1 /*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8 * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved.
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
37 */
38
39 #include <linux/errno.h>
40 #include <linux/err.h>
41 #include <linux/export.h>
42 #include <linux/string.h>
43 #include <linux/slab.h>
44 #include <linux/in.h>
45 #include <linux/in6.h>
46 #include <net/addrconf.h>
47 #include <linux/security.h>
48
49 #include <rdma/ib_verbs.h>
50 #include <rdma/ib_cache.h>
51 #include <rdma/ib_addr.h>
52 #include <rdma/rw.h>
53 #include <rdma/lag.h>
54
55 #include "core_priv.h"
56 #include <trace/events/rdma_core.h>
57
58 static int ib_resolve_eth_dmac(struct ib_device *device,
59 struct rdma_ah_attr *ah_attr);
60
61 static const char * const ib_events[] = {
62 [IB_EVENT_CQ_ERR] = "CQ error",
63 [IB_EVENT_QP_FATAL] = "QP fatal error",
64 [IB_EVENT_QP_REQ_ERR] = "QP request error",
65 [IB_EVENT_QP_ACCESS_ERR] = "QP access error",
66 [IB_EVENT_COMM_EST] = "communication established",
67 [IB_EVENT_SQ_DRAINED] = "send queue drained",
68 [IB_EVENT_PATH_MIG] = "path migration successful",
69 [IB_EVENT_PATH_MIG_ERR] = "path migration error",
70 [IB_EVENT_DEVICE_FATAL] = "device fatal error",
71 [IB_EVENT_PORT_ACTIVE] = "port active",
72 [IB_EVENT_PORT_ERR] = "port error",
73 [IB_EVENT_LID_CHANGE] = "LID change",
74 [IB_EVENT_PKEY_CHANGE] = "P_key change",
75 [IB_EVENT_SM_CHANGE] = "SM change",
76 [IB_EVENT_SRQ_ERR] = "SRQ error",
77 [IB_EVENT_SRQ_LIMIT_REACHED] = "SRQ limit reached",
78 [IB_EVENT_QP_LAST_WQE_REACHED] = "last WQE reached",
79 [IB_EVENT_CLIENT_REREGISTER] = "client reregister",
80 [IB_EVENT_GID_CHANGE] = "GID changed",
81 };
82
ib_event_msg(enum ib_event_type event)83 const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
84 {
85 size_t index = event;
86
87 return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
88 ib_events[index] : "unrecognized event";
89 }
90 EXPORT_SYMBOL(ib_event_msg);
91
92 static const char * const wc_statuses[] = {
93 [IB_WC_SUCCESS] = "success",
94 [IB_WC_LOC_LEN_ERR] = "local length error",
95 [IB_WC_LOC_QP_OP_ERR] = "local QP operation error",
96 [IB_WC_LOC_EEC_OP_ERR] = "local EE context operation error",
97 [IB_WC_LOC_PROT_ERR] = "local protection error",
98 [IB_WC_WR_FLUSH_ERR] = "WR flushed",
99 [IB_WC_MW_BIND_ERR] = "memory bind operation error",
100 [IB_WC_BAD_RESP_ERR] = "bad response error",
101 [IB_WC_LOC_ACCESS_ERR] = "local access error",
102 [IB_WC_REM_INV_REQ_ERR] = "remote invalid request error",
103 [IB_WC_REM_ACCESS_ERR] = "remote access error",
104 [IB_WC_REM_OP_ERR] = "remote operation error",
105 [IB_WC_RETRY_EXC_ERR] = "transport retry counter exceeded",
106 [IB_WC_RNR_RETRY_EXC_ERR] = "RNR retry counter exceeded",
107 [IB_WC_LOC_RDD_VIOL_ERR] = "local RDD violation error",
108 [IB_WC_REM_INV_RD_REQ_ERR] = "remote invalid RD request",
109 [IB_WC_REM_ABORT_ERR] = "operation aborted",
110 [IB_WC_INV_EECN_ERR] = "invalid EE context number",
111 [IB_WC_INV_EEC_STATE_ERR] = "invalid EE context state",
112 [IB_WC_FATAL_ERR] = "fatal error",
113 [IB_WC_RESP_TIMEOUT_ERR] = "response timeout error",
114 [IB_WC_GENERAL_ERR] = "general error",
115 };
116
ib_wc_status_msg(enum ib_wc_status status)117 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
118 {
119 size_t index = status;
120
121 return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
122 wc_statuses[index] : "unrecognized status";
123 }
124 EXPORT_SYMBOL(ib_wc_status_msg);
125
ib_rate_to_mult(enum ib_rate rate)126 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
127 {
128 switch (rate) {
129 case IB_RATE_2_5_GBPS: return 1;
130 case IB_RATE_5_GBPS: return 2;
131 case IB_RATE_10_GBPS: return 4;
132 case IB_RATE_20_GBPS: return 8;
133 case IB_RATE_30_GBPS: return 12;
134 case IB_RATE_40_GBPS: return 16;
135 case IB_RATE_60_GBPS: return 24;
136 case IB_RATE_80_GBPS: return 32;
137 case IB_RATE_120_GBPS: return 48;
138 case IB_RATE_14_GBPS: return 6;
139 case IB_RATE_56_GBPS: return 22;
140 case IB_RATE_112_GBPS: return 45;
141 case IB_RATE_168_GBPS: return 67;
142 case IB_RATE_25_GBPS: return 10;
143 case IB_RATE_100_GBPS: return 40;
144 case IB_RATE_200_GBPS: return 80;
145 case IB_RATE_300_GBPS: return 120;
146 case IB_RATE_28_GBPS: return 11;
147 case IB_RATE_50_GBPS: return 20;
148 case IB_RATE_400_GBPS: return 160;
149 case IB_RATE_600_GBPS: return 240;
150 default: return -1;
151 }
152 }
153 EXPORT_SYMBOL(ib_rate_to_mult);
154
mult_to_ib_rate(int mult)155 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
156 {
157 switch (mult) {
158 case 1: return IB_RATE_2_5_GBPS;
159 case 2: return IB_RATE_5_GBPS;
160 case 4: return IB_RATE_10_GBPS;
161 case 8: return IB_RATE_20_GBPS;
162 case 12: return IB_RATE_30_GBPS;
163 case 16: return IB_RATE_40_GBPS;
164 case 24: return IB_RATE_60_GBPS;
165 case 32: return IB_RATE_80_GBPS;
166 case 48: return IB_RATE_120_GBPS;
167 case 6: return IB_RATE_14_GBPS;
168 case 22: return IB_RATE_56_GBPS;
169 case 45: return IB_RATE_112_GBPS;
170 case 67: return IB_RATE_168_GBPS;
171 case 10: return IB_RATE_25_GBPS;
172 case 40: return IB_RATE_100_GBPS;
173 case 80: return IB_RATE_200_GBPS;
174 case 120: return IB_RATE_300_GBPS;
175 case 11: return IB_RATE_28_GBPS;
176 case 20: return IB_RATE_50_GBPS;
177 case 160: return IB_RATE_400_GBPS;
178 case 240: return IB_RATE_600_GBPS;
179 default: return IB_RATE_PORT_CURRENT;
180 }
181 }
182 EXPORT_SYMBOL(mult_to_ib_rate);
183
ib_rate_to_mbps(enum ib_rate rate)184 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
185 {
186 switch (rate) {
187 case IB_RATE_2_5_GBPS: return 2500;
188 case IB_RATE_5_GBPS: return 5000;
189 case IB_RATE_10_GBPS: return 10000;
190 case IB_RATE_20_GBPS: return 20000;
191 case IB_RATE_30_GBPS: return 30000;
192 case IB_RATE_40_GBPS: return 40000;
193 case IB_RATE_60_GBPS: return 60000;
194 case IB_RATE_80_GBPS: return 80000;
195 case IB_RATE_120_GBPS: return 120000;
196 case IB_RATE_14_GBPS: return 14062;
197 case IB_RATE_56_GBPS: return 56250;
198 case IB_RATE_112_GBPS: return 112500;
199 case IB_RATE_168_GBPS: return 168750;
200 case IB_RATE_25_GBPS: return 25781;
201 case IB_RATE_100_GBPS: return 103125;
202 case IB_RATE_200_GBPS: return 206250;
203 case IB_RATE_300_GBPS: return 309375;
204 case IB_RATE_28_GBPS: return 28125;
205 case IB_RATE_50_GBPS: return 53125;
206 case IB_RATE_400_GBPS: return 425000;
207 case IB_RATE_600_GBPS: return 637500;
208 default: return -1;
209 }
210 }
211 EXPORT_SYMBOL(ib_rate_to_mbps);
212
213 __attribute_const__ enum rdma_transport_type
rdma_node_get_transport(unsigned int node_type)214 rdma_node_get_transport(unsigned int node_type)
215 {
216
217 if (node_type == RDMA_NODE_USNIC)
218 return RDMA_TRANSPORT_USNIC;
219 if (node_type == RDMA_NODE_USNIC_UDP)
220 return RDMA_TRANSPORT_USNIC_UDP;
221 if (node_type == RDMA_NODE_RNIC)
222 return RDMA_TRANSPORT_IWARP;
223 if (node_type == RDMA_NODE_UNSPECIFIED)
224 return RDMA_TRANSPORT_UNSPECIFIED;
225
226 return RDMA_TRANSPORT_IB;
227 }
228 EXPORT_SYMBOL(rdma_node_get_transport);
229
rdma_port_get_link_layer(struct ib_device * device,u32 port_num)230 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
231 u32 port_num)
232 {
233 enum rdma_transport_type lt;
234 if (device->ops.get_link_layer)
235 return device->ops.get_link_layer(device, port_num);
236
237 lt = rdma_node_get_transport(device->node_type);
238 if (lt == RDMA_TRANSPORT_IB)
239 return IB_LINK_LAYER_INFINIBAND;
240
241 return IB_LINK_LAYER_ETHERNET;
242 }
243 EXPORT_SYMBOL(rdma_port_get_link_layer);
244
245 /* Protection domains */
246
247 /**
248 * __ib_alloc_pd - Allocates an unused protection domain.
249 * @device: The device on which to allocate the protection domain.
250 * @flags: protection domain flags
251 * @caller: caller's build-time module name
252 *
253 * A protection domain object provides an association between QPs, shared
254 * receive queues, address handles, memory regions, and memory windows.
255 *
256 * Every PD has a local_dma_lkey which can be used as the lkey value for local
257 * memory operations.
258 */
__ib_alloc_pd(struct ib_device * device,unsigned int flags,const char * caller)259 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
260 const char *caller)
261 {
262 struct ib_pd *pd;
263 int mr_access_flags = 0;
264 int ret;
265
266 pd = rdma_zalloc_drv_obj(device, ib_pd);
267 if (!pd)
268 return ERR_PTR(-ENOMEM);
269
270 pd->device = device;
271 pd->flags = flags;
272
273 rdma_restrack_new(&pd->res, RDMA_RESTRACK_PD);
274 rdma_restrack_set_name(&pd->res, caller);
275
276 ret = device->ops.alloc_pd(pd, NULL);
277 if (ret) {
278 rdma_restrack_put(&pd->res);
279 kfree(pd);
280 return ERR_PTR(ret);
281 }
282 rdma_restrack_add(&pd->res);
283
284 if (device->attrs.kernel_cap_flags & IBK_LOCAL_DMA_LKEY)
285 pd->local_dma_lkey = device->local_dma_lkey;
286 else
287 mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
288
289 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
290 pr_warn("%s: enabling unsafe global rkey\n", caller);
291 mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
292 }
293
294 if (mr_access_flags) {
295 struct ib_mr *mr;
296
297 mr = pd->device->ops.get_dma_mr(pd, mr_access_flags);
298 if (IS_ERR(mr)) {
299 ib_dealloc_pd(pd);
300 return ERR_CAST(mr);
301 }
302
303 mr->device = pd->device;
304 mr->pd = pd;
305 mr->type = IB_MR_TYPE_DMA;
306 mr->uobject = NULL;
307 mr->need_inval = false;
308
309 pd->__internal_mr = mr;
310
311 if (!(device->attrs.kernel_cap_flags & IBK_LOCAL_DMA_LKEY))
312 pd->local_dma_lkey = pd->__internal_mr->lkey;
313
314 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
315 pd->unsafe_global_rkey = pd->__internal_mr->rkey;
316 }
317
318 return pd;
319 }
320 EXPORT_SYMBOL(__ib_alloc_pd);
321
322 /**
323 * ib_dealloc_pd_user - Deallocates a protection domain.
324 * @pd: The protection domain to deallocate.
325 * @udata: Valid user data or NULL for kernel object
326 *
327 * It is an error to call this function while any resources in the pd still
328 * exist. The caller is responsible to synchronously destroy them and
329 * guarantee no new allocations will happen.
330 */
ib_dealloc_pd_user(struct ib_pd * pd,struct ib_udata * udata)331 int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata)
332 {
333 int ret;
334
335 if (pd->__internal_mr) {
336 ret = pd->device->ops.dereg_mr(pd->__internal_mr, NULL);
337 WARN_ON(ret);
338 pd->__internal_mr = NULL;
339 }
340
341 ret = pd->device->ops.dealloc_pd(pd, udata);
342 if (ret)
343 return ret;
344
345 rdma_restrack_del(&pd->res);
346 kfree(pd);
347 return ret;
348 }
349 EXPORT_SYMBOL(ib_dealloc_pd_user);
350
351 /* Address handles */
352
353 /**
354 * rdma_copy_ah_attr - Copy rdma ah attribute from source to destination.
355 * @dest: Pointer to destination ah_attr. Contents of the destination
356 * pointer is assumed to be invalid and attribute are overwritten.
357 * @src: Pointer to source ah_attr.
358 */
rdma_copy_ah_attr(struct rdma_ah_attr * dest,const struct rdma_ah_attr * src)359 void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
360 const struct rdma_ah_attr *src)
361 {
362 *dest = *src;
363 if (dest->grh.sgid_attr)
364 rdma_hold_gid_attr(dest->grh.sgid_attr);
365 }
366 EXPORT_SYMBOL(rdma_copy_ah_attr);
367
368 /**
369 * rdma_replace_ah_attr - Replace valid ah_attr with new new one.
370 * @old: Pointer to existing ah_attr which needs to be replaced.
371 * old is assumed to be valid or zero'd
372 * @new: Pointer to the new ah_attr.
373 *
374 * rdma_replace_ah_attr() first releases any reference in the old ah_attr if
375 * old the ah_attr is valid; after that it copies the new attribute and holds
376 * the reference to the replaced ah_attr.
377 */
rdma_replace_ah_attr(struct rdma_ah_attr * old,const struct rdma_ah_attr * new)378 void rdma_replace_ah_attr(struct rdma_ah_attr *old,
379 const struct rdma_ah_attr *new)
380 {
381 rdma_destroy_ah_attr(old);
382 *old = *new;
383 if (old->grh.sgid_attr)
384 rdma_hold_gid_attr(old->grh.sgid_attr);
385 }
386 EXPORT_SYMBOL(rdma_replace_ah_attr);
387
388 /**
389 * rdma_move_ah_attr - Move ah_attr pointed by source to destination.
390 * @dest: Pointer to destination ah_attr to copy to.
391 * dest is assumed to be valid or zero'd
392 * @src: Pointer to the new ah_attr.
393 *
394 * rdma_move_ah_attr() first releases any reference in the destination ah_attr
395 * if it is valid. This also transfers ownership of internal references from
396 * src to dest, making src invalid in the process. No new reference of the src
397 * ah_attr is taken.
398 */
rdma_move_ah_attr(struct rdma_ah_attr * dest,struct rdma_ah_attr * src)399 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src)
400 {
401 rdma_destroy_ah_attr(dest);
402 *dest = *src;
403 src->grh.sgid_attr = NULL;
404 }
405 EXPORT_SYMBOL(rdma_move_ah_attr);
406
407 /*
408 * Validate that the rdma_ah_attr is valid for the device before passing it
409 * off to the driver.
410 */
rdma_check_ah_attr(struct ib_device * device,struct rdma_ah_attr * ah_attr)411 static int rdma_check_ah_attr(struct ib_device *device,
412 struct rdma_ah_attr *ah_attr)
413 {
414 if (!rdma_is_port_valid(device, ah_attr->port_num))
415 return -EINVAL;
416
417 if ((rdma_is_grh_required(device, ah_attr->port_num) ||
418 ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) &&
419 !(ah_attr->ah_flags & IB_AH_GRH))
420 return -EINVAL;
421
422 if (ah_attr->grh.sgid_attr) {
423 /*
424 * Make sure the passed sgid_attr is consistent with the
425 * parameters
426 */
427 if (ah_attr->grh.sgid_attr->index != ah_attr->grh.sgid_index ||
428 ah_attr->grh.sgid_attr->port_num != ah_attr->port_num)
429 return -EINVAL;
430 }
431 return 0;
432 }
433
434 /*
435 * If the ah requires a GRH then ensure that sgid_attr pointer is filled in.
436 * On success the caller is responsible to call rdma_unfill_sgid_attr().
437 */
rdma_fill_sgid_attr(struct ib_device * device,struct rdma_ah_attr * ah_attr,const struct ib_gid_attr ** old_sgid_attr)438 static int rdma_fill_sgid_attr(struct ib_device *device,
439 struct rdma_ah_attr *ah_attr,
440 const struct ib_gid_attr **old_sgid_attr)
441 {
442 const struct ib_gid_attr *sgid_attr;
443 struct ib_global_route *grh;
444 int ret;
445
446 *old_sgid_attr = ah_attr->grh.sgid_attr;
447
448 ret = rdma_check_ah_attr(device, ah_attr);
449 if (ret)
450 return ret;
451
452 if (!(ah_attr->ah_flags & IB_AH_GRH))
453 return 0;
454
455 grh = rdma_ah_retrieve_grh(ah_attr);
456 if (grh->sgid_attr)
457 return 0;
458
459 sgid_attr =
460 rdma_get_gid_attr(device, ah_attr->port_num, grh->sgid_index);
461 if (IS_ERR(sgid_attr))
462 return PTR_ERR(sgid_attr);
463
464 /* Move ownerhip of the kref into the ah_attr */
465 grh->sgid_attr = sgid_attr;
466 return 0;
467 }
468
rdma_unfill_sgid_attr(struct rdma_ah_attr * ah_attr,const struct ib_gid_attr * old_sgid_attr)469 static void rdma_unfill_sgid_attr(struct rdma_ah_attr *ah_attr,
470 const struct ib_gid_attr *old_sgid_attr)
471 {
472 /*
473 * Fill didn't change anything, the caller retains ownership of
474 * whatever it passed
475 */
476 if (ah_attr->grh.sgid_attr == old_sgid_attr)
477 return;
478
479 /*
480 * Otherwise, we need to undo what rdma_fill_sgid_attr so the caller
481 * doesn't see any change in the rdma_ah_attr. If we get here
482 * old_sgid_attr is NULL.
483 */
484 rdma_destroy_ah_attr(ah_attr);
485 }
486
487 static const struct ib_gid_attr *
rdma_update_sgid_attr(struct rdma_ah_attr * ah_attr,const struct ib_gid_attr * old_attr)488 rdma_update_sgid_attr(struct rdma_ah_attr *ah_attr,
489 const struct ib_gid_attr *old_attr)
490 {
491 if (old_attr)
492 rdma_put_gid_attr(old_attr);
493 if (ah_attr->ah_flags & IB_AH_GRH) {
494 rdma_hold_gid_attr(ah_attr->grh.sgid_attr);
495 return ah_attr->grh.sgid_attr;
496 }
497 return NULL;
498 }
499
_rdma_create_ah(struct ib_pd * pd,struct rdma_ah_attr * ah_attr,u32 flags,struct ib_udata * udata,struct net_device * xmit_slave)500 static struct ib_ah *_rdma_create_ah(struct ib_pd *pd,
501 struct rdma_ah_attr *ah_attr,
502 u32 flags,
503 struct ib_udata *udata,
504 struct net_device *xmit_slave)
505 {
506 struct rdma_ah_init_attr init_attr = {};
507 struct ib_device *device = pd->device;
508 struct ib_ah *ah;
509 int ret;
510
511 might_sleep_if(flags & RDMA_CREATE_AH_SLEEPABLE);
512
513 if (!udata && !device->ops.create_ah)
514 return ERR_PTR(-EOPNOTSUPP);
515
516 ah = rdma_zalloc_drv_obj_gfp(
517 device, ib_ah,
518 (flags & RDMA_CREATE_AH_SLEEPABLE) ? GFP_KERNEL : GFP_ATOMIC);
519 if (!ah)
520 return ERR_PTR(-ENOMEM);
521
522 ah->device = device;
523 ah->pd = pd;
524 ah->type = ah_attr->type;
525 ah->sgid_attr = rdma_update_sgid_attr(ah_attr, NULL);
526 init_attr.ah_attr = ah_attr;
527 init_attr.flags = flags;
528 init_attr.xmit_slave = xmit_slave;
529
530 if (udata)
531 ret = device->ops.create_user_ah(ah, &init_attr, udata);
532 else
533 ret = device->ops.create_ah(ah, &init_attr, NULL);
534 if (ret) {
535 if (ah->sgid_attr)
536 rdma_put_gid_attr(ah->sgid_attr);
537 kfree(ah);
538 return ERR_PTR(ret);
539 }
540
541 atomic_inc(&pd->usecnt);
542 return ah;
543 }
544
545 /**
546 * rdma_create_ah - Creates an address handle for the
547 * given address vector.
548 * @pd: The protection domain associated with the address handle.
549 * @ah_attr: The attributes of the address vector.
550 * @flags: Create address handle flags (see enum rdma_create_ah_flags).
551 *
552 * It returns 0 on success and returns appropriate error code on error.
553 * The address handle is used to reference a local or global destination
554 * in all UD QP post sends.
555 */
rdma_create_ah(struct ib_pd * pd,struct rdma_ah_attr * ah_attr,u32 flags)556 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
557 u32 flags)
558 {
559 const struct ib_gid_attr *old_sgid_attr;
560 struct net_device *slave;
561 struct ib_ah *ah;
562 int ret;
563
564 ret = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
565 if (ret)
566 return ERR_PTR(ret);
567 slave = rdma_lag_get_ah_roce_slave(pd->device, ah_attr,
568 (flags & RDMA_CREATE_AH_SLEEPABLE) ?
569 GFP_KERNEL : GFP_ATOMIC);
570 if (IS_ERR(slave)) {
571 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
572 return (void *)slave;
573 }
574 ah = _rdma_create_ah(pd, ah_attr, flags, NULL, slave);
575 rdma_lag_put_ah_roce_slave(slave);
576 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
577 return ah;
578 }
579 EXPORT_SYMBOL(rdma_create_ah);
580
581 /**
582 * rdma_create_user_ah - Creates an address handle for the
583 * given address vector.
584 * It resolves destination mac address for ah attribute of RoCE type.
585 * @pd: The protection domain associated with the address handle.
586 * @ah_attr: The attributes of the address vector.
587 * @udata: pointer to user's input output buffer information need by
588 * provider driver.
589 *
590 * It returns 0 on success and returns appropriate error code on error.
591 * The address handle is used to reference a local or global destination
592 * in all UD QP post sends.
593 */
rdma_create_user_ah(struct ib_pd * pd,struct rdma_ah_attr * ah_attr,struct ib_udata * udata)594 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
595 struct rdma_ah_attr *ah_attr,
596 struct ib_udata *udata)
597 {
598 const struct ib_gid_attr *old_sgid_attr;
599 struct ib_ah *ah;
600 int err;
601
602 err = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
603 if (err)
604 return ERR_PTR(err);
605
606 if (ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) {
607 err = ib_resolve_eth_dmac(pd->device, ah_attr);
608 if (err) {
609 ah = ERR_PTR(err);
610 goto out;
611 }
612 }
613
614 ah = _rdma_create_ah(pd, ah_attr, RDMA_CREATE_AH_SLEEPABLE,
615 udata, NULL);
616
617 out:
618 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
619 return ah;
620 }
621 EXPORT_SYMBOL(rdma_create_user_ah);
622
ib_get_rdma_header_version(const union rdma_network_hdr * hdr)623 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr)
624 {
625 const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
626 struct iphdr ip4h_checked;
627 const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
628
629 /* If it's IPv6, the version must be 6, otherwise, the first
630 * 20 bytes (before the IPv4 header) are garbled.
631 */
632 if (ip6h->version != 6)
633 return (ip4h->version == 4) ? 4 : 0;
634 /* version may be 6 or 4 because the first 20 bytes could be garbled */
635
636 /* RoCE v2 requires no options, thus header length
637 * must be 5 words
638 */
639 if (ip4h->ihl != 5)
640 return 6;
641
642 /* Verify checksum.
643 * We can't write on scattered buffers so we need to copy to
644 * temp buffer.
645 */
646 memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
647 ip4h_checked.check = 0;
648 ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
649 /* if IPv4 header checksum is OK, believe it */
650 if (ip4h->check == ip4h_checked.check)
651 return 4;
652 return 6;
653 }
654 EXPORT_SYMBOL(ib_get_rdma_header_version);
655
ib_get_net_type_by_grh(struct ib_device * device,u32 port_num,const struct ib_grh * grh)656 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
657 u32 port_num,
658 const struct ib_grh *grh)
659 {
660 int grh_version;
661
662 if (rdma_protocol_ib(device, port_num))
663 return RDMA_NETWORK_IB;
664
665 grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh);
666
667 if (grh_version == 4)
668 return RDMA_NETWORK_IPV4;
669
670 if (grh->next_hdr == IPPROTO_UDP)
671 return RDMA_NETWORK_IPV6;
672
673 return RDMA_NETWORK_ROCE_V1;
674 }
675
676 struct find_gid_index_context {
677 u16 vlan_id;
678 enum ib_gid_type gid_type;
679 };
680
find_gid_index(const union ib_gid * gid,const struct ib_gid_attr * gid_attr,void * context)681 static bool find_gid_index(const union ib_gid *gid,
682 const struct ib_gid_attr *gid_attr,
683 void *context)
684 {
685 struct find_gid_index_context *ctx = context;
686 u16 vlan_id = 0xffff;
687 int ret;
688
689 if (ctx->gid_type != gid_attr->gid_type)
690 return false;
691
692 ret = rdma_read_gid_l2_fields(gid_attr, &vlan_id, NULL);
693 if (ret)
694 return false;
695
696 return ctx->vlan_id == vlan_id;
697 }
698
699 static const struct ib_gid_attr *
get_sgid_attr_from_eth(struct ib_device * device,u32 port_num,u16 vlan_id,const union ib_gid * sgid,enum ib_gid_type gid_type)700 get_sgid_attr_from_eth(struct ib_device *device, u32 port_num,
701 u16 vlan_id, const union ib_gid *sgid,
702 enum ib_gid_type gid_type)
703 {
704 struct find_gid_index_context context = {.vlan_id = vlan_id,
705 .gid_type = gid_type};
706
707 return rdma_find_gid_by_filter(device, sgid, port_num, find_gid_index,
708 &context);
709 }
710
ib_get_gids_from_rdma_hdr(const union rdma_network_hdr * hdr,enum rdma_network_type net_type,union ib_gid * sgid,union ib_gid * dgid)711 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
712 enum rdma_network_type net_type,
713 union ib_gid *sgid, union ib_gid *dgid)
714 {
715 struct sockaddr_in src_in;
716 struct sockaddr_in dst_in;
717 __be32 src_saddr, dst_saddr;
718
719 if (!sgid || !dgid)
720 return -EINVAL;
721
722 if (net_type == RDMA_NETWORK_IPV4) {
723 memcpy(&src_in.sin_addr.s_addr,
724 &hdr->roce4grh.saddr, 4);
725 memcpy(&dst_in.sin_addr.s_addr,
726 &hdr->roce4grh.daddr, 4);
727 src_saddr = src_in.sin_addr.s_addr;
728 dst_saddr = dst_in.sin_addr.s_addr;
729 ipv6_addr_set_v4mapped(src_saddr,
730 (struct in6_addr *)sgid);
731 ipv6_addr_set_v4mapped(dst_saddr,
732 (struct in6_addr *)dgid);
733 return 0;
734 } else if (net_type == RDMA_NETWORK_IPV6 ||
735 net_type == RDMA_NETWORK_IB || RDMA_NETWORK_ROCE_V1) {
736 *dgid = hdr->ibgrh.dgid;
737 *sgid = hdr->ibgrh.sgid;
738 return 0;
739 } else {
740 return -EINVAL;
741 }
742 }
743 EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr);
744
745 /* Resolve destination mac address and hop limit for unicast destination
746 * GID entry, considering the source GID entry as well.
747 * ah_attribute must have have valid port_num, sgid_index.
748 */
ib_resolve_unicast_gid_dmac(struct ib_device * device,struct rdma_ah_attr * ah_attr)749 static int ib_resolve_unicast_gid_dmac(struct ib_device *device,
750 struct rdma_ah_attr *ah_attr)
751 {
752 struct ib_global_route *grh = rdma_ah_retrieve_grh(ah_attr);
753 const struct ib_gid_attr *sgid_attr = grh->sgid_attr;
754 int hop_limit = 0xff;
755 int ret = 0;
756
757 /* If destination is link local and source GID is RoCEv1,
758 * IP stack is not used.
759 */
760 if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw) &&
761 sgid_attr->gid_type == IB_GID_TYPE_ROCE) {
762 rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw,
763 ah_attr->roce.dmac);
764 return ret;
765 }
766
767 ret = rdma_addr_find_l2_eth_by_grh(&sgid_attr->gid, &grh->dgid,
768 ah_attr->roce.dmac,
769 sgid_attr, &hop_limit);
770
771 grh->hop_limit = hop_limit;
772 return ret;
773 }
774
775 /*
776 * This function initializes address handle attributes from the incoming packet.
777 * Incoming packet has dgid of the receiver node on which this code is
778 * getting executed and, sgid contains the GID of the sender.
779 *
780 * When resolving mac address of destination, the arrived dgid is used
781 * as sgid and, sgid is used as dgid because sgid contains destinations
782 * GID whom to respond to.
783 *
784 * On success the caller is responsible to call rdma_destroy_ah_attr on the
785 * attr.
786 */
ib_init_ah_attr_from_wc(struct ib_device * device,u32 port_num,const struct ib_wc * wc,const struct ib_grh * grh,struct rdma_ah_attr * ah_attr)787 int ib_init_ah_attr_from_wc(struct ib_device *device, u32 port_num,
788 const struct ib_wc *wc, const struct ib_grh *grh,
789 struct rdma_ah_attr *ah_attr)
790 {
791 u32 flow_class;
792 int ret;
793 enum rdma_network_type net_type = RDMA_NETWORK_IB;
794 enum ib_gid_type gid_type = IB_GID_TYPE_IB;
795 const struct ib_gid_attr *sgid_attr;
796 int hoplimit = 0xff;
797 union ib_gid dgid;
798 union ib_gid sgid;
799
800 might_sleep();
801
802 memset(ah_attr, 0, sizeof *ah_attr);
803 ah_attr->type = rdma_ah_find_type(device, port_num);
804 if (rdma_cap_eth_ah(device, port_num)) {
805 if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
806 net_type = wc->network_hdr_type;
807 else
808 net_type = ib_get_net_type_by_grh(device, port_num, grh);
809 gid_type = ib_network_to_gid_type(net_type);
810 }
811 ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
812 &sgid, &dgid);
813 if (ret)
814 return ret;
815
816 rdma_ah_set_sl(ah_attr, wc->sl);
817 rdma_ah_set_port_num(ah_attr, port_num);
818
819 if (rdma_protocol_roce(device, port_num)) {
820 u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
821 wc->vlan_id : 0xffff;
822
823 if (!(wc->wc_flags & IB_WC_GRH))
824 return -EPROTOTYPE;
825
826 sgid_attr = get_sgid_attr_from_eth(device, port_num,
827 vlan_id, &dgid,
828 gid_type);
829 if (IS_ERR(sgid_attr))
830 return PTR_ERR(sgid_attr);
831
832 flow_class = be32_to_cpu(grh->version_tclass_flow);
833 rdma_move_grh_sgid_attr(ah_attr,
834 &sgid,
835 flow_class & 0xFFFFF,
836 hoplimit,
837 (flow_class >> 20) & 0xFF,
838 sgid_attr);
839
840 ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
841 if (ret)
842 rdma_destroy_ah_attr(ah_attr);
843
844 return ret;
845 } else {
846 rdma_ah_set_dlid(ah_attr, wc->slid);
847 rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits);
848
849 if ((wc->wc_flags & IB_WC_GRH) == 0)
850 return 0;
851
852 if (dgid.global.interface_id !=
853 cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
854 sgid_attr = rdma_find_gid_by_port(
855 device, &dgid, IB_GID_TYPE_IB, port_num, NULL);
856 } else
857 sgid_attr = rdma_get_gid_attr(device, port_num, 0);
858
859 if (IS_ERR(sgid_attr))
860 return PTR_ERR(sgid_attr);
861 flow_class = be32_to_cpu(grh->version_tclass_flow);
862 rdma_move_grh_sgid_attr(ah_attr,
863 &sgid,
864 flow_class & 0xFFFFF,
865 hoplimit,
866 (flow_class >> 20) & 0xFF,
867 sgid_attr);
868
869 return 0;
870 }
871 }
872 EXPORT_SYMBOL(ib_init_ah_attr_from_wc);
873
874 /**
875 * rdma_move_grh_sgid_attr - Sets the sgid attribute of GRH, taking ownership
876 * of the reference
877 *
878 * @attr: Pointer to AH attribute structure
879 * @dgid: Destination GID
880 * @flow_label: Flow label
881 * @hop_limit: Hop limit
882 * @traffic_class: traffic class
883 * @sgid_attr: Pointer to SGID attribute
884 *
885 * This takes ownership of the sgid_attr reference. The caller must ensure
886 * rdma_destroy_ah_attr() is called before destroying the rdma_ah_attr after
887 * calling this function.
888 */
rdma_move_grh_sgid_attr(struct rdma_ah_attr * attr,union ib_gid * dgid,u32 flow_label,u8 hop_limit,u8 traffic_class,const struct ib_gid_attr * sgid_attr)889 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
890 u32 flow_label, u8 hop_limit, u8 traffic_class,
891 const struct ib_gid_attr *sgid_attr)
892 {
893 rdma_ah_set_grh(attr, dgid, flow_label, sgid_attr->index, hop_limit,
894 traffic_class);
895 attr->grh.sgid_attr = sgid_attr;
896 }
897 EXPORT_SYMBOL(rdma_move_grh_sgid_attr);
898
899 /**
900 * rdma_destroy_ah_attr - Release reference to SGID attribute of
901 * ah attribute.
902 * @ah_attr: Pointer to ah attribute
903 *
904 * Release reference to the SGID attribute of the ah attribute if it is
905 * non NULL. It is safe to call this multiple times, and safe to call it on
906 * a zero initialized ah_attr.
907 */
rdma_destroy_ah_attr(struct rdma_ah_attr * ah_attr)908 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr)
909 {
910 if (ah_attr->grh.sgid_attr) {
911 rdma_put_gid_attr(ah_attr->grh.sgid_attr);
912 ah_attr->grh.sgid_attr = NULL;
913 }
914 }
915 EXPORT_SYMBOL(rdma_destroy_ah_attr);
916
ib_create_ah_from_wc(struct ib_pd * pd,const struct ib_wc * wc,const struct ib_grh * grh,u32 port_num)917 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
918 const struct ib_grh *grh, u32 port_num)
919 {
920 struct rdma_ah_attr ah_attr;
921 struct ib_ah *ah;
922 int ret;
923
924 ret = ib_init_ah_attr_from_wc(pd->device, port_num, wc, grh, &ah_attr);
925 if (ret)
926 return ERR_PTR(ret);
927
928 ah = rdma_create_ah(pd, &ah_attr, RDMA_CREATE_AH_SLEEPABLE);
929
930 rdma_destroy_ah_attr(&ah_attr);
931 return ah;
932 }
933 EXPORT_SYMBOL(ib_create_ah_from_wc);
934
rdma_modify_ah(struct ib_ah * ah,struct rdma_ah_attr * ah_attr)935 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
936 {
937 const struct ib_gid_attr *old_sgid_attr;
938 int ret;
939
940 if (ah->type != ah_attr->type)
941 return -EINVAL;
942
943 ret = rdma_fill_sgid_attr(ah->device, ah_attr, &old_sgid_attr);
944 if (ret)
945 return ret;
946
947 ret = ah->device->ops.modify_ah ?
948 ah->device->ops.modify_ah(ah, ah_attr) :
949 -EOPNOTSUPP;
950
951 ah->sgid_attr = rdma_update_sgid_attr(ah_attr, ah->sgid_attr);
952 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
953 return ret;
954 }
955 EXPORT_SYMBOL(rdma_modify_ah);
956
rdma_query_ah(struct ib_ah * ah,struct rdma_ah_attr * ah_attr)957 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
958 {
959 ah_attr->grh.sgid_attr = NULL;
960
961 return ah->device->ops.query_ah ?
962 ah->device->ops.query_ah(ah, ah_attr) :
963 -EOPNOTSUPP;
964 }
965 EXPORT_SYMBOL(rdma_query_ah);
966
rdma_destroy_ah_user(struct ib_ah * ah,u32 flags,struct ib_udata * udata)967 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata)
968 {
969 const struct ib_gid_attr *sgid_attr = ah->sgid_attr;
970 struct ib_pd *pd;
971 int ret;
972
973 might_sleep_if(flags & RDMA_DESTROY_AH_SLEEPABLE);
974
975 pd = ah->pd;
976
977 ret = ah->device->ops.destroy_ah(ah, flags);
978 if (ret)
979 return ret;
980
981 atomic_dec(&pd->usecnt);
982 if (sgid_attr)
983 rdma_put_gid_attr(sgid_attr);
984
985 kfree(ah);
986 return ret;
987 }
988 EXPORT_SYMBOL(rdma_destroy_ah_user);
989
990 /* Shared receive queues */
991
992 /**
993 * ib_create_srq_user - Creates a SRQ associated with the specified protection
994 * domain.
995 * @pd: The protection domain associated with the SRQ.
996 * @srq_init_attr: A list of initial attributes required to create the
997 * SRQ. If SRQ creation succeeds, then the attributes are updated to
998 * the actual capabilities of the created SRQ.
999 * @uobject: uobject pointer if this is not a kernel SRQ
1000 * @udata: udata pointer if this is not a kernel SRQ
1001 *
1002 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
1003 * requested size of the SRQ, and set to the actual values allocated
1004 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
1005 * will always be at least as large as the requested values.
1006 */
ib_create_srq_user(struct ib_pd * pd,struct ib_srq_init_attr * srq_init_attr,struct ib_usrq_object * uobject,struct ib_udata * udata)1007 struct ib_srq *ib_create_srq_user(struct ib_pd *pd,
1008 struct ib_srq_init_attr *srq_init_attr,
1009 struct ib_usrq_object *uobject,
1010 struct ib_udata *udata)
1011 {
1012 struct ib_srq *srq;
1013 int ret;
1014
1015 srq = rdma_zalloc_drv_obj(pd->device, ib_srq);
1016 if (!srq)
1017 return ERR_PTR(-ENOMEM);
1018
1019 srq->device = pd->device;
1020 srq->pd = pd;
1021 srq->event_handler = srq_init_attr->event_handler;
1022 srq->srq_context = srq_init_attr->srq_context;
1023 srq->srq_type = srq_init_attr->srq_type;
1024 srq->uobject = uobject;
1025
1026 if (ib_srq_has_cq(srq->srq_type)) {
1027 srq->ext.cq = srq_init_attr->ext.cq;
1028 atomic_inc(&srq->ext.cq->usecnt);
1029 }
1030 if (srq->srq_type == IB_SRQT_XRC) {
1031 srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
1032 if (srq->ext.xrc.xrcd)
1033 atomic_inc(&srq->ext.xrc.xrcd->usecnt);
1034 }
1035 atomic_inc(&pd->usecnt);
1036
1037 rdma_restrack_new(&srq->res, RDMA_RESTRACK_SRQ);
1038 rdma_restrack_parent_name(&srq->res, &pd->res);
1039
1040 ret = pd->device->ops.create_srq(srq, srq_init_attr, udata);
1041 if (ret) {
1042 rdma_restrack_put(&srq->res);
1043 atomic_dec(&pd->usecnt);
1044 if (srq->srq_type == IB_SRQT_XRC && srq->ext.xrc.xrcd)
1045 atomic_dec(&srq->ext.xrc.xrcd->usecnt);
1046 if (ib_srq_has_cq(srq->srq_type))
1047 atomic_dec(&srq->ext.cq->usecnt);
1048 kfree(srq);
1049 return ERR_PTR(ret);
1050 }
1051
1052 rdma_restrack_add(&srq->res);
1053
1054 return srq;
1055 }
1056 EXPORT_SYMBOL(ib_create_srq_user);
1057
ib_modify_srq(struct ib_srq * srq,struct ib_srq_attr * srq_attr,enum ib_srq_attr_mask srq_attr_mask)1058 int ib_modify_srq(struct ib_srq *srq,
1059 struct ib_srq_attr *srq_attr,
1060 enum ib_srq_attr_mask srq_attr_mask)
1061 {
1062 return srq->device->ops.modify_srq ?
1063 srq->device->ops.modify_srq(srq, srq_attr, srq_attr_mask,
1064 NULL) : -EOPNOTSUPP;
1065 }
1066 EXPORT_SYMBOL(ib_modify_srq);
1067
ib_query_srq(struct ib_srq * srq,struct ib_srq_attr * srq_attr)1068 int ib_query_srq(struct ib_srq *srq,
1069 struct ib_srq_attr *srq_attr)
1070 {
1071 return srq->device->ops.query_srq ?
1072 srq->device->ops.query_srq(srq, srq_attr) : -EOPNOTSUPP;
1073 }
1074 EXPORT_SYMBOL(ib_query_srq);
1075
ib_destroy_srq_user(struct ib_srq * srq,struct ib_udata * udata)1076 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata)
1077 {
1078 int ret;
1079
1080 if (atomic_read(&srq->usecnt))
1081 return -EBUSY;
1082
1083 ret = srq->device->ops.destroy_srq(srq, udata);
1084 if (ret)
1085 return ret;
1086
1087 atomic_dec(&srq->pd->usecnt);
1088 if (srq->srq_type == IB_SRQT_XRC && srq->ext.xrc.xrcd)
1089 atomic_dec(&srq->ext.xrc.xrcd->usecnt);
1090 if (ib_srq_has_cq(srq->srq_type))
1091 atomic_dec(&srq->ext.cq->usecnt);
1092 rdma_restrack_del(&srq->res);
1093 kfree(srq);
1094
1095 return ret;
1096 }
1097 EXPORT_SYMBOL(ib_destroy_srq_user);
1098
1099 /* Queue pairs */
1100
__ib_shared_qp_event_handler(struct ib_event * event,void * context)1101 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
1102 {
1103 struct ib_qp *qp = context;
1104 unsigned long flags;
1105
1106 spin_lock_irqsave(&qp->device->qp_open_list_lock, flags);
1107 list_for_each_entry(event->element.qp, &qp->open_list, open_list)
1108 if (event->element.qp->event_handler)
1109 event->element.qp->event_handler(event, event->element.qp->qp_context);
1110 spin_unlock_irqrestore(&qp->device->qp_open_list_lock, flags);
1111 }
1112
__ib_open_qp(struct ib_qp * real_qp,void (* event_handler)(struct ib_event *,void *),void * qp_context)1113 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
1114 void (*event_handler)(struct ib_event *, void *),
1115 void *qp_context)
1116 {
1117 struct ib_qp *qp;
1118 unsigned long flags;
1119 int err;
1120
1121 qp = kzalloc(sizeof *qp, GFP_KERNEL);
1122 if (!qp)
1123 return ERR_PTR(-ENOMEM);
1124
1125 qp->real_qp = real_qp;
1126 err = ib_open_shared_qp_security(qp, real_qp->device);
1127 if (err) {
1128 kfree(qp);
1129 return ERR_PTR(err);
1130 }
1131
1132 qp->real_qp = real_qp;
1133 atomic_inc(&real_qp->usecnt);
1134 qp->device = real_qp->device;
1135 qp->event_handler = event_handler;
1136 qp->qp_context = qp_context;
1137 qp->qp_num = real_qp->qp_num;
1138 qp->qp_type = real_qp->qp_type;
1139
1140 spin_lock_irqsave(&real_qp->device->qp_open_list_lock, flags);
1141 list_add(&qp->open_list, &real_qp->open_list);
1142 spin_unlock_irqrestore(&real_qp->device->qp_open_list_lock, flags);
1143
1144 return qp;
1145 }
1146
ib_open_qp(struct ib_xrcd * xrcd,struct ib_qp_open_attr * qp_open_attr)1147 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
1148 struct ib_qp_open_attr *qp_open_attr)
1149 {
1150 struct ib_qp *qp, *real_qp;
1151
1152 if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
1153 return ERR_PTR(-EINVAL);
1154
1155 down_read(&xrcd->tgt_qps_rwsem);
1156 real_qp = xa_load(&xrcd->tgt_qps, qp_open_attr->qp_num);
1157 if (!real_qp) {
1158 up_read(&xrcd->tgt_qps_rwsem);
1159 return ERR_PTR(-EINVAL);
1160 }
1161 qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
1162 qp_open_attr->qp_context);
1163 up_read(&xrcd->tgt_qps_rwsem);
1164 return qp;
1165 }
1166 EXPORT_SYMBOL(ib_open_qp);
1167
create_xrc_qp_user(struct ib_qp * qp,struct ib_qp_init_attr * qp_init_attr)1168 static struct ib_qp *create_xrc_qp_user(struct ib_qp *qp,
1169 struct ib_qp_init_attr *qp_init_attr)
1170 {
1171 struct ib_qp *real_qp = qp;
1172 int err;
1173
1174 qp->event_handler = __ib_shared_qp_event_handler;
1175 qp->qp_context = qp;
1176 qp->pd = NULL;
1177 qp->send_cq = qp->recv_cq = NULL;
1178 qp->srq = NULL;
1179 qp->xrcd = qp_init_attr->xrcd;
1180 atomic_inc(&qp_init_attr->xrcd->usecnt);
1181 INIT_LIST_HEAD(&qp->open_list);
1182
1183 qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
1184 qp_init_attr->qp_context);
1185 if (IS_ERR(qp))
1186 return qp;
1187
1188 err = xa_err(xa_store(&qp_init_attr->xrcd->tgt_qps, real_qp->qp_num,
1189 real_qp, GFP_KERNEL));
1190 if (err) {
1191 ib_close_qp(qp);
1192 return ERR_PTR(err);
1193 }
1194 return qp;
1195 }
1196
create_qp(struct ib_device * dev,struct ib_pd * pd,struct ib_qp_init_attr * attr,struct ib_udata * udata,struct ib_uqp_object * uobj,const char * caller)1197 static struct ib_qp *create_qp(struct ib_device *dev, struct ib_pd *pd,
1198 struct ib_qp_init_attr *attr,
1199 struct ib_udata *udata,
1200 struct ib_uqp_object *uobj, const char *caller)
1201 {
1202 struct ib_udata dummy = {};
1203 struct ib_qp *qp;
1204 int ret;
1205
1206 if (!dev->ops.create_qp)
1207 return ERR_PTR(-EOPNOTSUPP);
1208
1209 qp = rdma_zalloc_drv_obj_numa(dev, ib_qp);
1210 if (!qp)
1211 return ERR_PTR(-ENOMEM);
1212
1213 qp->device = dev;
1214 qp->pd = pd;
1215 qp->uobject = uobj;
1216 qp->real_qp = qp;
1217
1218 qp->qp_type = attr->qp_type;
1219 qp->rwq_ind_tbl = attr->rwq_ind_tbl;
1220 qp->srq = attr->srq;
1221 qp->event_handler = attr->event_handler;
1222 qp->port = attr->port_num;
1223 qp->qp_context = attr->qp_context;
1224
1225 spin_lock_init(&qp->mr_lock);
1226 INIT_LIST_HEAD(&qp->rdma_mrs);
1227 INIT_LIST_HEAD(&qp->sig_mrs);
1228
1229 qp->send_cq = attr->send_cq;
1230 qp->recv_cq = attr->recv_cq;
1231
1232 rdma_restrack_new(&qp->res, RDMA_RESTRACK_QP);
1233 WARN_ONCE(!udata && !caller, "Missing kernel QP owner");
1234 rdma_restrack_set_name(&qp->res, udata ? NULL : caller);
1235 ret = dev->ops.create_qp(qp, attr, udata);
1236 if (ret)
1237 goto err_create;
1238
1239 /*
1240 * TODO: The mlx4 internally overwrites send_cq and recv_cq.
1241 * Unfortunately, it is not an easy task to fix that driver.
1242 */
1243 qp->send_cq = attr->send_cq;
1244 qp->recv_cq = attr->recv_cq;
1245
1246 ret = ib_create_qp_security(qp, dev);
1247 if (ret)
1248 goto err_security;
1249
1250 rdma_restrack_add(&qp->res);
1251 return qp;
1252
1253 err_security:
1254 qp->device->ops.destroy_qp(qp, udata ? &dummy : NULL);
1255 err_create:
1256 rdma_restrack_put(&qp->res);
1257 kfree(qp);
1258 return ERR_PTR(ret);
1259
1260 }
1261
1262 /**
1263 * ib_create_qp_user - Creates a QP associated with the specified protection
1264 * domain.
1265 * @dev: IB device
1266 * @pd: The protection domain associated with the QP.
1267 * @attr: A list of initial attributes required to create the
1268 * QP. If QP creation succeeds, then the attributes are updated to
1269 * the actual capabilities of the created QP.
1270 * @udata: User data
1271 * @uobj: uverbs obect
1272 * @caller: caller's build-time module name
1273 */
ib_create_qp_user(struct ib_device * dev,struct ib_pd * pd,struct ib_qp_init_attr * attr,struct ib_udata * udata,struct ib_uqp_object * uobj,const char * caller)1274 struct ib_qp *ib_create_qp_user(struct ib_device *dev, struct ib_pd *pd,
1275 struct ib_qp_init_attr *attr,
1276 struct ib_udata *udata,
1277 struct ib_uqp_object *uobj, const char *caller)
1278 {
1279 struct ib_qp *qp, *xrc_qp;
1280
1281 if (attr->qp_type == IB_QPT_XRC_TGT)
1282 qp = create_qp(dev, pd, attr, NULL, NULL, caller);
1283 else
1284 qp = create_qp(dev, pd, attr, udata, uobj, NULL);
1285 if (attr->qp_type != IB_QPT_XRC_TGT || IS_ERR(qp))
1286 return qp;
1287
1288 xrc_qp = create_xrc_qp_user(qp, attr);
1289 if (IS_ERR(xrc_qp)) {
1290 ib_destroy_qp(qp);
1291 return xrc_qp;
1292 }
1293
1294 xrc_qp->uobject = uobj;
1295 return xrc_qp;
1296 }
1297 EXPORT_SYMBOL(ib_create_qp_user);
1298
ib_qp_usecnt_inc(struct ib_qp * qp)1299 void ib_qp_usecnt_inc(struct ib_qp *qp)
1300 {
1301 if (qp->pd)
1302 atomic_inc(&qp->pd->usecnt);
1303 if (qp->send_cq)
1304 atomic_inc(&qp->send_cq->usecnt);
1305 if (qp->recv_cq)
1306 atomic_inc(&qp->recv_cq->usecnt);
1307 if (qp->srq)
1308 atomic_inc(&qp->srq->usecnt);
1309 if (qp->rwq_ind_tbl)
1310 atomic_inc(&qp->rwq_ind_tbl->usecnt);
1311 }
1312 EXPORT_SYMBOL(ib_qp_usecnt_inc);
1313
ib_qp_usecnt_dec(struct ib_qp * qp)1314 void ib_qp_usecnt_dec(struct ib_qp *qp)
1315 {
1316 if (qp->rwq_ind_tbl)
1317 atomic_dec(&qp->rwq_ind_tbl->usecnt);
1318 if (qp->srq)
1319 atomic_dec(&qp->srq->usecnt);
1320 if (qp->recv_cq)
1321 atomic_dec(&qp->recv_cq->usecnt);
1322 if (qp->send_cq)
1323 atomic_dec(&qp->send_cq->usecnt);
1324 if (qp->pd)
1325 atomic_dec(&qp->pd->usecnt);
1326 }
1327 EXPORT_SYMBOL(ib_qp_usecnt_dec);
1328
ib_create_qp_kernel(struct ib_pd * pd,struct ib_qp_init_attr * qp_init_attr,const char * caller)1329 struct ib_qp *ib_create_qp_kernel(struct ib_pd *pd,
1330 struct ib_qp_init_attr *qp_init_attr,
1331 const char *caller)
1332 {
1333 struct ib_device *device = pd->device;
1334 struct ib_qp *qp;
1335 int ret;
1336
1337 /*
1338 * If the callers is using the RDMA API calculate the resources
1339 * needed for the RDMA READ/WRITE operations.
1340 *
1341 * Note that these callers need to pass in a port number.
1342 */
1343 if (qp_init_attr->cap.max_rdma_ctxs)
1344 rdma_rw_init_qp(device, qp_init_attr);
1345
1346 qp = create_qp(device, pd, qp_init_attr, NULL, NULL, caller);
1347 if (IS_ERR(qp))
1348 return qp;
1349
1350 ib_qp_usecnt_inc(qp);
1351
1352 if (qp_init_attr->cap.max_rdma_ctxs) {
1353 ret = rdma_rw_init_mrs(qp, qp_init_attr);
1354 if (ret)
1355 goto err;
1356 }
1357
1358 /*
1359 * Note: all hw drivers guarantee that max_send_sge is lower than
1360 * the device RDMA WRITE SGE limit but not all hw drivers ensure that
1361 * max_send_sge <= max_sge_rd.
1362 */
1363 qp->max_write_sge = qp_init_attr->cap.max_send_sge;
1364 qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
1365 device->attrs.max_sge_rd);
1366 if (qp_init_attr->create_flags & IB_QP_CREATE_INTEGRITY_EN)
1367 qp->integrity_en = true;
1368
1369 return qp;
1370
1371 err:
1372 ib_destroy_qp(qp);
1373 return ERR_PTR(ret);
1374
1375 }
1376 EXPORT_SYMBOL(ib_create_qp_kernel);
1377
1378 static const struct {
1379 int valid;
1380 enum ib_qp_attr_mask req_param[IB_QPT_MAX];
1381 enum ib_qp_attr_mask opt_param[IB_QPT_MAX];
1382 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
1383 [IB_QPS_RESET] = {
1384 [IB_QPS_RESET] = { .valid = 1 },
1385 [IB_QPS_INIT] = {
1386 .valid = 1,
1387 .req_param = {
1388 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1389 IB_QP_PORT |
1390 IB_QP_QKEY),
1391 [IB_QPT_RAW_PACKET] = IB_QP_PORT,
1392 [IB_QPT_UC] = (IB_QP_PKEY_INDEX |
1393 IB_QP_PORT |
1394 IB_QP_ACCESS_FLAGS),
1395 [IB_QPT_RC] = (IB_QP_PKEY_INDEX |
1396 IB_QP_PORT |
1397 IB_QP_ACCESS_FLAGS),
1398 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
1399 IB_QP_PORT |
1400 IB_QP_ACCESS_FLAGS),
1401 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
1402 IB_QP_PORT |
1403 IB_QP_ACCESS_FLAGS),
1404 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1405 IB_QP_QKEY),
1406 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1407 IB_QP_QKEY),
1408 }
1409 },
1410 },
1411 [IB_QPS_INIT] = {
1412 [IB_QPS_RESET] = { .valid = 1 },
1413 [IB_QPS_ERR] = { .valid = 1 },
1414 [IB_QPS_INIT] = {
1415 .valid = 1,
1416 .opt_param = {
1417 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1418 IB_QP_PORT |
1419 IB_QP_QKEY),
1420 [IB_QPT_UC] = (IB_QP_PKEY_INDEX |
1421 IB_QP_PORT |
1422 IB_QP_ACCESS_FLAGS),
1423 [IB_QPT_RC] = (IB_QP_PKEY_INDEX |
1424 IB_QP_PORT |
1425 IB_QP_ACCESS_FLAGS),
1426 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
1427 IB_QP_PORT |
1428 IB_QP_ACCESS_FLAGS),
1429 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
1430 IB_QP_PORT |
1431 IB_QP_ACCESS_FLAGS),
1432 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1433 IB_QP_QKEY),
1434 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1435 IB_QP_QKEY),
1436 }
1437 },
1438 [IB_QPS_RTR] = {
1439 .valid = 1,
1440 .req_param = {
1441 [IB_QPT_UC] = (IB_QP_AV |
1442 IB_QP_PATH_MTU |
1443 IB_QP_DEST_QPN |
1444 IB_QP_RQ_PSN),
1445 [IB_QPT_RC] = (IB_QP_AV |
1446 IB_QP_PATH_MTU |
1447 IB_QP_DEST_QPN |
1448 IB_QP_RQ_PSN |
1449 IB_QP_MAX_DEST_RD_ATOMIC |
1450 IB_QP_MIN_RNR_TIMER),
1451 [IB_QPT_XRC_INI] = (IB_QP_AV |
1452 IB_QP_PATH_MTU |
1453 IB_QP_DEST_QPN |
1454 IB_QP_RQ_PSN),
1455 [IB_QPT_XRC_TGT] = (IB_QP_AV |
1456 IB_QP_PATH_MTU |
1457 IB_QP_DEST_QPN |
1458 IB_QP_RQ_PSN |
1459 IB_QP_MAX_DEST_RD_ATOMIC |
1460 IB_QP_MIN_RNR_TIMER),
1461 },
1462 .opt_param = {
1463 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1464 IB_QP_QKEY),
1465 [IB_QPT_UC] = (IB_QP_ALT_PATH |
1466 IB_QP_ACCESS_FLAGS |
1467 IB_QP_PKEY_INDEX),
1468 [IB_QPT_RC] = (IB_QP_ALT_PATH |
1469 IB_QP_ACCESS_FLAGS |
1470 IB_QP_PKEY_INDEX),
1471 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH |
1472 IB_QP_ACCESS_FLAGS |
1473 IB_QP_PKEY_INDEX),
1474 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH |
1475 IB_QP_ACCESS_FLAGS |
1476 IB_QP_PKEY_INDEX),
1477 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1478 IB_QP_QKEY),
1479 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1480 IB_QP_QKEY),
1481 },
1482 },
1483 },
1484 [IB_QPS_RTR] = {
1485 [IB_QPS_RESET] = { .valid = 1 },
1486 [IB_QPS_ERR] = { .valid = 1 },
1487 [IB_QPS_RTS] = {
1488 .valid = 1,
1489 .req_param = {
1490 [IB_QPT_UD] = IB_QP_SQ_PSN,
1491 [IB_QPT_UC] = IB_QP_SQ_PSN,
1492 [IB_QPT_RC] = (IB_QP_TIMEOUT |
1493 IB_QP_RETRY_CNT |
1494 IB_QP_RNR_RETRY |
1495 IB_QP_SQ_PSN |
1496 IB_QP_MAX_QP_RD_ATOMIC),
1497 [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT |
1498 IB_QP_RETRY_CNT |
1499 IB_QP_RNR_RETRY |
1500 IB_QP_SQ_PSN |
1501 IB_QP_MAX_QP_RD_ATOMIC),
1502 [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT |
1503 IB_QP_SQ_PSN),
1504 [IB_QPT_SMI] = IB_QP_SQ_PSN,
1505 [IB_QPT_GSI] = IB_QP_SQ_PSN,
1506 },
1507 .opt_param = {
1508 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1509 IB_QP_QKEY),
1510 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1511 IB_QP_ALT_PATH |
1512 IB_QP_ACCESS_FLAGS |
1513 IB_QP_PATH_MIG_STATE),
1514 [IB_QPT_RC] = (IB_QP_CUR_STATE |
1515 IB_QP_ALT_PATH |
1516 IB_QP_ACCESS_FLAGS |
1517 IB_QP_MIN_RNR_TIMER |
1518 IB_QP_PATH_MIG_STATE),
1519 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
1520 IB_QP_ALT_PATH |
1521 IB_QP_ACCESS_FLAGS |
1522 IB_QP_PATH_MIG_STATE),
1523 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
1524 IB_QP_ALT_PATH |
1525 IB_QP_ACCESS_FLAGS |
1526 IB_QP_MIN_RNR_TIMER |
1527 IB_QP_PATH_MIG_STATE),
1528 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1529 IB_QP_QKEY),
1530 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1531 IB_QP_QKEY),
1532 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1533 }
1534 }
1535 },
1536 [IB_QPS_RTS] = {
1537 [IB_QPS_RESET] = { .valid = 1 },
1538 [IB_QPS_ERR] = { .valid = 1 },
1539 [IB_QPS_RTS] = {
1540 .valid = 1,
1541 .opt_param = {
1542 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1543 IB_QP_QKEY),
1544 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1545 IB_QP_ACCESS_FLAGS |
1546 IB_QP_ALT_PATH |
1547 IB_QP_PATH_MIG_STATE),
1548 [IB_QPT_RC] = (IB_QP_CUR_STATE |
1549 IB_QP_ACCESS_FLAGS |
1550 IB_QP_ALT_PATH |
1551 IB_QP_PATH_MIG_STATE |
1552 IB_QP_MIN_RNR_TIMER),
1553 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
1554 IB_QP_ACCESS_FLAGS |
1555 IB_QP_ALT_PATH |
1556 IB_QP_PATH_MIG_STATE),
1557 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
1558 IB_QP_ACCESS_FLAGS |
1559 IB_QP_ALT_PATH |
1560 IB_QP_PATH_MIG_STATE |
1561 IB_QP_MIN_RNR_TIMER),
1562 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1563 IB_QP_QKEY),
1564 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1565 IB_QP_QKEY),
1566 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1567 }
1568 },
1569 [IB_QPS_SQD] = {
1570 .valid = 1,
1571 .opt_param = {
1572 [IB_QPT_UD] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1573 [IB_QPT_UC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1574 [IB_QPT_RC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1575 [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1576 [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1577 [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1578 [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1579 }
1580 },
1581 },
1582 [IB_QPS_SQD] = {
1583 [IB_QPS_RESET] = { .valid = 1 },
1584 [IB_QPS_ERR] = { .valid = 1 },
1585 [IB_QPS_RTS] = {
1586 .valid = 1,
1587 .opt_param = {
1588 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1589 IB_QP_QKEY),
1590 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1591 IB_QP_ALT_PATH |
1592 IB_QP_ACCESS_FLAGS |
1593 IB_QP_PATH_MIG_STATE),
1594 [IB_QPT_RC] = (IB_QP_CUR_STATE |
1595 IB_QP_ALT_PATH |
1596 IB_QP_ACCESS_FLAGS |
1597 IB_QP_MIN_RNR_TIMER |
1598 IB_QP_PATH_MIG_STATE),
1599 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
1600 IB_QP_ALT_PATH |
1601 IB_QP_ACCESS_FLAGS |
1602 IB_QP_PATH_MIG_STATE),
1603 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
1604 IB_QP_ALT_PATH |
1605 IB_QP_ACCESS_FLAGS |
1606 IB_QP_MIN_RNR_TIMER |
1607 IB_QP_PATH_MIG_STATE),
1608 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1609 IB_QP_QKEY),
1610 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1611 IB_QP_QKEY),
1612 }
1613 },
1614 [IB_QPS_SQD] = {
1615 .valid = 1,
1616 .opt_param = {
1617 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1618 IB_QP_QKEY),
1619 [IB_QPT_UC] = (IB_QP_AV |
1620 IB_QP_ALT_PATH |
1621 IB_QP_ACCESS_FLAGS |
1622 IB_QP_PKEY_INDEX |
1623 IB_QP_PATH_MIG_STATE),
1624 [IB_QPT_RC] = (IB_QP_PORT |
1625 IB_QP_AV |
1626 IB_QP_TIMEOUT |
1627 IB_QP_RETRY_CNT |
1628 IB_QP_RNR_RETRY |
1629 IB_QP_MAX_QP_RD_ATOMIC |
1630 IB_QP_MAX_DEST_RD_ATOMIC |
1631 IB_QP_ALT_PATH |
1632 IB_QP_ACCESS_FLAGS |
1633 IB_QP_PKEY_INDEX |
1634 IB_QP_MIN_RNR_TIMER |
1635 IB_QP_PATH_MIG_STATE),
1636 [IB_QPT_XRC_INI] = (IB_QP_PORT |
1637 IB_QP_AV |
1638 IB_QP_TIMEOUT |
1639 IB_QP_RETRY_CNT |
1640 IB_QP_RNR_RETRY |
1641 IB_QP_MAX_QP_RD_ATOMIC |
1642 IB_QP_ALT_PATH |
1643 IB_QP_ACCESS_FLAGS |
1644 IB_QP_PKEY_INDEX |
1645 IB_QP_PATH_MIG_STATE),
1646 [IB_QPT_XRC_TGT] = (IB_QP_PORT |
1647 IB_QP_AV |
1648 IB_QP_TIMEOUT |
1649 IB_QP_MAX_DEST_RD_ATOMIC |
1650 IB_QP_ALT_PATH |
1651 IB_QP_ACCESS_FLAGS |
1652 IB_QP_PKEY_INDEX |
1653 IB_QP_MIN_RNR_TIMER |
1654 IB_QP_PATH_MIG_STATE),
1655 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1656 IB_QP_QKEY),
1657 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1658 IB_QP_QKEY),
1659 }
1660 }
1661 },
1662 [IB_QPS_SQE] = {
1663 [IB_QPS_RESET] = { .valid = 1 },
1664 [IB_QPS_ERR] = { .valid = 1 },
1665 [IB_QPS_RTS] = {
1666 .valid = 1,
1667 .opt_param = {
1668 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1669 IB_QP_QKEY),
1670 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1671 IB_QP_ACCESS_FLAGS),
1672 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1673 IB_QP_QKEY),
1674 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1675 IB_QP_QKEY),
1676 }
1677 }
1678 },
1679 [IB_QPS_ERR] = {
1680 [IB_QPS_RESET] = { .valid = 1 },
1681 [IB_QPS_ERR] = { .valid = 1 }
1682 }
1683 };
1684
ib_modify_qp_is_ok(enum ib_qp_state cur_state,enum ib_qp_state next_state,enum ib_qp_type type,enum ib_qp_attr_mask mask)1685 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1686 enum ib_qp_type type, enum ib_qp_attr_mask mask)
1687 {
1688 enum ib_qp_attr_mask req_param, opt_param;
1689
1690 if (mask & IB_QP_CUR_STATE &&
1691 cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1692 cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1693 return false;
1694
1695 if (!qp_state_table[cur_state][next_state].valid)
1696 return false;
1697
1698 req_param = qp_state_table[cur_state][next_state].req_param[type];
1699 opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1700
1701 if ((mask & req_param) != req_param)
1702 return false;
1703
1704 if (mask & ~(req_param | opt_param | IB_QP_STATE))
1705 return false;
1706
1707 return true;
1708 }
1709 EXPORT_SYMBOL(ib_modify_qp_is_ok);
1710
1711 /**
1712 * ib_resolve_eth_dmac - Resolve destination mac address
1713 * @device: Device to consider
1714 * @ah_attr: address handle attribute which describes the
1715 * source and destination parameters
1716 * ib_resolve_eth_dmac() resolves destination mac address and L3 hop limit It
1717 * returns 0 on success or appropriate error code. It initializes the
1718 * necessary ah_attr fields when call is successful.
1719 */
ib_resolve_eth_dmac(struct ib_device * device,struct rdma_ah_attr * ah_attr)1720 static int ib_resolve_eth_dmac(struct ib_device *device,
1721 struct rdma_ah_attr *ah_attr)
1722 {
1723 int ret = 0;
1724
1725 if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1726 if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1727 __be32 addr = 0;
1728
1729 memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4);
1730 ip_eth_mc_map(addr, (char *)ah_attr->roce.dmac);
1731 } else {
1732 ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw,
1733 (char *)ah_attr->roce.dmac);
1734 }
1735 } else {
1736 ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
1737 }
1738 return ret;
1739 }
1740
is_qp_type_connected(const struct ib_qp * qp)1741 static bool is_qp_type_connected(const struct ib_qp *qp)
1742 {
1743 return (qp->qp_type == IB_QPT_UC ||
1744 qp->qp_type == IB_QPT_RC ||
1745 qp->qp_type == IB_QPT_XRC_INI ||
1746 qp->qp_type == IB_QPT_XRC_TGT);
1747 }
1748
1749 /*
1750 * IB core internal function to perform QP attributes modification.
1751 */
_ib_modify_qp(struct ib_qp * qp,struct ib_qp_attr * attr,int attr_mask,struct ib_udata * udata)1752 static int _ib_modify_qp(struct ib_qp *qp, struct ib_qp_attr *attr,
1753 int attr_mask, struct ib_udata *udata)
1754 {
1755 u32 port = attr_mask & IB_QP_PORT ? attr->port_num : qp->port;
1756 const struct ib_gid_attr *old_sgid_attr_av;
1757 const struct ib_gid_attr *old_sgid_attr_alt_av;
1758 int ret;
1759
1760 attr->xmit_slave = NULL;
1761 if (attr_mask & IB_QP_AV) {
1762 ret = rdma_fill_sgid_attr(qp->device, &attr->ah_attr,
1763 &old_sgid_attr_av);
1764 if (ret)
1765 return ret;
1766
1767 if (attr->ah_attr.type == RDMA_AH_ATTR_TYPE_ROCE &&
1768 is_qp_type_connected(qp)) {
1769 struct net_device *slave;
1770
1771 /*
1772 * If the user provided the qp_attr then we have to
1773 * resolve it. Kerne users have to provide already
1774 * resolved rdma_ah_attr's.
1775 */
1776 if (udata) {
1777 ret = ib_resolve_eth_dmac(qp->device,
1778 &attr->ah_attr);
1779 if (ret)
1780 goto out_av;
1781 }
1782 slave = rdma_lag_get_ah_roce_slave(qp->device,
1783 &attr->ah_attr,
1784 GFP_KERNEL);
1785 if (IS_ERR(slave)) {
1786 ret = PTR_ERR(slave);
1787 goto out_av;
1788 }
1789 attr->xmit_slave = slave;
1790 }
1791 }
1792 if (attr_mask & IB_QP_ALT_PATH) {
1793 /*
1794 * FIXME: This does not track the migration state, so if the
1795 * user loads a new alternate path after the HW has migrated
1796 * from primary->alternate we will keep the wrong
1797 * references. This is OK for IB because the reference
1798 * counting does not serve any functional purpose.
1799 */
1800 ret = rdma_fill_sgid_attr(qp->device, &attr->alt_ah_attr,
1801 &old_sgid_attr_alt_av);
1802 if (ret)
1803 goto out_av;
1804
1805 /*
1806 * Today the core code can only handle alternate paths and APM
1807 * for IB. Ban them in roce mode.
1808 */
1809 if (!(rdma_protocol_ib(qp->device,
1810 attr->alt_ah_attr.port_num) &&
1811 rdma_protocol_ib(qp->device, port))) {
1812 ret = -EINVAL;
1813 goto out;
1814 }
1815 }
1816
1817 if (rdma_ib_or_roce(qp->device, port)) {
1818 if (attr_mask & IB_QP_RQ_PSN && attr->rq_psn & ~0xffffff) {
1819 dev_warn(&qp->device->dev,
1820 "%s rq_psn overflow, masking to 24 bits\n",
1821 __func__);
1822 attr->rq_psn &= 0xffffff;
1823 }
1824
1825 if (attr_mask & IB_QP_SQ_PSN && attr->sq_psn & ~0xffffff) {
1826 dev_warn(&qp->device->dev,
1827 " %s sq_psn overflow, masking to 24 bits\n",
1828 __func__);
1829 attr->sq_psn &= 0xffffff;
1830 }
1831 }
1832
1833 /*
1834 * Bind this qp to a counter automatically based on the rdma counter
1835 * rules. This only set in RST2INIT with port specified
1836 */
1837 if (!qp->counter && (attr_mask & IB_QP_PORT) &&
1838 ((attr_mask & IB_QP_STATE) && attr->qp_state == IB_QPS_INIT))
1839 rdma_counter_bind_qp_auto(qp, attr->port_num);
1840
1841 ret = ib_security_modify_qp(qp, attr, attr_mask, udata);
1842 if (ret)
1843 goto out;
1844
1845 if (attr_mask & IB_QP_PORT)
1846 qp->port = attr->port_num;
1847 if (attr_mask & IB_QP_AV)
1848 qp->av_sgid_attr =
1849 rdma_update_sgid_attr(&attr->ah_attr, qp->av_sgid_attr);
1850 if (attr_mask & IB_QP_ALT_PATH)
1851 qp->alt_path_sgid_attr = rdma_update_sgid_attr(
1852 &attr->alt_ah_attr, qp->alt_path_sgid_attr);
1853
1854 out:
1855 if (attr_mask & IB_QP_ALT_PATH)
1856 rdma_unfill_sgid_attr(&attr->alt_ah_attr, old_sgid_attr_alt_av);
1857 out_av:
1858 if (attr_mask & IB_QP_AV) {
1859 rdma_lag_put_ah_roce_slave(attr->xmit_slave);
1860 rdma_unfill_sgid_attr(&attr->ah_attr, old_sgid_attr_av);
1861 }
1862 return ret;
1863 }
1864
1865 /**
1866 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
1867 * @ib_qp: The QP to modify.
1868 * @attr: On input, specifies the QP attributes to modify. On output,
1869 * the current values of selected QP attributes are returned.
1870 * @attr_mask: A bit-mask used to specify which attributes of the QP
1871 * are being modified.
1872 * @udata: pointer to user's input output buffer information
1873 * are being modified.
1874 * It returns 0 on success and returns appropriate error code on error.
1875 */
ib_modify_qp_with_udata(struct ib_qp * ib_qp,struct ib_qp_attr * attr,int attr_mask,struct ib_udata * udata)1876 int ib_modify_qp_with_udata(struct ib_qp *ib_qp, struct ib_qp_attr *attr,
1877 int attr_mask, struct ib_udata *udata)
1878 {
1879 return _ib_modify_qp(ib_qp->real_qp, attr, attr_mask, udata);
1880 }
1881 EXPORT_SYMBOL(ib_modify_qp_with_udata);
1882
ib_get_width_and_speed(u32 netdev_speed,u32 lanes,u16 * speed,u8 * width)1883 static void ib_get_width_and_speed(u32 netdev_speed, u32 lanes,
1884 u16 *speed, u8 *width)
1885 {
1886 if (!lanes) {
1887 if (netdev_speed <= SPEED_1000) {
1888 *width = IB_WIDTH_1X;
1889 *speed = IB_SPEED_SDR;
1890 } else if (netdev_speed <= SPEED_10000) {
1891 *width = IB_WIDTH_1X;
1892 *speed = IB_SPEED_FDR10;
1893 } else if (netdev_speed <= SPEED_20000) {
1894 *width = IB_WIDTH_4X;
1895 *speed = IB_SPEED_DDR;
1896 } else if (netdev_speed <= SPEED_25000) {
1897 *width = IB_WIDTH_1X;
1898 *speed = IB_SPEED_EDR;
1899 } else if (netdev_speed <= SPEED_40000) {
1900 *width = IB_WIDTH_4X;
1901 *speed = IB_SPEED_FDR10;
1902 } else if (netdev_speed <= SPEED_50000) {
1903 *width = IB_WIDTH_2X;
1904 *speed = IB_SPEED_EDR;
1905 } else if (netdev_speed <= SPEED_100000) {
1906 *width = IB_WIDTH_4X;
1907 *speed = IB_SPEED_EDR;
1908 } else if (netdev_speed <= SPEED_200000) {
1909 *width = IB_WIDTH_4X;
1910 *speed = IB_SPEED_HDR;
1911 } else {
1912 *width = IB_WIDTH_4X;
1913 *speed = IB_SPEED_NDR;
1914 }
1915
1916 return;
1917 }
1918
1919 switch (lanes) {
1920 case 1:
1921 *width = IB_WIDTH_1X;
1922 break;
1923 case 2:
1924 *width = IB_WIDTH_2X;
1925 break;
1926 case 4:
1927 *width = IB_WIDTH_4X;
1928 break;
1929 case 8:
1930 *width = IB_WIDTH_8X;
1931 break;
1932 case 12:
1933 *width = IB_WIDTH_12X;
1934 break;
1935 default:
1936 *width = IB_WIDTH_1X;
1937 }
1938
1939 switch (netdev_speed / lanes) {
1940 case SPEED_2500:
1941 *speed = IB_SPEED_SDR;
1942 break;
1943 case SPEED_5000:
1944 *speed = IB_SPEED_DDR;
1945 break;
1946 case SPEED_10000:
1947 *speed = IB_SPEED_FDR10;
1948 break;
1949 case SPEED_14000:
1950 *speed = IB_SPEED_FDR;
1951 break;
1952 case SPEED_25000:
1953 *speed = IB_SPEED_EDR;
1954 break;
1955 case SPEED_50000:
1956 *speed = IB_SPEED_HDR;
1957 break;
1958 case SPEED_100000:
1959 *speed = IB_SPEED_NDR;
1960 break;
1961 default:
1962 *speed = IB_SPEED_SDR;
1963 }
1964 }
1965
ib_get_eth_speed(struct ib_device * dev,u32 port_num,u16 * speed,u8 * width)1966 int ib_get_eth_speed(struct ib_device *dev, u32 port_num, u16 *speed, u8 *width)
1967 {
1968 int rc;
1969 u32 netdev_speed;
1970 struct net_device *netdev;
1971 struct ethtool_link_ksettings lksettings;
1972
1973 if (rdma_port_get_link_layer(dev, port_num) != IB_LINK_LAYER_ETHERNET)
1974 return -EINVAL;
1975
1976 netdev = ib_device_get_netdev(dev, port_num);
1977 if (!netdev)
1978 return -ENODEV;
1979
1980 rtnl_lock();
1981 rc = __ethtool_get_link_ksettings(netdev, &lksettings);
1982 rtnl_unlock();
1983
1984 dev_put(netdev);
1985
1986 if (!rc && lksettings.base.speed != (u32)SPEED_UNKNOWN) {
1987 netdev_speed = lksettings.base.speed;
1988 } else {
1989 netdev_speed = SPEED_1000;
1990 if (rc)
1991 pr_warn("%s speed is unknown, defaulting to %u\n",
1992 netdev->name, netdev_speed);
1993 }
1994
1995 ib_get_width_and_speed(netdev_speed, lksettings.lanes,
1996 speed, width);
1997
1998 return 0;
1999 }
2000 EXPORT_SYMBOL(ib_get_eth_speed);
2001
ib_modify_qp(struct ib_qp * qp,struct ib_qp_attr * qp_attr,int qp_attr_mask)2002 int ib_modify_qp(struct ib_qp *qp,
2003 struct ib_qp_attr *qp_attr,
2004 int qp_attr_mask)
2005 {
2006 return _ib_modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
2007 }
2008 EXPORT_SYMBOL(ib_modify_qp);
2009
ib_query_qp(struct ib_qp * qp,struct ib_qp_attr * qp_attr,int qp_attr_mask,struct ib_qp_init_attr * qp_init_attr)2010 int ib_query_qp(struct ib_qp *qp,
2011 struct ib_qp_attr *qp_attr,
2012 int qp_attr_mask,
2013 struct ib_qp_init_attr *qp_init_attr)
2014 {
2015 qp_attr->ah_attr.grh.sgid_attr = NULL;
2016 qp_attr->alt_ah_attr.grh.sgid_attr = NULL;
2017
2018 return qp->device->ops.query_qp ?
2019 qp->device->ops.query_qp(qp->real_qp, qp_attr, qp_attr_mask,
2020 qp_init_attr) : -EOPNOTSUPP;
2021 }
2022 EXPORT_SYMBOL(ib_query_qp);
2023
ib_close_qp(struct ib_qp * qp)2024 int ib_close_qp(struct ib_qp *qp)
2025 {
2026 struct ib_qp *real_qp;
2027 unsigned long flags;
2028
2029 real_qp = qp->real_qp;
2030 if (real_qp == qp)
2031 return -EINVAL;
2032
2033 spin_lock_irqsave(&real_qp->device->qp_open_list_lock, flags);
2034 list_del(&qp->open_list);
2035 spin_unlock_irqrestore(&real_qp->device->qp_open_list_lock, flags);
2036
2037 atomic_dec(&real_qp->usecnt);
2038 if (qp->qp_sec)
2039 ib_close_shared_qp_security(qp->qp_sec);
2040 kfree(qp);
2041
2042 return 0;
2043 }
2044 EXPORT_SYMBOL(ib_close_qp);
2045
__ib_destroy_shared_qp(struct ib_qp * qp)2046 static int __ib_destroy_shared_qp(struct ib_qp *qp)
2047 {
2048 struct ib_xrcd *xrcd;
2049 struct ib_qp *real_qp;
2050 int ret;
2051
2052 real_qp = qp->real_qp;
2053 xrcd = real_qp->xrcd;
2054 down_write(&xrcd->tgt_qps_rwsem);
2055 ib_close_qp(qp);
2056 if (atomic_read(&real_qp->usecnt) == 0)
2057 xa_erase(&xrcd->tgt_qps, real_qp->qp_num);
2058 else
2059 real_qp = NULL;
2060 up_write(&xrcd->tgt_qps_rwsem);
2061
2062 if (real_qp) {
2063 ret = ib_destroy_qp(real_qp);
2064 if (!ret)
2065 atomic_dec(&xrcd->usecnt);
2066 }
2067
2068 return 0;
2069 }
2070
ib_destroy_qp_user(struct ib_qp * qp,struct ib_udata * udata)2071 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata)
2072 {
2073 const struct ib_gid_attr *alt_path_sgid_attr = qp->alt_path_sgid_attr;
2074 const struct ib_gid_attr *av_sgid_attr = qp->av_sgid_attr;
2075 struct ib_qp_security *sec;
2076 int ret;
2077
2078 WARN_ON_ONCE(qp->mrs_used > 0);
2079
2080 if (atomic_read(&qp->usecnt))
2081 return -EBUSY;
2082
2083 if (qp->real_qp != qp)
2084 return __ib_destroy_shared_qp(qp);
2085
2086 sec = qp->qp_sec;
2087 if (sec)
2088 ib_destroy_qp_security_begin(sec);
2089
2090 if (!qp->uobject)
2091 rdma_rw_cleanup_mrs(qp);
2092
2093 rdma_counter_unbind_qp(qp, true);
2094 ret = qp->device->ops.destroy_qp(qp, udata);
2095 if (ret) {
2096 if (sec)
2097 ib_destroy_qp_security_abort(sec);
2098 return ret;
2099 }
2100
2101 if (alt_path_sgid_attr)
2102 rdma_put_gid_attr(alt_path_sgid_attr);
2103 if (av_sgid_attr)
2104 rdma_put_gid_attr(av_sgid_attr);
2105
2106 ib_qp_usecnt_dec(qp);
2107 if (sec)
2108 ib_destroy_qp_security_end(sec);
2109
2110 rdma_restrack_del(&qp->res);
2111 kfree(qp);
2112 return ret;
2113 }
2114 EXPORT_SYMBOL(ib_destroy_qp_user);
2115
2116 /* Completion queues */
2117
__ib_create_cq(struct ib_device * device,ib_comp_handler comp_handler,void (* event_handler)(struct ib_event *,void *),void * cq_context,const struct ib_cq_init_attr * cq_attr,const char * caller)2118 struct ib_cq *__ib_create_cq(struct ib_device *device,
2119 ib_comp_handler comp_handler,
2120 void (*event_handler)(struct ib_event *, void *),
2121 void *cq_context,
2122 const struct ib_cq_init_attr *cq_attr,
2123 const char *caller)
2124 {
2125 struct ib_cq *cq;
2126 int ret;
2127
2128 cq = rdma_zalloc_drv_obj(device, ib_cq);
2129 if (!cq)
2130 return ERR_PTR(-ENOMEM);
2131
2132 cq->device = device;
2133 cq->uobject = NULL;
2134 cq->comp_handler = comp_handler;
2135 cq->event_handler = event_handler;
2136 cq->cq_context = cq_context;
2137 atomic_set(&cq->usecnt, 0);
2138
2139 rdma_restrack_new(&cq->res, RDMA_RESTRACK_CQ);
2140 rdma_restrack_set_name(&cq->res, caller);
2141
2142 ret = device->ops.create_cq(cq, cq_attr, NULL);
2143 if (ret) {
2144 rdma_restrack_put(&cq->res);
2145 kfree(cq);
2146 return ERR_PTR(ret);
2147 }
2148
2149 rdma_restrack_add(&cq->res);
2150 return cq;
2151 }
2152 EXPORT_SYMBOL(__ib_create_cq);
2153
rdma_set_cq_moderation(struct ib_cq * cq,u16 cq_count,u16 cq_period)2154 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period)
2155 {
2156 if (cq->shared)
2157 return -EOPNOTSUPP;
2158
2159 return cq->device->ops.modify_cq ?
2160 cq->device->ops.modify_cq(cq, cq_count,
2161 cq_period) : -EOPNOTSUPP;
2162 }
2163 EXPORT_SYMBOL(rdma_set_cq_moderation);
2164
ib_destroy_cq_user(struct ib_cq * cq,struct ib_udata * udata)2165 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata)
2166 {
2167 int ret;
2168
2169 if (WARN_ON_ONCE(cq->shared))
2170 return -EOPNOTSUPP;
2171
2172 if (atomic_read(&cq->usecnt))
2173 return -EBUSY;
2174
2175 ret = cq->device->ops.destroy_cq(cq, udata);
2176 if (ret)
2177 return ret;
2178
2179 rdma_restrack_del(&cq->res);
2180 kfree(cq);
2181 return ret;
2182 }
2183 EXPORT_SYMBOL(ib_destroy_cq_user);
2184
ib_resize_cq(struct ib_cq * cq,int cqe)2185 int ib_resize_cq(struct ib_cq *cq, int cqe)
2186 {
2187 if (cq->shared)
2188 return -EOPNOTSUPP;
2189
2190 return cq->device->ops.resize_cq ?
2191 cq->device->ops.resize_cq(cq, cqe, NULL) : -EOPNOTSUPP;
2192 }
2193 EXPORT_SYMBOL(ib_resize_cq);
2194
2195 /* Memory regions */
2196
ib_reg_user_mr(struct ib_pd * pd,u64 start,u64 length,u64 virt_addr,int access_flags)2197 struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
2198 u64 virt_addr, int access_flags)
2199 {
2200 struct ib_mr *mr;
2201
2202 if (access_flags & IB_ACCESS_ON_DEMAND) {
2203 if (!(pd->device->attrs.kernel_cap_flags &
2204 IBK_ON_DEMAND_PAGING)) {
2205 pr_debug("ODP support not available\n");
2206 return ERR_PTR(-EINVAL);
2207 }
2208 }
2209
2210 mr = pd->device->ops.reg_user_mr(pd, start, length, virt_addr,
2211 access_flags, NULL);
2212
2213 if (IS_ERR(mr))
2214 return mr;
2215
2216 mr->device = pd->device;
2217 mr->type = IB_MR_TYPE_USER;
2218 mr->pd = pd;
2219 mr->dm = NULL;
2220 atomic_inc(&pd->usecnt);
2221 mr->iova = virt_addr;
2222 mr->length = length;
2223
2224 rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
2225 rdma_restrack_parent_name(&mr->res, &pd->res);
2226 rdma_restrack_add(&mr->res);
2227
2228 return mr;
2229 }
2230 EXPORT_SYMBOL(ib_reg_user_mr);
2231
ib_advise_mr(struct ib_pd * pd,enum ib_uverbs_advise_mr_advice advice,u32 flags,struct ib_sge * sg_list,u32 num_sge)2232 int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
2233 u32 flags, struct ib_sge *sg_list, u32 num_sge)
2234 {
2235 if (!pd->device->ops.advise_mr)
2236 return -EOPNOTSUPP;
2237
2238 if (!num_sge)
2239 return 0;
2240
2241 return pd->device->ops.advise_mr(pd, advice, flags, sg_list, num_sge,
2242 NULL);
2243 }
2244 EXPORT_SYMBOL(ib_advise_mr);
2245
ib_dereg_mr_user(struct ib_mr * mr,struct ib_udata * udata)2246 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata)
2247 {
2248 struct ib_pd *pd = mr->pd;
2249 struct ib_dm *dm = mr->dm;
2250 struct ib_sig_attrs *sig_attrs = mr->sig_attrs;
2251 int ret;
2252
2253 trace_mr_dereg(mr);
2254 rdma_restrack_del(&mr->res);
2255 ret = mr->device->ops.dereg_mr(mr, udata);
2256 if (!ret) {
2257 atomic_dec(&pd->usecnt);
2258 if (dm)
2259 atomic_dec(&dm->usecnt);
2260 kfree(sig_attrs);
2261 }
2262
2263 return ret;
2264 }
2265 EXPORT_SYMBOL(ib_dereg_mr_user);
2266
2267 /**
2268 * ib_alloc_mr() - Allocates a memory region
2269 * @pd: protection domain associated with the region
2270 * @mr_type: memory region type
2271 * @max_num_sg: maximum sg entries available for registration.
2272 *
2273 * Notes:
2274 * Memory registeration page/sg lists must not exceed max_num_sg.
2275 * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
2276 * max_num_sg * used_page_size.
2277 *
2278 */
ib_alloc_mr(struct ib_pd * pd,enum ib_mr_type mr_type,u32 max_num_sg)2279 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
2280 u32 max_num_sg)
2281 {
2282 struct ib_mr *mr;
2283
2284 if (!pd->device->ops.alloc_mr) {
2285 mr = ERR_PTR(-EOPNOTSUPP);
2286 goto out;
2287 }
2288
2289 if (mr_type == IB_MR_TYPE_INTEGRITY) {
2290 WARN_ON_ONCE(1);
2291 mr = ERR_PTR(-EINVAL);
2292 goto out;
2293 }
2294
2295 mr = pd->device->ops.alloc_mr(pd, mr_type, max_num_sg);
2296 if (IS_ERR(mr))
2297 goto out;
2298
2299 mr->device = pd->device;
2300 mr->pd = pd;
2301 mr->dm = NULL;
2302 mr->uobject = NULL;
2303 atomic_inc(&pd->usecnt);
2304 mr->need_inval = false;
2305 mr->type = mr_type;
2306 mr->sig_attrs = NULL;
2307
2308 rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
2309 rdma_restrack_parent_name(&mr->res, &pd->res);
2310 rdma_restrack_add(&mr->res);
2311 out:
2312 trace_mr_alloc(pd, mr_type, max_num_sg, mr);
2313 return mr;
2314 }
2315 EXPORT_SYMBOL(ib_alloc_mr);
2316
2317 /**
2318 * ib_alloc_mr_integrity() - Allocates an integrity memory region
2319 * @pd: protection domain associated with the region
2320 * @max_num_data_sg: maximum data sg entries available for registration
2321 * @max_num_meta_sg: maximum metadata sg entries available for
2322 * registration
2323 *
2324 * Notes:
2325 * Memory registration page/sg lists must not exceed max_num_sg,
2326 * also the integrity page/sg lists must not exceed max_num_meta_sg.
2327 *
2328 */
ib_alloc_mr_integrity(struct ib_pd * pd,u32 max_num_data_sg,u32 max_num_meta_sg)2329 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
2330 u32 max_num_data_sg,
2331 u32 max_num_meta_sg)
2332 {
2333 struct ib_mr *mr;
2334 struct ib_sig_attrs *sig_attrs;
2335
2336 if (!pd->device->ops.alloc_mr_integrity ||
2337 !pd->device->ops.map_mr_sg_pi) {
2338 mr = ERR_PTR(-EOPNOTSUPP);
2339 goto out;
2340 }
2341
2342 if (!max_num_meta_sg) {
2343 mr = ERR_PTR(-EINVAL);
2344 goto out;
2345 }
2346
2347 sig_attrs = kzalloc(sizeof(struct ib_sig_attrs), GFP_KERNEL);
2348 if (!sig_attrs) {
2349 mr = ERR_PTR(-ENOMEM);
2350 goto out;
2351 }
2352
2353 mr = pd->device->ops.alloc_mr_integrity(pd, max_num_data_sg,
2354 max_num_meta_sg);
2355 if (IS_ERR(mr)) {
2356 kfree(sig_attrs);
2357 goto out;
2358 }
2359
2360 mr->device = pd->device;
2361 mr->pd = pd;
2362 mr->dm = NULL;
2363 mr->uobject = NULL;
2364 atomic_inc(&pd->usecnt);
2365 mr->need_inval = false;
2366 mr->type = IB_MR_TYPE_INTEGRITY;
2367 mr->sig_attrs = sig_attrs;
2368
2369 rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
2370 rdma_restrack_parent_name(&mr->res, &pd->res);
2371 rdma_restrack_add(&mr->res);
2372 out:
2373 trace_mr_integ_alloc(pd, max_num_data_sg, max_num_meta_sg, mr);
2374 return mr;
2375 }
2376 EXPORT_SYMBOL(ib_alloc_mr_integrity);
2377
2378 /* Multicast groups */
2379
is_valid_mcast_lid(struct ib_qp * qp,u16 lid)2380 static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid)
2381 {
2382 struct ib_qp_init_attr init_attr = {};
2383 struct ib_qp_attr attr = {};
2384 int num_eth_ports = 0;
2385 unsigned int port;
2386
2387 /* If QP state >= init, it is assigned to a port and we can check this
2388 * port only.
2389 */
2390 if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) {
2391 if (attr.qp_state >= IB_QPS_INIT) {
2392 if (rdma_port_get_link_layer(qp->device, attr.port_num) !=
2393 IB_LINK_LAYER_INFINIBAND)
2394 return true;
2395 goto lid_check;
2396 }
2397 }
2398
2399 /* Can't get a quick answer, iterate over all ports */
2400 rdma_for_each_port(qp->device, port)
2401 if (rdma_port_get_link_layer(qp->device, port) !=
2402 IB_LINK_LAYER_INFINIBAND)
2403 num_eth_ports++;
2404
2405 /* If we have at lease one Ethernet port, RoCE annex declares that
2406 * multicast LID should be ignored. We can't tell at this step if the
2407 * QP belongs to an IB or Ethernet port.
2408 */
2409 if (num_eth_ports)
2410 return true;
2411
2412 /* If all the ports are IB, we can check according to IB spec. */
2413 lid_check:
2414 return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
2415 lid == be16_to_cpu(IB_LID_PERMISSIVE));
2416 }
2417
ib_attach_mcast(struct ib_qp * qp,union ib_gid * gid,u16 lid)2418 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2419 {
2420 int ret;
2421
2422 if (!qp->device->ops.attach_mcast)
2423 return -EOPNOTSUPP;
2424
2425 if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2426 qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2427 return -EINVAL;
2428
2429 ret = qp->device->ops.attach_mcast(qp, gid, lid);
2430 if (!ret)
2431 atomic_inc(&qp->usecnt);
2432 return ret;
2433 }
2434 EXPORT_SYMBOL(ib_attach_mcast);
2435
ib_detach_mcast(struct ib_qp * qp,union ib_gid * gid,u16 lid)2436 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2437 {
2438 int ret;
2439
2440 if (!qp->device->ops.detach_mcast)
2441 return -EOPNOTSUPP;
2442
2443 if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2444 qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2445 return -EINVAL;
2446
2447 ret = qp->device->ops.detach_mcast(qp, gid, lid);
2448 if (!ret)
2449 atomic_dec(&qp->usecnt);
2450 return ret;
2451 }
2452 EXPORT_SYMBOL(ib_detach_mcast);
2453
2454 /**
2455 * ib_alloc_xrcd_user - Allocates an XRC domain.
2456 * @device: The device on which to allocate the XRC domain.
2457 * @inode: inode to connect XRCD
2458 * @udata: Valid user data or NULL for kernel object
2459 */
ib_alloc_xrcd_user(struct ib_device * device,struct inode * inode,struct ib_udata * udata)2460 struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device,
2461 struct inode *inode, struct ib_udata *udata)
2462 {
2463 struct ib_xrcd *xrcd;
2464 int ret;
2465
2466 if (!device->ops.alloc_xrcd)
2467 return ERR_PTR(-EOPNOTSUPP);
2468
2469 xrcd = rdma_zalloc_drv_obj(device, ib_xrcd);
2470 if (!xrcd)
2471 return ERR_PTR(-ENOMEM);
2472
2473 xrcd->device = device;
2474 xrcd->inode = inode;
2475 atomic_set(&xrcd->usecnt, 0);
2476 init_rwsem(&xrcd->tgt_qps_rwsem);
2477 xa_init(&xrcd->tgt_qps);
2478
2479 ret = device->ops.alloc_xrcd(xrcd, udata);
2480 if (ret)
2481 goto err;
2482 return xrcd;
2483 err:
2484 kfree(xrcd);
2485 return ERR_PTR(ret);
2486 }
2487 EXPORT_SYMBOL(ib_alloc_xrcd_user);
2488
2489 /**
2490 * ib_dealloc_xrcd_user - Deallocates an XRC domain.
2491 * @xrcd: The XRC domain to deallocate.
2492 * @udata: Valid user data or NULL for kernel object
2493 */
ib_dealloc_xrcd_user(struct ib_xrcd * xrcd,struct ib_udata * udata)2494 int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata)
2495 {
2496 int ret;
2497
2498 if (atomic_read(&xrcd->usecnt))
2499 return -EBUSY;
2500
2501 WARN_ON(!xa_empty(&xrcd->tgt_qps));
2502 ret = xrcd->device->ops.dealloc_xrcd(xrcd, udata);
2503 if (ret)
2504 return ret;
2505 kfree(xrcd);
2506 return ret;
2507 }
2508 EXPORT_SYMBOL(ib_dealloc_xrcd_user);
2509
2510 /**
2511 * ib_create_wq - Creates a WQ associated with the specified protection
2512 * domain.
2513 * @pd: The protection domain associated with the WQ.
2514 * @wq_attr: A list of initial attributes required to create the
2515 * WQ. If WQ creation succeeds, then the attributes are updated to
2516 * the actual capabilities of the created WQ.
2517 *
2518 * wq_attr->max_wr and wq_attr->max_sge determine
2519 * the requested size of the WQ, and set to the actual values allocated
2520 * on return.
2521 * If ib_create_wq() succeeds, then max_wr and max_sge will always be
2522 * at least as large as the requested values.
2523 */
ib_create_wq(struct ib_pd * pd,struct ib_wq_init_attr * wq_attr)2524 struct ib_wq *ib_create_wq(struct ib_pd *pd,
2525 struct ib_wq_init_attr *wq_attr)
2526 {
2527 struct ib_wq *wq;
2528
2529 if (!pd->device->ops.create_wq)
2530 return ERR_PTR(-EOPNOTSUPP);
2531
2532 wq = pd->device->ops.create_wq(pd, wq_attr, NULL);
2533 if (!IS_ERR(wq)) {
2534 wq->event_handler = wq_attr->event_handler;
2535 wq->wq_context = wq_attr->wq_context;
2536 wq->wq_type = wq_attr->wq_type;
2537 wq->cq = wq_attr->cq;
2538 wq->device = pd->device;
2539 wq->pd = pd;
2540 wq->uobject = NULL;
2541 atomic_inc(&pd->usecnt);
2542 atomic_inc(&wq_attr->cq->usecnt);
2543 atomic_set(&wq->usecnt, 0);
2544 }
2545 return wq;
2546 }
2547 EXPORT_SYMBOL(ib_create_wq);
2548
2549 /**
2550 * ib_destroy_wq_user - Destroys the specified user WQ.
2551 * @wq: The WQ to destroy.
2552 * @udata: Valid user data
2553 */
ib_destroy_wq_user(struct ib_wq * wq,struct ib_udata * udata)2554 int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata)
2555 {
2556 struct ib_cq *cq = wq->cq;
2557 struct ib_pd *pd = wq->pd;
2558 int ret;
2559
2560 if (atomic_read(&wq->usecnt))
2561 return -EBUSY;
2562
2563 ret = wq->device->ops.destroy_wq(wq, udata);
2564 if (ret)
2565 return ret;
2566
2567 atomic_dec(&pd->usecnt);
2568 atomic_dec(&cq->usecnt);
2569 return ret;
2570 }
2571 EXPORT_SYMBOL(ib_destroy_wq_user);
2572
ib_check_mr_status(struct ib_mr * mr,u32 check_mask,struct ib_mr_status * mr_status)2573 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
2574 struct ib_mr_status *mr_status)
2575 {
2576 if (!mr->device->ops.check_mr_status)
2577 return -EOPNOTSUPP;
2578
2579 return mr->device->ops.check_mr_status(mr, check_mask, mr_status);
2580 }
2581 EXPORT_SYMBOL(ib_check_mr_status);
2582
ib_set_vf_link_state(struct ib_device * device,int vf,u32 port,int state)2583 int ib_set_vf_link_state(struct ib_device *device, int vf, u32 port,
2584 int state)
2585 {
2586 if (!device->ops.set_vf_link_state)
2587 return -EOPNOTSUPP;
2588
2589 return device->ops.set_vf_link_state(device, vf, port, state);
2590 }
2591 EXPORT_SYMBOL(ib_set_vf_link_state);
2592
ib_get_vf_config(struct ib_device * device,int vf,u32 port,struct ifla_vf_info * info)2593 int ib_get_vf_config(struct ib_device *device, int vf, u32 port,
2594 struct ifla_vf_info *info)
2595 {
2596 if (!device->ops.get_vf_config)
2597 return -EOPNOTSUPP;
2598
2599 return device->ops.get_vf_config(device, vf, port, info);
2600 }
2601 EXPORT_SYMBOL(ib_get_vf_config);
2602
ib_get_vf_stats(struct ib_device * device,int vf,u32 port,struct ifla_vf_stats * stats)2603 int ib_get_vf_stats(struct ib_device *device, int vf, u32 port,
2604 struct ifla_vf_stats *stats)
2605 {
2606 if (!device->ops.get_vf_stats)
2607 return -EOPNOTSUPP;
2608
2609 return device->ops.get_vf_stats(device, vf, port, stats);
2610 }
2611 EXPORT_SYMBOL(ib_get_vf_stats);
2612
ib_set_vf_guid(struct ib_device * device,int vf,u32 port,u64 guid,int type)2613 int ib_set_vf_guid(struct ib_device *device, int vf, u32 port, u64 guid,
2614 int type)
2615 {
2616 if (!device->ops.set_vf_guid)
2617 return -EOPNOTSUPP;
2618
2619 return device->ops.set_vf_guid(device, vf, port, guid, type);
2620 }
2621 EXPORT_SYMBOL(ib_set_vf_guid);
2622
ib_get_vf_guid(struct ib_device * device,int vf,u32 port,struct ifla_vf_guid * node_guid,struct ifla_vf_guid * port_guid)2623 int ib_get_vf_guid(struct ib_device *device, int vf, u32 port,
2624 struct ifla_vf_guid *node_guid,
2625 struct ifla_vf_guid *port_guid)
2626 {
2627 if (!device->ops.get_vf_guid)
2628 return -EOPNOTSUPP;
2629
2630 return device->ops.get_vf_guid(device, vf, port, node_guid, port_guid);
2631 }
2632 EXPORT_SYMBOL(ib_get_vf_guid);
2633 /**
2634 * ib_map_mr_sg_pi() - Map the dma mapped SG lists for PI (protection
2635 * information) and set an appropriate memory region for registration.
2636 * @mr: memory region
2637 * @data_sg: dma mapped scatterlist for data
2638 * @data_sg_nents: number of entries in data_sg
2639 * @data_sg_offset: offset in bytes into data_sg
2640 * @meta_sg: dma mapped scatterlist for metadata
2641 * @meta_sg_nents: number of entries in meta_sg
2642 * @meta_sg_offset: offset in bytes into meta_sg
2643 * @page_size: page vector desired page size
2644 *
2645 * Constraints:
2646 * - The MR must be allocated with type IB_MR_TYPE_INTEGRITY.
2647 *
2648 * Return: 0 on success.
2649 *
2650 * After this completes successfully, the memory region
2651 * is ready for registration.
2652 */
ib_map_mr_sg_pi(struct ib_mr * mr,struct scatterlist * data_sg,int data_sg_nents,unsigned int * data_sg_offset,struct scatterlist * meta_sg,int meta_sg_nents,unsigned int * meta_sg_offset,unsigned int page_size)2653 int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
2654 int data_sg_nents, unsigned int *data_sg_offset,
2655 struct scatterlist *meta_sg, int meta_sg_nents,
2656 unsigned int *meta_sg_offset, unsigned int page_size)
2657 {
2658 if (unlikely(!mr->device->ops.map_mr_sg_pi ||
2659 WARN_ON_ONCE(mr->type != IB_MR_TYPE_INTEGRITY)))
2660 return -EOPNOTSUPP;
2661
2662 mr->page_size = page_size;
2663
2664 return mr->device->ops.map_mr_sg_pi(mr, data_sg, data_sg_nents,
2665 data_sg_offset, meta_sg,
2666 meta_sg_nents, meta_sg_offset);
2667 }
2668 EXPORT_SYMBOL(ib_map_mr_sg_pi);
2669
2670 /**
2671 * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
2672 * and set it the memory region.
2673 * @mr: memory region
2674 * @sg: dma mapped scatterlist
2675 * @sg_nents: number of entries in sg
2676 * @sg_offset: offset in bytes into sg
2677 * @page_size: page vector desired page size
2678 *
2679 * Constraints:
2680 *
2681 * - The first sg element is allowed to have an offset.
2682 * - Each sg element must either be aligned to page_size or virtually
2683 * contiguous to the previous element. In case an sg element has a
2684 * non-contiguous offset, the mapping prefix will not include it.
2685 * - The last sg element is allowed to have length less than page_size.
2686 * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
2687 * then only max_num_sg entries will be mapped.
2688 * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
2689 * constraints holds and the page_size argument is ignored.
2690 *
2691 * Returns the number of sg elements that were mapped to the memory region.
2692 *
2693 * After this completes successfully, the memory region
2694 * is ready for registration.
2695 */
ib_map_mr_sg(struct ib_mr * mr,struct scatterlist * sg,int sg_nents,unsigned int * sg_offset,unsigned int page_size)2696 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2697 unsigned int *sg_offset, unsigned int page_size)
2698 {
2699 if (unlikely(!mr->device->ops.map_mr_sg))
2700 return -EOPNOTSUPP;
2701
2702 mr->page_size = page_size;
2703
2704 return mr->device->ops.map_mr_sg(mr, sg, sg_nents, sg_offset);
2705 }
2706 EXPORT_SYMBOL(ib_map_mr_sg);
2707
2708 /**
2709 * ib_sg_to_pages() - Convert the largest prefix of a sg list
2710 * to a page vector
2711 * @mr: memory region
2712 * @sgl: dma mapped scatterlist
2713 * @sg_nents: number of entries in sg
2714 * @sg_offset_p: ==== =======================================================
2715 * IN start offset in bytes into sg
2716 * OUT offset in bytes for element n of the sg of the first
2717 * byte that has not been processed where n is the return
2718 * value of this function.
2719 * ==== =======================================================
2720 * @set_page: driver page assignment function pointer
2721 *
2722 * Core service helper for drivers to convert the largest
2723 * prefix of given sg list to a page vector. The sg list
2724 * prefix converted is the prefix that meet the requirements
2725 * of ib_map_mr_sg.
2726 *
2727 * Returns the number of sg elements that were assigned to
2728 * a page vector.
2729 */
ib_sg_to_pages(struct ib_mr * mr,struct scatterlist * sgl,int sg_nents,unsigned int * sg_offset_p,int (* set_page)(struct ib_mr *,u64))2730 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
2731 unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
2732 {
2733 struct scatterlist *sg;
2734 u64 last_end_dma_addr = 0;
2735 unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2736 unsigned int last_page_off = 0;
2737 u64 page_mask = ~((u64)mr->page_size - 1);
2738 int i, ret;
2739
2740 if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
2741 return -EINVAL;
2742
2743 mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
2744 mr->length = 0;
2745
2746 for_each_sg(sgl, sg, sg_nents, i) {
2747 u64 dma_addr = sg_dma_address(sg) + sg_offset;
2748 u64 prev_addr = dma_addr;
2749 unsigned int dma_len = sg_dma_len(sg) - sg_offset;
2750 u64 end_dma_addr = dma_addr + dma_len;
2751 u64 page_addr = dma_addr & page_mask;
2752
2753 /*
2754 * For the second and later elements, check whether either the
2755 * end of element i-1 or the start of element i is not aligned
2756 * on a page boundary.
2757 */
2758 if (i && (last_page_off != 0 || page_addr != dma_addr)) {
2759 /* Stop mapping if there is a gap. */
2760 if (last_end_dma_addr != dma_addr)
2761 break;
2762
2763 /*
2764 * Coalesce this element with the last. If it is small
2765 * enough just update mr->length. Otherwise start
2766 * mapping from the next page.
2767 */
2768 goto next_page;
2769 }
2770
2771 do {
2772 ret = set_page(mr, page_addr);
2773 if (unlikely(ret < 0)) {
2774 sg_offset = prev_addr - sg_dma_address(sg);
2775 mr->length += prev_addr - dma_addr;
2776 if (sg_offset_p)
2777 *sg_offset_p = sg_offset;
2778 return i || sg_offset ? i : ret;
2779 }
2780 prev_addr = page_addr;
2781 next_page:
2782 page_addr += mr->page_size;
2783 } while (page_addr < end_dma_addr);
2784
2785 mr->length += dma_len;
2786 last_end_dma_addr = end_dma_addr;
2787 last_page_off = end_dma_addr & ~page_mask;
2788
2789 sg_offset = 0;
2790 }
2791
2792 if (sg_offset_p)
2793 *sg_offset_p = 0;
2794 return i;
2795 }
2796 EXPORT_SYMBOL(ib_sg_to_pages);
2797
2798 struct ib_drain_cqe {
2799 struct ib_cqe cqe;
2800 struct completion done;
2801 };
2802
ib_drain_qp_done(struct ib_cq * cq,struct ib_wc * wc)2803 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
2804 {
2805 struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
2806 cqe);
2807
2808 complete(&cqe->done);
2809 }
2810
2811 /*
2812 * Post a WR and block until its completion is reaped for the SQ.
2813 */
__ib_drain_sq(struct ib_qp * qp)2814 static void __ib_drain_sq(struct ib_qp *qp)
2815 {
2816 struct ib_cq *cq = qp->send_cq;
2817 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2818 struct ib_drain_cqe sdrain;
2819 struct ib_rdma_wr swr = {
2820 .wr = {
2821 .next = NULL,
2822 { .wr_cqe = &sdrain.cqe, },
2823 .opcode = IB_WR_RDMA_WRITE,
2824 },
2825 };
2826 int ret;
2827
2828 ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2829 if (ret) {
2830 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2831 return;
2832 }
2833
2834 sdrain.cqe.done = ib_drain_qp_done;
2835 init_completion(&sdrain.done);
2836
2837 ret = ib_post_send(qp, &swr.wr, NULL);
2838 if (ret) {
2839 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2840 return;
2841 }
2842
2843 if (cq->poll_ctx == IB_POLL_DIRECT)
2844 while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0)
2845 ib_process_cq_direct(cq, -1);
2846 else
2847 wait_for_completion(&sdrain.done);
2848 }
2849
2850 /*
2851 * Post a WR and block until its completion is reaped for the RQ.
2852 */
__ib_drain_rq(struct ib_qp * qp)2853 static void __ib_drain_rq(struct ib_qp *qp)
2854 {
2855 struct ib_cq *cq = qp->recv_cq;
2856 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2857 struct ib_drain_cqe rdrain;
2858 struct ib_recv_wr rwr = {};
2859 int ret;
2860
2861 ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2862 if (ret) {
2863 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2864 return;
2865 }
2866
2867 rwr.wr_cqe = &rdrain.cqe;
2868 rdrain.cqe.done = ib_drain_qp_done;
2869 init_completion(&rdrain.done);
2870
2871 ret = ib_post_recv(qp, &rwr, NULL);
2872 if (ret) {
2873 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2874 return;
2875 }
2876
2877 if (cq->poll_ctx == IB_POLL_DIRECT)
2878 while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0)
2879 ib_process_cq_direct(cq, -1);
2880 else
2881 wait_for_completion(&rdrain.done);
2882 }
2883
2884 /**
2885 * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
2886 * application.
2887 * @qp: queue pair to drain
2888 *
2889 * If the device has a provider-specific drain function, then
2890 * call that. Otherwise call the generic drain function
2891 * __ib_drain_sq().
2892 *
2893 * The caller must:
2894 *
2895 * ensure there is room in the CQ and SQ for the drain work request and
2896 * completion.
2897 *
2898 * allocate the CQ using ib_alloc_cq().
2899 *
2900 * ensure that there are no other contexts that are posting WRs concurrently.
2901 * Otherwise the drain is not guaranteed.
2902 */
ib_drain_sq(struct ib_qp * qp)2903 void ib_drain_sq(struct ib_qp *qp)
2904 {
2905 if (qp->device->ops.drain_sq)
2906 qp->device->ops.drain_sq(qp);
2907 else
2908 __ib_drain_sq(qp);
2909 trace_cq_drain_complete(qp->send_cq);
2910 }
2911 EXPORT_SYMBOL(ib_drain_sq);
2912
2913 /**
2914 * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
2915 * application.
2916 * @qp: queue pair to drain
2917 *
2918 * If the device has a provider-specific drain function, then
2919 * call that. Otherwise call the generic drain function
2920 * __ib_drain_rq().
2921 *
2922 * The caller must:
2923 *
2924 * ensure there is room in the CQ and RQ for the drain work request and
2925 * completion.
2926 *
2927 * allocate the CQ using ib_alloc_cq().
2928 *
2929 * ensure that there are no other contexts that are posting WRs concurrently.
2930 * Otherwise the drain is not guaranteed.
2931 */
ib_drain_rq(struct ib_qp * qp)2932 void ib_drain_rq(struct ib_qp *qp)
2933 {
2934 if (qp->device->ops.drain_rq)
2935 qp->device->ops.drain_rq(qp);
2936 else
2937 __ib_drain_rq(qp);
2938 trace_cq_drain_complete(qp->recv_cq);
2939 }
2940 EXPORT_SYMBOL(ib_drain_rq);
2941
2942 /**
2943 * ib_drain_qp() - Block until all CQEs have been consumed by the
2944 * application on both the RQ and SQ.
2945 * @qp: queue pair to drain
2946 *
2947 * The caller must:
2948 *
2949 * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
2950 * and completions.
2951 *
2952 * allocate the CQs using ib_alloc_cq().
2953 *
2954 * ensure that there are no other contexts that are posting WRs concurrently.
2955 * Otherwise the drain is not guaranteed.
2956 */
ib_drain_qp(struct ib_qp * qp)2957 void ib_drain_qp(struct ib_qp *qp)
2958 {
2959 ib_drain_sq(qp);
2960 if (!qp->srq)
2961 ib_drain_rq(qp);
2962 }
2963 EXPORT_SYMBOL(ib_drain_qp);
2964
rdma_alloc_netdev(struct ib_device * device,u32 port_num,enum rdma_netdev_t type,const char * name,unsigned char name_assign_type,void (* setup)(struct net_device *))2965 struct net_device *rdma_alloc_netdev(struct ib_device *device, u32 port_num,
2966 enum rdma_netdev_t type, const char *name,
2967 unsigned char name_assign_type,
2968 void (*setup)(struct net_device *))
2969 {
2970 struct rdma_netdev_alloc_params params;
2971 struct net_device *netdev;
2972 int rc;
2973
2974 if (!device->ops.rdma_netdev_get_params)
2975 return ERR_PTR(-EOPNOTSUPP);
2976
2977 rc = device->ops.rdma_netdev_get_params(device, port_num, type,
2978 ¶ms);
2979 if (rc)
2980 return ERR_PTR(rc);
2981
2982 netdev = alloc_netdev_mqs(params.sizeof_priv, name, name_assign_type,
2983 setup, params.txqs, params.rxqs);
2984 if (!netdev)
2985 return ERR_PTR(-ENOMEM);
2986
2987 return netdev;
2988 }
2989 EXPORT_SYMBOL(rdma_alloc_netdev);
2990
rdma_init_netdev(struct ib_device * device,u32 port_num,enum rdma_netdev_t type,const char * name,unsigned char name_assign_type,void (* setup)(struct net_device *),struct net_device * netdev)2991 int rdma_init_netdev(struct ib_device *device, u32 port_num,
2992 enum rdma_netdev_t type, const char *name,
2993 unsigned char name_assign_type,
2994 void (*setup)(struct net_device *),
2995 struct net_device *netdev)
2996 {
2997 struct rdma_netdev_alloc_params params;
2998 int rc;
2999
3000 if (!device->ops.rdma_netdev_get_params)
3001 return -EOPNOTSUPP;
3002
3003 rc = device->ops.rdma_netdev_get_params(device, port_num, type,
3004 ¶ms);
3005 if (rc)
3006 return rc;
3007
3008 return params.initialize_rdma_netdev(device, port_num,
3009 netdev, params.param);
3010 }
3011 EXPORT_SYMBOL(rdma_init_netdev);
3012
__rdma_block_iter_start(struct ib_block_iter * biter,struct scatterlist * sglist,unsigned int nents,unsigned long pgsz)3013 void __rdma_block_iter_start(struct ib_block_iter *biter,
3014 struct scatterlist *sglist, unsigned int nents,
3015 unsigned long pgsz)
3016 {
3017 memset(biter, 0, sizeof(struct ib_block_iter));
3018 biter->__sg = sglist;
3019 biter->__sg_nents = nents;
3020
3021 /* Driver provides best block size to use */
3022 biter->__pg_bit = __fls(pgsz);
3023 }
3024 EXPORT_SYMBOL(__rdma_block_iter_start);
3025
__rdma_block_iter_next(struct ib_block_iter * biter)3026 bool __rdma_block_iter_next(struct ib_block_iter *biter)
3027 {
3028 unsigned int block_offset;
3029 unsigned int sg_delta;
3030
3031 if (!biter->__sg_nents || !biter->__sg)
3032 return false;
3033
3034 biter->__dma_addr = sg_dma_address(biter->__sg) + biter->__sg_advance;
3035 block_offset = biter->__dma_addr & (BIT_ULL(biter->__pg_bit) - 1);
3036 sg_delta = BIT_ULL(biter->__pg_bit) - block_offset;
3037
3038 if (sg_dma_len(biter->__sg) - biter->__sg_advance > sg_delta) {
3039 biter->__sg_advance += sg_delta;
3040 } else {
3041 biter->__sg_advance = 0;
3042 biter->__sg = sg_next(biter->__sg);
3043 biter->__sg_nents--;
3044 }
3045
3046 return true;
3047 }
3048 EXPORT_SYMBOL(__rdma_block_iter_next);
3049
3050 /**
3051 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
3052 * for the drivers.
3053 * @descs: array of static descriptors
3054 * @num_counters: number of elements in array
3055 * @lifespan: milliseconds between updates
3056 */
rdma_alloc_hw_stats_struct(const struct rdma_stat_desc * descs,int num_counters,unsigned long lifespan)3057 struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
3058 const struct rdma_stat_desc *descs, int num_counters,
3059 unsigned long lifespan)
3060 {
3061 struct rdma_hw_stats *stats;
3062
3063 stats = kzalloc(struct_size(stats, value, num_counters), GFP_KERNEL);
3064 if (!stats)
3065 return NULL;
3066
3067 stats->is_disabled = kcalloc(BITS_TO_LONGS(num_counters),
3068 sizeof(*stats->is_disabled), GFP_KERNEL);
3069 if (!stats->is_disabled)
3070 goto err;
3071
3072 stats->descs = descs;
3073 stats->num_counters = num_counters;
3074 stats->lifespan = msecs_to_jiffies(lifespan);
3075 mutex_init(&stats->lock);
3076
3077 return stats;
3078
3079 err:
3080 kfree(stats);
3081 return NULL;
3082 }
3083 EXPORT_SYMBOL(rdma_alloc_hw_stats_struct);
3084
3085 /**
3086 * rdma_free_hw_stats_struct - Helper function to release rdma_hw_stats
3087 * @stats: statistics to release
3088 */
rdma_free_hw_stats_struct(struct rdma_hw_stats * stats)3089 void rdma_free_hw_stats_struct(struct rdma_hw_stats *stats)
3090 {
3091 if (!stats)
3092 return;
3093
3094 kfree(stats->is_disabled);
3095 kfree(stats);
3096 }
3097 EXPORT_SYMBOL(rdma_free_hw_stats_struct);
3098