1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3 * Read-Copy Update definitions shared among RCU implementations.
4 *
5 * Copyright IBM Corporation, 2011
6 *
7 * Author: Paul E. McKenney <paulmck@linux.ibm.com>
8 */
9
10 #ifndef __LINUX_RCU_H
11 #define __LINUX_RCU_H
12
13 #include <trace/events/rcu.h>
14
15 /*
16 * Grace-period counter management.
17 *
18 * The two least significant bits contain the control flags.
19 * The most significant bits contain the grace-period sequence counter.
20 *
21 * When both control flags are zero, no grace period is in progress.
22 * When either bit is non-zero, a grace period has started and is in
23 * progress. When the grace period completes, the control flags are reset
24 * to 0 and the grace-period sequence counter is incremented.
25 *
26 * However some specific RCU usages make use of custom values.
27 *
28 * SRCU special control values:
29 *
30 * SRCU_SNP_INIT_SEQ : Invalid/init value set when SRCU node
31 * is initialized.
32 *
33 * SRCU_STATE_IDLE : No SRCU gp is in progress
34 *
35 * SRCU_STATE_SCAN1 : State set by rcu_seq_start(). Indicates
36 * we are scanning the readers on the slot
37 * defined as inactive (there might well
38 * be pending readers that will use that
39 * index, but their number is bounded).
40 *
41 * SRCU_STATE_SCAN2 : State set manually via rcu_seq_set_state()
42 * Indicates we are flipping the readers
43 * index and then scanning the readers on the
44 * slot newly designated as inactive (again,
45 * the number of pending readers that will use
46 * this inactive index is bounded).
47 *
48 * RCU polled GP special control value:
49 *
50 * RCU_GET_STATE_COMPLETED : State value indicating an already-completed
51 * polled GP has completed. This value covers
52 * both the state and the counter of the
53 * grace-period sequence number.
54 */
55
56 #define RCU_SEQ_CTR_SHIFT 2
57 #define RCU_SEQ_STATE_MASK ((1 << RCU_SEQ_CTR_SHIFT) - 1)
58
59 /* Low-order bit definition for polled grace-period APIs. */
60 #define RCU_GET_STATE_COMPLETED 0x1
61
62 extern int sysctl_sched_rt_runtime;
63
64 /*
65 * Return the counter portion of a sequence number previously returned
66 * by rcu_seq_snap() or rcu_seq_current().
67 */
rcu_seq_ctr(unsigned long s)68 static inline unsigned long rcu_seq_ctr(unsigned long s)
69 {
70 return s >> RCU_SEQ_CTR_SHIFT;
71 }
72
73 /*
74 * Return the state portion of a sequence number previously returned
75 * by rcu_seq_snap() or rcu_seq_current().
76 */
rcu_seq_state(unsigned long s)77 static inline int rcu_seq_state(unsigned long s)
78 {
79 return s & RCU_SEQ_STATE_MASK;
80 }
81
82 /*
83 * Set the state portion of the pointed-to sequence number.
84 * The caller is responsible for preventing conflicting updates.
85 */
rcu_seq_set_state(unsigned long * sp,int newstate)86 static inline void rcu_seq_set_state(unsigned long *sp, int newstate)
87 {
88 WARN_ON_ONCE(newstate & ~RCU_SEQ_STATE_MASK);
89 WRITE_ONCE(*sp, (*sp & ~RCU_SEQ_STATE_MASK) + newstate);
90 }
91
92 /* Adjust sequence number for start of update-side operation. */
rcu_seq_start(unsigned long * sp)93 static inline void rcu_seq_start(unsigned long *sp)
94 {
95 WRITE_ONCE(*sp, *sp + 1);
96 smp_mb(); /* Ensure update-side operation after counter increment. */
97 WARN_ON_ONCE(rcu_seq_state(*sp) != 1);
98 }
99
100 /* Compute the end-of-grace-period value for the specified sequence number. */
rcu_seq_endval(unsigned long * sp)101 static inline unsigned long rcu_seq_endval(unsigned long *sp)
102 {
103 return (*sp | RCU_SEQ_STATE_MASK) + 1;
104 }
105
106 /* Adjust sequence number for end of update-side operation. */
rcu_seq_end(unsigned long * sp)107 static inline void rcu_seq_end(unsigned long *sp)
108 {
109 smp_mb(); /* Ensure update-side operation before counter increment. */
110 WARN_ON_ONCE(!rcu_seq_state(*sp));
111 WRITE_ONCE(*sp, rcu_seq_endval(sp));
112 }
113
114 /*
115 * rcu_seq_snap - Take a snapshot of the update side's sequence number.
116 *
117 * This function returns the earliest value of the grace-period sequence number
118 * that will indicate that a full grace period has elapsed since the current
119 * time. Once the grace-period sequence number has reached this value, it will
120 * be safe to invoke all callbacks that have been registered prior to the
121 * current time. This value is the current grace-period number plus two to the
122 * power of the number of low-order bits reserved for state, then rounded up to
123 * the next value in which the state bits are all zero.
124 */
rcu_seq_snap(unsigned long * sp)125 static inline unsigned long rcu_seq_snap(unsigned long *sp)
126 {
127 unsigned long s;
128
129 s = (READ_ONCE(*sp) + 2 * RCU_SEQ_STATE_MASK + 1) & ~RCU_SEQ_STATE_MASK;
130 smp_mb(); /* Above access must not bleed into critical section. */
131 return s;
132 }
133
134 /* Return the current value the update side's sequence number, no ordering. */
rcu_seq_current(unsigned long * sp)135 static inline unsigned long rcu_seq_current(unsigned long *sp)
136 {
137 return READ_ONCE(*sp);
138 }
139
140 /*
141 * Given a snapshot from rcu_seq_snap(), determine whether or not the
142 * corresponding update-side operation has started.
143 */
rcu_seq_started(unsigned long * sp,unsigned long s)144 static inline bool rcu_seq_started(unsigned long *sp, unsigned long s)
145 {
146 return ULONG_CMP_LT((s - 1) & ~RCU_SEQ_STATE_MASK, READ_ONCE(*sp));
147 }
148
149 /*
150 * Given a snapshot from rcu_seq_snap(), determine whether or not a
151 * full update-side operation has occurred.
152 */
rcu_seq_done(unsigned long * sp,unsigned long s)153 static inline bool rcu_seq_done(unsigned long *sp, unsigned long s)
154 {
155 return ULONG_CMP_GE(READ_ONCE(*sp), s);
156 }
157
158 /*
159 * Given a snapshot from rcu_seq_snap(), determine whether or not a
160 * full update-side operation has occurred, but do not allow the
161 * (ULONG_MAX / 2) safety-factor/guard-band.
162 */
rcu_seq_done_exact(unsigned long * sp,unsigned long s)163 static inline bool rcu_seq_done_exact(unsigned long *sp, unsigned long s)
164 {
165 unsigned long cur_s = READ_ONCE(*sp);
166
167 return ULONG_CMP_GE(cur_s, s) || ULONG_CMP_LT(cur_s, s - (2 * RCU_SEQ_STATE_MASK + 1));
168 }
169
170 /*
171 * Has a grace period completed since the time the old gp_seq was collected?
172 */
rcu_seq_completed_gp(unsigned long old,unsigned long new)173 static inline bool rcu_seq_completed_gp(unsigned long old, unsigned long new)
174 {
175 return ULONG_CMP_LT(old, new & ~RCU_SEQ_STATE_MASK);
176 }
177
178 /*
179 * Has a grace period started since the time the old gp_seq was collected?
180 */
rcu_seq_new_gp(unsigned long old,unsigned long new)181 static inline bool rcu_seq_new_gp(unsigned long old, unsigned long new)
182 {
183 return ULONG_CMP_LT((old + RCU_SEQ_STATE_MASK) & ~RCU_SEQ_STATE_MASK,
184 new);
185 }
186
187 /*
188 * Roughly how many full grace periods have elapsed between the collection
189 * of the two specified grace periods?
190 */
rcu_seq_diff(unsigned long new,unsigned long old)191 static inline unsigned long rcu_seq_diff(unsigned long new, unsigned long old)
192 {
193 unsigned long rnd_diff;
194
195 if (old == new)
196 return 0;
197 /*
198 * Compute the number of grace periods (still shifted up), plus
199 * one if either of new and old is not an exact grace period.
200 */
201 rnd_diff = (new & ~RCU_SEQ_STATE_MASK) -
202 ((old + RCU_SEQ_STATE_MASK) & ~RCU_SEQ_STATE_MASK) +
203 ((new & RCU_SEQ_STATE_MASK) || (old & RCU_SEQ_STATE_MASK));
204 if (ULONG_CMP_GE(RCU_SEQ_STATE_MASK, rnd_diff))
205 return 1; /* Definitely no grace period has elapsed. */
206 return ((rnd_diff - RCU_SEQ_STATE_MASK - 1) >> RCU_SEQ_CTR_SHIFT) + 2;
207 }
208
209 /*
210 * debug_rcu_head_queue()/debug_rcu_head_unqueue() are used internally
211 * by call_rcu() and rcu callback execution, and are therefore not part
212 * of the RCU API. These are in rcupdate.h because they are used by all
213 * RCU implementations.
214 */
215
216 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
217 # define STATE_RCU_HEAD_READY 0
218 # define STATE_RCU_HEAD_QUEUED 1
219
220 extern const struct debug_obj_descr rcuhead_debug_descr;
221
debug_rcu_head_queue(struct rcu_head * head)222 static inline int debug_rcu_head_queue(struct rcu_head *head)
223 {
224 int r1;
225
226 r1 = debug_object_activate(head, &rcuhead_debug_descr);
227 debug_object_active_state(head, &rcuhead_debug_descr,
228 STATE_RCU_HEAD_READY,
229 STATE_RCU_HEAD_QUEUED);
230 return r1;
231 }
232
debug_rcu_head_unqueue(struct rcu_head * head)233 static inline void debug_rcu_head_unqueue(struct rcu_head *head)
234 {
235 debug_object_active_state(head, &rcuhead_debug_descr,
236 STATE_RCU_HEAD_QUEUED,
237 STATE_RCU_HEAD_READY);
238 debug_object_deactivate(head, &rcuhead_debug_descr);
239 }
240 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
debug_rcu_head_queue(struct rcu_head * head)241 static inline int debug_rcu_head_queue(struct rcu_head *head)
242 {
243 return 0;
244 }
245
debug_rcu_head_unqueue(struct rcu_head * head)246 static inline void debug_rcu_head_unqueue(struct rcu_head *head)
247 {
248 }
249 #endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
250
251 extern int rcu_cpu_stall_suppress_at_boot;
252
rcu_stall_is_suppressed_at_boot(void)253 static inline bool rcu_stall_is_suppressed_at_boot(void)
254 {
255 return rcu_cpu_stall_suppress_at_boot && !rcu_inkernel_boot_has_ended();
256 }
257
258 #ifdef CONFIG_RCU_STALL_COMMON
259
260 extern int rcu_cpu_stall_ftrace_dump;
261 extern int rcu_cpu_stall_suppress;
262 extern int rcu_cpu_stall_timeout;
263 extern int rcu_exp_cpu_stall_timeout;
264 extern int rcu_cpu_stall_cputime;
265 extern bool rcu_exp_stall_task_details __read_mostly;
266 int rcu_jiffies_till_stall_check(void);
267 int rcu_exp_jiffies_till_stall_check(void);
268
rcu_stall_is_suppressed(void)269 static inline bool rcu_stall_is_suppressed(void)
270 {
271 return rcu_stall_is_suppressed_at_boot() || rcu_cpu_stall_suppress;
272 }
273
274 #define rcu_ftrace_dump_stall_suppress() \
275 do { \
276 if (!rcu_cpu_stall_suppress) \
277 rcu_cpu_stall_suppress = 3; \
278 } while (0)
279
280 #define rcu_ftrace_dump_stall_unsuppress() \
281 do { \
282 if (rcu_cpu_stall_suppress == 3) \
283 rcu_cpu_stall_suppress = 0; \
284 } while (0)
285
286 #else /* #endif #ifdef CONFIG_RCU_STALL_COMMON */
287
rcu_stall_is_suppressed(void)288 static inline bool rcu_stall_is_suppressed(void)
289 {
290 return rcu_stall_is_suppressed_at_boot();
291 }
292 #define rcu_ftrace_dump_stall_suppress()
293 #define rcu_ftrace_dump_stall_unsuppress()
294 #endif /* #ifdef CONFIG_RCU_STALL_COMMON */
295
296 /*
297 * Strings used in tracepoints need to be exported via the
298 * tracing system such that tools like perf and trace-cmd can
299 * translate the string address pointers to actual text.
300 */
301 #define TPS(x) tracepoint_string(x)
302
303 /*
304 * Dump the ftrace buffer, but only one time per callsite per boot.
305 */
306 #define rcu_ftrace_dump(oops_dump_mode) \
307 do { \
308 static atomic_t ___rfd_beenhere = ATOMIC_INIT(0); \
309 \
310 if (!atomic_read(&___rfd_beenhere) && \
311 !atomic_xchg(&___rfd_beenhere, 1)) { \
312 tracing_off(); \
313 rcu_ftrace_dump_stall_suppress(); \
314 ftrace_dump(oops_dump_mode); \
315 rcu_ftrace_dump_stall_unsuppress(); \
316 } \
317 } while (0)
318
319 void rcu_early_boot_tests(void);
320 void rcu_test_sync_prims(void);
321
322 /*
323 * This function really isn't for public consumption, but RCU is special in
324 * that context switches can allow the state machine to make progress.
325 */
326 extern void resched_cpu(int cpu);
327
328 #if !defined(CONFIG_TINY_RCU)
329
330 #include <linux/rcu_node_tree.h>
331
332 extern int rcu_num_lvls;
333 extern int num_rcu_lvl[];
334 extern int rcu_num_nodes;
335 static bool rcu_fanout_exact;
336 static int rcu_fanout_leaf;
337
338 /*
339 * Compute the per-level fanout, either using the exact fanout specified
340 * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
341 */
rcu_init_levelspread(int * levelspread,const int * levelcnt)342 static inline void rcu_init_levelspread(int *levelspread, const int *levelcnt)
343 {
344 int i;
345
346 for (i = 0; i < RCU_NUM_LVLS; i++)
347 levelspread[i] = INT_MIN;
348 if (rcu_fanout_exact) {
349 levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
350 for (i = rcu_num_lvls - 2; i >= 0; i--)
351 levelspread[i] = RCU_FANOUT;
352 } else {
353 int ccur;
354 int cprv;
355
356 cprv = nr_cpu_ids;
357 for (i = rcu_num_lvls - 1; i >= 0; i--) {
358 ccur = levelcnt[i];
359 levelspread[i] = (cprv + ccur - 1) / ccur;
360 cprv = ccur;
361 }
362 }
363 }
364
365 extern void rcu_init_geometry(void);
366
367 /* Returns a pointer to the first leaf rcu_node structure. */
368 #define rcu_first_leaf_node() (rcu_state.level[rcu_num_lvls - 1])
369
370 /* Is this rcu_node a leaf? */
371 #define rcu_is_leaf_node(rnp) ((rnp)->level == rcu_num_lvls - 1)
372
373 /* Is this rcu_node the last leaf? */
374 #define rcu_is_last_leaf_node(rnp) ((rnp) == &rcu_state.node[rcu_num_nodes - 1])
375
376 /*
377 * Do a full breadth-first scan of the {s,}rcu_node structures for the
378 * specified state structure (for SRCU) or the only rcu_state structure
379 * (for RCU).
380 */
381 #define _rcu_for_each_node_breadth_first(sp, rnp) \
382 for ((rnp) = &(sp)->node[0]; \
383 (rnp) < &(sp)->node[rcu_num_nodes]; (rnp)++)
384 #define rcu_for_each_node_breadth_first(rnp) \
385 _rcu_for_each_node_breadth_first(&rcu_state, rnp)
386 #define srcu_for_each_node_breadth_first(ssp, rnp) \
387 _rcu_for_each_node_breadth_first(ssp->srcu_sup, rnp)
388
389 /*
390 * Scan the leaves of the rcu_node hierarchy for the rcu_state structure.
391 * Note that if there is a singleton rcu_node tree with but one rcu_node
392 * structure, this loop -will- visit the rcu_node structure. It is still
393 * a leaf node, even if it is also the root node.
394 */
395 #define rcu_for_each_leaf_node(rnp) \
396 for ((rnp) = rcu_first_leaf_node(); \
397 (rnp) < &rcu_state.node[rcu_num_nodes]; (rnp)++)
398
399 /*
400 * Iterate over all possible CPUs in a leaf RCU node.
401 */
402 #define for_each_leaf_node_possible_cpu(rnp, cpu) \
403 for (WARN_ON_ONCE(!rcu_is_leaf_node(rnp)), \
404 (cpu) = cpumask_next((rnp)->grplo - 1, cpu_possible_mask); \
405 (cpu) <= rnp->grphi; \
406 (cpu) = cpumask_next((cpu), cpu_possible_mask))
407
408 /*
409 * Iterate over all CPUs in a leaf RCU node's specified mask.
410 */
411 #define rcu_find_next_bit(rnp, cpu, mask) \
412 ((rnp)->grplo + find_next_bit(&(mask), BITS_PER_LONG, (cpu)))
413 #define for_each_leaf_node_cpu_mask(rnp, cpu, mask) \
414 for (WARN_ON_ONCE(!rcu_is_leaf_node(rnp)), \
415 (cpu) = rcu_find_next_bit((rnp), 0, (mask)); \
416 (cpu) <= rnp->grphi; \
417 (cpu) = rcu_find_next_bit((rnp), (cpu) + 1 - (rnp->grplo), (mask)))
418
419 #endif /* !defined(CONFIG_TINY_RCU) */
420
421 #if !defined(CONFIG_TINY_RCU) || defined(CONFIG_TASKS_RCU_GENERIC)
422
423 /*
424 * Wrappers for the rcu_node::lock acquire and release.
425 *
426 * Because the rcu_nodes form a tree, the tree traversal locking will observe
427 * different lock values, this in turn means that an UNLOCK of one level
428 * followed by a LOCK of another level does not imply a full memory barrier;
429 * and most importantly transitivity is lost.
430 *
431 * In order to restore full ordering between tree levels, augment the regular
432 * lock acquire functions with smp_mb__after_unlock_lock().
433 *
434 * As ->lock of struct rcu_node is a __private field, therefore one should use
435 * these wrappers rather than directly call raw_spin_{lock,unlock}* on ->lock.
436 */
437 #define raw_spin_lock_rcu_node(p) \
438 do { \
439 raw_spin_lock(&ACCESS_PRIVATE(p, lock)); \
440 smp_mb__after_unlock_lock(); \
441 } while (0)
442
443 #define raw_spin_unlock_rcu_node(p) \
444 do { \
445 lockdep_assert_irqs_disabled(); \
446 raw_spin_unlock(&ACCESS_PRIVATE(p, lock)); \
447 } while (0)
448
449 #define raw_spin_lock_irq_rcu_node(p) \
450 do { \
451 raw_spin_lock_irq(&ACCESS_PRIVATE(p, lock)); \
452 smp_mb__after_unlock_lock(); \
453 } while (0)
454
455 #define raw_spin_unlock_irq_rcu_node(p) \
456 do { \
457 lockdep_assert_irqs_disabled(); \
458 raw_spin_unlock_irq(&ACCESS_PRIVATE(p, lock)); \
459 } while (0)
460
461 #define raw_spin_lock_irqsave_rcu_node(p, flags) \
462 do { \
463 raw_spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags); \
464 smp_mb__after_unlock_lock(); \
465 } while (0)
466
467 #define raw_spin_unlock_irqrestore_rcu_node(p, flags) \
468 do { \
469 lockdep_assert_irqs_disabled(); \
470 raw_spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags); \
471 } while (0)
472
473 #define raw_spin_trylock_rcu_node(p) \
474 ({ \
475 bool ___locked = raw_spin_trylock(&ACCESS_PRIVATE(p, lock)); \
476 \
477 if (___locked) \
478 smp_mb__after_unlock_lock(); \
479 ___locked; \
480 })
481
482 #define raw_lockdep_assert_held_rcu_node(p) \
483 lockdep_assert_held(&ACCESS_PRIVATE(p, lock))
484
485 #endif // #if !defined(CONFIG_TINY_RCU) || defined(CONFIG_TASKS_RCU_GENERIC)
486
487 #ifdef CONFIG_TINY_RCU
488 /* Tiny RCU doesn't expedite, as its purpose in life is instead to be tiny. */
rcu_gp_is_normal(void)489 static inline bool rcu_gp_is_normal(void) { return true; }
rcu_gp_is_expedited(void)490 static inline bool rcu_gp_is_expedited(void) { return false; }
rcu_async_should_hurry(void)491 static inline bool rcu_async_should_hurry(void) { return false; }
rcu_expedite_gp(void)492 static inline void rcu_expedite_gp(void) { }
rcu_unexpedite_gp(void)493 static inline void rcu_unexpedite_gp(void) { }
rcu_async_hurry(void)494 static inline void rcu_async_hurry(void) { }
rcu_async_relax(void)495 static inline void rcu_async_relax(void) { }
496 #else /* #ifdef CONFIG_TINY_RCU */
497 bool rcu_gp_is_normal(void); /* Internal RCU use. */
498 bool rcu_gp_is_expedited(void); /* Internal RCU use. */
499 bool rcu_async_should_hurry(void); /* Internal RCU use. */
500 void rcu_expedite_gp(void);
501 void rcu_unexpedite_gp(void);
502 void rcu_async_hurry(void);
503 void rcu_async_relax(void);
504 void rcupdate_announce_bootup_oddness(void);
505 #ifdef CONFIG_TASKS_RCU_GENERIC
506 void show_rcu_tasks_gp_kthreads(void);
507 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
show_rcu_tasks_gp_kthreads(void)508 static inline void show_rcu_tasks_gp_kthreads(void) {}
509 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */
510 #endif /* #else #ifdef CONFIG_TINY_RCU */
511
512 #ifdef CONFIG_TASKS_RCU
513 struct task_struct *get_rcu_tasks_gp_kthread(void);
514 #endif // # ifdef CONFIG_TASKS_RCU
515
516 #ifdef CONFIG_TASKS_RUDE_RCU
517 struct task_struct *get_rcu_tasks_rude_gp_kthread(void);
518 #endif // # ifdef CONFIG_TASKS_RUDE_RCU
519
520 #define RCU_SCHEDULER_INACTIVE 0
521 #define RCU_SCHEDULER_INIT 1
522 #define RCU_SCHEDULER_RUNNING 2
523
524 enum rcutorture_type {
525 RCU_FLAVOR,
526 RCU_TASKS_FLAVOR,
527 RCU_TASKS_RUDE_FLAVOR,
528 RCU_TASKS_TRACING_FLAVOR,
529 RCU_TRIVIAL_FLAVOR,
530 SRCU_FLAVOR,
531 INVALID_RCU_FLAVOR
532 };
533
534 #if defined(CONFIG_RCU_LAZY)
535 unsigned long rcu_lazy_get_jiffies_till_flush(void);
536 void rcu_lazy_set_jiffies_till_flush(unsigned long j);
537 #else
rcu_lazy_get_jiffies_till_flush(void)538 static inline unsigned long rcu_lazy_get_jiffies_till_flush(void) { return 0; }
rcu_lazy_set_jiffies_till_flush(unsigned long j)539 static inline void rcu_lazy_set_jiffies_till_flush(unsigned long j) { }
540 #endif
541
542 #if defined(CONFIG_TREE_RCU)
543 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
544 unsigned long *gp_seq);
545 void do_trace_rcu_torture_read(const char *rcutorturename,
546 struct rcu_head *rhp,
547 unsigned long secs,
548 unsigned long c_old,
549 unsigned long c);
550 void rcu_gp_set_torture_wait(int duration);
551 #else
rcutorture_get_gp_data(enum rcutorture_type test_type,int * flags,unsigned long * gp_seq)552 static inline void rcutorture_get_gp_data(enum rcutorture_type test_type,
553 int *flags, unsigned long *gp_seq)
554 {
555 *flags = 0;
556 *gp_seq = 0;
557 }
558 #ifdef CONFIG_RCU_TRACE
559 void do_trace_rcu_torture_read(const char *rcutorturename,
560 struct rcu_head *rhp,
561 unsigned long secs,
562 unsigned long c_old,
563 unsigned long c);
564 #else
565 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
566 do { } while (0)
567 #endif
rcu_gp_set_torture_wait(int duration)568 static inline void rcu_gp_set_torture_wait(int duration) { }
569 #endif
570
571 #if IS_ENABLED(CONFIG_RCU_TORTURE_TEST) || IS_MODULE(CONFIG_RCU_TORTURE_TEST)
572 long rcutorture_sched_setaffinity(pid_t pid, const struct cpumask *in_mask);
573 #endif
574
575 #ifdef CONFIG_TINY_SRCU
576
srcutorture_get_gp_data(enum rcutorture_type test_type,struct srcu_struct * sp,int * flags,unsigned long * gp_seq)577 static inline void srcutorture_get_gp_data(enum rcutorture_type test_type,
578 struct srcu_struct *sp, int *flags,
579 unsigned long *gp_seq)
580 {
581 if (test_type != SRCU_FLAVOR)
582 return;
583 *flags = 0;
584 *gp_seq = sp->srcu_idx;
585 }
586
587 #elif defined(CONFIG_TREE_SRCU)
588
589 void srcutorture_get_gp_data(enum rcutorture_type test_type,
590 struct srcu_struct *sp, int *flags,
591 unsigned long *gp_seq);
592
593 #endif
594
595 #ifdef CONFIG_TINY_RCU
rcu_dynticks_zero_in_eqs(int cpu,int * vp)596 static inline bool rcu_dynticks_zero_in_eqs(int cpu, int *vp) { return false; }
rcu_get_gp_seq(void)597 static inline unsigned long rcu_get_gp_seq(void) { return 0; }
rcu_exp_batches_completed(void)598 static inline unsigned long rcu_exp_batches_completed(void) { return 0; }
599 static inline unsigned long
srcu_batches_completed(struct srcu_struct * sp)600 srcu_batches_completed(struct srcu_struct *sp) { return 0; }
rcu_force_quiescent_state(void)601 static inline void rcu_force_quiescent_state(void) { }
rcu_check_boost_fail(unsigned long gp_state,int * cpup)602 static inline bool rcu_check_boost_fail(unsigned long gp_state, int *cpup) { return true; }
show_rcu_gp_kthreads(void)603 static inline void show_rcu_gp_kthreads(void) { }
rcu_get_gp_kthreads_prio(void)604 static inline int rcu_get_gp_kthreads_prio(void) { return 0; }
rcu_fwd_progress_check(unsigned long j)605 static inline void rcu_fwd_progress_check(unsigned long j) { }
rcu_gp_slow_register(atomic_t * rgssp)606 static inline void rcu_gp_slow_register(atomic_t *rgssp) { }
rcu_gp_slow_unregister(atomic_t * rgssp)607 static inline void rcu_gp_slow_unregister(atomic_t *rgssp) { }
608 #else /* #ifdef CONFIG_TINY_RCU */
609 bool rcu_dynticks_zero_in_eqs(int cpu, int *vp);
610 unsigned long rcu_get_gp_seq(void);
611 unsigned long rcu_exp_batches_completed(void);
612 unsigned long srcu_batches_completed(struct srcu_struct *sp);
613 bool rcu_check_boost_fail(unsigned long gp_state, int *cpup);
614 void show_rcu_gp_kthreads(void);
615 int rcu_get_gp_kthreads_prio(void);
616 void rcu_fwd_progress_check(unsigned long j);
617 void rcu_force_quiescent_state(void);
618 extern struct workqueue_struct *rcu_gp_wq;
619 #ifdef CONFIG_RCU_EXP_KTHREAD
620 extern struct kthread_worker *rcu_exp_gp_kworker;
621 extern struct kthread_worker *rcu_exp_par_gp_kworker;
622 #else /* !CONFIG_RCU_EXP_KTHREAD */
623 extern struct workqueue_struct *rcu_par_gp_wq;
624 #endif /* CONFIG_RCU_EXP_KTHREAD */
625 void rcu_gp_slow_register(atomic_t *rgssp);
626 void rcu_gp_slow_unregister(atomic_t *rgssp);
627 #endif /* #else #ifdef CONFIG_TINY_RCU */
628
629 #ifdef CONFIG_RCU_NOCB_CPU
630 void rcu_bind_current_to_nocb(void);
631 #else
rcu_bind_current_to_nocb(void)632 static inline void rcu_bind_current_to_nocb(void) { }
633 #endif
634
635 #if !defined(CONFIG_TINY_RCU) && defined(CONFIG_TASKS_RCU)
636 void show_rcu_tasks_classic_gp_kthread(void);
637 #else
show_rcu_tasks_classic_gp_kthread(void)638 static inline void show_rcu_tasks_classic_gp_kthread(void) {}
639 #endif
640 #if !defined(CONFIG_TINY_RCU) && defined(CONFIG_TASKS_RUDE_RCU)
641 void show_rcu_tasks_rude_gp_kthread(void);
642 #else
show_rcu_tasks_rude_gp_kthread(void)643 static inline void show_rcu_tasks_rude_gp_kthread(void) {}
644 #endif
645 #if !defined(CONFIG_TINY_RCU) && defined(CONFIG_TASKS_TRACE_RCU)
646 void show_rcu_tasks_trace_gp_kthread(void);
647 #else
show_rcu_tasks_trace_gp_kthread(void)648 static inline void show_rcu_tasks_trace_gp_kthread(void) {}
649 #endif
650
651 #ifdef CONFIG_TINY_RCU
rcu_cpu_beenfullyonline(int cpu)652 static inline bool rcu_cpu_beenfullyonline(int cpu) { return true; }
653 #else
654 bool rcu_cpu_beenfullyonline(int cpu);
655 #endif
656
657 #endif /* __LINUX_RCU_H */
658