1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3 * Read-Copy Update mechanism for mutual exclusion
4 *
5 * Copyright IBM Corporation, 2001
6 *
7 * Author: Dipankar Sarma <dipankar@in.ibm.com>
8 *
9 * Based on the original work by Paul McKenney <paulmck@vnet.ibm.com>
10 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
11 * Papers:
12 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
13 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
14 *
15 * For detailed explanation of Read-Copy Update mechanism see -
16 * http://lse.sourceforge.net/locking/rcupdate.html
17 *
18 */
19
20 #ifndef __LINUX_RCUPDATE_H
21 #define __LINUX_RCUPDATE_H
22
23 #include <linux/types.h>
24 #include <linux/compiler.h>
25 #include <linux/atomic.h>
26 #include <linux/irqflags.h>
27 #include <linux/preempt.h>
28 #include <linux/bottom_half.h>
29 #include <linux/lockdep.h>
30 #include <linux/cleanup.h>
31 #include <asm/processor.h>
32 #include <linux/cpumask.h>
33 #include <linux/context_tracking_irq.h>
34
35 #define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b))
36 #define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b))
37 #define ulong2long(a) (*(long *)(&(a)))
38 #define USHORT_CMP_GE(a, b) (USHRT_MAX / 2 >= (unsigned short)((a) - (b)))
39 #define USHORT_CMP_LT(a, b) (USHRT_MAX / 2 < (unsigned short)((a) - (b)))
40
41 /* Exported common interfaces */
42 void call_rcu(struct rcu_head *head, rcu_callback_t func);
43 void rcu_barrier_tasks(void);
44 void rcu_barrier_tasks_rude(void);
45 void synchronize_rcu(void);
46
47 struct rcu_gp_oldstate;
48 unsigned long get_completed_synchronize_rcu(void);
49 void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp);
50
51 // Maximum number of unsigned long values corresponding to
52 // not-yet-completed RCU grace periods.
53 #define NUM_ACTIVE_RCU_POLL_OLDSTATE 2
54
55 /**
56 * same_state_synchronize_rcu - Are two old-state values identical?
57 * @oldstate1: First old-state value.
58 * @oldstate2: Second old-state value.
59 *
60 * The two old-state values must have been obtained from either
61 * get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or
62 * get_completed_synchronize_rcu(). Returns @true if the two values are
63 * identical and @false otherwise. This allows structures whose lifetimes
64 * are tracked by old-state values to push these values to a list header,
65 * allowing those structures to be slightly smaller.
66 */
same_state_synchronize_rcu(unsigned long oldstate1,unsigned long oldstate2)67 static inline bool same_state_synchronize_rcu(unsigned long oldstate1, unsigned long oldstate2)
68 {
69 return oldstate1 == oldstate2;
70 }
71
72 #ifdef CONFIG_PREEMPT_RCU
73
74 void __rcu_read_lock(void);
75 void __rcu_read_unlock(void);
76
77 /*
78 * Defined as a macro as it is a very low level header included from
79 * areas that don't even know about current. This gives the rcu_read_lock()
80 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
81 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
82 */
83 #define rcu_preempt_depth() READ_ONCE(current->rcu_read_lock_nesting)
84
85 #else /* #ifdef CONFIG_PREEMPT_RCU */
86
87 #ifdef CONFIG_TINY_RCU
88 #define rcu_read_unlock_strict() do { } while (0)
89 #else
90 void rcu_read_unlock_strict(void);
91 #endif
92
__rcu_read_lock(void)93 static inline void __rcu_read_lock(void)
94 {
95 preempt_disable();
96 }
97
__rcu_read_unlock(void)98 static inline void __rcu_read_unlock(void)
99 {
100 preempt_enable();
101 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
102 rcu_read_unlock_strict();
103 }
104
rcu_preempt_depth(void)105 static inline int rcu_preempt_depth(void)
106 {
107 return 0;
108 }
109
110 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
111
112 #ifdef CONFIG_RCU_LAZY
113 void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func);
114 #else
call_rcu_hurry(struct rcu_head * head,rcu_callback_t func)115 static inline void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func)
116 {
117 call_rcu(head, func);
118 }
119 #endif
120
121 /* Internal to kernel */
122 void rcu_init(void);
123 extern int rcu_scheduler_active;
124 void rcu_sched_clock_irq(int user);
125 void rcu_report_dead(unsigned int cpu);
126 void rcutree_migrate_callbacks(int cpu);
127
128 #ifdef CONFIG_TASKS_RCU_GENERIC
129 void rcu_init_tasks_generic(void);
130 #else
rcu_init_tasks_generic(void)131 static inline void rcu_init_tasks_generic(void) { }
132 #endif
133
134 #ifdef CONFIG_RCU_STALL_COMMON
135 void rcu_sysrq_start(void);
136 void rcu_sysrq_end(void);
137 #else /* #ifdef CONFIG_RCU_STALL_COMMON */
rcu_sysrq_start(void)138 static inline void rcu_sysrq_start(void) { }
rcu_sysrq_end(void)139 static inline void rcu_sysrq_end(void) { }
140 #endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
141
142 #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK))
143 void rcu_irq_work_resched(void);
144 #else
rcu_irq_work_resched(void)145 static inline void rcu_irq_work_resched(void) { }
146 #endif
147
148 #ifdef CONFIG_RCU_NOCB_CPU
149 void rcu_init_nohz(void);
150 int rcu_nocb_cpu_offload(int cpu);
151 int rcu_nocb_cpu_deoffload(int cpu);
152 void rcu_nocb_flush_deferred_wakeup(void);
153 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
rcu_init_nohz(void)154 static inline void rcu_init_nohz(void) { }
rcu_nocb_cpu_offload(int cpu)155 static inline int rcu_nocb_cpu_offload(int cpu) { return -EINVAL; }
rcu_nocb_cpu_deoffload(int cpu)156 static inline int rcu_nocb_cpu_deoffload(int cpu) { return 0; }
rcu_nocb_flush_deferred_wakeup(void)157 static inline void rcu_nocb_flush_deferred_wakeup(void) { }
158 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
159
160 /*
161 * Note a quasi-voluntary context switch for RCU-tasks's benefit.
162 * This is a macro rather than an inline function to avoid #include hell.
163 */
164 #ifdef CONFIG_TASKS_RCU_GENERIC
165
166 # ifdef CONFIG_TASKS_RCU
167 # define rcu_tasks_classic_qs(t, preempt) \
168 do { \
169 if (!(preempt) && READ_ONCE((t)->rcu_tasks_holdout)) \
170 WRITE_ONCE((t)->rcu_tasks_holdout, false); \
171 } while (0)
172 void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func);
173 void synchronize_rcu_tasks(void);
174 # else
175 # define rcu_tasks_classic_qs(t, preempt) do { } while (0)
176 # define call_rcu_tasks call_rcu
177 # define synchronize_rcu_tasks synchronize_rcu
178 # endif
179
180 # ifdef CONFIG_TASKS_TRACE_RCU
181 // Bits for ->trc_reader_special.b.need_qs field.
182 #define TRC_NEED_QS 0x1 // Task needs a quiescent state.
183 #define TRC_NEED_QS_CHECKED 0x2 // Task has been checked for needing quiescent state.
184
185 u8 rcu_trc_cmpxchg_need_qs(struct task_struct *t, u8 old, u8 new);
186 void rcu_tasks_trace_qs_blkd(struct task_struct *t);
187
188 # define rcu_tasks_trace_qs(t) \
189 do { \
190 int ___rttq_nesting = READ_ONCE((t)->trc_reader_nesting); \
191 \
192 if (likely(!READ_ONCE((t)->trc_reader_special.b.need_qs)) && \
193 likely(!___rttq_nesting)) { \
194 rcu_trc_cmpxchg_need_qs((t), 0, TRC_NEED_QS_CHECKED); \
195 } else if (___rttq_nesting && ___rttq_nesting != INT_MIN && \
196 !READ_ONCE((t)->trc_reader_special.b.blocked)) { \
197 rcu_tasks_trace_qs_blkd(t); \
198 } \
199 } while (0)
200 # else
201 # define rcu_tasks_trace_qs(t) do { } while (0)
202 # endif
203
204 #define rcu_tasks_qs(t, preempt) \
205 do { \
206 rcu_tasks_classic_qs((t), (preempt)); \
207 rcu_tasks_trace_qs(t); \
208 } while (0)
209
210 # ifdef CONFIG_TASKS_RUDE_RCU
211 void call_rcu_tasks_rude(struct rcu_head *head, rcu_callback_t func);
212 void synchronize_rcu_tasks_rude(void);
213 # endif
214
215 #define rcu_note_voluntary_context_switch(t) rcu_tasks_qs(t, false)
216 void exit_tasks_rcu_start(void);
217 void exit_tasks_rcu_stop(void);
218 void exit_tasks_rcu_finish(void);
219 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
220 #define rcu_tasks_classic_qs(t, preempt) do { } while (0)
221 #define rcu_tasks_qs(t, preempt) do { } while (0)
222 #define rcu_note_voluntary_context_switch(t) do { } while (0)
223 #define call_rcu_tasks call_rcu
224 #define synchronize_rcu_tasks synchronize_rcu
exit_tasks_rcu_start(void)225 static inline void exit_tasks_rcu_start(void) { }
exit_tasks_rcu_stop(void)226 static inline void exit_tasks_rcu_stop(void) { }
exit_tasks_rcu_finish(void)227 static inline void exit_tasks_rcu_finish(void) { }
228 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */
229
230 /**
231 * rcu_trace_implies_rcu_gp - does an RCU Tasks Trace grace period imply an RCU grace period?
232 *
233 * As an accident of implementation, an RCU Tasks Trace grace period also
234 * acts as an RCU grace period. However, this could change at any time.
235 * Code relying on this accident must call this function to verify that
236 * this accident is still happening.
237 *
238 * You have been warned!
239 */
rcu_trace_implies_rcu_gp(void)240 static inline bool rcu_trace_implies_rcu_gp(void) { return true; }
241
242 /**
243 * cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU
244 *
245 * This macro resembles cond_resched(), except that it is defined to
246 * report potential quiescent states to RCU-tasks even if the cond_resched()
247 * machinery were to be shut off, as some advocate for PREEMPTION kernels.
248 */
249 #define cond_resched_tasks_rcu_qs() \
250 do { \
251 rcu_tasks_qs(current, false); \
252 cond_resched(); \
253 } while (0)
254
255 /*
256 * Infrastructure to implement the synchronize_() primitives in
257 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
258 */
259
260 #if defined(CONFIG_TREE_RCU)
261 #include <linux/rcutree.h>
262 #elif defined(CONFIG_TINY_RCU)
263 #include <linux/rcutiny.h>
264 #else
265 #error "Unknown RCU implementation specified to kernel configuration"
266 #endif
267
268 /*
269 * The init_rcu_head_on_stack() and destroy_rcu_head_on_stack() calls
270 * are needed for dynamic initialization and destruction of rcu_head
271 * on the stack, and init_rcu_head()/destroy_rcu_head() are needed for
272 * dynamic initialization and destruction of statically allocated rcu_head
273 * structures. However, rcu_head structures allocated dynamically in the
274 * heap don't need any initialization.
275 */
276 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
277 void init_rcu_head(struct rcu_head *head);
278 void destroy_rcu_head(struct rcu_head *head);
279 void init_rcu_head_on_stack(struct rcu_head *head);
280 void destroy_rcu_head_on_stack(struct rcu_head *head);
281 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
init_rcu_head(struct rcu_head * head)282 static inline void init_rcu_head(struct rcu_head *head) { }
destroy_rcu_head(struct rcu_head * head)283 static inline void destroy_rcu_head(struct rcu_head *head) { }
init_rcu_head_on_stack(struct rcu_head * head)284 static inline void init_rcu_head_on_stack(struct rcu_head *head) { }
destroy_rcu_head_on_stack(struct rcu_head * head)285 static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { }
286 #endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
287
288 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
289 bool rcu_lockdep_current_cpu_online(void);
290 #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
rcu_lockdep_current_cpu_online(void)291 static inline bool rcu_lockdep_current_cpu_online(void) { return true; }
292 #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
293
294 extern struct lockdep_map rcu_lock_map;
295 extern struct lockdep_map rcu_bh_lock_map;
296 extern struct lockdep_map rcu_sched_lock_map;
297 extern struct lockdep_map rcu_callback_map;
298
299 #ifdef CONFIG_DEBUG_LOCK_ALLOC
300
rcu_lock_acquire(struct lockdep_map * map)301 static inline void rcu_lock_acquire(struct lockdep_map *map)
302 {
303 lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
304 }
305
rcu_lock_release(struct lockdep_map * map)306 static inline void rcu_lock_release(struct lockdep_map *map)
307 {
308 lock_release(map, _THIS_IP_);
309 }
310
311 int debug_lockdep_rcu_enabled(void);
312 int rcu_read_lock_held(void);
313 int rcu_read_lock_bh_held(void);
314 int rcu_read_lock_sched_held(void);
315 int rcu_read_lock_any_held(void);
316
317 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
318
319 # define rcu_lock_acquire(a) do { } while (0)
320 # define rcu_lock_release(a) do { } while (0)
321
rcu_read_lock_held(void)322 static inline int rcu_read_lock_held(void)
323 {
324 return 1;
325 }
326
rcu_read_lock_bh_held(void)327 static inline int rcu_read_lock_bh_held(void)
328 {
329 return 1;
330 }
331
rcu_read_lock_sched_held(void)332 static inline int rcu_read_lock_sched_held(void)
333 {
334 return !preemptible();
335 }
336
rcu_read_lock_any_held(void)337 static inline int rcu_read_lock_any_held(void)
338 {
339 return !preemptible();
340 }
341
debug_lockdep_rcu_enabled(void)342 static inline int debug_lockdep_rcu_enabled(void)
343 {
344 return 0;
345 }
346
347 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
348
349 #ifdef CONFIG_PROVE_RCU
350
351 /**
352 * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met
353 * @c: condition to check
354 * @s: informative message
355 *
356 * This checks debug_lockdep_rcu_enabled() before checking (c) to
357 * prevent early boot splats due to lockdep not yet being initialized,
358 * and rechecks it after checking (c) to prevent false-positive splats
359 * due to races with lockdep being disabled. See commit 3066820034b5dd
360 * ("rcu: Reject RCU_LOCKDEP_WARN() false positives") for more detail.
361 */
362 #define RCU_LOCKDEP_WARN(c, s) \
363 do { \
364 static bool __section(".data.unlikely") __warned; \
365 if (debug_lockdep_rcu_enabled() && (c) && \
366 debug_lockdep_rcu_enabled() && !__warned) { \
367 __warned = true; \
368 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \
369 } \
370 } while (0)
371
372 #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
rcu_preempt_sleep_check(void)373 static inline void rcu_preempt_sleep_check(void)
374 {
375 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
376 "Illegal context switch in RCU read-side critical section");
377 }
378 #else /* #ifdef CONFIG_PROVE_RCU */
rcu_preempt_sleep_check(void)379 static inline void rcu_preempt_sleep_check(void) { }
380 #endif /* #else #ifdef CONFIG_PROVE_RCU */
381
382 #define rcu_sleep_check() \
383 do { \
384 rcu_preempt_sleep_check(); \
385 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) \
386 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map), \
387 "Illegal context switch in RCU-bh read-side critical section"); \
388 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map), \
389 "Illegal context switch in RCU-sched read-side critical section"); \
390 } while (0)
391
392 #else /* #ifdef CONFIG_PROVE_RCU */
393
394 #define RCU_LOCKDEP_WARN(c, s) do { } while (0 && (c))
395 #define rcu_sleep_check() do { } while (0)
396
397 #endif /* #else #ifdef CONFIG_PROVE_RCU */
398
399 /*
400 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
401 * and rcu_assign_pointer(). Some of these could be folded into their
402 * callers, but they are left separate in order to ease introduction of
403 * multiple pointers markings to match different RCU implementations
404 * (e.g., __srcu), should this make sense in the future.
405 */
406
407 #ifdef __CHECKER__
408 #define rcu_check_sparse(p, space) \
409 ((void)(((typeof(*p) space *)p) == p))
410 #else /* #ifdef __CHECKER__ */
411 #define rcu_check_sparse(p, space)
412 #endif /* #else #ifdef __CHECKER__ */
413
414 #define __unrcu_pointer(p, local) \
415 ({ \
416 typeof(*p) *local = (typeof(*p) *__force)(p); \
417 rcu_check_sparse(p, __rcu); \
418 ((typeof(*p) __force __kernel *)(local)); \
419 })
420 /**
421 * unrcu_pointer - mark a pointer as not being RCU protected
422 * @p: pointer needing to lose its __rcu property
423 *
424 * Converts @p from an __rcu pointer to a __kernel pointer.
425 * This allows an __rcu pointer to be used with xchg() and friends.
426 */
427 #define unrcu_pointer(p) __unrcu_pointer(p, __UNIQUE_ID(rcu))
428
429 #define __rcu_access_pointer(p, local, space) \
430 ({ \
431 typeof(*p) *local = (typeof(*p) *__force)READ_ONCE(p); \
432 rcu_check_sparse(p, space); \
433 ((typeof(*p) __force __kernel *)(local)); \
434 })
435 #define __rcu_dereference_check(p, local, c, space) \
436 ({ \
437 /* Dependency order vs. p above. */ \
438 typeof(*p) *local = (typeof(*p) *__force)READ_ONCE(p); \
439 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \
440 rcu_check_sparse(p, space); \
441 ((typeof(*p) __force __kernel *)(local)); \
442 })
443 #define __rcu_dereference_protected(p, local, c, space) \
444 ({ \
445 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \
446 rcu_check_sparse(p, space); \
447 ((typeof(*p) __force __kernel *)(p)); \
448 })
449 #define __rcu_dereference_raw(p, local) \
450 ({ \
451 /* Dependency order vs. p above. */ \
452 typeof(p) local = READ_ONCE(p); \
453 ((typeof(*p) __force __kernel *)(local)); \
454 })
455 #define rcu_dereference_raw(p) __rcu_dereference_raw(p, __UNIQUE_ID(rcu))
456
457 /**
458 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
459 * @v: The value to statically initialize with.
460 */
461 #define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
462
463 /**
464 * rcu_assign_pointer() - assign to RCU-protected pointer
465 * @p: pointer to assign to
466 * @v: value to assign (publish)
467 *
468 * Assigns the specified value to the specified RCU-protected
469 * pointer, ensuring that any concurrent RCU readers will see
470 * any prior initialization.
471 *
472 * Inserts memory barriers on architectures that require them
473 * (which is most of them), and also prevents the compiler from
474 * reordering the code that initializes the structure after the pointer
475 * assignment. More importantly, this call documents which pointers
476 * will be dereferenced by RCU read-side code.
477 *
478 * In some special cases, you may use RCU_INIT_POINTER() instead
479 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due
480 * to the fact that it does not constrain either the CPU or the compiler.
481 * That said, using RCU_INIT_POINTER() when you should have used
482 * rcu_assign_pointer() is a very bad thing that results in
483 * impossible-to-diagnose memory corruption. So please be careful.
484 * See the RCU_INIT_POINTER() comment header for details.
485 *
486 * Note that rcu_assign_pointer() evaluates each of its arguments only
487 * once, appearances notwithstanding. One of the "extra" evaluations
488 * is in typeof() and the other visible only to sparse (__CHECKER__),
489 * neither of which actually execute the argument. As with most cpp
490 * macros, this execute-arguments-only-once property is important, so
491 * please be careful when making changes to rcu_assign_pointer() and the
492 * other macros that it invokes.
493 */
494 #define rcu_assign_pointer(p, v) \
495 do { \
496 uintptr_t _r_a_p__v = (uintptr_t)(v); \
497 rcu_check_sparse(p, __rcu); \
498 \
499 if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL) \
500 WRITE_ONCE((p), (typeof(p))(_r_a_p__v)); \
501 else \
502 smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \
503 } while (0)
504
505 /**
506 * rcu_replace_pointer() - replace an RCU pointer, returning its old value
507 * @rcu_ptr: RCU pointer, whose old value is returned
508 * @ptr: regular pointer
509 * @c: the lockdep conditions under which the dereference will take place
510 *
511 * Perform a replacement, where @rcu_ptr is an RCU-annotated
512 * pointer and @c is the lockdep argument that is passed to the
513 * rcu_dereference_protected() call used to read that pointer. The old
514 * value of @rcu_ptr is returned, and @rcu_ptr is set to @ptr.
515 */
516 #define rcu_replace_pointer(rcu_ptr, ptr, c) \
517 ({ \
518 typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c)); \
519 rcu_assign_pointer((rcu_ptr), (ptr)); \
520 __tmp; \
521 })
522
523 /**
524 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
525 * @p: The pointer to read
526 *
527 * Return the value of the specified RCU-protected pointer, but omit the
528 * lockdep checks for being in an RCU read-side critical section. This is
529 * useful when the value of this pointer is accessed, but the pointer is
530 * not dereferenced, for example, when testing an RCU-protected pointer
531 * against NULL. Although rcu_access_pointer() may also be used in cases
532 * where update-side locks prevent the value of the pointer from changing,
533 * you should instead use rcu_dereference_protected() for this use case.
534 * Within an RCU read-side critical section, there is little reason to
535 * use rcu_access_pointer().
536 *
537 * It is usually best to test the rcu_access_pointer() return value
538 * directly in order to avoid accidental dereferences being introduced
539 * by later inattentive changes. In other words, assigning the
540 * rcu_access_pointer() return value to a local variable results in an
541 * accident waiting to happen.
542 *
543 * It is also permissible to use rcu_access_pointer() when read-side
544 * access to the pointer was removed at least one grace period ago, as is
545 * the case in the context of the RCU callback that is freeing up the data,
546 * or after a synchronize_rcu() returns. This can be useful when tearing
547 * down multi-linked structures after a grace period has elapsed. However,
548 * rcu_dereference_protected() is normally preferred for this use case.
549 */
550 #define rcu_access_pointer(p) __rcu_access_pointer((p), __UNIQUE_ID(rcu), __rcu)
551
552 /**
553 * rcu_dereference_check() - rcu_dereference with debug checking
554 * @p: The pointer to read, prior to dereferencing
555 * @c: The conditions under which the dereference will take place
556 *
557 * Do an rcu_dereference(), but check that the conditions under which the
558 * dereference will take place are correct. Typically the conditions
559 * indicate the various locking conditions that should be held at that
560 * point. The check should return true if the conditions are satisfied.
561 * An implicit check for being in an RCU read-side critical section
562 * (rcu_read_lock()) is included.
563 *
564 * For example:
565 *
566 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
567 *
568 * could be used to indicate to lockdep that foo->bar may only be dereferenced
569 * if either rcu_read_lock() is held, or that the lock required to replace
570 * the bar struct at foo->bar is held.
571 *
572 * Note that the list of conditions may also include indications of when a lock
573 * need not be held, for example during initialisation or destruction of the
574 * target struct:
575 *
576 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
577 * atomic_read(&foo->usage) == 0);
578 *
579 * Inserts memory barriers on architectures that require them
580 * (currently only the Alpha), prevents the compiler from refetching
581 * (and from merging fetches), and, more importantly, documents exactly
582 * which pointers are protected by RCU and checks that the pointer is
583 * annotated as __rcu.
584 */
585 #define rcu_dereference_check(p, c) \
586 __rcu_dereference_check((p), __UNIQUE_ID(rcu), \
587 (c) || rcu_read_lock_held(), __rcu)
588
589 /**
590 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
591 * @p: The pointer to read, prior to dereferencing
592 * @c: The conditions under which the dereference will take place
593 *
594 * This is the RCU-bh counterpart to rcu_dereference_check(). However,
595 * please note that starting in v5.0 kernels, vanilla RCU grace periods
596 * wait for local_bh_disable() regions of code in addition to regions of
597 * code demarked by rcu_read_lock() and rcu_read_unlock(). This means
598 * that synchronize_rcu(), call_rcu, and friends all take not only
599 * rcu_read_lock() but also rcu_read_lock_bh() into account.
600 */
601 #define rcu_dereference_bh_check(p, c) \
602 __rcu_dereference_check((p), __UNIQUE_ID(rcu), \
603 (c) || rcu_read_lock_bh_held(), __rcu)
604
605 /**
606 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
607 * @p: The pointer to read, prior to dereferencing
608 * @c: The conditions under which the dereference will take place
609 *
610 * This is the RCU-sched counterpart to rcu_dereference_check().
611 * However, please note that starting in v5.0 kernels, vanilla RCU grace
612 * periods wait for preempt_disable() regions of code in addition to
613 * regions of code demarked by rcu_read_lock() and rcu_read_unlock().
614 * This means that synchronize_rcu(), call_rcu, and friends all take not
615 * only rcu_read_lock() but also rcu_read_lock_sched() into account.
616 */
617 #define rcu_dereference_sched_check(p, c) \
618 __rcu_dereference_check((p), __UNIQUE_ID(rcu), \
619 (c) || rcu_read_lock_sched_held(), \
620 __rcu)
621
622 /*
623 * The tracing infrastructure traces RCU (we want that), but unfortunately
624 * some of the RCU checks causes tracing to lock up the system.
625 *
626 * The no-tracing version of rcu_dereference_raw() must not call
627 * rcu_read_lock_held().
628 */
629 #define rcu_dereference_raw_check(p) \
630 __rcu_dereference_check((p), __UNIQUE_ID(rcu), 1, __rcu)
631
632 /**
633 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
634 * @p: The pointer to read, prior to dereferencing
635 * @c: The conditions under which the dereference will take place
636 *
637 * Return the value of the specified RCU-protected pointer, but omit
638 * the READ_ONCE(). This is useful in cases where update-side locks
639 * prevent the value of the pointer from changing. Please note that this
640 * primitive does *not* prevent the compiler from repeating this reference
641 * or combining it with other references, so it should not be used without
642 * protection of appropriate locks.
643 *
644 * This function is only for update-side use. Using this function
645 * when protected only by rcu_read_lock() will result in infrequent
646 * but very ugly failures.
647 */
648 #define rcu_dereference_protected(p, c) \
649 __rcu_dereference_protected((p), __UNIQUE_ID(rcu), (c), __rcu)
650
651
652 /**
653 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
654 * @p: The pointer to read, prior to dereferencing
655 *
656 * This is a simple wrapper around rcu_dereference_check().
657 */
658 #define rcu_dereference(p) rcu_dereference_check(p, 0)
659
660 /**
661 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
662 * @p: The pointer to read, prior to dereferencing
663 *
664 * Makes rcu_dereference_check() do the dirty work.
665 */
666 #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
667
668 /**
669 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
670 * @p: The pointer to read, prior to dereferencing
671 *
672 * Makes rcu_dereference_check() do the dirty work.
673 */
674 #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
675
676 /**
677 * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism
678 * @p: The pointer to hand off
679 *
680 * This is simply an identity function, but it documents where a pointer
681 * is handed off from RCU to some other synchronization mechanism, for
682 * example, reference counting or locking. In C11, it would map to
683 * kill_dependency(). It could be used as follows::
684 *
685 * rcu_read_lock();
686 * p = rcu_dereference(gp);
687 * long_lived = is_long_lived(p);
688 * if (long_lived) {
689 * if (!atomic_inc_not_zero(p->refcnt))
690 * long_lived = false;
691 * else
692 * p = rcu_pointer_handoff(p);
693 * }
694 * rcu_read_unlock();
695 */
696 #define rcu_pointer_handoff(p) (p)
697
698 /**
699 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
700 *
701 * When synchronize_rcu() is invoked on one CPU while other CPUs
702 * are within RCU read-side critical sections, then the
703 * synchronize_rcu() is guaranteed to block until after all the other
704 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked
705 * on one CPU while other CPUs are within RCU read-side critical
706 * sections, invocation of the corresponding RCU callback is deferred
707 * until after the all the other CPUs exit their critical sections.
708 *
709 * In v5.0 and later kernels, synchronize_rcu() and call_rcu() also
710 * wait for regions of code with preemption disabled, including regions of
711 * code with interrupts or softirqs disabled. In pre-v5.0 kernels, which
712 * define synchronize_sched(), only code enclosed within rcu_read_lock()
713 * and rcu_read_unlock() are guaranteed to be waited for.
714 *
715 * Note, however, that RCU callbacks are permitted to run concurrently
716 * with new RCU read-side critical sections. One way that this can happen
717 * is via the following sequence of events: (1) CPU 0 enters an RCU
718 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
719 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
720 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
721 * callback is invoked. This is legal, because the RCU read-side critical
722 * section that was running concurrently with the call_rcu() (and which
723 * therefore might be referencing something that the corresponding RCU
724 * callback would free up) has completed before the corresponding
725 * RCU callback is invoked.
726 *
727 * RCU read-side critical sections may be nested. Any deferred actions
728 * will be deferred until the outermost RCU read-side critical section
729 * completes.
730 *
731 * You can avoid reading and understanding the next paragraph by
732 * following this rule: don't put anything in an rcu_read_lock() RCU
733 * read-side critical section that would block in a !PREEMPTION kernel.
734 * But if you want the full story, read on!
735 *
736 * In non-preemptible RCU implementations (pure TREE_RCU and TINY_RCU),
737 * it is illegal to block while in an RCU read-side critical section.
738 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPTION
739 * kernel builds, RCU read-side critical sections may be preempted,
740 * but explicit blocking is illegal. Finally, in preemptible RCU
741 * implementations in real-time (with -rt patchset) kernel builds, RCU
742 * read-side critical sections may be preempted and they may also block, but
743 * only when acquiring spinlocks that are subject to priority inheritance.
744 */
rcu_read_lock(void)745 static __always_inline void rcu_read_lock(void)
746 {
747 __rcu_read_lock();
748 __acquire(RCU);
749 rcu_lock_acquire(&rcu_lock_map);
750 RCU_LOCKDEP_WARN(!rcu_is_watching(),
751 "rcu_read_lock() used illegally while idle");
752 }
753
754 /*
755 * So where is rcu_write_lock()? It does not exist, as there is no
756 * way for writers to lock out RCU readers. This is a feature, not
757 * a bug -- this property is what provides RCU's performance benefits.
758 * Of course, writers must coordinate with each other. The normal
759 * spinlock primitives work well for this, but any other technique may be
760 * used as well. RCU does not care how the writers keep out of each
761 * others' way, as long as they do so.
762 */
763
764 /**
765 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
766 *
767 * In almost all situations, rcu_read_unlock() is immune from deadlock.
768 * In recent kernels that have consolidated synchronize_sched() and
769 * synchronize_rcu_bh() into synchronize_rcu(), this deadlock immunity
770 * also extends to the scheduler's runqueue and priority-inheritance
771 * spinlocks, courtesy of the quiescent-state deferral that is carried
772 * out when rcu_read_unlock() is invoked with interrupts disabled.
773 *
774 * See rcu_read_lock() for more information.
775 */
rcu_read_unlock(void)776 static inline void rcu_read_unlock(void)
777 {
778 RCU_LOCKDEP_WARN(!rcu_is_watching(),
779 "rcu_read_unlock() used illegally while idle");
780 __release(RCU);
781 __rcu_read_unlock();
782 rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */
783 }
784
785 /**
786 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
787 *
788 * This is equivalent to rcu_read_lock(), but also disables softirqs.
789 * Note that anything else that disables softirqs can also serve as an RCU
790 * read-side critical section. However, please note that this equivalence
791 * applies only to v5.0 and later. Before v5.0, rcu_read_lock() and
792 * rcu_read_lock_bh() were unrelated.
793 *
794 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
795 * must occur in the same context, for example, it is illegal to invoke
796 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
797 * was invoked from some other task.
798 */
rcu_read_lock_bh(void)799 static inline void rcu_read_lock_bh(void)
800 {
801 local_bh_disable();
802 __acquire(RCU_BH);
803 rcu_lock_acquire(&rcu_bh_lock_map);
804 RCU_LOCKDEP_WARN(!rcu_is_watching(),
805 "rcu_read_lock_bh() used illegally while idle");
806 }
807
808 /**
809 * rcu_read_unlock_bh() - marks the end of a softirq-only RCU critical section
810 *
811 * See rcu_read_lock_bh() for more information.
812 */
rcu_read_unlock_bh(void)813 static inline void rcu_read_unlock_bh(void)
814 {
815 RCU_LOCKDEP_WARN(!rcu_is_watching(),
816 "rcu_read_unlock_bh() used illegally while idle");
817 rcu_lock_release(&rcu_bh_lock_map);
818 __release(RCU_BH);
819 local_bh_enable();
820 }
821
822 /**
823 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
824 *
825 * This is equivalent to rcu_read_lock(), but also disables preemption.
826 * Read-side critical sections can also be introduced by anything else that
827 * disables preemption, including local_irq_disable() and friends. However,
828 * please note that the equivalence to rcu_read_lock() applies only to
829 * v5.0 and later. Before v5.0, rcu_read_lock() and rcu_read_lock_sched()
830 * were unrelated.
831 *
832 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
833 * must occur in the same context, for example, it is illegal to invoke
834 * rcu_read_unlock_sched() from process context if the matching
835 * rcu_read_lock_sched() was invoked from an NMI handler.
836 */
rcu_read_lock_sched(void)837 static inline void rcu_read_lock_sched(void)
838 {
839 preempt_disable();
840 __acquire(RCU_SCHED);
841 rcu_lock_acquire(&rcu_sched_lock_map);
842 RCU_LOCKDEP_WARN(!rcu_is_watching(),
843 "rcu_read_lock_sched() used illegally while idle");
844 }
845
846 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
rcu_read_lock_sched_notrace(void)847 static inline notrace void rcu_read_lock_sched_notrace(void)
848 {
849 preempt_disable_notrace();
850 __acquire(RCU_SCHED);
851 }
852
853 /**
854 * rcu_read_unlock_sched() - marks the end of a RCU-classic critical section
855 *
856 * See rcu_read_lock_sched() for more information.
857 */
rcu_read_unlock_sched(void)858 static inline void rcu_read_unlock_sched(void)
859 {
860 RCU_LOCKDEP_WARN(!rcu_is_watching(),
861 "rcu_read_unlock_sched() used illegally while idle");
862 rcu_lock_release(&rcu_sched_lock_map);
863 __release(RCU_SCHED);
864 preempt_enable();
865 }
866
867 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
rcu_read_unlock_sched_notrace(void)868 static inline notrace void rcu_read_unlock_sched_notrace(void)
869 {
870 __release(RCU_SCHED);
871 preempt_enable_notrace();
872 }
873
874 /**
875 * RCU_INIT_POINTER() - initialize an RCU protected pointer
876 * @p: The pointer to be initialized.
877 * @v: The value to initialized the pointer to.
878 *
879 * Initialize an RCU-protected pointer in special cases where readers
880 * do not need ordering constraints on the CPU or the compiler. These
881 * special cases are:
882 *
883 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer *or*
884 * 2. The caller has taken whatever steps are required to prevent
885 * RCU readers from concurrently accessing this pointer *or*
886 * 3. The referenced data structure has already been exposed to
887 * readers either at compile time or via rcu_assign_pointer() *and*
888 *
889 * a. You have not made *any* reader-visible changes to
890 * this structure since then *or*
891 * b. It is OK for readers accessing this structure from its
892 * new location to see the old state of the structure. (For
893 * example, the changes were to statistical counters or to
894 * other state where exact synchronization is not required.)
895 *
896 * Failure to follow these rules governing use of RCU_INIT_POINTER() will
897 * result in impossible-to-diagnose memory corruption. As in the structures
898 * will look OK in crash dumps, but any concurrent RCU readers might
899 * see pre-initialized values of the referenced data structure. So
900 * please be very careful how you use RCU_INIT_POINTER()!!!
901 *
902 * If you are creating an RCU-protected linked structure that is accessed
903 * by a single external-to-structure RCU-protected pointer, then you may
904 * use RCU_INIT_POINTER() to initialize the internal RCU-protected
905 * pointers, but you must use rcu_assign_pointer() to initialize the
906 * external-to-structure pointer *after* you have completely initialized
907 * the reader-accessible portions of the linked structure.
908 *
909 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
910 * ordering guarantees for either the CPU or the compiler.
911 */
912 #define RCU_INIT_POINTER(p, v) \
913 do { \
914 rcu_check_sparse(p, __rcu); \
915 WRITE_ONCE(p, RCU_INITIALIZER(v)); \
916 } while (0)
917
918 /**
919 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
920 * @p: The pointer to be initialized.
921 * @v: The value to initialized the pointer to.
922 *
923 * GCC-style initialization for an RCU-protected pointer in a structure field.
924 */
925 #define RCU_POINTER_INITIALIZER(p, v) \
926 .p = RCU_INITIALIZER(v)
927
928 /*
929 * Does the specified offset indicate that the corresponding rcu_head
930 * structure can be handled by kvfree_rcu()?
931 */
932 #define __is_kvfree_rcu_offset(offset) ((offset) < 4096)
933
934 /**
935 * kfree_rcu() - kfree an object after a grace period.
936 * @ptr: pointer to kfree for double-argument invocations.
937 * @rhf: the name of the struct rcu_head within the type of @ptr.
938 *
939 * Many rcu callbacks functions just call kfree() on the base structure.
940 * These functions are trivial, but their size adds up, and furthermore
941 * when they are used in a kernel module, that module must invoke the
942 * high-latency rcu_barrier() function at module-unload time.
943 *
944 * The kfree_rcu() function handles this issue. Rather than encoding a
945 * function address in the embedded rcu_head structure, kfree_rcu() instead
946 * encodes the offset of the rcu_head structure within the base structure.
947 * Because the functions are not allowed in the low-order 4096 bytes of
948 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
949 * If the offset is larger than 4095 bytes, a compile-time error will
950 * be generated in kvfree_rcu_arg_2(). If this error is triggered, you can
951 * either fall back to use of call_rcu() or rearrange the structure to
952 * position the rcu_head structure into the first 4096 bytes.
953 *
954 * The object to be freed can be allocated either by kmalloc() or
955 * kmem_cache_alloc().
956 *
957 * Note that the allowable offset might decrease in the future.
958 *
959 * The BUILD_BUG_ON check must not involve any function calls, hence the
960 * checks are done in macros here.
961 */
962 #define kfree_rcu(ptr, rhf) kvfree_rcu_arg_2(ptr, rhf)
963 #define kvfree_rcu(ptr, rhf) kvfree_rcu_arg_2(ptr, rhf)
964
965 /**
966 * kfree_rcu_mightsleep() - kfree an object after a grace period.
967 * @ptr: pointer to kfree for single-argument invocations.
968 *
969 * When it comes to head-less variant, only one argument
970 * is passed and that is just a pointer which has to be
971 * freed after a grace period. Therefore the semantic is
972 *
973 * kfree_rcu_mightsleep(ptr);
974 *
975 * where @ptr is the pointer to be freed by kvfree().
976 *
977 * Please note, head-less way of freeing is permitted to
978 * use from a context that has to follow might_sleep()
979 * annotation. Otherwise, please switch and embed the
980 * rcu_head structure within the type of @ptr.
981 */
982 #define kfree_rcu_mightsleep(ptr) kvfree_rcu_arg_1(ptr)
983 #define kvfree_rcu_mightsleep(ptr) kvfree_rcu_arg_1(ptr)
984
985 #define kvfree_rcu_arg_2(ptr, rhf) \
986 do { \
987 typeof (ptr) ___p = (ptr); \
988 \
989 if (___p) { \
990 BUILD_BUG_ON(!__is_kvfree_rcu_offset(offsetof(typeof(*(ptr)), rhf))); \
991 kvfree_call_rcu(&((___p)->rhf), (void *) (___p)); \
992 } \
993 } while (0)
994
995 #define kvfree_rcu_arg_1(ptr) \
996 do { \
997 typeof(ptr) ___p = (ptr); \
998 \
999 if (___p) \
1000 kvfree_call_rcu(NULL, (void *) (___p)); \
1001 } while (0)
1002
1003 /*
1004 * Place this after a lock-acquisition primitive to guarantee that
1005 * an UNLOCK+LOCK pair acts as a full barrier. This guarantee applies
1006 * if the UNLOCK and LOCK are executed by the same CPU or if the
1007 * UNLOCK and LOCK operate on the same lock variable.
1008 */
1009 #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE
1010 #define smp_mb__after_unlock_lock() smp_mb() /* Full ordering for lock. */
1011 #else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
1012 #define smp_mb__after_unlock_lock() do { } while (0)
1013 #endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
1014
1015
1016 /* Has the specified rcu_head structure been handed to call_rcu()? */
1017
1018 /**
1019 * rcu_head_init - Initialize rcu_head for rcu_head_after_call_rcu()
1020 * @rhp: The rcu_head structure to initialize.
1021 *
1022 * If you intend to invoke rcu_head_after_call_rcu() to test whether a
1023 * given rcu_head structure has already been passed to call_rcu(), then
1024 * you must also invoke this rcu_head_init() function on it just after
1025 * allocating that structure. Calls to this function must not race with
1026 * calls to call_rcu(), rcu_head_after_call_rcu(), or callback invocation.
1027 */
rcu_head_init(struct rcu_head * rhp)1028 static inline void rcu_head_init(struct rcu_head *rhp)
1029 {
1030 rhp->func = (rcu_callback_t)~0L;
1031 }
1032
1033 /**
1034 * rcu_head_after_call_rcu() - Has this rcu_head been passed to call_rcu()?
1035 * @rhp: The rcu_head structure to test.
1036 * @f: The function passed to call_rcu() along with @rhp.
1037 *
1038 * Returns @true if the @rhp has been passed to call_rcu() with @func,
1039 * and @false otherwise. Emits a warning in any other case, including
1040 * the case where @rhp has already been invoked after a grace period.
1041 * Calls to this function must not race with callback invocation. One way
1042 * to avoid such races is to enclose the call to rcu_head_after_call_rcu()
1043 * in an RCU read-side critical section that includes a read-side fetch
1044 * of the pointer to the structure containing @rhp.
1045 */
1046 static inline bool
rcu_head_after_call_rcu(struct rcu_head * rhp,rcu_callback_t f)1047 rcu_head_after_call_rcu(struct rcu_head *rhp, rcu_callback_t f)
1048 {
1049 rcu_callback_t func = READ_ONCE(rhp->func);
1050
1051 if (func == f)
1052 return true;
1053 WARN_ON_ONCE(func != (rcu_callback_t)~0L);
1054 return false;
1055 }
1056
1057 /* kernel/ksysfs.c definitions */
1058 extern int rcu_expedited;
1059 extern int rcu_normal;
1060
1061 DEFINE_LOCK_GUARD_0(rcu, rcu_read_lock(), rcu_read_unlock())
1062
1063 #endif /* __LINUX_RCUPDATE_H */
1064