1 /*
2 * Read-Copy Update definitions shared among RCU implementations.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
17 *
18 * Copyright IBM Corporation, 2011
19 *
20 * Author: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
21 */
22
23 #ifndef __LINUX_RCU_H
24 #define __LINUX_RCU_H
25
26 #include <trace/events/rcu.h>
27 #ifdef CONFIG_RCU_TRACE
28 #define RCU_TRACE(stmt) stmt
29 #else /* #ifdef CONFIG_RCU_TRACE */
30 #define RCU_TRACE(stmt)
31 #endif /* #else #ifdef CONFIG_RCU_TRACE */
32
33 /* Offset to allow for unmatched rcu_irq_{enter,exit}(). */
34 #define DYNTICK_IRQ_NONIDLE ((LONG_MAX / 2) + 1)
35
36
37 /*
38 * Grace-period counter management.
39 */
40
41 #define RCU_SEQ_CTR_SHIFT 2
42 #define RCU_SEQ_STATE_MASK ((1 << RCU_SEQ_CTR_SHIFT) - 1)
43
44 /*
45 * Return the counter portion of a sequence number previously returned
46 * by rcu_seq_snap() or rcu_seq_current().
47 */
rcu_seq_ctr(unsigned long s)48 static inline unsigned long rcu_seq_ctr(unsigned long s)
49 {
50 return s >> RCU_SEQ_CTR_SHIFT;
51 }
52
53 /*
54 * Return the state portion of a sequence number previously returned
55 * by rcu_seq_snap() or rcu_seq_current().
56 */
rcu_seq_state(unsigned long s)57 static inline int rcu_seq_state(unsigned long s)
58 {
59 return s & RCU_SEQ_STATE_MASK;
60 }
61
62 /*
63 * Set the state portion of the pointed-to sequence number.
64 * The caller is responsible for preventing conflicting updates.
65 */
rcu_seq_set_state(unsigned long * sp,int newstate)66 static inline void rcu_seq_set_state(unsigned long *sp, int newstate)
67 {
68 WARN_ON_ONCE(newstate & ~RCU_SEQ_STATE_MASK);
69 WRITE_ONCE(*sp, (*sp & ~RCU_SEQ_STATE_MASK) + newstate);
70 }
71
72 /* Adjust sequence number for start of update-side operation. */
rcu_seq_start(unsigned long * sp)73 static inline void rcu_seq_start(unsigned long *sp)
74 {
75 WRITE_ONCE(*sp, *sp + 1);
76 smp_mb(); /* Ensure update-side operation after counter increment. */
77 WARN_ON_ONCE(rcu_seq_state(*sp) != 1);
78 }
79
80 /* Compute the end-of-grace-period value for the specified sequence number. */
rcu_seq_endval(unsigned long * sp)81 static inline unsigned long rcu_seq_endval(unsigned long *sp)
82 {
83 return (*sp | RCU_SEQ_STATE_MASK) + 1;
84 }
85
86 /* Adjust sequence number for end of update-side operation. */
rcu_seq_end(unsigned long * sp)87 static inline void rcu_seq_end(unsigned long *sp)
88 {
89 smp_mb(); /* Ensure update-side operation before counter increment. */
90 WARN_ON_ONCE(!rcu_seq_state(*sp));
91 WRITE_ONCE(*sp, rcu_seq_endval(sp));
92 }
93
94 /*
95 * rcu_seq_snap - Take a snapshot of the update side's sequence number.
96 *
97 * This function returns the earliest value of the grace-period sequence number
98 * that will indicate that a full grace period has elapsed since the current
99 * time. Once the grace-period sequence number has reached this value, it will
100 * be safe to invoke all callbacks that have been registered prior to the
101 * current time. This value is the current grace-period number plus two to the
102 * power of the number of low-order bits reserved for state, then rounded up to
103 * the next value in which the state bits are all zero.
104 */
rcu_seq_snap(unsigned long * sp)105 static inline unsigned long rcu_seq_snap(unsigned long *sp)
106 {
107 unsigned long s;
108
109 s = (READ_ONCE(*sp) + 2 * RCU_SEQ_STATE_MASK + 1) & ~RCU_SEQ_STATE_MASK;
110 smp_mb(); /* Above access must not bleed into critical section. */
111 return s;
112 }
113
114 /* Return the current value the update side's sequence number, no ordering. */
rcu_seq_current(unsigned long * sp)115 static inline unsigned long rcu_seq_current(unsigned long *sp)
116 {
117 return READ_ONCE(*sp);
118 }
119
120 /*
121 * Given a snapshot from rcu_seq_snap(), determine whether or not the
122 * corresponding update-side operation has started.
123 */
rcu_seq_started(unsigned long * sp,unsigned long s)124 static inline bool rcu_seq_started(unsigned long *sp, unsigned long s)
125 {
126 return ULONG_CMP_LT((s - 1) & ~RCU_SEQ_STATE_MASK, READ_ONCE(*sp));
127 }
128
129 /*
130 * Given a snapshot from rcu_seq_snap(), determine whether or not a
131 * full update-side operation has occurred.
132 */
rcu_seq_done(unsigned long * sp,unsigned long s)133 static inline bool rcu_seq_done(unsigned long *sp, unsigned long s)
134 {
135 return ULONG_CMP_GE(READ_ONCE(*sp), s);
136 }
137
138 /*
139 * Has a grace period completed since the time the old gp_seq was collected?
140 */
rcu_seq_completed_gp(unsigned long old,unsigned long new)141 static inline bool rcu_seq_completed_gp(unsigned long old, unsigned long new)
142 {
143 return ULONG_CMP_LT(old, new & ~RCU_SEQ_STATE_MASK);
144 }
145
146 /*
147 * Has a grace period started since the time the old gp_seq was collected?
148 */
rcu_seq_new_gp(unsigned long old,unsigned long new)149 static inline bool rcu_seq_new_gp(unsigned long old, unsigned long new)
150 {
151 return ULONG_CMP_LT((old + RCU_SEQ_STATE_MASK) & ~RCU_SEQ_STATE_MASK,
152 new);
153 }
154
155 /*
156 * Roughly how many full grace periods have elapsed between the collection
157 * of the two specified grace periods?
158 */
rcu_seq_diff(unsigned long new,unsigned long old)159 static inline unsigned long rcu_seq_diff(unsigned long new, unsigned long old)
160 {
161 unsigned long rnd_diff;
162
163 if (old == new)
164 return 0;
165 /*
166 * Compute the number of grace periods (still shifted up), plus
167 * one if either of new and old is not an exact grace period.
168 */
169 rnd_diff = (new & ~RCU_SEQ_STATE_MASK) -
170 ((old + RCU_SEQ_STATE_MASK) & ~RCU_SEQ_STATE_MASK) +
171 ((new & RCU_SEQ_STATE_MASK) || (old & RCU_SEQ_STATE_MASK));
172 if (ULONG_CMP_GE(RCU_SEQ_STATE_MASK, rnd_diff))
173 return 1; /* Definitely no grace period has elapsed. */
174 return ((rnd_diff - RCU_SEQ_STATE_MASK - 1) >> RCU_SEQ_CTR_SHIFT) + 2;
175 }
176
177 /*
178 * debug_rcu_head_queue()/debug_rcu_head_unqueue() are used internally
179 * by call_rcu() and rcu callback execution, and are therefore not part of the
180 * RCU API. Leaving in rcupdate.h because they are used by all RCU flavors.
181 */
182
183 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
184 # define STATE_RCU_HEAD_READY 0
185 # define STATE_RCU_HEAD_QUEUED 1
186
187 extern struct debug_obj_descr rcuhead_debug_descr;
188
debug_rcu_head_queue(struct rcu_head * head)189 static inline int debug_rcu_head_queue(struct rcu_head *head)
190 {
191 int r1;
192
193 r1 = debug_object_activate(head, &rcuhead_debug_descr);
194 debug_object_active_state(head, &rcuhead_debug_descr,
195 STATE_RCU_HEAD_READY,
196 STATE_RCU_HEAD_QUEUED);
197 return r1;
198 }
199
debug_rcu_head_unqueue(struct rcu_head * head)200 static inline void debug_rcu_head_unqueue(struct rcu_head *head)
201 {
202 debug_object_active_state(head, &rcuhead_debug_descr,
203 STATE_RCU_HEAD_QUEUED,
204 STATE_RCU_HEAD_READY);
205 debug_object_deactivate(head, &rcuhead_debug_descr);
206 }
207 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
debug_rcu_head_queue(struct rcu_head * head)208 static inline int debug_rcu_head_queue(struct rcu_head *head)
209 {
210 return 0;
211 }
212
debug_rcu_head_unqueue(struct rcu_head * head)213 static inline void debug_rcu_head_unqueue(struct rcu_head *head)
214 {
215 }
216 #endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
217
218 void kfree(const void *);
219
220 /*
221 * Reclaim the specified callback, either by invoking it (non-lazy case)
222 * or freeing it directly (lazy case). Return true if lazy, false otherwise.
223 */
__rcu_reclaim(const char * rn,struct rcu_head * head)224 static inline bool __rcu_reclaim(const char *rn, struct rcu_head *head)
225 {
226 unsigned long offset = (unsigned long)head->func;
227
228 rcu_lock_acquire(&rcu_callback_map);
229 if (__is_kfree_rcu_offset(offset)) {
230 RCU_TRACE(trace_rcu_invoke_kfree_callback(rn, head, offset);)
231 kfree((void *)head - offset);
232 rcu_lock_release(&rcu_callback_map);
233 return true;
234 } else {
235 RCU_TRACE(trace_rcu_invoke_callback(rn, head);)
236 head->func(head);
237 rcu_lock_release(&rcu_callback_map);
238 return false;
239 }
240 }
241
242 #ifdef CONFIG_RCU_STALL_COMMON
243
244 extern int rcu_cpu_stall_suppress;
245 int rcu_jiffies_till_stall_check(void);
246
247 #define rcu_ftrace_dump_stall_suppress() \
248 do { \
249 if (!rcu_cpu_stall_suppress) \
250 rcu_cpu_stall_suppress = 3; \
251 } while (0)
252
253 #define rcu_ftrace_dump_stall_unsuppress() \
254 do { \
255 if (rcu_cpu_stall_suppress == 3) \
256 rcu_cpu_stall_suppress = 0; \
257 } while (0)
258
259 #else /* #endif #ifdef CONFIG_RCU_STALL_COMMON */
260 #define rcu_ftrace_dump_stall_suppress()
261 #define rcu_ftrace_dump_stall_unsuppress()
262 #endif /* #ifdef CONFIG_RCU_STALL_COMMON */
263
264 /*
265 * Strings used in tracepoints need to be exported via the
266 * tracing system such that tools like perf and trace-cmd can
267 * translate the string address pointers to actual text.
268 */
269 #define TPS(x) tracepoint_string(x)
270
271 /*
272 * Dump the ftrace buffer, but only one time per callsite per boot.
273 */
274 #define rcu_ftrace_dump(oops_dump_mode) \
275 do { \
276 static atomic_t ___rfd_beenhere = ATOMIC_INIT(0); \
277 \
278 if (!atomic_read(&___rfd_beenhere) && \
279 !atomic_xchg(&___rfd_beenhere, 1)) { \
280 tracing_off(); \
281 rcu_ftrace_dump_stall_suppress(); \
282 ftrace_dump(oops_dump_mode); \
283 rcu_ftrace_dump_stall_unsuppress(); \
284 } \
285 } while (0)
286
287 void rcu_early_boot_tests(void);
288 void rcu_test_sync_prims(void);
289
290 /*
291 * This function really isn't for public consumption, but RCU is special in
292 * that context switches can allow the state machine to make progress.
293 */
294 extern void resched_cpu(int cpu);
295
296 #if defined(SRCU) || !defined(TINY_RCU)
297
298 #include <linux/rcu_node_tree.h>
299
300 extern int rcu_num_lvls;
301 extern int num_rcu_lvl[];
302 extern int rcu_num_nodes;
303 static bool rcu_fanout_exact;
304 static int rcu_fanout_leaf;
305
306 /*
307 * Compute the per-level fanout, either using the exact fanout specified
308 * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
309 */
rcu_init_levelspread(int * levelspread,const int * levelcnt)310 static inline void rcu_init_levelspread(int *levelspread, const int *levelcnt)
311 {
312 int i;
313
314 if (rcu_fanout_exact) {
315 levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
316 for (i = rcu_num_lvls - 2; i >= 0; i--)
317 levelspread[i] = RCU_FANOUT;
318 } else {
319 int ccur;
320 int cprv;
321
322 cprv = nr_cpu_ids;
323 for (i = rcu_num_lvls - 1; i >= 0; i--) {
324 ccur = levelcnt[i];
325 levelspread[i] = (cprv + ccur - 1) / ccur;
326 cprv = ccur;
327 }
328 }
329 }
330
331 /* Returns first leaf rcu_node of the specified RCU flavor. */
332 #define rcu_first_leaf_node(rsp) ((rsp)->level[rcu_num_lvls - 1])
333
334 /* Is this rcu_node a leaf? */
335 #define rcu_is_leaf_node(rnp) ((rnp)->level == rcu_num_lvls - 1)
336
337 /* Is this rcu_node the last leaf? */
338 #define rcu_is_last_leaf_node(rsp, rnp) ((rnp) == &(rsp)->node[rcu_num_nodes - 1])
339
340 /*
341 * Do a full breadth-first scan of the rcu_node structures for the
342 * specified rcu_state structure.
343 */
344 #define rcu_for_each_node_breadth_first(rsp, rnp) \
345 for ((rnp) = &(rsp)->node[0]; \
346 (rnp) < &(rsp)->node[rcu_num_nodes]; (rnp)++)
347
348 /*
349 * Do a breadth-first scan of the non-leaf rcu_node structures for the
350 * specified rcu_state structure. Note that if there is a singleton
351 * rcu_node tree with but one rcu_node structure, this loop is a no-op.
352 */
353 #define rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) \
354 for ((rnp) = &(rsp)->node[0]; !rcu_is_leaf_node(rsp, rnp); (rnp)++)
355
356 /*
357 * Scan the leaves of the rcu_node hierarchy for the specified rcu_state
358 * structure. Note that if there is a singleton rcu_node tree with but
359 * one rcu_node structure, this loop -will- visit the rcu_node structure.
360 * It is still a leaf node, even if it is also the root node.
361 */
362 #define rcu_for_each_leaf_node(rsp, rnp) \
363 for ((rnp) = rcu_first_leaf_node(rsp); \
364 (rnp) < &(rsp)->node[rcu_num_nodes]; (rnp)++)
365
366 /*
367 * Iterate over all possible CPUs in a leaf RCU node.
368 */
369 #define for_each_leaf_node_possible_cpu(rnp, cpu) \
370 for ((cpu) = cpumask_next((rnp)->grplo - 1, cpu_possible_mask); \
371 (cpu) <= rnp->grphi; \
372 (cpu) = cpumask_next((cpu), cpu_possible_mask))
373
374 /*
375 * Iterate over all CPUs in a leaf RCU node's specified mask.
376 */
377 #define rcu_find_next_bit(rnp, cpu, mask) \
378 ((rnp)->grplo + find_next_bit(&(mask), BITS_PER_LONG, (cpu)))
379 #define for_each_leaf_node_cpu_mask(rnp, cpu, mask) \
380 for ((cpu) = rcu_find_next_bit((rnp), 0, (mask)); \
381 (cpu) <= rnp->grphi; \
382 (cpu) = rcu_find_next_bit((rnp), (cpu) + 1 - (rnp->grplo), (mask)))
383
384 /*
385 * Wrappers for the rcu_node::lock acquire and release.
386 *
387 * Because the rcu_nodes form a tree, the tree traversal locking will observe
388 * different lock values, this in turn means that an UNLOCK of one level
389 * followed by a LOCK of another level does not imply a full memory barrier;
390 * and most importantly transitivity is lost.
391 *
392 * In order to restore full ordering between tree levels, augment the regular
393 * lock acquire functions with smp_mb__after_unlock_lock().
394 *
395 * As ->lock of struct rcu_node is a __private field, therefore one should use
396 * these wrappers rather than directly call raw_spin_{lock,unlock}* on ->lock.
397 */
398 #define raw_spin_lock_rcu_node(p) \
399 do { \
400 raw_spin_lock(&ACCESS_PRIVATE(p, lock)); \
401 smp_mb__after_unlock_lock(); \
402 } while (0)
403
404 #define raw_spin_unlock_rcu_node(p) raw_spin_unlock(&ACCESS_PRIVATE(p, lock))
405
406 #define raw_spin_lock_irq_rcu_node(p) \
407 do { \
408 raw_spin_lock_irq(&ACCESS_PRIVATE(p, lock)); \
409 smp_mb__after_unlock_lock(); \
410 } while (0)
411
412 #define raw_spin_unlock_irq_rcu_node(p) \
413 raw_spin_unlock_irq(&ACCESS_PRIVATE(p, lock))
414
415 #define raw_spin_lock_irqsave_rcu_node(p, flags) \
416 do { \
417 raw_spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags); \
418 smp_mb__after_unlock_lock(); \
419 } while (0)
420
421 #define raw_spin_unlock_irqrestore_rcu_node(p, flags) \
422 raw_spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags)
423
424 #define raw_spin_trylock_rcu_node(p) \
425 ({ \
426 bool ___locked = raw_spin_trylock(&ACCESS_PRIVATE(p, lock)); \
427 \
428 if (___locked) \
429 smp_mb__after_unlock_lock(); \
430 ___locked; \
431 })
432
433 #define raw_lockdep_assert_held_rcu_node(p) \
434 lockdep_assert_held(&ACCESS_PRIVATE(p, lock))
435
436 #endif /* #if defined(SRCU) || !defined(TINY_RCU) */
437
438 #ifdef CONFIG_TINY_RCU
439 /* Tiny RCU doesn't expedite, as its purpose in life is instead to be tiny. */
rcu_gp_is_normal(void)440 static inline bool rcu_gp_is_normal(void) { return true; }
rcu_gp_is_expedited(void)441 static inline bool rcu_gp_is_expedited(void) { return false; }
rcu_expedite_gp(void)442 static inline void rcu_expedite_gp(void) { }
rcu_unexpedite_gp(void)443 static inline void rcu_unexpedite_gp(void) { }
rcu_request_urgent_qs_task(struct task_struct * t)444 static inline void rcu_request_urgent_qs_task(struct task_struct *t) { }
445 #else /* #ifdef CONFIG_TINY_RCU */
446 bool rcu_gp_is_normal(void); /* Internal RCU use. */
447 bool rcu_gp_is_expedited(void); /* Internal RCU use. */
448 void rcu_expedite_gp(void);
449 void rcu_unexpedite_gp(void);
450 void rcupdate_announce_bootup_oddness(void);
451 void rcu_request_urgent_qs_task(struct task_struct *t);
452 #endif /* #else #ifdef CONFIG_TINY_RCU */
453
454 #define RCU_SCHEDULER_INACTIVE 0
455 #define RCU_SCHEDULER_INIT 1
456 #define RCU_SCHEDULER_RUNNING 2
457
458 enum rcutorture_type {
459 RCU_FLAVOR,
460 RCU_BH_FLAVOR,
461 RCU_SCHED_FLAVOR,
462 RCU_TASKS_FLAVOR,
463 SRCU_FLAVOR,
464 INVALID_RCU_FLAVOR
465 };
466
467 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
468 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
469 unsigned long *gp_seq);
470 void rcutorture_record_progress(unsigned long vernum);
471 void do_trace_rcu_torture_read(const char *rcutorturename,
472 struct rcu_head *rhp,
473 unsigned long secs,
474 unsigned long c_old,
475 unsigned long c);
476 #else
rcutorture_get_gp_data(enum rcutorture_type test_type,int * flags,unsigned long * gp_seq)477 static inline void rcutorture_get_gp_data(enum rcutorture_type test_type,
478 int *flags, unsigned long *gp_seq)
479 {
480 *flags = 0;
481 *gp_seq = 0;
482 }
rcutorture_record_progress(unsigned long vernum)483 static inline void rcutorture_record_progress(unsigned long vernum) { }
484 #ifdef CONFIG_RCU_TRACE
485 void do_trace_rcu_torture_read(const char *rcutorturename,
486 struct rcu_head *rhp,
487 unsigned long secs,
488 unsigned long c_old,
489 unsigned long c);
490 #else
491 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
492 do { } while (0)
493 #endif
494 #endif
495
496 #ifdef CONFIG_TINY_SRCU
497
srcutorture_get_gp_data(enum rcutorture_type test_type,struct srcu_struct * sp,int * flags,unsigned long * gp_seq)498 static inline void srcutorture_get_gp_data(enum rcutorture_type test_type,
499 struct srcu_struct *sp, int *flags,
500 unsigned long *gp_seq)
501 {
502 if (test_type != SRCU_FLAVOR)
503 return;
504 *flags = 0;
505 *gp_seq = sp->srcu_idx;
506 }
507
508 #elif defined(CONFIG_TREE_SRCU)
509
510 void srcutorture_get_gp_data(enum rcutorture_type test_type,
511 struct srcu_struct *sp, int *flags,
512 unsigned long *gp_seq);
513
514 #endif
515
516 #ifdef CONFIG_TINY_RCU
rcu_get_gp_seq(void)517 static inline unsigned long rcu_get_gp_seq(void) { return 0; }
rcu_bh_get_gp_seq(void)518 static inline unsigned long rcu_bh_get_gp_seq(void) { return 0; }
rcu_sched_get_gp_seq(void)519 static inline unsigned long rcu_sched_get_gp_seq(void) { return 0; }
rcu_exp_batches_completed(void)520 static inline unsigned long rcu_exp_batches_completed(void) { return 0; }
rcu_exp_batches_completed_sched(void)521 static inline unsigned long rcu_exp_batches_completed_sched(void) { return 0; }
522 static inline unsigned long
srcu_batches_completed(struct srcu_struct * sp)523 srcu_batches_completed(struct srcu_struct *sp) { return 0; }
rcu_force_quiescent_state(void)524 static inline void rcu_force_quiescent_state(void) { }
rcu_bh_force_quiescent_state(void)525 static inline void rcu_bh_force_quiescent_state(void) { }
rcu_sched_force_quiescent_state(void)526 static inline void rcu_sched_force_quiescent_state(void) { }
show_rcu_gp_kthreads(void)527 static inline void show_rcu_gp_kthreads(void) { }
rcu_get_gp_kthreads_prio(void)528 static inline int rcu_get_gp_kthreads_prio(void) { return 0; }
529 #else /* #ifdef CONFIG_TINY_RCU */
530 unsigned long rcu_get_gp_seq(void);
531 unsigned long rcu_bh_get_gp_seq(void);
532 unsigned long rcu_sched_get_gp_seq(void);
533 unsigned long rcu_exp_batches_completed(void);
534 unsigned long rcu_exp_batches_completed_sched(void);
535 unsigned long srcu_batches_completed(struct srcu_struct *sp);
536 void show_rcu_gp_kthreads(void);
537 int rcu_get_gp_kthreads_prio(void);
538 void rcu_force_quiescent_state(void);
539 void rcu_bh_force_quiescent_state(void);
540 void rcu_sched_force_quiescent_state(void);
541 extern struct workqueue_struct *rcu_gp_wq;
542 extern struct workqueue_struct *rcu_par_gp_wq;
543 #endif /* #else #ifdef CONFIG_TINY_RCU */
544
545 #ifdef CONFIG_RCU_NOCB_CPU
546 bool rcu_is_nocb_cpu(int cpu);
547 #else
rcu_is_nocb_cpu(int cpu)548 static inline bool rcu_is_nocb_cpu(int cpu) { return false; }
549 #endif
550
551 #endif /* __LINUX_RCU_H */
552