1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * ec.c - ACPI Embedded Controller Driver (v3)
4 *
5 * Copyright (C) 2001-2015 Intel Corporation
6 * Author: 2014, 2015 Lv Zheng <lv.zheng@intel.com>
7 * 2006, 2007 Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>
8 * 2006 Denis Sadykov <denis.m.sadykov@intel.com>
9 * 2004 Luming Yu <luming.yu@intel.com>
10 * 2001, 2002 Andy Grover <andrew.grover@intel.com>
11 * 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
12 * Copyright (C) 2008 Alexey Starikovskiy <astarikovskiy@suse.de>
13 */
14
15 /* Uncomment next line to get verbose printout */
16 /* #define DEBUG */
17 #define pr_fmt(fmt) "ACPI: EC: " fmt
18
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/init.h>
22 #include <linux/types.h>
23 #include <linux/delay.h>
24 #include <linux/interrupt.h>
25 #include <linux/list.h>
26 #include <linux/spinlock.h>
27 #include <linux/slab.h>
28 #include <linux/suspend.h>
29 #include <linux/acpi.h>
30 #include <linux/dmi.h>
31 #include <asm/io.h>
32
33 #include "internal.h"
34
35 #define ACPI_EC_CLASS "embedded_controller"
36 #define ACPI_EC_DEVICE_NAME "Embedded Controller"
37
38 /* EC status register */
39 #define ACPI_EC_FLAG_OBF 0x01 /* Output buffer full */
40 #define ACPI_EC_FLAG_IBF 0x02 /* Input buffer full */
41 #define ACPI_EC_FLAG_CMD 0x08 /* Input buffer contains a command */
42 #define ACPI_EC_FLAG_BURST 0x10 /* burst mode */
43 #define ACPI_EC_FLAG_SCI 0x20 /* EC-SCI occurred */
44
45 /*
46 * The SCI_EVT clearing timing is not defined by the ACPI specification.
47 * This leads to lots of practical timing issues for the host EC driver.
48 * The following variations are defined (from the target EC firmware's
49 * perspective):
50 * STATUS: After indicating SCI_EVT edge triggered IRQ to the host, the
51 * target can clear SCI_EVT at any time so long as the host can see
52 * the indication by reading the status register (EC_SC). So the
53 * host should re-check SCI_EVT after the first time the SCI_EVT
54 * indication is seen, which is the same time the query request
55 * (QR_EC) is written to the command register (EC_CMD). SCI_EVT set
56 * at any later time could indicate another event. Normally such
57 * kind of EC firmware has implemented an event queue and will
58 * return 0x00 to indicate "no outstanding event".
59 * QUERY: After seeing the query request (QR_EC) written to the command
60 * register (EC_CMD) by the host and having prepared the responding
61 * event value in the data register (EC_DATA), the target can safely
62 * clear SCI_EVT because the target can confirm that the current
63 * event is being handled by the host. The host then should check
64 * SCI_EVT right after reading the event response from the data
65 * register (EC_DATA).
66 * EVENT: After seeing the event response read from the data register
67 * (EC_DATA) by the host, the target can clear SCI_EVT. As the
68 * target requires time to notice the change in the data register
69 * (EC_DATA), the host may be required to wait additional guarding
70 * time before checking the SCI_EVT again. Such guarding may not be
71 * necessary if the host is notified via another IRQ.
72 */
73 #define ACPI_EC_EVT_TIMING_STATUS 0x00
74 #define ACPI_EC_EVT_TIMING_QUERY 0x01
75 #define ACPI_EC_EVT_TIMING_EVENT 0x02
76
77 /* EC commands */
78 enum ec_command {
79 ACPI_EC_COMMAND_READ = 0x80,
80 ACPI_EC_COMMAND_WRITE = 0x81,
81 ACPI_EC_BURST_ENABLE = 0x82,
82 ACPI_EC_BURST_DISABLE = 0x83,
83 ACPI_EC_COMMAND_QUERY = 0x84,
84 };
85
86 #define ACPI_EC_DELAY 500 /* Wait 500ms max. during EC ops */
87 #define ACPI_EC_UDELAY_GLK 1000 /* Wait 1ms max. to get global lock */
88 #define ACPI_EC_UDELAY_POLL 550 /* Wait 1ms for EC transaction polling */
89 #define ACPI_EC_CLEAR_MAX 100 /* Maximum number of events to query
90 * when trying to clear the EC */
91 #define ACPI_EC_MAX_QUERIES 16 /* Maximum number of parallel queries */
92
93 enum {
94 EC_FLAGS_QUERY_ENABLED, /* Query is enabled */
95 EC_FLAGS_QUERY_PENDING, /* Query is pending */
96 EC_FLAGS_QUERY_GUARDING, /* Guard for SCI_EVT check */
97 EC_FLAGS_EVENT_HANDLER_INSTALLED, /* Event handler installed */
98 EC_FLAGS_EC_HANDLER_INSTALLED, /* OpReg handler installed */
99 EC_FLAGS_QUERY_METHODS_INSTALLED, /* _Qxx handlers installed */
100 EC_FLAGS_STARTED, /* Driver is started */
101 EC_FLAGS_STOPPED, /* Driver is stopped */
102 EC_FLAGS_EVENTS_MASKED, /* Events masked */
103 };
104
105 #define ACPI_EC_COMMAND_POLL 0x01 /* Available for command byte */
106 #define ACPI_EC_COMMAND_COMPLETE 0x02 /* Completed last byte */
107
108 /* ec.c is compiled in acpi namespace so this shows up as acpi.ec_delay param */
109 static unsigned int ec_delay __read_mostly = ACPI_EC_DELAY;
110 module_param(ec_delay, uint, 0644);
111 MODULE_PARM_DESC(ec_delay, "Timeout(ms) waited until an EC command completes");
112
113 static unsigned int ec_max_queries __read_mostly = ACPI_EC_MAX_QUERIES;
114 module_param(ec_max_queries, uint, 0644);
115 MODULE_PARM_DESC(ec_max_queries, "Maximum parallel _Qxx evaluations");
116
117 static bool ec_busy_polling __read_mostly;
118 module_param(ec_busy_polling, bool, 0644);
119 MODULE_PARM_DESC(ec_busy_polling, "Use busy polling to advance EC transaction");
120
121 static unsigned int ec_polling_guard __read_mostly = ACPI_EC_UDELAY_POLL;
122 module_param(ec_polling_guard, uint, 0644);
123 MODULE_PARM_DESC(ec_polling_guard, "Guard time(us) between EC accesses in polling modes");
124
125 static unsigned int ec_event_clearing __read_mostly = ACPI_EC_EVT_TIMING_QUERY;
126
127 /*
128 * If the number of false interrupts per one transaction exceeds
129 * this threshold, will think there is a GPE storm happened and
130 * will disable the GPE for normal transaction.
131 */
132 static unsigned int ec_storm_threshold __read_mostly = 8;
133 module_param(ec_storm_threshold, uint, 0644);
134 MODULE_PARM_DESC(ec_storm_threshold, "Maxim false GPE numbers not considered as GPE storm");
135
136 static bool ec_freeze_events __read_mostly = false;
137 module_param(ec_freeze_events, bool, 0644);
138 MODULE_PARM_DESC(ec_freeze_events, "Disabling event handling during suspend/resume");
139
140 static bool ec_no_wakeup __read_mostly;
141 module_param(ec_no_wakeup, bool, 0644);
142 MODULE_PARM_DESC(ec_no_wakeup, "Do not wake up from suspend-to-idle");
143
144 struct acpi_ec_query_handler {
145 struct list_head node;
146 acpi_ec_query_func func;
147 acpi_handle handle;
148 void *data;
149 u8 query_bit;
150 struct kref kref;
151 };
152
153 struct transaction {
154 const u8 *wdata;
155 u8 *rdata;
156 unsigned short irq_count;
157 u8 command;
158 u8 wi;
159 u8 ri;
160 u8 wlen;
161 u8 rlen;
162 u8 flags;
163 };
164
165 struct acpi_ec_query {
166 struct transaction transaction;
167 struct work_struct work;
168 struct acpi_ec_query_handler *handler;
169 };
170
171 static int acpi_ec_query(struct acpi_ec *ec, u8 *data);
172 static void advance_transaction(struct acpi_ec *ec);
173 static void acpi_ec_event_handler(struct work_struct *work);
174 static void acpi_ec_event_processor(struct work_struct *work);
175
176 struct acpi_ec *first_ec;
177 EXPORT_SYMBOL(first_ec);
178
179 static struct acpi_ec *boot_ec;
180 static bool boot_ec_is_ecdt = false;
181 static struct workqueue_struct *ec_wq;
182 static struct workqueue_struct *ec_query_wq;
183
184 static int EC_FLAGS_CORRECT_ECDT; /* Needs ECDT port address correction */
185 static int EC_FLAGS_IGNORE_DSDT_GPE; /* Needs ECDT GPE as correction setting */
186 static int EC_FLAGS_CLEAR_ON_RESUME; /* Needs acpi_ec_clear() on boot/resume */
187
188 /* --------------------------------------------------------------------------
189 * Logging/Debugging
190 * -------------------------------------------------------------------------- */
191
192 /*
193 * Splitters used by the developers to track the boundary of the EC
194 * handling processes.
195 */
196 #ifdef DEBUG
197 #define EC_DBG_SEP " "
198 #define EC_DBG_DRV "+++++"
199 #define EC_DBG_STM "====="
200 #define EC_DBG_REQ "*****"
201 #define EC_DBG_EVT "#####"
202 #else
203 #define EC_DBG_SEP ""
204 #define EC_DBG_DRV
205 #define EC_DBG_STM
206 #define EC_DBG_REQ
207 #define EC_DBG_EVT
208 #endif
209
210 #define ec_log_raw(fmt, ...) \
211 pr_info(fmt "\n", ##__VA_ARGS__)
212 #define ec_dbg_raw(fmt, ...) \
213 pr_debug(fmt "\n", ##__VA_ARGS__)
214 #define ec_log(filter, fmt, ...) \
215 ec_log_raw(filter EC_DBG_SEP fmt EC_DBG_SEP filter, ##__VA_ARGS__)
216 #define ec_dbg(filter, fmt, ...) \
217 ec_dbg_raw(filter EC_DBG_SEP fmt EC_DBG_SEP filter, ##__VA_ARGS__)
218
219 #define ec_log_drv(fmt, ...) \
220 ec_log(EC_DBG_DRV, fmt, ##__VA_ARGS__)
221 #define ec_dbg_drv(fmt, ...) \
222 ec_dbg(EC_DBG_DRV, fmt, ##__VA_ARGS__)
223 #define ec_dbg_stm(fmt, ...) \
224 ec_dbg(EC_DBG_STM, fmt, ##__VA_ARGS__)
225 #define ec_dbg_req(fmt, ...) \
226 ec_dbg(EC_DBG_REQ, fmt, ##__VA_ARGS__)
227 #define ec_dbg_evt(fmt, ...) \
228 ec_dbg(EC_DBG_EVT, fmt, ##__VA_ARGS__)
229 #define ec_dbg_ref(ec, fmt, ...) \
230 ec_dbg_raw("%lu: " fmt, ec->reference_count, ## __VA_ARGS__)
231
232 /* --------------------------------------------------------------------------
233 * Device Flags
234 * -------------------------------------------------------------------------- */
235
acpi_ec_started(struct acpi_ec * ec)236 static bool acpi_ec_started(struct acpi_ec *ec)
237 {
238 return test_bit(EC_FLAGS_STARTED, &ec->flags) &&
239 !test_bit(EC_FLAGS_STOPPED, &ec->flags);
240 }
241
acpi_ec_event_enabled(struct acpi_ec * ec)242 static bool acpi_ec_event_enabled(struct acpi_ec *ec)
243 {
244 /*
245 * There is an OSPM early stage logic. During the early stages
246 * (boot/resume), OSPMs shouldn't enable the event handling, only
247 * the EC transactions are allowed to be performed.
248 */
249 if (!test_bit(EC_FLAGS_QUERY_ENABLED, &ec->flags))
250 return false;
251 /*
252 * However, disabling the event handling is experimental for late
253 * stage (suspend), and is controlled by the boot parameter of
254 * "ec_freeze_events":
255 * 1. true: The EC event handling is disabled before entering
256 * the noirq stage.
257 * 2. false: The EC event handling is automatically disabled as
258 * soon as the EC driver is stopped.
259 */
260 if (ec_freeze_events)
261 return acpi_ec_started(ec);
262 else
263 return test_bit(EC_FLAGS_STARTED, &ec->flags);
264 }
265
acpi_ec_flushed(struct acpi_ec * ec)266 static bool acpi_ec_flushed(struct acpi_ec *ec)
267 {
268 return ec->reference_count == 1;
269 }
270
271 /* --------------------------------------------------------------------------
272 * EC Registers
273 * -------------------------------------------------------------------------- */
274
acpi_ec_read_status(struct acpi_ec * ec)275 static inline u8 acpi_ec_read_status(struct acpi_ec *ec)
276 {
277 u8 x = inb(ec->command_addr);
278
279 ec_dbg_raw("EC_SC(R) = 0x%2.2x "
280 "SCI_EVT=%d BURST=%d CMD=%d IBF=%d OBF=%d",
281 x,
282 !!(x & ACPI_EC_FLAG_SCI),
283 !!(x & ACPI_EC_FLAG_BURST),
284 !!(x & ACPI_EC_FLAG_CMD),
285 !!(x & ACPI_EC_FLAG_IBF),
286 !!(x & ACPI_EC_FLAG_OBF));
287 return x;
288 }
289
acpi_ec_read_data(struct acpi_ec * ec)290 static inline u8 acpi_ec_read_data(struct acpi_ec *ec)
291 {
292 u8 x = inb(ec->data_addr);
293
294 ec->timestamp = jiffies;
295 ec_dbg_raw("EC_DATA(R) = 0x%2.2x", x);
296 return x;
297 }
298
acpi_ec_write_cmd(struct acpi_ec * ec,u8 command)299 static inline void acpi_ec_write_cmd(struct acpi_ec *ec, u8 command)
300 {
301 ec_dbg_raw("EC_SC(W) = 0x%2.2x", command);
302 outb(command, ec->command_addr);
303 ec->timestamp = jiffies;
304 }
305
acpi_ec_write_data(struct acpi_ec * ec,u8 data)306 static inline void acpi_ec_write_data(struct acpi_ec *ec, u8 data)
307 {
308 ec_dbg_raw("EC_DATA(W) = 0x%2.2x", data);
309 outb(data, ec->data_addr);
310 ec->timestamp = jiffies;
311 }
312
313 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
acpi_ec_cmd_string(u8 cmd)314 static const char *acpi_ec_cmd_string(u8 cmd)
315 {
316 switch (cmd) {
317 case 0x80:
318 return "RD_EC";
319 case 0x81:
320 return "WR_EC";
321 case 0x82:
322 return "BE_EC";
323 case 0x83:
324 return "BD_EC";
325 case 0x84:
326 return "QR_EC";
327 }
328 return "UNKNOWN";
329 }
330 #else
331 #define acpi_ec_cmd_string(cmd) "UNDEF"
332 #endif
333
334 /* --------------------------------------------------------------------------
335 * GPE Registers
336 * -------------------------------------------------------------------------- */
337
acpi_ec_is_gpe_raised(struct acpi_ec * ec)338 static inline bool acpi_ec_is_gpe_raised(struct acpi_ec *ec)
339 {
340 acpi_event_status gpe_status = 0;
341
342 (void)acpi_get_gpe_status(NULL, ec->gpe, &gpe_status);
343 return (gpe_status & ACPI_EVENT_FLAG_STATUS_SET) ? true : false;
344 }
345
acpi_ec_enable_gpe(struct acpi_ec * ec,bool open)346 static inline void acpi_ec_enable_gpe(struct acpi_ec *ec, bool open)
347 {
348 if (open)
349 acpi_enable_gpe(NULL, ec->gpe);
350 else {
351 BUG_ON(ec->reference_count < 1);
352 acpi_set_gpe(NULL, ec->gpe, ACPI_GPE_ENABLE);
353 }
354 if (acpi_ec_is_gpe_raised(ec)) {
355 /*
356 * On some platforms, EN=1 writes cannot trigger GPE. So
357 * software need to manually trigger a pseudo GPE event on
358 * EN=1 writes.
359 */
360 ec_dbg_raw("Polling quirk");
361 advance_transaction(ec);
362 }
363 }
364
acpi_ec_disable_gpe(struct acpi_ec * ec,bool close)365 static inline void acpi_ec_disable_gpe(struct acpi_ec *ec, bool close)
366 {
367 if (close)
368 acpi_disable_gpe(NULL, ec->gpe);
369 else {
370 BUG_ON(ec->reference_count < 1);
371 acpi_set_gpe(NULL, ec->gpe, ACPI_GPE_DISABLE);
372 }
373 }
374
acpi_ec_clear_gpe(struct acpi_ec * ec)375 static inline void acpi_ec_clear_gpe(struct acpi_ec *ec)
376 {
377 /*
378 * GPE STS is a W1C register, which means:
379 * 1. Software can clear it without worrying about clearing other
380 * GPEs' STS bits when the hardware sets them in parallel.
381 * 2. As long as software can ensure only clearing it when it is
382 * set, hardware won't set it in parallel.
383 * So software can clear GPE in any contexts.
384 * Warning: do not move the check into advance_transaction() as the
385 * EC commands will be sent without GPE raised.
386 */
387 if (!acpi_ec_is_gpe_raised(ec))
388 return;
389 acpi_clear_gpe(NULL, ec->gpe);
390 }
391
392 /* --------------------------------------------------------------------------
393 * Transaction Management
394 * -------------------------------------------------------------------------- */
395
acpi_ec_submit_request(struct acpi_ec * ec)396 static void acpi_ec_submit_request(struct acpi_ec *ec)
397 {
398 ec->reference_count++;
399 if (test_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags) &&
400 ec->gpe >= 0 && ec->reference_count == 1)
401 acpi_ec_enable_gpe(ec, true);
402 }
403
acpi_ec_complete_request(struct acpi_ec * ec)404 static void acpi_ec_complete_request(struct acpi_ec *ec)
405 {
406 bool flushed = false;
407
408 ec->reference_count--;
409 if (test_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags) &&
410 ec->gpe >= 0 && ec->reference_count == 0)
411 acpi_ec_disable_gpe(ec, true);
412 flushed = acpi_ec_flushed(ec);
413 if (flushed)
414 wake_up(&ec->wait);
415 }
416
acpi_ec_mask_events(struct acpi_ec * ec)417 static void acpi_ec_mask_events(struct acpi_ec *ec)
418 {
419 if (!test_bit(EC_FLAGS_EVENTS_MASKED, &ec->flags)) {
420 if (ec->gpe >= 0)
421 acpi_ec_disable_gpe(ec, false);
422 else
423 disable_irq_nosync(ec->irq);
424
425 ec_dbg_drv("Polling enabled");
426 set_bit(EC_FLAGS_EVENTS_MASKED, &ec->flags);
427 }
428 }
429
acpi_ec_unmask_events(struct acpi_ec * ec)430 static void acpi_ec_unmask_events(struct acpi_ec *ec)
431 {
432 if (test_bit(EC_FLAGS_EVENTS_MASKED, &ec->flags)) {
433 clear_bit(EC_FLAGS_EVENTS_MASKED, &ec->flags);
434 if (ec->gpe >= 0)
435 acpi_ec_enable_gpe(ec, false);
436 else
437 enable_irq(ec->irq);
438
439 ec_dbg_drv("Polling disabled");
440 }
441 }
442
443 /*
444 * acpi_ec_submit_flushable_request() - Increase the reference count unless
445 * the flush operation is not in
446 * progress
447 * @ec: the EC device
448 *
449 * This function must be used before taking a new action that should hold
450 * the reference count. If this function returns false, then the action
451 * must be discarded or it will prevent the flush operation from being
452 * completed.
453 */
acpi_ec_submit_flushable_request(struct acpi_ec * ec)454 static bool acpi_ec_submit_flushable_request(struct acpi_ec *ec)
455 {
456 if (!acpi_ec_started(ec))
457 return false;
458 acpi_ec_submit_request(ec);
459 return true;
460 }
461
acpi_ec_submit_query(struct acpi_ec * ec)462 static void acpi_ec_submit_query(struct acpi_ec *ec)
463 {
464 acpi_ec_mask_events(ec);
465 if (!acpi_ec_event_enabled(ec))
466 return;
467 if (!test_and_set_bit(EC_FLAGS_QUERY_PENDING, &ec->flags)) {
468 ec_dbg_evt("Command(%s) submitted/blocked",
469 acpi_ec_cmd_string(ACPI_EC_COMMAND_QUERY));
470 ec->nr_pending_queries++;
471 queue_work(ec_wq, &ec->work);
472 }
473 }
474
acpi_ec_complete_query(struct acpi_ec * ec)475 static void acpi_ec_complete_query(struct acpi_ec *ec)
476 {
477 if (test_and_clear_bit(EC_FLAGS_QUERY_PENDING, &ec->flags))
478 ec_dbg_evt("Command(%s) unblocked",
479 acpi_ec_cmd_string(ACPI_EC_COMMAND_QUERY));
480 acpi_ec_unmask_events(ec);
481 }
482
__acpi_ec_enable_event(struct acpi_ec * ec)483 static inline void __acpi_ec_enable_event(struct acpi_ec *ec)
484 {
485 if (!test_and_set_bit(EC_FLAGS_QUERY_ENABLED, &ec->flags))
486 ec_log_drv("event unblocked");
487 /*
488 * Unconditionally invoke this once after enabling the event
489 * handling mechanism to detect the pending events.
490 */
491 advance_transaction(ec);
492 }
493
__acpi_ec_disable_event(struct acpi_ec * ec)494 static inline void __acpi_ec_disable_event(struct acpi_ec *ec)
495 {
496 if (test_and_clear_bit(EC_FLAGS_QUERY_ENABLED, &ec->flags))
497 ec_log_drv("event blocked");
498 }
499
500 /*
501 * Process _Q events that might have accumulated in the EC.
502 * Run with locked ec mutex.
503 */
acpi_ec_clear(struct acpi_ec * ec)504 static void acpi_ec_clear(struct acpi_ec *ec)
505 {
506 int i, status;
507 u8 value = 0;
508
509 for (i = 0; i < ACPI_EC_CLEAR_MAX; i++) {
510 status = acpi_ec_query(ec, &value);
511 if (status || !value)
512 break;
513 }
514 if (unlikely(i == ACPI_EC_CLEAR_MAX))
515 pr_warn("Warning: Maximum of %d stale EC events cleared\n", i);
516 else
517 pr_info("%d stale EC events cleared\n", i);
518 }
519
acpi_ec_enable_event(struct acpi_ec * ec)520 static void acpi_ec_enable_event(struct acpi_ec *ec)
521 {
522 unsigned long flags;
523
524 spin_lock_irqsave(&ec->lock, flags);
525 if (acpi_ec_started(ec))
526 __acpi_ec_enable_event(ec);
527 spin_unlock_irqrestore(&ec->lock, flags);
528
529 /* Drain additional events if hardware requires that */
530 if (EC_FLAGS_CLEAR_ON_RESUME)
531 acpi_ec_clear(ec);
532 }
533
534 #ifdef CONFIG_PM_SLEEP
__acpi_ec_flush_work(void)535 static void __acpi_ec_flush_work(void)
536 {
537 drain_workqueue(ec_wq); /* flush ec->work */
538 flush_workqueue(ec_query_wq); /* flush queries */
539 }
540
acpi_ec_disable_event(struct acpi_ec * ec)541 static void acpi_ec_disable_event(struct acpi_ec *ec)
542 {
543 unsigned long flags;
544
545 spin_lock_irqsave(&ec->lock, flags);
546 __acpi_ec_disable_event(ec);
547 spin_unlock_irqrestore(&ec->lock, flags);
548
549 /*
550 * When ec_freeze_events is true, we need to flush events in
551 * the proper position before entering the noirq stage.
552 */
553 __acpi_ec_flush_work();
554 }
555
acpi_ec_flush_work(void)556 void acpi_ec_flush_work(void)
557 {
558 /* Without ec_wq there is nothing to flush. */
559 if (!ec_wq)
560 return;
561
562 __acpi_ec_flush_work();
563 }
564 #endif /* CONFIG_PM_SLEEP */
565
acpi_ec_guard_event(struct acpi_ec * ec)566 static bool acpi_ec_guard_event(struct acpi_ec *ec)
567 {
568 bool guarded = true;
569 unsigned long flags;
570
571 spin_lock_irqsave(&ec->lock, flags);
572 /*
573 * If firmware SCI_EVT clearing timing is "event", we actually
574 * don't know when the SCI_EVT will be cleared by firmware after
575 * evaluating _Qxx, so we need to re-check SCI_EVT after waiting an
576 * acceptable period.
577 *
578 * The guarding period begins when EC_FLAGS_QUERY_PENDING is
579 * flagged, which means SCI_EVT check has just been performed.
580 * But if the current transaction is ACPI_EC_COMMAND_QUERY, the
581 * guarding should have already been performed (via
582 * EC_FLAGS_QUERY_GUARDING) and should not be applied so that the
583 * ACPI_EC_COMMAND_QUERY transaction can be transitioned into
584 * ACPI_EC_COMMAND_POLL state immediately.
585 */
586 if (ec_event_clearing == ACPI_EC_EVT_TIMING_STATUS ||
587 ec_event_clearing == ACPI_EC_EVT_TIMING_QUERY ||
588 !test_bit(EC_FLAGS_QUERY_PENDING, &ec->flags) ||
589 (ec->curr && ec->curr->command == ACPI_EC_COMMAND_QUERY))
590 guarded = false;
591 spin_unlock_irqrestore(&ec->lock, flags);
592 return guarded;
593 }
594
ec_transaction_polled(struct acpi_ec * ec)595 static int ec_transaction_polled(struct acpi_ec *ec)
596 {
597 unsigned long flags;
598 int ret = 0;
599
600 spin_lock_irqsave(&ec->lock, flags);
601 if (ec->curr && (ec->curr->flags & ACPI_EC_COMMAND_POLL))
602 ret = 1;
603 spin_unlock_irqrestore(&ec->lock, flags);
604 return ret;
605 }
606
ec_transaction_completed(struct acpi_ec * ec)607 static int ec_transaction_completed(struct acpi_ec *ec)
608 {
609 unsigned long flags;
610 int ret = 0;
611
612 spin_lock_irqsave(&ec->lock, flags);
613 if (ec->curr && (ec->curr->flags & ACPI_EC_COMMAND_COMPLETE))
614 ret = 1;
615 spin_unlock_irqrestore(&ec->lock, flags);
616 return ret;
617 }
618
ec_transaction_transition(struct acpi_ec * ec,unsigned long flag)619 static inline void ec_transaction_transition(struct acpi_ec *ec, unsigned long flag)
620 {
621 ec->curr->flags |= flag;
622 if (ec->curr->command == ACPI_EC_COMMAND_QUERY) {
623 if (ec_event_clearing == ACPI_EC_EVT_TIMING_STATUS &&
624 flag == ACPI_EC_COMMAND_POLL)
625 acpi_ec_complete_query(ec);
626 if (ec_event_clearing == ACPI_EC_EVT_TIMING_QUERY &&
627 flag == ACPI_EC_COMMAND_COMPLETE)
628 acpi_ec_complete_query(ec);
629 if (ec_event_clearing == ACPI_EC_EVT_TIMING_EVENT &&
630 flag == ACPI_EC_COMMAND_COMPLETE)
631 set_bit(EC_FLAGS_QUERY_GUARDING, &ec->flags);
632 }
633 }
634
advance_transaction(struct acpi_ec * ec)635 static void advance_transaction(struct acpi_ec *ec)
636 {
637 struct transaction *t;
638 u8 status;
639 bool wakeup = false;
640
641 ec_dbg_stm("%s (%d)", in_interrupt() ? "IRQ" : "TASK",
642 smp_processor_id());
643 /*
644 * By always clearing STS before handling all indications, we can
645 * ensure a hardware STS 0->1 change after this clearing can always
646 * trigger a GPE interrupt.
647 */
648 if (ec->gpe >= 0)
649 acpi_ec_clear_gpe(ec);
650
651 status = acpi_ec_read_status(ec);
652 t = ec->curr;
653 /*
654 * Another IRQ or a guarded polling mode advancement is detected,
655 * the next QR_EC submission is then allowed.
656 */
657 if (!t || !(t->flags & ACPI_EC_COMMAND_POLL)) {
658 if (ec_event_clearing == ACPI_EC_EVT_TIMING_EVENT &&
659 (!ec->nr_pending_queries ||
660 test_bit(EC_FLAGS_QUERY_GUARDING, &ec->flags))) {
661 clear_bit(EC_FLAGS_QUERY_GUARDING, &ec->flags);
662 acpi_ec_complete_query(ec);
663 }
664 }
665 if (!t)
666 goto err;
667 if (t->flags & ACPI_EC_COMMAND_POLL) {
668 if (t->wlen > t->wi) {
669 if ((status & ACPI_EC_FLAG_IBF) == 0)
670 acpi_ec_write_data(ec, t->wdata[t->wi++]);
671 else
672 goto err;
673 } else if (t->rlen > t->ri) {
674 if ((status & ACPI_EC_FLAG_OBF) == 1) {
675 t->rdata[t->ri++] = acpi_ec_read_data(ec);
676 if (t->rlen == t->ri) {
677 ec_transaction_transition(ec, ACPI_EC_COMMAND_COMPLETE);
678 if (t->command == ACPI_EC_COMMAND_QUERY)
679 ec_dbg_evt("Command(%s) completed by hardware",
680 acpi_ec_cmd_string(ACPI_EC_COMMAND_QUERY));
681 wakeup = true;
682 }
683 } else
684 goto err;
685 } else if (t->wlen == t->wi &&
686 (status & ACPI_EC_FLAG_IBF) == 0) {
687 ec_transaction_transition(ec, ACPI_EC_COMMAND_COMPLETE);
688 wakeup = true;
689 }
690 goto out;
691 } else if (!(status & ACPI_EC_FLAG_IBF)) {
692 acpi_ec_write_cmd(ec, t->command);
693 ec_transaction_transition(ec, ACPI_EC_COMMAND_POLL);
694 goto out;
695 }
696 err:
697 /*
698 * If SCI bit is set, then don't think it's a false IRQ
699 * otherwise will take a not handled IRQ as a false one.
700 */
701 if (!(status & ACPI_EC_FLAG_SCI)) {
702 if (in_interrupt() && t) {
703 if (t->irq_count < ec_storm_threshold)
704 ++t->irq_count;
705 /* Allow triggering on 0 threshold */
706 if (t->irq_count == ec_storm_threshold)
707 acpi_ec_mask_events(ec);
708 }
709 }
710 out:
711 if (status & ACPI_EC_FLAG_SCI)
712 acpi_ec_submit_query(ec);
713 if (wakeup && in_interrupt())
714 wake_up(&ec->wait);
715 }
716
start_transaction(struct acpi_ec * ec)717 static void start_transaction(struct acpi_ec *ec)
718 {
719 ec->curr->irq_count = ec->curr->wi = ec->curr->ri = 0;
720 ec->curr->flags = 0;
721 }
722
ec_guard(struct acpi_ec * ec)723 static int ec_guard(struct acpi_ec *ec)
724 {
725 unsigned long guard = usecs_to_jiffies(ec->polling_guard);
726 unsigned long timeout = ec->timestamp + guard;
727
728 /* Ensure guarding period before polling EC status */
729 do {
730 if (ec->busy_polling) {
731 /* Perform busy polling */
732 if (ec_transaction_completed(ec))
733 return 0;
734 udelay(jiffies_to_usecs(guard));
735 } else {
736 /*
737 * Perform wait polling
738 * 1. Wait the transaction to be completed by the
739 * GPE handler after the transaction enters
740 * ACPI_EC_COMMAND_POLL state.
741 * 2. A special guarding logic is also required
742 * for event clearing mode "event" before the
743 * transaction enters ACPI_EC_COMMAND_POLL
744 * state.
745 */
746 if (!ec_transaction_polled(ec) &&
747 !acpi_ec_guard_event(ec))
748 break;
749 if (wait_event_timeout(ec->wait,
750 ec_transaction_completed(ec),
751 guard))
752 return 0;
753 }
754 } while (time_before(jiffies, timeout));
755 return -ETIME;
756 }
757
ec_poll(struct acpi_ec * ec)758 static int ec_poll(struct acpi_ec *ec)
759 {
760 unsigned long flags;
761 int repeat = 5; /* number of command restarts */
762
763 while (repeat--) {
764 unsigned long delay = jiffies +
765 msecs_to_jiffies(ec_delay);
766 do {
767 if (!ec_guard(ec))
768 return 0;
769 spin_lock_irqsave(&ec->lock, flags);
770 advance_transaction(ec);
771 spin_unlock_irqrestore(&ec->lock, flags);
772 } while (time_before(jiffies, delay));
773 pr_debug("controller reset, restart transaction\n");
774 spin_lock_irqsave(&ec->lock, flags);
775 start_transaction(ec);
776 spin_unlock_irqrestore(&ec->lock, flags);
777 }
778 return -ETIME;
779 }
780
acpi_ec_transaction_unlocked(struct acpi_ec * ec,struct transaction * t)781 static int acpi_ec_transaction_unlocked(struct acpi_ec *ec,
782 struct transaction *t)
783 {
784 unsigned long tmp;
785 int ret = 0;
786
787 /* start transaction */
788 spin_lock_irqsave(&ec->lock, tmp);
789 /* Enable GPE for command processing (IBF=0/OBF=1) */
790 if (!acpi_ec_submit_flushable_request(ec)) {
791 ret = -EINVAL;
792 goto unlock;
793 }
794 ec_dbg_ref(ec, "Increase command");
795 /* following two actions should be kept atomic */
796 ec->curr = t;
797 ec_dbg_req("Command(%s) started", acpi_ec_cmd_string(t->command));
798 start_transaction(ec);
799 spin_unlock_irqrestore(&ec->lock, tmp);
800
801 ret = ec_poll(ec);
802
803 spin_lock_irqsave(&ec->lock, tmp);
804 if (t->irq_count == ec_storm_threshold)
805 acpi_ec_unmask_events(ec);
806 ec_dbg_req("Command(%s) stopped", acpi_ec_cmd_string(t->command));
807 ec->curr = NULL;
808 /* Disable GPE for command processing (IBF=0/OBF=1) */
809 acpi_ec_complete_request(ec);
810 ec_dbg_ref(ec, "Decrease command");
811 unlock:
812 spin_unlock_irqrestore(&ec->lock, tmp);
813 return ret;
814 }
815
acpi_ec_transaction(struct acpi_ec * ec,struct transaction * t)816 static int acpi_ec_transaction(struct acpi_ec *ec, struct transaction *t)
817 {
818 int status;
819 u32 glk;
820
821 if (!ec || (!t) || (t->wlen && !t->wdata) || (t->rlen && !t->rdata))
822 return -EINVAL;
823 if (t->rdata)
824 memset(t->rdata, 0, t->rlen);
825
826 mutex_lock(&ec->mutex);
827 if (ec->global_lock) {
828 status = acpi_acquire_global_lock(ACPI_EC_UDELAY_GLK, &glk);
829 if (ACPI_FAILURE(status)) {
830 status = -ENODEV;
831 goto unlock;
832 }
833 }
834
835 status = acpi_ec_transaction_unlocked(ec, t);
836
837 if (ec->global_lock)
838 acpi_release_global_lock(glk);
839 unlock:
840 mutex_unlock(&ec->mutex);
841 return status;
842 }
843
acpi_ec_burst_enable(struct acpi_ec * ec)844 static int acpi_ec_burst_enable(struct acpi_ec *ec)
845 {
846 u8 d;
847 struct transaction t = {.command = ACPI_EC_BURST_ENABLE,
848 .wdata = NULL, .rdata = &d,
849 .wlen = 0, .rlen = 1};
850
851 return acpi_ec_transaction(ec, &t);
852 }
853
acpi_ec_burst_disable(struct acpi_ec * ec)854 static int acpi_ec_burst_disable(struct acpi_ec *ec)
855 {
856 struct transaction t = {.command = ACPI_EC_BURST_DISABLE,
857 .wdata = NULL, .rdata = NULL,
858 .wlen = 0, .rlen = 0};
859
860 return (acpi_ec_read_status(ec) & ACPI_EC_FLAG_BURST) ?
861 acpi_ec_transaction(ec, &t) : 0;
862 }
863
acpi_ec_read(struct acpi_ec * ec,u8 address,u8 * data)864 static int acpi_ec_read(struct acpi_ec *ec, u8 address, u8 *data)
865 {
866 int result;
867 u8 d;
868 struct transaction t = {.command = ACPI_EC_COMMAND_READ,
869 .wdata = &address, .rdata = &d,
870 .wlen = 1, .rlen = 1};
871
872 result = acpi_ec_transaction(ec, &t);
873 *data = d;
874 return result;
875 }
876
acpi_ec_write(struct acpi_ec * ec,u8 address,u8 data)877 static int acpi_ec_write(struct acpi_ec *ec, u8 address, u8 data)
878 {
879 u8 wdata[2] = { address, data };
880 struct transaction t = {.command = ACPI_EC_COMMAND_WRITE,
881 .wdata = wdata, .rdata = NULL,
882 .wlen = 2, .rlen = 0};
883
884 return acpi_ec_transaction(ec, &t);
885 }
886
ec_read(u8 addr,u8 * val)887 int ec_read(u8 addr, u8 *val)
888 {
889 int err;
890 u8 temp_data;
891
892 if (!first_ec)
893 return -ENODEV;
894
895 err = acpi_ec_read(first_ec, addr, &temp_data);
896
897 if (!err) {
898 *val = temp_data;
899 return 0;
900 }
901 return err;
902 }
903 EXPORT_SYMBOL(ec_read);
904
ec_write(u8 addr,u8 val)905 int ec_write(u8 addr, u8 val)
906 {
907 int err;
908
909 if (!first_ec)
910 return -ENODEV;
911
912 err = acpi_ec_write(first_ec, addr, val);
913
914 return err;
915 }
916 EXPORT_SYMBOL(ec_write);
917
ec_transaction(u8 command,const u8 * wdata,unsigned wdata_len,u8 * rdata,unsigned rdata_len)918 int ec_transaction(u8 command,
919 const u8 *wdata, unsigned wdata_len,
920 u8 *rdata, unsigned rdata_len)
921 {
922 struct transaction t = {.command = command,
923 .wdata = wdata, .rdata = rdata,
924 .wlen = wdata_len, .rlen = rdata_len};
925
926 if (!first_ec)
927 return -ENODEV;
928
929 return acpi_ec_transaction(first_ec, &t);
930 }
931 EXPORT_SYMBOL(ec_transaction);
932
933 /* Get the handle to the EC device */
ec_get_handle(void)934 acpi_handle ec_get_handle(void)
935 {
936 if (!first_ec)
937 return NULL;
938 return first_ec->handle;
939 }
940 EXPORT_SYMBOL(ec_get_handle);
941
acpi_ec_start(struct acpi_ec * ec,bool resuming)942 static void acpi_ec_start(struct acpi_ec *ec, bool resuming)
943 {
944 unsigned long flags;
945
946 spin_lock_irqsave(&ec->lock, flags);
947 if (!test_and_set_bit(EC_FLAGS_STARTED, &ec->flags)) {
948 ec_dbg_drv("Starting EC");
949 /* Enable GPE for event processing (SCI_EVT=1) */
950 if (!resuming) {
951 acpi_ec_submit_request(ec);
952 ec_dbg_ref(ec, "Increase driver");
953 }
954 ec_log_drv("EC started");
955 }
956 spin_unlock_irqrestore(&ec->lock, flags);
957 }
958
acpi_ec_stopped(struct acpi_ec * ec)959 static bool acpi_ec_stopped(struct acpi_ec *ec)
960 {
961 unsigned long flags;
962 bool flushed;
963
964 spin_lock_irqsave(&ec->lock, flags);
965 flushed = acpi_ec_flushed(ec);
966 spin_unlock_irqrestore(&ec->lock, flags);
967 return flushed;
968 }
969
acpi_ec_stop(struct acpi_ec * ec,bool suspending)970 static void acpi_ec_stop(struct acpi_ec *ec, bool suspending)
971 {
972 unsigned long flags;
973
974 spin_lock_irqsave(&ec->lock, flags);
975 if (acpi_ec_started(ec)) {
976 ec_dbg_drv("Stopping EC");
977 set_bit(EC_FLAGS_STOPPED, &ec->flags);
978 spin_unlock_irqrestore(&ec->lock, flags);
979 wait_event(ec->wait, acpi_ec_stopped(ec));
980 spin_lock_irqsave(&ec->lock, flags);
981 /* Disable GPE for event processing (SCI_EVT=1) */
982 if (!suspending) {
983 acpi_ec_complete_request(ec);
984 ec_dbg_ref(ec, "Decrease driver");
985 } else if (!ec_freeze_events)
986 __acpi_ec_disable_event(ec);
987 clear_bit(EC_FLAGS_STARTED, &ec->flags);
988 clear_bit(EC_FLAGS_STOPPED, &ec->flags);
989 ec_log_drv("EC stopped");
990 }
991 spin_unlock_irqrestore(&ec->lock, flags);
992 }
993
acpi_ec_enter_noirq(struct acpi_ec * ec)994 static void acpi_ec_enter_noirq(struct acpi_ec *ec)
995 {
996 unsigned long flags;
997
998 spin_lock_irqsave(&ec->lock, flags);
999 ec->busy_polling = true;
1000 ec->polling_guard = 0;
1001 ec_log_drv("interrupt blocked");
1002 spin_unlock_irqrestore(&ec->lock, flags);
1003 }
1004
acpi_ec_leave_noirq(struct acpi_ec * ec)1005 static void acpi_ec_leave_noirq(struct acpi_ec *ec)
1006 {
1007 unsigned long flags;
1008
1009 spin_lock_irqsave(&ec->lock, flags);
1010 ec->busy_polling = ec_busy_polling;
1011 ec->polling_guard = ec_polling_guard;
1012 ec_log_drv("interrupt unblocked");
1013 spin_unlock_irqrestore(&ec->lock, flags);
1014 }
1015
acpi_ec_block_transactions(void)1016 void acpi_ec_block_transactions(void)
1017 {
1018 struct acpi_ec *ec = first_ec;
1019
1020 if (!ec)
1021 return;
1022
1023 mutex_lock(&ec->mutex);
1024 /* Prevent transactions from being carried out */
1025 acpi_ec_stop(ec, true);
1026 mutex_unlock(&ec->mutex);
1027 }
1028
acpi_ec_unblock_transactions(void)1029 void acpi_ec_unblock_transactions(void)
1030 {
1031 /*
1032 * Allow transactions to happen again (this function is called from
1033 * atomic context during wakeup, so we don't need to acquire the mutex).
1034 */
1035 if (first_ec)
1036 acpi_ec_start(first_ec, true);
1037 }
1038
1039 /* --------------------------------------------------------------------------
1040 Event Management
1041 -------------------------------------------------------------------------- */
1042 static struct acpi_ec_query_handler *
acpi_ec_get_query_handler_by_value(struct acpi_ec * ec,u8 value)1043 acpi_ec_get_query_handler_by_value(struct acpi_ec *ec, u8 value)
1044 {
1045 struct acpi_ec_query_handler *handler;
1046
1047 mutex_lock(&ec->mutex);
1048 list_for_each_entry(handler, &ec->list, node) {
1049 if (value == handler->query_bit) {
1050 kref_get(&handler->kref);
1051 mutex_unlock(&ec->mutex);
1052 return handler;
1053 }
1054 }
1055 mutex_unlock(&ec->mutex);
1056 return NULL;
1057 }
1058
acpi_ec_query_handler_release(struct kref * kref)1059 static void acpi_ec_query_handler_release(struct kref *kref)
1060 {
1061 struct acpi_ec_query_handler *handler =
1062 container_of(kref, struct acpi_ec_query_handler, kref);
1063
1064 kfree(handler);
1065 }
1066
acpi_ec_put_query_handler(struct acpi_ec_query_handler * handler)1067 static void acpi_ec_put_query_handler(struct acpi_ec_query_handler *handler)
1068 {
1069 kref_put(&handler->kref, acpi_ec_query_handler_release);
1070 }
1071
acpi_ec_add_query_handler(struct acpi_ec * ec,u8 query_bit,acpi_handle handle,acpi_ec_query_func func,void * data)1072 int acpi_ec_add_query_handler(struct acpi_ec *ec, u8 query_bit,
1073 acpi_handle handle, acpi_ec_query_func func,
1074 void *data)
1075 {
1076 struct acpi_ec_query_handler *handler =
1077 kzalloc(sizeof(struct acpi_ec_query_handler), GFP_KERNEL);
1078
1079 if (!handler)
1080 return -ENOMEM;
1081
1082 handler->query_bit = query_bit;
1083 handler->handle = handle;
1084 handler->func = func;
1085 handler->data = data;
1086 mutex_lock(&ec->mutex);
1087 kref_init(&handler->kref);
1088 list_add(&handler->node, &ec->list);
1089 mutex_unlock(&ec->mutex);
1090 return 0;
1091 }
1092 EXPORT_SYMBOL_GPL(acpi_ec_add_query_handler);
1093
acpi_ec_remove_query_handlers(struct acpi_ec * ec,bool remove_all,u8 query_bit)1094 static void acpi_ec_remove_query_handlers(struct acpi_ec *ec,
1095 bool remove_all, u8 query_bit)
1096 {
1097 struct acpi_ec_query_handler *handler, *tmp;
1098 LIST_HEAD(free_list);
1099
1100 mutex_lock(&ec->mutex);
1101 list_for_each_entry_safe(handler, tmp, &ec->list, node) {
1102 if (remove_all || query_bit == handler->query_bit) {
1103 list_del_init(&handler->node);
1104 list_add(&handler->node, &free_list);
1105 }
1106 }
1107 mutex_unlock(&ec->mutex);
1108 list_for_each_entry_safe(handler, tmp, &free_list, node)
1109 acpi_ec_put_query_handler(handler);
1110 }
1111
acpi_ec_remove_query_handler(struct acpi_ec * ec,u8 query_bit)1112 void acpi_ec_remove_query_handler(struct acpi_ec *ec, u8 query_bit)
1113 {
1114 acpi_ec_remove_query_handlers(ec, false, query_bit);
1115 }
1116 EXPORT_SYMBOL_GPL(acpi_ec_remove_query_handler);
1117
acpi_ec_create_query(u8 * pval)1118 static struct acpi_ec_query *acpi_ec_create_query(u8 *pval)
1119 {
1120 struct acpi_ec_query *q;
1121 struct transaction *t;
1122
1123 q = kzalloc(sizeof (struct acpi_ec_query), GFP_KERNEL);
1124 if (!q)
1125 return NULL;
1126 INIT_WORK(&q->work, acpi_ec_event_processor);
1127 t = &q->transaction;
1128 t->command = ACPI_EC_COMMAND_QUERY;
1129 t->rdata = pval;
1130 t->rlen = 1;
1131 return q;
1132 }
1133
acpi_ec_delete_query(struct acpi_ec_query * q)1134 static void acpi_ec_delete_query(struct acpi_ec_query *q)
1135 {
1136 if (q) {
1137 if (q->handler)
1138 acpi_ec_put_query_handler(q->handler);
1139 kfree(q);
1140 }
1141 }
1142
acpi_ec_event_processor(struct work_struct * work)1143 static void acpi_ec_event_processor(struct work_struct *work)
1144 {
1145 struct acpi_ec_query *q = container_of(work, struct acpi_ec_query, work);
1146 struct acpi_ec_query_handler *handler = q->handler;
1147
1148 ec_dbg_evt("Query(0x%02x) started", handler->query_bit);
1149 if (handler->func)
1150 handler->func(handler->data);
1151 else if (handler->handle)
1152 acpi_evaluate_object(handler->handle, NULL, NULL, NULL);
1153 ec_dbg_evt("Query(0x%02x) stopped", handler->query_bit);
1154 acpi_ec_delete_query(q);
1155 }
1156
acpi_ec_query(struct acpi_ec * ec,u8 * data)1157 static int acpi_ec_query(struct acpi_ec *ec, u8 *data)
1158 {
1159 u8 value = 0;
1160 int result;
1161 struct acpi_ec_query *q;
1162
1163 q = acpi_ec_create_query(&value);
1164 if (!q)
1165 return -ENOMEM;
1166
1167 /*
1168 * Query the EC to find out which _Qxx method we need to evaluate.
1169 * Note that successful completion of the query causes the ACPI_EC_SCI
1170 * bit to be cleared (and thus clearing the interrupt source).
1171 */
1172 result = acpi_ec_transaction(ec, &q->transaction);
1173 if (!value)
1174 result = -ENODATA;
1175 if (result)
1176 goto err_exit;
1177
1178 q->handler = acpi_ec_get_query_handler_by_value(ec, value);
1179 if (!q->handler) {
1180 result = -ENODATA;
1181 goto err_exit;
1182 }
1183
1184 /*
1185 * It is reported that _Qxx are evaluated in a parallel way on
1186 * Windows:
1187 * https://bugzilla.kernel.org/show_bug.cgi?id=94411
1188 *
1189 * Put this log entry before schedule_work() in order to make
1190 * it appearing before any other log entries occurred during the
1191 * work queue execution.
1192 */
1193 ec_dbg_evt("Query(0x%02x) scheduled", value);
1194 if (!queue_work(ec_query_wq, &q->work)) {
1195 ec_dbg_evt("Query(0x%02x) overlapped", value);
1196 result = -EBUSY;
1197 }
1198
1199 err_exit:
1200 if (result)
1201 acpi_ec_delete_query(q);
1202 if (data)
1203 *data = value;
1204 return result;
1205 }
1206
acpi_ec_check_event(struct acpi_ec * ec)1207 static void acpi_ec_check_event(struct acpi_ec *ec)
1208 {
1209 unsigned long flags;
1210
1211 if (ec_event_clearing == ACPI_EC_EVT_TIMING_EVENT) {
1212 if (ec_guard(ec)) {
1213 spin_lock_irqsave(&ec->lock, flags);
1214 /*
1215 * Take care of the SCI_EVT unless no one else is
1216 * taking care of it.
1217 */
1218 if (!ec->curr)
1219 advance_transaction(ec);
1220 spin_unlock_irqrestore(&ec->lock, flags);
1221 }
1222 }
1223 }
1224
acpi_ec_event_handler(struct work_struct * work)1225 static void acpi_ec_event_handler(struct work_struct *work)
1226 {
1227 unsigned long flags;
1228 struct acpi_ec *ec = container_of(work, struct acpi_ec, work);
1229
1230 ec_dbg_evt("Event started");
1231
1232 spin_lock_irqsave(&ec->lock, flags);
1233 while (ec->nr_pending_queries) {
1234 spin_unlock_irqrestore(&ec->lock, flags);
1235 (void)acpi_ec_query(ec, NULL);
1236 spin_lock_irqsave(&ec->lock, flags);
1237 ec->nr_pending_queries--;
1238 /*
1239 * Before exit, make sure that this work item can be
1240 * scheduled again. There might be QR_EC failures, leaving
1241 * EC_FLAGS_QUERY_PENDING uncleared and preventing this work
1242 * item from being scheduled again.
1243 */
1244 if (!ec->nr_pending_queries) {
1245 if (ec_event_clearing == ACPI_EC_EVT_TIMING_STATUS ||
1246 ec_event_clearing == ACPI_EC_EVT_TIMING_QUERY)
1247 acpi_ec_complete_query(ec);
1248 }
1249 }
1250 spin_unlock_irqrestore(&ec->lock, flags);
1251
1252 ec_dbg_evt("Event stopped");
1253
1254 acpi_ec_check_event(ec);
1255 }
1256
acpi_ec_handle_interrupt(struct acpi_ec * ec)1257 static void acpi_ec_handle_interrupt(struct acpi_ec *ec)
1258 {
1259 unsigned long flags;
1260
1261 spin_lock_irqsave(&ec->lock, flags);
1262 advance_transaction(ec);
1263 spin_unlock_irqrestore(&ec->lock, flags);
1264 }
1265
acpi_ec_gpe_handler(acpi_handle gpe_device,u32 gpe_number,void * data)1266 static u32 acpi_ec_gpe_handler(acpi_handle gpe_device,
1267 u32 gpe_number, void *data)
1268 {
1269 acpi_ec_handle_interrupt(data);
1270 return ACPI_INTERRUPT_HANDLED;
1271 }
1272
acpi_ec_irq_handler(int irq,void * data)1273 static irqreturn_t acpi_ec_irq_handler(int irq, void *data)
1274 {
1275 acpi_ec_handle_interrupt(data);
1276 return IRQ_HANDLED;
1277 }
1278
1279 /* --------------------------------------------------------------------------
1280 * Address Space Management
1281 * -------------------------------------------------------------------------- */
1282
1283 static acpi_status
acpi_ec_space_handler(u32 function,acpi_physical_address address,u32 bits,u64 * value64,void * handler_context,void * region_context)1284 acpi_ec_space_handler(u32 function, acpi_physical_address address,
1285 u32 bits, u64 *value64,
1286 void *handler_context, void *region_context)
1287 {
1288 struct acpi_ec *ec = handler_context;
1289 int result = 0, i, bytes = bits / 8;
1290 u8 *value = (u8 *)value64;
1291
1292 if ((address > 0xFF) || !value || !handler_context)
1293 return AE_BAD_PARAMETER;
1294
1295 if (function != ACPI_READ && function != ACPI_WRITE)
1296 return AE_BAD_PARAMETER;
1297
1298 if (ec->busy_polling || bits > 8)
1299 acpi_ec_burst_enable(ec);
1300
1301 for (i = 0; i < bytes; ++i, ++address, ++value)
1302 result = (function == ACPI_READ) ?
1303 acpi_ec_read(ec, address, value) :
1304 acpi_ec_write(ec, address, *value);
1305
1306 if (ec->busy_polling || bits > 8)
1307 acpi_ec_burst_disable(ec);
1308
1309 switch (result) {
1310 case -EINVAL:
1311 return AE_BAD_PARAMETER;
1312 case -ENODEV:
1313 return AE_NOT_FOUND;
1314 case -ETIME:
1315 return AE_TIME;
1316 default:
1317 return AE_OK;
1318 }
1319 }
1320
1321 /* --------------------------------------------------------------------------
1322 * Driver Interface
1323 * -------------------------------------------------------------------------- */
1324
1325 static acpi_status
1326 ec_parse_io_ports(struct acpi_resource *resource, void *context);
1327
acpi_ec_free(struct acpi_ec * ec)1328 static void acpi_ec_free(struct acpi_ec *ec)
1329 {
1330 if (first_ec == ec)
1331 first_ec = NULL;
1332 if (boot_ec == ec)
1333 boot_ec = NULL;
1334 kfree(ec);
1335 }
1336
acpi_ec_alloc(void)1337 static struct acpi_ec *acpi_ec_alloc(void)
1338 {
1339 struct acpi_ec *ec = kzalloc(sizeof(struct acpi_ec), GFP_KERNEL);
1340
1341 if (!ec)
1342 return NULL;
1343 mutex_init(&ec->mutex);
1344 init_waitqueue_head(&ec->wait);
1345 INIT_LIST_HEAD(&ec->list);
1346 spin_lock_init(&ec->lock);
1347 INIT_WORK(&ec->work, acpi_ec_event_handler);
1348 ec->timestamp = jiffies;
1349 ec->busy_polling = true;
1350 ec->polling_guard = 0;
1351 ec->gpe = -1;
1352 ec->irq = -1;
1353 return ec;
1354 }
1355
1356 static acpi_status
acpi_ec_register_query_methods(acpi_handle handle,u32 level,void * context,void ** return_value)1357 acpi_ec_register_query_methods(acpi_handle handle, u32 level,
1358 void *context, void **return_value)
1359 {
1360 char node_name[5];
1361 struct acpi_buffer buffer = { sizeof(node_name), node_name };
1362 struct acpi_ec *ec = context;
1363 int value = 0;
1364 acpi_status status;
1365
1366 status = acpi_get_name(handle, ACPI_SINGLE_NAME, &buffer);
1367
1368 if (ACPI_SUCCESS(status) && sscanf(node_name, "_Q%x", &value) == 1)
1369 acpi_ec_add_query_handler(ec, value, handle, NULL, NULL);
1370 return AE_OK;
1371 }
1372
1373 static acpi_status
ec_parse_device(acpi_handle handle,u32 Level,void * context,void ** retval)1374 ec_parse_device(acpi_handle handle, u32 Level, void *context, void **retval)
1375 {
1376 acpi_status status;
1377 unsigned long long tmp = 0;
1378 struct acpi_ec *ec = context;
1379
1380 /* clear addr values, ec_parse_io_ports depend on it */
1381 ec->command_addr = ec->data_addr = 0;
1382
1383 status = acpi_walk_resources(handle, METHOD_NAME__CRS,
1384 ec_parse_io_ports, ec);
1385 if (ACPI_FAILURE(status))
1386 return status;
1387 if (ec->data_addr == 0 || ec->command_addr == 0)
1388 return AE_OK;
1389
1390 if (boot_ec && boot_ec_is_ecdt && EC_FLAGS_IGNORE_DSDT_GPE) {
1391 /*
1392 * Always inherit the GPE number setting from the ECDT
1393 * EC.
1394 */
1395 ec->gpe = boot_ec->gpe;
1396 } else {
1397 /* Get GPE bit assignment (EC events). */
1398 /* TODO: Add support for _GPE returning a package */
1399 status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
1400 if (ACPI_SUCCESS(status))
1401 ec->gpe = tmp;
1402
1403 /*
1404 * Errors are non-fatal, allowing for ACPI Reduced Hardware
1405 * platforms which use GpioInt instead of GPE.
1406 */
1407 }
1408 /* Use the global lock for all EC transactions? */
1409 tmp = 0;
1410 acpi_evaluate_integer(handle, "_GLK", NULL, &tmp);
1411 ec->global_lock = tmp;
1412 ec->handle = handle;
1413 return AE_CTRL_TERMINATE;
1414 }
1415
install_gpe_event_handler(struct acpi_ec * ec)1416 static bool install_gpe_event_handler(struct acpi_ec *ec)
1417 {
1418 acpi_status status;
1419
1420 status = acpi_install_gpe_raw_handler(NULL, ec->gpe,
1421 ACPI_GPE_EDGE_TRIGGERED,
1422 &acpi_ec_gpe_handler, ec);
1423 if (ACPI_FAILURE(status))
1424 return false;
1425
1426 if (test_bit(EC_FLAGS_STARTED, &ec->flags) && ec->reference_count >= 1)
1427 acpi_ec_enable_gpe(ec, true);
1428
1429 return true;
1430 }
1431
install_gpio_irq_event_handler(struct acpi_ec * ec)1432 static bool install_gpio_irq_event_handler(struct acpi_ec *ec)
1433 {
1434 return request_irq(ec->irq, acpi_ec_irq_handler, IRQF_SHARED,
1435 "ACPI EC", ec) >= 0;
1436 }
1437
1438 /**
1439 * ec_install_handlers - Install service callbacks and register query methods.
1440 * @ec: Target EC.
1441 * @device: ACPI device object corresponding to @ec.
1442 *
1443 * Install a handler for the EC address space type unless it has been installed
1444 * already. If @device is not NULL, also look for EC query methods in the
1445 * namespace and register them, and install an event (either GPE or GPIO IRQ)
1446 * handler for the EC, if possible.
1447 *
1448 * Return:
1449 * -ENODEV if the address space handler cannot be installed, which means
1450 * "unable to handle transactions",
1451 * -EPROBE_DEFER if GPIO IRQ acquisition needs to be deferred,
1452 * or 0 (success) otherwise.
1453 */
ec_install_handlers(struct acpi_ec * ec,struct acpi_device * device)1454 static int ec_install_handlers(struct acpi_ec *ec, struct acpi_device *device)
1455 {
1456 acpi_status status;
1457
1458 acpi_ec_start(ec, false);
1459
1460 if (!test_bit(EC_FLAGS_EC_HANDLER_INSTALLED, &ec->flags)) {
1461 acpi_ec_enter_noirq(ec);
1462 status = acpi_install_address_space_handler(ec->handle,
1463 ACPI_ADR_SPACE_EC,
1464 &acpi_ec_space_handler,
1465 NULL, ec);
1466 if (ACPI_FAILURE(status)) {
1467 acpi_ec_stop(ec, false);
1468 return -ENODEV;
1469 }
1470 set_bit(EC_FLAGS_EC_HANDLER_INSTALLED, &ec->flags);
1471 }
1472
1473 if (!device)
1474 return 0;
1475
1476 if (ec->gpe < 0) {
1477 /* ACPI reduced hardware platforms use a GpioInt from _CRS. */
1478 int irq = acpi_dev_gpio_irq_get(device, 0);
1479 /*
1480 * Bail out right away for deferred probing or complete the
1481 * initialization regardless of any other errors.
1482 */
1483 if (irq == -EPROBE_DEFER)
1484 return -EPROBE_DEFER;
1485 else if (irq >= 0)
1486 ec->irq = irq;
1487 }
1488
1489 if (!test_bit(EC_FLAGS_QUERY_METHODS_INSTALLED, &ec->flags)) {
1490 /* Find and register all query methods */
1491 acpi_walk_namespace(ACPI_TYPE_METHOD, ec->handle, 1,
1492 acpi_ec_register_query_methods,
1493 NULL, ec, NULL);
1494 set_bit(EC_FLAGS_QUERY_METHODS_INSTALLED, &ec->flags);
1495 }
1496 if (!test_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags)) {
1497 bool ready = false;
1498
1499 if (ec->gpe >= 0)
1500 ready = install_gpe_event_handler(ec);
1501 else if (ec->irq >= 0)
1502 ready = install_gpio_irq_event_handler(ec);
1503
1504 if (ready) {
1505 set_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags);
1506 acpi_ec_leave_noirq(ec);
1507 }
1508 /*
1509 * Failures to install an event handler are not fatal, because
1510 * the EC can be polled for events.
1511 */
1512 }
1513 /* EC is fully operational, allow queries */
1514 acpi_ec_enable_event(ec);
1515
1516 return 0;
1517 }
1518
ec_remove_handlers(struct acpi_ec * ec)1519 static void ec_remove_handlers(struct acpi_ec *ec)
1520 {
1521 if (test_bit(EC_FLAGS_EC_HANDLER_INSTALLED, &ec->flags)) {
1522 if (ACPI_FAILURE(acpi_remove_address_space_handler(ec->handle,
1523 ACPI_ADR_SPACE_EC, &acpi_ec_space_handler)))
1524 pr_err("failed to remove space handler\n");
1525 clear_bit(EC_FLAGS_EC_HANDLER_INSTALLED, &ec->flags);
1526 }
1527
1528 /*
1529 * Stops handling the EC transactions after removing the operation
1530 * region handler. This is required because _REG(DISCONNECT)
1531 * invoked during the removal can result in new EC transactions.
1532 *
1533 * Flushes the EC requests and thus disables the GPE before
1534 * removing the GPE handler. This is required by the current ACPICA
1535 * GPE core. ACPICA GPE core will automatically disable a GPE when
1536 * it is indicated but there is no way to handle it. So the drivers
1537 * must disable the GPEs prior to removing the GPE handlers.
1538 */
1539 acpi_ec_stop(ec, false);
1540
1541 if (test_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags)) {
1542 if (ec->gpe >= 0 &&
1543 ACPI_FAILURE(acpi_remove_gpe_handler(NULL, ec->gpe,
1544 &acpi_ec_gpe_handler)))
1545 pr_err("failed to remove gpe handler\n");
1546
1547 if (ec->irq >= 0)
1548 free_irq(ec->irq, ec);
1549
1550 clear_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags);
1551 }
1552 if (test_bit(EC_FLAGS_QUERY_METHODS_INSTALLED, &ec->flags)) {
1553 acpi_ec_remove_query_handlers(ec, true, 0);
1554 clear_bit(EC_FLAGS_QUERY_METHODS_INSTALLED, &ec->flags);
1555 }
1556 }
1557
acpi_ec_setup(struct acpi_ec * ec,struct acpi_device * device)1558 static int acpi_ec_setup(struct acpi_ec *ec, struct acpi_device *device)
1559 {
1560 int ret;
1561
1562 ret = ec_install_handlers(ec, device);
1563 if (ret)
1564 return ret;
1565
1566 /* First EC capable of handling transactions */
1567 if (!first_ec)
1568 first_ec = ec;
1569
1570 pr_info("EC_CMD/EC_SC=0x%lx, EC_DATA=0x%lx\n", ec->command_addr,
1571 ec->data_addr);
1572
1573 if (test_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags)) {
1574 if (ec->gpe >= 0)
1575 pr_info("GPE=0x%x\n", ec->gpe);
1576 else
1577 pr_info("IRQ=%d\n", ec->irq);
1578 }
1579
1580 return ret;
1581 }
1582
acpi_ec_add(struct acpi_device * device)1583 static int acpi_ec_add(struct acpi_device *device)
1584 {
1585 struct acpi_ec *ec;
1586 int ret;
1587
1588 strcpy(acpi_device_name(device), ACPI_EC_DEVICE_NAME);
1589 strcpy(acpi_device_class(device), ACPI_EC_CLASS);
1590
1591 if (boot_ec && (boot_ec->handle == device->handle ||
1592 !strcmp(acpi_device_hid(device), ACPI_ECDT_HID))) {
1593 /* Fast path: this device corresponds to the boot EC. */
1594 ec = boot_ec;
1595 } else {
1596 acpi_status status;
1597
1598 ec = acpi_ec_alloc();
1599 if (!ec)
1600 return -ENOMEM;
1601
1602 status = ec_parse_device(device->handle, 0, ec, NULL);
1603 if (status != AE_CTRL_TERMINATE) {
1604 ret = -EINVAL;
1605 goto err;
1606 }
1607
1608 if (boot_ec && ec->command_addr == boot_ec->command_addr &&
1609 ec->data_addr == boot_ec->data_addr) {
1610 /*
1611 * Trust PNP0C09 namespace location rather than
1612 * ECDT ID. But trust ECDT GPE rather than _GPE
1613 * because of ASUS quirks, so do not change
1614 * boot_ec->gpe to ec->gpe.
1615 */
1616 boot_ec->handle = ec->handle;
1617 acpi_handle_debug(ec->handle, "duplicated.\n");
1618 acpi_ec_free(ec);
1619 ec = boot_ec;
1620 }
1621 }
1622
1623 ret = acpi_ec_setup(ec, device);
1624 if (ret)
1625 goto err;
1626
1627 if (ec == boot_ec)
1628 acpi_handle_info(boot_ec->handle,
1629 "Boot %s EC initialization complete\n",
1630 boot_ec_is_ecdt ? "ECDT" : "DSDT");
1631
1632 acpi_handle_info(ec->handle,
1633 "EC: Used to handle transactions and events\n");
1634
1635 device->driver_data = ec;
1636
1637 ret = !!request_region(ec->data_addr, 1, "EC data");
1638 WARN(!ret, "Could not request EC data io port 0x%lx", ec->data_addr);
1639 ret = !!request_region(ec->command_addr, 1, "EC cmd");
1640 WARN(!ret, "Could not request EC cmd io port 0x%lx", ec->command_addr);
1641
1642 /* Reprobe devices depending on the EC */
1643 acpi_walk_dep_device_list(ec->handle);
1644
1645 acpi_handle_debug(ec->handle, "enumerated.\n");
1646 return 0;
1647
1648 err:
1649 if (ec != boot_ec)
1650 acpi_ec_free(ec);
1651
1652 return ret;
1653 }
1654
acpi_ec_remove(struct acpi_device * device)1655 static int acpi_ec_remove(struct acpi_device *device)
1656 {
1657 struct acpi_ec *ec;
1658
1659 if (!device)
1660 return -EINVAL;
1661
1662 ec = acpi_driver_data(device);
1663 release_region(ec->data_addr, 1);
1664 release_region(ec->command_addr, 1);
1665 device->driver_data = NULL;
1666 if (ec != boot_ec) {
1667 ec_remove_handlers(ec);
1668 acpi_ec_free(ec);
1669 }
1670 return 0;
1671 }
1672
1673 static acpi_status
ec_parse_io_ports(struct acpi_resource * resource,void * context)1674 ec_parse_io_ports(struct acpi_resource *resource, void *context)
1675 {
1676 struct acpi_ec *ec = context;
1677
1678 if (resource->type != ACPI_RESOURCE_TYPE_IO)
1679 return AE_OK;
1680
1681 /*
1682 * The first address region returned is the data port, and
1683 * the second address region returned is the status/command
1684 * port.
1685 */
1686 if (ec->data_addr == 0)
1687 ec->data_addr = resource->data.io.minimum;
1688 else if (ec->command_addr == 0)
1689 ec->command_addr = resource->data.io.minimum;
1690 else
1691 return AE_CTRL_TERMINATE;
1692
1693 return AE_OK;
1694 }
1695
1696 static const struct acpi_device_id ec_device_ids[] = {
1697 {"PNP0C09", 0},
1698 {ACPI_ECDT_HID, 0},
1699 {"", 0},
1700 };
1701
1702 /*
1703 * This function is not Windows-compatible as Windows never enumerates the
1704 * namespace EC before the main ACPI device enumeration process. It is
1705 * retained for historical reason and will be deprecated in the future.
1706 */
acpi_ec_dsdt_probe(void)1707 void __init acpi_ec_dsdt_probe(void)
1708 {
1709 struct acpi_ec *ec;
1710 acpi_status status;
1711 int ret;
1712
1713 /*
1714 * If a platform has ECDT, there is no need to proceed as the
1715 * following probe is not a part of the ACPI device enumeration,
1716 * executing _STA is not safe, and thus this probe may risk of
1717 * picking up an invalid EC device.
1718 */
1719 if (boot_ec)
1720 return;
1721
1722 ec = acpi_ec_alloc();
1723 if (!ec)
1724 return;
1725
1726 /*
1727 * At this point, the namespace is initialized, so start to find
1728 * the namespace objects.
1729 */
1730 status = acpi_get_devices(ec_device_ids[0].id, ec_parse_device, ec, NULL);
1731 if (ACPI_FAILURE(status) || !ec->handle) {
1732 acpi_ec_free(ec);
1733 return;
1734 }
1735
1736 /*
1737 * When the DSDT EC is available, always re-configure boot EC to
1738 * have _REG evaluated. _REG can only be evaluated after the
1739 * namespace initialization.
1740 * At this point, the GPE is not fully initialized, so do not to
1741 * handle the events.
1742 */
1743 ret = acpi_ec_setup(ec, NULL);
1744 if (ret) {
1745 acpi_ec_free(ec);
1746 return;
1747 }
1748
1749 boot_ec = ec;
1750
1751 acpi_handle_info(ec->handle,
1752 "Boot DSDT EC used to handle transactions\n");
1753 }
1754
1755 /*
1756 * acpi_ec_ecdt_start - Finalize the boot ECDT EC initialization.
1757 *
1758 * First, look for an ACPI handle for the boot ECDT EC if acpi_ec_add() has not
1759 * found a matching object in the namespace.
1760 *
1761 * Next, in case the DSDT EC is not functioning, it is still necessary to
1762 * provide a functional ECDT EC to handle events, so add an extra device object
1763 * to represent it (see https://bugzilla.kernel.org/show_bug.cgi?id=115021).
1764 *
1765 * This is useful on platforms with valid ECDT and invalid DSDT EC settings,
1766 * like ASUS X550ZE (see https://bugzilla.kernel.org/show_bug.cgi?id=196847).
1767 */
acpi_ec_ecdt_start(void)1768 static void __init acpi_ec_ecdt_start(void)
1769 {
1770 struct acpi_table_ecdt *ecdt_ptr;
1771 acpi_handle handle;
1772 acpi_status status;
1773
1774 /* Bail out if a matching EC has been found in the namespace. */
1775 if (!boot_ec || boot_ec->handle != ACPI_ROOT_OBJECT)
1776 return;
1777
1778 /* Look up the object pointed to from the ECDT in the namespace. */
1779 status = acpi_get_table(ACPI_SIG_ECDT, 1,
1780 (struct acpi_table_header **)&ecdt_ptr);
1781 if (ACPI_FAILURE(status))
1782 return;
1783
1784 status = acpi_get_handle(NULL, ecdt_ptr->id, &handle);
1785 if (ACPI_SUCCESS(status)) {
1786 boot_ec->handle = handle;
1787
1788 /* Add a special ACPI device object to represent the boot EC. */
1789 acpi_bus_register_early_device(ACPI_BUS_TYPE_ECDT_EC);
1790 }
1791
1792 acpi_put_table((struct acpi_table_header *)ecdt_ptr);
1793 }
1794
1795 /*
1796 * On some hardware it is necessary to clear events accumulated by the EC during
1797 * sleep. These ECs stop reporting GPEs until they are manually polled, if too
1798 * many events are accumulated. (e.g. Samsung Series 5/9 notebooks)
1799 *
1800 * https://bugzilla.kernel.org/show_bug.cgi?id=44161
1801 *
1802 * Ideally, the EC should also be instructed NOT to accumulate events during
1803 * sleep (which Windows seems to do somehow), but the interface to control this
1804 * behaviour is not known at this time.
1805 *
1806 * Models known to be affected are Samsung 530Uxx/535Uxx/540Uxx/550Pxx/900Xxx,
1807 * however it is very likely that other Samsung models are affected.
1808 *
1809 * On systems which don't accumulate _Q events during sleep, this extra check
1810 * should be harmless.
1811 */
ec_clear_on_resume(const struct dmi_system_id * id)1812 static int ec_clear_on_resume(const struct dmi_system_id *id)
1813 {
1814 pr_debug("Detected system needing EC poll on resume.\n");
1815 EC_FLAGS_CLEAR_ON_RESUME = 1;
1816 ec_event_clearing = ACPI_EC_EVT_TIMING_STATUS;
1817 return 0;
1818 }
1819
1820 /*
1821 * Some ECDTs contain wrong register addresses.
1822 * MSI MS-171F
1823 * https://bugzilla.kernel.org/show_bug.cgi?id=12461
1824 */
ec_correct_ecdt(const struct dmi_system_id * id)1825 static int ec_correct_ecdt(const struct dmi_system_id *id)
1826 {
1827 pr_debug("Detected system needing ECDT address correction.\n");
1828 EC_FLAGS_CORRECT_ECDT = 1;
1829 return 0;
1830 }
1831
1832 /*
1833 * Some DSDTs contain wrong GPE setting.
1834 * Asus FX502VD/VE, GL702VMK, X550VXK, X580VD
1835 * https://bugzilla.kernel.org/show_bug.cgi?id=195651
1836 */
ec_honor_ecdt_gpe(const struct dmi_system_id * id)1837 static int ec_honor_ecdt_gpe(const struct dmi_system_id *id)
1838 {
1839 pr_debug("Detected system needing ignore DSDT GPE setting.\n");
1840 EC_FLAGS_IGNORE_DSDT_GPE = 1;
1841 return 0;
1842 }
1843
1844 static const struct dmi_system_id ec_dmi_table[] __initconst = {
1845 {
1846 ec_correct_ecdt, "MSI MS-171F", {
1847 DMI_MATCH(DMI_SYS_VENDOR, "Micro-Star"),
1848 DMI_MATCH(DMI_PRODUCT_NAME, "MS-171F"),}, NULL},
1849 {
1850 ec_honor_ecdt_gpe, "ASUS FX502VD", {
1851 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
1852 DMI_MATCH(DMI_PRODUCT_NAME, "FX502VD"),}, NULL},
1853 {
1854 ec_honor_ecdt_gpe, "ASUS FX502VE", {
1855 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
1856 DMI_MATCH(DMI_PRODUCT_NAME, "FX502VE"),}, NULL},
1857 {
1858 ec_honor_ecdt_gpe, "ASUS GL702VMK", {
1859 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
1860 DMI_MATCH(DMI_PRODUCT_NAME, "GL702VMK"),}, NULL},
1861 {
1862 ec_honor_ecdt_gpe, "ASUS X550VXK", {
1863 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
1864 DMI_MATCH(DMI_PRODUCT_NAME, "X550VXK"),}, NULL},
1865 {
1866 ec_honor_ecdt_gpe, "ASUS X580VD", {
1867 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
1868 DMI_MATCH(DMI_PRODUCT_NAME, "X580VD"),}, NULL},
1869 {
1870 ec_clear_on_resume, "Samsung hardware", {
1871 DMI_MATCH(DMI_SYS_VENDOR, "SAMSUNG ELECTRONICS CO., LTD.")}, NULL},
1872 {},
1873 };
1874
acpi_ec_ecdt_probe(void)1875 void __init acpi_ec_ecdt_probe(void)
1876 {
1877 struct acpi_table_ecdt *ecdt_ptr;
1878 struct acpi_ec *ec;
1879 acpi_status status;
1880 int ret;
1881
1882 /* Generate a boot ec context. */
1883 dmi_check_system(ec_dmi_table);
1884 status = acpi_get_table(ACPI_SIG_ECDT, 1,
1885 (struct acpi_table_header **)&ecdt_ptr);
1886 if (ACPI_FAILURE(status))
1887 return;
1888
1889 if (!ecdt_ptr->control.address || !ecdt_ptr->data.address) {
1890 /*
1891 * Asus X50GL:
1892 * https://bugzilla.kernel.org/show_bug.cgi?id=11880
1893 */
1894 goto out;
1895 }
1896
1897 ec = acpi_ec_alloc();
1898 if (!ec)
1899 goto out;
1900
1901 if (EC_FLAGS_CORRECT_ECDT) {
1902 ec->command_addr = ecdt_ptr->data.address;
1903 ec->data_addr = ecdt_ptr->control.address;
1904 } else {
1905 ec->command_addr = ecdt_ptr->control.address;
1906 ec->data_addr = ecdt_ptr->data.address;
1907 }
1908
1909 /*
1910 * Ignore the GPE value on Reduced Hardware platforms.
1911 * Some products have this set to an erroneous value.
1912 */
1913 if (!acpi_gbl_reduced_hardware)
1914 ec->gpe = ecdt_ptr->gpe;
1915
1916 ec->handle = ACPI_ROOT_OBJECT;
1917
1918 /*
1919 * At this point, the namespace is not initialized, so do not find
1920 * the namespace objects, or handle the events.
1921 */
1922 ret = acpi_ec_setup(ec, NULL);
1923 if (ret) {
1924 acpi_ec_free(ec);
1925 goto out;
1926 }
1927
1928 boot_ec = ec;
1929 boot_ec_is_ecdt = true;
1930
1931 pr_info("Boot ECDT EC used to handle transactions\n");
1932
1933 out:
1934 acpi_put_table((struct acpi_table_header *)ecdt_ptr);
1935 }
1936
1937 #ifdef CONFIG_PM_SLEEP
acpi_ec_suspend(struct device * dev)1938 static int acpi_ec_suspend(struct device *dev)
1939 {
1940 struct acpi_ec *ec =
1941 acpi_driver_data(to_acpi_device(dev));
1942
1943 if (!pm_suspend_no_platform() && ec_freeze_events)
1944 acpi_ec_disable_event(ec);
1945 return 0;
1946 }
1947
acpi_ec_suspend_noirq(struct device * dev)1948 static int acpi_ec_suspend_noirq(struct device *dev)
1949 {
1950 struct acpi_ec *ec = acpi_driver_data(to_acpi_device(dev));
1951
1952 /*
1953 * The SCI handler doesn't run at this point, so the GPE can be
1954 * masked at the low level without side effects.
1955 */
1956 if (ec_no_wakeup && test_bit(EC_FLAGS_STARTED, &ec->flags) &&
1957 ec->gpe >= 0 && ec->reference_count >= 1)
1958 acpi_set_gpe(NULL, ec->gpe, ACPI_GPE_DISABLE);
1959
1960 acpi_ec_enter_noirq(ec);
1961
1962 return 0;
1963 }
1964
acpi_ec_resume_noirq(struct device * dev)1965 static int acpi_ec_resume_noirq(struct device *dev)
1966 {
1967 struct acpi_ec *ec = acpi_driver_data(to_acpi_device(dev));
1968
1969 acpi_ec_leave_noirq(ec);
1970
1971 if (ec_no_wakeup && test_bit(EC_FLAGS_STARTED, &ec->flags) &&
1972 ec->gpe >= 0 && ec->reference_count >= 1)
1973 acpi_set_gpe(NULL, ec->gpe, ACPI_GPE_ENABLE);
1974
1975 return 0;
1976 }
1977
acpi_ec_resume(struct device * dev)1978 static int acpi_ec_resume(struct device *dev)
1979 {
1980 struct acpi_ec *ec =
1981 acpi_driver_data(to_acpi_device(dev));
1982
1983 acpi_ec_enable_event(ec);
1984 return 0;
1985 }
1986
acpi_ec_mark_gpe_for_wake(void)1987 void acpi_ec_mark_gpe_for_wake(void)
1988 {
1989 if (first_ec && !ec_no_wakeup)
1990 acpi_mark_gpe_for_wake(NULL, first_ec->gpe);
1991 }
1992 EXPORT_SYMBOL_GPL(acpi_ec_mark_gpe_for_wake);
1993
acpi_ec_set_gpe_wake_mask(u8 action)1994 void acpi_ec_set_gpe_wake_mask(u8 action)
1995 {
1996 if (pm_suspend_no_platform() && first_ec && !ec_no_wakeup)
1997 acpi_set_gpe_wake_mask(NULL, first_ec->gpe, action);
1998 }
1999
acpi_ec_dispatch_gpe(void)2000 bool acpi_ec_dispatch_gpe(void)
2001 {
2002 u32 ret;
2003
2004 if (!first_ec)
2005 return acpi_any_gpe_status_set(U32_MAX);
2006
2007 /*
2008 * Report wakeup if the status bit is set for any enabled GPE other
2009 * than the EC one.
2010 */
2011 if (acpi_any_gpe_status_set(first_ec->gpe))
2012 return true;
2013
2014 /*
2015 * Dispatch the EC GPE in-band, but do not report wakeup in any case
2016 * to allow the caller to process events properly after that.
2017 */
2018 ret = acpi_dispatch_gpe(NULL, first_ec->gpe);
2019 if (ret == ACPI_INTERRUPT_HANDLED)
2020 pm_pr_dbg("ACPI EC GPE dispatched\n");
2021
2022 /* Flush the event and query workqueues. */
2023 acpi_ec_flush_work();
2024
2025 return false;
2026 }
2027 #endif /* CONFIG_PM_SLEEP */
2028
2029 static const struct dev_pm_ops acpi_ec_pm = {
2030 SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(acpi_ec_suspend_noirq, acpi_ec_resume_noirq)
2031 SET_SYSTEM_SLEEP_PM_OPS(acpi_ec_suspend, acpi_ec_resume)
2032 };
2033
param_set_event_clearing(const char * val,const struct kernel_param * kp)2034 static int param_set_event_clearing(const char *val,
2035 const struct kernel_param *kp)
2036 {
2037 int result = 0;
2038
2039 if (!strncmp(val, "status", sizeof("status") - 1)) {
2040 ec_event_clearing = ACPI_EC_EVT_TIMING_STATUS;
2041 pr_info("Assuming SCI_EVT clearing on EC_SC accesses\n");
2042 } else if (!strncmp(val, "query", sizeof("query") - 1)) {
2043 ec_event_clearing = ACPI_EC_EVT_TIMING_QUERY;
2044 pr_info("Assuming SCI_EVT clearing on QR_EC writes\n");
2045 } else if (!strncmp(val, "event", sizeof("event") - 1)) {
2046 ec_event_clearing = ACPI_EC_EVT_TIMING_EVENT;
2047 pr_info("Assuming SCI_EVT clearing on event reads\n");
2048 } else
2049 result = -EINVAL;
2050 return result;
2051 }
2052
param_get_event_clearing(char * buffer,const struct kernel_param * kp)2053 static int param_get_event_clearing(char *buffer,
2054 const struct kernel_param *kp)
2055 {
2056 switch (ec_event_clearing) {
2057 case ACPI_EC_EVT_TIMING_STATUS:
2058 return sprintf(buffer, "status\n");
2059 case ACPI_EC_EVT_TIMING_QUERY:
2060 return sprintf(buffer, "query\n");
2061 case ACPI_EC_EVT_TIMING_EVENT:
2062 return sprintf(buffer, "event\n");
2063 default:
2064 return sprintf(buffer, "invalid\n");
2065 }
2066 return 0;
2067 }
2068
2069 module_param_call(ec_event_clearing, param_set_event_clearing, param_get_event_clearing,
2070 NULL, 0644);
2071 MODULE_PARM_DESC(ec_event_clearing, "Assumed SCI_EVT clearing timing");
2072
2073 static struct acpi_driver acpi_ec_driver = {
2074 .name = "ec",
2075 .class = ACPI_EC_CLASS,
2076 .ids = ec_device_ids,
2077 .ops = {
2078 .add = acpi_ec_add,
2079 .remove = acpi_ec_remove,
2080 },
2081 .drv.pm = &acpi_ec_pm,
2082 };
2083
acpi_ec_destroy_workqueues(void)2084 static void acpi_ec_destroy_workqueues(void)
2085 {
2086 if (ec_wq) {
2087 destroy_workqueue(ec_wq);
2088 ec_wq = NULL;
2089 }
2090 if (ec_query_wq) {
2091 destroy_workqueue(ec_query_wq);
2092 ec_query_wq = NULL;
2093 }
2094 }
2095
acpi_ec_init_workqueues(void)2096 static int acpi_ec_init_workqueues(void)
2097 {
2098 if (!ec_wq)
2099 ec_wq = alloc_ordered_workqueue("kec", 0);
2100
2101 if (!ec_query_wq)
2102 ec_query_wq = alloc_workqueue("kec_query", 0, ec_max_queries);
2103
2104 if (!ec_wq || !ec_query_wq) {
2105 acpi_ec_destroy_workqueues();
2106 return -ENODEV;
2107 }
2108 return 0;
2109 }
2110
2111 static const struct dmi_system_id acpi_ec_no_wakeup[] = {
2112 {
2113 .ident = "Thinkpad X1 Carbon 6th",
2114 .matches = {
2115 DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"),
2116 DMI_MATCH(DMI_PRODUCT_FAMILY, "Thinkpad X1 Carbon 6th"),
2117 },
2118 },
2119 {
2120 .ident = "ThinkPad X1 Carbon 6th",
2121 .matches = {
2122 DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"),
2123 DMI_MATCH(DMI_PRODUCT_FAMILY, "ThinkPad X1 Carbon 6th"),
2124 },
2125 },
2126 {
2127 .ident = "ThinkPad X1 Yoga 3rd",
2128 .matches = {
2129 DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"),
2130 DMI_MATCH(DMI_PRODUCT_FAMILY, "ThinkPad X1 Yoga 3rd"),
2131 },
2132 },
2133 { },
2134 };
2135
acpi_ec_init(void)2136 void __init acpi_ec_init(void)
2137 {
2138 int result;
2139
2140 result = acpi_ec_init_workqueues();
2141 if (result)
2142 return;
2143
2144 /*
2145 * Disable EC wakeup on following systems to prevent periodic
2146 * wakeup from EC GPE.
2147 */
2148 if (dmi_check_system(acpi_ec_no_wakeup)) {
2149 ec_no_wakeup = true;
2150 pr_debug("Disabling EC wakeup on suspend-to-idle\n");
2151 }
2152
2153 /* Driver must be registered after acpi_ec_init_workqueues(). */
2154 acpi_bus_register_driver(&acpi_ec_driver);
2155
2156 acpi_ec_ecdt_start();
2157 }
2158
2159 /* EC driver currently not unloadable */
2160 #if 0
2161 static void __exit acpi_ec_exit(void)
2162 {
2163
2164 acpi_bus_unregister_driver(&acpi_ec_driver);
2165 acpi_ec_destroy_workqueues();
2166 }
2167 #endif /* 0 */
2168