struct list_head	open_list;
1727 	struct ib_qp           *real_qp;
1728 	struct ib_uobject      *uobject;
1729 	void                  (*event_handler)(struct ib_event *, void *);
1730 	void		       *qp_context;
1731 	/* sgid_attrs associated with the AV's */
1732 	const struct ib_gid_attr *av_sgid_attr;
1733 	const struct ib_gid_attr *alt_path_sgid_attr;
1734 	u32			qp_num;
1735 	u32			max_write_sge;
1736 	u32			max_read_sge;
1737 	enum ib_qp_type		qp_type;
1738 	struct ib_rwq_ind_table *rwq_ind_tbl;
1739 	struct ib_qp_security  *qp_sec;
1740 	u8			port;
1741 
1742 	bool			integrity_en;
1743 	/*
1744 	 * Implementation details of the RDMA core, don't use in drivers:
1745 	 */
1746 	struct rdma_restrack_entry     res;
1747 
1748 	/* The counter the qp is bind to */
1749 	struct rdma_counter    *counter;
1750 };
1751 
1752 struct ib_dm {
1753 	struct ib_device  *device;
1754 	u32		   length;
1755 	u32		   flags;
1756 	struct ib_uobject *uobject;
1757 	atomic_t	   usecnt;
1758 };
1759 
1760 struct ib_mr {
1761 	struct ib_device  *device;
1762 	struct ib_pd	  *pd;
1763 	u32		   lkey;
1764 	u32		   rkey;
1765 	u64		   iova;
1766 	u64		   length;
1767 	unsigned int	   page_size;
1768 	enum ib_mr_type	   type;
1769 	bool		   need_inval;
1770 	union {
1771 		struct ib_uobject	*uobject;	/* user */
1772 		struct list_head	qp_entry;	/* FR */
1773 	};
1774 
1775 	struct ib_dm      *dm;
1776 	struct ib_sig_attrs *sig_attrs; /* only for IB_MR_TYPE_INTEGRITY MRs */
1777 	/*
1778 	 * Implementation details of the RDMA core, don't use in drivers:
1779 	 */
1780 	struct rdma_restrack_entry res;
1781 };
1782 
1783 struct ib_mw {
1784 	struct ib_device	*device;
1785 	struct ib_pd		*pd;
1786 	struct ib_uobject	*uobject;
1787 	u32			rkey;
1788 	enum ib_mw_type         type;
1789 };
1790 
1791 struct ib_fmr {
1792 	struct ib_device	*device;
1793 	struct ib_pd		*pd;
1794 	struct list_head	list;
1795 	u32			lkey;
1796 	u32			rkey;
1797 };
1798 
1799 /* Supported steering options */
1800 enum ib_flow_attr_type {
1801 	/* steering according to rule specifications */
1802 	IB_FLOW_ATTR_NORMAL		= 0x0,
1803 	/* default unicast and multicast rule -
1804 	 * receive all Eth traffic which isn't steered to any QP
1805 	 */
1806 	IB_FLOW_ATTR_ALL_DEFAULT	= 0x1,
1807 	/* default multicast rule -
1808 	 * receive all Eth multicast traffic which isn't steered to any QP
1809 	 */
1810 	IB_FLOW_ATTR_MC_DEFAULT		= 0x2,
1811 	/* sniffer rule - receive all port traffic */
1812 	IB_FLOW_ATTR_SNIFFER		= 0x3
1813 };
1814 
1815 /* Supported steering header types */
1816 enum ib_flow_spec_type {
1817 	/* L2 headers*/
1818 	IB_FLOW_SPEC_ETH		= 0x20,
1819 	IB_FLOW_SPEC_IB			= 0x22,
1820 	/* L3 header*/
1821 	IB_FLOW_SPEC_IPV4		= 0x30,
1822 	IB_FLOW_SPEC_IPV6		= 0x31,
1823 	IB_FLOW_SPEC_ESP                = 0x34,
1824 	/* L4 headers*/
1825 	IB_FLOW_SPEC_TCP		= 0x40,
1826 	IB_FLOW_SPEC_UDP		= 0x41,
1827 	IB_FLOW_SPEC_VXLAN_TUNNEL	= 0x50,
1828 	IB_FLOW_SPEC_GRE		= 0x51,
1829 	IB_FLOW_SPEC_MPLS		= 0x60,
1830 	IB_FLOW_SPEC_INNER		= 0x100,
1831 	/* Actions */
1832 	IB_FLOW_SPEC_ACTION_TAG         = 0x1000,
1833 	IB_FLOW_SPEC_ACTION_DROP        = 0x1001,
1834 	IB_FLOW_SPEC_ACTION_HANDLE	= 0x1002,
1835 	IB_FLOW_SPEC_ACTION_COUNT       = 0x1003,
1836 };
1837 #define IB_FLOW_SPEC_LAYER_MASK	0xF0
1838 #define IB_FLOW_SPEC_SUPPORT_LAYERS 10
1839 
1840 /* Flow steering rule priority is set according to it's domain.
1841  * Lower domain value means higher priority.
1842  */
1843 enum ib_flow_domain {
1844 	IB_FLOW_DOMAIN_USER,
1845 	IB_FLOW_DOMAIN_ETHTOOL,
1846 	IB_FLOW_DOMAIN_RFS,
1847 	IB_FLOW_DOMAIN_NIC,
1848 	IB_FLOW_DOMAIN_NUM /* Must be last */
1849 };
1850 
1851 enum ib_flow_flags {
1852 	IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1853 	IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */
1854 	IB_FLOW_ATTR_FLAGS_RESERVED  = 1UL << 3  /* Must be last */
1855 };
1856 
1857 struct ib_flow_eth_filter {
1858 	u8	dst_mac[6];
1859 	u8	src_mac[6];
1860 	__be16	ether_type;
1861 	__be16	vlan_tag;
1862 	/* Must be last */
1863 	u8	real_sz[0];
1864 };
1865 
1866 struct ib_flow_spec_eth {
1867 	u32			  type;
1868 	u16			  size;
1869 	struct ib_flow_eth_filter val;
1870 	struct ib_flow_eth_filter mask;
1871 };
1872 
1873 struct ib_flow_ib_filter {
1874 	__be16 dlid;
1875 	__u8   sl;
1876 	/* Must be last */
1877 	u8	real_sz[0];
1878 };
1879 
1880 struct ib_flow_spec_ib {
1881 	u32			 type;
1882 	u16			 size;
1883 	struct ib_flow_ib_filter val;
1884 	struct ib_flow_ib_filter mask;
1885 };
1886 
1887 /* IPv4 header flags */
1888 enum ib_ipv4_flags {
1889 	IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1890 	IB_IPV4_MORE_FRAG = 0X4  /* For All fragmented packets except the
1891 				    last have this flag set */
1892 };
1893 
1894 struct ib_flow_ipv4_filter {
1895 	__be32	src_ip;
1896 	__be32	dst_ip;
1897 	u8	proto;
1898 	u8	tos;
1899 	u8	ttl;
1900 	u8	flags;
1901 	/* Must be last */
1902 	u8	real_sz[0];
1903 };
1904 
1905 struct ib_flow_spec_ipv4 {
1906 	u32			   type;
1907 	u16			   size;
1908 	struct ib_flow_ipv4_filter val;
1909 	struct ib_flow_ipv4_filter mask;
1910 };
1911 
1912 struct ib_flow_ipv6_filter {
1913 	u8	src_ip[16];
1914 	u8	dst_ip[16];
1915 	__be32	flow_label;
1916 	u8	next_hdr;
1917 	u8	traffic_class;
1918 	u8	hop_limit;
1919 	/* Must be last */
1920 	u8	real_sz[0];
1921 };
1922 
1923 struct ib_flow_spec_ipv6 {
1924 	u32			   type;
1925 	u16			   size;
1926 	struct ib_flow_ipv6_filter val;
1927 	struct ib_flow_ipv6_filter mask;
1928 };
1929 
1930 struct ib_flow_tcp_udp_filter {
1931 	__be16	dst_port;
1932 	__be16	src_port;
1933 	/* Must be last */
1934 	u8	real_sz[0];
1935 };
1936 
1937 struct ib_flow_spec_tcp_udp {
1938 	u32			      type;
1939 	u16			      size;
1940 	struct ib_flow_tcp_udp_filter val;
1941 	struct ib_flow_tcp_udp_filter mask;
1942 };
1943 
1944 struct ib_flow_tunnel_filter {
1945 	__be32	tunnel_id;
1946 	u8	real_sz[0];
1947 };
1948 
1949 /* ib_flow_spec_tunnel describes the Vxlan tunnel
1950  * the tunnel_id from val has the vni value
1951  */
1952 struct ib_flow_spec_tunnel {
1953 	u32			      type;
1954 	u16			      size;
1955 	struct ib_flow_tunnel_filter  val;
1956 	struct ib_flow_tunnel_filter  mask;
1957 };
1958 
1959 struct ib_flow_esp_filter {
1960 	__be32	spi;
1961 	__be32  seq;
1962 	/* Must be last */
1963 	u8	real_sz[0];
1964 };
1965 
1966 struct ib_flow_spec_esp {
1967 	u32                           type;
1968 	u16			      size;
1969 	struct ib_flow_esp_filter     val;
1970 	struct ib_flow_esp_filter     mask;
1971 };
1972 
1973 struct ib_flow_gre_filter {
1974 	__be16 c_ks_res0_ver;
1975 	__be16 protocol;
1976 	__be32 key;
1977 	/* Must be last */
1978 	u8	real_sz[0];
1979 };
1980 
1981 struct ib_flow_spec_gre {
1982 	u32                           type;
1983 	u16			      size;
1984 	struct ib_flow_gre_filter     val;
1985 	struct ib_flow_gre_filter     mask;
1986 };
1987 
1988 struct ib_flow_mpls_filter {
1989 	__be32 tag;
1990 	/* Must be last */
1991 	u8	real_sz[0];
1992 };
1993 
1994 struct ib_flow_spec_mpls {
1995 	u32                           type;
1996 	u16			      size;
1997 	struct ib_flow_mpls_filter     val;
1998 	struct ib_flow_mpls_filter     mask;
1999 };
2000 
2001 struct ib_flow_spec_action_tag {
2002 	enum ib_flow_spec_type	      type;
2003 	u16			      size;
2004 	u32                           tag_id;
2005 };
2006 
2007 struct ib_flow_spec_action_drop {
2008 	enum ib_flow_spec_type	      type;
2009 	u16			      size;
2010 };
2011 
2012 struct ib_flow_spec_action_handle {
2013 	enum ib_flow_spec_type	      type;
2014 	u16			      size;
2015 	struct ib_flow_action	     *act;
2016 };
2017 
2018 enum ib_counters_description {
2019 	IB_COUNTER_PACKETS,
2020 	IB_COUNTER_BYTES,
2021 };
2022 
2023 struct ib_flow_spec_action_count {
2024 	enum ib_flow_spec_type type;
2025 	u16 size;
2026 	struct ib_counters *counters;
2027 };
2028 
2029 union ib_flow_spec {
2030 	struct {
2031 		u32			type;
2032 		u16			size;
2033 	};
2034 	struct ib_flow_spec_eth		eth;
2035 	struct ib_flow_spec_ib		ib;
2036 	struct ib_flow_spec_ipv4        ipv4;
2037 	struct ib_flow_spec_tcp_udp	tcp_udp;
2038 	struct ib_flow_spec_ipv6        ipv6;
2039 	struct ib_flow_spec_tunnel      tunnel;
2040 	struct ib_flow_spec_esp		esp;
2041 	struct ib_flow_spec_gre		gre;
2042 	struct ib_flow_spec_mpls	mpls;
2043 	struct ib_flow_spec_action_tag  flow_tag;
2044 	struct ib_flow_spec_action_drop drop;
2045 	struct ib_flow_spec_action_handle action;
2046 	struct ib_flow_spec_action_count flow_count;
2047 };
2048 
2049 struct ib_flow_attr {
2050 	enum ib_flow_attr_type type;
2051 	u16	     size;
2052 	u16	     priority;
2053 	u32	     flags;
2054 	u8	     num_of_specs;
2055 	u8	     port;
2056 	union ib_flow_spec flows[];
2057 };
2058 
2059 struct ib_flow {
2060 	struct ib_qp		*qp;
2061 	struct ib_device	*device;
2062 	struct ib_uobject	*uobject;
2063 };
2064 
2065 enum ib_flow_action_type {
2066 	IB_FLOW_ACTION_UNSPECIFIED,
2067 	IB_FLOW_ACTION_ESP = 1,
2068 };
2069 
2070 struct ib_flow_action_attrs_esp_keymats {
2071 	enum ib_uverbs_flow_action_esp_keymat			protocol;
2072 	union {
2073 		struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm;
2074 	} keymat;
2075 };
2076 
2077 struct ib_flow_action_attrs_esp_replays {
2078 	enum ib_uverbs_flow_action_esp_replay			protocol;
2079 	union {
2080 		struct ib_uverbs_flow_action_esp_replay_bmp	bmp;
2081 	} replay;
2082 };
2083 
2084 enum ib_flow_action_attrs_esp_flags {
2085 	/* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags
2086 	 * This is done in order to share the same flags between user-space and
2087 	 * kernel and spare an unnecessary translation.
2088 	 */
2089 
2090 	/* Kernel flags */
2091 	IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED	= 1ULL << 32,
2092 	IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS	= 1ULL << 33,
2093 };
2094 
2095 struct ib_flow_spec_list {
2096 	struct ib_flow_spec_list	*next;
2097 	union ib_flow_spec		spec;
2098 };
2099 
2100 struct ib_flow_action_attrs_esp {
2101 	struct ib_flow_action_attrs_esp_keymats		*keymat;
2102 	struct ib_flow_action_attrs_esp_replays		*replay;
2103 	struct ib_flow_spec_list			*encap;
2104 	/* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled.
2105 	 * Value of 0 is a valid value.
2106 	 */
2107 	u32						esn;
2108 	u32						spi;
2109 	u32						seq;
2110 	u32						tfc_pad;
2111 	/* Use enum ib_flow_action_attrs_esp_flags */
2112 	u64						flags;
2113 	u64						hard_limit_pkts;
2114 };
2115 
2116 struct ib_flow_action {
2117 	struct ib_device		*device;
2118 	struct ib_uobject		*uobject;
2119 	enum ib_flow_action_type	type;
2120 	atomic_t			usecnt;
2121 };
2122 
2123 struct ib_mad_hdr;
2124 struct ib_grh;
2125 
2126 enum ib_process_mad_flags {
2127 	IB_MAD_IGNORE_MKEY	= 1,
2128 	IB_MAD_IGNORE_BKEY	= 2,
2129 	IB_MAD_IGNORE_ALL	= IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
2130 };
2131 
2132 enum ib_mad_result {
2133 	IB_MAD_RESULT_FAILURE  = 0,      /* (!SUCCESS is the important flag) */
2134 	IB_MAD_RESULT_SUCCESS  = 1 << 0, /* MAD was successfully processed   */
2135 	IB_MAD_RESULT_REPLY    = 1 << 1, /* Reply packet needs to be sent    */
2136 	IB_MAD_RESULT_CONSUMED = 1 << 2  /* Packet consumed: stop processing */
2137 };
2138 
2139 struct ib_port_cache {
2140 	u64		      subnet_prefix;
2141 	struct ib_pkey_cache  *pkey;
2142 	struct ib_gid_table   *gid;
2143 	u8                     lmc;
2144 	enum ib_port_state     port_state;
2145 };
2146 
2147 struct ib_cache {
2148 	rwlock_t                lock;
2149 	struct ib_event_handler event_handler;
2150 };
2151 
2152 struct ib_port_immutable {
2153 	int                           pkey_tbl_len;
2154 	int                           gid_tbl_len;
2155 	u32                           core_cap_flags;
2156 	u32                           max_mad_size;
2157 };
2158 
2159 struct ib_port_data {
2160 	struct ib_device *ib_dev;
2161 
2162 	struct ib_port_immutable immutable;
2163 
2164 	spinlock_t pkey_list_lock;
2165 	struct list_head pkey_list;
2166 
2167 	struct ib_port_cache cache;
2168 
2169 	spinlock_t netdev_lock;
2170 	struct net_device __rcu *netdev;
2171 	struct hlist_node ndev_hash_link;
2172 	struct rdma_port_counter port_counter;
2173 	struct rdma_hw_stats *hw_stats;
2174 };
2175 
2176 /* rdma netdev type - specifies protocol type */
2177 enum rdma_netdev_t {
2178 	RDMA_NETDEV_OPA_VNIC,
2179 	RDMA_NETDEV_IPOIB,
2180 };
2181 
2182 /**
2183  * struct rdma_netdev - rdma netdev
2184  * For cases where netstack interfacing is required.
2185  */
2186 struct rdma_netdev {
2187 	void              *clnt_priv;
2188 	struct ib_device  *hca;
2189 	u8                 port_num;
2190 
2191 	/*
2192 	 * cleanup function must be specified.
2193 	 * FIXME: This is only used for OPA_VNIC and that usage should be
2194 	 * removed too.
2195 	 */
2196 	void (*free_rdma_netdev)(struct net_device *netdev);
2197 
2198 	/* control functions */
2199 	void (*set_id)(struct net_device *netdev, int id);
2200 	/* send packet */
2201 	int (*send)(struct net_device *dev, struct sk_buff *skb,
2202 		    struct ib_ah *address, u32 dqpn);
2203 	/* multicast */
2204 	int (*attach_mcast)(struct net_device *dev, struct ib_device *hca,
2205 			    union ib_gid *gid, u16 mlid,
2206 			    int set_qkey, u32 qkey);
2207 	int (*detach_mcast)(struct net_device *dev, struct ib_device *hca,
2208 			    union ib_gid *gid, u16 mlid);
2209 };
2210 
2211 struct rdma_netdev_alloc_params {
2212 	size_t sizeof_priv;
2213 	unsigned int txqs;
2214 	unsigned int rxqs;
2215 	void *param;
2216 
2217 	int (*initialize_rdma_netdev)(struct ib_device *device, u8 port_num,
2218 				      struct net_device *netdev, void *param);
2219 };
2220 
2221 struct ib_counters {
2222 	struct ib_device	*device;
2223 	struct ib_uobject	*uobject;
2224 	/* num of objects attached */
2225 	atomic_t	usecnt;
2226 };
2227 
2228 struct ib_counters_read_attr {
2229 	u64	*counters_buff;
2230 	u32	ncounters;
2231 	u32	flags; /* use enum ib_read_counters_flags */
2232 };
2233 
2234 struct uverbs_attr_bundle;
2235 struct iw_cm_id;
2236 struct iw_cm_conn_param;
2237 
2238 #define INIT_RDMA_OBJ_SIZE(ib_struct, drv_struct, member)                      \
2239 	.size_##ib_struct =                                                    \
2240 		(sizeof(struct drv_struct) +                                   \
2241 		 BUILD_BUG_ON_ZERO(offsetof(struct drv_struct, member)) +      \
2242 		 BUILD_BUG_ON_ZERO(                                            \
2243 			 !__same_type(((struct drv_struct *)NULL)->member,     \
2244 				      struct ib_struct)))
2245 
2246 #define rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, gfp)                         \
2247 	((struct ib_type *)kzalloc(ib_dev->ops.size_##ib_type, gfp))
2248 
2249 #define rdma_zalloc_drv_obj(ib_dev, ib_type)                                   \
2250 	rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, GFP_KERNEL)
2251 
2252 #define DECLARE_RDMA_OBJ_SIZE(ib_struct) size_t size_##ib_struct
2253 
2254 /**
2255  * struct ib_device_ops - InfiniBand device operations
2256  * This structure defines all the InfiniBand device operations, providers will
2257  * need to define the supported operations, otherwise they will be set to null.
2258  */
2259 struct ib_device_ops {
2260 	struct module *owner;
2261 	enum rdma_driver_id driver_id;
2262 	u32 uverbs_abi_ver;
2263 	unsigned int uverbs_no_driver_id_binding:1;
2264 
2265 	int (*post_send)(struct ib_qp *qp, const struct ib_send_wr *send_wr,
2266 			 const struct ib_send_wr **bad_send_wr);
2267 	int (*post_recv)(struct ib_qp *qp, const struct ib_recv_wr *recv_wr,
2268 			 const struct ib_recv_wr **bad_recv_wr);
2269 	void (*drain_rq)(struct ib_qp *qp);
2270 	void (*drain_sq)(struct ib_qp *qp);
2271 	int (*poll_cq)(struct ib_cq *cq, int num_entries, struct ib_wc *wc);
2272 	int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2273 	int (*req_notify_cq)(struct ib_cq *cq, enum ib_cq_notify_flags flags);
2274 	int (*req_ncomp_notif)(struct ib_cq *cq, int wc_cnt);
2275 	int (*post_srq_recv)(struct ib_srq *srq,
2276 			     const struct ib_recv_wr *recv_wr,
2277 			     const struct ib_recv_wr **bad_recv_wr);
2278 	int (*process_mad)(struct ib_device *device, int process_mad_flags,
2279 			   u8 port_num, const struct ib_wc *in_wc,
2280 			   const struct ib_grh *in_grh,
2281 			   const struct ib_mad_hdr *in_mad, size_t in_mad_size,
2282 			   struct ib_mad_hdr *out_mad, size_t *out_mad_size,
2283 			   u16 *out_mad_pkey_index);
2284 	int (*query_device)(struct ib_device *device,
2285 			    struct ib_device_attr *device_attr,
2286 			    struct ib_udata *udata);
2287 	int (*modify_device)(struct ib_device *device, int device_modify_mask,
2288 			     struct ib_device_modify *device_modify);
2289 	void (*get_dev_fw_str)(struct ib_device *device, char *str);
2290 	const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev,
2291 						     int comp_vector);
2292 	int (*query_port)(struct ib_device *device, u8 port_num,
2293 			  struct ib_port_attr *port_attr);
2294 	int (*modify_port)(struct ib_device *device, u8 port_num,
2295 			   int port_modify_mask,
2296 			   struct ib_port_modify *port_modify);
2297 	/**
2298 	 * The following mandatory functions are used only at device
2299 	 * registration.  Keep functions such as these at the end of this
2300 	 * structure to avoid cache line misses when accessing struct ib_device
2301 	 * in fast paths.
2302 	 */
2303 	int (*get_port_immutable)(struct ib_device *device, u8 port_num,
2304 				  struct ib_port_immutable *immutable);
2305 	enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
2306 					       u8 port_num);
2307 	/**
2308 	 * When calling get_netdev, the HW vendor's driver should return the
2309 	 * net device of device @device at port @port_num or NULL if such
2310 	 * a net device doesn't exist. The vendor driver should call dev_hold
2311 	 * on this net device. The HW vendor's device driver must guarantee
2312 	 * that this function returns NULL before the net device has finished
2313 	 * NETDEV_UNREGISTER state.
2314 	 */
2315 	struct net_device *(*get_netdev)(struct ib_device *device, u8 port_num);
2316 	/**
2317 	 * rdma netdev operation
2318 	 *
2319 	 * Driver implementing alloc_rdma_netdev or rdma_netdev_get_params
2320 	 * must return -EOPNOTSUPP if it doesn't support the specified type.
2321 	 */
2322 	struct net_device *(*alloc_rdma_netdev)(
2323 		struct ib_device *device, u8 port_num, enum rdma_netdev_t type,
2324 		const char *name, unsigned char name_assign_type,
2325 		void (*setup)(struct net_device *));
2326 
2327 	int (*rdma_netdev_get_params)(struct ib_device *device, u8 port_num,
2328 				      enum rdma_netdev_t type,
2329 				      struct rdma_netdev_alloc_params *params);
2330 	/**
2331 	 * query_gid should be return GID value for @device, when @port_num
2332 	 * link layer is either IB or iWarp. It is no-op if @port_num port
2333 	 * is RoCE link layer.
2334 	 */
2335 	int (*query_gid)(struct ib_device *device, u8 port_num, int index,
2336 			 union ib_gid *gid);
2337 	/**
2338 	 * When calling add_gid, the HW vendor's driver should add the gid
2339 	 * of device of port at gid index available at @attr. Meta-info of
2340 	 * that gid (for example, the network device related to this gid) is
2341 	 * available at @attr. @context allows the HW vendor driver to store
2342 	 * extra information together with a GID entry. The HW vendor driver may
2343 	 * allocate memory to contain this information and store it in @context
2344 	 * when a new GID entry is written to. Params are consistent until the
2345 	 * next call of add_gid or delete_gid. The function should return 0 on
2346 	 * success or error otherwise. The function could be called
2347 	 * concurrently for different ports. This function is only called when
2348 	 * roce_gid_table is used.
2349 	 */
2350 	int (*add_gid)(const struct ib_gid_attr *attr, void **context);
2351 	/**
2352 	 * When calling del_gid, the HW vendor's driver should delete the
2353 	 * gid of device @device at gid index gid_index of port port_num
2354 	 * available in @attr.
2355 	 * Upon the deletion of a GID entry, the HW vendor must free any
2356 	 * allocated memory. The caller will clear @context afterwards.
2357 	 * This function is only called when roce_gid_table is used.
2358 	 */
2359 	int (*del_gid)(const struct ib_gid_attr *attr, void **context);
2360 	int (*query_pkey)(struct ib_device *device, u8 port_num, u16 index,
2361 			  u16 *pkey);
2362 	int (*alloc_ucontext)(struct ib_ucontext *context,
2363 			      struct ib_udata *udata);
2364 	void (*dealloc_ucontext)(struct ib_ucontext *context);
2365 	int (*mmap)(struct ib_ucontext *context, struct vm_area_struct *vma);
2366 	void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
2367 	int (*alloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2368 	void (*dealloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2369 	int (*create_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr,
2370 			 u32 flags, struct ib_udata *udata);
2371 	int (*modify_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2372 	int (*query_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2373 	void (*destroy_ah)(struct ib_ah *ah, u32 flags);
2374 	int (*create_srq)(struct ib_srq *srq,
2375 			  struct ib_srq_init_attr *srq_init_attr,
2376 			  struct ib_udata *udata);
2377 	int (*modify_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr,
2378 			  enum ib_srq_attr_mask srq_attr_mask,
2379 			  struct ib_udata *udata);
2380 	int (*query_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr);
2381 	void (*destroy_srq)(struct ib_srq *srq, struct ib_udata *udata);
2382 	struct ib_qp *(*create_qp)(struct ib_pd *pd,
2383 				   struct ib_qp_init_attr *qp_init_attr,
2384 				   struct ib_udata *udata);
2385 	int (*modify_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2386 			 int qp_attr_mask, struct ib_udata *udata);
2387 	int (*query_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2388 			int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr);
2389 	int (*destroy_qp)(struct ib_qp *qp, struct ib_udata *udata);
2390 	int (*create_cq)(struct ib_cq *cq, const struct ib_cq_init_attr *attr,
2391 			 struct ib_udata *udata);
2392 	int (*modify_cq)(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2393 	void (*destroy_cq)(struct ib_cq *cq, struct ib_udata *udata);
2394 	int (*resize_cq)(struct ib_cq *cq, int cqe, struct ib_udata *udata);
2395 	struct ib_mr *(*get_dma_mr)(struct ib_pd *pd, int mr_access_flags);
2396 	struct ib_mr *(*reg_user_mr)(struct ib_pd *pd, u64 start, u64 length,
2397 				     u64 virt_addr, int mr_access_flags,
2398 				     struct ib_udata *udata);
2399 	int (*rereg_user_mr)(struct ib_mr *mr, int flags, u64 start, u64 length,
2400 			     u64 virt_addr, int mr_access_flags,
2401 			     struct ib_pd *pd, struct ib_udata *udata);
2402 	int (*dereg_mr)(struct ib_mr *mr, struct ib_udata *udata);
2403 	struct ib_mr *(*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type,
2404 				  u32 max_num_sg, struct ib_udata *udata);
2405 	struct ib_mr *(*alloc_mr_integrity)(struct ib_pd *pd,
2406 					    u32 max_num_data_sg,
2407 					    u32 max_num_meta_sg);
2408 	int (*advise_mr)(struct ib_pd *pd,
2409 			 enum ib_uverbs_advise_mr_advice advice, u32 flags,
2410 			 struct ib_sge *sg_list, u32 num_sge,
2411 			 struct uverbs_attr_bundle *attrs);
2412 	int (*map_mr_sg)(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2413 			 unsigned int *sg_offset);
2414 	int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2415 			       struct ib_mr_status *mr_status);
2416 	struct ib_mw *(*alloc_mw)(struct ib_pd *pd, enum ib_mw_type type,
2417 				  struct ib_udata *udata);
2418 	int (*dealloc_mw)(struct ib_mw *mw);
2419 	struct ib_fmr *(*alloc_fmr)(struct ib_pd *pd, int mr_access_flags,
2420 				    struct ib_fmr_attr *fmr_attr);
2421 	int (*map_phys_fmr)(struct ib_fmr *fmr, u64 *page_list, int list_len,
2422 			    u64 iova);
2423 	int (*unmap_fmr)(struct list_head *fmr_list);
2424 	int (*dealloc_fmr)(struct ib_fmr *fmr);
2425 	void (*invalidate_range)(struct ib_umem_odp *umem_odp,
2426 				 unsigned long start, unsigned long end);
2427 	int (*attach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2428 	int (*detach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2429 	struct ib_xrcd *(*alloc_xrcd)(struct ib_device *device,
2430 				      struct ib_udata *udata);
2431 	int (*dealloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
2432 	struct ib_flow *(*create_flow)(struct ib_qp *qp,
2433 				       struct ib_flow_attr *flow_attr,
2434 				       int domain, struct ib_udata *udata);
2435 	int (*destroy_flow)(struct ib_flow *flow_id);
2436 	struct ib_flow_action *(*create_flow_action_esp)(
2437 		struct ib_device *device,
2438 		const struct ib_flow_action_attrs_esp *attr,
2439 		struct uverbs_attr_bundle *attrs);
2440 	int (*destroy_flow_action)(struct ib_flow_action *action);
2441 	int (*modify_flow_action_esp)(
2442 		struct ib_flow_action *action,
2443 		const struct ib_flow_action_attrs_esp *attr,
2444 		struct uverbs_attr_bundle *attrs);
2445 	int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port,
2446 				 int state);
2447 	int (*get_vf_config)(struct ib_device *device, int vf, u8 port,
2448 			     struct ifla_vf_info *ivf);
2449 	int (*get_vf_stats)(struct ib_device *device, int vf, u8 port,
2450 			    struct ifla_vf_stats *stats);
2451 	int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid,
2452 			   int type);
2453 	struct ib_wq *(*create_wq)(struct ib_pd *pd,
2454 				   struct ib_wq_init_attr *init_attr,
2455 				   struct ib_udata *udata);
2456 	void (*destroy_wq)(struct ib_wq *wq, struct ib_udata *udata);
2457 	int (*modify_wq)(struct ib_wq *wq, struct ib_wq_attr *attr,
2458 			 u32 wq_attr_mask, struct ib_udata *udata);
2459 	struct ib_rwq_ind_table *(*create_rwq_ind_table)(
2460 		struct ib_device *device,
2461 		struct ib_rwq_ind_table_init_attr *init_attr,
2462 		struct ib_udata *udata);
2463 	int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2464 	struct ib_dm *(*alloc_dm)(struct ib_device *device,
2465 				  struct ib_ucontext *context,
2466 				  struct ib_dm_alloc_attr *attr,
2467 				  struct uverbs_attr_bundle *attrs);
2468 	int (*dealloc_dm)(struct ib_dm *dm, struct uverbs_attr_bundle *attrs);
2469 	struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm,
2470 				   struct ib_dm_mr_attr *attr,
2471 				   struct uverbs_attr_bundle *attrs);
2472 	struct ib_counters *(*create_counters)(
2473 		struct ib_device *device, struct uverbs_attr_bundle *attrs);
2474 	int (*destroy_counters)(struct ib_counters *counters);
2475 	int (*read_counters)(struct ib_counters *counters,
2476 			     struct ib_counters_read_attr *counters_read_attr,
2477 			     struct uverbs_attr_bundle *attrs);
2478 	int (*map_mr_sg_pi)(struct ib_mr *mr, struct scatterlist *data_sg,
2479 			    int data_sg_nents, unsigned int *data_sg_offset,
2480 			    struct scatterlist *meta_sg, int meta_sg_nents,
2481 			    unsigned int *meta_sg_offset);
2482 
2483 	/**
2484 	 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the
2485 	 *   driver initialized data.  The struct is kfree()'ed by the sysfs
2486 	 *   core when the device is removed.  A lifespan of -1 in the return
2487 	 *   struct tells the core to set a default lifespan.
2488 	 */
2489 	struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device,
2490 						u8 port_num);
2491 	/**
2492 	 * get_hw_stats - Fill in the counter value(s) in the stats struct.
2493 	 * @index - The index in the value array we wish to have updated, or
2494 	 *   num_counters if we want all stats updated
2495 	 * Return codes -
2496 	 *   < 0 - Error, no counters updated
2497 	 *   index - Updated the single counter pointed to by index
2498 	 *   num_counters - Updated all counters (will reset the timestamp
2499 	 *     and prevent further calls for lifespan milliseconds)
2500 	 * Drivers are allowed to update all counters in leiu of just the
2501 	 *   one given in index at their option
2502 	 */
2503 	int (*get_hw_stats)(struct ib_device *device,
2504 			    struct rdma_hw_stats *stats, u8 port, int index);
2505 	/*
2506 	 * This function is called once for each port when a ib device is
2507 	 * registered.
2508 	 */
2509 	int (*init_port)(struct ib_device *device, u8 port_num,
2510 			 struct kobject *port_sysfs);
2511 	/**
2512 	 * Allows rdma drivers to add their own restrack attributes.
2513 	 */
2514 	int (*fill_res_entry)(struct sk_buff *msg,
2515 			      struct rdma_restrack_entry *entry);
2516 
2517 	/* Device lifecycle callbacks */
2518 	/*
2519 	 * Called after the device becomes registered, before clients are
2520 	 * attached
2521 	 */
2522 	int (*enable_driver)(struct ib_device *dev);
2523 	/*
2524 	 * This is called as part of ib_dealloc_device().
2525 	 */
2526 	void (*dealloc_driver)(struct ib_device *dev);
2527 
2528 	/* iWarp CM callbacks */
2529 	void (*iw_add_ref)(struct ib_qp *qp);
2530 	void (*iw_rem_ref)(struct ib_qp *qp);
2531 	struct ib_qp *(*iw_get_qp)(struct ib_device *device, int qpn);
2532 	int (*iw_connect)(struct iw_cm_id *cm_id,
2533 			  struct iw_cm_conn_param *conn_param);
2534 	int (*iw_accept)(struct iw_cm_id *cm_id,
2535 			 struct iw_cm_conn_param *conn_param);
2536 	int (*iw_reject)(struct iw_cm_id *cm_id, const void *pdata,
2537 			 u8 pdata_len);
2538 	int (*iw_create_listen)(struct iw_cm_id *cm_id, int backlog);
2539 	int (*iw_destroy_listen)(struct iw_cm_id *cm_id);
2540 	/**
2541 	 * counter_bind_qp - Bind a QP to a counter.
2542 	 * @counter - The counter to be bound. If counter->id is zero then
2543 	 *   the driver needs to allocate a new counter and set counter->id
2544 	 */
2545 	int (*counter_bind_qp)(struct rdma_counter *counter, struct ib_qp *qp);
2546 	/**
2547 	 * counter_unbind_qp - Unbind the qp from the dynamically-allocated
2548 	 *   counter and bind it onto the default one
2549 	 */
2550 	int (*counter_unbind_qp)(struct ib_qp *qp);
2551 	/**
2552 	 * counter_dealloc -De-allocate the hw counter
2553 	 */
2554 	int (*counter_dealloc)(struct rdma_counter *counter);
2555 	/**
2556 	 * counter_alloc_stats - Allocate a struct rdma_hw_stats and fill in
2557 	 * the driver initialized data.
2558 	 */
2559 	struct rdma_hw_stats *(*counter_alloc_stats)(
2560 		struct rdma_counter *counter);
2561 	/**
2562 	 * counter_update_stats - Query the stats value of this counter
2563 	 */
2564 	int (*counter_update_stats)(struct rdma_counter *counter);
2565 
2566 	DECLARE_RDMA_OBJ_SIZE(ib_ah);
2567 	DECLARE_RDMA_OBJ_SIZE(ib_cq);
2568 	DECLARE_RDMA_OBJ_SIZE(ib_pd);
2569 	DECLARE_RDMA_OBJ_SIZE(ib_srq);
2570 	DECLARE_RDMA_OBJ_SIZE(ib_ucontext);
2571 };
2572 
2573 struct ib_core_device {
2574 	/* device must be the first element in structure until,
2575 	 * union of ib_core_device and device exists in ib_device.
2576 	 */
2577 	struct device dev;
2578 	possible_net_t rdma_net;
2579 	struct kobject *ports_kobj;
2580 	struct list_head port_list;
2581 	struct ib_device *owner; /* reach back to owner ib_device */
2582 };
2583 
2584 struct rdma_restrack_root;
2585 struct ib_device {
2586 	/* Do not access @dma_device directly from ULP nor from HW drivers. */
2587 	struct device                *dma_device;
2588 	struct ib_device_ops	     ops;
2589 	char                          name[IB_DEVICE_NAME_MAX];
2590 	struct rcu_head rcu_head;
2591 
2592 	struct list_head              event_handler_list;
2593 	spinlock_t                    event_handler_lock;
2594 
2595 	struct rw_semaphore	      client_data_rwsem;
2596 	struct xarray                 client_data;
2597 	struct mutex                  unregistration_lock;
2598 
2599 	struct ib_cache               cache;
2600 	/**
2601 	 * port_data is indexed by port number
2602 	 */
2603 	struct ib_port_data *port_data;
2604 
2605 	int			      num_comp_vectors;
2606 
2607 	union {
2608 		struct device		dev;
2609 		struct ib_core_device	coredev;
2610 	};
2611 
2612 	/* First group for device attributes,
2613 	 * Second group for driver provided attributes (optional).
2614 	 * It is NULL terminated array.
2615 	 */
2616 	const struct attribute_group	*groups[3];
2617 
2618 	u64			     uverbs_cmd_mask;
2619 	u64			     uverbs_ex_cmd_mask;
2620 
2621 	char			     node_desc[IB_DEVICE_NODE_DESC_MAX];
2622 	__be64			     node_guid;
2623 	u32			     local_dma_lkey;
2624 	u16                          is_switch:1;
2625 	/* Indicates kernel verbs support, should not be used in drivers */
2626 	u16                          kverbs_provider:1;
2627 	/* CQ adaptive moderation (RDMA DIM) */
2628 	u16                          use_cq_dim:1;
2629 	u8                           node_type;
2630 	u8                           phys_port_cnt;
2631 	struct ib_device_attr        attrs;
2632 	struct attribute_group	     *hw_stats_ag;
2633 	struct rdma_hw_stats         *hw_stats;
2634 
2635 #ifdef CONFIG_CGROUP_RDMA
2636 	struct rdmacg_device         cg_device;
2637 #endif
2638 
2639 	u32                          index;
2640 	struct rdma_restrack_root *res;
2641 
2642 	const struct uapi_definition   *driver_def;
2643 
2644 	/*
2645 	 * Positive refcount indicates that the device is currently
2646 	 * registered and cannot be unregistered.
2647 	 */
2648 	refcount_t refcount;
2649 	struct completion unreg_completion;
2650 	struct work_struct unregistration_work;
2651 
2652 	const struct rdma_link_ops *link_ops;
2653 
2654 	/* Protects compat_devs xarray modifications */
2655 	struct mutex compat_devs_mutex;
2656 	/* Maintains compat devices for each net namespace */
2657 	struct xarray compat_devs;
2658 
2659 	/* Used by iWarp CM */
2660 	char iw_ifname[IFNAMSIZ];
2661 	u32 iw_driver_flags;
2662 };
2663 
2664 struct ib_client_nl_info;
2665 struct ib_client {
2666 	const char *name;
2667 	void (*add)   (struct ib_device *);
2668 	void (*remove)(struct ib_device *, void *client_data);
2669 	void (*rename)(struct ib_device *dev, void *client_data);
2670 	int (*get_nl_info)(struct ib_device *ibdev, void *client_data,
2671 			   struct ib_client_nl_info *res);
2672 	int (*get_global_nl_info)(struct ib_client_nl_info *res);
2673 
2674 	/* Returns the net_dev belonging to this ib_client and matching the
2675 	 * given parameters.
2676 	 * @dev:	 An RDMA device that the net_dev use for communication.
2677 	 * @port:	 A physical port number on the RDMA device.
2678 	 * @pkey:	 P_Key that the net_dev uses if applicable.
2679 	 * @gid:	 A GID that the net_dev uses to communicate.
2680 	 * @addr:	 An IP address the net_dev is configured with.
2681 	 * @client_data: The device's client data set by ib_set_client_data().
2682 	 *
2683 	 * An ib_client that implements a net_dev on top of RDMA devices
2684 	 * (such as IP over IB) should implement this callback, allowing the
2685 	 * rdma_cm module to find the right net_dev for a given request.
2686 	 *
2687 	 * The caller is responsible for calling dev_put on the returned
2688 	 * netdev. */
2689 	struct net_device *(*get_net_dev_by_params)(
2690 			struct ib_device *dev,
2691 			u8 port,
2692 			u16 pkey,
2693 			const union ib_gid *gid,
2694 			const struct sockaddr *addr,
2695 			void *client_data);
2696 
2697 	refcount_t uses;
2698 	struct completion uses_zero;
2699 	u32 client_id;
2700 
2701 	/* kverbs are not required by the client */
2702 	u8 no_kverbs_req:1;
2703 };
2704 
2705 /*
2706  * IB block DMA iterator
2707  *
2708  * Iterates the DMA-mapped SGL in contiguous memory blocks aligned
2709  * to a HW supported page size.
2710  */
2711 struct ib_block_iter {
2712 	/* internal states */
2713 	struct scatterlist *__sg;	/* sg holding the current aligned block */
2714 	dma_addr_t __dma_addr;		/* unaligned DMA address of this block */
2715 	unsigned int __sg_nents;	/* number of SG entries */
2716 	unsigned int __sg_advance;	/* number of bytes to advance in sg in next step */
2717 	unsigned int __pg_bit;		/* alignment of current block */
2718 };
2719 
2720 struct ib_device *_ib_alloc_device(size_t size);
2721 #define ib_alloc_device(drv_struct, member)                                    \
2722 	container_of(_ib_alloc_device(sizeof(struct drv_struct) +              \
2723 				      BUILD_BUG_ON_ZERO(offsetof(              \
2724 					      struct drv_struct, member))),    \
2725 		     struct drv_struct, member)
2726 
2727 void ib_dealloc_device(struct ib_device *device);
2728 
2729 void ib_get_device_fw_str(struct ib_device *device, char *str);
2730 
2731 int ib_register_device(struct ib_device *device, const char *name);
2732 void ib_unregister_device(struct ib_device *device);
2733 void ib_unregister_driver(enum rdma_driver_id driver_id);
2734 void ib_unregister_device_and_put(struct ib_device *device);
2735 void ib_unregister_device_queued(struct ib_device *ib_dev);
2736 
2737 int ib_register_client   (struct ib_client *client);
2738 void ib_unregister_client(struct ib_client *client);
2739 
2740 void __rdma_block_iter_start(struct ib_block_iter *biter,
2741 			     struct scatterlist *sglist,
2742 			     unsigned int nents,
2743 			     unsigned long pgsz);
2744 bool __rdma_block_iter_next(struct ib_block_iter *biter);
2745 
2746 /**
2747  * rdma_block_iter_dma_address - get the aligned dma address of the current
2748  * block held by the block iterator.
2749  * @biter: block iterator holding the memory block
2750  */
2751 static inline dma_addr_t
rdma_block_iter_dma_address(struct ib_block_iter * biter)2752 rdma_block_iter_dma_address(struct ib_block_iter *biter)
2753 {
2754 	return biter->__dma_addr & ~(BIT_ULL(biter->__pg_bit) - 1);
2755 }
2756 
2757 /**
2758  * rdma_for_each_block - iterate over contiguous memory blocks of the sg list
2759  * @sglist: sglist to iterate over
2760  * @biter: block iterator holding the memory block
2761  * @nents: maximum number of sg entries to iterate over
2762  * @pgsz: best HW supported page size to use
2763  *
2764  * Callers may use rdma_block_iter_dma_address() to get each
2765  * blocks aligned DMA address.
2766  */
2767 #define rdma_for_each_block(sglist, biter, nents, pgsz)		\
2768 	for (__rdma_block_iter_start(biter, sglist, nents,	\
2769 				     pgsz);			\
2770 	     __rdma_block_iter_next(biter);)
2771 
2772 /**
2773  * ib_get_client_data - Get IB client context
2774  * @device:Device to get context for
2775  * @client:Client to get context for
2776  *
2777  * ib_get_client_data() returns the client context data set with
2778  * ib_set_client_data(). This can only be called while the client is
2779  * registered to the device, once the ib_client remove() callback returns this
2780  * cannot be called.
2781  */
ib_get_client_data(struct ib_device * device,struct ib_client * client)2782 static inline void *ib_get_client_data(struct ib_device *device,
2783 				       struct ib_client *client)
2784 {
2785 	return xa_load(&device->client_data, client->client_id);
2786 }
2787 void  ib_set_client_data(struct ib_device *device, struct ib_client *client,
2788 			 void *data);
2789 void ib_set_device_ops(struct ib_device *device,
2790 		       const struct ib_device_ops *ops);
2791 
2792 #if IS_ENABLED(CONFIG_INFINIBAND_USER_ACCESS)
2793 int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma,
2794 		      unsigned long pfn, unsigned long size, pgprot_t prot);
2795 #else
rdma_user_mmap_io(struct ib_ucontext * ucontext,struct vm_area_struct * vma,unsigned long pfn,unsigned long size,pgprot_t prot)2796 static inline int rdma_user_mmap_io(struct ib_ucontext *ucontext,
2797 				    struct vm_area_struct *vma,
2798 				    unsigned long pfn, unsigned long size,
2799 				    pgprot_t prot)
2800 {
2801 	return -EINVAL;
2802 }
2803 #endif
2804 
ib_copy_from_udata(void * dest,struct ib_udata * udata,size_t len)2805 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2806 {
2807 	return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2808 }
2809 
ib_copy_to_udata(struct ib_udata * udata,void * src,size_t len)2810 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2811 {
2812 	return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
2813 }
2814 
ib_is_buffer_cleared(const void __user * p,size_t len)2815 static inline bool ib_is_buffer_cleared(const void __user *p,
2816 					size_t len)
2817 {
2818 	bool ret;
2819 	u8 *buf;
2820 
2821 	if (len > USHRT_MAX)
2822 		return false;
2823 
2824 	buf = memdup_user(p, len);
2825 	if (IS_ERR(buf))
2826 		return false;
2827 
2828 	ret = !memchr_inv(buf, 0, len);
2829 	kfree(buf);
2830 	return ret;
2831 }
2832 
ib_is_udata_cleared(struct ib_udata * udata,size_t offset,size_t len)2833 static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2834 				       size_t offset,
2835 				       size_t len)
2836 {
2837 	return ib_is_buffer_cleared(udata->inbuf + offset, len);
2838 }
2839 
2840 /**
2841  * ib_is_destroy_retryable - Check whether the uobject destruction
2842  * is retryable.
2843  * @ret: The initial destruction return code
2844  * @why: remove reason
2845  * @uobj: The uobject that is destroyed
2846  *
2847  * This function is a helper function that IB layer and low-level drivers
2848  * can use to consider whether the destruction of the given uobject is
2849  * retry-able.
2850  * It checks the original return code, if it wasn't success the destruction
2851  * is retryable according to the ucontext state (i.e. cleanup_retryable) and
2852  * the remove reason. (i.e. why).
2853  * Must be called with the object locked for destroy.
2854  */
ib_is_destroy_retryable(int ret,enum rdma_remove_reason why,struct ib_uobject * uobj)2855 static inline bool ib_is_destroy_retryable(int ret, enum rdma_remove_reason why,
2856 					   struct ib_uobject *uobj)
2857 {
2858 	return ret && (why == RDMA_REMOVE_DESTROY ||
2859 		       uobj->context->cleanup_retryable);
2860 }
2861 
2862 /**
2863  * ib_destroy_usecnt - Called during destruction to check the usecnt
2864  * @usecnt: The usecnt atomic
2865  * @why: remove reason
2866  * @uobj: The uobject that is destroyed
2867  *
2868  * Non-zero usecnts will block destruction unless destruction was triggered by
2869  * a ucontext cleanup.
2870  */
ib_destroy_usecnt(atomic_t * usecnt,enum rdma_remove_reason why,struct ib_uobject * uobj)2871 static inline int ib_destroy_usecnt(atomic_t *usecnt,
2872 				    enum rdma_remove_reason why,
2873 				    struct ib_uobject *uobj)
2874 {
2875 	if (atomic_read(usecnt) && ib_is_destroy_retryable(-EBUSY, why, uobj))
2876 		return -EBUSY;
2877 	return 0;
2878 }
2879 
2880 /**
2881  * ib_modify_qp_is_ok - Check that the supplied attribute mask
2882  * contains all required attributes and no attributes not allowed for
2883  * the given QP state transition.
2884  * @cur_state: Current QP state
2885  * @next_state: Next QP state
2886  * @type: QP type
2887  * @mask: Mask of supplied QP attributes
2888  *
2889  * This function is a helper function that a low-level driver's
2890  * modify_qp method can use to validate the consumer's input.  It
2891  * checks that cur_state and next_state are valid QP states, that a
2892  * transition from cur_state to next_state is allowed by the IB spec,
2893  * and that the attribute mask supplied is allowed for the transition.
2894  */
2895 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
2896 			enum ib_qp_type type, enum ib_qp_attr_mask mask);
2897 
2898 void ib_register_event_handler(struct ib_event_handler *event_handler);
2899 void ib_unregister_event_handler(struct ib_event_handler *event_handler);
2900 void ib_dispatch_event(struct ib_event *event);
2901 
2902 int ib_query_port(struct ib_device *device,
2903 		  u8 port_num, struct ib_port_attr *port_attr);
2904 
2905 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
2906 					       u8 port_num);
2907 
2908 /**
2909  * rdma_cap_ib_switch - Check if the device is IB switch
2910  * @device: Device to check
2911  *
2912  * Device driver is responsible for setting is_switch bit on
2913  * in ib_device structure at init time.
2914  *
2915  * Return: true if the device is IB switch.
2916  */
rdma_cap_ib_switch(const struct ib_device * device)2917 static inline bool rdma_cap_ib_switch(const struct ib_device *device)
2918 {
2919 	return device->is_switch;
2920 }
2921 
2922 /**
2923  * rdma_start_port - Return the first valid port number for the device
2924  * specified
2925  *
2926  * @device: Device to be checked
2927  *
2928  * Return start port number
2929  */
rdma_start_port(const struct ib_device * device)2930 static inline u8 rdma_start_port(const struct ib_device *device)
2931 {
2932 	return rdma_cap_ib_switch(device) ? 0 : 1;
2933 }
2934 
2935 /**
2936  * rdma_for_each_port - Iterate over all valid port numbers of the IB device
2937  * @device - The struct ib_device * to iterate over
2938  * @iter - The unsigned int to store the port number
2939  */
2940 #define rdma_for_each_port(device, iter)                                       \
2941 	for (iter = rdma_start_port(device + BUILD_BUG_ON_ZERO(!__same_type(   \
2942 						     unsigned int, iter)));    \
2943 	     iter <= rdma_end_port(device); (iter)++)
2944 
2945 /**
2946  * rdma_end_port - Return the last valid port number for the device
2947  * specified
2948  *
2949  * @device: Device to be checked
2950  *
2951  * Return last port number
2952  */
rdma_end_port(const struct ib_device * device)2953 static inline u8 rdma_end_port(const struct ib_device *device)
2954 {
2955 	return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
2956 }
2957 
rdma_is_port_valid(const struct ib_device * device,unsigned int port)2958 static inline int rdma_is_port_valid(const struct ib_device *device,
2959 				     unsigned int port)
2960 {
2961 	return (port >= rdma_start_port(device) &&
2962 		port <= rdma_end_port(device));
2963 }
2964 
rdma_is_grh_required(const struct ib_device * device,u8 port_num)2965 static inline bool rdma_is_grh_required(const struct ib_device *device,
2966 					u8 port_num)
2967 {
2968 	return device->port_data[port_num].immutable.core_cap_flags &
2969 	       RDMA_CORE_PORT_IB_GRH_REQUIRED;
2970 }
2971 
rdma_protocol_ib(const struct ib_device * device,u8 port_num)2972 static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
2973 {
2974 	return device->port_data[port_num].immutable.core_cap_flags &
2975 	       RDMA_CORE_CAP_PROT_IB;
2976 }
2977 
rdma_protocol_roce(const struct ib_device * device,u8 port_num)2978 static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
2979 {
2980 	return device->port_data[port_num].immutable.core_cap_flags &
2981 	       (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
2982 }
2983 
rdma_protocol_roce_udp_encap(const struct ib_device * device,u8 port_num)2984 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num)
2985 {
2986 	return device->port_data[port_num].immutable.core_cap_flags &
2987 	       RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
2988 }
2989 
rdma_protocol_roce_eth_encap(const struct ib_device * device,u8 port_num)2990 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num)
2991 {
2992 	return device->port_data[port_num].immutable.core_cap_flags &
2993 	       RDMA_CORE_CAP_PROT_ROCE;
2994 }
2995 
rdma_protocol_iwarp(const struct ib_device * device,u8 port_num)2996 static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
2997 {
2998 	return device->port_data[port_num].immutable.core_cap_flags &
2999 	       RDMA_CORE_CAP_PROT_IWARP;
3000 }
3001 
rdma_ib_or_roce(const struct ib_device * device,u8 port_num)3002 static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
3003 {
3004 	return rdma_protocol_ib(device, port_num) ||
3005 		rdma_protocol_roce(device, port_num);
3006 }
3007 
rdma_protocol_raw_packet(const struct ib_device * device,u8 port_num)3008 static inline bool rdma_protocol_raw_packet(const struct ib_device *device, u8 port_num)
3009 {
3010 	return device->port_data[port_num].immutable.core_cap_flags &
3011 	       RDMA_CORE_CAP_PROT_RAW_PACKET;
3012 }
3013 
rdma_protocol_usnic(const struct ib_device * device,u8 port_num)3014 static inline bool rdma_protocol_usnic(const struct ib_device *device, u8 port_num)
3015 {
3016 	return device->port_data[port_num].immutable.core_cap_flags &
3017 	       RDMA_CORE_CAP_PROT_USNIC;
3018 }
3019 
3020 /**
3021  * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
3022  * Management Datagrams.
3023  * @device: Device to check
3024  * @port_num: Port number to check
3025  *
3026  * Management Datagrams (MAD) are a required part of the InfiniBand
3027  * specification and are supported on all InfiniBand devices.  A slightly
3028  * extended version are also supported on OPA interfaces.
3029  *
3030  * Return: true if the port supports sending/receiving of MAD packets.
3031  */
rdma_cap_ib_mad(const struct ib_device * device,u8 port_num)3032 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
3033 {
3034 	return device->port_data[port_num].immutable.core_cap_flags &
3035 	       RDMA_CORE_CAP_IB_MAD;
3036 }
3037 
3038 /**
3039  * rdma_cap_opa_mad - Check if the port of device provides support for OPA
3040  * Management Datagrams.
3041  * @device: Device to check
3042  * @port_num: Port number to check
3043  *
3044  * Intel OmniPath devices extend and/or replace the InfiniBand Management
3045  * datagrams with their own versions.  These OPA MADs share many but not all of
3046  * the characteristics of InfiniBand MADs.
3047  *
3048  * OPA MADs differ in the following ways:
3049  *
3050  *    1) MADs are variable size up to 2K
3051  *       IBTA defined MADs remain fixed at 256 bytes
3052  *    2) OPA SMPs must carry valid PKeys
3053  *    3) OPA SMP packets are a different format
3054  *
3055  * Return: true if the port supports OPA MAD packet formats.
3056  */
rdma_cap_opa_mad(struct ib_device * device,u8 port_num)3057 static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
3058 {
3059 	return device->port_data[port_num].immutable.core_cap_flags &
3060 		RDMA_CORE_CAP_OPA_MAD;
3061 }
3062 
3063 /**
3064  * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
3065  * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
3066  * @device: Device to check
3067  * @port_num: Port number to check
3068  *
3069  * Each InfiniBand node is required to provide a Subnet Management Agent
3070  * that the subnet manager can access.  Prior to the fabric being fully
3071  * configured by the subnet manager, the SMA is accessed via a well known
3072  * interface called the Subnet Management Interface (SMI).  This interface
3073  * uses directed route packets to communicate with the SM to get around the
3074  * chicken and egg problem of the SM needing to know what's on the fabric
3075  * in order to configure the fabric, and needing to configure the fabric in
3076  * order to send packets to the devices on the fabric.  These directed
3077  * route packets do not need the fabric fully configured in order to reach
3078  * their destination.  The SMI is the only method allowed to send
3079  * directed route packets on an InfiniBand fabric.
3080  *
3081  * Return: true if the port provides an SMI.
3082  */
rdma_cap_ib_smi(const struct ib_device * device,u8 port_num)3083 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
3084 {
3085 	return device->port_data[port_num].immutable.core_cap_flags &
3086 	       RDMA_CORE_CAP_IB_SMI;
3087 }
3088 
3089 /**
3090  * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
3091  * Communication Manager.
3092  * @device: Device to check
3093  * @port_num: Port number to check
3094  *
3095  * The InfiniBand Communication Manager is one of many pre-defined General
3096  * Service Agents (GSA) that are accessed via the General Service
3097  * Interface (GSI).  It's role is to facilitate establishment of connections
3098  * between nodes as well as other management related tasks for established
3099  * connections.
3100  *
3101  * Return: true if the port supports an IB CM (this does not guarantee that
3102  * a CM is actually running however).
3103  */
rdma_cap_ib_cm(const struct ib_device * device,u8 port_num)3104 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
3105 {
3106 	return device->port_data[port_num].immutable.core_cap_flags &
3107 	       RDMA_CORE_CAP_IB_CM;
3108 }
3109 
3110 /**
3111  * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
3112  * Communication Manager.
3113  * @device: Device to check
3114  * @port_num: Port number to check
3115  *
3116  * Similar to above, but specific to iWARP connections which have a different
3117  * managment protocol than InfiniBand.
3118  *
3119  * Return: true if the port supports an iWARP CM (this does not guarantee that
3120  * a CM is actually running however).
3121  */
rdma_cap_iw_cm(const struct ib_device * device,u8 port_num)3122 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
3123 {
3124 	return device->port_data[port_num].immutable.core_cap_flags &
3125 	       RDMA_CORE_CAP_IW_CM;
3126 }
3127 
3128 /**
3129  * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
3130  * Subnet Administration.
3131  * @device: Device to check
3132  * @port_num: Port number to check
3133  *
3134  * An InfiniBand Subnet Administration (SA) service is a pre-defined General
3135  * Service Agent (GSA) provided by the Subnet Manager (SM).  On InfiniBand
3136  * fabrics, devices should resolve routes to other hosts by contacting the
3137  * SA to query the proper route.
3138  *
3139  * Return: true if the port should act as a client to the fabric Subnet
3140  * Administration interface.  This does not imply that the SA service is
3141  * running locally.
3142  */
rdma_cap_ib_sa(const struct ib_device * device,u8 port_num)3143 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
3144 {
3145 	return device->port_data[port_num].immutable.core_cap_flags &
3146 	       RDMA_CORE_CAP_IB_SA;
3147 }
3148 
3149 /**
3150  * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
3151  * Multicast.
3152  * @device: Device to check
3153  * @port_num: Port number to check
3154  *
3155  * InfiniBand multicast registration is more complex than normal IPv4 or
3156  * IPv6 multicast registration.  Each Host Channel Adapter must register
3157  * with the Subnet Manager when it wishes to join a multicast group.  It
3158  * should do so only once regardless of how many queue pairs it subscribes
3159  * to this group.  And it should leave the group only after all queue pairs
3160  * attached to the group have been detached.
3161  *
3162  * Return: true if the port must undertake the additional adminstrative
3163  * overhead of registering/unregistering with the SM and tracking of the
3164  * total number of queue pairs attached to the multicast group.
3165  */
rdma_cap_ib_mcast(const struct ib_device * device,u8 port_num)3166 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
3167 {
3168 	return rdma_cap_ib_sa(device, port_num);
3169 }
3170 
3171 /**
3172  * rdma_cap_af_ib - Check if the port of device has the capability
3173  * Native Infiniband Address.
3174  * @device: Device to check
3175  * @port_num: Port number to check
3176  *
3177  * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
3178  * GID.  RoCE uses a different mechanism, but still generates a GID via
3179  * a prescribed mechanism and port specific data.
3180  *
3181  * Return: true if the port uses a GID address to identify devices on the
3182  * network.
3183  */
rdma_cap_af_ib(const struct ib_device * device,u8 port_num)3184 static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
3185 {
3186 	return device->port_data[port_num].immutable.core_cap_flags &
3187 	       RDMA_CORE_CAP_AF_IB;
3188 }
3189 
3190 /**
3191  * rdma_cap_eth_ah - Check if the port of device has the capability
3192  * Ethernet Address Handle.
3193  * @device: Device to check
3194  * @port_num: Port number to check
3195  *
3196  * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
3197  * to fabricate GIDs over Ethernet/IP specific addresses native to the
3198  * port.  Normally, packet headers are generated by the sending host
3199  * adapter, but when sending connectionless datagrams, we must manually
3200  * inject the proper headers for the fabric we are communicating over.
3201  *
3202  * Return: true if we are running as a RoCE port and must force the
3203  * addition of a Global Route Header built from our Ethernet Address
3204  * Handle into our header list for connectionless packets.
3205  */
rdma_cap_eth_ah(const struct ib_device * device,u8 port_num)3206 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
3207 {
3208 	return device->port_data[port_num].immutable.core_cap_flags &
3209 	       RDMA_CORE_CAP_ETH_AH;
3210 }
3211 
3212 /**
3213  * rdma_cap_opa_ah - Check if the port of device supports
3214  * OPA Address handles
3215  * @device: Device to check
3216  * @port_num: Port number to check
3217  *
3218  * Return: true if we are running on an OPA device which supports
3219  * the extended OPA addressing.
3220  */
rdma_cap_opa_ah(struct ib_device * device,u8 port_num)3221 static inline bool rdma_cap_opa_ah(struct ib_device *device, u8 port_num)
3222 {
3223 	return (device->port_data[port_num].immutable.core_cap_flags &
3224 		RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH;
3225 }
3226 
3227 /**
3228  * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
3229  *
3230  * @device: Device
3231  * @port_num: Port number
3232  *
3233  * This MAD size includes the MAD headers and MAD payload.  No other headers
3234  * are included.
3235  *
3236  * Return the max MAD size required by the Port.  Will return 0 if the port
3237  * does not support MADs
3238  */
rdma_max_mad_size(const struct ib_device * device,u8 port_num)3239 static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
3240 {
3241 	return device->port_data[port_num].immutable.max_mad_size;
3242 }
3243 
3244 /**
3245  * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
3246  * @device: Device to check
3247  * @port_num: Port number to check
3248  *
3249  * RoCE GID table mechanism manages the various GIDs for a device.
3250  *
3251  * NOTE: if allocating the port's GID table has failed, this call will still
3252  * return true, but any RoCE GID table API will fail.
3253  *
3254  * Return: true if the port uses RoCE GID table mechanism in order to manage
3255  * its GIDs.
3256  */
rdma_cap_roce_gid_table(const struct ib_device * device,u8 port_num)3257 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
3258 					   u8 port_num)
3259 {
3260 	return rdma_protocol_roce(device, port_num) &&
3261 		device->ops.add_gid && device->ops.del_gid;
3262 }
3263 
3264 /*
3265  * Check if the device supports READ W/ INVALIDATE.
3266  */
rdma_cap_read_inv(struct ib_device * dev,u32 port_num)3267 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
3268 {
3269 	/*
3270 	 * iWarp drivers must support READ W/ INVALIDATE.  No other protocol
3271 	 * has support for it yet.
3272 	 */
3273 	return rdma_protocol_iwarp(dev, port_num);
3274 }
3275 
3276 /**
3277  * rdma_find_pg_bit - Find page bit given address and HW supported page sizes
3278  *
3279  * @addr: address
3280  * @pgsz_bitmap: bitmap of HW supported page sizes
3281  */
rdma_find_pg_bit(unsigned long addr,unsigned long pgsz_bitmap)3282 static inline unsigned int rdma_find_pg_bit(unsigned long addr,
3283 					    unsigned long pgsz_bitmap)
3284 {
3285 	unsigned long align;
3286 	unsigned long pgsz;
3287 
3288 	align = addr & -addr;
3289 
3290 	/* Find page bit such that addr is aligned to the highest supported
3291 	 * HW page size
3292 	 */
3293 	pgsz = pgsz_bitmap & ~(-align << 1);
3294 	if (!pgsz)
3295 		return __ffs(pgsz_bitmap);
3296 
3297 	return __fls(pgsz);
3298 }
3299 
3300 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
3301 			 int state);
3302 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
3303 		     struct ifla_vf_info *info);
3304 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
3305 		    struct ifla_vf_stats *stats);
3306 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
3307 		   int type);
3308 
3309 int ib_query_pkey(struct ib_device *device,
3310 		  u8 port_num, u16 index, u16 *pkey);
3311 
3312 int ib_modify_device(struct ib_device *device,
3313 		     int device_modify_mask,
3314 		     struct ib_device_modify *device_modify);
3315 
3316 int ib_modify_port(struct ib_device *device,
3317 		   u8 port_num, int port_modify_mask,
3318 		   struct ib_port_modify *port_modify);
3319 
3320 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
3321 		u8 *port_num, u16 *index);
3322 
3323 int ib_find_pkey(struct ib_device *device,
3324 		 u8 port_num, u16 pkey, u16 *index);
3325 
3326 enum ib_pd_flags {
3327 	/*
3328 	 * Create a memory registration for all memory in the system and place
3329 	 * the rkey for it into pd->unsafe_global_rkey.  This can be used by
3330 	 * ULPs to avoid the overhead of dynamic MRs.
3331 	 *
3332 	 * This flag is generally considered unsafe and must only be used in
3333 	 * extremly trusted environments.  Every use of it will log a warning
3334 	 * in the kernel log.
3335 	 */
3336 	IB_PD_UNSAFE_GLOBAL_RKEY	= 0x01,
3337 };
3338 
3339 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
3340 		const char *caller);
3341 
3342 #define ib_alloc_pd(device, flags) \
3343 	__ib_alloc_pd((device), (flags), KBUILD_MODNAME)
3344 
3345 /**
3346  * ib_dealloc_pd_user - Deallocate kernel/user PD
3347  * @pd: The protection domain
3348  * @udata: Valid user data or NULL for kernel objects
3349  */
3350 void ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata);
3351 
3352 /**
3353  * ib_dealloc_pd - Deallocate kernel PD
3354  * @pd: The protection domain
3355  *
3356  * NOTE: for user PD use ib_dealloc_pd_user with valid udata!
3357  */
ib_dealloc_pd(struct ib_pd * pd)3358 static inline void ib_dealloc_pd(struct ib_pd *pd)
3359 {
3360 	ib_dealloc_pd_user(pd, NULL);
3361 }
3362 
3363 enum rdma_create_ah_flags {
3364 	/* In a sleepable context */
3365 	RDMA_CREATE_AH_SLEEPABLE = BIT(0),
3366 };
3367 
3368 /**
3369  * rdma_create_ah - Creates an address handle for the given address vector.
3370  * @pd: The protection domain associated with the address handle.
3371  * @ah_attr: The attributes of the address vector.
3372  * @flags: Create address handle flags (see enum rdma_create_ah_flags).
3373  *
3374  * The address handle is used to reference a local or global destination
3375  * in all UD QP post sends.
3376  */
3377 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
3378 			     u32 flags);
3379 
3380 /**
3381  * rdma_create_user_ah - Creates an address handle for the given address vector.
3382  * It resolves destination mac address for ah attribute of RoCE type.
3383  * @pd: The protection domain associated with the address handle.
3384  * @ah_attr: The attributes of the address vector.
3385  * @udata: pointer to user's input output buffer information need by
3386  *         provider driver.
3387  *
3388  * It returns 0 on success and returns appropriate error code on error.
3389  * The address handle is used to reference a local or global destination
3390  * in all UD QP post sends.
3391  */
3392 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
3393 				  struct rdma_ah_attr *ah_attr,
3394 				  struct ib_udata *udata);
3395 /**
3396  * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
3397  *   work completion.
3398  * @hdr: the L3 header to parse
3399  * @net_type: type of header to parse
3400  * @sgid: place to store source gid
3401  * @dgid: place to store destination gid
3402  */
3403 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
3404 			      enum rdma_network_type net_type,
3405 			      union ib_gid *sgid, union ib_gid *dgid);
3406 
3407 /**
3408  * ib_get_rdma_header_version - Get the header version
3409  * @hdr: the L3 header to parse
3410  */
3411 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
3412 
3413 /**
3414  * ib_init_ah_attr_from_wc - Initializes address handle attributes from a
3415  *   work completion.
3416  * @device: Device on which the received message arrived.
3417  * @port_num: Port on which the received message arrived.
3418  * @wc: Work completion associated with the received message.
3419  * @grh: References the received global route header.  This parameter is
3420  *   ignored unless the work completion indicates that the GRH is valid.
3421  * @ah_attr: Returned attributes that can be used when creating an address
3422  *   handle for replying to the message.
3423  * When ib_init_ah_attr_from_wc() returns success,
3424  * (a) for IB link layer it optionally contains a reference to SGID attribute
3425  * when GRH is present for IB link layer.
3426  * (b) for RoCE link layer it contains a reference to SGID attribute.
3427  * User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID
3428  * attributes which are initialized using ib_init_ah_attr_from_wc().
3429  *
3430  */
3431 int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num,
3432 			    const struct ib_wc *wc, const struct ib_grh *grh,
3433 			    struct rdma_ah_attr *ah_attr);
3434 
3435 /**
3436  * ib_create_ah_from_wc - Creates an address handle associated with the
3437  *   sender of the specified work completion.
3438  * @pd: The protection domain associated with the address handle.
3439  * @wc: Work completion information associated with a received message.
3440  * @grh: References the received global route header.  This parameter is
3441  *   ignored unless the work completion indicates that the GRH is valid.
3442  * @port_num: The outbound port number to associate with the address.
3443  *
3444  * The address handle is used to reference a local or global destination
3445  * in all UD QP post sends.
3446  */
3447 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
3448 				   const struct ib_grh *grh, u8 port_num);
3449 
3450 /**
3451  * rdma_modify_ah - Modifies the address vector associated with an address
3452  *   handle.
3453  * @ah: The address handle to modify.
3454  * @ah_attr: The new address vector attributes to associate with the
3455  *   address handle.
3456  */
3457 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3458 
3459 /**
3460  * rdma_query_ah - Queries the address vector associated with an address
3461  *   handle.
3462  * @ah: The address handle to query.
3463  * @ah_attr: The address vector attributes associated with the address
3464  *   handle.
3465  */
3466 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3467 
3468 enum rdma_destroy_ah_flags {
3469 	/* In a sleepable context */
3470 	RDMA_DESTROY_AH_SLEEPABLE = BIT(0),
3471 };
3472 
3473 /**
3474  * rdma_destroy_ah_user - Destroys an address handle.
3475  * @ah: The address handle to destroy.
3476  * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3477  * @udata: Valid user data or NULL for kernel objects
3478  */
3479 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata);
3480 
3481 /**
3482  * rdma_destroy_ah - Destroys an kernel address handle.
3483  * @ah: The address handle to destroy.
3484  * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3485  *
3486  * NOTE: for user ah use rdma_destroy_ah_user with valid udata!
3487  */
rdma_destroy_ah(struct ib_ah * ah,u32 flags)3488 static inline int rdma_destroy_ah(struct ib_ah *ah, u32 flags)
3489 {
3490 	return rdma_destroy_ah_user(ah, flags, NULL);
3491 }
3492 
3493 /**
3494  * ib_create_srq - Creates a SRQ associated with the specified protection
3495  *   domain.
3496  * @pd: The protection domain associated with the SRQ.
3497  * @srq_init_attr: A list of initial attributes required to create the
3498  *   SRQ.  If SRQ creation succeeds, then the attributes are updated to
3499  *   the actual capabilities of the created SRQ.
3500  *
3501  * srq_attr->max_wr and srq_attr->max_sge are read the determine the
3502  * requested size of the SRQ, and set to the actual values allocated
3503  * on return.  If ib_create_srq() succeeds, then max_wr and max_sge
3504  * will always be at least as large as the requested values.
3505  */
3506 struct ib_srq *ib_create_srq(struct ib_pd *pd,
3507 			     struct ib_srq_init_attr *srq_init_attr);
3508 
3509 /**
3510  * ib_modify_srq - Modifies the attributes for the specified SRQ.
3511  * @srq: The SRQ to modify.
3512  * @srq_attr: On input, specifies the SRQ attributes to modify.  On output,
3513  *   the current values of selected SRQ attributes are returned.
3514  * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
3515  *   are being modified.
3516  *
3517  * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
3518  * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
3519  * the number of receives queued drops below the limit.
3520  */
3521 int ib_modify_srq(struct ib_srq *srq,
3522 		  struct ib_srq_attr *srq_attr,
3523 		  enum ib_srq_attr_mask srq_attr_mask);
3524 
3525 /**
3526  * ib_query_srq - Returns the attribute list and current values for the
3527  *   specified SRQ.
3528  * @srq: The SRQ to query.
3529  * @srq_attr: The attributes of the specified SRQ.
3530  */
3531 int ib_query_srq(struct ib_srq *srq,
3532 		 struct ib_srq_attr *srq_attr);
3533 
3534 /**
3535  * ib_destroy_srq_user - Destroys the specified SRQ.
3536  * @srq: The SRQ to destroy.
3537  * @udata: Valid user data or NULL for kernel objects
3538  */
3539 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata);
3540 
3541 /**
3542  * ib_destroy_srq - Destroys the specified kernel SRQ.
3543  * @srq: The SRQ to destroy.
3544  *
3545  * NOTE: for user srq use ib_destroy_srq_user with valid udata!
3546  */
ib_destroy_srq(struct ib_srq * srq)3547 static inline int ib_destroy_srq(struct ib_srq *srq)
3548 {
3549 	return ib_destroy_srq_user(srq, NULL);
3550 }
3551 
3552 /**
3553  * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
3554  * @srq: The SRQ to post the work request on.
3555  * @recv_wr: A list of work requests to post on the receive queue.
3556  * @bad_recv_wr: On an immediate failure, this parameter will reference
3557  *   the work request that failed to be posted on the QP.
3558  */
ib_post_srq_recv(struct ib_srq * srq,const struct ib_recv_wr * recv_wr,const struct ib_recv_wr ** bad_recv_wr)3559 static inline int ib_post_srq_recv(struct ib_srq *srq,
3560 				   const struct ib_recv_wr *recv_wr,
3561 				   const struct ib_recv_wr **bad_recv_wr)
3562 {
3563 	const struct ib_recv_wr *dummy;
3564 
3565 	return srq->device->ops.post_srq_recv(srq, recv_wr,
3566 					      bad_recv_wr ? : &dummy);
3567 }
3568 
3569 /**
3570  * ib_create_qp_user - Creates a QP associated with the specified protection
3571  *   domain.
3572  * @pd: The protection domain associated with the QP.
3573  * @qp_init_attr: A list of initial attributes required to create the
3574  *   QP.  If QP creation succeeds, then the attributes are updated to
3575  *   the actual capabilities of the created QP.
3576  * @udata: Valid user data or NULL for kernel objects
3577  */
3578 struct ib_qp *ib_create_qp_user(struct ib_pd *pd,
3579 				struct ib_qp_init_attr *qp_init_attr,
3580 				struct ib_udata *udata);
3581 
3582 /**
3583  * ib_create_qp - Creates a kernel QP associated with the specified protection
3584  *   domain.
3585  * @pd: The protection domain associated with the QP.
3586  * @qp_init_attr: A list of initial attributes required to create the
3587  *   QP.  If QP creation succeeds, then the attributes are updated to
3588  *   the actual capabilities of the created QP.
3589  * @udata: Valid user data or NULL for kernel objects
3590  *
3591  * NOTE: for user qp use ib_create_qp_user with valid udata!
3592  */
ib_create_qp(struct ib_pd * pd,struct ib_qp_init_attr * qp_init_attr)3593 static inline struct ib_qp *ib_create_qp(struct ib_pd *pd,
3594 					 struct ib_qp_init_attr *qp_init_attr)
3595 {
3596 	return ib_create_qp_user(pd, qp_init_attr, NULL);
3597 }
3598 
3599 /**
3600  * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
3601  * @qp: The QP to modify.
3602  * @attr: On input, specifies the QP attributes to modify.  On output,
3603  *   the current values of selected QP attributes are returned.
3604  * @attr_mask: A bit-mask used to specify which attributes of the QP
3605  *   are being modified.
3606  * @udata: pointer to user's input output buffer information
3607  *   are being modified.
3608  * It returns 0 on success and returns appropriate error code on error.
3609  */
3610 int ib_modify_qp_with_udata(struct ib_qp *qp,
3611 			    struct ib_qp_attr *attr,
3612 			    int attr_mask,
3613 			    struct ib_udata *udata);
3614 
3615 /**
3616  * ib_modify_qp - Modifies the attributes for the specified QP and then
3617  *   transitions the QP to the given state.
3618  * @qp: The QP to modify.
3619  * @qp_attr: On input, specifies the QP attributes to modify.  On output,
3620  *   the current values of selected QP attributes are returned.
3621  * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
3622  *   are being modified.
3623  */
3624 int ib_modify_qp(struct ib_qp *qp,
3625 		 struct ib_qp_attr *qp_attr,
3626 		 int qp_attr_mask);
3627 
3628 /**
3629  * ib_query_qp - Returns the attribute list and current values for the
3630  *   specified QP.
3631  * @qp: The QP to query.
3632  * @qp_attr: The attributes of the specified QP.
3633  * @qp_attr_mask: A bit-mask used to select specific attributes to query.
3634  * @qp_init_attr: Additional attributes of the selected QP.
3635  *
3636  * The qp_attr_mask may be used to limit the query to gathering only the
3637  * selected attributes.
3638  */
3639 int ib_query_qp(struct ib_qp *qp,
3640 		struct ib_qp_attr *qp_attr,
3641 		int qp_attr_mask,
3642 		struct ib_qp_init_attr *qp_init_attr);
3643 
3644 /**
3645  * ib_destroy_qp - Destroys the specified QP.
3646  * @qp: The QP to destroy.
3647  * @udata: Valid udata or NULL for kernel objects
3648  */
3649 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata);
3650 
3651 /**
3652  * ib_destroy_qp - Destroys the specified kernel QP.
3653  * @qp: The QP to destroy.
3654  *
3655  * NOTE: for user qp use ib_destroy_qp_user with valid udata!
3656  */
ib_destroy_qp(struct ib_qp * qp)3657 static inline int ib_destroy_qp(struct ib_qp *qp)
3658 {
3659 	return ib_destroy_qp_user(qp, NULL);
3660 }
3661 
3662 /**
3663  * ib_open_qp - Obtain a reference to an existing sharable QP.
3664  * @xrcd - XRC domain
3665  * @qp_open_attr: Attributes identifying the QP to open.
3666  *
3667  * Returns a reference to a sharable QP.
3668  */
3669 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
3670 			 struct ib_qp_open_attr *qp_open_attr);
3671 
3672 /**
3673  * ib_close_qp - Release an external reference to a QP.
3674  * @qp: The QP handle to release
3675  *
3676  * The opened QP handle is released by the caller.  The underlying
3677  * shared QP is not destroyed until all internal references are released.
3678  */
3679 int ib_close_qp(struct ib_qp *qp);
3680 
3681 /**
3682  * ib_post_send - Posts a list of work requests to the send queue of
3683  *   the specified QP.
3684  * @qp: The QP to post the work request on.
3685  * @send_wr: A list of work requests to post on the send queue.
3686  * @bad_send_wr: On an immediate failure, this parameter will reference
3687  *   the work request that failed to be posted on the QP.
3688  *
3689  * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
3690  * error is returned, the QP state shall not be affected,
3691  * ib_post_send() will return an immediate error after queueing any
3692  * earlier work requests in the list.
3693  */
ib_post_send(struct ib_qp * qp,const struct ib_send_wr * send_wr,const struct ib_send_wr ** bad_send_wr)3694 static inline int ib_post_send(struct ib_qp *qp,
3695 			       const struct ib_send_wr *send_wr,
3696 			       const struct ib_send_wr **bad_send_wr)
3697 {
3698 	const struct ib_send_wr *dummy;
3699 
3700 	return qp->device->ops.post_send(qp, send_wr, bad_send_wr ? : &dummy);
3701 }
3702 
3703 /**
3704  * ib_post_recv - Posts a list of work requests to the receive queue of
3705  *   the specified QP.
3706  * @qp: The QP to post the work request on.
3707  * @recv_wr: A list of work requests to post on the receive queue.
3708  * @bad_recv_wr: On an immediate failure, this parameter will reference
3709  *   the work request that failed to be posted on the QP.
3710  */
ib_post_recv(struct ib_qp * qp,const struct ib_recv_wr * recv_wr,const struct ib_recv_wr ** bad_recv_wr)3711 static inline int ib_post_recv(struct ib_qp *qp,
3712 			       const struct ib_recv_wr *recv_wr,
3713 			       const struct ib_recv_wr **bad_recv_wr)
3714 {
3715 	const struct ib_recv_wr *dummy;
3716 
3717 	return qp->device->ops.post_recv(qp, recv_wr, bad_recv_wr ? : &dummy);
3718 }
3719 
3720 struct ib_cq *__ib_alloc_cq_user(struct ib_device *dev, void *private,
3721 				 int nr_cqe, int comp_vector,
3722 				 enum ib_poll_context poll_ctx,
3723 				 const char *caller, struct ib_udata *udata);
3724 
3725 /**
3726  * ib_alloc_cq_user: Allocate kernel/user CQ
3727  * @dev: The IB device
3728  * @private: Private data attached to the CQE
3729  * @nr_cqe: Number of CQEs in the CQ
3730  * @comp_vector: Completion vector used for the IRQs
3731  * @poll_ctx: Context used for polling the CQ
3732  * @udata: Valid user data or NULL for kernel objects
3733  */
ib_alloc_cq_user(struct ib_device * dev,void * private,int nr_cqe,int comp_vector,enum ib_poll_context poll_ctx,struct ib_udata * udata)3734 static inline struct ib_cq *ib_alloc_cq_user(struct ib_device *dev,
3735 					     void *private, int nr_cqe,
3736 					     int comp_vector,
3737 					     enum ib_poll_context poll_ctx,
3738 					     struct ib_udata *udata)
3739 {
3740 	return __ib_alloc_cq_user(dev, private, nr_cqe, comp_vector, poll_ctx,
3741 				  KBUILD_MODNAME, udata);
3742 }
3743 
3744 /**
3745  * ib_alloc_cq: Allocate kernel CQ
3746  * @dev: The IB device
3747  * @private: Private data attached to the CQE
3748  * @nr_cqe: Number of CQEs in the CQ
3749  * @comp_vector: Completion vector used for the IRQs
3750  * @poll_ctx: Context used for polling the CQ
3751  *
3752  * NOTE: for user cq use ib_alloc_cq_user with valid udata!
3753  */
ib_alloc_cq(struct ib_device * dev,void * private,int nr_cqe,int comp_vector,enum ib_poll_context poll_ctx)3754 static inline struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
3755 					int nr_cqe, int comp_vector,
3756 					enum ib_poll_context poll_ctx)
3757 {
3758 	return ib_alloc_cq_user(dev, private, nr_cqe, comp_vector, poll_ctx,
3759 				NULL);
3760 }
3761 
3762 struct ib_cq *__ib_alloc_cq_any(struct ib_device *dev, void *private,
3763 				int nr_cqe, enum ib_poll_context poll_ctx,
3764 				const char *caller);
3765 
3766 /**
3767  * ib_alloc_cq_any: Allocate kernel CQ
3768  * @dev: The IB device
3769  * @private: Private data attached to the CQE
3770  * @nr_cqe: Number of CQEs in the CQ
3771  * @poll_ctx: Context used for polling the CQ
3772  */
ib_alloc_cq_any(struct ib_device * dev,void * private,int nr_cqe,enum ib_poll_context poll_ctx)3773 static inline struct ib_cq *ib_alloc_cq_any(struct ib_device *dev,
3774 					    void *private, int nr_cqe,
3775 					    enum ib_poll_context poll_ctx)
3776 {
3777 	return __ib_alloc_cq_any(dev, private, nr_cqe, poll_ctx,
3778 				 KBUILD_MODNAME);
3779 }
3780 
3781 /**
3782  * ib_free_cq_user - Free kernel/user CQ
3783  * @cq: The CQ to free
3784  * @udata: Valid user data or NULL for kernel objects
3785  */
3786 void ib_free_cq_user(struct ib_cq *cq, struct ib_udata *udata);
3787 
3788 /**
3789  * ib_free_cq - Free kernel CQ
3790  * @cq: The CQ to free
3791  *
3792  * NOTE: for user cq use ib_free_cq_user with valid udata!
3793  */
ib_free_cq(struct ib_cq * cq)3794 static inline void ib_free_cq(struct ib_cq *cq)
3795 {
3796 	ib_free_cq_user(cq, NULL);
3797 }
3798 
3799 int ib_process_cq_direct(struct ib_cq *cq, int budget);
3800 
3801 /**
3802  * ib_create_cq - Creates a CQ on the specified device.
3803  * @device: The device on which to create the CQ.
3804  * @comp_handler: A user-specified callback that is invoked when a
3805  *   completion event occurs on the CQ.
3806  * @event_handler: A user-specified callback that is invoked when an
3807  *   asynchronous event not associated with a completion occurs on the CQ.
3808  * @cq_context: Context associated with the CQ returned to the user via
3809  *   the associated completion and event handlers.
3810  * @cq_attr: The attributes the CQ should be created upon.
3811  *
3812  * Users can examine the cq structure to determine the actual CQ size.
3813  */
3814 struct ib_cq *__ib_create_cq(struct ib_device *device,
3815 			     ib_comp_handler comp_handler,
3816 			     void (*event_handler)(struct ib_event *, void *),
3817 			     void *cq_context,
3818 			     const struct ib_cq_init_attr *cq_attr,
3819 			     const char *caller);
3820 #define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \
3821 	__ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME)
3822 
3823 /**
3824  * ib_resize_cq - Modifies the capacity of the CQ.
3825  * @cq: The CQ to resize.
3826  * @cqe: The minimum size of the CQ.
3827  *
3828  * Users can examine the cq structure to determine the actual CQ size.
3829  */
3830 int ib_resize_cq(struct ib_cq *cq, int cqe);
3831 
3832 /**
3833  * rdma_set_cq_moderation - Modifies moderation params of the CQ
3834  * @cq: The CQ to modify.
3835  * @cq_count: number of CQEs that will trigger an event
3836  * @cq_period: max period of time in usec before triggering an event
3837  *
3838  */
3839 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period);
3840 
3841 /**
3842  * ib_destroy_cq_user - Destroys the specified CQ.
3843  * @cq: The CQ to destroy.
3844  * @udata: Valid user data or NULL for kernel objects
3845  */
3846 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata);
3847 
3848 /**
3849  * ib_destroy_cq - Destroys the specified kernel CQ.
3850  * @cq: The CQ to destroy.
3851  *
3852  * NOTE: for user cq use ib_destroy_cq_user with valid udata!
3853  */
ib_destroy_cq(struct ib_cq * cq)3854 static inline void ib_destroy_cq(struct ib_cq *cq)
3855 {
3856 	ib_destroy_cq_user(cq, NULL);
3857 }
3858 
3859 /**
3860  * ib_poll_cq - poll a CQ for completion(s)
3861  * @cq:the CQ being polled
3862  * @num_entries:maximum number of completions to return
3863  * @wc:array of at least @num_entries &struct ib_wc where completions
3864  *   will be returned
3865  *
3866  * Poll a CQ for (possibly multiple) completions.  If the return value
3867  * is < 0, an error occurred.  If the return value is >= 0, it is the
3868  * number of completions returned.  If the return value is
3869  * non-negative and < num_entries, then the CQ was emptied.
3870  */
ib_poll_cq(struct ib_cq * cq,int num_entries,struct ib_wc * wc)3871 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
3872 			     struct ib_wc *wc)
3873 {
3874 	return cq->device->ops.poll_cq(cq, num_entries, wc);
3875 }
3876 
3877 /**
3878  * ib_req_notify_cq - Request completion notification on a CQ.
3879  * @cq: The CQ to generate an event for.
3880  * @flags:
3881  *   Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
3882  *   to request an event on the next solicited event or next work
3883  *   completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
3884  *   may also be |ed in to request a hint about missed events, as
3885  *   described below.
3886  *
3887  * Return Value:
3888  *    < 0 means an error occurred while requesting notification
3889  *   == 0 means notification was requested successfully, and if
3890  *        IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
3891  *        were missed and it is safe to wait for another event.  In
3892  *        this case is it guaranteed that any work completions added
3893  *        to the CQ since the last CQ poll will trigger a completion
3894  *        notification event.
3895  *    > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
3896  *        in.  It means that the consumer must poll the CQ again to
3897  *        make sure it is empty to avoid missing an event because of a
3898  *        race between requesting notification and an entry being
3899  *        added to the CQ.  This return value means it is possible
3900  *        (but not guaranteed) that a work completion has been added
3901  *        to the CQ since the last poll without triggering a
3902  *        completion notification event.
3903  */
ib_req_notify_cq(struct ib_cq * cq,enum ib_cq_notify_flags flags)3904 static inline int ib_req_notify_cq(struct ib_cq *cq,
3905 				   enum ib_cq_notify_flags flags)
3906 {
3907 	return cq->device->ops.req_notify_cq(cq, flags);
3908 }
3909 
3910 /**
3911  * ib_req_ncomp_notif - Request completion notification when there are
3912  *   at least the specified number of unreaped completions on the CQ.
3913  * @cq: The CQ to generate an event for.
3914  * @wc_cnt: The number of unreaped completions that should be on the
3915  *   CQ before an event is generated.
3916  */
ib_req_ncomp_notif(struct ib_cq * cq,int wc_cnt)3917 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
3918 {
3919 	return cq->device->ops.req_ncomp_notif ?
3920 		cq->device->ops.req_ncomp_notif(cq, wc_cnt) :
3921 		-ENOSYS;
3922 }
3923 
3924 /**
3925  * ib_dma_mapping_error - check a DMA addr for error
3926  * @dev: The device for which the dma_addr was created
3927  * @dma_addr: The DMA address to check
3928  */
ib_dma_mapping_error(struct ib_device * dev,u64 dma_addr)3929 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
3930 {
3931 	return dma_mapping_error(dev->dma_device, dma_addr);
3932 }
3933 
3934 /**
3935  * ib_dma_map_single - Map a kernel virtual address to DMA address
3936  * @dev: The device for which the dma_addr is to be created
3937  * @cpu_addr: The kernel virtual address
3938  * @size: The size of the region in bytes
3939  * @direction: The direction of the DMA
3940  */
ib_dma_map_single(struct ib_device * dev,void * cpu_addr,size_t size,enum dma_data_direction direction)3941 static inline u64 ib_dma_map_single(struct ib_device *dev,
3942 				    void *cpu_addr, size_t size,
3943 				    enum dma_data_direction direction)
3944 {
3945 	return dma_map_single(dev->dma_device, cpu_addr, size, direction);
3946 }
3947 
3948 /**
3949  * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
3950  * @dev: The device for which the DMA address was created
3951  * @addr: The DMA address
3952  * @size: The size of the region in bytes
3953  * @direction: The direction of the DMA
3954  */
ib_dma_unmap_single(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction direction)3955 static inline void ib_dma_unmap_single(struct ib_device *dev,
3956 				       u64 addr, size_t size,
3957 				       enum dma_data_direction direction)
3958 {
3959 	dma_unmap_single(dev->dma_device, addr, size, direction);
3960 }
3961 
3962 /**
3963  * ib_dma_map_page - Map a physical page to DMA address
3964  * @dev: The device for which the dma_addr is to be created
3965  * @page: The page to be mapped
3966  * @offset: The offset within the page
3967  * @size: The size of the region in bytes
3968  * @direction: The direction of the DMA
3969  */
ib_dma_map_page(struct ib_device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction direction)3970 static inline u64 ib_dma_map_page(struct ib_device *dev,
3971 				  struct page *page,
3972 				  unsigned long offset,
3973 				  size_t size,
3974 					 enum dma_data_direction direction)
3975 {
3976 	return dma_map_page(dev->dma_device, page, offset, size, direction);
3977 }
3978 
3979 /**
3980  * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
3981  * @dev: The device for which the DMA address was created
3982  * @addr: The DMA address
3983  * @size: The size of the region in bytes
3984  * @direction: The direction of the DMA
3985  */
ib_dma_unmap_page(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction direction)3986 static inline void ib_dma_unmap_page(struct ib_device *dev,
3987 				     u64 addr, size_t size,
3988 				     enum dma_data_direction direction)
3989 {
3990 	dma_unmap_page(dev->dma_device, addr, size, direction);
3991 }
3992 
3993 /**
3994  * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
3995  * @dev: The device for which the DMA addresses are to be created
3996  * @sg: The array of scatter/gather entries
3997  * @nents: The number of scatter/gather entries
3998  * @direction: The direction of the DMA
3999  */
ib_dma_map_sg(struct ib_device * dev,struct scatterlist * sg,int nents,enum dma_data_direction direction)4000 static inline int ib_dma_map_sg(struct ib_device *dev,
4001 				struct scatterlist *sg, int nents,
4002 				enum dma_data_direction direction)
4003 {
4004 	return dma_map_sg(dev->dma_device, sg, nents, direction);
4005 }
4006 
4007 /**
4008  * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
4009  * @dev: The device for which the DMA addresses were created
4010  * @sg: The array of scatter/gather entries
4011  * @nents: The number of scatter/gather entries
4012  * @direction: The direction of the DMA
4013  */
ib_dma_unmap_sg(struct ib_device * dev,struct scatterlist * sg,int nents,enum dma_data_direction direction)4014 static inline void ib_dma_unmap_sg(struct ib_device *dev,
4015 				   struct scatterlist *sg, int nents,
4016 				   enum dma_data_direction direction)
4017 {
4018 	dma_unmap_sg(dev->dma_device, sg, nents, direction);
4019 }
4020 
ib_dma_map_sg_attrs(struct ib_device * dev,struct scatterlist * sg,int nents,enum dma_data_direction direction,unsigned long dma_attrs)4021 static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
4022 				      struct scatterlist *sg, int nents,
4023 				      enum dma_data_direction direction,
4024 				      unsigned long dma_attrs)
4025 {
4026 	return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
4027 				dma_attrs);
4028 }
4029 
ib_dma_unmap_sg_attrs(struct ib_device * dev,struct scatterlist * sg,int nents,enum dma_data_direction direction,unsigned long dma_attrs)4030 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
4031 					 struct scatterlist *sg, int nents,
4032 					 enum dma_data_direction direction,
4033 					 unsigned long dma_attrs)
4034 {
4035 	dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, dma_attrs);
4036 }
4037 
4038 /**
4039  * ib_dma_max_seg_size - Return the size limit of a single DMA transfer
4040  * @dev: The device to query
4041  *
4042  * The returned value represents a size in bytes.
4043  */
ib_dma_max_seg_size(struct ib_device * dev)4044 static inline unsigned int ib_dma_max_seg_size(struct ib_device *dev)
4045 {
4046 	struct device_dma_parameters *p = dev->dma_device->dma_parms;
4047 
4048 	return p ? p->max_segment_size : UINT_MAX;
4049 }
4050 
4051 /**
4052  * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
4053  * @dev: The device for which the DMA address was created
4054  * @addr: The DMA address
4055  * @size: The size of the region in bytes
4056  * @dir: The direction of the DMA
4057  */
ib_dma_sync_single_for_cpu(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction dir)4058 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
4059 					      u64 addr,
4060 					      size_t size,
4061 					      enum dma_data_direction dir)
4062 {
4063 	dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
4064 }
4065 
4066 /**
4067  * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
4068  * @dev: The device for which the DMA address was created
4069  * @addr: The DMA address
4070  * @size: The size of the region in bytes
4071  * @dir: The direction of the DMA
4072  */
ib_dma_sync_single_for_device(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction dir)4073 static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
4074 						 u64 addr,
4075 						 size_t size,
4076 						 enum dma_data_direction dir)
4077 {
4078 	dma_sync_single_for_device(dev->dma_device, addr, size, dir);
4079 }
4080 
4081 /**
4082  * ib_dma_alloc_coherent - Allocate memory and map it for DMA
4083  * @dev: The device for which the DMA address is requested
4084  * @size: The size of the region to allocate in bytes
4085  * @dma_handle: A pointer for returning the DMA address of the region
4086  * @flag: memory allocator flags
4087  */
ib_dma_alloc_coherent(struct ib_device * dev,size_t size,dma_addr_t * dma_handle,gfp_t flag)4088 static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
4089 					   size_t size,
4090 					   dma_addr_t *dma_handle,
4091 					   gfp_t flag)
4092 {
4093 	return dma_alloc_coherent(dev->dma_device, size, dma_handle, flag);
4094 }
4095 
4096 /**
4097  * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
4098  * @dev: The device for which the DMA addresses were allocated
4099  * @size: The size of the region
4100  * @cpu_addr: the address returned by ib_dma_alloc_coherent()
4101  * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
4102  */
ib_dma_free_coherent(struct ib_device * dev,size_t size,void * cpu_addr,dma_addr_t dma_handle)4103 static inline void ib_dma_free_coherent(struct ib_device *dev,
4104 					size_t size, void *cpu_addr,
4105 					dma_addr_t dma_handle)
4106 {
4107 	dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
4108 }
4109 
4110 /**
4111  * ib_dereg_mr_user - Deregisters a memory region and removes it from the
4112  *   HCA translation table.
4113  * @mr: The memory region to deregister.
4114  * @udata: Valid user data or NULL for kernel object
4115  *
4116  * This function can fail, if the memory region has memory windows bound to it.
4117  */
4118 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata);
4119 
4120 /**
4121  * ib_dereg_mr - Deregisters a kernel memory region and removes it from the
4122  *   HCA translation table.
4123  * @mr: The memory region to deregister.
4124  *
4125  * This function can fail, if the memory region has memory windows bound to it.
4126  *
4127  * NOTE: for user mr use ib_dereg_mr_user with valid udata!
4128  */
ib_dereg_mr(struct ib_mr * mr)4129 static inline int ib_dereg_mr(struct ib_mr *mr)
4130 {
4131 	return ib_dereg_mr_user(mr, NULL);
4132 }
4133 
4134 struct ib_mr *ib_alloc_mr_user(struct ib_pd *pd, enum ib_mr_type mr_type,
4135 			       u32 max_num_sg, struct ib_udata *udata);
4136 
ib_alloc_mr(struct ib_pd * pd,enum ib_mr_type mr_type,u32 max_num_sg)4137 static inline struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
4138 					enum ib_mr_type mr_type, u32 max_num_sg)
4139 {
4140 	return ib_alloc_mr_user(pd, mr_type, max_num_sg, NULL);
4141 }
4142 
4143 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
4144 				    u32 max_num_data_sg,
4145 				    u32 max_num_meta_sg);
4146 
4147 /**
4148  * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
4149  *   R_Key and L_Key.
4150  * @mr - struct ib_mr pointer to be updated.
4151  * @newkey - new key to be used.
4152  */
ib_update_fast_reg_key(struct ib_mr * mr,u8 newkey)4153 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
4154 {
4155 	mr->lkey = (mr->lkey & 0xffffff00) | newkey;
4156 	mr->rkey = (mr->rkey & 0xffffff00) | newkey;
4157 }
4158 
4159 /**
4160  * ib_inc_rkey - increments the key portion of the given rkey. Can be used
4161  * for calculating a new rkey for type 2 memory windows.
4162  * @rkey - the rkey to increment.
4163  */
ib_inc_rkey(u32 rkey)4164 static inline u32 ib_inc_rkey(u32 rkey)
4165 {
4166 	const u32 mask = 0x000000ff;
4167 	return ((rkey + 1) & mask) | (rkey & ~mask);
4168 }
4169 
4170 /**
4171  * ib_alloc_fmr - Allocates a unmapped fast memory region.
4172  * @pd: The protection domain associated with the unmapped region.
4173  * @mr_access_flags: Specifies the memory access rights.
4174  * @fmr_attr: Attributes of the unmapped region.
4175  *
4176  * A fast memory region must be mapped before it can be used as part of
4177  * a work request.
4178  */
4179 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
4180 			    int mr_access_flags,
4181 			    struct ib_fmr_attr *fmr_attr);
4182 
4183 /**
4184  * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
4185  * @fmr: The fast memory region to associate with the pages.
4186  * @page_list: An array of physical pages to map to the fast memory region.
4187  * @list_len: The number of pages in page_list.
4188  * @iova: The I/O virtual address to use with the mapped region.
4189  */
ib_map_phys_fmr(struct ib_fmr * fmr,u64 * page_list,int list_len,u64 iova)4190 static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
4191 				  u64 *page_list, int list_len,
4192 				  u64 iova)
4193 {
4194 	return fmr->device->ops.map_phys_fmr(fmr, page_list, list_len, iova);
4195 }
4196 
4197 /**
4198  * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
4199  * @fmr_list: A linked list of fast memory regions to unmap.
4200  */
4201 int ib_unmap_fmr(struct list_head *fmr_list);
4202 
4203 /**
4204  * ib_dealloc_fmr - Deallocates a fast memory region.
4205  * @fmr: The fast memory region to deallocate.
4206  */
4207 int ib_dealloc_fmr(struct ib_fmr *fmr);
4208 
4209 /**
4210  * ib_attach_mcast - Attaches the specified QP to a multicast group.
4211  * @qp: QP to attach to the multicast group.  The QP must be type
4212  *   IB_QPT_UD.
4213  * @gid: Multicast group GID.
4214  * @lid: Multicast group LID in host byte order.
4215  *
4216  * In order to send and receive multicast packets, subnet
4217  * administration must have created the multicast group and configured
4218  * the fabric appropriately.  The port associated with the specified
4219  * QP must also be a member of the multicast group.
4220  */
4221 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4222 
4223 /**
4224  * ib_detach_mcast - Detaches the specified QP from a multicast group.
4225  * @qp: QP to detach from the multicast group.
4226  * @gid: Multicast group GID.
4227  * @lid: Multicast group LID in host byte order.
4228  */
4229 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4230 
4231 /**
4232  * ib_alloc_xrcd - Allocates an XRC domain.
4233  * @device: The device on which to allocate the XRC domain.
4234  * @caller: Module name for kernel consumers
4235  */
4236 struct ib_xrcd *__ib_alloc_xrcd(struct ib_device *device, const char *caller);
4237 #define ib_alloc_xrcd(device) \
4238 	__ib_alloc_xrcd((device), KBUILD_MODNAME)
4239 
4240 /**
4241  * ib_dealloc_xrcd - Deallocates an XRC domain.
4242  * @xrcd: The XRC domain to deallocate.
4243  * @udata: Valid user data or NULL for kernel object
4244  */
4245 int ib_dealloc_xrcd(struct ib_xrcd *xrcd, struct ib_udata *udata);
4246 
ib_check_mr_access(int flags)4247 static inline int ib_check_mr_access(int flags)
4248 {
4249 	/*
4250 	 * Local write permission is required if remote write or
4251 	 * remote atomic permission is also requested.
4252 	 */
4253 	if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
4254 	    !(flags & IB_ACCESS_LOCAL_WRITE))
4255 		return -EINVAL;
4256 
4257 	return 0;
4258 }
4259 
ib_access_writable(int access_flags)4260 static inline bool ib_access_writable(int access_flags)
4261 {
4262 	/*
4263 	 * We have writable memory backing the MR if any of the following
4264 	 * access flags are set.  "Local write" and "remote write" obviously
4265 	 * require write access.  "Remote atomic" can do things like fetch and
4266 	 * add, which will modify memory, and "MW bind" can change permissions
4267 	 * by binding a window.
4268 	 */
4269 	return access_flags &
4270 		(IB_ACCESS_LOCAL_WRITE   | IB_ACCESS_REMOTE_WRITE |
4271 		 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND);
4272 }
4273 
4274 /**
4275  * ib_check_mr_status: lightweight check of MR status.
4276  *     This routine may provide status checks on a selected
4277  *     ib_mr. first use is for signature status check.
4278  *
4279  * @mr: A memory region.
4280  * @check_mask: Bitmask of which checks to perform from
4281  *     ib_mr_status_check enumeration.
4282  * @mr_status: The container of relevant status checks.
4283  *     failed checks will be indicated in the status bitmask
4284  *     and the relevant info shall be in the error item.
4285  */
4286 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
4287 		       struct ib_mr_status *mr_status);
4288 
4289 /**
4290  * ib_device_try_get: Hold a registration lock
4291  * device: The device to lock
4292  *
4293  * A device under an active registration lock cannot become unregistered. It
4294  * is only possible to obtain a registration lock on a device that is fully
4295  * registered, otherwise this function returns false.
4296  *
4297  * The registration lock is only necessary for actions which require the
4298  * device to still be registered. Uses that only require the device pointer to
4299  * be valid should use get_device(&ibdev->dev) to hold the memory.
4300  *
4301  */
ib_device_try_get(struct ib_device * dev)4302 static inline bool ib_device_try_get(struct ib_device *dev)
4303 {
4304 	return refcount_inc_not_zero(&dev->refcount);
4305 }
4306 
4307 void ib_device_put(struct ib_device *device);
4308 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
4309 					  enum rdma_driver_id driver_id);
4310 struct ib_device *ib_device_get_by_name(const char *name,
4311 					enum rdma_driver_id driver_id);
4312 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
4313 					    u16 pkey, const union ib_gid *gid,
4314 					    const struct sockaddr *addr);
4315 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
4316 			 unsigned int port);
4317 struct net_device *ib_device_netdev(struct ib_device *dev, u8 port);
4318 
4319 struct ib_wq *ib_create_wq(struct ib_pd *pd,
4320 			   struct ib_wq_init_attr *init_attr);
4321 int ib_destroy_wq(struct ib_wq *wq, struct ib_udata *udata);
4322 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr,
4323 		 u32 wq_attr_mask);
4324 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
4325 						 struct ib_rwq_ind_table_init_attr*
4326 						 wq_ind_table_init_attr);
4327 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table);
4328 
4329 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4330 		 unsigned int *sg_offset, unsigned int page_size);
4331 int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
4332 		    int data_sg_nents, unsigned int *data_sg_offset,
4333 		    struct scatterlist *meta_sg, int meta_sg_nents,
4334 		    unsigned int *meta_sg_offset, unsigned int page_size);
4335 
4336 static inline int
ib_map_mr_sg_zbva(struct ib_mr * mr,struct scatterlist * sg,int sg_nents,unsigned int * sg_offset,unsigned int page_size)4337 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4338 		  unsigned int *sg_offset, unsigned int page_size)
4339 {
4340 	int n;
4341 
4342 	n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
4343 	mr->iova = 0;
4344 
4345 	return n;
4346 }
4347 
4348 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
4349 		unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
4350 
4351 void ib_drain_rq(struct ib_qp *qp);
4352 void ib_drain_sq(struct ib_qp *qp);
4353 void ib_drain_qp(struct ib_qp *qp);
4354 
4355 int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width);
4356 
rdma_ah_retrieve_dmac(struct rdma_ah_attr * attr)4357 static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr)
4358 {
4359 	if (attr->type == RDMA_AH_ATTR_TYPE_ROCE)
4360 		return attr->roce.dmac;
4361 	return NULL;
4362 }
4363 
rdma_ah_set_dlid(struct rdma_ah_attr * attr,u32 dlid)4364 static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid)
4365 {
4366 	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4367 		attr->ib.dlid = (u16)dlid;
4368 	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4369 		attr->opa.dlid = dlid;
4370 }
4371 
rdma_ah_get_dlid(const struct rdma_ah_attr * attr)4372 static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr)
4373 {
4374 	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4375 		return attr->ib.dlid;
4376 	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4377 		return attr->opa.dlid;
4378 	return 0;
4379 }
4380 
rdma_ah_set_sl(struct rdma_ah_attr * attr,u8 sl)4381 static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl)
4382 {
4383 	attr->sl = sl;
4384 }
4385 
rdma_ah_get_sl(const struct rdma_ah_attr * attr)4386 static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr)
4387 {
4388 	return attr->sl;
4389 }
4390 
rdma_ah_set_path_bits(struct rdma_ah_attr * attr,u8 src_path_bits)4391 static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr,
4392 					 u8 src_path_bits)
4393 {
4394 	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4395 		attr->ib.src_path_bits = src_path_bits;
4396 	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4397 		attr->opa.src_path_bits = src_path_bits;
4398 }
4399 
rdma_ah_get_path_bits(const struct rdma_ah_attr * attr)4400 static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr)
4401 {
4402 	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4403 		return attr->ib.src_path_bits;
4404 	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4405 		return attr->opa.src_path_bits;
4406 	return 0;
4407 }
4408 
rdma_ah_set_make_grd(struct rdma_ah_attr * attr,bool make_grd)4409 static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr,
4410 					bool make_grd)
4411 {
4412 	if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4413 		attr->opa.make_grd = make_grd;
4414 }
4415 
rdma_ah_get_make_grd(const struct rdma_ah_attr * attr)4416 static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr)
4417 {
4418 	if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4419 		return attr->opa.make_grd;
4420 	return false;
4421 }
4422 
rdma_ah_set_port_num(struct rdma_ah_attr * attr,u8 port_num)4423 static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u8 port_num)
4424 {
4425 	attr->port_num = port_num;
4426 }
4427 
rdma_ah_get_port_num(const struct rdma_ah_attr * attr)4428 static inline u8 rdma_ah_get_port_num(const struct rdma_ah_attr *attr)
4429 {
4430 	return attr->port_num;
4431 }
4432 
rdma_ah_set_static_rate(struct rdma_ah_attr * attr,u8 static_rate)4433 static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr,
4434 					   u8 static_rate)
4435 {
4436 	attr->static_rate = static_rate;
4437 }
4438 
rdma_ah_get_static_rate(const struct rdma_ah_attr * attr)4439 static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr)
4440 {
4441 	return attr->static_rate;
4442 }
4443 
rdma_ah_set_ah_flags(struct rdma_ah_attr * attr,enum ib_ah_flags flag)4444 static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr,
4445 					enum ib_ah_flags flag)
4446 {
4447 	attr->ah_flags = flag;
4448 }
4449 
4450 static inline enum ib_ah_flags
rdma_ah_get_ah_flags(const struct rdma_ah_attr * attr)4451 		rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr)
4452 {
4453 	return attr->ah_flags;
4454 }
4455 
4456 static inline const struct ib_global_route
rdma_ah_read_grh(const struct rdma_ah_attr * attr)4457 		*rdma_ah_read_grh(const struct rdma_ah_attr *attr)
4458 {
4459 	return &attr->grh;
4460 }
4461 
4462 /*To retrieve and modify the grh */
4463 static inline struct ib_global_route
rdma_ah_retrieve_grh(struct rdma_ah_attr * attr)4464 		*rdma_ah_retrieve_grh(struct rdma_ah_attr *attr)
4465 {
4466 	return &attr->grh;
4467 }
4468 
rdma_ah_set_dgid_raw(struct rdma_ah_attr * attr,void * dgid)4469 static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid)
4470 {
4471 	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4472 
4473 	memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid));
4474 }
4475 
rdma_ah_set_subnet_prefix(struct rdma_ah_attr * attr,__be64 prefix)4476 static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr,
4477 					     __be64 prefix)
4478 {
4479 	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4480 
4481 	grh->dgid.global.subnet_prefix = prefix;
4482 }
4483 
rdma_ah_set_interface_id(struct rdma_ah_attr * attr,__be64 if_id)4484 static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr,
4485 					    __be64 if_id)
4486 {
4487 	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4488 
4489 	grh->dgid.global.interface_id = if_id;
4490 }
4491 
rdma_ah_set_grh(struct rdma_ah_attr * attr,union ib_gid * dgid,u32 flow_label,u8 sgid_index,u8 hop_limit,u8 traffic_class)4492 static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr,
4493 				   union ib_gid *dgid, u32 flow_label,
4494 				   u8 sgid_index, u8 hop_limit,
4495 				   u8 traffic_class)
4496 {
4497 	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4498 
4499 	attr->ah_flags = IB_AH_GRH;
4500 	if (dgid)
4501 		grh->dgid = *dgid;
4502 	grh->flow_label = flow_label;
4503 	grh->sgid_index = sgid_index;
4504 	grh->hop_limit = hop_limit;
4505 	grh->traffic_class = traffic_class;
4506 	grh->sgid_attr = NULL;
4507 }
4508 
4509 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr);
4510 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
4511 			     u32 flow_label, u8 hop_limit, u8 traffic_class,
4512 			     const struct ib_gid_attr *sgid_attr);
4513 void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
4514 		       const struct rdma_ah_attr *src);
4515 void rdma_replace_ah_attr(struct rdma_ah_attr *old,
4516 			  const struct rdma_ah_attr *new);
4517 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src);
4518 
4519 /**
4520  * rdma_ah_find_type - Return address handle type.
4521  *
4522  * @dev: Device to be checked
4523  * @port_num: Port number
4524  */
rdma_ah_find_type(struct ib_device * dev,u8 port_num)4525 static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev,
4526 						       u8 port_num)
4527 {
4528 	if (rdma_protocol_roce(dev, port_num))
4529 		return RDMA_AH_ATTR_TYPE_ROCE;
4530 	if (rdma_protocol_ib(dev, port_num)) {
4531 		if (rdma_cap_opa_ah(dev, port_num))
4532 			return RDMA_AH_ATTR_TYPE_OPA;
4533 		return RDMA_AH_ATTR_TYPE_IB;
4534 	}
4535 
4536 	return RDMA_AH_ATTR_TYPE_UNDEFINED;
4537 }
4538 
4539 /**
4540  * ib_lid_cpu16 - Return lid in 16bit CPU encoding.
4541  *     In the current implementation the only way to get
4542  *     get the 32bit lid is from other sources for OPA.
4543  *     For IB, lids will always be 16bits so cast the
4544  *     value accordingly.
4545  *
4546  * @lid: A 32bit LID
4547  */
ib_lid_cpu16(u32 lid)4548 static inline u16 ib_lid_cpu16(u32 lid)
4549 {
4550 	WARN_ON_ONCE(lid & 0xFFFF0000);
4551 	return (u16)lid;
4552 }
4553 
4554 /**
4555  * ib_lid_be16 - Return lid in 16bit BE encoding.
4556  *
4557  * @lid: A 32bit LID
4558  */
ib_lid_be16(u32 lid)4559 static inline __be16 ib_lid_be16(u32 lid)
4560 {
4561 	WARN_ON_ONCE(lid & 0xFFFF0000);
4562 	return cpu_to_be16((u16)lid);
4563 }
4564 
4565 /**
4566  * ib_get_vector_affinity - Get the affinity mappings of a given completion
4567  *   vector
4568  * @device:         the rdma device
4569  * @comp_vector:    index of completion vector
4570  *
4571  * Returns NULL on failure, otherwise a corresponding cpu map of the
4572  * completion vector (returns all-cpus map if the device driver doesn't
4573  * implement get_vector_affinity).
4574  */
4575 static inline const struct cpumask *
ib_get_vector_affinity(struct ib_device * device,int comp_vector)4576 ib_get_vector_affinity(struct ib_device *device, int comp_vector)
4577 {
4578 	if (comp_vector < 0 || comp_vector >= device->num_comp_vectors ||
4579 	    !device->ops.get_vector_affinity)
4580 		return NULL;
4581 
4582 	return device->ops.get_vector_affinity(device, comp_vector);
4583 
4584 }
4585 
4586 /**
4587  * rdma_roce_rescan_device - Rescan all of the network devices in the system
4588  * and add their gids, as needed, to the relevant RoCE devices.
4589  *
4590  * @device:         the rdma device
4591  */
4592 void rdma_roce_rescan_device(struct ib_device *ibdev);
4593 
4594 struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile);
4595 
4596 int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs);
4597 
4598 struct net_device *rdma_alloc_netdev(struct ib_device *device, u8 port_num,
4599 				     enum rdma_netdev_t type, const char *name,
4600 				     unsigned char name_assign_type,
4601 				     void (*setup)(struct net_device *));
4602 
4603 int rdma_init_netdev(struct ib_device *device, u8 port_num,
4604 		     enum rdma_netdev_t type, const char *name,
4605 		     unsigned char name_assign_type,
4606 		     void (*setup)(struct net_device *),
4607 		     struct net_device *netdev);
4608 
4609 /**
4610  * rdma_set_device_sysfs_group - Set device attributes group to have
4611  *				 driver specific sysfs entries at
4612  *				 for infiniband class.
4613  *
4614  * @device:	device pointer for which attributes to be created
4615  * @group:	Pointer to group which should be added when device
4616  *		is registered with sysfs.
4617  * rdma_set_device_sysfs_group() allows existing drivers to expose one
4618  * group per device to have sysfs attributes.
4619  *
4620  * NOTE: New drivers should not make use of this API; instead new device
4621  * parameter should be exposed via netlink command. This API and mechanism
4622  * exist only for existing drivers.
4623  */
4624 static inline void
rdma_set_device_sysfs_group(struct ib_device * dev,const struct attribute_group * group)4625 rdma_set_device_sysfs_group(struct ib_device *dev,
4626 			    const struct attribute_group *group)
4627 {
4628 	dev->groups[1] = group;
4629 }
4630 
4631 /**
4632  * rdma_device_to_ibdev - Get ib_device pointer from device pointer
4633  *
4634  * @device:	device pointer for which ib_device pointer to retrieve
4635  *
4636  * rdma_device_to_ibdev() retrieves ib_device pointer from device.
4637  *
4638  */
rdma_device_to_ibdev(struct device * device)4639 static inline struct ib_device *rdma_device_to_ibdev(struct device *device)
4640 {
4641 	struct ib_core_device *coredev =
4642 		container_of(device, struct ib_core_device, dev);
4643 
4644 	return coredev->owner;
4645 }
4646 
4647 /**
4648  * rdma_device_to_drv_device - Helper macro to reach back to driver's
4649  *			       ib_device holder structure from device pointer.
4650  *
4651  * NOTE: New drivers should not make use of this API; This API is only for
4652  * existing drivers who have exposed sysfs entries using
4653  * rdma_set_device_sysfs_group().
4654  */
4655 #define rdma_device_to_drv_device(dev, drv_dev_struct, ibdev_member)           \
4656 	container_of(rdma_device_to_ibdev(dev), drv_dev_struct, ibdev_member)
4657 
4658 bool rdma_dev_access_netns(const struct ib_device *device,
4659 			   const struct net *net);
4660 #endif /* IB_VERBS_H */
4661