1 /*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8 * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved.
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
37 */
38
39 #include <linux/errno.h>
40 #include <linux/err.h>
41 #include <linux/export.h>
42 #include <linux/string.h>
43 #include <linux/slab.h>
44 #include <linux/in.h>
45 #include <linux/in6.h>
46 #include <net/addrconf.h>
47 #include <linux/security.h>
48
49 #include <rdma/ib_verbs.h>
50 #include <rdma/ib_cache.h>
51 #include <rdma/ib_addr.h>
52 #include <rdma/rw.h>
53 #include <rdma/lag.h>
54
55 #include "core_priv.h"
56 #include <trace/events/rdma_core.h>
57
58 static int ib_resolve_eth_dmac(struct ib_device *device,
59 struct rdma_ah_attr *ah_attr);
60
61 static const char * const ib_events[] = {
62 [IB_EVENT_CQ_ERR] = "CQ error",
63 [IB_EVENT_QP_FATAL] = "QP fatal error",
64 [IB_EVENT_QP_REQ_ERR] = "QP request error",
65 [IB_EVENT_QP_ACCESS_ERR] = "QP access error",
66 [IB_EVENT_COMM_EST] = "communication established",
67 [IB_EVENT_SQ_DRAINED] = "send queue drained",
68 [IB_EVENT_PATH_MIG] = "path migration successful",
69 [IB_EVENT_PATH_MIG_ERR] = "path migration error",
70 [IB_EVENT_DEVICE_FATAL] = "device fatal error",
71 [IB_EVENT_PORT_ACTIVE] = "port active",
72 [IB_EVENT_PORT_ERR] = "port error",
73 [IB_EVENT_LID_CHANGE] = "LID change",
74 [IB_EVENT_PKEY_CHANGE] = "P_key change",
75 [IB_EVENT_SM_CHANGE] = "SM change",
76 [IB_EVENT_SRQ_ERR] = "SRQ error",
77 [IB_EVENT_SRQ_LIMIT_REACHED] = "SRQ limit reached",
78 [IB_EVENT_QP_LAST_WQE_REACHED] = "last WQE reached",
79 [IB_EVENT_CLIENT_REREGISTER] = "client reregister",
80 [IB_EVENT_GID_CHANGE] = "GID changed",
81 };
82
ib_event_msg(enum ib_event_type event)83 const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
84 {
85 size_t index = event;
86
87 return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
88 ib_events[index] : "unrecognized event";
89 }
90 EXPORT_SYMBOL(ib_event_msg);
91
92 static const char * const wc_statuses[] = {
93 [IB_WC_SUCCESS] = "success",
94 [IB_WC_LOC_LEN_ERR] = "local length error",
95 [IB_WC_LOC_QP_OP_ERR] = "local QP operation error",
96 [IB_WC_LOC_EEC_OP_ERR] = "local EE context operation error",
97 [IB_WC_LOC_PROT_ERR] = "local protection error",
98 [IB_WC_WR_FLUSH_ERR] = "WR flushed",
99 [IB_WC_MW_BIND_ERR] = "memory bind operation error",
100 [IB_WC_BAD_RESP_ERR] = "bad response error",
101 [IB_WC_LOC_ACCESS_ERR] = "local access error",
102 [IB_WC_REM_INV_REQ_ERR] = "remote invalid request error",
103 [IB_WC_REM_ACCESS_ERR] = "remote access error",
104 [IB_WC_REM_OP_ERR] = "remote operation error",
105 [IB_WC_RETRY_EXC_ERR] = "transport retry counter exceeded",
106 [IB_WC_RNR_RETRY_EXC_ERR] = "RNR retry counter exceeded",
107 [IB_WC_LOC_RDD_VIOL_ERR] = "local RDD violation error",
108 [IB_WC_REM_INV_RD_REQ_ERR] = "remote invalid RD request",
109 [IB_WC_REM_ABORT_ERR] = "operation aborted",
110 [IB_WC_INV_EECN_ERR] = "invalid EE context number",
111 [IB_WC_INV_EEC_STATE_ERR] = "invalid EE context state",
112 [IB_WC_FATAL_ERR] = "fatal error",
113 [IB_WC_RESP_TIMEOUT_ERR] = "response timeout error",
114 [IB_WC_GENERAL_ERR] = "general error",
115 };
116
ib_wc_status_msg(enum ib_wc_status status)117 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
118 {
119 size_t index = status;
120
121 return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
122 wc_statuses[index] : "unrecognized status";
123 }
124 EXPORT_SYMBOL(ib_wc_status_msg);
125
ib_rate_to_mult(enum ib_rate rate)126 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
127 {
128 switch (rate) {
129 case IB_RATE_2_5_GBPS: return 1;
130 case IB_RATE_5_GBPS: return 2;
131 case IB_RATE_10_GBPS: return 4;
132 case IB_RATE_20_GBPS: return 8;
133 case IB_RATE_30_GBPS: return 12;
134 case IB_RATE_40_GBPS: return 16;
135 case IB_RATE_60_GBPS: return 24;
136 case IB_RATE_80_GBPS: return 32;
137 case IB_RATE_120_GBPS: return 48;
138 case IB_RATE_14_GBPS: return 6;
139 case IB_RATE_56_GBPS: return 22;
140 case IB_RATE_112_GBPS: return 45;
141 case IB_RATE_168_GBPS: return 67;
142 case IB_RATE_25_GBPS: return 10;
143 case IB_RATE_100_GBPS: return 40;
144 case IB_RATE_200_GBPS: return 80;
145 case IB_RATE_300_GBPS: return 120;
146 case IB_RATE_28_GBPS: return 11;
147 case IB_RATE_50_GBPS: return 20;
148 case IB_RATE_400_GBPS: return 160;
149 case IB_RATE_600_GBPS: return 240;
150 default: return -1;
151 }
152 }
153 EXPORT_SYMBOL(ib_rate_to_mult);
154
mult_to_ib_rate(int mult)155 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
156 {
157 switch (mult) {
158 case 1: return IB_RATE_2_5_GBPS;
159 case 2: return IB_RATE_5_GBPS;
160 case 4: return IB_RATE_10_GBPS;
161 case 8: return IB_RATE_20_GBPS;
162 case 12: return IB_RATE_30_GBPS;
163 case 16: return IB_RATE_40_GBPS;
164 case 24: return IB_RATE_60_GBPS;
165 case 32: return IB_RATE_80_GBPS;
166 case 48: return IB_RATE_120_GBPS;
167 case 6: return IB_RATE_14_GBPS;
168 case 22: return IB_RATE_56_GBPS;
169 case 45: return IB_RATE_112_GBPS;
170 case 67: return IB_RATE_168_GBPS;
171 case 10: return IB_RATE_25_GBPS;
172 case 40: return IB_RATE_100_GBPS;
173 case 80: return IB_RATE_200_GBPS;
174 case 120: return IB_RATE_300_GBPS;
175 case 11: return IB_RATE_28_GBPS;
176 case 20: return IB_RATE_50_GBPS;
177 case 160: return IB_RATE_400_GBPS;
178 case 240: return IB_RATE_600_GBPS;
179 default: return IB_RATE_PORT_CURRENT;
180 }
181 }
182 EXPORT_SYMBOL(mult_to_ib_rate);
183
ib_rate_to_mbps(enum ib_rate rate)184 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
185 {
186 switch (rate) {
187 case IB_RATE_2_5_GBPS: return 2500;
188 case IB_RATE_5_GBPS: return 5000;
189 case IB_RATE_10_GBPS: return 10000;
190 case IB_RATE_20_GBPS: return 20000;
191 case IB_RATE_30_GBPS: return 30000;
192 case IB_RATE_40_GBPS: return 40000;
193 case IB_RATE_60_GBPS: return 60000;
194 case IB_RATE_80_GBPS: return 80000;
195 case IB_RATE_120_GBPS: return 120000;
196 case IB_RATE_14_GBPS: return 14062;
197 case IB_RATE_56_GBPS: return 56250;
198 case IB_RATE_112_GBPS: return 112500;
199 case IB_RATE_168_GBPS: return 168750;
200 case IB_RATE_25_GBPS: return 25781;
201 case IB_RATE_100_GBPS: return 103125;
202 case IB_RATE_200_GBPS: return 206250;
203 case IB_RATE_300_GBPS: return 309375;
204 case IB_RATE_28_GBPS: return 28125;
205 case IB_RATE_50_GBPS: return 53125;
206 case IB_RATE_400_GBPS: return 425000;
207 case IB_RATE_600_GBPS: return 637500;
208 default: return -1;
209 }
210 }
211 EXPORT_SYMBOL(ib_rate_to_mbps);
212
213 __attribute_const__ enum rdma_transport_type
rdma_node_get_transport(unsigned int node_type)214 rdma_node_get_transport(unsigned int node_type)
215 {
216
217 if (node_type == RDMA_NODE_USNIC)
218 return RDMA_TRANSPORT_USNIC;
219 if (node_type == RDMA_NODE_USNIC_UDP)
220 return RDMA_TRANSPORT_USNIC_UDP;
221 if (node_type == RDMA_NODE_RNIC)
222 return RDMA_TRANSPORT_IWARP;
223 if (node_type == RDMA_NODE_UNSPECIFIED)
224 return RDMA_TRANSPORT_UNSPECIFIED;
225
226 return RDMA_TRANSPORT_IB;
227 }
228 EXPORT_SYMBOL(rdma_node_get_transport);
229
rdma_port_get_link_layer(struct ib_device * device,u32 port_num)230 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
231 u32 port_num)
232 {
233 enum rdma_transport_type lt;
234 if (device->ops.get_link_layer)
235 return device->ops.get_link_layer(device, port_num);
236
237 lt = rdma_node_get_transport(device->node_type);
238 if (lt == RDMA_TRANSPORT_IB)
239 return IB_LINK_LAYER_INFINIBAND;
240
241 return IB_LINK_LAYER_ETHERNET;
242 }
243 EXPORT_SYMBOL(rdma_port_get_link_layer);
244
245 /* Protection domains */
246
247 /**
248 * __ib_alloc_pd - Allocates an unused protection domain.
249 * @device: The device on which to allocate the protection domain.
250 * @flags: protection domain flags
251 * @caller: caller's build-time module name
252 *
253 * A protection domain object provides an association between QPs, shared
254 * receive queues, address handles, memory regions, and memory windows.
255 *
256 * Every PD has a local_dma_lkey which can be used as the lkey value for local
257 * memory operations.
258 */
__ib_alloc_pd(struct ib_device * device,unsigned int flags,const char * caller)259 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
260 const char *caller)
261 {
262 struct ib_pd *pd;
263 int mr_access_flags = 0;
264 int ret;
265
266 pd = rdma_zalloc_drv_obj(device, ib_pd);
267 if (!pd)
268 return ERR_PTR(-ENOMEM);
269
270 pd->device = device;
271 pd->uobject = NULL;
272 pd->__internal_mr = NULL;
273 atomic_set(&pd->usecnt, 0);
274 pd->flags = flags;
275
276 rdma_restrack_new(&pd->res, RDMA_RESTRACK_PD);
277 rdma_restrack_set_name(&pd->res, caller);
278
279 ret = device->ops.alloc_pd(pd, NULL);
280 if (ret) {
281 rdma_restrack_put(&pd->res);
282 kfree(pd);
283 return ERR_PTR(ret);
284 }
285 rdma_restrack_add(&pd->res);
286
287 if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
288 pd->local_dma_lkey = device->local_dma_lkey;
289 else
290 mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
291
292 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
293 pr_warn("%s: enabling unsafe global rkey\n", caller);
294 mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
295 }
296
297 if (mr_access_flags) {
298 struct ib_mr *mr;
299
300 mr = pd->device->ops.get_dma_mr(pd, mr_access_flags);
301 if (IS_ERR(mr)) {
302 ib_dealloc_pd(pd);
303 return ERR_CAST(mr);
304 }
305
306 mr->device = pd->device;
307 mr->pd = pd;
308 mr->type = IB_MR_TYPE_DMA;
309 mr->uobject = NULL;
310 mr->need_inval = false;
311
312 pd->__internal_mr = mr;
313
314 if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY))
315 pd->local_dma_lkey = pd->__internal_mr->lkey;
316
317 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
318 pd->unsafe_global_rkey = pd->__internal_mr->rkey;
319 }
320
321 return pd;
322 }
323 EXPORT_SYMBOL(__ib_alloc_pd);
324
325 /**
326 * ib_dealloc_pd_user - Deallocates a protection domain.
327 * @pd: The protection domain to deallocate.
328 * @udata: Valid user data or NULL for kernel object
329 *
330 * It is an error to call this function while any resources in the pd still
331 * exist. The caller is responsible to synchronously destroy them and
332 * guarantee no new allocations will happen.
333 */
ib_dealloc_pd_user(struct ib_pd * pd,struct ib_udata * udata)334 int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata)
335 {
336 int ret;
337
338 if (pd->__internal_mr) {
339 ret = pd->device->ops.dereg_mr(pd->__internal_mr, NULL);
340 WARN_ON(ret);
341 pd->__internal_mr = NULL;
342 }
343
344 /* uverbs manipulates usecnt with proper locking, while the kabi
345 * requires the caller to guarantee we can't race here.
346 */
347 WARN_ON(atomic_read(&pd->usecnt));
348
349 ret = pd->device->ops.dealloc_pd(pd, udata);
350 if (ret)
351 return ret;
352
353 rdma_restrack_del(&pd->res);
354 kfree(pd);
355 return ret;
356 }
357 EXPORT_SYMBOL(ib_dealloc_pd_user);
358
359 /* Address handles */
360
361 /**
362 * rdma_copy_ah_attr - Copy rdma ah attribute from source to destination.
363 * @dest: Pointer to destination ah_attr. Contents of the destination
364 * pointer is assumed to be invalid and attribute are overwritten.
365 * @src: Pointer to source ah_attr.
366 */
rdma_copy_ah_attr(struct rdma_ah_attr * dest,const struct rdma_ah_attr * src)367 void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
368 const struct rdma_ah_attr *src)
369 {
370 *dest = *src;
371 if (dest->grh.sgid_attr)
372 rdma_hold_gid_attr(dest->grh.sgid_attr);
373 }
374 EXPORT_SYMBOL(rdma_copy_ah_attr);
375
376 /**
377 * rdma_replace_ah_attr - Replace valid ah_attr with new new one.
378 * @old: Pointer to existing ah_attr which needs to be replaced.
379 * old is assumed to be valid or zero'd
380 * @new: Pointer to the new ah_attr.
381 *
382 * rdma_replace_ah_attr() first releases any reference in the old ah_attr if
383 * old the ah_attr is valid; after that it copies the new attribute and holds
384 * the reference to the replaced ah_attr.
385 */
rdma_replace_ah_attr(struct rdma_ah_attr * old,const struct rdma_ah_attr * new)386 void rdma_replace_ah_attr(struct rdma_ah_attr *old,
387 const struct rdma_ah_attr *new)
388 {
389 rdma_destroy_ah_attr(old);
390 *old = *new;
391 if (old->grh.sgid_attr)
392 rdma_hold_gid_attr(old->grh.sgid_attr);
393 }
394 EXPORT_SYMBOL(rdma_replace_ah_attr);
395
396 /**
397 * rdma_move_ah_attr - Move ah_attr pointed by source to destination.
398 * @dest: Pointer to destination ah_attr to copy to.
399 * dest is assumed to be valid or zero'd
400 * @src: Pointer to the new ah_attr.
401 *
402 * rdma_move_ah_attr() first releases any reference in the destination ah_attr
403 * if it is valid. This also transfers ownership of internal references from
404 * src to dest, making src invalid in the process. No new reference of the src
405 * ah_attr is taken.
406 */
rdma_move_ah_attr(struct rdma_ah_attr * dest,struct rdma_ah_attr * src)407 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src)
408 {
409 rdma_destroy_ah_attr(dest);
410 *dest = *src;
411 src->grh.sgid_attr = NULL;
412 }
413 EXPORT_SYMBOL(rdma_move_ah_attr);
414
415 /*
416 * Validate that the rdma_ah_attr is valid for the device before passing it
417 * off to the driver.
418 */
rdma_check_ah_attr(struct ib_device * device,struct rdma_ah_attr * ah_attr)419 static int rdma_check_ah_attr(struct ib_device *device,
420 struct rdma_ah_attr *ah_attr)
421 {
422 if (!rdma_is_port_valid(device, ah_attr->port_num))
423 return -EINVAL;
424
425 if ((rdma_is_grh_required(device, ah_attr->port_num) ||
426 ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) &&
427 !(ah_attr->ah_flags & IB_AH_GRH))
428 return -EINVAL;
429
430 if (ah_attr->grh.sgid_attr) {
431 /*
432 * Make sure the passed sgid_attr is consistent with the
433 * parameters
434 */
435 if (ah_attr->grh.sgid_attr->index != ah_attr->grh.sgid_index ||
436 ah_attr->grh.sgid_attr->port_num != ah_attr->port_num)
437 return -EINVAL;
438 }
439 return 0;
440 }
441
442 /*
443 * If the ah requires a GRH then ensure that sgid_attr pointer is filled in.
444 * On success the caller is responsible to call rdma_unfill_sgid_attr().
445 */
rdma_fill_sgid_attr(struct ib_device * device,struct rdma_ah_attr * ah_attr,const struct ib_gid_attr ** old_sgid_attr)446 static int rdma_fill_sgid_attr(struct ib_device *device,
447 struct rdma_ah_attr *ah_attr,
448 const struct ib_gid_attr **old_sgid_attr)
449 {
450 const struct ib_gid_attr *sgid_attr;
451 struct ib_global_route *grh;
452 int ret;
453
454 *old_sgid_attr = ah_attr->grh.sgid_attr;
455
456 ret = rdma_check_ah_attr(device, ah_attr);
457 if (ret)
458 return ret;
459
460 if (!(ah_attr->ah_flags & IB_AH_GRH))
461 return 0;
462
463 grh = rdma_ah_retrieve_grh(ah_attr);
464 if (grh->sgid_attr)
465 return 0;
466
467 sgid_attr =
468 rdma_get_gid_attr(device, ah_attr->port_num, grh->sgid_index);
469 if (IS_ERR(sgid_attr))
470 return PTR_ERR(sgid_attr);
471
472 /* Move ownerhip of the kref into the ah_attr */
473 grh->sgid_attr = sgid_attr;
474 return 0;
475 }
476
rdma_unfill_sgid_attr(struct rdma_ah_attr * ah_attr,const struct ib_gid_attr * old_sgid_attr)477 static void rdma_unfill_sgid_attr(struct rdma_ah_attr *ah_attr,
478 const struct ib_gid_attr *old_sgid_attr)
479 {
480 /*
481 * Fill didn't change anything, the caller retains ownership of
482 * whatever it passed
483 */
484 if (ah_attr->grh.sgid_attr == old_sgid_attr)
485 return;
486
487 /*
488 * Otherwise, we need to undo what rdma_fill_sgid_attr so the caller
489 * doesn't see any change in the rdma_ah_attr. If we get here
490 * old_sgid_attr is NULL.
491 */
492 rdma_destroy_ah_attr(ah_attr);
493 }
494
495 static const struct ib_gid_attr *
rdma_update_sgid_attr(struct rdma_ah_attr * ah_attr,const struct ib_gid_attr * old_attr)496 rdma_update_sgid_attr(struct rdma_ah_attr *ah_attr,
497 const struct ib_gid_attr *old_attr)
498 {
499 if (old_attr)
500 rdma_put_gid_attr(old_attr);
501 if (ah_attr->ah_flags & IB_AH_GRH) {
502 rdma_hold_gid_attr(ah_attr->grh.sgid_attr);
503 return ah_attr->grh.sgid_attr;
504 }
505 return NULL;
506 }
507
_rdma_create_ah(struct ib_pd * pd,struct rdma_ah_attr * ah_attr,u32 flags,struct ib_udata * udata,struct net_device * xmit_slave)508 static struct ib_ah *_rdma_create_ah(struct ib_pd *pd,
509 struct rdma_ah_attr *ah_attr,
510 u32 flags,
511 struct ib_udata *udata,
512 struct net_device *xmit_slave)
513 {
514 struct rdma_ah_init_attr init_attr = {};
515 struct ib_device *device = pd->device;
516 struct ib_ah *ah;
517 int ret;
518
519 might_sleep_if(flags & RDMA_CREATE_AH_SLEEPABLE);
520
521 if (!udata && !device->ops.create_ah)
522 return ERR_PTR(-EOPNOTSUPP);
523
524 ah = rdma_zalloc_drv_obj_gfp(
525 device, ib_ah,
526 (flags & RDMA_CREATE_AH_SLEEPABLE) ? GFP_KERNEL : GFP_ATOMIC);
527 if (!ah)
528 return ERR_PTR(-ENOMEM);
529
530 ah->device = device;
531 ah->pd = pd;
532 ah->type = ah_attr->type;
533 ah->sgid_attr = rdma_update_sgid_attr(ah_attr, NULL);
534 init_attr.ah_attr = ah_attr;
535 init_attr.flags = flags;
536 init_attr.xmit_slave = xmit_slave;
537
538 if (udata)
539 ret = device->ops.create_user_ah(ah, &init_attr, udata);
540 else
541 ret = device->ops.create_ah(ah, &init_attr, NULL);
542 if (ret) {
543 kfree(ah);
544 return ERR_PTR(ret);
545 }
546
547 atomic_inc(&pd->usecnt);
548 return ah;
549 }
550
551 /**
552 * rdma_create_ah - Creates an address handle for the
553 * given address vector.
554 * @pd: The protection domain associated with the address handle.
555 * @ah_attr: The attributes of the address vector.
556 * @flags: Create address handle flags (see enum rdma_create_ah_flags).
557 *
558 * It returns 0 on success and returns appropriate error code on error.
559 * The address handle is used to reference a local or global destination
560 * in all UD QP post sends.
561 */
rdma_create_ah(struct ib_pd * pd,struct rdma_ah_attr * ah_attr,u32 flags)562 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
563 u32 flags)
564 {
565 const struct ib_gid_attr *old_sgid_attr;
566 struct net_device *slave;
567 struct ib_ah *ah;
568 int ret;
569
570 ret = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
571 if (ret)
572 return ERR_PTR(ret);
573 slave = rdma_lag_get_ah_roce_slave(pd->device, ah_attr,
574 (flags & RDMA_CREATE_AH_SLEEPABLE) ?
575 GFP_KERNEL : GFP_ATOMIC);
576 if (IS_ERR(slave)) {
577 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
578 return (void *)slave;
579 }
580 ah = _rdma_create_ah(pd, ah_attr, flags, NULL, slave);
581 rdma_lag_put_ah_roce_slave(slave);
582 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
583 return ah;
584 }
585 EXPORT_SYMBOL(rdma_create_ah);
586
587 /**
588 * rdma_create_user_ah - Creates an address handle for the
589 * given address vector.
590 * It resolves destination mac address for ah attribute of RoCE type.
591 * @pd: The protection domain associated with the address handle.
592 * @ah_attr: The attributes of the address vector.
593 * @udata: pointer to user's input output buffer information need by
594 * provider driver.
595 *
596 * It returns 0 on success and returns appropriate error code on error.
597 * The address handle is used to reference a local or global destination
598 * in all UD QP post sends.
599 */
rdma_create_user_ah(struct ib_pd * pd,struct rdma_ah_attr * ah_attr,struct ib_udata * udata)600 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
601 struct rdma_ah_attr *ah_attr,
602 struct ib_udata *udata)
603 {
604 const struct ib_gid_attr *old_sgid_attr;
605 struct ib_ah *ah;
606 int err;
607
608 err = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
609 if (err)
610 return ERR_PTR(err);
611
612 if (ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) {
613 err = ib_resolve_eth_dmac(pd->device, ah_attr);
614 if (err) {
615 ah = ERR_PTR(err);
616 goto out;
617 }
618 }
619
620 ah = _rdma_create_ah(pd, ah_attr, RDMA_CREATE_AH_SLEEPABLE,
621 udata, NULL);
622
623 out:
624 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
625 return ah;
626 }
627 EXPORT_SYMBOL(rdma_create_user_ah);
628
ib_get_rdma_header_version(const union rdma_network_hdr * hdr)629 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr)
630 {
631 const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
632 struct iphdr ip4h_checked;
633 const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
634
635 /* If it's IPv6, the version must be 6, otherwise, the first
636 * 20 bytes (before the IPv4 header) are garbled.
637 */
638 if (ip6h->version != 6)
639 return (ip4h->version == 4) ? 4 : 0;
640 /* version may be 6 or 4 because the first 20 bytes could be garbled */
641
642 /* RoCE v2 requires no options, thus header length
643 * must be 5 words
644 */
645 if (ip4h->ihl != 5)
646 return 6;
647
648 /* Verify checksum.
649 * We can't write on scattered buffers so we need to copy to
650 * temp buffer.
651 */
652 memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
653 ip4h_checked.check = 0;
654 ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
655 /* if IPv4 header checksum is OK, believe it */
656 if (ip4h->check == ip4h_checked.check)
657 return 4;
658 return 6;
659 }
660 EXPORT_SYMBOL(ib_get_rdma_header_version);
661
ib_get_net_type_by_grh(struct ib_device * device,u32 port_num,const struct ib_grh * grh)662 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
663 u32 port_num,
664 const struct ib_grh *grh)
665 {
666 int grh_version;
667
668 if (rdma_protocol_ib(device, port_num))
669 return RDMA_NETWORK_IB;
670
671 grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh);
672
673 if (grh_version == 4)
674 return RDMA_NETWORK_IPV4;
675
676 if (grh->next_hdr == IPPROTO_UDP)
677 return RDMA_NETWORK_IPV6;
678
679 return RDMA_NETWORK_ROCE_V1;
680 }
681
682 struct find_gid_index_context {
683 u16 vlan_id;
684 enum ib_gid_type gid_type;
685 };
686
find_gid_index(const union ib_gid * gid,const struct ib_gid_attr * gid_attr,void * context)687 static bool find_gid_index(const union ib_gid *gid,
688 const struct ib_gid_attr *gid_attr,
689 void *context)
690 {
691 struct find_gid_index_context *ctx = context;
692 u16 vlan_id = 0xffff;
693 int ret;
694
695 if (ctx->gid_type != gid_attr->gid_type)
696 return false;
697
698 ret = rdma_read_gid_l2_fields(gid_attr, &vlan_id, NULL);
699 if (ret)
700 return false;
701
702 return ctx->vlan_id == vlan_id;
703 }
704
705 static const struct ib_gid_attr *
get_sgid_attr_from_eth(struct ib_device * device,u32 port_num,u16 vlan_id,const union ib_gid * sgid,enum ib_gid_type gid_type)706 get_sgid_attr_from_eth(struct ib_device *device, u32 port_num,
707 u16 vlan_id, const union ib_gid *sgid,
708 enum ib_gid_type gid_type)
709 {
710 struct find_gid_index_context context = {.vlan_id = vlan_id,
711 .gid_type = gid_type};
712
713 return rdma_find_gid_by_filter(device, sgid, port_num, find_gid_index,
714 &context);
715 }
716
ib_get_gids_from_rdma_hdr(const union rdma_network_hdr * hdr,enum rdma_network_type net_type,union ib_gid * sgid,union ib_gid * dgid)717 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
718 enum rdma_network_type net_type,
719 union ib_gid *sgid, union ib_gid *dgid)
720 {
721 struct sockaddr_in src_in;
722 struct sockaddr_in dst_in;
723 __be32 src_saddr, dst_saddr;
724
725 if (!sgid || !dgid)
726 return -EINVAL;
727
728 if (net_type == RDMA_NETWORK_IPV4) {
729 memcpy(&src_in.sin_addr.s_addr,
730 &hdr->roce4grh.saddr, 4);
731 memcpy(&dst_in.sin_addr.s_addr,
732 &hdr->roce4grh.daddr, 4);
733 src_saddr = src_in.sin_addr.s_addr;
734 dst_saddr = dst_in.sin_addr.s_addr;
735 ipv6_addr_set_v4mapped(src_saddr,
736 (struct in6_addr *)sgid);
737 ipv6_addr_set_v4mapped(dst_saddr,
738 (struct in6_addr *)dgid);
739 return 0;
740 } else if (net_type == RDMA_NETWORK_IPV6 ||
741 net_type == RDMA_NETWORK_IB || RDMA_NETWORK_ROCE_V1) {
742 *dgid = hdr->ibgrh.dgid;
743 *sgid = hdr->ibgrh.sgid;
744 return 0;
745 } else {
746 return -EINVAL;
747 }
748 }
749 EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr);
750
751 /* Resolve destination mac address and hop limit for unicast destination
752 * GID entry, considering the source GID entry as well.
753 * ah_attribute must have have valid port_num, sgid_index.
754 */
ib_resolve_unicast_gid_dmac(struct ib_device * device,struct rdma_ah_attr * ah_attr)755 static int ib_resolve_unicast_gid_dmac(struct ib_device *device,
756 struct rdma_ah_attr *ah_attr)
757 {
758 struct ib_global_route *grh = rdma_ah_retrieve_grh(ah_attr);
759 const struct ib_gid_attr *sgid_attr = grh->sgid_attr;
760 int hop_limit = 0xff;
761 int ret = 0;
762
763 /* If destination is link local and source GID is RoCEv1,
764 * IP stack is not used.
765 */
766 if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw) &&
767 sgid_attr->gid_type == IB_GID_TYPE_ROCE) {
768 rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw,
769 ah_attr->roce.dmac);
770 return ret;
771 }
772
773 ret = rdma_addr_find_l2_eth_by_grh(&sgid_attr->gid, &grh->dgid,
774 ah_attr->roce.dmac,
775 sgid_attr, &hop_limit);
776
777 grh->hop_limit = hop_limit;
778 return ret;
779 }
780
781 /*
782 * This function initializes address handle attributes from the incoming packet.
783 * Incoming packet has dgid of the receiver node on which this code is
784 * getting executed and, sgid contains the GID of the sender.
785 *
786 * When resolving mac address of destination, the arrived dgid is used
787 * as sgid and, sgid is used as dgid because sgid contains destinations
788 * GID whom to respond to.
789 *
790 * On success the caller is responsible to call rdma_destroy_ah_attr on the
791 * attr.
792 */
ib_init_ah_attr_from_wc(struct ib_device * device,u32 port_num,const struct ib_wc * wc,const struct ib_grh * grh,struct rdma_ah_attr * ah_attr)793 int ib_init_ah_attr_from_wc(struct ib_device *device, u32 port_num,
794 const struct ib_wc *wc, const struct ib_grh *grh,
795 struct rdma_ah_attr *ah_attr)
796 {
797 u32 flow_class;
798 int ret;
799 enum rdma_network_type net_type = RDMA_NETWORK_IB;
800 enum ib_gid_type gid_type = IB_GID_TYPE_IB;
801 const struct ib_gid_attr *sgid_attr;
802 int hoplimit = 0xff;
803 union ib_gid dgid;
804 union ib_gid sgid;
805
806 might_sleep();
807
808 memset(ah_attr, 0, sizeof *ah_attr);
809 ah_attr->type = rdma_ah_find_type(device, port_num);
810 if (rdma_cap_eth_ah(device, port_num)) {
811 if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
812 net_type = wc->network_hdr_type;
813 else
814 net_type = ib_get_net_type_by_grh(device, port_num, grh);
815 gid_type = ib_network_to_gid_type(net_type);
816 }
817 ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
818 &sgid, &dgid);
819 if (ret)
820 return ret;
821
822 rdma_ah_set_sl(ah_attr, wc->sl);
823 rdma_ah_set_port_num(ah_attr, port_num);
824
825 if (rdma_protocol_roce(device, port_num)) {
826 u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
827 wc->vlan_id : 0xffff;
828
829 if (!(wc->wc_flags & IB_WC_GRH))
830 return -EPROTOTYPE;
831
832 sgid_attr = get_sgid_attr_from_eth(device, port_num,
833 vlan_id, &dgid,
834 gid_type);
835 if (IS_ERR(sgid_attr))
836 return PTR_ERR(sgid_attr);
837
838 flow_class = be32_to_cpu(grh->version_tclass_flow);
839 rdma_move_grh_sgid_attr(ah_attr,
840 &sgid,
841 flow_class & 0xFFFFF,
842 hoplimit,
843 (flow_class >> 20) & 0xFF,
844 sgid_attr);
845
846 ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
847 if (ret)
848 rdma_destroy_ah_attr(ah_attr);
849
850 return ret;
851 } else {
852 rdma_ah_set_dlid(ah_attr, wc->slid);
853 rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits);
854
855 if ((wc->wc_flags & IB_WC_GRH) == 0)
856 return 0;
857
858 if (dgid.global.interface_id !=
859 cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
860 sgid_attr = rdma_find_gid_by_port(
861 device, &dgid, IB_GID_TYPE_IB, port_num, NULL);
862 } else
863 sgid_attr = rdma_get_gid_attr(device, port_num, 0);
864
865 if (IS_ERR(sgid_attr))
866 return PTR_ERR(sgid_attr);
867 flow_class = be32_to_cpu(grh->version_tclass_flow);
868 rdma_move_grh_sgid_attr(ah_attr,
869 &sgid,
870 flow_class & 0xFFFFF,
871 hoplimit,
872 (flow_class >> 20) & 0xFF,
873 sgid_attr);
874
875 return 0;
876 }
877 }
878 EXPORT_SYMBOL(ib_init_ah_attr_from_wc);
879
880 /**
881 * rdma_move_grh_sgid_attr - Sets the sgid attribute of GRH, taking ownership
882 * of the reference
883 *
884 * @attr: Pointer to AH attribute structure
885 * @dgid: Destination GID
886 * @flow_label: Flow label
887 * @hop_limit: Hop limit
888 * @traffic_class: traffic class
889 * @sgid_attr: Pointer to SGID attribute
890 *
891 * This takes ownership of the sgid_attr reference. The caller must ensure
892 * rdma_destroy_ah_attr() is called before destroying the rdma_ah_attr after
893 * calling this function.
894 */
rdma_move_grh_sgid_attr(struct rdma_ah_attr * attr,union ib_gid * dgid,u32 flow_label,u8 hop_limit,u8 traffic_class,const struct ib_gid_attr * sgid_attr)895 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
896 u32 flow_label, u8 hop_limit, u8 traffic_class,
897 const struct ib_gid_attr *sgid_attr)
898 {
899 rdma_ah_set_grh(attr, dgid, flow_label, sgid_attr->index, hop_limit,
900 traffic_class);
901 attr->grh.sgid_attr = sgid_attr;
902 }
903 EXPORT_SYMBOL(rdma_move_grh_sgid_attr);
904
905 /**
906 * rdma_destroy_ah_attr - Release reference to SGID attribute of
907 * ah attribute.
908 * @ah_attr: Pointer to ah attribute
909 *
910 * Release reference to the SGID attribute of the ah attribute if it is
911 * non NULL. It is safe to call this multiple times, and safe to call it on
912 * a zero initialized ah_attr.
913 */
rdma_destroy_ah_attr(struct rdma_ah_attr * ah_attr)914 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr)
915 {
916 if (ah_attr->grh.sgid_attr) {
917 rdma_put_gid_attr(ah_attr->grh.sgid_attr);
918 ah_attr->grh.sgid_attr = NULL;
919 }
920 }
921 EXPORT_SYMBOL(rdma_destroy_ah_attr);
922
ib_create_ah_from_wc(struct ib_pd * pd,const struct ib_wc * wc,const struct ib_grh * grh,u32 port_num)923 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
924 const struct ib_grh *grh, u32 port_num)
925 {
926 struct rdma_ah_attr ah_attr;
927 struct ib_ah *ah;
928 int ret;
929
930 ret = ib_init_ah_attr_from_wc(pd->device, port_num, wc, grh, &ah_attr);
931 if (ret)
932 return ERR_PTR(ret);
933
934 ah = rdma_create_ah(pd, &ah_attr, RDMA_CREATE_AH_SLEEPABLE);
935
936 rdma_destroy_ah_attr(&ah_attr);
937 return ah;
938 }
939 EXPORT_SYMBOL(ib_create_ah_from_wc);
940
rdma_modify_ah(struct ib_ah * ah,struct rdma_ah_attr * ah_attr)941 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
942 {
943 const struct ib_gid_attr *old_sgid_attr;
944 int ret;
945
946 if (ah->type != ah_attr->type)
947 return -EINVAL;
948
949 ret = rdma_fill_sgid_attr(ah->device, ah_attr, &old_sgid_attr);
950 if (ret)
951 return ret;
952
953 ret = ah->device->ops.modify_ah ?
954 ah->device->ops.modify_ah(ah, ah_attr) :
955 -EOPNOTSUPP;
956
957 ah->sgid_attr = rdma_update_sgid_attr(ah_attr, ah->sgid_attr);
958 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
959 return ret;
960 }
961 EXPORT_SYMBOL(rdma_modify_ah);
962
rdma_query_ah(struct ib_ah * ah,struct rdma_ah_attr * ah_attr)963 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
964 {
965 ah_attr->grh.sgid_attr = NULL;
966
967 return ah->device->ops.query_ah ?
968 ah->device->ops.query_ah(ah, ah_attr) :
969 -EOPNOTSUPP;
970 }
971 EXPORT_SYMBOL(rdma_query_ah);
972
rdma_destroy_ah_user(struct ib_ah * ah,u32 flags,struct ib_udata * udata)973 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata)
974 {
975 const struct ib_gid_attr *sgid_attr = ah->sgid_attr;
976 struct ib_pd *pd;
977 int ret;
978
979 might_sleep_if(flags & RDMA_DESTROY_AH_SLEEPABLE);
980
981 pd = ah->pd;
982
983 ret = ah->device->ops.destroy_ah(ah, flags);
984 if (ret)
985 return ret;
986
987 atomic_dec(&pd->usecnt);
988 if (sgid_attr)
989 rdma_put_gid_attr(sgid_attr);
990
991 kfree(ah);
992 return ret;
993 }
994 EXPORT_SYMBOL(rdma_destroy_ah_user);
995
996 /* Shared receive queues */
997
998 /**
999 * ib_create_srq_user - Creates a SRQ associated with the specified protection
1000 * domain.
1001 * @pd: The protection domain associated with the SRQ.
1002 * @srq_init_attr: A list of initial attributes required to create the
1003 * SRQ. If SRQ creation succeeds, then the attributes are updated to
1004 * the actual capabilities of the created SRQ.
1005 * @uobject: uobject pointer if this is not a kernel SRQ
1006 * @udata: udata pointer if this is not a kernel SRQ
1007 *
1008 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
1009 * requested size of the SRQ, and set to the actual values allocated
1010 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
1011 * will always be at least as large as the requested values.
1012 */
ib_create_srq_user(struct ib_pd * pd,struct ib_srq_init_attr * srq_init_attr,struct ib_usrq_object * uobject,struct ib_udata * udata)1013 struct ib_srq *ib_create_srq_user(struct ib_pd *pd,
1014 struct ib_srq_init_attr *srq_init_attr,
1015 struct ib_usrq_object *uobject,
1016 struct ib_udata *udata)
1017 {
1018 struct ib_srq *srq;
1019 int ret;
1020
1021 srq = rdma_zalloc_drv_obj(pd->device, ib_srq);
1022 if (!srq)
1023 return ERR_PTR(-ENOMEM);
1024
1025 srq->device = pd->device;
1026 srq->pd = pd;
1027 srq->event_handler = srq_init_attr->event_handler;
1028 srq->srq_context = srq_init_attr->srq_context;
1029 srq->srq_type = srq_init_attr->srq_type;
1030 srq->uobject = uobject;
1031
1032 if (ib_srq_has_cq(srq->srq_type)) {
1033 srq->ext.cq = srq_init_attr->ext.cq;
1034 atomic_inc(&srq->ext.cq->usecnt);
1035 }
1036 if (srq->srq_type == IB_SRQT_XRC) {
1037 srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
1038 if (srq->ext.xrc.xrcd)
1039 atomic_inc(&srq->ext.xrc.xrcd->usecnt);
1040 }
1041 atomic_inc(&pd->usecnt);
1042
1043 rdma_restrack_new(&srq->res, RDMA_RESTRACK_SRQ);
1044 rdma_restrack_parent_name(&srq->res, &pd->res);
1045
1046 ret = pd->device->ops.create_srq(srq, srq_init_attr, udata);
1047 if (ret) {
1048 rdma_restrack_put(&srq->res);
1049 atomic_dec(&srq->pd->usecnt);
1050 if (srq->srq_type == IB_SRQT_XRC && srq->ext.xrc.xrcd)
1051 atomic_dec(&srq->ext.xrc.xrcd->usecnt);
1052 if (ib_srq_has_cq(srq->srq_type))
1053 atomic_dec(&srq->ext.cq->usecnt);
1054 kfree(srq);
1055 return ERR_PTR(ret);
1056 }
1057
1058 rdma_restrack_add(&srq->res);
1059
1060 return srq;
1061 }
1062 EXPORT_SYMBOL(ib_create_srq_user);
1063
ib_modify_srq(struct ib_srq * srq,struct ib_srq_attr * srq_attr,enum ib_srq_attr_mask srq_attr_mask)1064 int ib_modify_srq(struct ib_srq *srq,
1065 struct ib_srq_attr *srq_attr,
1066 enum ib_srq_attr_mask srq_attr_mask)
1067 {
1068 return srq->device->ops.modify_srq ?
1069 srq->device->ops.modify_srq(srq, srq_attr, srq_attr_mask,
1070 NULL) : -EOPNOTSUPP;
1071 }
1072 EXPORT_SYMBOL(ib_modify_srq);
1073
ib_query_srq(struct ib_srq * srq,struct ib_srq_attr * srq_attr)1074 int ib_query_srq(struct ib_srq *srq,
1075 struct ib_srq_attr *srq_attr)
1076 {
1077 return srq->device->ops.query_srq ?
1078 srq->device->ops.query_srq(srq, srq_attr) : -EOPNOTSUPP;
1079 }
1080 EXPORT_SYMBOL(ib_query_srq);
1081
ib_destroy_srq_user(struct ib_srq * srq,struct ib_udata * udata)1082 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata)
1083 {
1084 int ret;
1085
1086 if (atomic_read(&srq->usecnt))
1087 return -EBUSY;
1088
1089 ret = srq->device->ops.destroy_srq(srq, udata);
1090 if (ret)
1091 return ret;
1092
1093 atomic_dec(&srq->pd->usecnt);
1094 if (srq->srq_type == IB_SRQT_XRC && srq->ext.xrc.xrcd)
1095 atomic_dec(&srq->ext.xrc.xrcd->usecnt);
1096 if (ib_srq_has_cq(srq->srq_type))
1097 atomic_dec(&srq->ext.cq->usecnt);
1098 rdma_restrack_del(&srq->res);
1099 kfree(srq);
1100
1101 return ret;
1102 }
1103 EXPORT_SYMBOL(ib_destroy_srq_user);
1104
1105 /* Queue pairs */
1106
__ib_shared_qp_event_handler(struct ib_event * event,void * context)1107 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
1108 {
1109 struct ib_qp *qp = context;
1110 unsigned long flags;
1111
1112 spin_lock_irqsave(&qp->device->qp_open_list_lock, flags);
1113 list_for_each_entry(event->element.qp, &qp->open_list, open_list)
1114 if (event->element.qp->event_handler)
1115 event->element.qp->event_handler(event, event->element.qp->qp_context);
1116 spin_unlock_irqrestore(&qp->device->qp_open_list_lock, flags);
1117 }
1118
__ib_open_qp(struct ib_qp * real_qp,void (* event_handler)(struct ib_event *,void *),void * qp_context)1119 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
1120 void (*event_handler)(struct ib_event *, void *),
1121 void *qp_context)
1122 {
1123 struct ib_qp *qp;
1124 unsigned long flags;
1125 int err;
1126
1127 qp = kzalloc(sizeof *qp, GFP_KERNEL);
1128 if (!qp)
1129 return ERR_PTR(-ENOMEM);
1130
1131 qp->real_qp = real_qp;
1132 err = ib_open_shared_qp_security(qp, real_qp->device);
1133 if (err) {
1134 kfree(qp);
1135 return ERR_PTR(err);
1136 }
1137
1138 qp->real_qp = real_qp;
1139 atomic_inc(&real_qp->usecnt);
1140 qp->device = real_qp->device;
1141 qp->event_handler = event_handler;
1142 qp->qp_context = qp_context;
1143 qp->qp_num = real_qp->qp_num;
1144 qp->qp_type = real_qp->qp_type;
1145
1146 spin_lock_irqsave(&real_qp->device->qp_open_list_lock, flags);
1147 list_add(&qp->open_list, &real_qp->open_list);
1148 spin_unlock_irqrestore(&real_qp->device->qp_open_list_lock, flags);
1149
1150 return qp;
1151 }
1152
ib_open_qp(struct ib_xrcd * xrcd,struct ib_qp_open_attr * qp_open_attr)1153 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
1154 struct ib_qp_open_attr *qp_open_attr)
1155 {
1156 struct ib_qp *qp, *real_qp;
1157
1158 if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
1159 return ERR_PTR(-EINVAL);
1160
1161 down_read(&xrcd->tgt_qps_rwsem);
1162 real_qp = xa_load(&xrcd->tgt_qps, qp_open_attr->qp_num);
1163 if (!real_qp) {
1164 up_read(&xrcd->tgt_qps_rwsem);
1165 return ERR_PTR(-EINVAL);
1166 }
1167 qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
1168 qp_open_attr->qp_context);
1169 up_read(&xrcd->tgt_qps_rwsem);
1170 return qp;
1171 }
1172 EXPORT_SYMBOL(ib_open_qp);
1173
create_xrc_qp_user(struct ib_qp * qp,struct ib_qp_init_attr * qp_init_attr)1174 static struct ib_qp *create_xrc_qp_user(struct ib_qp *qp,
1175 struct ib_qp_init_attr *qp_init_attr)
1176 {
1177 struct ib_qp *real_qp = qp;
1178 int err;
1179
1180 qp->event_handler = __ib_shared_qp_event_handler;
1181 qp->qp_context = qp;
1182 qp->pd = NULL;
1183 qp->send_cq = qp->recv_cq = NULL;
1184 qp->srq = NULL;
1185 qp->xrcd = qp_init_attr->xrcd;
1186 atomic_inc(&qp_init_attr->xrcd->usecnt);
1187 INIT_LIST_HEAD(&qp->open_list);
1188
1189 qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
1190 qp_init_attr->qp_context);
1191 if (IS_ERR(qp))
1192 return qp;
1193
1194 err = xa_err(xa_store(&qp_init_attr->xrcd->tgt_qps, real_qp->qp_num,
1195 real_qp, GFP_KERNEL));
1196 if (err) {
1197 ib_close_qp(qp);
1198 return ERR_PTR(err);
1199 }
1200 return qp;
1201 }
1202
create_qp(struct ib_device * dev,struct ib_pd * pd,struct ib_qp_init_attr * attr,struct ib_udata * udata,struct ib_uqp_object * uobj,const char * caller)1203 static struct ib_qp *create_qp(struct ib_device *dev, struct ib_pd *pd,
1204 struct ib_qp_init_attr *attr,
1205 struct ib_udata *udata,
1206 struct ib_uqp_object *uobj, const char *caller)
1207 {
1208 struct ib_udata dummy = {};
1209 struct ib_qp *qp;
1210 int ret;
1211
1212 if (!dev->ops.create_qp)
1213 return ERR_PTR(-EOPNOTSUPP);
1214
1215 qp = rdma_zalloc_drv_obj_numa(dev, ib_qp);
1216 if (!qp)
1217 return ERR_PTR(-ENOMEM);
1218
1219 qp->device = dev;
1220 qp->pd = pd;
1221 qp->uobject = uobj;
1222 qp->real_qp = qp;
1223
1224 qp->qp_type = attr->qp_type;
1225 qp->rwq_ind_tbl = attr->rwq_ind_tbl;
1226 qp->srq = attr->srq;
1227 qp->event_handler = attr->event_handler;
1228 qp->port = attr->port_num;
1229 qp->qp_context = attr->qp_context;
1230
1231 spin_lock_init(&qp->mr_lock);
1232 INIT_LIST_HEAD(&qp->rdma_mrs);
1233 INIT_LIST_HEAD(&qp->sig_mrs);
1234
1235 rdma_restrack_new(&qp->res, RDMA_RESTRACK_QP);
1236 WARN_ONCE(!udata && !caller, "Missing kernel QP owner");
1237 rdma_restrack_set_name(&qp->res, udata ? NULL : caller);
1238 ret = dev->ops.create_qp(qp, attr, udata);
1239 if (ret)
1240 goto err_create;
1241
1242 /*
1243 * TODO: The mlx4 internally overwrites send_cq and recv_cq.
1244 * Unfortunately, it is not an easy task to fix that driver.
1245 */
1246 qp->send_cq = attr->send_cq;
1247 qp->recv_cq = attr->recv_cq;
1248
1249 ret = ib_create_qp_security(qp, dev);
1250 if (ret)
1251 goto err_security;
1252
1253 rdma_restrack_add(&qp->res);
1254 return qp;
1255
1256 err_security:
1257 qp->device->ops.destroy_qp(qp, udata ? &dummy : NULL);
1258 err_create:
1259 rdma_restrack_put(&qp->res);
1260 kfree(qp);
1261 return ERR_PTR(ret);
1262
1263 }
1264
1265 /**
1266 * ib_create_qp_user - Creates a QP associated with the specified protection
1267 * domain.
1268 * @dev: IB device
1269 * @pd: The protection domain associated with the QP.
1270 * @attr: A list of initial attributes required to create the
1271 * QP. If QP creation succeeds, then the attributes are updated to
1272 * the actual capabilities of the created QP.
1273 * @udata: User data
1274 * @uobj: uverbs obect
1275 * @caller: caller's build-time module name
1276 */
ib_create_qp_user(struct ib_device * dev,struct ib_pd * pd,struct ib_qp_init_attr * attr,struct ib_udata * udata,struct ib_uqp_object * uobj,const char * caller)1277 struct ib_qp *ib_create_qp_user(struct ib_device *dev, struct ib_pd *pd,
1278 struct ib_qp_init_attr *attr,
1279 struct ib_udata *udata,
1280 struct ib_uqp_object *uobj, const char *caller)
1281 {
1282 struct ib_qp *qp, *xrc_qp;
1283
1284 if (attr->qp_type == IB_QPT_XRC_TGT)
1285 qp = create_qp(dev, pd, attr, NULL, NULL, caller);
1286 else
1287 qp = create_qp(dev, pd, attr, udata, uobj, NULL);
1288 if (attr->qp_type != IB_QPT_XRC_TGT || IS_ERR(qp))
1289 return qp;
1290
1291 xrc_qp = create_xrc_qp_user(qp, attr);
1292 if (IS_ERR(xrc_qp)) {
1293 ib_destroy_qp(qp);
1294 return xrc_qp;
1295 }
1296
1297 xrc_qp->uobject = uobj;
1298 return xrc_qp;
1299 }
1300 EXPORT_SYMBOL(ib_create_qp_user);
1301
ib_qp_usecnt_inc(struct ib_qp * qp)1302 void ib_qp_usecnt_inc(struct ib_qp *qp)
1303 {
1304 if (qp->pd)
1305 atomic_inc(&qp->pd->usecnt);
1306 if (qp->send_cq)
1307 atomic_inc(&qp->send_cq->usecnt);
1308 if (qp->recv_cq)
1309 atomic_inc(&qp->recv_cq->usecnt);
1310 if (qp->srq)
1311 atomic_inc(&qp->srq->usecnt);
1312 if (qp->rwq_ind_tbl)
1313 atomic_inc(&qp->rwq_ind_tbl->usecnt);
1314 }
1315 EXPORT_SYMBOL(ib_qp_usecnt_inc);
1316
ib_qp_usecnt_dec(struct ib_qp * qp)1317 void ib_qp_usecnt_dec(struct ib_qp *qp)
1318 {
1319 if (qp->rwq_ind_tbl)
1320 atomic_dec(&qp->rwq_ind_tbl->usecnt);
1321 if (qp->srq)
1322 atomic_dec(&qp->srq->usecnt);
1323 if (qp->recv_cq)
1324 atomic_dec(&qp->recv_cq->usecnt);
1325 if (qp->send_cq)
1326 atomic_dec(&qp->send_cq->usecnt);
1327 if (qp->pd)
1328 atomic_dec(&qp->pd->usecnt);
1329 }
1330 EXPORT_SYMBOL(ib_qp_usecnt_dec);
1331
ib_create_qp_kernel(struct ib_pd * pd,struct ib_qp_init_attr * qp_init_attr,const char * caller)1332 struct ib_qp *ib_create_qp_kernel(struct ib_pd *pd,
1333 struct ib_qp_init_attr *qp_init_attr,
1334 const char *caller)
1335 {
1336 struct ib_device *device = pd->device;
1337 struct ib_qp *qp;
1338 int ret;
1339
1340 /*
1341 * If the callers is using the RDMA API calculate the resources
1342 * needed for the RDMA READ/WRITE operations.
1343 *
1344 * Note that these callers need to pass in a port number.
1345 */
1346 if (qp_init_attr->cap.max_rdma_ctxs)
1347 rdma_rw_init_qp(device, qp_init_attr);
1348
1349 qp = create_qp(device, pd, qp_init_attr, NULL, NULL, caller);
1350 if (IS_ERR(qp))
1351 return qp;
1352
1353 ib_qp_usecnt_inc(qp);
1354
1355 if (qp_init_attr->cap.max_rdma_ctxs) {
1356 ret = rdma_rw_init_mrs(qp, qp_init_attr);
1357 if (ret)
1358 goto err;
1359 }
1360
1361 /*
1362 * Note: all hw drivers guarantee that max_send_sge is lower than
1363 * the device RDMA WRITE SGE limit but not all hw drivers ensure that
1364 * max_send_sge <= max_sge_rd.
1365 */
1366 qp->max_write_sge = qp_init_attr->cap.max_send_sge;
1367 qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
1368 device->attrs.max_sge_rd);
1369 if (qp_init_attr->create_flags & IB_QP_CREATE_INTEGRITY_EN)
1370 qp->integrity_en = true;
1371
1372 return qp;
1373
1374 err:
1375 ib_destroy_qp(qp);
1376 return ERR_PTR(ret);
1377
1378 }
1379 EXPORT_SYMBOL(ib_create_qp_kernel);
1380
1381 static const struct {
1382 int valid;
1383 enum ib_qp_attr_mask req_param[IB_QPT_MAX];
1384 enum ib_qp_attr_mask opt_param[IB_QPT_MAX];
1385 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
1386 [IB_QPS_RESET] = {
1387 [IB_QPS_RESET] = { .valid = 1 },
1388 [IB_QPS_INIT] = {
1389 .valid = 1,
1390 .req_param = {
1391 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1392 IB_QP_PORT |
1393 IB_QP_QKEY),
1394 [IB_QPT_RAW_PACKET] = IB_QP_PORT,
1395 [IB_QPT_UC] = (IB_QP_PKEY_INDEX |
1396 IB_QP_PORT |
1397 IB_QP_ACCESS_FLAGS),
1398 [IB_QPT_RC] = (IB_QP_PKEY_INDEX |
1399 IB_QP_PORT |
1400 IB_QP_ACCESS_FLAGS),
1401 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
1402 IB_QP_PORT |
1403 IB_QP_ACCESS_FLAGS),
1404 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
1405 IB_QP_PORT |
1406 IB_QP_ACCESS_FLAGS),
1407 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1408 IB_QP_QKEY),
1409 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1410 IB_QP_QKEY),
1411 }
1412 },
1413 },
1414 [IB_QPS_INIT] = {
1415 [IB_QPS_RESET] = { .valid = 1 },
1416 [IB_QPS_ERR] = { .valid = 1 },
1417 [IB_QPS_INIT] = {
1418 .valid = 1,
1419 .opt_param = {
1420 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1421 IB_QP_PORT |
1422 IB_QP_QKEY),
1423 [IB_QPT_UC] = (IB_QP_PKEY_INDEX |
1424 IB_QP_PORT |
1425 IB_QP_ACCESS_FLAGS),
1426 [IB_QPT_RC] = (IB_QP_PKEY_INDEX |
1427 IB_QP_PORT |
1428 IB_QP_ACCESS_FLAGS),
1429 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
1430 IB_QP_PORT |
1431 IB_QP_ACCESS_FLAGS),
1432 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
1433 IB_QP_PORT |
1434 IB_QP_ACCESS_FLAGS),
1435 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1436 IB_QP_QKEY),
1437 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1438 IB_QP_QKEY),
1439 }
1440 },
1441 [IB_QPS_RTR] = {
1442 .valid = 1,
1443 .req_param = {
1444 [IB_QPT_UC] = (IB_QP_AV |
1445 IB_QP_PATH_MTU |
1446 IB_QP_DEST_QPN |
1447 IB_QP_RQ_PSN),
1448 [IB_QPT_RC] = (IB_QP_AV |
1449 IB_QP_PATH_MTU |
1450 IB_QP_DEST_QPN |
1451 IB_QP_RQ_PSN |
1452 IB_QP_MAX_DEST_RD_ATOMIC |
1453 IB_QP_MIN_RNR_TIMER),
1454 [IB_QPT_XRC_INI] = (IB_QP_AV |
1455 IB_QP_PATH_MTU |
1456 IB_QP_DEST_QPN |
1457 IB_QP_RQ_PSN),
1458 [IB_QPT_XRC_TGT] = (IB_QP_AV |
1459 IB_QP_PATH_MTU |
1460 IB_QP_DEST_QPN |
1461 IB_QP_RQ_PSN |
1462 IB_QP_MAX_DEST_RD_ATOMIC |
1463 IB_QP_MIN_RNR_TIMER),
1464 },
1465 .opt_param = {
1466 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1467 IB_QP_QKEY),
1468 [IB_QPT_UC] = (IB_QP_ALT_PATH |
1469 IB_QP_ACCESS_FLAGS |
1470 IB_QP_PKEY_INDEX),
1471 [IB_QPT_RC] = (IB_QP_ALT_PATH |
1472 IB_QP_ACCESS_FLAGS |
1473 IB_QP_PKEY_INDEX),
1474 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH |
1475 IB_QP_ACCESS_FLAGS |
1476 IB_QP_PKEY_INDEX),
1477 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH |
1478 IB_QP_ACCESS_FLAGS |
1479 IB_QP_PKEY_INDEX),
1480 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1481 IB_QP_QKEY),
1482 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1483 IB_QP_QKEY),
1484 },
1485 },
1486 },
1487 [IB_QPS_RTR] = {
1488 [IB_QPS_RESET] = { .valid = 1 },
1489 [IB_QPS_ERR] = { .valid = 1 },
1490 [IB_QPS_RTS] = {
1491 .valid = 1,
1492 .req_param = {
1493 [IB_QPT_UD] = IB_QP_SQ_PSN,
1494 [IB_QPT_UC] = IB_QP_SQ_PSN,
1495 [IB_QPT_RC] = (IB_QP_TIMEOUT |
1496 IB_QP_RETRY_CNT |
1497 IB_QP_RNR_RETRY |
1498 IB_QP_SQ_PSN |
1499 IB_QP_MAX_QP_RD_ATOMIC),
1500 [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT |
1501 IB_QP_RETRY_CNT |
1502 IB_QP_RNR_RETRY |
1503 IB_QP_SQ_PSN |
1504 IB_QP_MAX_QP_RD_ATOMIC),
1505 [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT |
1506 IB_QP_SQ_PSN),
1507 [IB_QPT_SMI] = IB_QP_SQ_PSN,
1508 [IB_QPT_GSI] = IB_QP_SQ_PSN,
1509 },
1510 .opt_param = {
1511 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1512 IB_QP_QKEY),
1513 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1514 IB_QP_ALT_PATH |
1515 IB_QP_ACCESS_FLAGS |
1516 IB_QP_PATH_MIG_STATE),
1517 [IB_QPT_RC] = (IB_QP_CUR_STATE |
1518 IB_QP_ALT_PATH |
1519 IB_QP_ACCESS_FLAGS |
1520 IB_QP_MIN_RNR_TIMER |
1521 IB_QP_PATH_MIG_STATE),
1522 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
1523 IB_QP_ALT_PATH |
1524 IB_QP_ACCESS_FLAGS |
1525 IB_QP_PATH_MIG_STATE),
1526 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
1527 IB_QP_ALT_PATH |
1528 IB_QP_ACCESS_FLAGS |
1529 IB_QP_MIN_RNR_TIMER |
1530 IB_QP_PATH_MIG_STATE),
1531 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1532 IB_QP_QKEY),
1533 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1534 IB_QP_QKEY),
1535 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1536 }
1537 }
1538 },
1539 [IB_QPS_RTS] = {
1540 [IB_QPS_RESET] = { .valid = 1 },
1541 [IB_QPS_ERR] = { .valid = 1 },
1542 [IB_QPS_RTS] = {
1543 .valid = 1,
1544 .opt_param = {
1545 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1546 IB_QP_QKEY),
1547 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1548 IB_QP_ACCESS_FLAGS |
1549 IB_QP_ALT_PATH |
1550 IB_QP_PATH_MIG_STATE),
1551 [IB_QPT_RC] = (IB_QP_CUR_STATE |
1552 IB_QP_ACCESS_FLAGS |
1553 IB_QP_ALT_PATH |
1554 IB_QP_PATH_MIG_STATE |
1555 IB_QP_MIN_RNR_TIMER),
1556 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
1557 IB_QP_ACCESS_FLAGS |
1558 IB_QP_ALT_PATH |
1559 IB_QP_PATH_MIG_STATE),
1560 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
1561 IB_QP_ACCESS_FLAGS |
1562 IB_QP_ALT_PATH |
1563 IB_QP_PATH_MIG_STATE |
1564 IB_QP_MIN_RNR_TIMER),
1565 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1566 IB_QP_QKEY),
1567 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1568 IB_QP_QKEY),
1569 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1570 }
1571 },
1572 [IB_QPS_SQD] = {
1573 .valid = 1,
1574 .opt_param = {
1575 [IB_QPT_UD] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1576 [IB_QPT_UC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1577 [IB_QPT_RC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1578 [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1579 [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1580 [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1581 [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1582 }
1583 },
1584 },
1585 [IB_QPS_SQD] = {
1586 [IB_QPS_RESET] = { .valid = 1 },
1587 [IB_QPS_ERR] = { .valid = 1 },
1588 [IB_QPS_RTS] = {
1589 .valid = 1,
1590 .opt_param = {
1591 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1592 IB_QP_QKEY),
1593 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1594 IB_QP_ALT_PATH |
1595 IB_QP_ACCESS_FLAGS |
1596 IB_QP_PATH_MIG_STATE),
1597 [IB_QPT_RC] = (IB_QP_CUR_STATE |
1598 IB_QP_ALT_PATH |
1599 IB_QP_ACCESS_FLAGS |
1600 IB_QP_MIN_RNR_TIMER |
1601 IB_QP_PATH_MIG_STATE),
1602 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
1603 IB_QP_ALT_PATH |
1604 IB_QP_ACCESS_FLAGS |
1605 IB_QP_PATH_MIG_STATE),
1606 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
1607 IB_QP_ALT_PATH |
1608 IB_QP_ACCESS_FLAGS |
1609 IB_QP_MIN_RNR_TIMER |
1610 IB_QP_PATH_MIG_STATE),
1611 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1612 IB_QP_QKEY),
1613 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1614 IB_QP_QKEY),
1615 }
1616 },
1617 [IB_QPS_SQD] = {
1618 .valid = 1,
1619 .opt_param = {
1620 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1621 IB_QP_QKEY),
1622 [IB_QPT_UC] = (IB_QP_AV |
1623 IB_QP_ALT_PATH |
1624 IB_QP_ACCESS_FLAGS |
1625 IB_QP_PKEY_INDEX |
1626 IB_QP_PATH_MIG_STATE),
1627 [IB_QPT_RC] = (IB_QP_PORT |
1628 IB_QP_AV |
1629 IB_QP_TIMEOUT |
1630 IB_QP_RETRY_CNT |
1631 IB_QP_RNR_RETRY |
1632 IB_QP_MAX_QP_RD_ATOMIC |
1633 IB_QP_MAX_DEST_RD_ATOMIC |
1634 IB_QP_ALT_PATH |
1635 IB_QP_ACCESS_FLAGS |
1636 IB_QP_PKEY_INDEX |
1637 IB_QP_MIN_RNR_TIMER |
1638 IB_QP_PATH_MIG_STATE),
1639 [IB_QPT_XRC_INI] = (IB_QP_PORT |
1640 IB_QP_AV |
1641 IB_QP_TIMEOUT |
1642 IB_QP_RETRY_CNT |
1643 IB_QP_RNR_RETRY |
1644 IB_QP_MAX_QP_RD_ATOMIC |
1645 IB_QP_ALT_PATH |
1646 IB_QP_ACCESS_FLAGS |
1647 IB_QP_PKEY_INDEX |
1648 IB_QP_PATH_MIG_STATE),
1649 [IB_QPT_XRC_TGT] = (IB_QP_PORT |
1650 IB_QP_AV |
1651 IB_QP_TIMEOUT |
1652 IB_QP_MAX_DEST_RD_ATOMIC |
1653 IB_QP_ALT_PATH |
1654 IB_QP_ACCESS_FLAGS |
1655 IB_QP_PKEY_INDEX |
1656 IB_QP_MIN_RNR_TIMER |
1657 IB_QP_PATH_MIG_STATE),
1658 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1659 IB_QP_QKEY),
1660 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1661 IB_QP_QKEY),
1662 }
1663 }
1664 },
1665 [IB_QPS_SQE] = {
1666 [IB_QPS_RESET] = { .valid = 1 },
1667 [IB_QPS_ERR] = { .valid = 1 },
1668 [IB_QPS_RTS] = {
1669 .valid = 1,
1670 .opt_param = {
1671 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1672 IB_QP_QKEY),
1673 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1674 IB_QP_ACCESS_FLAGS),
1675 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1676 IB_QP_QKEY),
1677 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1678 IB_QP_QKEY),
1679 }
1680 }
1681 },
1682 [IB_QPS_ERR] = {
1683 [IB_QPS_RESET] = { .valid = 1 },
1684 [IB_QPS_ERR] = { .valid = 1 }
1685 }
1686 };
1687
ib_modify_qp_is_ok(enum ib_qp_state cur_state,enum ib_qp_state next_state,enum ib_qp_type type,enum ib_qp_attr_mask mask)1688 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1689 enum ib_qp_type type, enum ib_qp_attr_mask mask)
1690 {
1691 enum ib_qp_attr_mask req_param, opt_param;
1692
1693 if (mask & IB_QP_CUR_STATE &&
1694 cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1695 cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1696 return false;
1697
1698 if (!qp_state_table[cur_state][next_state].valid)
1699 return false;
1700
1701 req_param = qp_state_table[cur_state][next_state].req_param[type];
1702 opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1703
1704 if ((mask & req_param) != req_param)
1705 return false;
1706
1707 if (mask & ~(req_param | opt_param | IB_QP_STATE))
1708 return false;
1709
1710 return true;
1711 }
1712 EXPORT_SYMBOL(ib_modify_qp_is_ok);
1713
1714 /**
1715 * ib_resolve_eth_dmac - Resolve destination mac address
1716 * @device: Device to consider
1717 * @ah_attr: address handle attribute which describes the
1718 * source and destination parameters
1719 * ib_resolve_eth_dmac() resolves destination mac address and L3 hop limit It
1720 * returns 0 on success or appropriate error code. It initializes the
1721 * necessary ah_attr fields when call is successful.
1722 */
ib_resolve_eth_dmac(struct ib_device * device,struct rdma_ah_attr * ah_attr)1723 static int ib_resolve_eth_dmac(struct ib_device *device,
1724 struct rdma_ah_attr *ah_attr)
1725 {
1726 int ret = 0;
1727
1728 if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1729 if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1730 __be32 addr = 0;
1731
1732 memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4);
1733 ip_eth_mc_map(addr, (char *)ah_attr->roce.dmac);
1734 } else {
1735 ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw,
1736 (char *)ah_attr->roce.dmac);
1737 }
1738 } else {
1739 ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
1740 }
1741 return ret;
1742 }
1743
is_qp_type_connected(const struct ib_qp * qp)1744 static bool is_qp_type_connected(const struct ib_qp *qp)
1745 {
1746 return (qp->qp_type == IB_QPT_UC ||
1747 qp->qp_type == IB_QPT_RC ||
1748 qp->qp_type == IB_QPT_XRC_INI ||
1749 qp->qp_type == IB_QPT_XRC_TGT);
1750 }
1751
1752 /*
1753 * IB core internal function to perform QP attributes modification.
1754 */
_ib_modify_qp(struct ib_qp * qp,struct ib_qp_attr * attr,int attr_mask,struct ib_udata * udata)1755 static int _ib_modify_qp(struct ib_qp *qp, struct ib_qp_attr *attr,
1756 int attr_mask, struct ib_udata *udata)
1757 {
1758 u32 port = attr_mask & IB_QP_PORT ? attr->port_num : qp->port;
1759 const struct ib_gid_attr *old_sgid_attr_av;
1760 const struct ib_gid_attr *old_sgid_attr_alt_av;
1761 int ret;
1762
1763 attr->xmit_slave = NULL;
1764 if (attr_mask & IB_QP_AV) {
1765 ret = rdma_fill_sgid_attr(qp->device, &attr->ah_attr,
1766 &old_sgid_attr_av);
1767 if (ret)
1768 return ret;
1769
1770 if (attr->ah_attr.type == RDMA_AH_ATTR_TYPE_ROCE &&
1771 is_qp_type_connected(qp)) {
1772 struct net_device *slave;
1773
1774 /*
1775 * If the user provided the qp_attr then we have to
1776 * resolve it. Kerne users have to provide already
1777 * resolved rdma_ah_attr's.
1778 */
1779 if (udata) {
1780 ret = ib_resolve_eth_dmac(qp->device,
1781 &attr->ah_attr);
1782 if (ret)
1783 goto out_av;
1784 }
1785 slave = rdma_lag_get_ah_roce_slave(qp->device,
1786 &attr->ah_attr,
1787 GFP_KERNEL);
1788 if (IS_ERR(slave)) {
1789 ret = PTR_ERR(slave);
1790 goto out_av;
1791 }
1792 attr->xmit_slave = slave;
1793 }
1794 }
1795 if (attr_mask & IB_QP_ALT_PATH) {
1796 /*
1797 * FIXME: This does not track the migration state, so if the
1798 * user loads a new alternate path after the HW has migrated
1799 * from primary->alternate we will keep the wrong
1800 * references. This is OK for IB because the reference
1801 * counting does not serve any functional purpose.
1802 */
1803 ret = rdma_fill_sgid_attr(qp->device, &attr->alt_ah_attr,
1804 &old_sgid_attr_alt_av);
1805 if (ret)
1806 goto out_av;
1807
1808 /*
1809 * Today the core code can only handle alternate paths and APM
1810 * for IB. Ban them in roce mode.
1811 */
1812 if (!(rdma_protocol_ib(qp->device,
1813 attr->alt_ah_attr.port_num) &&
1814 rdma_protocol_ib(qp->device, port))) {
1815 ret = -EINVAL;
1816 goto out;
1817 }
1818 }
1819
1820 if (rdma_ib_or_roce(qp->device, port)) {
1821 if (attr_mask & IB_QP_RQ_PSN && attr->rq_psn & ~0xffffff) {
1822 dev_warn(&qp->device->dev,
1823 "%s rq_psn overflow, masking to 24 bits\n",
1824 __func__);
1825 attr->rq_psn &= 0xffffff;
1826 }
1827
1828 if (attr_mask & IB_QP_SQ_PSN && attr->sq_psn & ~0xffffff) {
1829 dev_warn(&qp->device->dev,
1830 " %s sq_psn overflow, masking to 24 bits\n",
1831 __func__);
1832 attr->sq_psn &= 0xffffff;
1833 }
1834 }
1835
1836 /*
1837 * Bind this qp to a counter automatically based on the rdma counter
1838 * rules. This only set in RST2INIT with port specified
1839 */
1840 if (!qp->counter && (attr_mask & IB_QP_PORT) &&
1841 ((attr_mask & IB_QP_STATE) && attr->qp_state == IB_QPS_INIT))
1842 rdma_counter_bind_qp_auto(qp, attr->port_num);
1843
1844 ret = ib_security_modify_qp(qp, attr, attr_mask, udata);
1845 if (ret)
1846 goto out;
1847
1848 if (attr_mask & IB_QP_PORT)
1849 qp->port = attr->port_num;
1850 if (attr_mask & IB_QP_AV)
1851 qp->av_sgid_attr =
1852 rdma_update_sgid_attr(&attr->ah_attr, qp->av_sgid_attr);
1853 if (attr_mask & IB_QP_ALT_PATH)
1854 qp->alt_path_sgid_attr = rdma_update_sgid_attr(
1855 &attr->alt_ah_attr, qp->alt_path_sgid_attr);
1856
1857 out:
1858 if (attr_mask & IB_QP_ALT_PATH)
1859 rdma_unfill_sgid_attr(&attr->alt_ah_attr, old_sgid_attr_alt_av);
1860 out_av:
1861 if (attr_mask & IB_QP_AV) {
1862 rdma_lag_put_ah_roce_slave(attr->xmit_slave);
1863 rdma_unfill_sgid_attr(&attr->ah_attr, old_sgid_attr_av);
1864 }
1865 return ret;
1866 }
1867
1868 /**
1869 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
1870 * @ib_qp: The QP to modify.
1871 * @attr: On input, specifies the QP attributes to modify. On output,
1872 * the current values of selected QP attributes are returned.
1873 * @attr_mask: A bit-mask used to specify which attributes of the QP
1874 * are being modified.
1875 * @udata: pointer to user's input output buffer information
1876 * are being modified.
1877 * It returns 0 on success and returns appropriate error code on error.
1878 */
ib_modify_qp_with_udata(struct ib_qp * ib_qp,struct ib_qp_attr * attr,int attr_mask,struct ib_udata * udata)1879 int ib_modify_qp_with_udata(struct ib_qp *ib_qp, struct ib_qp_attr *attr,
1880 int attr_mask, struct ib_udata *udata)
1881 {
1882 return _ib_modify_qp(ib_qp->real_qp, attr, attr_mask, udata);
1883 }
1884 EXPORT_SYMBOL(ib_modify_qp_with_udata);
1885
ib_get_eth_speed(struct ib_device * dev,u32 port_num,u16 * speed,u8 * width)1886 int ib_get_eth_speed(struct ib_device *dev, u32 port_num, u16 *speed, u8 *width)
1887 {
1888 int rc;
1889 u32 netdev_speed;
1890 struct net_device *netdev;
1891 struct ethtool_link_ksettings lksettings;
1892
1893 if (rdma_port_get_link_layer(dev, port_num) != IB_LINK_LAYER_ETHERNET)
1894 return -EINVAL;
1895
1896 netdev = ib_device_get_netdev(dev, port_num);
1897 if (!netdev)
1898 return -ENODEV;
1899
1900 rtnl_lock();
1901 rc = __ethtool_get_link_ksettings(netdev, &lksettings);
1902 rtnl_unlock();
1903
1904 dev_put(netdev);
1905
1906 if (!rc && lksettings.base.speed != (u32)SPEED_UNKNOWN) {
1907 netdev_speed = lksettings.base.speed;
1908 } else {
1909 netdev_speed = SPEED_1000;
1910 pr_warn("%s speed is unknown, defaulting to %u\n", netdev->name,
1911 netdev_speed);
1912 }
1913
1914 if (netdev_speed <= SPEED_1000) {
1915 *width = IB_WIDTH_1X;
1916 *speed = IB_SPEED_SDR;
1917 } else if (netdev_speed <= SPEED_10000) {
1918 *width = IB_WIDTH_1X;
1919 *speed = IB_SPEED_FDR10;
1920 } else if (netdev_speed <= SPEED_20000) {
1921 *width = IB_WIDTH_4X;
1922 *speed = IB_SPEED_DDR;
1923 } else if (netdev_speed <= SPEED_25000) {
1924 *width = IB_WIDTH_1X;
1925 *speed = IB_SPEED_EDR;
1926 } else if (netdev_speed <= SPEED_40000) {
1927 *width = IB_WIDTH_4X;
1928 *speed = IB_SPEED_FDR10;
1929 } else {
1930 *width = IB_WIDTH_4X;
1931 *speed = IB_SPEED_EDR;
1932 }
1933
1934 return 0;
1935 }
1936 EXPORT_SYMBOL(ib_get_eth_speed);
1937
ib_modify_qp(struct ib_qp * qp,struct ib_qp_attr * qp_attr,int qp_attr_mask)1938 int ib_modify_qp(struct ib_qp *qp,
1939 struct ib_qp_attr *qp_attr,
1940 int qp_attr_mask)
1941 {
1942 return _ib_modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
1943 }
1944 EXPORT_SYMBOL(ib_modify_qp);
1945
ib_query_qp(struct ib_qp * qp,struct ib_qp_attr * qp_attr,int qp_attr_mask,struct ib_qp_init_attr * qp_init_attr)1946 int ib_query_qp(struct ib_qp *qp,
1947 struct ib_qp_attr *qp_attr,
1948 int qp_attr_mask,
1949 struct ib_qp_init_attr *qp_init_attr)
1950 {
1951 qp_attr->ah_attr.grh.sgid_attr = NULL;
1952 qp_attr->alt_ah_attr.grh.sgid_attr = NULL;
1953
1954 return qp->device->ops.query_qp ?
1955 qp->device->ops.query_qp(qp->real_qp, qp_attr, qp_attr_mask,
1956 qp_init_attr) : -EOPNOTSUPP;
1957 }
1958 EXPORT_SYMBOL(ib_query_qp);
1959
ib_close_qp(struct ib_qp * qp)1960 int ib_close_qp(struct ib_qp *qp)
1961 {
1962 struct ib_qp *real_qp;
1963 unsigned long flags;
1964
1965 real_qp = qp->real_qp;
1966 if (real_qp == qp)
1967 return -EINVAL;
1968
1969 spin_lock_irqsave(&real_qp->device->qp_open_list_lock, flags);
1970 list_del(&qp->open_list);
1971 spin_unlock_irqrestore(&real_qp->device->qp_open_list_lock, flags);
1972
1973 atomic_dec(&real_qp->usecnt);
1974 if (qp->qp_sec)
1975 ib_close_shared_qp_security(qp->qp_sec);
1976 kfree(qp);
1977
1978 return 0;
1979 }
1980 EXPORT_SYMBOL(ib_close_qp);
1981
__ib_destroy_shared_qp(struct ib_qp * qp)1982 static int __ib_destroy_shared_qp(struct ib_qp *qp)
1983 {
1984 struct ib_xrcd *xrcd;
1985 struct ib_qp *real_qp;
1986 int ret;
1987
1988 real_qp = qp->real_qp;
1989 xrcd = real_qp->xrcd;
1990 down_write(&xrcd->tgt_qps_rwsem);
1991 ib_close_qp(qp);
1992 if (atomic_read(&real_qp->usecnt) == 0)
1993 xa_erase(&xrcd->tgt_qps, real_qp->qp_num);
1994 else
1995 real_qp = NULL;
1996 up_write(&xrcd->tgt_qps_rwsem);
1997
1998 if (real_qp) {
1999 ret = ib_destroy_qp(real_qp);
2000 if (!ret)
2001 atomic_dec(&xrcd->usecnt);
2002 }
2003
2004 return 0;
2005 }
2006
ib_destroy_qp_user(struct ib_qp * qp,struct ib_udata * udata)2007 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata)
2008 {
2009 const struct ib_gid_attr *alt_path_sgid_attr = qp->alt_path_sgid_attr;
2010 const struct ib_gid_attr *av_sgid_attr = qp->av_sgid_attr;
2011 struct ib_qp_security *sec;
2012 int ret;
2013
2014 WARN_ON_ONCE(qp->mrs_used > 0);
2015
2016 if (atomic_read(&qp->usecnt))
2017 return -EBUSY;
2018
2019 if (qp->real_qp != qp)
2020 return __ib_destroy_shared_qp(qp);
2021
2022 sec = qp->qp_sec;
2023 if (sec)
2024 ib_destroy_qp_security_begin(sec);
2025
2026 if (!qp->uobject)
2027 rdma_rw_cleanup_mrs(qp);
2028
2029 rdma_counter_unbind_qp(qp, true);
2030 ret = qp->device->ops.destroy_qp(qp, udata);
2031 if (ret) {
2032 if (sec)
2033 ib_destroy_qp_security_abort(sec);
2034 return ret;
2035 }
2036
2037 if (alt_path_sgid_attr)
2038 rdma_put_gid_attr(alt_path_sgid_attr);
2039 if (av_sgid_attr)
2040 rdma_put_gid_attr(av_sgid_attr);
2041
2042 ib_qp_usecnt_dec(qp);
2043 if (sec)
2044 ib_destroy_qp_security_end(sec);
2045
2046 rdma_restrack_del(&qp->res);
2047 kfree(qp);
2048 return ret;
2049 }
2050 EXPORT_SYMBOL(ib_destroy_qp_user);
2051
2052 /* Completion queues */
2053
__ib_create_cq(struct ib_device * device,ib_comp_handler comp_handler,void (* event_handler)(struct ib_event *,void *),void * cq_context,const struct ib_cq_init_attr * cq_attr,const char * caller)2054 struct ib_cq *__ib_create_cq(struct ib_device *device,
2055 ib_comp_handler comp_handler,
2056 void (*event_handler)(struct ib_event *, void *),
2057 void *cq_context,
2058 const struct ib_cq_init_attr *cq_attr,
2059 const char *caller)
2060 {
2061 struct ib_cq *cq;
2062 int ret;
2063
2064 cq = rdma_zalloc_drv_obj(device, ib_cq);
2065 if (!cq)
2066 return ERR_PTR(-ENOMEM);
2067
2068 cq->device = device;
2069 cq->uobject = NULL;
2070 cq->comp_handler = comp_handler;
2071 cq->event_handler = event_handler;
2072 cq->cq_context = cq_context;
2073 atomic_set(&cq->usecnt, 0);
2074
2075 rdma_restrack_new(&cq->res, RDMA_RESTRACK_CQ);
2076 rdma_restrack_set_name(&cq->res, caller);
2077
2078 ret = device->ops.create_cq(cq, cq_attr, NULL);
2079 if (ret) {
2080 rdma_restrack_put(&cq->res);
2081 kfree(cq);
2082 return ERR_PTR(ret);
2083 }
2084
2085 rdma_restrack_add(&cq->res);
2086 return cq;
2087 }
2088 EXPORT_SYMBOL(__ib_create_cq);
2089
rdma_set_cq_moderation(struct ib_cq * cq,u16 cq_count,u16 cq_period)2090 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period)
2091 {
2092 if (cq->shared)
2093 return -EOPNOTSUPP;
2094
2095 return cq->device->ops.modify_cq ?
2096 cq->device->ops.modify_cq(cq, cq_count,
2097 cq_period) : -EOPNOTSUPP;
2098 }
2099 EXPORT_SYMBOL(rdma_set_cq_moderation);
2100
ib_destroy_cq_user(struct ib_cq * cq,struct ib_udata * udata)2101 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata)
2102 {
2103 int ret;
2104
2105 if (WARN_ON_ONCE(cq->shared))
2106 return -EOPNOTSUPP;
2107
2108 if (atomic_read(&cq->usecnt))
2109 return -EBUSY;
2110
2111 ret = cq->device->ops.destroy_cq(cq, udata);
2112 if (ret)
2113 return ret;
2114
2115 rdma_restrack_del(&cq->res);
2116 kfree(cq);
2117 return ret;
2118 }
2119 EXPORT_SYMBOL(ib_destroy_cq_user);
2120
ib_resize_cq(struct ib_cq * cq,int cqe)2121 int ib_resize_cq(struct ib_cq *cq, int cqe)
2122 {
2123 if (cq->shared)
2124 return -EOPNOTSUPP;
2125
2126 return cq->device->ops.resize_cq ?
2127 cq->device->ops.resize_cq(cq, cqe, NULL) : -EOPNOTSUPP;
2128 }
2129 EXPORT_SYMBOL(ib_resize_cq);
2130
2131 /* Memory regions */
2132
ib_reg_user_mr(struct ib_pd * pd,u64 start,u64 length,u64 virt_addr,int access_flags)2133 struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
2134 u64 virt_addr, int access_flags)
2135 {
2136 struct ib_mr *mr;
2137
2138 if (access_flags & IB_ACCESS_ON_DEMAND) {
2139 if (!(pd->device->attrs.device_cap_flags &
2140 IB_DEVICE_ON_DEMAND_PAGING)) {
2141 pr_debug("ODP support not available\n");
2142 return ERR_PTR(-EINVAL);
2143 }
2144 }
2145
2146 mr = pd->device->ops.reg_user_mr(pd, start, length, virt_addr,
2147 access_flags, NULL);
2148
2149 if (IS_ERR(mr))
2150 return mr;
2151
2152 mr->device = pd->device;
2153 mr->pd = pd;
2154 mr->dm = NULL;
2155 atomic_inc(&pd->usecnt);
2156
2157 rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
2158 rdma_restrack_parent_name(&mr->res, &pd->res);
2159 rdma_restrack_add(&mr->res);
2160
2161 return mr;
2162 }
2163 EXPORT_SYMBOL(ib_reg_user_mr);
2164
ib_advise_mr(struct ib_pd * pd,enum ib_uverbs_advise_mr_advice advice,u32 flags,struct ib_sge * sg_list,u32 num_sge)2165 int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
2166 u32 flags, struct ib_sge *sg_list, u32 num_sge)
2167 {
2168 if (!pd->device->ops.advise_mr)
2169 return -EOPNOTSUPP;
2170
2171 if (!num_sge)
2172 return 0;
2173
2174 return pd->device->ops.advise_mr(pd, advice, flags, sg_list, num_sge,
2175 NULL);
2176 }
2177 EXPORT_SYMBOL(ib_advise_mr);
2178
ib_dereg_mr_user(struct ib_mr * mr,struct ib_udata * udata)2179 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata)
2180 {
2181 struct ib_pd *pd = mr->pd;
2182 struct ib_dm *dm = mr->dm;
2183 struct ib_sig_attrs *sig_attrs = mr->sig_attrs;
2184 int ret;
2185
2186 trace_mr_dereg(mr);
2187 rdma_restrack_del(&mr->res);
2188 ret = mr->device->ops.dereg_mr(mr, udata);
2189 if (!ret) {
2190 atomic_dec(&pd->usecnt);
2191 if (dm)
2192 atomic_dec(&dm->usecnt);
2193 kfree(sig_attrs);
2194 }
2195
2196 return ret;
2197 }
2198 EXPORT_SYMBOL(ib_dereg_mr_user);
2199
2200 /**
2201 * ib_alloc_mr() - Allocates a memory region
2202 * @pd: protection domain associated with the region
2203 * @mr_type: memory region type
2204 * @max_num_sg: maximum sg entries available for registration.
2205 *
2206 * Notes:
2207 * Memory registeration page/sg lists must not exceed max_num_sg.
2208 * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
2209 * max_num_sg * used_page_size.
2210 *
2211 */
ib_alloc_mr(struct ib_pd * pd,enum ib_mr_type mr_type,u32 max_num_sg)2212 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
2213 u32 max_num_sg)
2214 {
2215 struct ib_mr *mr;
2216
2217 if (!pd->device->ops.alloc_mr) {
2218 mr = ERR_PTR(-EOPNOTSUPP);
2219 goto out;
2220 }
2221
2222 if (mr_type == IB_MR_TYPE_INTEGRITY) {
2223 WARN_ON_ONCE(1);
2224 mr = ERR_PTR(-EINVAL);
2225 goto out;
2226 }
2227
2228 mr = pd->device->ops.alloc_mr(pd, mr_type, max_num_sg);
2229 if (IS_ERR(mr))
2230 goto out;
2231
2232 mr->device = pd->device;
2233 mr->pd = pd;
2234 mr->dm = NULL;
2235 mr->uobject = NULL;
2236 atomic_inc(&pd->usecnt);
2237 mr->need_inval = false;
2238 mr->type = mr_type;
2239 mr->sig_attrs = NULL;
2240
2241 rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
2242 rdma_restrack_parent_name(&mr->res, &pd->res);
2243 rdma_restrack_add(&mr->res);
2244 out:
2245 trace_mr_alloc(pd, mr_type, max_num_sg, mr);
2246 return mr;
2247 }
2248 EXPORT_SYMBOL(ib_alloc_mr);
2249
2250 /**
2251 * ib_alloc_mr_integrity() - Allocates an integrity memory region
2252 * @pd: protection domain associated with the region
2253 * @max_num_data_sg: maximum data sg entries available for registration
2254 * @max_num_meta_sg: maximum metadata sg entries available for
2255 * registration
2256 *
2257 * Notes:
2258 * Memory registration page/sg lists must not exceed max_num_sg,
2259 * also the integrity page/sg lists must not exceed max_num_meta_sg.
2260 *
2261 */
ib_alloc_mr_integrity(struct ib_pd * pd,u32 max_num_data_sg,u32 max_num_meta_sg)2262 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
2263 u32 max_num_data_sg,
2264 u32 max_num_meta_sg)
2265 {
2266 struct ib_mr *mr;
2267 struct ib_sig_attrs *sig_attrs;
2268
2269 if (!pd->device->ops.alloc_mr_integrity ||
2270 !pd->device->ops.map_mr_sg_pi) {
2271 mr = ERR_PTR(-EOPNOTSUPP);
2272 goto out;
2273 }
2274
2275 if (!max_num_meta_sg) {
2276 mr = ERR_PTR(-EINVAL);
2277 goto out;
2278 }
2279
2280 sig_attrs = kzalloc(sizeof(struct ib_sig_attrs), GFP_KERNEL);
2281 if (!sig_attrs) {
2282 mr = ERR_PTR(-ENOMEM);
2283 goto out;
2284 }
2285
2286 mr = pd->device->ops.alloc_mr_integrity(pd, max_num_data_sg,
2287 max_num_meta_sg);
2288 if (IS_ERR(mr)) {
2289 kfree(sig_attrs);
2290 goto out;
2291 }
2292
2293 mr->device = pd->device;
2294 mr->pd = pd;
2295 mr->dm = NULL;
2296 mr->uobject = NULL;
2297 atomic_inc(&pd->usecnt);
2298 mr->need_inval = false;
2299 mr->type = IB_MR_TYPE_INTEGRITY;
2300 mr->sig_attrs = sig_attrs;
2301
2302 rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
2303 rdma_restrack_parent_name(&mr->res, &pd->res);
2304 rdma_restrack_add(&mr->res);
2305 out:
2306 trace_mr_integ_alloc(pd, max_num_data_sg, max_num_meta_sg, mr);
2307 return mr;
2308 }
2309 EXPORT_SYMBOL(ib_alloc_mr_integrity);
2310
2311 /* Multicast groups */
2312
is_valid_mcast_lid(struct ib_qp * qp,u16 lid)2313 static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid)
2314 {
2315 struct ib_qp_init_attr init_attr = {};
2316 struct ib_qp_attr attr = {};
2317 int num_eth_ports = 0;
2318 unsigned int port;
2319
2320 /* If QP state >= init, it is assigned to a port and we can check this
2321 * port only.
2322 */
2323 if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) {
2324 if (attr.qp_state >= IB_QPS_INIT) {
2325 if (rdma_port_get_link_layer(qp->device, attr.port_num) !=
2326 IB_LINK_LAYER_INFINIBAND)
2327 return true;
2328 goto lid_check;
2329 }
2330 }
2331
2332 /* Can't get a quick answer, iterate over all ports */
2333 rdma_for_each_port(qp->device, port)
2334 if (rdma_port_get_link_layer(qp->device, port) !=
2335 IB_LINK_LAYER_INFINIBAND)
2336 num_eth_ports++;
2337
2338 /* If we have at lease one Ethernet port, RoCE annex declares that
2339 * multicast LID should be ignored. We can't tell at this step if the
2340 * QP belongs to an IB or Ethernet port.
2341 */
2342 if (num_eth_ports)
2343 return true;
2344
2345 /* If all the ports are IB, we can check according to IB spec. */
2346 lid_check:
2347 return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
2348 lid == be16_to_cpu(IB_LID_PERMISSIVE));
2349 }
2350
ib_attach_mcast(struct ib_qp * qp,union ib_gid * gid,u16 lid)2351 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2352 {
2353 int ret;
2354
2355 if (!qp->device->ops.attach_mcast)
2356 return -EOPNOTSUPP;
2357
2358 if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2359 qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2360 return -EINVAL;
2361
2362 ret = qp->device->ops.attach_mcast(qp, gid, lid);
2363 if (!ret)
2364 atomic_inc(&qp->usecnt);
2365 return ret;
2366 }
2367 EXPORT_SYMBOL(ib_attach_mcast);
2368
ib_detach_mcast(struct ib_qp * qp,union ib_gid * gid,u16 lid)2369 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2370 {
2371 int ret;
2372
2373 if (!qp->device->ops.detach_mcast)
2374 return -EOPNOTSUPP;
2375
2376 if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2377 qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2378 return -EINVAL;
2379
2380 ret = qp->device->ops.detach_mcast(qp, gid, lid);
2381 if (!ret)
2382 atomic_dec(&qp->usecnt);
2383 return ret;
2384 }
2385 EXPORT_SYMBOL(ib_detach_mcast);
2386
2387 /**
2388 * ib_alloc_xrcd_user - Allocates an XRC domain.
2389 * @device: The device on which to allocate the XRC domain.
2390 * @inode: inode to connect XRCD
2391 * @udata: Valid user data or NULL for kernel object
2392 */
ib_alloc_xrcd_user(struct ib_device * device,struct inode * inode,struct ib_udata * udata)2393 struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device,
2394 struct inode *inode, struct ib_udata *udata)
2395 {
2396 struct ib_xrcd *xrcd;
2397 int ret;
2398
2399 if (!device->ops.alloc_xrcd)
2400 return ERR_PTR(-EOPNOTSUPP);
2401
2402 xrcd = rdma_zalloc_drv_obj(device, ib_xrcd);
2403 if (!xrcd)
2404 return ERR_PTR(-ENOMEM);
2405
2406 xrcd->device = device;
2407 xrcd->inode = inode;
2408 atomic_set(&xrcd->usecnt, 0);
2409 init_rwsem(&xrcd->tgt_qps_rwsem);
2410 xa_init(&xrcd->tgt_qps);
2411
2412 ret = device->ops.alloc_xrcd(xrcd, udata);
2413 if (ret)
2414 goto err;
2415 return xrcd;
2416 err:
2417 kfree(xrcd);
2418 return ERR_PTR(ret);
2419 }
2420 EXPORT_SYMBOL(ib_alloc_xrcd_user);
2421
2422 /**
2423 * ib_dealloc_xrcd_user - Deallocates an XRC domain.
2424 * @xrcd: The XRC domain to deallocate.
2425 * @udata: Valid user data or NULL for kernel object
2426 */
ib_dealloc_xrcd_user(struct ib_xrcd * xrcd,struct ib_udata * udata)2427 int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata)
2428 {
2429 int ret;
2430
2431 if (atomic_read(&xrcd->usecnt))
2432 return -EBUSY;
2433
2434 WARN_ON(!xa_empty(&xrcd->tgt_qps));
2435 ret = xrcd->device->ops.dealloc_xrcd(xrcd, udata);
2436 if (ret)
2437 return ret;
2438 kfree(xrcd);
2439 return ret;
2440 }
2441 EXPORT_SYMBOL(ib_dealloc_xrcd_user);
2442
2443 /**
2444 * ib_create_wq - Creates a WQ associated with the specified protection
2445 * domain.
2446 * @pd: The protection domain associated with the WQ.
2447 * @wq_attr: A list of initial attributes required to create the
2448 * WQ. If WQ creation succeeds, then the attributes are updated to
2449 * the actual capabilities of the created WQ.
2450 *
2451 * wq_attr->max_wr and wq_attr->max_sge determine
2452 * the requested size of the WQ, and set to the actual values allocated
2453 * on return.
2454 * If ib_create_wq() succeeds, then max_wr and max_sge will always be
2455 * at least as large as the requested values.
2456 */
ib_create_wq(struct ib_pd * pd,struct ib_wq_init_attr * wq_attr)2457 struct ib_wq *ib_create_wq(struct ib_pd *pd,
2458 struct ib_wq_init_attr *wq_attr)
2459 {
2460 struct ib_wq *wq;
2461
2462 if (!pd->device->ops.create_wq)
2463 return ERR_PTR(-EOPNOTSUPP);
2464
2465 wq = pd->device->ops.create_wq(pd, wq_attr, NULL);
2466 if (!IS_ERR(wq)) {
2467 wq->event_handler = wq_attr->event_handler;
2468 wq->wq_context = wq_attr->wq_context;
2469 wq->wq_type = wq_attr->wq_type;
2470 wq->cq = wq_attr->cq;
2471 wq->device = pd->device;
2472 wq->pd = pd;
2473 wq->uobject = NULL;
2474 atomic_inc(&pd->usecnt);
2475 atomic_inc(&wq_attr->cq->usecnt);
2476 atomic_set(&wq->usecnt, 0);
2477 }
2478 return wq;
2479 }
2480 EXPORT_SYMBOL(ib_create_wq);
2481
2482 /**
2483 * ib_destroy_wq_user - Destroys the specified user WQ.
2484 * @wq: The WQ to destroy.
2485 * @udata: Valid user data
2486 */
ib_destroy_wq_user(struct ib_wq * wq,struct ib_udata * udata)2487 int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata)
2488 {
2489 struct ib_cq *cq = wq->cq;
2490 struct ib_pd *pd = wq->pd;
2491 int ret;
2492
2493 if (atomic_read(&wq->usecnt))
2494 return -EBUSY;
2495
2496 ret = wq->device->ops.destroy_wq(wq, udata);
2497 if (ret)
2498 return ret;
2499
2500 atomic_dec(&pd->usecnt);
2501 atomic_dec(&cq->usecnt);
2502 return ret;
2503 }
2504 EXPORT_SYMBOL(ib_destroy_wq_user);
2505
ib_check_mr_status(struct ib_mr * mr,u32 check_mask,struct ib_mr_status * mr_status)2506 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
2507 struct ib_mr_status *mr_status)
2508 {
2509 if (!mr->device->ops.check_mr_status)
2510 return -EOPNOTSUPP;
2511
2512 return mr->device->ops.check_mr_status(mr, check_mask, mr_status);
2513 }
2514 EXPORT_SYMBOL(ib_check_mr_status);
2515
ib_set_vf_link_state(struct ib_device * device,int vf,u32 port,int state)2516 int ib_set_vf_link_state(struct ib_device *device, int vf, u32 port,
2517 int state)
2518 {
2519 if (!device->ops.set_vf_link_state)
2520 return -EOPNOTSUPP;
2521
2522 return device->ops.set_vf_link_state(device, vf, port, state);
2523 }
2524 EXPORT_SYMBOL(ib_set_vf_link_state);
2525
ib_get_vf_config(struct ib_device * device,int vf,u32 port,struct ifla_vf_info * info)2526 int ib_get_vf_config(struct ib_device *device, int vf, u32 port,
2527 struct ifla_vf_info *info)
2528 {
2529 if (!device->ops.get_vf_config)
2530 return -EOPNOTSUPP;
2531
2532 return device->ops.get_vf_config(device, vf, port, info);
2533 }
2534 EXPORT_SYMBOL(ib_get_vf_config);
2535
ib_get_vf_stats(struct ib_device * device,int vf,u32 port,struct ifla_vf_stats * stats)2536 int ib_get_vf_stats(struct ib_device *device, int vf, u32 port,
2537 struct ifla_vf_stats *stats)
2538 {
2539 if (!device->ops.get_vf_stats)
2540 return -EOPNOTSUPP;
2541
2542 return device->ops.get_vf_stats(device, vf, port, stats);
2543 }
2544 EXPORT_SYMBOL(ib_get_vf_stats);
2545
ib_set_vf_guid(struct ib_device * device,int vf,u32 port,u64 guid,int type)2546 int ib_set_vf_guid(struct ib_device *device, int vf, u32 port, u64 guid,
2547 int type)
2548 {
2549 if (!device->ops.set_vf_guid)
2550 return -EOPNOTSUPP;
2551
2552 return device->ops.set_vf_guid(device, vf, port, guid, type);
2553 }
2554 EXPORT_SYMBOL(ib_set_vf_guid);
2555
ib_get_vf_guid(struct ib_device * device,int vf,u32 port,struct ifla_vf_guid * node_guid,struct ifla_vf_guid * port_guid)2556 int ib_get_vf_guid(struct ib_device *device, int vf, u32 port,
2557 struct ifla_vf_guid *node_guid,
2558 struct ifla_vf_guid *port_guid)
2559 {
2560 if (!device->ops.get_vf_guid)
2561 return -EOPNOTSUPP;
2562
2563 return device->ops.get_vf_guid(device, vf, port, node_guid, port_guid);
2564 }
2565 EXPORT_SYMBOL(ib_get_vf_guid);
2566 /**
2567 * ib_map_mr_sg_pi() - Map the dma mapped SG lists for PI (protection
2568 * information) and set an appropriate memory region for registration.
2569 * @mr: memory region
2570 * @data_sg: dma mapped scatterlist for data
2571 * @data_sg_nents: number of entries in data_sg
2572 * @data_sg_offset: offset in bytes into data_sg
2573 * @meta_sg: dma mapped scatterlist for metadata
2574 * @meta_sg_nents: number of entries in meta_sg
2575 * @meta_sg_offset: offset in bytes into meta_sg
2576 * @page_size: page vector desired page size
2577 *
2578 * Constraints:
2579 * - The MR must be allocated with type IB_MR_TYPE_INTEGRITY.
2580 *
2581 * Return: 0 on success.
2582 *
2583 * After this completes successfully, the memory region
2584 * is ready for registration.
2585 */
ib_map_mr_sg_pi(struct ib_mr * mr,struct scatterlist * data_sg,int data_sg_nents,unsigned int * data_sg_offset,struct scatterlist * meta_sg,int meta_sg_nents,unsigned int * meta_sg_offset,unsigned int page_size)2586 int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
2587 int data_sg_nents, unsigned int *data_sg_offset,
2588 struct scatterlist *meta_sg, int meta_sg_nents,
2589 unsigned int *meta_sg_offset, unsigned int page_size)
2590 {
2591 if (unlikely(!mr->device->ops.map_mr_sg_pi ||
2592 WARN_ON_ONCE(mr->type != IB_MR_TYPE_INTEGRITY)))
2593 return -EOPNOTSUPP;
2594
2595 mr->page_size = page_size;
2596
2597 return mr->device->ops.map_mr_sg_pi(mr, data_sg, data_sg_nents,
2598 data_sg_offset, meta_sg,
2599 meta_sg_nents, meta_sg_offset);
2600 }
2601 EXPORT_SYMBOL(ib_map_mr_sg_pi);
2602
2603 /**
2604 * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
2605 * and set it the memory region.
2606 * @mr: memory region
2607 * @sg: dma mapped scatterlist
2608 * @sg_nents: number of entries in sg
2609 * @sg_offset: offset in bytes into sg
2610 * @page_size: page vector desired page size
2611 *
2612 * Constraints:
2613 *
2614 * - The first sg element is allowed to have an offset.
2615 * - Each sg element must either be aligned to page_size or virtually
2616 * contiguous to the previous element. In case an sg element has a
2617 * non-contiguous offset, the mapping prefix will not include it.
2618 * - The last sg element is allowed to have length less than page_size.
2619 * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
2620 * then only max_num_sg entries will be mapped.
2621 * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
2622 * constraints holds and the page_size argument is ignored.
2623 *
2624 * Returns the number of sg elements that were mapped to the memory region.
2625 *
2626 * After this completes successfully, the memory region
2627 * is ready for registration.
2628 */
ib_map_mr_sg(struct ib_mr * mr,struct scatterlist * sg,int sg_nents,unsigned int * sg_offset,unsigned int page_size)2629 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2630 unsigned int *sg_offset, unsigned int page_size)
2631 {
2632 if (unlikely(!mr->device->ops.map_mr_sg))
2633 return -EOPNOTSUPP;
2634
2635 mr->page_size = page_size;
2636
2637 return mr->device->ops.map_mr_sg(mr, sg, sg_nents, sg_offset);
2638 }
2639 EXPORT_SYMBOL(ib_map_mr_sg);
2640
2641 /**
2642 * ib_sg_to_pages() - Convert the largest prefix of a sg list
2643 * to a page vector
2644 * @mr: memory region
2645 * @sgl: dma mapped scatterlist
2646 * @sg_nents: number of entries in sg
2647 * @sg_offset_p: ==== =======================================================
2648 * IN start offset in bytes into sg
2649 * OUT offset in bytes for element n of the sg of the first
2650 * byte that has not been processed where n is the return
2651 * value of this function.
2652 * ==== =======================================================
2653 * @set_page: driver page assignment function pointer
2654 *
2655 * Core service helper for drivers to convert the largest
2656 * prefix of given sg list to a page vector. The sg list
2657 * prefix converted is the prefix that meet the requirements
2658 * of ib_map_mr_sg.
2659 *
2660 * Returns the number of sg elements that were assigned to
2661 * a page vector.
2662 */
ib_sg_to_pages(struct ib_mr * mr,struct scatterlist * sgl,int sg_nents,unsigned int * sg_offset_p,int (* set_page)(struct ib_mr *,u64))2663 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
2664 unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
2665 {
2666 struct scatterlist *sg;
2667 u64 last_end_dma_addr = 0;
2668 unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2669 unsigned int last_page_off = 0;
2670 u64 page_mask = ~((u64)mr->page_size - 1);
2671 int i, ret;
2672
2673 if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
2674 return -EINVAL;
2675
2676 mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
2677 mr->length = 0;
2678
2679 for_each_sg(sgl, sg, sg_nents, i) {
2680 u64 dma_addr = sg_dma_address(sg) + sg_offset;
2681 u64 prev_addr = dma_addr;
2682 unsigned int dma_len = sg_dma_len(sg) - sg_offset;
2683 u64 end_dma_addr = dma_addr + dma_len;
2684 u64 page_addr = dma_addr & page_mask;
2685
2686 /*
2687 * For the second and later elements, check whether either the
2688 * end of element i-1 or the start of element i is not aligned
2689 * on a page boundary.
2690 */
2691 if (i && (last_page_off != 0 || page_addr != dma_addr)) {
2692 /* Stop mapping if there is a gap. */
2693 if (last_end_dma_addr != dma_addr)
2694 break;
2695
2696 /*
2697 * Coalesce this element with the last. If it is small
2698 * enough just update mr->length. Otherwise start
2699 * mapping from the next page.
2700 */
2701 goto next_page;
2702 }
2703
2704 do {
2705 ret = set_page(mr, page_addr);
2706 if (unlikely(ret < 0)) {
2707 sg_offset = prev_addr - sg_dma_address(sg);
2708 mr->length += prev_addr - dma_addr;
2709 if (sg_offset_p)
2710 *sg_offset_p = sg_offset;
2711 return i || sg_offset ? i : ret;
2712 }
2713 prev_addr = page_addr;
2714 next_page:
2715 page_addr += mr->page_size;
2716 } while (page_addr < end_dma_addr);
2717
2718 mr->length += dma_len;
2719 last_end_dma_addr = end_dma_addr;
2720 last_page_off = end_dma_addr & ~page_mask;
2721
2722 sg_offset = 0;
2723 }
2724
2725 if (sg_offset_p)
2726 *sg_offset_p = 0;
2727 return i;
2728 }
2729 EXPORT_SYMBOL(ib_sg_to_pages);
2730
2731 struct ib_drain_cqe {
2732 struct ib_cqe cqe;
2733 struct completion done;
2734 };
2735
ib_drain_qp_done(struct ib_cq * cq,struct ib_wc * wc)2736 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
2737 {
2738 struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
2739 cqe);
2740
2741 complete(&cqe->done);
2742 }
2743
2744 /*
2745 * Post a WR and block until its completion is reaped for the SQ.
2746 */
__ib_drain_sq(struct ib_qp * qp)2747 static void __ib_drain_sq(struct ib_qp *qp)
2748 {
2749 struct ib_cq *cq = qp->send_cq;
2750 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2751 struct ib_drain_cqe sdrain;
2752 struct ib_rdma_wr swr = {
2753 .wr = {
2754 .next = NULL,
2755 { .wr_cqe = &sdrain.cqe, },
2756 .opcode = IB_WR_RDMA_WRITE,
2757 },
2758 };
2759 int ret;
2760
2761 ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2762 if (ret) {
2763 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2764 return;
2765 }
2766
2767 sdrain.cqe.done = ib_drain_qp_done;
2768 init_completion(&sdrain.done);
2769
2770 ret = ib_post_send(qp, &swr.wr, NULL);
2771 if (ret) {
2772 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2773 return;
2774 }
2775
2776 if (cq->poll_ctx == IB_POLL_DIRECT)
2777 while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0)
2778 ib_process_cq_direct(cq, -1);
2779 else
2780 wait_for_completion(&sdrain.done);
2781 }
2782
2783 /*
2784 * Post a WR and block until its completion is reaped for the RQ.
2785 */
__ib_drain_rq(struct ib_qp * qp)2786 static void __ib_drain_rq(struct ib_qp *qp)
2787 {
2788 struct ib_cq *cq = qp->recv_cq;
2789 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2790 struct ib_drain_cqe rdrain;
2791 struct ib_recv_wr rwr = {};
2792 int ret;
2793
2794 ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2795 if (ret) {
2796 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2797 return;
2798 }
2799
2800 rwr.wr_cqe = &rdrain.cqe;
2801 rdrain.cqe.done = ib_drain_qp_done;
2802 init_completion(&rdrain.done);
2803
2804 ret = ib_post_recv(qp, &rwr, NULL);
2805 if (ret) {
2806 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2807 return;
2808 }
2809
2810 if (cq->poll_ctx == IB_POLL_DIRECT)
2811 while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0)
2812 ib_process_cq_direct(cq, -1);
2813 else
2814 wait_for_completion(&rdrain.done);
2815 }
2816
2817 /**
2818 * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
2819 * application.
2820 * @qp: queue pair to drain
2821 *
2822 * If the device has a provider-specific drain function, then
2823 * call that. Otherwise call the generic drain function
2824 * __ib_drain_sq().
2825 *
2826 * The caller must:
2827 *
2828 * ensure there is room in the CQ and SQ for the drain work request and
2829 * completion.
2830 *
2831 * allocate the CQ using ib_alloc_cq().
2832 *
2833 * ensure that there are no other contexts that are posting WRs concurrently.
2834 * Otherwise the drain is not guaranteed.
2835 */
ib_drain_sq(struct ib_qp * qp)2836 void ib_drain_sq(struct ib_qp *qp)
2837 {
2838 if (qp->device->ops.drain_sq)
2839 qp->device->ops.drain_sq(qp);
2840 else
2841 __ib_drain_sq(qp);
2842 trace_cq_drain_complete(qp->send_cq);
2843 }
2844 EXPORT_SYMBOL(ib_drain_sq);
2845
2846 /**
2847 * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
2848 * application.
2849 * @qp: queue pair to drain
2850 *
2851 * If the device has a provider-specific drain function, then
2852 * call that. Otherwise call the generic drain function
2853 * __ib_drain_rq().
2854 *
2855 * The caller must:
2856 *
2857 * ensure there is room in the CQ and RQ for the drain work request and
2858 * completion.
2859 *
2860 * allocate the CQ using ib_alloc_cq().
2861 *
2862 * ensure that there are no other contexts that are posting WRs concurrently.
2863 * Otherwise the drain is not guaranteed.
2864 */
ib_drain_rq(struct ib_qp * qp)2865 void ib_drain_rq(struct ib_qp *qp)
2866 {
2867 if (qp->device->ops.drain_rq)
2868 qp->device->ops.drain_rq(qp);
2869 else
2870 __ib_drain_rq(qp);
2871 trace_cq_drain_complete(qp->recv_cq);
2872 }
2873 EXPORT_SYMBOL(ib_drain_rq);
2874
2875 /**
2876 * ib_drain_qp() - Block until all CQEs have been consumed by the
2877 * application on both the RQ and SQ.
2878 * @qp: queue pair to drain
2879 *
2880 * The caller must:
2881 *
2882 * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
2883 * and completions.
2884 *
2885 * allocate the CQs using ib_alloc_cq().
2886 *
2887 * ensure that there are no other contexts that are posting WRs concurrently.
2888 * Otherwise the drain is not guaranteed.
2889 */
ib_drain_qp(struct ib_qp * qp)2890 void ib_drain_qp(struct ib_qp *qp)
2891 {
2892 ib_drain_sq(qp);
2893 if (!qp->srq)
2894 ib_drain_rq(qp);
2895 }
2896 EXPORT_SYMBOL(ib_drain_qp);
2897
rdma_alloc_netdev(struct ib_device * device,u32 port_num,enum rdma_netdev_t type,const char * name,unsigned char name_assign_type,void (* setup)(struct net_device *))2898 struct net_device *rdma_alloc_netdev(struct ib_device *device, u32 port_num,
2899 enum rdma_netdev_t type, const char *name,
2900 unsigned char name_assign_type,
2901 void (*setup)(struct net_device *))
2902 {
2903 struct rdma_netdev_alloc_params params;
2904 struct net_device *netdev;
2905 int rc;
2906
2907 if (!device->ops.rdma_netdev_get_params)
2908 return ERR_PTR(-EOPNOTSUPP);
2909
2910 rc = device->ops.rdma_netdev_get_params(device, port_num, type,
2911 ¶ms);
2912 if (rc)
2913 return ERR_PTR(rc);
2914
2915 netdev = alloc_netdev_mqs(params.sizeof_priv, name, name_assign_type,
2916 setup, params.txqs, params.rxqs);
2917 if (!netdev)
2918 return ERR_PTR(-ENOMEM);
2919
2920 return netdev;
2921 }
2922 EXPORT_SYMBOL(rdma_alloc_netdev);
2923
rdma_init_netdev(struct ib_device * device,u32 port_num,enum rdma_netdev_t type,const char * name,unsigned char name_assign_type,void (* setup)(struct net_device *),struct net_device * netdev)2924 int rdma_init_netdev(struct ib_device *device, u32 port_num,
2925 enum rdma_netdev_t type, const char *name,
2926 unsigned char name_assign_type,
2927 void (*setup)(struct net_device *),
2928 struct net_device *netdev)
2929 {
2930 struct rdma_netdev_alloc_params params;
2931 int rc;
2932
2933 if (!device->ops.rdma_netdev_get_params)
2934 return -EOPNOTSUPP;
2935
2936 rc = device->ops.rdma_netdev_get_params(device, port_num, type,
2937 ¶ms);
2938 if (rc)
2939 return rc;
2940
2941 return params.initialize_rdma_netdev(device, port_num,
2942 netdev, params.param);
2943 }
2944 EXPORT_SYMBOL(rdma_init_netdev);
2945
__rdma_block_iter_start(struct ib_block_iter * biter,struct scatterlist * sglist,unsigned int nents,unsigned long pgsz)2946 void __rdma_block_iter_start(struct ib_block_iter *biter,
2947 struct scatterlist *sglist, unsigned int nents,
2948 unsigned long pgsz)
2949 {
2950 memset(biter, 0, sizeof(struct ib_block_iter));
2951 biter->__sg = sglist;
2952 biter->__sg_nents = nents;
2953
2954 /* Driver provides best block size to use */
2955 biter->__pg_bit = __fls(pgsz);
2956 }
2957 EXPORT_SYMBOL(__rdma_block_iter_start);
2958
__rdma_block_iter_next(struct ib_block_iter * biter)2959 bool __rdma_block_iter_next(struct ib_block_iter *biter)
2960 {
2961 unsigned int block_offset;
2962
2963 if (!biter->__sg_nents || !biter->__sg)
2964 return false;
2965
2966 biter->__dma_addr = sg_dma_address(biter->__sg) + biter->__sg_advance;
2967 block_offset = biter->__dma_addr & (BIT_ULL(biter->__pg_bit) - 1);
2968 biter->__sg_advance += BIT_ULL(biter->__pg_bit) - block_offset;
2969
2970 if (biter->__sg_advance >= sg_dma_len(biter->__sg)) {
2971 biter->__sg_advance = 0;
2972 biter->__sg = sg_next(biter->__sg);
2973 biter->__sg_nents--;
2974 }
2975
2976 return true;
2977 }
2978 EXPORT_SYMBOL(__rdma_block_iter_next);
2979